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Nomenclature

Terms
Symbol/Term Definition
Aerial Manipulator A drone equipped with a robotic arm, capable of per-

forming manipulation tasks while flying.
Aerial Vehicle / Platform Any flying robot, typically multirotors, used as the

base for an aerial manipulator.
Dynamics model A model that describes the transition, given a state

and action performed, returning the new state. Used
as an umbrella term for analytical model and geomet-
ric model in this thesis.

Whole-body Control Simultaneous control of locomotion and manipula-
tion subsystems with a single unified algorithm.

End-Effector The ”tool” at the tip of the manipulator (e.g., gripper)
that physically interacts with the environment.

Trajectory A time-parameterized path representing the drone’s
desired motion in space.

Pose The drone’s position and orientation in 3D space.
End-Effector Pose The position and orientation of the manipulator’s tip,

either in body or world frame.
Actuator Dynamics The physical behavior and limitations of motors and

servos, including delays and non-linearities.
Contact Dynamics The forces and torques exchanged between the end-

effector and the environment during manipulation
tasks.

Proximal Policy Optimization (PPO) A stochastic RL algorithm that balances exploration
and exploitation with stable training.

Deep Deterministic Policy Gradient
(DDPG)

A deterministic RL algorithm designed for contin-
uous action spaces, combining value-based and
policy-based methods.

Trust Region Policy Optimization
(TRPO)

A stochastic RL algorithm that improves policy by
adding a constraint using KL divergence making
learning reliable without over updating.

Zero-Shot Transfer The deployment of an RL policy (or any ML model)
trained entirely in simulation to real-world without ad-
ditional fine-tuning.

Partially Observable Markov Decision
Process (POMDP)

A MDP where the agent has incomplete / partial
knowledge of the environment.

Osprey The aerial manipulator to be used in this study. It is
a quadrotor base with a 2-DoF arm and a gripper as
end-effector.
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Symbol Definitions

Symbol Space Definition
Section 5.1: Modeling and Problem Definition

(xW , yW , zW ) R3 Basis vectors of world frame
(xB , yB , zB) R3 Basis vectors of quadrotor base
(xEE , yEE , zEE) R3 Basis vectors of end-effector frame
Wxb R3 Position of quadrotor base in world frame
WRb SO(3) Rotation matrix of quadrotor base w.r.t. world frame
θ T2 Vector of joint angles of 2-DoF manipulator arm
Wẋb R3 Linear velocity of quadrotor base in world frame
BΩb R3 Angular velocity of quadrotor base in body frame
θ̇ R2 Joint angular velocities of manipulator
M(q) R8×8 Inertia matrix of coupled quadrotor–manipulator system
C(q,v) R8×8 Coriolis and centrifugal matrix
G(q) R8 Gravity and external force vector
B(q) R8 Matrix that maps control inputs to generalized forces ap-

plied
u Rn Control input vector, n depends on controller design
G1 R4×4 Control allocation matrix
G2 R4×4 Allocation matrix influencing torque generated due to ro-

tor angular accelerations
G3 R4×4 Allocation matrix influencing torque generated due to

gyroscopoic effects
W R4 Net force and torques generated by quadrotor base
f R Net thrust generated by quadrotor in body frame
τ R3 Net moment vector on the system
τ θ R2 Applied joint torques
Wxee R3 Position of end-effector in world frame
Wpee SE(3) Pose of end-effector in world frame
Wpdes

ee SE(3) Desired pose of end-effector in world frame
st S Observed system state at time t
ut A ⊆ Rn Control action at time t
πϕ − Learned policy mapping states to actions, with parame-

ters ϕ
Section 5.2: Effect of actuation on control

F1 R3×nu Force allocation matrix
F2 R3×nu Moment allocation matrix
F R6×nu Wrench allocation matrix
f R3 Force generated by fully actuated system
τ R3 Torques generated by fully actuated system
nu N Number of control inputs
W R6 Quadrotor wrench space
rank{F1} 1 Rank of force matrix
rank{F2} 3 Rank of moment matrix
rank{F} ≥ 4 Rank of wrench matrix
u Rnu Control input vector
m R3 Moment vector
∀u ∈ U U ⊂ Rnu Valid control inputs

Section 5.3: Reinforcement Learning for Control
π − Control policy (agent)

Continued on next page



Contents v

Symbol Space Definition
at A Action at time t
st S State at time t
rt R Reward at time t
R(st, at) R Reward function
R(τ) R Return over trajectory
γ [0, 1] Discount factor
τ − Trajectory of states and actions
P (τ | π) [0, 1] Trajectory probability under policy
ρ0(s0) [0, 1] Initial state distribution
J(π) R Expected return under policy
π∗ − Optimal policy
Eτ∼π[·] − Expectation over trajectories
rt(θ) R Probability ratio (new vs old policy)
θ, θold − Policy parameters
Ât R Advantage estimate
LCLIP(θ) R PPO clipped surrogate loss
Vϕ(st) R Value function (critic output)
LVF(ϕ) R Critic loss
Rt R Return estimate (e.g., from GAE)
L(θ, ϕ) R PPO total loss
H(πθ(· | st)) R Policy entropy
c1, c2 R Loss balancing coefficients

