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A B S T R A C T

We study a setting where a receiver must design a questionnaire to recover a sequence of symbols known
to a strategic sender, whose utility may not be incentive compatible. We allow the receiver the possibility of
selecting the alternatives presented in the questionnaire, and thereby linking decisions across the components
of the sequence. We show that, despite the strategic sender and the noise in the channel, the receiver can
recover exponentially many sequences, but also that exponentially many sequences are unrecoverable even by
the best strategy. We define the growth rate of the number of recovered sequences as the information extraction
capacity. A generalization of the Shannon capacity, it characterizes the optimal amount of communication
resources required while communicating with a strategic sender. We derive bounds leading to an exact
evaluation of the information extraction capacity in many cases. Our results form the building blocks of a
novel, non-cooperative regime of communication involving a strategic sender.
1. Introduction

Consider the following situation that arose during the early days of
the Covid-19 pandemic. Travellers arrived at airports with varied travel
histories and health inspectors had to screen these travellers based
on responses to standardized questionnaires. Travellers arriving from
unsafe locations were hesitant to reveal their true travel histories due to
inconvenience of quarantine protocols and stigma associated with the
disease, while those that arrived from safe locations wanted their true
travel histories to be recorded. Some travellers had complex journeys
where for some days they were at safe locations, while for other
days they were at unsafe ones, and were perhaps inclined to selective
misreporting. Detailed travel histories, in addition to an indication of
susceptibility to infection, were useful for auxiliary studies such as
contact tracing, inferring susceptibility of locations, stopping transport
and more generally studying the spread of the infection. These studies
evidently require the entire travel history of passengers and the health
inspector’s challenge was to design a questionnaire that recovered as
many true travel histories as possible.

✩ The results in this paper were presented in part the IEEE International Conference on Signal Processing and Communications (SPCOM) (Vora and Kulkarni,
2020d) held virtually in July 2020 and at the IEEE Conference on Decision and Control held virtually in December 2020 (Vora and Kulkarni, 2020c). The
authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this
paper. This work was done when Anuj S. Vora was a doctoral student at the Systems and Control Engineering group. This research was supported by the grant
CRG/2019/002975 of the Science and Engineering Research Board, Department of Science and Technology, India.
∗ Corresponding author.

E-mail addresses: a.vora@tudelft.nl (A.S. Vora), kulkarni.ankur@iitb.ac.in (A.A. Kulkarni).

We model the above situation as follows. A receiver (health in-
spector) wishes to recover information privately known to a sender
(traveller) over a possibly imperfect communication medium. The pri-
vate information of the sender, i.e., its type, is a sequence of 𝑛 symbols
(locations) each drawn from a finite set of size 𝑞. Here 𝑛 is the length of
the travel history measured in some unit (say, ‘‘days’’) and comprises
of locations travelled to on consecutive days. A questionnaire is char-
acterized by a set of alternatives and a selection mode. Each alternative
is drawn from the set of all possible sequences of symbols and the
mode demands that the sender select any one alternative as its reported
sequence. On viewing the sequence reported by the sender, the receiver
applies a ‘‘decoding’’ function or an interpretation, mapping it to a
decoded sequence. The sender is a non-cooperative agent and wishes
to maximize the average utility 1

𝑛
∑

𝑖 𝒰(𝑥′𝑖 , 𝑥𝑖) obtained when the true
sequence 𝑥 = (𝑥1,… , 𝑥𝑛) and the sequence 𝑥′ = (𝑥′1,… , 𝑥′𝑛) is decoded
by the receiver. This utility function dictates the sender’s response to
the questionnaire, and maximizing the utility may not align with the
interests of the receiver.
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Depending on the realized sequence of symbols, for certain symbols,
the sender may prefer that the receiver decodes the symbol incorrectly,
whereas for other symbols it may want the receiver to know the truth.
The receiver, on the other hand, is interested in maximizing the number
of true sequences recovered correctly.1 We ask the following question:
iven the sender’s tendency to misreport its type and the possibly
mperfect medium of communication, how must the receiver strategize
o recover as much true information as possible? And what is the
aximum amount of information that the receiver can extract from

he sender? We call this the problem of information extraction from a
trategic sender.

Notice that the receiver’s options are rather limited. The receiver
ust publish a questionnaire before the sender’s type is realized, and
ence the questionnaire must be the same for all sender types. There is
either any scope for incentivizing truthful reporting by using transfers,
or do we assume incentive compatibility for the sender. How can the
eceiver then get any meaningful information from the sender? We
llow the receiver the option to eliminate certain alternatives from the
uestionnaire. If there are 𝑞 possible symbols, an exhaustive (and naive)
uestionnaire would have all 𝑞𝑛 sequences as possible alternatives for
he sender to choose from. Instead, we allow the receiver to select only
f a subset of these sequences and publish only those sequences as
vailable alternatives.2 This effectively constrains the signal space of
ommunication between the sender and the receiver, and becomes a
ey design tool for extracting non-trivial information from a strategic
ender. Another tool with the receiver is the possibility of enforcing
linking of decisions (Jackson and Sonnenschein, 2007) across com-

onents of the sequence by suitably selecting the alternatives. The
ffect of this linking is that, not wanting to misreport one leg of the
istory forces the traveller to truthfully report other legs too; this again
llows the receiver to extract more information than would be trivially
ossible. Indeed, we find that although we consider the 𝑛-day utility as
sum over the components of the sequence, the optimal questionnaire

or 𝑛-length histories is not a stacking of 𝑛 questionnaires of 1-length
istories.

Another setting where the framework of information extraction
sing questionnaires is applicable arises in finance. Suppose the sender
s an entity that has performed a sequence of 𝑛 financial transactions.
ach transaction is from a universe of 𝑞 possible transactions, not all
f which have verifiable records. An investigating officer (receiver)
ust ascertain the true sequence of transactions (say, to detect money

aundering, or funding of nefarious activities), whereas the sender
ho has made these transactions may have an incentive to selectively
isreport them. Our results in this paper provide not only strategies for

he receiver, but also a structural understanding of the type space that
an potentially be recovered. This understanding helps in setting up
onitoring mechanisms that would discourage or prevent misreporting.

Our problem bears similarity to that of the implementation of a
ocial choice function, as in Myerson’s mechanism design setting (My-
rson, 1997). Indeed, if modelled that way, the social choice function
or our problem would become the identity function and incentive com-
atibility would require the sender to be truthful about its information.
n this case, the sender’s goal would coincide with the receiver’s goal
f recovering the truth, thereby reducing the problem to classical, non-
trategic communication. Indeed in that extreme, our results do reduce

1 As another example, recall the tale of a mischievous boy (sender) who
bserves a source that can be two possible states: wolf and no-wolf. The

villagers (receiver) want to know if there is indeed a wolf. But the boy derives
a utility 𝒰(𝑥′, 𝑥) when the true state is 𝑥 and the villagers decode it to be
𝑥′. In the classical tale, when there is no wolf, the boy wants the villagers to
think there is a wolf, i.e., 𝒰(𝑤𝑜𝑙𝑓 , 𝑛𝑜 −𝑤𝑜𝑙𝑓 ) > 𝒰(𝑛𝑜 −𝑤𝑜𝑙𝑓 , 𝑛𝑜 −𝑤𝑜𝑙𝑓 ). But
when there is a wolf, he wants them to infer that there is really a wolf, i.e.,
𝒰(𝑤𝑜𝑙𝑓 , 𝑤𝑜𝑙𝑓 ) > 𝒰(𝑛𝑜 −𝑤𝑜𝑙𝑓 , 𝑤𝑜𝑙𝑓 ).

2
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Our questionnaire requires the sender to select only one alternative. r
to those from communication theory. Thus one may view our contribu-
tion as that of a non-cooperative theory of communication, generalizing
Shannon’s communication theory to a setting more akin to Myerson’s
mechanism design.

1.1. Main results

We formulate this problem as a leader–follower game with the re-
ceiver as the leader and the sender as the follower and analyse it based
on the Stackelberg equilibrium. The receiver’s strategy comprises of
two parts — it must decide the sequences to be retained as alternatives
in the questionnaire, and it must decide a mapping that ‘‘interprets’’
the response of the sender by mapping it to a decoded sequence. Our
measure of information is the number of distinct sequences that the
receiver recovers in a Stackelberg equilibrium. We find that there
exists a Stackelberg equilibrium in which only this subset of the 𝑞𝑛

sequences are retained as alternatives, and the receiver applies an
identity decoding mapping on them.3 The sequences are chosen in such
a way that when restricted to the chosen subset, the sender’s utility
is incentive compatible (even though it may not be so on the full set
of sequences), thereby each of the sequences in the questionnaire is
recovered. This is reminiscent of the revelation principle (Myerson,
1997).

We define the limiting value (with increasing length of sequences,
henceforth termed as blocklength) of the exponent of the size of this
set of recovered sequences as the information extraction capacity of
the sender. This capacity, denoted by 𝛯(𝒰), with 𝒰 being the single-
lettered utility function of the sender, can be interpreted as the growth
rate of the number of alternatives that are included in the optimal
questionnaire. Equivalently, the capacity captures the rate at which
the sheet of paper on which the questionnaire is printed – which is the
communication medium between sender and receiver – must grow with
increasing length of the history. It is thus a measure of the optimal
amount of communication resources required while communicating
with a strategic sender.

We find that 𝛯(𝒰) is the limit of the 𝑛th root of the independence
number of a certain sequence of graphs whose structure is determined
by 𝒰 . The quantity 𝛯(𝒰) bears intuitive similarity to the notion of
the Shannon capacity of a graph (Shannon, 1956), a well-known and
notoriously hard-to-compute quantity from communication theory. In
fact, we show that the information extraction capacity generalizes the
Shannon capacity of a graph. We show that the capacity lies between
two important quantities,

𝛤 (𝒰) ≤ 𝛯(𝒰) ≤ 𝛩(𝐺𝖲𝗒𝗆
𝗌 ). (1)

These bounds are independent of the blocklength 𝑛 and are a function
of only the utility. The lower bound 𝛤 (𝒰) is the optimal value of an
optimization problem defined over a set of permutation matrices on
the alphabet  . The upper bound is the Shannon capacity of a graph
𝐺𝖲𝗒𝗆
𝗌 induced by the symmetric part of the utility 𝒰 .

Although this result may appear purely mathematical at first glance,
it has a number of economic consequences. First, barring some corner
cases, we have 𝛤 (𝒰) > 1, whereby the receiver can recover an expo-
nential number of sequences, regardless of any assumption of incentive
compatibility on 𝒰 . Moreover, in general 𝛤 (𝒰) is strictly greater than
the size of the questionnaire for 1-length histories. Second, the upper
bound shows that 𝛯(𝒰) is, in general, strictly less than 𝑞, whereby the
maximum number of sequences recovered is exponentially smaller than
the total number of sequences. Third, for the utilities where the bounds
match, the capacity is exactly characterized. Examples include cases
where 𝒰 symmetric and the corresponding 𝐺𝖲𝗒𝗆

𝗌 is a perfect graph,
and when the sender has ‘‘transitive’’ preferences. We discuss more

3 In other words, the receiver believes the sender, or takes the sender’s
esponses at face value.
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such examples later in the paper. A well-known semi-definite program
based upper bound on the Shannon capacity of a graph is the Lovász
theta function introduced by Lovász (1979). This, along with the lower
bound, together provide two computable bounds that can approximate
the capacity when it is not exactly characterized. We also derive a
hierarchy of lower bounds as a function of the blocklength 𝑛 by gener-
lizing the bound 𝛤 (𝒰), which approach the capacity asymptotically as
grows large. This allows one to approximate the capacity arbitrarily

losely from the left-hand side, albeit with increasing computational
urden.

When the channel is noisy, the rate of information extraction is
iven by min{𝛯(𝒰), 𝛩(𝐺𝖼)}, where 𝐺𝖼 is the confusability graph of the
hannel. This result shows that as long as the zero-error capacity of the
hannel is greater than 𝛯(𝒰), the receiver can extract the maximum
ossible information from the sender, and otherwise it is limited by
he channel capacity. This result is analogous to the setting of joint
ource-channel coding in information theory, where the capacity of the
hannel is required to be larger than the entropy of the source to ensure
eliable communication (Cover and Thomas, 2012, Ch. 7).

A general lesson in these results is that there are fundamental
imitations to the operation of systems with self-interested agents.
roblems where agents are compromised also occur in cyber–physical
ystems, where a network of sensors connected over a communication
edium is tasked with the operation of safety-critical applications such

s nuclear power plants. A compromised sensor may be modelled as
on-cooperative sender as in our setting. Our results show on the one
and how a receiver may strategize to obtain information from such
gents, and on the other that there will usually be blind spots in the
nowledge of the receiver, regardless of how it strategizes. Finally,
hen compromised sensors are present, improving the communication
andwidth only has a limited effect (it increases 𝛩(𝐺𝖼) above); it may
elp the receiver hear the sender more clearly, but not recover more
ruth.

.2. Economic insights

We new present a few economic insights that emerge from our
nalysis.

The key idea in the Stackelberg equilibrium strategy of the receiver
s to limit the options of the sender for lying by selectively decoding
nly a subset of the sequences. If the receiver attempts to correctly
ecover a larger number of sequences by including more alternatives
n the questionnaire, then the sender gets greater freedom to lie about
ts information, and the attempt of the receiver is counter-productive.
n the other hand, if the receiver chooses too few sequences to include

n the questionnaire, then the sender is compelled to speak truth given
he limited choices, but the number of sequences recovered is less than
ptimal. The information extraction capacity is the growth rate of the

‘optimal’’ set that balances these two aspects.
Since an exhaustive questionnaire is prone to misreporting by a

trategic sender, questionnaires for strategic respondents must involve
ome coarsening of options. This may appear unfair to senders whose
ype has been eliminated and are now compelled to pick a type that
s not their true type. But such elimination is in the ‘‘greater good’’.

ith this strategy, a receiver acts as an enlightened totalitarian – by
onstraining what can be said, the receiver ensures that more truth
s spoken. Moreover, as 𝑛 → ∞, the number of options retained is in
eneral a vanishing fraction of 𝑞𝑛.

Questionnaires with coarse and rigid options often appear in au-
omated assistance systems, like customer care helplines, and also
n immigration forms. Our results show that such coarseness is not
ecessarily due to poor design or constraints of the medium (such as
he length of forms), but rather a strategic choice of the receiver to
nsure better reporting by the sender.

Moreover, in the optimal strategy above, the receiver takes the
ender’s response at face value. Hence, with a well-designed question-
50

aire, there is no need for further ‘‘mind games’’ or interpretation to be n
ttached to the sender’s response. In response, all senders whose type
s included in the questionnaire, find it optimal to report it truthfully.
his is analogous to the revelation principle in mechanism design.

Our results show that exponentially more sequences can be ex-
racted by a questionnaire that employs strategic linking. Moreover,
nder a special structure of 𝒰 , day-wise questionnaires are optimal and
n this case there is no benefit to linking.

Finally, our definition of a questionnaire is one where the sender is
equired to ‘‘select any one’’ from a set of alternatives. On a theoretical
ront, more general questionnaires can be considered – e.g., those
here the sender can ‘‘select all that apply’’, or those with a ‘‘none of

he above’’ alternative. These are fascinating directions, though beyond
ur present scope.

.3. Relation to cooperative information theory

In the non-cooperative setting we consider, finite blocklength leader–
ollower games take the place of finite blocklength coding problems
rom the cooperative setting, whereas Stackelberg equilibria take the
lace of codes. We find that 𝛯(𝒰) plays a role loosely analogous to
hat played by the entropy of a source in cooperative communication;
he utility 𝒰 of the sender is akin to the probability mass function of
he source. This analogy agrees with the rate of information extraction
ith a noisy channel, given by min{𝛯(𝒰), 𝛩(𝐺𝖼)}. Having said that,

his analogy is loose because we are not concerned with a stochastic
etting in this paper (recall we work in the zero-error regime). A much
ore complicated setting would arise when considering vanishing
robability of error; our preliminary work on this line can be found
n Vora and Kulkarni (2020a).

Another related viewpoint from information theory is the notion of
arge blocklength analysis. Information theory shows that one can, in
eneral, communicate more information on average by exploiting struc-
ure in sequences, rather than in individual symbols, an idea commonly
eferred to as coding. The linking of decisions we exploit in our work is
he analogue of coding in our strategic setting. In information theory
t is of interest to study how the codes scale with the blocklength and
hereby help quantify the improvement in accuracy of communication
ith increase in channel capacity. Our notion of the information ex-

raction capacity is an attempt at capture the similar requirements in a
trategic setting.

When viewed from the communication standpoint, in the noiseless
ase, our channel input and output spaces are both equal to the space
f source sequences. In the cooperative setting this would trivially lead
o recovery of all the source sequences. However, the same does not
old in our setting since the receiver chooses to selectively decode only
portion of the outputs in its optimal strategy. Thus, our results also

uantify the optimal amount of channel resources that are required for
he receiver to extract information from the sender. In a sense, this
arks a shift from the communication-theoretic concept of the capacity

f a channel to that of capacity utilization, as something more relevant
or the non-cooperative setting.

Another subtlety here is that a strategic sender is distinct from a
efunct sender. A defunct sender sends arbitrarily corrupted messages,
hereas a strategic sender’s messages being motivated by its utility
ave an underlying structure. The optimal questionnaire exploits this
tructure to obtain nontrivial information from the sender.