Section 6.1: Control Architecture
θ T2 Manipulator joint angles (θ1, θ2)

θr T2 Reference joint angles vector
Wab R3 Policy linear-acceleration command (world frame)
Wψr R Desired yaw reference (world frame)
BΩb R3 Policy body-rate reference (rad/s)
BΩcmd

b R3 Commanded body angular velocity (tilt-prioritized con-
troller)

Bαd R3 Desired body angular acceleration
qd S3 Desired attitude quaternion of quadrotor
Bzd R3 Desired body z-axis (unit vector)
Cxd R3 Desired x-axis in intermediate C frame (unit vector)
Byd R3 Desired body y-axis (unit vector)
Bxd R3 Desired body x-axis (unit vector)
R(qd) SO(3) Rotation matrix corresponding to qd
KΩ R3×3 Angular-velocity feedback gain matrix
ωcmd R3 Commanded rotor angular velocities
ωf R3 Filtered rotor angular velocities
f R Total thrust
τ R3 Total body torque vector
τ f R3 Filtered torque vector
J R3×3 Inertia matrix of quadrotor base
W R4 Wrench vector (total thrust and torques)
τx, τy, τz R Torques about body x, y, z axes
τθ1 , τθ2 R Torque generated for manipulator joint 1 and 2

Section 6.2: Training
Wab R3 Linear acceleration of the body in world frame

Continued on next page
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Symbol Space Definition
Bvb R3 Linear velocity of the quadrotor base in body frame
BΩb R3 Angular velocity of the quadrotor base in body frame
Wψr R Reference heading in world frame
WRb SO(3) Rotation matrix of the quadrotor base w.r.t. world frame
θr T2 Reference vector of 2 revolute joint angles of the manip-

ulator
Bxgoal R3 Goal position expressed in quadrotor base frame
EExgoal R3 Goal position expressed in end-effector frame
EERgoal SO(3) Goal orientation in end-effector frame
EERgoal[:, 0:2] R6 6D continuous rotation representation from the first two

columns of EERgoal
Wxee R3 End-effector position in world frame
Wqee S3 Unit quaternion representing end-effector orientation in

world frame
Wqgoal S3 Unit quaternion representing goal orientation in world

frame
Eori(Wqee,

Wqgoal) R Minimum geodesic angular distance between two unit
quaternions in SO(3)

droneat R7 Drone action vector at time t: {Wab,
Bωb,

Wψr}
jointat R2 Joint position action vector at time t: {θr}
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2
Abstract

Aerial manipulation control is challenging due to the inherently coupled and highly variable dynamics
involved in simultaneously controlling both the drone platform and its manipulator. Traditional model-
based methods have been widely used but are limited by their dependence on accurate dynamics mod-
els, high computational cost, and sensitivity to external disturbances. Recent studies have explored re-
inforcement learning (RL)-based methods to overcome these limitations. However, most of them focus
on fully actuated drones or rigid-link manipulators, thereby avoiding the complexity of underactuated
platforms and manipulator control. This work develops a robust RL-based controller framework capa-
ble of whole-body control of an underactuated aerial manipulator with a two-degree-of-freedom arm.
The method is evaluated in both simulation and real-world experiments on three tasks: end-effector
pose control, payload carrying, and path following. We achieve 6-DoF end-effector pose tracking with
errors of 5.3 cm and 8.8°, with inference times of 0.18 ms, and demonstrate payload carrying capac-
ity of up to 140 g through real-world experiments. Through ablations we show that action smoothing
and domain randomization are critical for reliable transfer. The results demonstrate the feasibility of
using RL-based whole-body control for aerial manipulation and lay the foundation for more complex
contact-based manipulation tasks. To the best of our knowledge, this is among the first demonstration
of RL-based whole-body control of an underactuated aerial manipulator validated through real-world
experiments.
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3
Introduction

3.1. Background
Aerial manipulation is a growing field that combines the dexterity and precision of robotic arms with
mobility of aerial vehicles, such as quadrotors. This integration enables capabilities to perform tasks
while flying, such as applying forces to a wall, pushing, sliding and grasping objects [30], [1], [28]. With
these capabilities, aerial manipulators can be used for a wide array of practical applications, such as
transportation of material, remote operations, disaster response and industrial inspection, tasks that
are often challenging and dangerous to humans.