.4. Related work

There have been works on strategic communication (of various
lavours) in the game theory community, but to the best of our knowl-
dge ours is the first formal information-theoretic analysis of infor-
ation extraction. The first model of strategic communication was

ntroduced by Crawford and Sobel (1982). They considered a sender
nd a receiver with misaligned objectives and formulated a simulta-

eous move game between the sender and receiver. They showed that



Mathematical Social Sciences 131 (2024) 48–66A.S. Vora and A.A. Kulkarni
any equilibrium involves the sender resorting to a quantization strategy,
where the sender reports only the interval in which its information
lies. Numerous variants and generalizations were subsequently studied
that include the case of multi-dimensional sources (Battaglini, 2002),
noisy channel medium (Sarıtaş et al., 2015), multi-sender setting with
restricted state spaces (Ambrus and Takahashi, 2008), hierarchical
senders (Ambrus et al., 2013). These works consider a neutral per-
spective between the sender and the receiver and study the Nash
equilibrium strategies. The primary objective is to determine the con-
ditions under which the equilibrium is quantized and conditions under
which a fully informative equilibrium exists.

Strategic communication in control theory has been studied by
Farokhi et al. (2016) and Sayin et al. (2019). Farokhi et al. (2016)
studied a problem of static and dynamic estimation in the presence
of strategic sensors as a game between the sensors and a receiver and
characterized a class of equilibria of the game. Sayin et al. (2019)
considered a dynamic signalling game between a strategic sender and
a receiver. They showed that the players use linear signalling rules in
equilibrium. Strategic communication has been studied from the per-
spective of information theory by Akyol et al. (2015, 2016) where they
studied a sender-receiver game and characterized equilibria satisfying
a certain rate and distortion levels. Akyol et al. (2016) also analysed
the effect of side information at the receiver.

In the information design framework, there is a huge literature on
the Bayesian persuasion problem first introduced by Kamenica and
Gentzkow (2011). In this setting, the sender with superior information
tries to influence the actions of the receiver (Bergemann and Morris,
2019). The objective in these settings is to determine conditions under
which persuasion is beneficial to the sender and characterizing the
equilibrium strategies and the payoff. Information-theoretic analysis
of Bayesian persuasion problem was studied by Le Treust and Tomala
(2019) where they studied a setting where the information of the sender
is a sequence of states and it persuades the receiver via a noisy channel.
They derived an upper bound on the payoff achieved by the sender as
function of the capacity of the channel and showed that this bound can
be achieved in the limit of large state sequences.

The novelty of our work and the differences with the above models
are highlighted in the following points.

• The studies mentioned above consider a neutral perspective be-
tween the sender and the receiver (Battaglini, 2002; Sarıtaş et al.,
2015; Ambrus and Takahashi, 2008; Ambrus et al., 2013) or
consider the perspective of the sender (Farokhi et al., 2016; Sayin
et al., 2019; Akyol et al., 2015, 2016; Kamenica and Gentzkow,
2011; Bergemann and Morris, 2019; Le Treust and Tomala, 2019).
In this paper, we study the problem from the perspective of the
receiver and hence we formulate the game with the receiver as
the leader. This perspective is scarcely studied in the literature
barring a few works that we discuss ahead in this section.

• The works on cheap talk literature as well as the strategic esti-
mation and signalling problems consider continuous state space
and quadratic utilities, where the differences in the utilities of
the sender and receiver are quantified by a bias. In our paper,
we consider discrete state spaces with a utility for the sender that
can differ arbitrarily from the objective of the receiver.

• In our setting, the information of the sender is a sequence of
states, unlike the one-shot setting studied in the cheap talk liter-
ature or the Bayesian persuasion literature. Moreover, the states
observed by the sender are arbitrarily generated by a probability
distribution, unlike, for instance, Farokhi et al. (2016), Sayin et al.
(2019) where the states are generated according to a linear dy-
namical system. In this manner, our work bears similarities to Le
Treust and Tomala (2019) with respect to the state information
observed by the sender.
51
• The problem of designing questionnaires for every length of travel
histories boils to determining a series of static mechanisms to
be designed by the receiver. This is unlike the dynamic setting
in Farokhi et al. (2016), Sayin et al. (2019) where equilibrium
strategies may be a function of past information and estimation
and signalling strategies.

• We present a novel concept of information extraction capacity
based on information-theoretic notions. This capacity character-
izes the maximum ‘‘amount of information’’ that can be recovered
from the sender. We also present a novel economic application of
designing questionnaires based on this framework of information
extraction.

As mentioned earlier, our setting can be viewed as a problem
of implementing a social choice function that may not be incentive
compatible with the preferences of the agents. A related setting is
studied by Jackson and Sonnenschein (2007) where they demonstrated
that these incentive constraints can be overcome by linking independent
copies of the decision making problem. They devised a mechanism and
showed that as the number of linkages grow large, the mechanism
implements the social choice function asymptotically, i.e., the proba-
bility of the decisions on which the function cannot be implemented
tends to zero. There are certain parallels between our setting and the
setting considered by Jackson and Sonnenschein (2007). For instance,
the linking in Jackson and Sonnenschein (2007) is akin to the block
structure of our setting and the implementation of the function is
analogous to information recovery by the receiver. Viewed in this
manner, our inquiry can be stated as follows — how many decisions
can be implemented by the social choice function exactly? Further, how
does this number grow with the length of sequence of signals? Our
setting is thus a zero-error counterpart of the implementation problem.

Our work is also related to the work of Renou and Tomala (2015)
who studied the problem of approximate implementation of social
choice functions where the information observed by the senders is
generated according to a Markov process. They considered a setting
with multiple senders and characterized the functions that can be
implemented approximately in the limit of large state sequences. In
contrast to our work, Renou and Tomala (2015) consider a dynamic
setting where the mechanism at any time may depend on the entire past
history of mechanisms, messages and the decisions of receiver. Also, in
our paper, we assume that the state information (travel histories) of the
sender is generated arbitrarily according to some distribution.

In the context of information theory, our problem relates to the
problem of coding in presence of mismatched criteria that has been
studied extensively (see Scarlett et al. (2020) for a survey). The mis-
match is in the encoding and decoding criteria and is to model the
inaccurate or asymmetric information about the channel or to incor-
porate constraints on encoding or decoding. The optimal functions of
the encoder and decoder in such cases are therefore chosen only in
anticipation of either a fixed encoder or decoder. Thus, they do not
capture the "active" deceptive nature of the problem. The problem
thematically closest to our setting is the mismatched distortion problem
studied by Lapidoth (1997). In this problem, the distortion criteria of
the receiver and the sender are mismatched, and the receiver aims to
construct a codebook such that its own distortion is minimized. The
author determines an upper bound on the distortion for a given rate of
communication. A crucial difference between the setting of Lapidoth
(1997) and our setting is that in the former, the objective of the sender
does not depend on the sequence decoded by the receiver. This fails to
capture the strategic nature of our problem where the sender is indeed
affected by the actions of the receiver is therefore trying to influence
the outcome by misreporting.

Our work significantly extends the results of Vora and Kulkarni
(2021, 2020d). In Vora and Kulkarni (2021), we considered a situation
where a health inspector designs a questionnaire to screen travellers. In
this work, in contrast to the single kind of travellers, we studied a set-

ting where the inspector encounters travellers with varying degrees of
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truth-telling nature and this information is only known in the form of a
probabilistic belief to the inspector. We characterized the optimal ques-
tionnaires and derived preliminary bounds on the rate of information
extraction. In Vora and Kulkarni (2020d) we discussed a special case
of sender’s utility where all the deviations from the truth contribute in
equal magnitude to the benefit or loss of the sender. We showed that
the information extraction capacity is bounded above by the Shannon
capacity of the sender graph. This corresponds to Proposition 4.6 in
this paper where the positive and negative parts of the utility are
equal. We studied related strategic communication problems in Vora
and Kulkarni (2020a,b) where the receiver, unlike the exact recovery
in this paper, tried to achieve asymptotically vanishing probability of
error. In Vora and Kulkarni (2020a), we considered a setting where the
receiver allowed a certain level of distortion and devised ‘‘achievable’’
strategies such that the probability of error was arbitrarily low. We
studied the case of binary alphabet and determined the information-
theoretic rate of these achievable strategies. In Vora and Kulkarni
(2020b), we considered a setting where the receiver wished to compute
a function of the source. We determined sufficient and necessary con-
ditions for reliable communication, where the incentive compatibility
of the function was a sufficient condition. We also showed that when
the function was incentive compatible the Stackelberg equilibrium of
the game corresponds to the information-theoretic source code.

The paper is organized as follows. We formulate the problem in
Section 2. In Section 3, we determine the equilibrium of the Stack-
elberg game with the noiseless channel. In Section 4, we define the
information extraction capacity and in Sections 4.2 and 4.3, we derive
lower bounds and upper bounds respectively on the capacity. Finally,
we analyse the Stackelberg game with the noisy channel in Section 5.
Section 6 concludes the paper.

2. Problem formulation

2.1. Notation

Random variables are denoted with upper case letters 𝑋, 𝑌 ,𝑍 and
heir instances are denoted as lower case letters 𝑥, 𝑦, 𝑧. Matrices are also
enoted by uppercase letters. The space of scalar random variables is
enoted by the calligraphic letters such as  and the space of 𝑛-length

vector random variables is denoted as 𝑛. To unclutter notation, vector
andom variables 𝑋, 𝑌 ,𝑍 and their instances 𝑥, 𝑦, 𝑧 will be denoted
ithout the superscript 𝑛. The set of probability distributions on a

pace ‘⋅’ is denoted as (⋅). The set of all conditional distributions on
set  given a sequence from  is denoted as (|). The empirical

distribution of a sequence 𝑥 ∈ 𝑛 is denoted as 𝑃𝑥 and is defined as
𝑥(𝑖) = |{𝑘 ∶ 𝑥𝑘 = 𝑖}|∕𝑛. The joint empirical distribution of sequences
𝑥, 𝑦) is defined similarly and is denoted as 𝑃𝑥,𝑦. A graph 𝐺 is denoted as
= (𝑉 ,𝐸) where 𝑉 is the set of vertices and 𝐸 is the set of edges. When

wo vertices 𝑥, 𝑦 ∈ 𝑉 are adjacent, we denote it either as (𝑥, 𝑦) ∈ 𝐸 or
as 𝑥 ∼ 𝑦. An independent set in 𝐺 is a subset 𝑆 of 𝑉 such that no
two vertices in 𝑆 are adjacent. For a graph 𝐺, the size of the largest
independent set is denoted as 𝛼(𝐺). For a function or a random variable,
we denote supp(⋅) as its support set. For an optimization problem ‘⋅’, we
denote OPT(⋅) as its optimal value. Unless specified, the exp and log are
with respect to the base 2. For any 𝑛 ∈ N, we denote {1,… , 𝑛} by [𝑛].

2.2. Model

We present a model where the medium of communication is noise-
less; it will be generalized later to allow for noisy communication. Let
the alphabet be  = {0, 1,… , 𝑞 − 1}, where 𝑞 ∈ N is the alphabet
size. The sender observes a sequence 𝑋 = (𝑋1,… , 𝑋𝑛) ∈ 𝑛, where

𝑖 are drawn from a known distribution.4 The sender sends a message

4 In the context of travellers, the term ‘‘observes’’ implies that the sender
rrives with a sequence of travel locations.
52

a

𝑠𝑛(𝑋) = 𝑌 ∈ 𝑛, where 𝑠𝑛 ∶ 𝑛 → 𝑛. The message is relayed
erfectly to the receiver who decodes the message as 𝑔𝑛(𝑌 ) = 𝑋, where
𝑛 ∶ 𝑛 → 𝑛 ∪ {𝛥}. Here 𝛥 is an error symbol we introduce for
onvenience; we explain its meaning subsequently. Let

(𝑔𝑛, 𝑠𝑛) ∶=
{

𝑥 ∈ 𝑛 ∣ 𝑔𝑛◦𝑠𝑛(𝑥) = 𝑥
}

(2)

e the set of recovered sequences when the receiver plays the strategy
𝑛 and the sender plays the strategy 𝑠𝑛. We also refer to the set of
ecovered sequences (𝑔𝑛, 𝑠𝑛) as the set of sequences correctly decoded
y the receiver.

We assume that the 𝑛-block utility function 𝒰𝑛 takes the following
orm,

𝑛(𝑥̂, 𝑥) =
1
𝑛

𝑛
∑

𝑖=1
𝒰(𝑥̂𝑖, 𝑥𝑖), (3)

where 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ 𝑛 is the sender’s type and 𝑥̂ = (𝑥̂1,… , 𝑥̂𝑛) ∈ 𝑛

s the sequence of symbols decoded by receiver, and 𝒰 ∶  × → R is
he single-letter utility of the sender.

The receiver aims to maximize the size of the set (𝑔𝑛, 𝑠𝑛) by
hoosing an appropriate strategy 𝑔𝑛. The sender, on the other hand,
aximizes 𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥) for each 𝑥 by choosing an appropriate strat-

gy 𝑠𝑛. Further, we assume 𝒰𝑛(𝛥, 𝑥) = −∞ for all 𝑥 ∈ 𝑛 and 𝑛 ∈ N.
hus 𝛥 is an outcome that is never preferred by the sender. We also
ssume that 𝒰(𝑖, 𝑖) = 0 for all 𝑖 ∈  ; this is without loss of generality as
e explain below after Definition 2.1.

The operational meaning of the above model in the context of the
uestionnaire design is as follows. The alphabet  is the set of locations
nd 𝑛 is the length of the history. The message 𝑌 = 𝑠𝑛(𝑋) is the
lternative selected by a traveller with history 𝑋 ∈ 𝑛 and 𝑔𝑛(𝑌 ) is
he interpretation applied by the health inspector to the alternative 𝑌 .
ince 𝛥 is an outcome never preferred by the sender, if an alternative 𝑌
s mapped to 𝛥, it is equivalent to the alternative 𝑌 being not present
n the questionnaire. Thus 𝑛 ∶= {𝑦 ∈ 𝑛 ∣ 𝑔𝑛(𝑦) ≠ 𝛥} is the set of
lternatives presented to the travellers and a traveller has to choose
xactly one of the alternatives from this list. Thus if 𝑥 is the true travel
istory of the traveller, then selecting an alternative 𝑦 ∈ 𝑛 amounts
o setting 𝑠𝑛(𝑥) = 𝑦. The inspector then, is said to decode the response
f the traveller to a travel history 𝑥̂ ∈ 𝑛 if 𝑥̂ = 𝑔𝑛(𝑦). The inspector
ecovers the travel history 𝑥 if and only if 𝑔𝑛◦𝑠𝑛(𝑥) = 𝑥.

We formulate this problem as a leader–follower game with the
eceiver as the leader and the sender as the follower (Başar and Olsder,
999).

efinition 2.1 (Stackelberg Equilibrium). The Stackelberg equilibrium
trategy of the receiver is given as
∗
𝑛 ∈ argmax

𝑔𝑛
min

𝑠𝑛∈ℬ(𝑔𝑛)
|(𝑔𝑛, 𝑠𝑛)|, (4)

here the set of best responses of the sender, ℬ(𝑔𝑛), is given as

(𝑔𝑛) =
{

𝑠𝑛 ∶ 𝑛 → 𝑛 ∣ 𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥) ≥ 𝒰𝑛(𝑔𝑛◦𝑠′𝑛(𝑥), 𝑥)

∀ 𝑥 ∈ 𝑛,∀ 𝑠′𝑛
}

. (5)

ny strategy 𝑠∗𝑛 ∈ ℬ(𝑔∗𝑛 ) is said to be a Stackelberg equilibrium strategy
f the sender and the pair (𝑔∗𝑛 , 𝑠∗𝑛) is said to be a Stackelberg equilibrium.

It is easy to see that the set of best responses ℬ(𝑔𝑛) is the same
f 𝒰𝑛(𝑥, 𝑥) is subtracted on both sides of the inequality in (5). Thus,
ithout loss of generality, we assume 𝒰(𝑖, 𝑖) = 0 for all 𝑖 ∈  .

In (4), we minimize over the set ℬ(𝑔𝑛) of the best responses of
he sender because the sender may have multiple best responses and
he receiver does not have control over the choice of the sender’s
pecific best response strategy. We assume that the receiver chooses
ts strategy according to the worst-case over all such best responses
nd hence adopts a pessimistic viewpoint. This is also the formulation
f Stackelberg equilibrium adopted in standard sources such as Başar
nd Olsder (1999).
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Note that the problem of information extraction we study is distinct
from the problem of information design (Kamenica and Gentzkow, 2011;
Bergemann and Morris, 2019) or information disclosure (Akyol et al.,
2016). In these cases, the problem is studied from the perspective of
the sender who designs the information that is observed by the receiver
so as to achieve an outcome that favours the sender. Thereby, in such
a setting it is suitable to formulate the problem with the sender as the
leader. On the other hand, in the case of screening of travellers, it is
the role of the receiver to ‘‘ask’’ the agents about their information.
Therefore, it is apt to study the problem with the receiver as the leader
of the game.

2.3. An example

The following example illustrates some important aspects of the
setting. Suppose 𝑛 = 1 and let  = {0, 1, 2, 3} be the set of locations.
Let the utility of the sender 𝒰 ∶  ×  → R be given as

=

⎛

⎜

⎜

⎜

⎜

⎝

0 1 2 3

0 0 −1 −2 −2
1 0.5 0 −1 −2
2 −1 0 0 −1
3 −1 −1 0.5 0

⎞

⎟

⎟

⎟

⎟

⎠

Here 𝒰(𝑖, 𝑗), the entry in the 𝑖th row and 𝑗th column, denotes the
tility obtained by the sender when 𝑖 is the location decoded by the
eceiver and 𝑗 is the true location. From column 0, we can see that
(0, 0) < 𝒰(1, 0) and 𝒰(0, 0) > 𝒰(2, 0) = 𝒰(3, 0). Hence, the sender

refers that, when the true location is 0, the receiver decodes it to be
, but not to 2 or 3. Similar observations for column 1 shows that the
ender equally prefers 1 and 2 when the true location is 1; column 2

shows that the sender prefers the location 3 when the true location is 2;
he last column shows that the sender prefers 3 when the true location
s 3.