At high altitude and in constrained workspaces aerial manipulators can be used to quickly and efficiently
transport material, reducing operational costs and risk. In disaster-stricken areas, they can be used for
transporting relief to regions inaccessible by traditional means of transport. In industrial settings, aerial
manipulators can perform tasks such as installing sensor devices, inspection by direct contact with
tanks, pipes, and other surfaces. Across these diverse applications, a common advantage emerges -
aerial manipulators can significantly mitigate risk and cost associated with human workers operating in
hazardous situations and time-critical scenarios.

While these capabilities seem attractive, deploying aerial manipulators in the real-world introduces
significant challenges, primarily due to the complexity of control involved. This complexity arises from
highly nonlinear and coupled dynamics between the flying base and arm. The robotic arm’s motion
generates forces and torques that can affect stability of the drone, if not compensated. For example,
raising a robotic arm to a horizontal position shifts the center of gravity away from the drone’s center,
requiring rotor thrusts to be adjusted to maintain stability. Additionally, tasks involving interaction with
the environment, such as pushing against a surface, maintaining contact and grasping create external
disturbances, further complicating control.

3.2. Motivation
Thus, to design an effective controller for aerial manipulation, we consider the following requirements:

1. Ability to handle complex and coupled dynamics between arm and base.
2. Robustness and adaptation to external disturbances.
3. Real-time performance.

Existing studies have managed to implement tasks such as holding position and applying forces [13],
opening doors [6] and pick-and-place [15] with model-based control methods. Typically, they are struc-
tured by separating trajectory planning and low-level control. However, these methods depend on a
highly accurate model of system dynamics that might be unreliable and infeasible to obtain, especially
in tasks involving interaction with environment [9] (further discussed in Chapter 4). Contact-based tasks
introduce discontinuities, unmodeled disturbances and forces that are difficult to model and predict ana-
lytically. Moreover, some model-based control methods, such as MPPI (Model Predictive Path Integral)

3



3.3. Research question 4

[45], often require computationally expensive online optimizations, limiting use in real-time scenarios
[7].

Using reinforcement learning for control shows promise as an alternative, eliminating the need for accu-
rate dynamics modeling with added benefit of fast inference times enabling reactive decision making
for complex tasks, as witnessed in drone control [21]. In aerial manipulation, limited studies have
managed to show effectiveness of reinforcement learning to achieve contact-based tasks. Examples
include, controlling a fully actuated vehicle with a rigid link to open and close doors [7] and an underac-
tuated platform with 2-DoF planar manipulator [25] to perform pick and place, with a decoupled control
approach.

However, RL for aerial manipulation shows positive results on simple tasks by focusing only on fully-
actuated drones or rigid-link manipulators, thereby avoiding complexity of underactuated platforms and
manipulator control, leaving whole-body control of an underactuated aerial manipulator largely un-
explored. Whole-body control refers to using a unified algorithm to control a mobile manipulator with a
locomotion and manipulation system. In aerial manipulators, this refers to control of both the quadrotor
base and arm1 using a single algorithm, necessary for tasks involving coordination between both sys-
tems and compensation for disturbances due to interaction within and outside the aerial manipulator.
Underactuated refers to lack of independent control over all degrees of freedom on a quadrotor. We
specifically look into underactuated drones due to lower hardware costs compared to fully actuated
drones, making them attractive for practical deployment. However, they introduce additional control
challenges (discussed in Section 5.2).

Before performing tasks such as grasping, applying forces or tool use, an aerial manipulator should be
able to accurately control the pose of its end-effector 2 in three dimensional space. This is a fundamental
prerequisite to contact-based manipulation, a task this thesis attempts to achieve with RL.

3.3. Research question
In particular, we aim to answer - How can we develop whole-body control policies using reinforcement
learning to achieve end-effector pose control of an underactuated aerial manipulator in the real-
world?

From a scientific perspective, this research is significant as it contributes to the growing field of learning-
based robotic control, while addressing critical sim-to-real challenges necessary for real-world deploy-
ment. Successfully performing end-effector pose control using Reinforcement Learning serves as a
foundational capability for enabling complex aerial manipulation tasks in the future, such as grasping,
applying forces and other types of interaction with the environment.

3.4. Contributions
We develop a control policy capable of whole-body control of an underactuated aerial manipulator to
perform end-effector pose control. We demonstrate the policy’s effectiveness by extensively testing in
simulation and validating with real-world experiments.

1. We demonstrate that RL-based control policies can be successfully trained using PPO (Proximal
Policy Optimization), achieving 6-DoF end-effector pose controlwith errors of 5.3 cm (position)
and 8.8° (orientation) in real-world experiments (see A.0.6 for videos).

2. We introduce an end-to-end pipeline for training and deploying a reinforcement learning
policy onboard a aerial manipulator with sub-millisecond inference times (0.18 ms).

3. Through ablations, we provide recommendations for action and observation space design, con-
troller abstractions and show that domain randomization and action smoothing are critical for
transfer.

4. Additionally, we demonstrate robustness to external disturbances and generalization by per-
forming pose control while carrying payloads up to 140 g in the real world and path following while
maintaining constant orientation.

1We use the term ”arm” and ”manipulator” interchangeably.
2In our context, the end-effector is the gripper attached to the arm or manipulator.



4
Related work

In this chapter, we review literature regarding aerial manipulator designs, discussing platform and ma-
nipulator design separately. Then, we review the state-of-the-art methods to control aerial manipulators,
including popular model-based and reinforcement learning-based methods. Finally, we present our
motivation to use RL based control and highlight key aspects that differentiate our work from existing
methods.

4.1. Aerial Manipulator Design
We define an aerial manipulator as an aerial robot, typically a drone equipped with a robotic manipulator,
capable of performing manipulation tasks while flying. Such a system comes with several challenges,
including complexity of controlling both the platform and manipulator simultaneously, need for precise
torque and force application, and varying dynamic characteristics inherent to particular tasks.

Appropriate design of aerial manipulators is crucial because it directly impacts controllability and ability
to perform a range of tasks. Different tasks such as pick and place, sliding or peg in hole need different
designs. This section reviews aerial manipulator designs by separating platform (drone base) and
manipulator design.

It helps to classify aerial manipulator design based on the drone platform’s ability to generate forces
and torques (admissible wrenches) directly affecting controllability.

4.1.1. Platform design based on admissible wrenches

Figure 4.1: Underactuated drone platform (UDT) [15] Figure 4.2: Fully actuated drone platform - with 6
independently tiltable rotors [7]

Platforms can be classified based on admissible wrenches [17], [30] which affects controllability -
whether the platform can control its six degrees of freedom independently or in a coupled manner.

1. Uni-Directional thrust (UDT) or Underactuated (UA) — Platforms that can generate thrust
along only one direction. This property makes control of thrust independent of total moment

5



4.2. Aerial Manipulator Control 6

impossible in more than one direction. A typical quadrotor with rigidly fixed rotors is a UDT system
or underactuated system (see 4.1).

2. Multi-Directional thrust (MDT) — Platforms that can vary thrust in more than one direction in-
dependent of total moment.

3. Fully Actuated (FA) — A subclass of MDT platforms that can vary thrust in all directions inde-
pendent of total moment. Examples of such platforms are a hexrotor with fully tiltable rotors (see
4.2).

4. Overactuated (OA)—Multirotor platforms that have more actuation inputs than degrees of free-
dom, meaning an FA has more than one input combination for every desired wrench.

4.1.2. Manipulator design
Aerial manipulators use various robotic arm designs to complete different tasks. They vary in morphol-
ogy, kinematic configuration and mechanical construction [30].

Few common types of robotic arms / manipulators used include -

1. Rigid-link arms - Often used for point contact and sliding tasks [47], [46].
2. Grippers - Usually used for pick and place operations [28].
3. Passive links, cables in particular for transportation, point contact and manipulation [40], [3].
4. Articulated arms - can be used for a wide range of tasks such as pick and place [15], push-

ing/pulling, sliding and manipulation [34].

To reliably perform aerial manipulation tasks, effective control strategies need to be assessed. In the
next section, we review existing control methods used for aerial manipulation tasks, starting with widely
adopted model-based control and concluding with reinforcement learning-based methods.

4.2. Aerial Manipulator Control
Control of an aerial manipulator can be challenging due to the need to simultaneously manage the
coupled dynamics of the drone and manipulator. Some studies use handcrafted trajectories based on
heuristics to perform tasks like door opening in [43] or valve turning in [23]. Such methods become
infeasible in contact rich tasks.

Beyond handcrafted methods, control of an aerial manipulator can be compared along two key aspects
- (1) whole-body vs decoupled control, which differs in how platform-manipulator dynamics are han-
dled, and (2) model-based vsmodel-free control, which differs in whether an explicit dynamics model
is required.

In the first aspect, coupled (whole-body) control [15], [24], [33] which considers full system dynamics
and decoupled control [49], [25], treats forces from the environment or manipulator as external dis-
turbances to be compensated by the quadrotor. Coupled or whole-body control is suited for tasks
requiring precise coordination between drone and manipulator, at a higher computation cost. While
relatively simpler to implement, decoupled control might struggle with tasks involving simultaneous
movement of both platform and manipulator.

In the second aspect, model-based control methods solve for optimal control inputs using a model
of system dynamics, through predictive techniques such as MPC (Model Predictive Control). MPC
uses a model to predict system’s behavior over a finite horizon, solve an optimization problem at every
time step and applies the first control input. Despite it’s success in real world applications, requiring a
differentiable model and cost function is a limitation in environments with uncertainty. Sampling based
methods such as MPPI (Model Predictive Path Integral) shine here, by not requiring a differentiable
model as it relies on sampling and cost evaluation of control inputs, performing better in uncertainty.
These techniques have achieved high performance in aerial manipulation tasks such as grasping, knob
turning and door opening, with well-modeled environments.