Suppose the receiver declares a naive questionnaire  = {0, 1, 2, 3}
ith all possible locations and announces to decode it with an identity

unction; i.e., the receiver’s decoded location is equal to the location
eported by the sender. For a true location 𝑥, suppose the sender
hooses an alternative 𝑠(𝑥) from , where 𝑠 ∶  →  is the response
f the sender. A location 𝑥 is recovered by the receiver if 𝑥 = 𝑠(𝑥), and
he set of locations recovered is {𝑥 ∈  ∶ 𝑠(𝑥) = 𝑥}. It is easy to see that
he sender has two best responses 𝑠1, 𝑠2, where

1(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑥 = 0
1 𝑥 = 1
3 𝑥 = 2
3 𝑥 = 3

, 𝑠2(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑥 = 0
2 𝑥 = 1
3 𝑥 = 2
3 𝑥 = 3

.

e have {𝑥 ∈  ∶ 𝑠1(𝑥) = 𝑥} = {1, 3} and {𝑥 ∈  ∶ 𝑠2(𝑥) = 𝑥} = {3}.
hus, in the worst case, only one location is recovered by the receiver.

.3.1. Elimination of alternatives improves information recovery
However, the receiver can recover more than one location by clev-

rly choosing its questionnaire. The main difficulty encountered above
s that when all locations are included as alternatives, it creates room
or lying, whereby less truth is recovered. To counter this, suppose the
eceiver chooses a questionnaire ̃ = {0, 2}, and an identity decoding
unction on ̃. The (unique) best response of the sender is now a
trategy 𝑠̃, where

(𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑥 = 0
2 𝑥 = 1
2 𝑥 = 2
2 𝑥 = 3

.

he set of recovered locations is {𝑥 ∈ ̃ ∶ 𝑠̃(𝑥) = 𝑥} = {0, 2}, thereby the
eceiver has recovered more truth. In ̃, the sender has only 0 and 2 as
53
lternatives and 1 and 3 are left out. Given these choices, the sender is
orced to report 0 truthfully, unlike earlier where it was reporting 0 as 1

when 1 was available as an alternative. Similarly, it is forced to report
truthfully. We thus see that a more cunningly chosen questionnaire

̃ improves on the naive questionnaire  by forcing the sender to be
ruthful for the locations 0 and 2.

Such a questionnaire clearly leaves blind spots for the receiver —
here is no hope of recovering locations 1 and 3. But including 1 in
̃ would jeopardize the recovery of 0, since the sender will report 0
as 1, and including 3 will preclude the recovery of 2, since the sender
will report 2 as 3. We shall see later from the main results, that the
eceiver cannot recover more than two symbols in the worst case over
he best responses of the sender. One may ask if the receiver can recover
ny more locations, in the worst case, by choosing a different decoding
unction. We show later that this is not possible, and it suffices to
onsider the identity decoding function. In other words, ̃ is an optimal
uestionnaire.

.3.2. Linking responses can increase recovered histories on average
Now let 𝑛 = 2, i.e., the sender has 2-length travel histories. The

uestionnaire will thus be composed of sequences from 2. From the
dditive nature of the utility given in (3), it is easy to see (we also
how this formally) that a questionnaire ̃2 ∶= ̃ × ̃ = {00, 02, 20, 22}
ecovers all the travel histories in ̃2. Thus, we have that |̃2

|

1∕2
= 2 and

he receiver recovers the same amount of information per unit length of
he history5 as in ̃. However, can the receiver do better?

Suppose the receiver declares a questionnaire ̂ = {00, 21, 02, 23, 30}.
et 00 be the true sequence and consider another sequence 21 from ̂.
e have that

(21, 00) = 1
2
(𝒰(2, 0) +𝒰(1, 0)) = 1

2
(−1 + 0.5) < 0,

whereby the sender does not prefer to report 00 as 21. Although the
sender prefers the location 1 over the true location 0, the sender has to
trade-off this benefit with the loss derived by reporting the location 0 as
2. Since the penalty from the latter is more than the incentive derived
by misreporting, the sender prefers to report 00 over the sequence
21. This can be repeated for all pairs of sequences in ̂ to show that
whenever the sender’s true sequence is one from ̂, it prefers to report it
truthfully. Thus, the receiver can recover all the histories from ̂. Notice
that |̂|

1∕2
= 51∕2 > 2. In fact, this is the largest size of questionnaire

for 𝑛 = 2. In other words, a larger value of 𝑛 opens up the possibility of
creating linkages across legs of the journey whereby more information
can be recovered than by mere stacking of the optimal questionnaires
corresponding to 1-length histories.

From these short examples, a few observations are immediately ev-
ident. It is clear that questionnaires should not be designed innocently
and the receiver must strategize in order to extract information from the
sender. In general, the receiver may be able to extract only a subset of
the information from the sender. Finally, the receiver can recover more
information on average when the responses of the sender are linked. We
formalize these observations in this paper.

3. Information extraction from the sender in equilibrium

In this section, we characterize the size of the largest set of se-
quences recovered by the receiver in a Stackelberg equilibrium and
its growth rate with the blocklength 𝑛. In general for a fixed receiver
strategy 𝑔𝑛, the size of the set of recovered sequences |(𝑔𝑛, 𝑠𝑛)| could
vary as the best response 𝑠𝑛 varies over ℬ(𝑔𝑛). We consider the smallest
uch size as our notion of the number of recovered sequences. To char-
cterize the growth rate of this size, we define the rate of information
xtraction as follows.

5 Since the total number of travel histories for any 𝑛 are ||

𝑛, a natural way
to compare the recovery of information from questionnaires across different
lengths of travel histories is to look at the 𝑛th root of the size of the
questionnaire.
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Definition 3.1 (Rate of Information Extraction for a Strategy). The
umber of recovered sequences by a receiver strategy 𝑔𝑛 is defined as

min
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|.

For any strategy 𝑔𝑛 of the receiver, the rate of information extraction
is defined as

𝑅(𝑔𝑛) = min
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|
1∕𝑛.

Notice that as 𝑛 increases, the number of possible sender types also
increases, and it does so exponentially. It is therefore important to
track the growth-rate with 𝑛 of various sets of interest. The sequence
{𝑅(𝑔𝑛)}𝑛≥1 quantifies the growth rate of the set of recovered sequences
for a sequence of strategies {𝑔𝑛}𝑛≥1. Below we characterize the number
of sequences recovered in a Stackelberg equilibrium (cf. Definition 2.1)
in terms of a graph induced by the utility of the sender on the space of
sequences 𝑛, called the sender graph.

Definition 3.2 (Sender Graph). The sender graph, denoted as 𝐺𝑛
𝗌 =

(𝑛, 𝐸𝗌), is the graph where (𝑥, 𝑦) ∈ 𝐸𝗌 if either

𝒰𝑛(𝑦, 𝑥) ≥ 0 or 𝒰𝑛(𝑥, 𝑦) ≥ 0.

For 𝑛 = 1, the graph 𝐺1
𝗌 is denoted as 𝐺𝗌 and referred to as the base

graph.

Thus, two vertices 𝑥 and 𝑦 are adjacent in 𝐺𝑛
𝗌 if the sender has an

ncentive to report one sequence as the other.

emark 3.1. Two single-letter utility functions inducing the same base
raph on  can induce two different sequences of sender graphs on 𝑛

or 𝑛 > 1. Let  = {0, 1, 2} and consider the utilities 𝒰 and 𝒰 ′ defined
s

=
⎛

⎜

⎜

⎝

0 −1 −2
1 0 −1
−1 0 0

⎞

⎟

⎟

⎠

, 𝒰 ′ =
⎛

⎜

⎜

⎝

0 −2.5 −2.5
1 0 −1

−1.5 0 0

⎞

⎟

⎟

⎠

.

t is easy to see that the graph 𝐺𝗌 and 𝐺′
𝗌 induced on  by 𝒰 and 𝒰 ′

espectively is a path 0 − 1 − 2.
Now take 𝑛 = 2 and consider the graphs 𝐺2

𝗌 and 𝐺′2
𝗌 induced by 𝒰2

and 𝒰 ′
2 respectively. It can be shown that 01 and 10 are adjacent in

the graph 𝐺2
𝗌 , but are not adjacent in the graph 𝐺′2

𝗌 . Thus, although 𝐺𝗌

and 𝐺′
𝗌 are same, 𝐺2

𝗌 and 𝐺′2
𝗌 are different. In short, the graphs {𝐺𝑛

𝗌 }𝑛≥1
re defined by the utility 𝒰 and the magnitude of the preference of the
ender, rather than 𝐺𝗌 wherein such magnitudes are suppressed. □

In the following theorem, we show that only those sequences can
e recovered by the receiver that form an independent set in 𝐺𝑛

𝗌 . Thus,
(𝑔𝑛) can be at most 𝛼(𝐺𝑛

𝗌 )
1∕𝑛 for any strategy 𝑔𝑛 of the receiver. Fur-

her, by choosing an appropriate strategy 𝑔𝑛, the receiver can recover
ny of the largest independent sets of 𝐺𝑛

𝗌 and consequently achieve the
rate 𝛼(𝐺𝑛

𝗌 )
1∕𝑛.

heorem 3.1. Let 𝑛 ∈ N. Consider a sender with utility 𝒰 and let 𝐺𝑛
𝗌 be

the corresponding sender graph. For any strategy 𝑔𝑛 of the receiver define,

𝒮 (𝑔𝑛) = argmin
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|.

Then, for all strategies 𝑠𝑛 ∈ 𝒮 (𝑔𝑛), (𝑔𝑛, 𝑠𝑛) is an independent set in 𝐺𝑛
𝗌 .

Furthermore, for all Stackelberg equilibrium strategies 𝑔∗𝑛 of the receiver,

𝑅(𝑔∗𝑛 ) = 𝛼(𝐺𝑛
𝗌 )

1∕𝑛.

Proof. See Appendix A.1. ■

We show in the proof of the above theorem that it is sufficient for
the receiver to choose a strategy 𝑔𝑛 as

𝑔𝑛(𝑥) =
{

𝑥 if 𝑥 ∈ 𝐼𝑛 , (6)
54

𝛥 if 𝑥 ∉ 𝐼𝑛
where 𝐼𝑛 is any largest independent set in 𝐺𝑛
𝗌 . Thus, the receiver

decodes meaningfully only for messages in 𝐼𝑛. For the rest of the
messages, the receiver maps them to 𝛥. Operationally, we interpret this
strategy as a questionnaire in which only the sequences from 𝐼𝑛 are re-
tained as alternatives and all other sequences are dropped. The sender is
required to pick one and only one alternative. Any alternative selected
by the sender is taken at face value by the receiver, i.e., the receiver
applies an identity decoding function. Since 𝐼𝑛 is an independent set in
𝐺𝑛
𝗌 it follows from Definition 3.2 that

𝒰𝑛(𝑥, 𝑥) > 𝒰𝑛(𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝐼𝑛, 𝑥 ≠ 𝑦.

In other words 𝒰𝑛 is incentive compatible with the identity function when
restricted to the set 𝐼𝑛. Thus truth-telling is the best response for senders
whose type belongs to 𝐼𝑛, whereby 𝐼𝑛 is recovered by the receiver. For
sequences that do not belong to 𝐼𝑛, the sender selects the alternative
from 𝐼𝑛 for which its utility is maximum over 𝐼𝑛. These latter sequences
are not correctly recovered by the receiver.

One may wonder if including sequences from 𝑛∖𝐼𝑛 could lead
to even more sequences recovered. This is false — inclusion of even
a single additional sequence from 𝑛∖𝐼𝑛 will lead to at least one
sequence from 𝐼𝑛 not being recovered. This is because 𝐼𝑛 is a maximum
independent set, whereby every sequence in 𝑥 ∈ 𝑛∖𝐼𝑛 is adjacent to at
least one sequence in 𝑦 ∈ 𝐼𝑛, and hence the sender has an incentive to
either report 𝑥 as 𝑦 or 𝑦 as 𝑥. In other words, at most one of 𝑥 and 𝑦 can
be recovered. Finally, note that when 𝒰𝑛 is incentive compatible on 𝑛,
we have 𝐼𝑛 = 𝑛 and every sequence is recovered in the equilibrium.

One may also wonder why an undirected graph 𝐺𝑛
𝗌 captures the

optimal behaviour of the receiver. If two sequences 𝑥 and 𝑦 are adjacent
in the graph 𝐺𝑛

𝗌 , the sender may prefer 𝑦 over 𝑥 or 𝑥 over 𝑦 (or
both). Since the receiver is concerned about the number of types
correctly recovered, and either type – 𝑥 or 𝑦 – could be the true type
of the sender, the receiver must design a common questionnaire for
either possibility. As a result the undirected graph 𝐺𝑛

𝗌 encapsulates the
problem essence.

4. Information extraction capacity of the sender

One measure of the amount of information at any stage is the
number of distinct types accessible there. In that language, the amount
of information available with the sender is the number of distinct types
that the sender can exhibit. This is clearly 𝑞𝑛, where recall 𝑞 = ||. And
the growth rate of this information is 𝑞. Theorem 3.1 shows that the
maximum information the receiver can extract from the sender is equal
to 𝛼(𝐺𝑛

𝗌 ). The limiting value of the quantity as 𝛼(𝐺𝑛
𝗌 )

1∕𝑛 as 𝑛 → ∞ is the
asymptotic growth rate of the information that the receiver can extract.
As such it is a fundamental limit to the amount of information that is
obtainable from such a strategic sender. We call this the information
extraction capacity of the sender.

Definition 4.1 (Information Extraction Capacity of a Sender). Consider
a sender with utility 𝒰 and let {𝐺𝑛

𝗌 }𝑛≥1 be the corresponding sequence
of sender graphs. The information extraction capacity of the sender is
defined as

𝛯(𝒰) = lim
𝑛→∞

𝛼(𝐺𝑛
𝗌 )

1∕𝑛.

We show the existence of the limit in Appendix A.2. If 𝛯(𝒰) is
greater than unity, the receiver can extract an exponentially large
number of sequences from the sender when the channel is noiseless,
whereas if 𝛯(𝒰) = 1, then asymptotically only a vanishing fraction
of sequences can be recovered. If 𝛯(𝒰) = 𝑞, it means that almost all
sequences can be recovered and the number of sequences not recovered
is asymptotically a vanishing fraction of the total number of sequences.

Let 𝑔 be a Stackelberg equilibrium strategy of the receiver for 𝑛 = 1.
It is clear that 𝑅(𝑔) = 𝛼(𝐺𝗌). Now consider a strategy that applies 𝑔 for
each component of the sequence 𝑥 as 𝑔̄𝑛(𝑥) ≡ (𝑔(𝑥1),… , 𝑔(𝑥𝑛)), whereby

𝑔̄𝑛 is a stacking of 𝑛 copies of 𝑔. Since 𝑔 corresponds to an optimal
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questionnaire for 𝑛 = 1, it follows that 𝑅(𝑔̄𝑛) = 𝛼(𝐺𝗌) for all 𝑛. Note that
𝑔̄𝑛 is in general not a Stackelberg equilibrium, whereby 𝛯(𝒰) ≥ 𝛼(𝐺𝗌).
However, if 𝛯(𝒰) = 𝛼(𝐺𝗌), then it implies that 𝛼(𝐺𝑛

𝗌 )
1∕𝑛 = 𝛼(𝐺𝗌) for

all 𝑛, and hence linking responses of the sender does not help the
receiver recover more information. We will see later that generically,
𝛯(𝒰) > 𝛼(𝐺𝗌).

Considering that we make no assumption about incentive compat-
ibility on 𝒰 , it is rather interesting to note that 1 < 𝛯(𝒰) < 𝑞,
except in some corner cases. We show this and other properties of the
information extraction capacity in the following sections.

4.1. Information extraction capacity generalizes Shannon capacity

Ideally one would like a clean and easily computable characteriza-
tion of 𝛯(𝒰). Unfortunately, such a characterization appears unlikely
since 𝛯(𝒰) generalizes some well studied computationally intractable
problems, namely the Shannon capacity of a graph (Lovász, 1979). The
Shannon capacity is given in terms of the strong product graph which
is defined as follows.

Definition 4.2. (1) Strong product : Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2)
be two graphs. Then the strong product of the graphs 𝐺1, 𝐺2 is given
by a graph 𝐺 = (𝑉 ,𝐸) where 𝑉 = 𝑉1 × 𝑉2. Further, two vertices
𝑥, 𝑥′), (𝑦, 𝑦′) ∈ 𝑉 , with 𝑥, 𝑦 ∈ 𝑉1 and 𝑥′, 𝑦′ ∈ 𝑉2, are adjacent if and
nly if one of the following holds

• 𝑥 = 𝑦 and 𝑥′ ∼ 𝑦′

• 𝑥 ∼ 𝑦 and 𝑥′ = 𝑦′

• 𝑥 ∼ 𝑦 and 𝑥′ ∼ 𝑦′

he strong product operation is denoted as ⊠ and the product graph 𝐺
s written as 𝐺 = 𝐺1 ⊠𝐺2.

(2) Strong product graph: The strong product graph denoted as 𝐺⊠𝑛 is
he graph constructed by taking the 𝑛-fold strong product of the graph
, i.e.,
⊠𝑛 = 𝐺⊠𝐺⊠…⊠𝐺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛

.