In contrast, model-free approaches such as reinforcement learning, work by directly mapping states
to actions during deployment, without the need of an accurate dynamics model. Limited studies have
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achieved reliable performance on tasks such as object pushing, door opening and pose tracking (de-
coupled manner) by training RL-based control policies.

4.2.1. Model-based approach
Optimized model-based methods of generating trajectories primarily include MPC (Model Predictive
Control) and MPPI (Model Preditive Path Integral) control.

An optimal control algorithm based on Nonlinear MPC to generate reference trajectories to pick an
object with a 2-DOF manipulator with a quadrotor base was introduced in [15] (Figure 4.1). They use
a coupled approach to model the system to execute the operation as fast as possible. Compared
to manually generated reference trajectories, NMPC trajectories take less time (15 seconds and 5
seconds) to track due to simultaneous execution and coupled modeling. Due to it’s computational
complexity, NMPC operates at 10Hz, limiting it’s use for real time control. A low-level controller is used
to track reference trajectory at high frequencies.

Whole body torque level NMPC control is explored in [26]. They compare different methods of NMPC
control with a hexacopter and 2, 3 and 5 DOF manipulator. Full body dynamics (or coupled dynamics)
are considered to solve the control problem, equipping the robot to perform intricate maneuvers like
Eagle’s catch, monkey bar and push and slide. Again however, a key drawback of this method is
computational cost of solving Optimal Control Problem (OCP) online, which can be limiting for longer
horizons.

A MPPI [45] based method is used in [6], for door opening and knob turning tasks on a fully actuated
drone, equipped with a rigid link to manipulate. MPPI works by sampling pose trajectories and send-
ing references to an impedance controller for tracking. It repeatedly samples varying input trajectories
and simulates resultant system dynamics in a physics engine, removing the need for solving an an-
alytical model of interaction dynamics. They also show the framework’s ability to handle intermittent
contacts and disturbances by re planning trajectories. However, complexity of solving MPPI problem,
depends on state, input size and the speed at which system dynamics can be computed, resulting in
slow optimization at times [45].

Model-based methods reduce the amount of heuristics required but they are limited by two factors -
computational cost and heavy reliance on accuracy of analytical models for system dynamics, making
them susceptible to unaccounted external disturbances. Deriving this model to include all possible
contact forces and kinematic constraints becomes intractable for a complex system like an aerial ma-
nipulator [6].

4.2.2. RL for Aerial Manipulator control
Despite RL’s success in complex tasks, it has seen limited adoption in aerial manipulation tasks. Exist-
ing examples include aerial transportation of suspended loads [10], push and slide tasks [9] and door
opening task [7] (Figure 4.2). This section reviews studies that use Reinforcement learning for aerial
manipulation control.

Study Platform Design Task Arm Design Sim/Hardware Implementation RL Method Whole body (coupled control)

[25] Underactuated quadrotor Pick and Place 2 DOF + Shoulder & Elbow Joint Both Decoupled DDPG No
[9] Underactuated quadrotor Push and Slide Fixed Arm Simulation Actor-Critic Yes
[7] Fully Actuated OMAV Door Opening Task Fixed Arm Both PPO Yes
Our work Underactuated quadrotor Pose control 2 DOF (roll and pitch axis) Both PPO Yes

Table 4.1: Comparison of RL-based Aerial Manipulation Studies

In [25], the authors take a decoupled approach for tracking control of an aerial manipulator utilizing
a DDPG (Deep Deterministic Policy Gradient) algorithm for arm control with a robust controller for
the quadrotor to reduce computational costs. Unlike the more common choice of using PPO, this
study chooses DDPG, motivated by the fact that arm trajectory tracking is a deterministic task. In this
case DDPG combines the advantages of policy gradient methods in continuous action spaces and its
deterministic nature aligning with the task. The RL controller is trained to send joint angle commands to
the arm while minimizing disturbances induced to the drone, while the adaptive controller compensates
for disturbances created by picking and dropping a load.
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Aerial manipulation requires interaction with environment, whose dynamic properties are usually un-
known that effect stability of control. In [9], authors introduce a learning pipeline that allows the UAV
to reliably position objects by pushing them using a non-prehensile aerial manipulator, without explicit
modeling of their dynamics. The approach involves using DreamerV3 [16] to learn the world model
of the environment and simultaneously learning a policy for interaction. The method is evaluated on
pushing tasks in simulated environments with varying values of friction coefficient, showing the mod-
els ability to implicity understand contact dynamics while learning repeatable behaviors. However, the
results are limited to a simulation.