Notice that the 𝑛-fold strong product graph is constructed by using
he edge relations of the base graph 𝐺𝗌, unlike the sender graph 𝐺𝑛

𝗌
hich requires computing the 𝑛-block utility for determining the edges.

efinition 4.3 (Shannon Capacity). Let 𝐺 be any graph. The Shannon
apacity of 𝐺 is defined as

(𝐺) = lim
𝑛→∞

𝛼(𝐺⊠𝑛)1∕𝑛,

here 𝐺⊠𝑛 is the 𝑛-fold strong product given by Definition 4.2.

xample 4.1. Consider a graph 𝐺 on the vertices {0, 1, 2} given in
ig. 1(a). The strong product of the graph denoted as 𝐺⊠2 is a graph
n {0, 1, 2}2 and is given in Fig. 1(b). It can be observed that since {0, 1}
re adjacent in 𝐺, the sequences in {00, 01} and {10, 11} are adjacent
n 𝐺⊠2 by the first and the second condition from Definition 4.2
espectively. The sequences {00, 11} and {10, 01} are adjacent due to the
hird condition. The sequences {21, 20} and {12, 02} are adjacent due to
he first and second condition respectively. Since no sequence satisfies
ny condition with 22, it is an isolated vertex in the graph 𝐺⊠2. □

Shannon (1956) investigated the problem of computing the max-
mum number of messages that can be transmitted across a noisy
hannel such that the receiver can recover the messages with zero
robability of error. The confusability graph 𝐺 induced by this channel
s a graph with vertices as the inputs of the channel, where vertices 𝑖
nd 𝑗 are adjacent if both can produce a common output with positive
robability. In other words, 𝑖 and 𝑗 can be confused based on the output
hey produce (cf. Definition 5.2 for a formal discussion). Shannon

⊠𝑛
55

howed that for any blocklength 𝑛, 𝛼(𝐺 ) is the maximum number of
essages that can be communicated perfectly across the channel. The
imit of the quantity 𝛼(𝐺⊠𝑛)1∕𝑛 was termed as the zero-error capacity of
he channel, also known as the Shannon capacity of a graph 𝐺.

There is an intuitive similarity between the above setting and our
roblem. The utility induces a kind of confusability at the receiver’s
nd: if either 𝒰(𝑖, 𝑗) ≥ 0 or 𝒰(𝑗, 𝑖) ≥ 0, then 𝑖 and 𝑗 can be confused
or each other by a receiver based on the sender’s response. Indeed, we
how that the information extraction capacity in fact generalizes the
hannon capacity of a graph.

emma 4.1. Consider a graph 𝐺 and let the adjacency matrix of the graph
e denoted as . Define a utility 𝒰 ∶  ×  → R as

(𝑖, 𝑗) =
{

0 if 𝑖 = 𝑗 or (𝑖, 𝑗) = 1
−1 if 𝑖 ≠ 𝑗 and (𝑖, 𝑗) = 0

.

hen,

(𝒰) = 𝛩(𝐺).

roof. From the definition of 𝒰 , any pair of distinct symbols 𝑖, 𝑗 are
djacent in 𝐺𝗌 if and only if (𝑖, 𝑗) = 1. Thus, distinct symbols 𝑖, 𝑗 are
djacent in 𝐺𝗌 if and only if 𝑖, 𝑗 are adjacent in 𝐺 and hence 𝐺𝗌 = 𝐺.
e now use this to show 𝐺𝑛

𝗌 = 𝐺⊠𝑛.
Consider two distinct sequences 𝑥, 𝑦 ∈ 𝑛 that are adjacent in 𝐺𝑛

𝗌 .
his can hold if and only if 𝒰(𝑥𝑘, 𝑦𝑘) = 0 for all 𝑘. Thus, for the adjacent
equences 𝑥 and 𝑦, for all 𝑘, either ‘𝑥𝑘 = 𝑦𝑘’ or ‘𝑥𝑘 and 𝑦𝑘 are adjacent
n 𝐺𝗌’ and hence in the graph 𝐺. This can occur if and only if 𝑥 and 𝑦
re adjacent in 𝐺⊠𝑛. Thus, 𝐺𝑛

𝗌 = 𝐺⊠𝑛 and hence 𝛯(𝒰) = 𝛩(𝐺). ■

The Shannon capacity of a graph 𝛩(𝐺), is an important quantity
ith applications in combinatorics and computer science as well. It is,
owever, found to be very hard to compute barring some simple cases.
or instance, the capacity of the pentagon graph was unknown for
bout 20 years after being first introduced by Shannon (1956). Further,
he capacity of a heptagon graph is still unknown. A computable semi-
efinite program-based upper bound was introduced by Lovász (1979),
ow known as the Lovász theta number. The introduction of this
uantity was a significant development and is known to lie between
he NP-hard clique and chromatic numbers of a graph. However, it is
nown that the Lovász theta number is not a tight upper bound. For
ore discussion on this subject of capacity of a graph and its variations,

he reader is referred to Korner and Orlitsky (1998) and the references
herein.

This shows that computing the exact information extraction capac-
ty would be hard in general and we only strive to obtain bounds on
his capacity. Nevertheless, there are a few classes of utilities for which
he capacity is exactly characterized and we shall discuss them in the
orthcoming sections. We will also discuss cases where the capacities
re equal even when the two graphs are not equal.

.2. Lower bounds on the information extraction capacity

In this section, we present a lower bound on the information extrac-
ion capacity in terms of the optimal value of an optimization problem.
his optimization problem is defined for every history length 𝑛 and
hus gives a series of lower bounds on the capacity. We show that this
eries of lower bounds is asymptotically tight. We also present bounds
n the optimal value of this optimization problem. We then discuss the
haracteristics of the feasible region of this optimization problem.

We first define the optimization problem. Let 𝑛 ⊆ 𝑛. Let  =
𝑄(0),… , 𝑄(||)}, 𝑄(0) = 𝐈 be the set of all |𝑛| × |𝑛| permutation
atrices. For convenience, we assume that the permutation matrices

re indexed by sequences from 𝑛. Consider the problem (𝒰𝑛) as

(𝒰𝑛) ∶ max
𝑛⊆𝑛

|𝑛|

s.t.
∑

𝑄(𝑥, 𝑧)𝒰𝑛(𝑥, 𝑧) < 0 ∀ 𝑄 ∈  ⧵ {𝐈}.
𝑥,𝑧∈𝑛
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Fig. 1. (a) Graph 𝐺, (b) Graph 𝐺⊠𝑛 (Example 4.1).
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Let 𝛤 (𝒰𝑛) = OPT((𝒰𝑛)).
Before presenting the theorem, we also discuss the symmetric part

of the utility and the corresponding induced graph.

Definition 4.4 (Symmetric Part of a Utility). For a given utility 𝒰 , let
𝒰𝖲𝗒𝗆 be the symmetric part defined as

𝒰𝖲𝗒𝗆(𝑖, 𝑗) = 1
2
(𝒰(𝑖, 𝑗) +𝒰(𝑗, 𝑖)).

We denote the sender graph induced by 𝒰𝖲𝗒𝗆 as 𝐺𝖲𝗒𝗆
𝗌 . 𝒰𝖲𝗒𝗆 has

simpler structure than 𝒰 since 𝒰𝖲𝗒𝗆(𝑖, 𝑗) = 𝒰𝖲𝗒𝗆(𝑗, 𝑖), and thus, if a
symbol 𝑖 is preferred by the sender over the symbol 𝑗, then it follows
that 𝑗 would be preferred over 𝑖 with the same extent. In fact, we
ater show that (𝐺𝖲𝗒𝗆

𝗌 )𝑛 contains only a subset of edges of 𝐺𝑛
𝗌 for all

𝑛(cf. proof of Theorem 4.5).
We now present the main result that gives a lower bound on the

information extraction capacity.

Theorem 4.2. Let 𝒰 be any utility and 𝐺𝑛
𝗌 be the corresponding

sender graph and let 𝒰𝖲𝗒𝗆 and (𝐺𝖲𝗒𝗆
𝗌 )𝑛 be the corresponding symmetric

counterparts. For all 𝑛, we have 𝛯(𝒰) ≥ 𝛤 (𝒰𝑛)1∕𝑛. Further,

lim
𝑛→∞

𝛤 (𝒰𝑛)1∕𝑛 = 𝛯(𝒰).

Moreover, 𝛤 (𝒰𝑛) is bounded as

𝛼(𝐺𝑛
𝗌 ) ≤ 𝛤 (𝒰𝑛) ≤ 𝛼((𝐺𝖲𝗒𝗆

𝗌 )𝑛).

Proof. The proof of the lower bound on the capacity is in Appendix B.1.
The proof of the bounds on 𝛤 (𝒰𝑛) is in Appendix B.2. ■

Computing 𝛯(𝒰) requires the sequence of {𝛼(𝐺𝑛
𝗌 )}𝑛≥1 corresponding

to the sequence of sender graphs {𝐺𝑛
𝗌 }𝑛≥1 induced by 𝒰 . Moreover,

computation of the independence number of a generic graph can be
intractable. We also show via the proof of the above theorem that for
a fixed 𝑛, the problem (𝒰𝑛) can be solved as a linear program. Thus,
the above theorem provides a computable lower bound.

This theorem shows that asymptotically, the information extraction
capacity is captured by sets of sequences between which the sender
does not wish to deviate on average. It also suggests a way to ap-
proximate the capacity arbitrarily closely by taking higher values of
𝑛. In fact, improved bounds on the Shannon capacity are also obtained
similarly by using the fact that 𝛼(𝐺⊠𝑛) ≥ 𝛼(𝐺)𝑛 (Polak and Schrijver,
2019).

For 𝑛 = 1, the corresponding problem (𝒰) gives a single-letter
lower bound on the capacity given by 𝛤 (𝒰) = OPT((𝒰)). In the fol-
lowing, we discuss an alternate characterization of the feasible region
of (𝒰). Although these are proved for the case of 𝑛 = 1, they can be
generalized to larger sequences as well.

For a fixed 𝑃 , define

 (𝒰 , 𝑃 ) : max
𝑃𝑋,𝑌 ∈(2)

E𝑃𝑋,𝑌
𝒰(𝑋, 𝑌 )

s.t. 𝑃𝑋 = 𝑃𝑌 = 𝑃 .

Lemma 4.3. Let 𝑛 = 1. The following statements are equivalent

1.  is feasible for (𝒰)
56
2. For all 𝑃 ∈ () such that  = supp(𝑃 ), the optimal value of
 (𝒰 , 𝑃 ) is 0 and the maximum is achieved by the unique distribution
𝑃 ∗
𝑋,𝑌 where 𝑃 ∗

𝑋,𝑌 (𝑖, 𝑖) = 𝑃 (𝑖) for all 𝑖 ∈  .

roof. See Appendix B.3. ■

For the case when  is the complete state space, i.e., when  =  ,
the equivalence between (1) and (2) can be deduced from Lemma 1
roved by Renault et al. (2013) and from Lemma 2 proved by Renou
nd Tomala (2015). Our result is a straightforward generalization
here 𝑃 is supported on any arbitrary subset of  . The proof follows
n similar lines, but is nevertheless presented in the appendix for
ompleteness.

Consider a set  that is feasible for (𝒰). Let 𝑛 be fixed and consider
set 𝑛 that contain symbols only from the set  . Further, let the

equences in 𝑛 have the same empirical distribution; that is they have
he same number of each symbol, and which differ only in position. For
istinct sequences 𝑥, 𝑦 ∈ 𝑛, we can write

𝑛(𝑥, 𝑦) =
1
𝑛
∑

𝑘
𝒰(𝑥𝑘, 𝑦𝑘) =

∑

𝑖,𝑗∈
𝑃𝑥,𝑦(𝑖, 𝑗)𝒰(𝑖, 𝑗) = E𝑃𝑥,𝑦𝒰(𝑋, 𝑌 ),

here 𝑃𝑥,𝑦 is the joint empirical distribution of the sequences 𝑥 and 𝑦
nd 𝑃𝑥 = 𝑃𝑦. Since 𝑥 and 𝑦 are distinct sequences, Lemma 4.3 states
hat 𝒰𝑛(𝑥, 𝑦) = E𝑃𝑥,𝑦𝒰(𝑋, 𝑌 ) < 0. Thus, the sender does not prefer the
equence 𝑥 over 𝑦. This implies that, on average, the sender does not
ain by scrambling the symbols from the set  and hence the sender is
‘truthful on average’’ over the set  .

It can be observed that  (𝒰 , 𝑃 ) is an optimal transport problem
Ambrosio et al., 2008, Ch. 6) where the optimization is over joint dis-
ributions 𝑃𝑋,𝑌 with marginals equal to 𝑃 . Thus, the problem  (𝒰 , 𝑃 )
sks for an optimal way of relatively distributing the weights 𝑃𝑋,𝑌
hile keeping the marginals as 𝑃 . The hypothesis of Lemma 4.3 shows

hat the type 𝑃𝑋,𝑌 should be such that the optimal rearrangement is
∗
𝑋,𝑌 (𝑖, 𝑖) = 𝑃 (𝑖) for all 𝑖 ∈  .

Using the properties of permutations, we get the following interpre-
ation of the feasible sets of (𝒰).

emark 4.1. Let 𝑛 = 1. A set  ⊆  is feasible for (𝒰) if and
nly if any sequence of distinct symbols 𝑖0, 𝑖1,… , 𝑖𝐾−1 ∈  form a
egative-weight chain defined as

(𝑖1, 𝑖0) +𝒰(𝑖2, 𝑖1) +… +𝒰(𝑖0, 𝑖𝐾−1) < 0. (7)

otice that the chain in the above definition is a closed-chain since
he first and last symbols are the same. For brevity, we describe a
losed-chain as simply a chain.

To see the above assertion, take distinct symbols 𝑖0, 𝑖1,… , 𝑖𝐾−1 ∈ 
here 𝐾 ∈ [||], 𝐾 ≥ 2 and choose a permutation 𝜋′ ∶  → 

uch that 𝑖0, 𝑖1,… , 𝑖𝐾−1 form a cycle as 𝜋′(𝑖𝑘) = 𝑖(𝑘+1)mod𝐾 . The rest of
he symbols are mapped to themselves. Let 𝑄𝜋′ be the corresponding
ermutation matrix. Observe that 𝑄𝜋′ is not an identity matrix. Then,
t follows from feasibility of  that
∑

𝑖,𝑗∈
𝑄𝜋′ (𝑖, 𝑗)𝒰(𝑖, 𝑗) = 𝒰(𝑖1, 𝑖0) +𝒰(𝑖2, 𝑖1) +… +𝒰(𝑖0, 𝑖𝐾−1) < 0,

nd hence the symbols form a negative-weight chain. Since the symbols
ere chosen arbitrarily, this holds for all sequences of distinct symbols

rom the set  .
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The expression in (7) is (upon scaling) the utility obtained by the
sender when the observed sequence is (𝑖0𝑖1 … 𝑖𝐾−1) and the decoded
sequence is (𝑖1𝑖2 … 𝑖𝐾−1𝑖0), i.e., the receiver decodes the symbol 𝑖1 in
place of 𝑖0, and 𝑖2 in place of 𝑖1 and so on for 𝑖2,… , 𝑖𝐾−1. Thus these
symbols form a chain of lies created by the sender represented as 𝑖0 →
𝑖1 → … → 𝑖𝐾−1 → 𝑖0. This remark shows that a set  is feasible
for (𝒰) if and only if the utility obtained is negative for all possible
chains of lies that can be formed from the symbols of the set  . We
also discuss a computational approach to check for the feasibility of a
set in Appendix B.4. □

We now present a result that gives another lower bound on 𝛯(𝒰).
We later use this result to show an example where even for a com-
plete graph the capacity can be the maximum. For that we require a
definition.

Definition 4.5 (Cycle and Positive-Edges Cycle). Consider a set of distinct
vertices {𝑖0, 𝑖1,… , 𝑖𝐾−1} from a graph. The vertices form a 𝐾-length
cycle in the graph if two vertices 𝑖𝑙 , 𝑖𝑚 are adjacent whenever 𝑙 =
(𝑚 + 1)mod 𝐾. Further, the cycle is a positive-edges cycle if for all 𝑚,

𝒰(𝑖𝑙 , 𝑖𝑚) ≥ 0 whenever 𝑙 = (𝑚 + 1)mod 𝐾.

Suppose there exists a set of vertices  such that no subset of
symbols form such a cycle. The following proposition gives a sufficient
condition for such a set to be feasible for (𝒰) and hence, for the size
of this set to be a lower bound on 𝛯(𝒰).

Proposition 4.4. Consider a sender with utility 𝒰 and let 𝐺𝗌 be the
corresponding sender graph. Suppose there exists a set  such that there
is no positive-edges cycle in the sub-graph induced by  and

min
𝑖,𝑗∈∶𝒰(𝑖,𝑗)<0

|𝒰(𝑖, 𝑗)| > (|| − 1) max
𝑖,𝑗∈∶𝒰(𝑖,𝑗)≥0

𝒰(𝑖, 𝑗). (8)

Then, 𝛯(𝒰) ≥ ||.

Proof. See Appendix B.5 ■

The proof of the above proposition relies on showing that  is
feasible for (𝒰). Clearly, if there exists a positive edges cycle then (7)
will not be satisfied. Moreover, (8) ensures that in any set of distinct
symbols, there exists a pair of symbols such that the penalty for lying is
large enough than the incentive. This gives that, on average, the sender
does not get a better utility by misrepresenting among the symbols of
 and hence it is feasible for (𝒰).

Proposition 4.4 gives a sufficient condition in terms of the negative
and positive values of 𝒰(𝑖, 𝑗) for a set  to be feasible for (𝒰). Using
this result, the following example shows that 𝛯(𝒰) = 𝑞 even when the
base sender graph 𝐺𝗌 is a complete graph.

Example 4.2. Let 𝒰 ∶ {0, 1, 2} × {0, 1, 2} → R and consider the
following form of 𝒰 ,

𝒰 =
⎛

⎜

⎜

⎝

0 1 1
−4 0 1
−4 −4 0

⎞

⎟

⎟

⎠

.

The graph induced by the utility is a 3-cycle graph and is given as

1

0

2

This follows since 𝒰(0, 1),𝒰(0, 2),𝒰(1, 2) > 0. It can be easily
observed that there is no positive-edges cycle in the graph. This is
because for chain 𝑖 → 𝑗 → 𝑖, either 𝒰(𝑖, 𝑗) < 0 or 𝒰(𝑗, 𝑖) < 0. Further, for
all chains 𝑖 → 𝑗 → 𝑘 → 𝑖, either 𝒰(𝑗, 𝑖) < 0 or 𝒰(𝑘, 𝑗) < 0 or 𝒰(𝑖, 𝑘) < 0.
Also, the largest weight of a chain in 𝐺 is −4 + 1 + 1 = −2. Finally,
57

𝗌

min𝑖,𝑗∶𝒰(𝑖,𝑗)<0 |𝒰(𝑖, 𝑗)| = 4 > (3 − 1)max𝑖,𝑗∶𝒰(𝑖,𝑗)≥0 𝒰(𝑖, 𝑗) = 2. Thus, the
conditions of Proposition 4.4 are satisfied and hence  is feasible for
(𝒰) and hence 𝛯(𝒰) = 𝑞 = 3. □

We find this example to be quite surprising — even though 𝐺𝗌 is
a complete graph, the information extraction capacity is the maximum
it can be. The main lesson to be drawn from it is that the magnitude
of the gains or losses from truth-telling or lying determine the amount
of information that can be extracted; the base sender graph 𝐺𝗌 only
considers the sign of these quantities.

4.3. Upper bounds on the information extraction capacity

In this section, we derive upper bounds on the information extrac-
tion capacity of the sender. We show that the Shannon capacity of the
sender graph corresponding to the symmetric part of the utility is an
upper bound on the capacity. We also discuss a class of utilities where
the upper bound is given by the Shannon capacity of the sender graph
itself.

First, consider the following upper bound for any utility 𝒰 . Recall
the symmetric part of the utility from Definition 4.4.

Theorem 4.5. Consider a utility 𝒰 and let 𝒰𝖲𝗒𝗆 be its symmetric part.
Let 𝐺𝖲𝗒𝗆

𝗌 be the sender graph corresponding to 𝒰𝖲𝗒𝗆. Then,

𝛯(𝒰) ≤ 𝛯(𝒰𝖲𝗒𝗆) ≤ 𝛩(𝐺𝖲𝗒𝗆
𝗌 ).

Proof. See Appendix C.1 ■

As discussed in the last section, the graph 𝐺𝖲𝗒𝗆
𝗌 has a simpler

structure compared to 𝐺𝗌. Moreover, in the proof of the above theorem
we show that only a subset of edges of the graph 𝐺𝗌 remain in 𝐺𝖲𝗒𝗆

𝗌 .
Thus, the sender with the utility 𝒰𝖲𝗒𝗆 is more truthful about its infor-
mation and as shown by the above bound, the information extraction
capacity of a sender is no greater than that of a sender whose utility
is equal to the symmetric part of the former’s utility. In other words,
ignoring the skew-symmetric part of the utility leads to an increase in
the information extraction capacity. This is also because in the skew-
symmetric part of the utility, for each pair of symbols 𝑖, 𝑗 ∈  , we have
that either 𝑖 is preferred to be recovered as 𝑗 or 𝑗 is preferred to be
recovered as 𝑖. Thus, the graph corresponding to the skew-symmetric
part is a complete graph and has capacity 1.

As with the lower bound, the above theorem provides an upper
bound that is independent of the blocklength 𝑛 and depends only on
the single letter utility 𝒰 . We can observe that the symmetric part of
the utility plays a recurring role in the characterization of the bounds
on the capacity.

We now present another class of utilities where the capacity is
bounded above by the Shannon capacity of the sender graph.

Proposition 4.6. Consider a sender with utility 𝒰 given as

𝒰(𝑖, 𝑗) =
{

𝑎 if 𝒰(𝑖, 𝑗) ≥ 0
−𝑏 if 𝒰(𝑖, 𝑗) < 0

,

where 𝑎, 𝑏 > 0 and 𝑎 ≥ 𝑏. Let 𝐺𝗌 be the corresponding sender graph. Then,

𝛯(𝒰) ≤ 𝛩(𝐺𝗌).

Proof. See Appendix C.2 ■

The utility in the above proposition is such that the incentive for
lying is greater than the penalty for lying. Intuitively, a sender with
utility as above has higher tendency to lie about its information, since it
can offset its penalty of lying by gaining appropriate incentive. Thus the
information extraction capacity for such a sender is in general strictly
less than 𝑞.

The above results characterized the utilities for which the capacity
is bounded above by 𝛩(𝐺𝗌). In the following section, we will discuss
cases where the capacity is exactly equal to 𝛩(𝐺 ).
𝗌
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Fig. 2. Sender graph 𝐺𝗌 on {0, 1, 2, 3, 4} (Example 4.3).

4.4. Exact evaluation of 𝛯(𝒰)

In the earlier section, we discussed upper bounds on the information
extraction capacity. A natural question that follows is that under what
conditions the capacity is exactly characterized? In this section, we
mention few cases of utility where the information extraction capacity
is equal to the Shannon capacity of the sender graph.

Theorem 4.7. Consider a utility 𝒰 and let 𝐺𝗌 be the corresponding sender
graph. Then,

𝛯(𝒰) = 𝛩(𝐺𝗌) = 𝛼(𝐺𝗌)

f any of the following hold:

1. 𝒰 is symmetric and 𝐺𝗌 is a perfect graph.
2. 𝒰 is of the form given in Proposition 4.6 and 𝐺𝗌 is a perfect graph.

Proof. See Appendix C.3 ■

Recall that a graph is perfect if and only if the graph and its
complement do not have a odd cycle with 5 or more number of
vertices (West, 2000). This means that there does not exist odd number
of distinct symbols {𝑖0,… , 𝑖𝐾−1}, 𝐾 ≥ 5 such that either 𝒰(𝑖𝑘, 𝑖𝑘+1) ≥ 0
or 𝒰(𝑖𝑘+1, 𝑖𝑘) ≥ 0 for 𝑘 ≤ 𝐾−1 and either 𝒰(𝑖0, 𝑖𝐾−1) ≥ 0 or 𝒰(𝑖𝐾−1, 𝑖0) ≥
0, and for all other 𝑖, 𝑗, 𝒰(𝑖, 𝑗) < 0. Suppose the sender has transitive
preferences, i.e., if 𝒰(𝑖, 𝑗) ≥ 0 and 𝒰(𝑗, 𝑘) ≥ 0 implies 𝒰(𝑖, 𝑘) ≥ 0 for all
𝑖, 𝑗, 𝑘 ∈  . Then, if 𝒰 is symmetric it follows that 𝐺𝗌 is perfect. In this
case, the above theorem can be used to ascertain the exact information
extraction capacity.

In the above theorem, the induced sender graph is such that the
capacity can be derived by just computing the independent set of the
base graph 𝐺𝗌 since the independence number of the subsequent graphs
is 𝛼(𝐺𝗌)𝑛. It implies that in this case, linking the responses of the
sender does not benefit the receiver. In the context of questionnaires,
when 𝛯(𝒰) = 𝛼(𝐺𝗌), the receiver does not benefit by linking the
responses over multiple days. It is optimal to just construct a day-wise
questionnaire using the largest independent set in the base graph 𝐺𝗌.

The following example demonstrates how the lower bounds and the
pper bounds can be used to exactly compute the capacity.

xample 4.3. Consider a sender with utility 𝒰 on  = {0, 1, 2, 3, 4}
s

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 𝑢02 𝑢03 −1
1 0 −1 𝑢13 𝑢14
𝑢20 1 0 −1 𝑢24
𝑢30 𝑢31 1 0 −1
1 𝑢41 𝑢42 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

here the unknown entries are such that 𝑢𝑖𝑗 < −1 for all 𝑖 ∈  , 𝑗 ∈
(𝑖+ 2)mod 5, (𝑖+ 3)mod 5}. It can be observed that the base graph 𝐺𝗌

s a pentagon and is given as in Fig. 2.
This is because 𝑖, 𝑗 are adjacent if and only if |𝑗 − 𝑖|mod 5 = 1. We

√

5.
58

how that 𝛯(𝒰) = o
Table 1
Bounds on the independence numbers of 𝐺𝑛

𝗌 and the rate 𝛼(𝐺𝑛
𝗌 )

1∕𝑛 (Example 4.3).

𝑛 1 2 3 4 5

𝛼(𝐺𝑛
𝗌 ) 2 5 10 25 50 – 55

𝛼(𝐺𝑛
𝗌 )

1∕𝑛 2 2.23 2.15 2.23 2.18 – 2.23

Notice that the graph does not contain a positive-edges cycle since
𝒰(0, 4) = −1. Further, the graph 𝐺𝖲𝗒𝗆

𝗌 induced by the symmetric part
𝒰𝖲𝗒𝗆 is also a pentagon graph since 𝒰𝖲𝗒𝗆(𝑖, 𝑗) = (𝒰(𝑖, 𝑗) +𝒰(𝑗, 𝑖))∕2 = 0
if and only if 𝑖, 𝑗 are adjacent in 𝐺𝗌 or 𝑖 = 𝑗. For all other 𝑖, 𝑗 not
adjacent in 𝐺𝖲𝗒𝗆

𝗌 , 𝒰𝖲𝗒𝗆(𝑖, 𝑗) < 0. Since 𝛩(𝐺𝖲𝗒𝗆
𝗌 ) =

√

5 (Lovász, 1979),
from Theorem 4.5 it follows that 𝛯(𝒰) ≤ 𝛩(𝐺𝖲𝗒𝗆

𝗌 ) =
√

5.
We now compute 𝛯(𝒰). From the problem (𝒰), we only get a

ower bound on 𝛯(𝒰) since 𝛤 (𝒰) = 2. However, consider (𝒰2) and
he set 𝑆 = {00, 12, 24, 31, 43}. Let 𝑥, 𝑦 be a distinct pair of sequences

from 𝑆. Denoting 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2), it can be observed that if
(𝑥1, 𝑦1) = 1, then 𝒰(𝑥2, 𝑦2) < −1 and vice-versa. Thus, 𝒰2(𝑥, 𝑦) < 0 for

ll 𝑥, 𝑦 ∈ 𝑆 and hence 𝑆 is an independent set in 𝐺2
𝗌 . This gives that 𝑆

s feasible for (𝒰2) and hence from Theorem 4.2 we have

(𝒰) ≥ 𝛤 (𝒰2)1∕2 ≥
√

5.

The upper and lower bounds together give that 𝛯(𝒰) =
√

5.
We take that case of the utility where 𝑢𝑖𝑗 = −2 for all 𝑖 ∈  , 𝑗 ∈

{(𝑖+2)mod 5, (𝑖+3)mod 5}. For the graph 𝐺𝑛
𝗌 , we numerically compute

the lower bounds using the integer programming formulation of the
independence number of a graph (Conforti et al. (2014), Ch. 2). This
helps to visualize how the size of the optimal questionnaire 𝛼(𝐺𝑛

𝗌 )
rows with the history lengths 𝑛. Table 1 shows the exact values of
ndependence numbers for 𝑛 ≤ 4. For 𝑛 = 5, we only have a lower
ound from numerical computation and an upper bound using the
act that 𝛼(𝐺𝑛

𝗌 ) ≤ 𝛯(𝒰)𝑛. The variation of the independence number
ith increasing length of histories is given in Fig. 3(a). The green
ashed line is the plot of 𝛯(𝒰)𝑛 and the blue solid line is the lower
ound on 𝛼(𝐺𝑛

𝗌 ). The variation of the rate of information extraction is
iven in Fig. 3(b). Recall from the discussion after Theorem 4.7, that
he receiver can construct a day-wise questionnaire by just using the
argest independent sets of the graph 𝐺𝗌. They grow as 𝛼(𝐺𝗌)𝑛 and are
enerally suboptimal. The red dotted line in Fig. 3(a) shows the growth
f the day-wise questionnaire for this utility and Fig. 3(b) shows the
orresponding rate. □

In the following, we present an example where the capacity is
nknown and is approximated by lower and upper bounds.

xample 4.4. Consider a sender with utility 𝒰 on  = {0, 1, 2, 3, 4, 5, 6}
s

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 −3 −5 −2 −5 −1
1 0 −1 −2 −5 −2 −2
−2 1 0 −1 −5 −2 −2
−2 −5 1 0 −1 −3 −2
−2 −2 −2 1 0 −1 −5
−3 −2 −2 −3 1 0 −1
1 −2 −5 −2 −5 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The resulting graph is a cycle graph with 7 vertices as shown in
ig. 4. The graph induced by the symmetric utility 𝒰𝖲𝗒𝗆 is also a 7-
ycle graph. The Shannon capacity of this graph is unknown. Further,
he independence numbers of the strong products of the cycle graph,
iven by (𝐺𝖲𝗒𝗆

𝗌 )⊠𝑛, is exactly known only for 𝑛 = 1, 2, 3. For 𝑛 ≥ 4 only
ounds on the independence number are known (Polak and Schrijver,
019). The bounds are given in the first row of Table 2.

We now provide numerical bounds on the independence number
𝑛
f 𝐺𝗌 . To do so, we use the following inequality from the proof of
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Fig. 3. (a) Bounds on independence number with 𝑛, (b) Bounds on the rate with 𝑛 (Example 4.3).
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Fig. 4. Sender graph 𝐺𝗌 on {0, 1, 2, 3, 4, 5, 6} (Example 4.4).

Table 2
Bounds on the independence numbers of (𝐺𝖲𝗒𝗆

𝗌 )⊠𝑛 and 𝐺𝑛
𝗌 and the rate (Example 4.4).

𝑛 1 2 3 4 5

𝛼((𝐺𝖲𝗒𝗆
𝗌 )⊠𝑛) 3 10 33 108 – 115 367 – 401

𝛼(𝐺𝑛
𝗌 ) 3 10 31 100 – 115 310 – 401

𝛼((𝐺𝖲𝗒𝗆
𝗌 )⊠𝑛)1∕𝑛 3 3.16 3.20 3.22 – 3.27 3.25 – 3.31

𝛼(𝐺𝑛
𝗌 )

1∕𝑛 3 3.16 3.14 3.16 – 3.27 3.15 – 3.31

Theorem 4.5 given in Appendix C.1 where we show that 𝛼(𝐺𝑛
𝗌 ) is

ounded above as

(𝐺𝑛
𝗌 ) ≤ 𝛼((𝐺𝖲𝗒𝗆

𝗌 )𝑛) ≤ 𝛼((𝐺𝖲𝗒𝗆
𝗌 )⊠𝑛).

We use numerical computations to derive lower bounds on 𝛼(𝐺𝑛
𝗌 )

nd we derive the upper bounds through the bounds on 𝛼((𝐺𝖲𝗒𝗆
𝗌 )⊠𝑛)

iven in Polak and Schrijver (2019).
As in Example 4.3, for the graph 𝐺𝑛

𝗌 , we numerically compute
he lower bounds using the integer programming formulation of the
ndependence number of a graph. These computations either yield an
xact value of the independence number or a lower bound on it. Since
(𝒰𝑛) ≥ 𝛼(𝐺𝑛

𝗌 ), we get bounds on 𝛤 (𝒰𝑛) as well. For 𝑛 ∈ {1, 2, 3} we
ave the exact value of the independence number. For 𝑛 = 4 we only
ave a lower bound and for 𝑛 = 5, we derive a lower bound by using
he fact that 𝛼(𝐺5

𝗌 ) ≥ 𝛼(𝐺2
𝗌 )𝛼(𝐺

3
𝗌 ). Bound for 𝑛 > 5 can also be derived by

taking such product decompositions, however, we do not present them
here. Together, the bounds for history lengths till 𝑛 = 5 are given in
the second row of Table 2. The corresponding bounds on the rate are
given in third and fourth row of Table 2. Computations of independence
numbers for 𝑛 > 5 were not performed due to increased computational
effort.

The variation of the independence number with increasing length
of histories is given in Fig. 5(a). The orange hashed line is the upper
bound on 𝛼((𝐺𝖲𝗒𝗆

𝗌 )⊠𝑛) and the blue solid line is the lower bound on
𝑛 𝑛
59

𝛼(𝐺𝗌 ). For 𝑛 ≥ 4, the curve of 𝛼(𝐺𝗌 ) thereby lies between the orange g
and the blue line. The red line is the plot of 𝛼(𝐺𝗌)𝑛 or equivalently,
the size of day-wise questionnaire. The variation of the rate is given in
Fig. 5(b) and the capacity lies between the orange and the blue line.
The red dotted line is the rate of the day-wise questionnaire. □

5. Information extraction over a noisy channel

We now discuss the case where the sender and receiver commu-
nicate via a noisy channel. We determine the maximum number of
sequences that can be recovered by the receiver in any equilibrium of
the game. We present a notion of the asymptotic rate of information
extraction and we show that it is equal to the minimum of the infor-
mation extraction capacity of the sender and the zero-error capacity of
the noisy channel.