RL to perform a door opening task is explored in [7]. The authors train a reactive motion control policy
in simulation and successfully transfer it to an OMAV (Omni directional aerial vehicle) in real world.
The policy learns in a physics simulator and outputs desired pose references to a low-level controller to
be tracked. The study compares their RL based approach against the state-of-the-art MPPI controller
showing considerably more robustness to errors in the environment observations, changes to initial
conditions and even faster task completion. This highlights the potential of RL to train robust controllers
without requiring accurate dynamics models or expensive online optimizations. However, this study
uses a fully actuated drone with a rigid link, limiting manipulation degrees of freedom and trading control
complexity with higher hardware costs of using a fully actuated platform.

4.3. A case for Reinforcement learning
Aspect MPC MPPI RL

Model Dependency Requires accurate dynamics model Requires model (allows non differentiable) Model-free (for inference)
Computational Load Moderate (real-time feasible) High (GPU-dependent) Low inference, high training
Flexibility Fixed cost functions Arbitrary costs/constraints Multi-task generalization

Table 4.2: Comparison of MPC, MPPI, and RL control approaches.

Optimal control and RL address the same problem, finding an optimal policy that optimizes an objective
function, given the states, feasible controls and a model that describes the transition between states.
However, optimal control requires a perfect transition model (that can predict next state, given current
state and action) and provides strong guarantees, but breaks down in case of model and computa-
tional approximations, likely to happen when aerial manipulators start interacting with the environment.
Whereas, reinforcement learning operates directly on the measured data and rewards generated while
learning, eliminating the need for a perfect transition model [22].

Model-based methods discussed [6], [15] use their respective methods as trajectory planners that run
at significantly lower frequencies than their low-level controllers used for tracking. Partly, this is due
to computational cost associated with solving for next state in real time, especially for systems with
complex dynamics and multiple degrees of freedom. On the other hand, model-free methods such
as Reinforcement learning are well suited for contact rich tasks (see 4.2), eliminating the need of an
accurate dynamics model and offering faster inference time, allowing real-time decision making.

Furthermore, RL directly optimizes for task level objectives, eliminating need for intermediate repre-
sentations such as a reference trajectory and ability to perform broader range of adaptive responses
[39], by leveraging domain randomization. On the other hand, model-based approaches decompose
a problem into planning (generate reference trajectories) and control (trajectory tracking) steps, poten-
tially limiting range of behaviors. This can be limiting when considering control for a task that involves
both navigating and task execution, such as aerial manipulation [9].

Previously, RL-based controllers have been shown to perform well in robot control tasks such as in
hand manipulation [2], legged robot control [19] and quadrotor control [18], [39]. Moreover, they are
capable of behaviors that meet our previously defined requirements (see 3.2) for aerial manipulator
controllers, making RL-based control for aerial manipulation worth exploring.

4.3.1. Our work
Prior work using RL for aerial manipulator control either adopted a decoupled control method or relied on
a fully actuated platform, significantly reducing complexity of control. As summarized in Table 4.1, our
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work addresses a gap in literature by attempting to perform whole-body control for an underactuated
aerial manipulator equipped with a two-degree-of-freedom manipulator, an approach that, to the best
of our knowledge, has not been previously demonstrated.



5
Preliminaries

This chapter introduces theoretical foundations for the remainder of the thesis. We begin by mathe-
matically modeling our system and defining the problem. Next, we examine and highlight the effect
of underactuation on aerial manipulator control. Finally, we cover key concepts from reinforcement
learning and introduce the algorithm we use in our method.

5.1. Modeling and Problem Definition

Figure 5.1: Schematic[32] of the underactuated aerial manipulator with 2-DoF joints used in this thesis

Our system is a quadrotor equipped with a two-degree-of-freedom manipulator arm, actuated by two
revolute joints, each allowing rotation along the pitch and roll axes Figure 5.1.

Throughout this thesis we use three reference frames:

1. World frame (xW , yW , zW ) - inertial frame of reference.
2. Body frame (xB , yB , zB) - located at the drone platform’s center of mass.
3. End-effector frame (xEE , yEE , zEE) - located at gripper’s center of mass.

Modeling each link and arm as a rigid body (similar to [44]), we define the configuration and velocity of

10
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the system as

q =


Wxb
WRb

θ

 ∈ R3 × SO(3)× T2, v =

Wẋb
BΩb

θ̇

 ∈ R8. (5.1)

The system evolves according to coupled nonlinear dynamics given by generalized Lagrangian method
presented in [12]

M(q)v̇ +C(q,v)v +G(q) = B(q)u, (5.2)

B(q)u =

[
W
τ θ

]
, W =

[
f

τ

]
, (5.3)

where B(q)u represents the generalized forces due to control inputs. B(q) maps control inputs ut =
[urotor, τ θ], to generalized forces applied to the system. W ∈ R4 is the total wrench applied to the
quadrotor base, f is the net rotor thrust, τ is the net moment on the quadrotor base and τ θ are gener-
ated joint torques.

The generated wrench is given by the quadrotor dynamics model:

W = G1urotor +G2ω̇ +G3(Ωb)ω, (5.4)

where urotor are rotor inputs (rotor speeds or thrust commands), ω ∈ R4 are rotor angular velocities
and and G1, G2, G3 are allocation matrices determined by the quadrotor’s geometry.

Our objective is to control the end-effector pose of the system, defined by the forward kinematics:

Wxee = fR3(q), Wxee ∈ R3, (position of the end-effector in world frame), (5.5)

Wpee = fSE(3)(q),
Wpee ∈ SE(3), (pose of the end-effector in world frame). (5.6)

We formulate the control task as a reinforcement learning problem, where a policy πϕ is learned that
maps observed system states st ∈ S to generate control inputs ut = [urotor,t, τ θ,t] ∈ A ⊆ R6:

πϕ : S → A, ut = πϕ(st). (5.7)

The control inputs ut directly influence the system dynamics by controlling the wrench (W) and joint
torques (τ θ). The learned policy aims to minimize the tracking error between the actual and desired
end-effector poses Wpee(t) and Wpdes

ee (t), in the presence of unknown external wrench acting on the
end effector.

5.2. Effect of actuation on control
For a system to be fully actuated in SE(3), it must be able to control all directions of wrench

W =

[
f

τ

]
∈ R6, (5.8)

where wrench W, refers to the forces and torques the system can generate.

In the case of a fully actuated drone, the platform can generate wrenches in all six dimensions indepen-
dently, enabling direct and independent control of the drone’s position and orientation. Subsequently,
it simplifies the control problem as planners or policies have simpler dynamics to optimize for. In a fully
actuated drone:

rank{F} = 6 =⇒ dim(W) = 6, (5.9)

where F is the control allocation matrix mapping actuator inputs to body wrench W.
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In the case of underactuated drones, the platform cannot generate wrenches in all six dimensions
independently:

rank{F} = 4 =⇒ dim(W) = 4. (5.10)

For instance, quadrotors cannot span the full wrench space R3, as thrust can be controlled only along
zB and torques about xB , yB , zB , coupling the force and torque generation. Specifically during lateral
movement, requires the drone to tilt, i.e change its roll or pitch, making it a underactuated system.

Coupling between force and torque generation introduces non-linear dynamics and further complicates
control when a manipulator arm is attached, introducing

1. Additional mass and inertia.
2. Internal forces and torque, challenging platform stability.
3. Arm movement dynamics requiring compensation by the quadrotor base.

These effects make precise control of an underactuated aerial manipulator significantly challenging. For
instance, in a horizontal force application task, a fully actuated drone (tiltable hex rotor) can maintain
orientation and apply a horizontal wrench by tilting few rotors. However, in an underactuated quadrotor,
the drone will have to pitch or roll to move horizontally, requiring compensatory arm movement to
maintain end-effector pose.

5.3. Reinforcement Learning for control

Figure 5.2: Agent-Environment interaction loop in Reinforcement learning [31]

In contrast to supervised learning where input features and appropriate labels are provided, in RL, both
data collection and learning steps occur during training. The collected data includes tuples of states,
actions and rewards, with the agent being tasked to learn relationships between them.

The objective in RL is to train an agent π (used as a control policy) that provides appropriate actions
a ∈ A to achieve a certain goal, given the states s ∈ S, such that

at = π(st) (5.11)

where at is the action taken at time t.

For example, correct rotor thrust values (actions) to reach a goal, given the drone’s position (state).
This is done by training an agent or policy (π), typically in simulations.

The agent’s learning is guided by rewards rt, which indicate quality of actions and usually depend on
current state or state-action pair, and are given by

rt = R(st, at), (5.12)

were R is the reward function.

Reward functions (R) are designed to incentivize agents to achieve desired behaviors. For instance,
negative distance to goal as reward can incentivize agent to generate actions to move towards the goal.
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A common learning objective is to maximize an infinite horizon discounted return, which is the sum of
all rewards obtained by the agent discounted by how far off they’re obtained in the future [31], and is
given by

R(τ) =

∞∑
t=0

γtrt, γ ∈ [0, 1], (5.13)

where γ is the discount factor.

The RL problem can be formulated as selecting a policy that maximizes expected return. Assuming
stochastic environment transitions and policy, the probability of a T step trajectory τ = (s0, a0, s1, a1, ...sT , aT )
can be written as,

P (τ |π) = ρ0(s0)

T−1∏
t=0

P (st+1|st, at)π(at|st). (5.14)

Then expected return can be written as,

J(π) =

∫
τ

P (τ |π)R(τ) = Eτ∼π[R(τ)]. (5.15)

The Optimization problem RL solves can be given by,

π∗ = argmax
π

J(π). (5.16)

Where:

J(π) : Expected return under policy π
π : Policy function
π∗ : Optimal policy that maximizes expected return
τ : Trajectory of states and actions

P (τ |π) : Probability of trajectory under π
ρ0(s0) : Distribution over initial states
R(τ) : Total return of a trajectory

Eτ∼π[·] : Expectation over trajectories drawn from π

Importantly, RL approaches rely on the Markov Decision Process (MDP) assumption. It states that
future states of a system only rely on its current state and not any past states. In context of RL, the
next state s′ and reward r should only depend on the current state s and action a [42] [22].