5.1. Model with a noisy channel

Consider now a setting where the sender and receiver communicate
via a noisy channel. As earlier, the sender observes a sequence 𝑋 ∈ 𝑛

and encodes it as 𝑠𝑛(𝑋) = 𝑌 , where 𝑠𝑛 ∶ 𝑛 → 𝑛. Here,  is the input
pace of the channel. The message is now transmitted to the receiver via
discrete memoryless channel which generates an output 𝑍 ∈ 𝑛, with
being the output space, according to the distribution 𝑃𝑍|𝑌 defined as

𝑍|𝑌 (𝑧|𝑦) =
𝑛
∏

𝑖=1
𝑃Z|Y(𝑧𝑖|𝑦𝑖), (9)

here 𝑃Z|Y(⋅|⋅) ∈ (|). The output is decoded by the receiver as
𝑛(𝑍) = 𝑋, where 𝑔𝑛 ∶ 𝑛 → 𝑛 ∪ {𝛥}. Here 𝑍 is distributed according
o 𝑃𝑍|𝑌 (⋅|𝑠𝑛(𝑥)), when 𝑠𝑛(𝑥) is the input to the channel.

Generalizing our earlier notation in (2), let

(𝑔𝑛, 𝑠𝑛) ∶=
{

𝑥 ∈ 𝑛 ∣ P(𝑋 = 𝑥|𝑋 = 𝑥) = 1
}

, (10)

e the set of recovered sequences when the receiver plays the strategy
𝑛 and the sender plays the strategy 𝑠𝑛. The receiver tries to maximize
he size of this set by choosing a strategy 𝑔𝑛. The sender on the other
and chooses a strategy 𝑠𝑛 to maximize the expected utility
[

𝒰𝑛(𝑋, 𝑥)
]

=
∑

𝑧∈𝑛
𝑃𝑍|𝑌 (𝑧|𝑠𝑛(𝑥))𝒰𝑛(𝑔(𝑧), 𝑥)

or every 𝑥 ∈ 𝑛. The utility 𝒰𝑛 is as given in (3).
As in the noiseless model, we pose the problem as a Stackelberg

ame.
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Fig. 5. (a) Bounds on independence number with 𝑛, (b) Bounds on the rate with 𝑛 (Example 4.4).
Definition 5.1 (Stackelberg Equilibrium). The optimal strategy of the
receiver is given as

𝑔∗𝑛 ∈ argmax
𝑔𝑛

min
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|. (11)

The set of best responses of the sender ℬ(𝑔𝑛) is determined as

ℬ(𝑔𝑛) =
{

𝑠𝑛 ∶ 𝑛 → 𝑛 ∣ E
[

𝒰𝑛(𝑔𝑛(𝑍), 𝑥)
]

≥ E
[

𝒰𝑛(𝑔𝑛(𝑍′), 𝑥)
]

∀ 𝑥 ∈ 𝑛,∀ 𝑠′𝑛
}

, (12)

where 𝑍 is distributed according to 𝑃𝑍|𝑌 (⋅|𝑠𝑛(𝑥)) and 𝑍′ is distributed
according to 𝑃𝑍|𝑌 (⋅|𝑠′𝑛(𝑥)).

Notice that as in the noiseless channel model, we adopt a pessimistic
formulation for the receiver.

Thus, the set of best responses of the sender for a strategy 𝑔𝑛 of the
receiver is a collection of strategies, 𝑠𝑛, such that for all sequences 𝑥,
the expected utility with respect to the distribution 𝑃𝑍|𝑌 (⋅|𝑠𝑛(𝑥)) is the
highest that can be obtained by the sender.

5.2. Stackelberg equilibrium of the game

Recall the definition of the recovered set (𝑔𝑛, 𝑠𝑛) from (10), when
the receiver plays 𝑔𝑛 and the sender plays 𝑠𝑛. As in Definition 3.1,
the number of sequences recovered by a strategy 𝑔𝑛 of the receiver is
defined as

min
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|,

where ℬ(𝑔𝑛) is as given in (12).
We now recall the definition of a graph induced by the channel,

called as the confusability graph.

Definition 5.2 (Confusability Graph). The confusability graph of a
channel 𝑃𝑍|𝑌 , denoted as 𝐺𝑛

𝖼 = (𝑛, 𝐸𝖼), is the graph where (𝑦, 𝑦′) ∈ 𝐸𝖼

if there exists an output 𝑧 ∈ 𝑛 such that

𝑃𝑍|𝑌 (𝑧|𝑦)𝑃𝑍|𝑌 (𝑧|𝑦′) > 0.

For 𝑛 = 1, the graph 𝐺1
𝖼 is denoted as 𝐺𝖼.

Thus, two inputs to the channel are adjacent in the confusability
graph if they have a common output. The confusability graph was first
introduced by Shannon (1956).

Definition 5.3 (Asymptotic Rate of Information Extraction). Let {𝑔∗𝑛}𝑛≥1
be a sequence of Stackelberg equilibrium strategies for the receiver and

∗
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let {𝑅(𝑔𝑛 )}𝑛≥1 be the corresponding sequence of rate of information
extraction. The asymptotic rate of information extraction, denoted by
, is given as

 = lim sup
𝑛

𝑅(𝑔∗𝑛 ).

In the following theorem, we show that the receiver recovers
min

{

𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )
}

number of sequences in an equilibrium. The idea of
the proof is as follows. We consider the independent sets in 𝐺𝑛

𝗌 and 𝐺𝑛
𝖼

of the size min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )} denoted as 𝐼 𝗌𝑛 and 𝐼𝖼𝑛 respectively. For ev-

ery channel input sequence in 𝐼𝖼𝑛 , the receiver maps the corresponding
output set to a unique sequence in 𝐼 𝗌𝑛. This establishes a one-to-one
correspondence between the sequences in 𝐼 𝗌𝑛 and 𝐼𝖼𝑛 . Since 𝐼 𝗌𝑛 is an
independent set in 𝐺𝑛

𝗌 , the sender complies with the receiver and maps
the sequences to their respective input sequences in 𝐼𝖼𝑛 . The receiver is
thus able to recover the set 𝐼 𝗌𝑛 of size min{𝛼(𝐺𝑛

𝗌 ), 𝛼(𝐺
𝑛
𝖼 )}.

Theorem 5.1. Let 𝑛 ∈ N. Consider a sender with utility 𝒰 and let 𝐺𝑛
𝗌

be the corresponding sender graph. Let 𝐺𝑛
𝖼 be the confusability graph of the

channel 𝑃𝑍|𝑌 . For all Stackelberg equilibrium strategies 𝑔∗𝑛 of the receiver,

min
𝑠𝑛∈ℬ(𝑔∗𝑛 )

|(𝑔∗𝑛 , 𝑠𝑛)| = min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )}.

Further, the asymptotic rate of information extraction is given as

 = min{𝛯(𝒰), 𝛩(𝐺𝖼)}.

Moreover,

1. If 𝛩(𝐺𝖲𝗒𝗆
𝗌 ) ≤ 𝛩(𝐺𝖼), then  = 𝛯(𝒰).

2. For any 𝑛, if 𝛤 (𝒰𝑛)1∕𝑛 ≥ 𝛩(𝐺𝖼), then  = 𝛩(𝐺𝖼).

Proof. The proof of the characterization of rate is given in Ap-
pendix D.1. Part (1) follows by using Theorem 5.1 along with Theo-
rem 4.5. Part (2) follows by using Theorem 4.2. ■

The above result states that given a sender with information extrac-
tion capacity 𝛯(𝒰), the zero-error capacity of the channel should be
at least this number in order to extract maximum possible information
from the sender. Alternatively, given the channel, the asymptotic rate
of information extraction from any sender is bounded by the zero-error
capacity of the channel. As long as both quantities are greater than
unity, the receiver can extract exponentially large number of sequences
from the sender.

The part (1) of the theorem states that if the Shannon capacity of
the symmetric sender graph is less than the zero-error capacity of the
channel, then the asymptotic rate of information extraction is simply
the information extraction capacity of the sender. The part (2) of the
theorem states that the receiver can recover an exponential number of
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Table 3
Independence number of 𝐺𝑛

𝗌 and the rate (Example 5.1).

𝑛 1 2 3 4 5 6

𝛼(𝐺𝑛
𝗌 ) 2 4 12 32 80 240

𝛼(𝐺𝑛
𝗌 )

1∕𝑛 2 2 2.28 2.37 2.40 2.49

sequences even when the information extraction capacity of the sender
is less than the zero-error capacity of the channel, provided 𝛩(𝐺𝖼) > 1.

We now present an example demonstrating the above results.

Example 5.1. Consider a sender with utility 𝒰 on  = {0, 1, 2, 3} as

=

⎛

⎜

⎜

⎜

⎜

⎝

0 −1 −1 −1
1 0 −1 −1
−1 1 0 −1
0.5 −1 0.5 0

⎞

⎟

⎟

⎟

⎟

⎠

.

t can be observed that the base graph 𝐺𝗌 is a square graph and is shown
n Fig. 6(a). We have that 𝛼(𝐺𝗌) = 2 and the largest independent sets are
0, 2} and {1, 3}. However, it can be shown that the largest set that is
easible for (𝒰) is {0, 2, 3} and hence 𝛤 (𝒰) = 3. Moreover, 𝛩(𝐺𝖲𝗒𝗆

𝗌 ) = 3
nd hence from Theorem 4.2 and Theorem 4.5, we get that 𝛯(𝒰) = 3.

The independence numbers for 𝐺𝑛
𝗌 , 𝑛 ≤ 6 is given Table 3. As in

xamples 4.3 and 4.4, the independence numbers were numerically
omputed using the integer programming formulation. Since {0, 2, 3} is
easible for (𝒰), it can be shown that 𝛼(𝐺3

𝗌 ) ≥ 3! = 12 (cf. Lemma B.1
n Appendix B.1). Table 3 shows that in fact 𝛼(𝐺3

𝗌 ) = 12. Moreover, for
= 6, using feasibility of {0, 2, 3}, we get that 𝛼(𝐺6

𝗌 ) ≥ 6!∕(2!)3 = 90.
owever, this is a weaker bound and Table 3 shows that 𝛼(𝐺6

𝗌 ) = 240.
he second row of the table also shows the rate as a function of 𝑛.
ndependence numbers for 𝑛 > 6 were not computed due to increased
omputational effort.

Now, consider a situation where the sender and the receiver com-
unicate via a noisy channel. The input and the output space of the

hannel are  and  respectively, with  =  = {𝑎, 𝑏, 𝑐, 𝑑}. The channel
s defined by the probability distribution 𝑃Z|Y as

Z|Y =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎 𝑏 𝑐 𝑑

𝑎 0.5 0 0 0.5
𝑏 0.5 0.5 0 0
𝑐 0 0.5 0.5 0
𝑑 0 0 0.5 0.5

⎞

⎟

⎟

⎟

⎟

⎠

,

where the row entries correspond to the output of the channel Z and
he column entries correspond to the input to the channel Y.

Consider the symbols {𝑎, 𝑏}. Since both the symbols have a positive
robability of generating the output 𝑏, i.e., 𝑃Z|Y(𝑏|𝑎)𝑃Z|Y(𝑏|𝑏) > 0, the
ymbols {𝑎, 𝑏} can be confused with each other. Thus, 𝑎 and 𝑏 are adja-
ent in the confusability graph 𝐺𝖼 induced by 𝑃Z|Y (cf. Definition 5.2).
he confusability for other symbols can be deduced similarly which
ives that the confusability graph 𝐺𝖼 is a square. The confusability
raph is shown in Fig. 6(b). Finally, since 𝐺𝖼 is a perfect graph, the
apacity is determined by the largest independent set of 𝐺𝖼, which is
𝑎, 𝑐} and hence 𝛩(𝐺𝖼) = 2.

For 𝑛 ∈ {1, 2}, we have that 𝛼(𝐺𝑛
𝗌 ) = 𝛼(𝐺⊠𝑛

𝖼 ) and hence from
heorem 5.1, the maximum information can be recovered from the
ender. However, since 𝛯(𝒰) > 𝛩(𝐺𝖼), asymptotically, the maximum
ossible information cannot be recovered from the sender and hence
rom Theorem 5.1, we have that  = 𝛩(𝐺𝖼) = 2. Table 3 shows that
lthough the channel suffices for 𝑛 ∈ {1, 2}, for travel histories of length
reater than 2, the channel 𝑃Z|Y is not enough for maximum recovery
61

f information. i
On the other hand, consider a channel defined by the distribution
Ẑ|Y as

Ẑ|Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎 𝑏 𝑐 𝑑 𝑒

𝑎 0.5 0 0 0 0
𝑏 0.5 0.5 0 0 0
𝑐 0 0.5 0.5 0 0
𝑑 0 0 0.5 0.5 0
𝑒 0 0 0 0.5 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

It can be observed that the symbols 𝑎 and 𝑒 cannot be confused with
ach other based on their outputs and the confusability graph induced
y the channel 𝑃Z|Y, denoted as 𝐺𝖼, is shown in Fig. 6(c).

In this case again, since 𝐺𝖼 is a perfect graph, the capacity is 𝛩(𝐺𝖼) =
. Here, {𝑎, 𝑐, 𝑒} is the largest independent set in 𝐺𝖼. This implies that
he maximum possible information can be recovered from the sender.
lso, from Theorem 5.1, we have that  = 𝛯(𝒰) = 3.

Fig. 7(a) shows the growth of independence number of 𝐺𝑛
𝗌 with

ncreasing history lengths. The green hashed line is the curve of 𝛯(𝒰)𝑛

nd the blue solid line is the curve of 𝛼(𝐺𝑛
𝗌 ). The red dotted line is

he plot of 𝛼(𝐺𝗌)𝑛 in Fig. 7(a). It is interesting to note that although
he capacity is determined at 𝑛 = 1, it is not achieved even for history
ength of 6. Fig. 7(b) shows the rate of information extraction when
he medium of communication is the channel given by 𝑃Z|Y. The rate
onotonically increases with history lengths and approaches the max-

mum possible rate. The red dotted line is the rate of communication
hen PZ|Y is the channel. □

This concludes our analysis on the topic of information extraction
rom a strategic sender. We have seen that the strategic setting demands
new line of analysis, that uses in part the traditional tools of informa-

ion theory, but is rooted in concepts of game theory. It also leads to
ew concepts. Our main take away is that the information extraction
apacity of the sender, a concept we defined and introduced in this
aper, appears to be a fundamental quantity. It plays a role loosely
nalogous to that of the entropy of a source, characterizing the extent
f information the sender can provide (or can be extracted from it).
uture research will reveal the extent to which this analogy holds.

. Conclusion

To conclude, inspired by the problem of screening of travellers with
uestionnaires, we considered a framework where a receiver attempted
o extract information from a strategic sender. This setting was posed
s a non-cooperative communication problem where the receiver (a
ealth inspector) wishes to recover information from a misreporting
ender (traveller) with zero probability of error. We considered a
eceiver-centric viewpoint and posed the problem as a leader–follower
ame with the receiver as the leader and sender as the follower. We
ormulated two instances of the game, with a noiseless channel, and
ith a noisy channel. We showed that even in the presence of the noisy

hannel, the receiver can extract an exponential number of sequences.
o achieve this, the optimal choice of strategy for the receiver is to
lay a selective decoding strategy that decodes meaningfully only for
subset of sequences and deliberately induces an error on the rest of

he sequences. The sequences are chosen such that the sender does not
ave an incentive to misreport any sequence as other, whereby, it tells
he truth. In the context of designing questionnaires, this corresponds
o the size of the optimal questionnaire that recovers maximum number
f travel histories.

Our analysis led to new concepts: the rate of information extraction
nd the information extraction capacity of the sender. We showed that
he maximum rate of information extraction is equal to the information
xtraction capacity of the sender in the noiseless channel case. In the
resence of the noisy channel, the receiver can still extract informa-
ion with this rate, provided the zero-error capacity of the channel

s larger than the information extraction capacity of the sender. We
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Fig. 6. (a) Sender graph 𝐺𝗌, (b) Confusability graph 𝐺𝖼, (c) Confusability graph 𝐺𝖼 (Examples 5.1).
Fig. 7. (a) Bounds on independence number with 𝑛, (b) Bounds on the rate with 𝑛 (Examples 5.1).
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derived single-letter lower bounds and upper bounds. The lower bound
is the optimal value of an optimization problem over permutation
matrices. The upper bound is the Shannon capacity of the sender graph
corresponding to the symmetric part of the utility. The information
extraction capacity characterizes the fundamental limit to the amount
of information that can be recovered with questionnaires.
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Appendix A. Preliminaries
62
A.1. Proof of Theorem 3.1

Proof. For strategies 𝑔𝑛 of the receiver such that min𝑠𝑛∈𝒮 (𝑔𝑛) |(𝑔𝑛, 𝑠𝑛)| =
, the claim trivially holds. Let 𝑔𝑛 be such that |(𝑔𝑛, 𝑠𝑛)| ≥ 2 for all
trategies 𝑠𝑛 ∈ 𝒮 (𝑔𝑛). We prove the claim by contradiction.

Suppose for some strategy 𝑠𝑛 ∈ 𝒮 (𝑔𝑛), the set (𝑔𝑛, 𝑠𝑛) is not an
ndependent set in 𝐺𝑛

𝗌 . Thus, there exists distinct sequences 𝑥̄, 𝑥 ∈
(𝑔𝑛, 𝑠𝑛) such that 𝒰𝑛(𝑥̄, 𝑥̄) ≤ 𝒰𝑛(𝑥, 𝑥̄). Using this, define a strategy 𝑠̄𝑛
s

̄𝑛(𝑥) =
{

𝑠𝑛(𝑥) ∀ 𝑥 ≠ 𝑥̄
𝑠𝑛(𝑥) for 𝑥 = 𝑥̄

. (13)

bserve that 𝑠̄𝑛 is also a best response since

𝑛(𝑔𝑛◦𝑠̄𝑛(𝑥), 𝑥) = 𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥) ∀ 𝑥 ≠ 𝑥̄

nd for 𝑥 = 𝑥̄,

𝑛(𝑔𝑛◦𝑠̄𝑛(𝑥̄), 𝑥̄) = 𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥̄)

= 𝒰𝑛(𝑥, 𝑥̄) (14)
≥ 𝒰𝑛(𝑥̄, 𝑥̄) = 𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥̄), 𝑥̄).

ere (14) follows since 𝑔𝑛◦𝑠𝑛(𝑥) = 𝑥, which in turn holds since 𝑥 ∈
(𝑔𝑛, 𝑠𝑛).

Now, for all 𝑥 ∈ (𝑔𝑛, 𝑠𝑛)∖{𝑥̄}, 𝑔𝑛◦𝑠̄𝑛(𝑥) = 𝑔𝑛◦𝑠𝑛(𝑥) = 𝑥 and hence 𝑥
ies in (𝑔𝑛, 𝑠̄𝑛) and (𝑔𝑛, 𝑠𝑛). However, when 𝑥 = 𝑥̄, 𝑔𝑛◦𝑠̄𝑛(𝑥̄) = 𝑥 ≠ 𝑥̄ =
𝑛◦𝑠𝑛(𝑥̄). Thus, the sequence 𝑥̄ lies in (𝑔𝑛, 𝑠𝑛) but is not recovered by
he pair (𝑔𝑛, 𝑠̄𝑛) and hence does not lie in (𝑔𝑛, 𝑠̄𝑛). Thus, |(𝑔𝑛, 𝑠̄𝑛)| <
(𝑔𝑛, 𝑠𝑛)|. However, this is a contradiction since 𝑠𝑛 ∈ 𝒮 (𝑔𝑛). Thus, for
ll 𝑠𝑛 ∈ 𝒮 (𝑔𝑛), the set (𝑔𝑛, 𝑠𝑛) is an independent set in 𝐺𝑛

𝗌 .
We now prove the second part of the result.
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Since (𝑔𝑛, 𝑠𝑛) is an independent set in 𝐺𝑛
𝗌 for all 𝑔𝑛 and for all 𝑠𝑛 ∈

ℬ(𝑔𝑛), this implies that 𝑅(𝑔𝑛) ≤ 𝛼(𝐺𝑛
𝗌 )

1∕𝑛 for all strategies 𝑔𝑛. We now
show that for Stackelberg equilibrium strategies 𝑔∗𝑛 , 𝑅(𝑔∗𝑛 ) = 𝛼(𝐺𝑛

𝗌 )
1∕𝑛.

Consider an independent set 𝐼𝑛 in 𝐺𝑛
𝗌 such that |𝐼𝑛| = 𝛼(𝐺𝑛

𝗌 ) and
efine a strategy 𝑔𝑛 for the receiver as

𝑛(𝑥) =
{

𝑥 if 𝑥 ∈ 𝐼𝑛
𝛥 if 𝑥 ∉ 𝐼𝑛

.

ince 𝛥 is never preferred by the sender, we can assume without loss of
enerality, that for all 𝑠𝑛 ∈ ℬ(𝑔𝑛) and for all 𝑥, 𝑔𝑛◦𝑠𝑛(𝑥) ∈ 𝐼𝑛 and hence
(𝑔𝑛, 𝑠𝑛) ⊆ 𝐼𝑛. We will now show that in fact the two sets are equal.

Consider an 𝑥 ∈ 𝐼𝑛. For any 𝑠𝑛 ∈ ℬ(𝑔𝑛), the utility of the sender is

𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥) = 𝒰𝑛(𝑥′, 𝑥)

for some 𝑥′ ∈ 𝐼𝑛. Since 𝐼𝑛 is an independent set in 𝐺𝑛
𝗌 , 𝒰𝑛(𝑥′, 𝑥) < 0 for

all 𝑥′ ∈ 𝐼𝑛, 𝑥′ ≠ 𝑥. Since 𝑥 ∈ 𝐼𝑛 was arbitrary,

𝒰𝑛(𝑔𝑛◦𝑠𝑛(𝑥), 𝑥) ≤ 0 ∀ 𝑥 ∈ 𝐼𝑛,

with equality if and only if 𝑔𝑛◦𝑠𝑛(𝑥) = 𝑥. Clearly, the optimal choice
of 𝑠𝑛 for the sender, is such that 𝑠𝑛(𝑥) = 𝑥 for all 𝑥 ∈ 𝐼𝑛. Specifically,
all the strategies 𝑠𝑛 ∈ ℬ(𝑔𝑛) are such that 𝑠𝑛(𝑥) = 𝑥 for all 𝑥 ∈ 𝐼𝑛.
Thus, for all 𝑠𝑛 ∈ ℬ(𝑔𝑛), (𝑔𝑛, 𝑠𝑛) = 𝐼𝑛 and hence 𝑅(𝑔𝑛) = 𝛼(𝐺𝑛

𝗌 )
1∕𝑛. It

follows that for all Stackelberg equilibrium strategies 𝑔∗𝑛 of the receiver,
𝑅(𝑔∗𝑛 ) = 𝛼(𝐺𝑛

𝗌 )
1∕𝑛. ■

A.2. Proof of existence of information extraction capacity

Before proving the existence, we prove the following lemma.

Lemma A.1. Let 𝑚, 𝑛 ∈ N. Consider a sender with utility 𝒰 and the
corresponding sender graph 𝐺𝑛

𝗌 . Then,

𝛼(𝐺𝑚+𝑛
𝗌 ) ≥ 𝛼(𝐺𝑚

𝗌 )𝛼(𝐺
𝑛
𝗌 ).

Proof. Consider an independent set 𝐼𝑚 in 𝐺𝑚
𝗌 and an independent set 𝐼𝑛

in 𝐺𝑛
𝗌 . The claim will follow by showing that 𝐼𝑚 × 𝐼𝑛 is an independent

set in 𝐺𝑚+𝑛
𝗌 .

Consider sequences 𝑥, 𝑦 ∈ 𝑚+𝑛 such that 𝑥 = (𝑤𝑚, 𝑤𝑛), 𝑦 = (𝑣𝑚, 𝑣𝑛),
where 𝑤𝑚, 𝑣𝑚 ∈ 𝐼𝑚 and 𝑤𝑛, 𝑣𝑛 ∈ 𝐼𝑛. Now,

𝒰𝑚+𝑛(𝑦, 𝑥) =
𝑚

𝑚 + 𝑛
𝒰𝑚(𝑣𝑚, 𝑤𝑚) + 𝑛

𝑚 + 𝑛
𝒰𝑛(𝑣𝑛, 𝑤𝑛).

ince 𝐼𝑚 and 𝐼𝑛 are independent sets and 𝑥, 𝑦 are distinct, 𝒰𝑚(𝑣𝑚, 𝑤𝑚) ≤
0 and 𝒰𝑛(𝑣𝑛, 𝑤𝑛) ≤ 0 with strict inequality in at least one the terms and
hence, 𝒰𝑚+𝑛(𝑦, 𝑥) < 0. This holds for all distinct sequences 𝑥, 𝑦 ∈ 𝐼𝑚×𝐼𝑛
which shows that 𝐼𝑚×𝐼𝑛 is an independent set in 𝐺𝑚+𝑛

𝗌 . Thus, 𝛼(𝐺𝑚+𝑛
𝗌 ) ≥

|𝐼𝑚||𝐼𝑛|. Taking 𝐼𝑚 and 𝐼𝑛 to be the corresponding largest independent
sets from 𝐺𝑚

𝗌 and 𝐺𝑛
𝗌 respectively, the claim follows. ■

Theorem A.2. Consider a sender with utility 𝒰 and let {𝐺𝑛
𝗌 }𝑛≥1 be the

corresponding sequence of sender graphs. Then the limit in Definition 4.1
exists.

Proof. From Lemma A.1, 𝛼(𝐺𝑚+𝑛
𝗌 ) ≥ 𝛼(𝐺𝑚

𝗌 )𝛼(𝐺
𝑛
𝗌 ), for all 𝑚, 𝑛 ∈ N. Define

𝛽𝑛 = log(𝛼(𝐺𝑛
𝗌 )) to get 𝛽𝑚+𝑛 ≥ 𝛽𝑚 + 𝛽𝑛. From Fekete’s lemma (Schri-

jver, 2003), the limit of the sequence {𝛽𝑛∕𝑛}𝑛≥1 exists and is equal
to sup𝑛 𝛽𝑛∕𝑛. Using this and from the continuity and monotonicity of
exp(.),

lim
𝑛

exp
(

𝛽𝑛
𝑛

)

= sup
𝑛

exp
(

𝛽𝑛
𝑛

)

.

𝑛
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ubstituting 𝛽𝑛 = log(𝛼(𝐺𝗌 )), the claim follows. ■
Appendix B. Lower bounds

B.1. Proof of Theorem 4.2

To prove Theorem 4.2, we first define a lemma. For that consider
the following definition

Definition B.1. Let 𝐾 ∈ N and  ⊆  . Define the set 𝑇𝐾
 as

𝑇𝐾
 =

{

𝑥 ∈ 𝐾|| ∶ 𝑃𝑥(𝑖) =
1
||

∀ 𝑖 ∈ 
}

.

Thus, the set 𝑇𝐾
 is a set of all those sequences where every symbol

from the set  occurs exactly 𝐾 times.
Using this definition, we define a set 𝑇𝐾

𝑛
,with 𝑛 ⊆ 𝑛, where

𝑇𝐾
𝑛

consists of 𝑛𝐾|𝑛|-length sequences constructed by concatenating
sequences from 𝑛, each appearing exactly 𝐾 times. The following
lemma gives a sufficient condition in terms of the optimization problem
(𝒰𝑛) for the independence of the set 𝑇𝐾

𝑛
.

emma B.1. Let 𝑛,𝐾 ∈ N. Consider a sender with utility 𝒰 and let 𝐺𝑛
𝗌

e the corresponding sender graph. Let 𝑛 ⊆ 𝑛 be a set feasible for the
roblem (𝒰𝑛). Then, 𝑇𝐾

𝑛
is an independent set in the graph 𝐺𝑛𝐾|𝑛|

𝗌 .

roof. Fix a 𝐾 ∈ N. For distinct sequences 𝑥, 𝑦 ∈ 𝑇𝐾
𝑛

,

𝑛𝐾|𝑛|
(𝑦, 𝑥) =

∑

𝑣,𝑤∈𝑛

𝑃𝑥,𝑦(𝑣,𝑤)𝒰𝑛(𝑣,𝑤) = E𝑃𝑥,𝑦𝒰𝑛(𝑋, 𝑌 ),

here the joint empirical distribution 𝑃𝑥,𝑦 satisfies
∑

′∈𝑛

𝑃𝑥,𝑦(𝑣′, 𝑤) =
∑

𝑤′∈𝑛

𝑃𝑥,𝑦(𝑣,𝑤′) = 1
|𝑛|

∀ 𝑣,𝑤 ∈ 𝑛.

Define a matrix 𝐷 ∈ R|𝑛|×|𝑛| where 𝐷(𝑣, 𝑣) = 1−𝑃 (𝑣), where 𝑃 (𝑣) =
∕|𝑛| for all 𝑣 ∈ 𝑛 and 𝐷(𝑣, 𝑣′) = 0 for all 𝑣 ≠ 𝑣′. Then from Lemma
in Renault et al. (2013), we have that 𝑃𝑥,𝑦 = 𝑉𝑥,𝑦 −𝐷, where 𝑉𝑥,𝑦 is a

onvex combination of the permutation matrices  = {𝑄(0),… , 𝑄(||)}
n 𝑛, i.e., 𝑉𝑥,𝑦 =

∑

𝑚 𝛼𝑚𝑄(𝑚), with ∑

𝑚 𝛼𝑚 = 1 and 𝛼𝑚 ≥ 0 for all 𝑚.
hus,

𝑃𝑥,𝑦𝒰𝑛(𝑋, 𝑌 ) =
∑

𝑣,𝑤∈𝑛

𝑉𝑥,𝑦(𝑣,𝑤)𝒰𝑛(𝑣,𝑤)

=
∑

𝑚
𝛼𝑚

∑

𝑣,𝑤∈𝑛

𝑄(𝑚)(𝑣,𝑤)𝒰𝑛(𝑣,𝑤).

Since 𝑥 and 𝑦 are distinct, it follows that 𝛼0 < 1, where 𝛼0
orresponds to the coefficient of the identity matrix 𝑄(0). Thus,

𝑛𝐾|𝑛|
(𝑦, 𝑥) = 1

|𝑛|

∑

𝑚∈[||]
𝛼𝑚

∑

𝑣,𝑤∈𝑛

𝑄(𝑚)(𝑣,𝑤)𝒰𝑛(𝑣,𝑤).

Since 𝑛 is feasible for (𝒰), the term ∑

𝑣,𝑤∈𝑛
𝑄(𝑚)(𝑣,𝑤)𝒰𝑛(𝑣,𝑤) is

egative for all 𝑚 ∈ [||]. Thus, 𝒰𝑛𝐾|𝑛|
(𝑦, 𝑥) < 0 for all distinct 𝑥, 𝑦 ∈

𝐾
𝑛

and hence, 𝑇𝐾
𝑛

is an independent set in the graph 𝐺𝑛𝐾|𝑛|
𝗌 . ■

We now prove Theorem 4.2.

roof of Theorem 4.2. From the feasibility condition of (𝒰𝑛), it
ollows trivially that all independent sets of 𝐺𝑛

𝗌 are feasible for (𝒰𝑛).
Thus, 𝛤 (𝒰𝑛) ≥ 𝛼(𝐺𝑛

𝗌 ) and hence lim𝑛→∞ 𝛤 (𝒰𝑛)1∕𝑛 ≥ 𝛯(𝒰).
Now we prove that lim𝑛→∞ 𝛤 (𝒰𝑛)1∕𝑛 ≤ 𝛯(𝒰). Let 𝐾 ∈ N. Consider

set 𝑛 that maximizes (𝒰𝑛). Following Definition B.1, we define a
et 𝑇𝐾

𝑛
which consists of sequences constructed by concatenating all

equences from 𝑛, each appearing exactly 𝐾 times. This construction
ives sequences of length 𝑛𝐾|𝑛|. From Lemma B.1 it follows that 𝑇𝐾

𝑛
is

n independent set in 𝐺𝑛𝐾|𝑛|
𝗌 for all 𝐾 ∈ N. Consequently, the capacity

s bounded as

(𝒰) = lim 𝛼(𝐺𝑛𝐾|𝑛|)
1

𝑛𝐾|𝑛 |

𝐾→∞ 𝗌
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W

t

𝒰

𝑥

a
a

≥ lim
𝐾→∞

(

|𝑇𝐾
𝑛
|

1
𝐾|𝑛 |

)1∕𝑛
.

e use Stirling’s approximation to determine lim𝐾→∞ |𝑇𝐾
𝑛
|

1∕𝐾|𝑛|. No-
tice that |𝑇𝐾

𝑛
| is given as |𝑇𝐾

𝑛
| = (𝐾|𝑛|)!∕(𝐾!)|𝑛|. Thus,

𝛯(𝒰) ≥ lim
𝐾→∞

(

|𝑇𝐾
𝑛
|

1
𝐾|𝑛 |

)1∕𝑛
= |𝑛|

1∕𝑛 = 𝛤 (𝒰𝑛)1∕𝑛.

Taking the limit as 𝑛 → ∞, the second claim follows. ■

B.2. Proof of bounds on 𝛤 (𝒰𝑛) in Theorem 4.2

The lower bound trivially follows from the feasibility condition of
(𝒰𝑛). To see the upper bound, note that if 𝑛 is feasible for (𝒰𝑛),
hen

𝑛(𝑥, 𝑦) +𝒰𝑛(𝑦, 𝑥) < 0 ∀ 𝑥, 𝑦 ∈ 𝑛, 𝑥 ≠ 𝑦.

This implies that for all distinct sequences 𝑥, 𝑦 ∈ 𝑛, we have 𝒰𝖲𝗒𝗆
𝑛 (𝑥, 𝑦)

= 𝒰𝖲𝗒𝗆
𝑛 (𝑦, 𝑥) < 0. Thus, 𝑛 is an independent set in (𝐺𝖲𝗒𝗆

𝗌 )𝑛 and the
upper bound follows.

B.3. Proof of Lemma 4.3

Proof. Let (1) hold. The proof follows on the lines of Lemma 1
in Renault et al. (2013). For the sake of completeness, we repeat some
of the arguments here.

Let 𝑃 ∈ () with supp(𝑃 ) =  be any distribution and let 𝑃𝑋,𝑌 ∈
( × ) be a distribution that satisfy 𝑃𝑋 = 𝑃𝑌 = 𝑃 . Repeating the
arguments of the proof of Lemma B.1, we get that

E𝑃𝑋,𝑌
𝒰(𝑋, 𝑌 ) =

∑

𝑚 𝛼𝑚
∑

𝑖,𝑗∈ 𝑄(𝑚)(𝑖, 𝑗)𝒰(𝑖, 𝑗). Since  is feasible for
(𝒰), the summation ∑

𝑖,𝑗∈ 𝑄(𝑚)(𝑖, 𝑗)𝒰(𝑖, 𝑗) is negative for all 𝑄(𝑚) that
is not an identity matrix. Thus, E𝑃𝑋,𝑌

𝒰(𝑋, 𝑌 ) ≤ 0 for all 𝑃𝑋,𝑌 and
equality holds if and only if 𝑃𝑋,𝑌 is a diagonal matrix. Moreover, this
holds for arbitrary 𝑃 ∈ ().

Let (2) hold. We will show that the support set of 𝑃 , denoted by  , is
a feasible set for (𝒰). Let 𝑄 be any ||× || non-identity permutation
matrix. Let 𝑃𝑋,𝑌 ∈ R||×|| be a matrix such that 𝑃𝑋,𝑌 (𝑖, 𝑖) = 𝑃 (𝑖)
for all 𝑖 ∈  and 𝑃𝑋,𝑌 (𝑖, 𝑗) = 0 for all 𝑖 ≠ 𝑗. Define a matrix
𝑊𝑋,𝑌 using 𝑄 as 𝑊𝑋,𝑌 = 𝑃𝑋,𝑌 + 𝛽(𝑄 − ), where  is || × ||

identity matrix and taking 𝛽 ∈ (0,min𝑖∈ 𝑃 (𝑖)) ensures that the entries
of 𝑊𝑋,𝑌 is non-negative. It is easy to check that the marginals of
𝑊𝑋,𝑌 are such that 𝑊𝑋 = 𝑃 = 𝑊𝑌 . Since (2) holds, we have
that E𝑊𝑋,𝑌

𝒰(𝑋, 𝑌 ) < 0. Using the above form of 𝑊𝑋,𝑌 , we get
E𝑊𝑋,𝑌

𝒰(𝑋, 𝑌 ) = 𝛽
∑

𝑖,𝑗∈ 𝑄(𝑖, 𝑗)𝒰(𝑖, 𝑗). It follows that ∑

𝑖,𝑗∈ 𝑄(𝑖, 𝑗)
𝒰(𝑖, 𝑗) < 0. Since the matrix 𝑄 was arbitrary, we have the above
inequality for all || × || non-identity permutation matrices 𝑄. Thus,
 is feasible for (𝒰). ■

B.4. Computational approach to check for the feasibility of a set 

We now discuss a computational method that can be used to check
for the feasibility of a set  for the problem (𝒰). Given a set of
vertices  , its feasibility for (𝒰) can be checked using the Bellman–
Ford algorithm in the following way. Define a weighted directed graph
𝐺̄𝗌 with vertices  induced by 𝒰 where every vertex is connected to
every other vertex and the edge from a vertex 𝑖 to 𝑗 has weight 𝒰(𝑗, 𝑖).
Define a utility 𝒰 ′ = −𝒰 and let the directed graph induced by 𝒰 ′ be
denoted as 𝐺′

𝗌. Suppose we have a set  that is feasible for the problem
(𝒰). Then, from the characterization of feasible region of (𝒰), it
implies that there is no zero or positive-weight directed cycle in the
subgraph of 𝐺̄𝗌 induced by  . Here, weight of a cycle is the sum of
the weights of the edges. Equivalently, there is no negative-weight or
zero-weight directed cycle in the subgraph of 𝐺′

𝗌 induced by  . We use
this observation as follows.

The Bellman–Ford algorithm (Cormen et al., 2009, Ch. 26), deter-
mines the shortest paths to all vertices in a directed graph from a
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given source vertex. The algorithm also detects whether the graph has f
a negative-weight directed cycle in the graph, in which case there may
not exist a shortest path between two vertices. Suppose there is no zero-
weight directed cycle in the graph 𝐺′

𝗌. Then, this algorithm can be used
to check for the feasibility of a given  in the following manner.

• Given a set  consider the subgraph of 𝐺′
𝗌 induced by the vertices


• Apply the Bellman–Ford algorithm on this subgraph
• If the algorithm detects a negative-weight directed cycle in the

subgraph, then the set  is not feasible for (𝒰). Otherwise,  is
feasible for (𝒰).

In the worst case, we need to check feasibility of all subsets of  in
order to determine the optimal  . However, the total number of subsets
of  may be very large which may make this procedure impractical.
Nevertheless, the above method is still independent of the blocklength
𝑛 and is thus an effective tool to derive a lower bound for the capacity.

B.5. Proof of Proposition 4.4

Recall the definition of a positive-edges cycle in Definition 4.5.
We first demonstrate that it is necessary that a feasible set of (𝒰)
does not contain a positive-edges cycle. Let  be feasible for (𝒰).
Let 𝑖0,… , 𝑖𝐾−1 be distinct symbols from  and suppose there exists a
positive-edges cycle in  , such that 𝒰(𝑖𝑙 , 𝑖𝑚) ≥ 0 ∀ 𝑙 = (𝑚 + 1)mod 𝐾.
Clearly, this means that the set  does not satisfy the condition in (7)
and hence  is not feasible for (𝒰).

Suppose there is no positive-edges cycle in  and there is at least
one pair of (𝑖𝑘, 𝑖𝑗 ), 𝑘 > 𝑗 such that 𝒰(𝑖𝑘, 𝑖𝑗 ) < 0. Then,

𝒰(𝑖1, 𝑖0) +𝒰(𝑖2, 𝑖1) +… +𝒰(𝑖0, 𝑖𝐾−1)

≤ min
𝑖,𝑗∈∶𝒰(𝑖,𝑗)<0

|𝒰(𝑖, 𝑗)| + (|| − 1) max
𝑖,𝑗∈∶𝒰(𝑖,𝑗)≥0

𝒰(𝑖, 𝑗)

< 0.

Since 𝑖0,… , 𝑖𝐾−1 were arbitrary, it follows that  is feasible for (𝒰).

Appendix C. Upper bounds

C.1. Proof of Theorem 4.5

Proof. Let 𝑛 ∈ N. From Theorem 4.2, we have that 𝛼(𝐺𝑛
𝗌 ) ≤ 𝛼((𝐺𝖲𝗒𝗆

𝗌 )𝑛).
The claim follows by taking the limit of the 𝑛th root.

We now prove the second part of the result. Let 𝑛 ∈ N. We first prove
that if 𝒰 is symmetric then 𝛯(𝒰) ≤ 𝛩(𝒰). Consider the graph 𝐺⊠𝑛

𝗌

derived by taking the 𝑛-fold strong product of 𝐺𝗌. Consider a distinct
pair of sequences 𝑥, 𝑦 ∈ 𝑛 that are adjacent in 𝐺⊠𝑛

𝗌 . Then, for all
𝑘 ∈ [𝑛], either 𝑥𝑘 = 𝑦𝑘 or 𝑥𝑘, 𝑦𝑘 are adjacent in 𝐺𝗌. Thus,

𝒰𝑛(𝑦, 𝑥) =
1
𝑛

∑

𝑦𝑘≠𝑥𝑘

𝒰(𝑦𝑘, 𝑥𝑘) ≥ 0.

Hence, 𝑥, 𝑦 are adjacent in 𝐺𝑛
𝗌 as well, which gives 𝐺⊠𝑛

𝗌 is a subgraph
of 𝐺𝑛

𝗌 . Thus, 𝛼(𝐺𝑛
𝗌 ) ≤ 𝛼(𝐺⊠𝑛

𝗌 ) and taking the limit of the 𝑛th root and
using the first part of the result, the claim follows. ■

C.2. Proof of Proposition 4.6

Proof. Let 𝑛 ∈ N. We prove this by showing that if distinct sequences
, 𝑦 ∈ 𝑛 are not adjacent in 𝐺𝑛

𝗌 , then 𝑥, 𝑦 are not adjacent in 𝐺⊠𝑛
𝗌 .

Let 𝑥, 𝑦 be not adjacent in 𝐺𝑛
𝗌 . Then, 𝒰𝑛(𝑦, 𝑥) < 0 and 𝒰𝑛(𝑥, 𝑦) < 0.

Since, 𝑏 ≤ 𝑎, it follows that
|

|

|

{𝑘 ∶ 𝒰(𝑦𝑘, 𝑥𝑘) = −𝑏}||
|

> 𝑛
2
,

|

|

|

{𝑘 ∶ 𝒰(𝑥𝑘, 𝑦𝑘) = −𝑏}||
|

> 𝑛
2
.

This implies that there is some 𝑘 such that 𝒰(𝑦𝑘, 𝑥𝑘) = 𝒰(𝑥𝑘, 𝑦𝑘) = −𝑏
nd hence 𝑥𝑘, 𝑦𝑘 are not adjacent in 𝐺𝗌. It follows that 𝑥, 𝑦 are not
djacent in 𝐺⊠𝑛

𝗌 as well. This gives that 𝛼(𝐺𝑛
𝗌 ) ≤ 𝛼(𝐺⊠𝑛

𝗌 ). The claim
ollows by taking the limit. ■
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C.3. Proof of Theorem 4.7

roof.

1. Follows from Theorem 4.5 and the fact that for a perfect graph,
𝛩(𝐺𝗌) = 𝛼(𝐺𝗌) (Lovász, 1979).

2. Follows from Proposition 4.6 and the fact that for a perfect
graph, 𝛩(𝐺𝗌) = 𝛼(𝐺𝗌). ■

Appendix D. Noisy channel results

Before we prove the results, we state a few definitions. For any
strategy 𝑔𝑛 of the receiver, recall the worst-case best response set 𝒮 (𝑔𝑛)
defined as

𝒮 (𝑔𝑛) = argmin
𝑠𝑛∈ℬ(𝑔𝑛)

|(𝑔𝑛, 𝑠𝑛)|.

Let

(𝑦) = supp(𝑃𝑍|𝑌 (⋅|𝑦)),

where 𝑦 is an input to the channel. Note that since the output space of
the channel is 𝑛, (𝑦) ⊆ 𝑛 for all 𝑦.

D.1. Proof of Theorem 5.1

Proof. Consider a Stackelberg equilibrium strategy 𝑔∗𝑛 of the receiver.
It is known from Theorem 3.1, that the set of recovered sequences from
the sender can be at most 𝛼(𝐺𝑛

𝗌 ) and hence min𝑠𝑛∈ℬ(𝑔∗𝑛 ) |(𝑔∗𝑛 , 𝑠𝑛)| ≤
𝛼(𝐺𝑛

𝗌 ). Further, at most 𝛼(𝐺𝑛
𝖼 ) sequences can be transmitted with zero

error through the channel and hence for all 𝑠𝑛, |(𝑔∗𝑛 , 𝑠𝑛)| ≤ 𝛼(𝐺𝑛
𝖼 ).

Together, it follows that

min
𝑠𝑛∈ℬ(𝑔∗𝑛 )

|(𝑔∗𝑛 , 𝑠𝑛)| ≤ min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )}.

We now show that equality holds in the above relation.
Let 𝑑 = min{𝛼(𝐺𝑛

𝗌 ), 𝛼(𝐺
𝑛
𝖼 )}. Clearly, there exists an independent set

𝐼 𝗌𝑛 in 𝐺𝑛
𝗌 such that |𝐼 𝗌𝑛| = 𝑑. Similarly, there exists an independent set

𝐼𝖼𝑛 in 𝐺𝑛
𝖼 such that |𝐼𝖼𝑛 | = 𝑑. Let the sequences in the sets 𝐼 𝗌𝑛 and 𝐼𝖼𝑛 be

denoted as 𝑥𝑖 and 𝑦𝑖 respectively, with 𝑖 ∈ [𝑑] and 𝑥𝑖 ∈ 𝑛, 𝑦𝑖 ∈ 𝑛.
With this convention, define the strategy 𝑔𝑛 as

𝑔𝑛(𝑧) =
{

𝑥𝑖 if 𝑧 ∈ (𝑦𝑖)
𝛥 if 𝑧 ∉

⋃𝑑
𝑖=1 (𝑦𝑖)

. (15)

Note that (𝑦𝑖) are disjoint sets. We show that the strategy 𝑔𝑛 of the
receiver ensures that all strategies 𝑠𝑛 in the set of best responses ℬ(𝑔𝑛)
are such that (𝑠𝑛(𝑥𝑖)) = (𝑦𝑖) for all 𝑖 ∈ [𝑑]. Fix an index 𝑖, let 𝑠𝑛
be any strategy for the sender and let 𝑠𝑛(𝑥𝑖) = 𝑦∗ ∈ 𝑛. Notice that if
(𝑦∗) ⊈

⋃𝑑
𝑗=1 (𝑦𝑗 ), then 𝑔𝑛(𝑧) = 𝛥 for some 𝑧 ∈ (𝑦∗), 𝑧 ∉

⋃𝑑
𝑗=1 (𝑦𝑗 ).

This gives that E
[

𝒰𝑛(𝑔𝑛(𝑍), 𝑥𝑖)
]

= −∞. Thus, 𝑦∗ is such that (𝑦∗) ⊆
⋃𝑑

𝑗=1 (𝑦𝑗 ).
Writing (𝑦∗) =

⋃𝑑
𝑗=1 (𝑦∗) ∩(𝑦𝑗 ), it follows that

E
[

𝒰𝑛(𝑔𝑛(𝑍), 𝑥𝑖)
]

=
∑

𝑧∈
⋃𝑑

𝑗=1 (𝑦∗)∩(𝑦𝑗 )

𝑃𝑍|𝑌 (𝑧|𝑦∗)𝒰𝑛(𝑔𝑛(𝑧), 𝑥𝑖)

=
𝑑
∑

𝑗=1

∑

𝑧∈(𝑦∗)∩(𝑦𝑗 )
𝑃𝑍|𝑌 (𝑧|𝑦∗)𝒰𝑛(𝑥𝑗 , 𝑥𝑖).

The last equation follows from the definition of 𝑔𝑛. Since 𝐼 𝗌𝑛 is an
independent set in 𝐺𝑛

𝗌 , 𝒰𝑛(𝑥𝑗 , 𝑥𝑖) < 𝒰𝑛(𝑥𝑖, 𝑥𝑖) = 0 for all 𝑗 ≠ 𝑖 and hence
𝑑
∑

𝑗=1

∑

𝑧∈(𝑦∗)∩(𝑦𝑗 )
𝑃𝑍|𝑌 (𝑧|𝑦∗)𝒰𝑛(𝑥𝑗 , 𝑥𝑖) ≤ 0

with equality if and only if (𝑦∗) = (𝑦𝑖). Thus, the strategy 𝑦∗ is such
that (𝑦∗) = (𝑦𝑖). Clearly, this holds for all 𝑠𝑛 ∈ ℬ(𝑔𝑛) and for all
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𝑖 ∈ [𝑑].
It easy to see that the utility of the sender and the receiver do not
depend on the exact choice of 𝑦∗ so long as (𝑦∗) = (𝑦𝑖). Hence,
without loss of generality, we consider 𝑠𝑛 to be such that 𝑠𝑛(𝑥𝑖) = 𝑦𝑖

for all 𝑖 ∈ [𝑑]. Thus, when the sequence 𝑥𝑖 ∈ 𝐼 𝗌𝑛 is observed by the
sender, it encodes it as 𝑦𝑖. The channel generates an output 𝑧, which
belongs to the support set (𝑦𝑖). The receiver maps all such 𝑧 to 𝑥𝑖

thereby ensuring P(𝑋 = 𝑥𝑖|𝑋 = 𝑥𝑖) = 1 for all 𝑖 ∈ [𝑑]. Thus, for
all 𝑥𝑖 ∈ 𝐼 𝗌𝑛 and 𝑠𝑛 ∈ ℬ(𝑔𝑛), 𝑥𝑖 ∈ (𝑔𝑛, 𝑠𝑛). Hence (𝑔𝑛, 𝑠𝑛) ⊇ 𝐼 𝗌𝑛 for
all 𝑠𝑛 ∈ ℬ(𝑔𝑛). Since |𝐼 𝗌𝑛| = 𝑑, |(𝑔𝑛, 𝑠𝑛)| ≥ 𝑑. Using |(𝑔𝑛, 𝑠𝑛)| ≤

= min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )}, it follows that for all Stackelberg equilibrium

trategies 𝑔∗𝑛 , min𝑠𝑛∈ℬ(𝑔∗𝑛 ) |(𝑔∗𝑛 , 𝑠𝑛)| = min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

𝑛
𝖼 )}.

We now determine the asymptotic rate of information extraction.
t can be shown that, for a discrete memoryless channel given by
9), the graph 𝐺𝑛

𝖼 is same as the graph constructed by taking 𝑛-
old strong product of 𝐺𝖼 (Shannon, 1956), i.e., 𝐺𝑛

𝖼 = 𝐺⊠𝑛
𝖼 . Thus,

in𝑠𝑛∈ℬ(𝑔∗𝑛 ) |(𝑔∗𝑛 , 𝑠𝑛)| = min{𝛼(𝐺𝑛
𝗌 ), 𝛼(𝐺

⊠𝑛
𝖼 )} and hence

(𝑔∗𝑛 ) = min
𝑠𝑛∈ℬ(𝑔∗𝑛 )

|(𝑔∗𝑛 , 𝑠𝑛)|
1∕𝑛

= min
{

𝛼(𝐺𝑛
𝗌 )

1∕𝑛, 𝛼(𝐺⊠𝑛
𝖼 )1∕𝑛

}

.

The claim follows after taking the limit. ■

Thus, from the strategy defined in (15), it can be observed that
the receiver decodes meaningfully only for a subset of sequences. In
particular, it chooses 𝑑 number of inputs, 𝑦𝑖 with 𝑖 ∈ [𝑑], which can
be distinguished from each other and maps the respective support sets
(𝑦𝑖), to 𝑑 distinct sequences 𝑥𝑖. For the rest of the outputs from the
channel, the receiver declares an error 𝛥. In response, the optimal
strategy for the sender is (without loss of generality) such that it maps
the sequences 𝑥𝑖 to the inputs 𝑦𝑖. Also, for all strategies 𝑠𝑛 and for all
𝑥 ∈ 𝑛 ⧵ {𝑥𝑖}𝑖∈[𝑑], 𝑠𝑛(𝑥) = 𝑦∗, where 𝑦∗ is such that (𝑦∗) ⊆

⋃𝑑
𝑗=1 (𝑦𝑗 ).

This is because for any other input 𝑦′ ≠ 𝑦∗, if (𝑦′) ⊈
⋃𝑑

𝑗=1 (𝑦𝑗 ), then
the channel output 𝑧 may lie outside ⋃𝑑

𝑗=1 (𝑦𝑗 ) for which 𝑔𝑛(𝑧) = 𝛥
and the corresponding utility is −∞.
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