5.3.1. Proximal Policy Optimization (PPO)
PPO (Proximal Policy Optimization) is state-of-the-art model-free, policy gradient based algorithm used
for robot control. PPO does not need a model of the environment, i.e a function that predicts state
transitions. It directly updates the policy (also called on-policy) based on data collected while acting
using the current version of the policy.

PPO is built on a Actor-Critic network architecture. Actor is a neural network that takes states as
input and generates mean and standard deviations of a gaussian distribution for actions to be sampled
(continuous case). The Critic neural network, takes states as input and quantifies the value of that
state, i.e the expected cumulative reward if actions are taken according to the current policy.

There are two main components to the objective used to update parameters of the policy.
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1. Clipped Surrogate Objective (Policy loss)

Let the probability ratio between the new and old policy be

rt(θ) =
πθ(at|st)
πθold(at|st)

, (5.17)

where θold and θ are the policy parameters before and after the update.

Let Ât be the advantage estimate, which quantifies how much better an action is compared to
the average action in that state. The PPO clipped objective is given by

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (5.18)

where the clip function controls how far the new policy can diverge from the old one, and ϵ deter-
mines the clipping range.

2. Critic Loss (Value loss)

The critic loss minimizes the error in value estimation from the critic network:

LVF(ϕ) = Et

[
(Vϕ(st)−Rt)

2
]
, (5.19)

where Rt is the target return, i.e., the expected cumulative rewards from time step t, usually
estimated using GAE (Generalized Advantage Estimation).

The overall PPO objective combines the policy loss, value loss, and an entropy bonus (which adds
randomness and encourages exploration):

L(θ, ϕ) = LCLIP(θ)− c1L
VF(ϕ) + c2Et [H(πθ(·|st))] , (5.20)

where H(πθ(·|st)) is the policy’s entropy, and c1 and c2 are coefficients to balance the losses.

In a typical training loop, we collect rollouts using the current policy (actor network). These are a
batch of tuples containing states, actions, returns and advantages from certain number (rollout) of
environment interactions, across environments. The PPO loss is computed and parameters of actor
and critic networks are updated using a gradient descent based optimizer. After training on a batch,
the memory is cleared and agents start interacting with the updated actor network.

The simplicity of clipped objective differentiates PPO from other Actor-Critic network architectures, by
limiting how far a new policy can travel. However, PPO trains a stochastic policy in an on-policy way,
progressively making the policy less random, potentially causing the policy to be stuck in a local minima
[31].

5.4. Summary
This chapter outlined the theoretical foundations for the remainder of the thesis, including the sys-
tem model, problem definition, effect of underactuation for aerial manipulation, and key concepts of
reinforcement learning with Proximal Policy Optimization. These formulations and definitions will be
referenced in future chapters describing the control architecture, training and evaluation.



6
Methodology

In this chapter, we present the methodology developed to train and deploy an RL-based controller to
perform end-effector pose control.

We first introduce the control architecture, which integrates the trained policy with low-level controllers.
We then outline the training procedure used to develop our control policy, covering action and obser-
vation space, reward functions, command sampling strategy and domain randomization techniques.

6.1. Control architecture

Figure 6.1: Control architecture for simultaneous (whole-body) control of quadrotor base and manipulator arm using RL-based
policy

In autonomous flight, a flight computer, typically referred as outer-loop controller generates higher level
goals at low frequencies, such as position and attitude for the drone to achieve. A flight controller, also
referred as inner-loop controller, follows high-level goals and maintains stability of the drone while
operating at high frequencies.

Our policy behaves like an outer-loop controller and generates commands for inner-loop controllers to
follow. However, the actions generated are not typical to a outer-loop controller used for drone control.
The action space is motivated by the choice of low-level controllers that grant sufficient control authority
while preserving sim-to-real transferability.

The proposed control architecture consists of two low-level controllers for the drone and one PID con-
troller for the arm, all governed by our policy.

RL Policy (Neural Network):

The policy is a feedforward neural network with three hidden layers of sizes 512, 256, 128 neurons

15
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respectively. It receives observations from the environment and generates actions for subsequent con-
trollers at 150 Hz. Mean and Variance statistics from training are used to normalize the observation
vector, followed by inference using ONNX Runtime engine [8] onboard for shorter inference times. The
drone base is controlled using policy generated linear accelerations, body rates and yaw reference
(Wab,

BΩb,
Wψr). The manipulator arm is controlled using policy generated desired joint angle com-

mands (θ1, θ2).

Joint actions are scaled and sent to a PID controller in simulation that generates required torques, while
in the phyisical system, these actions are sent to the Dynamixel actuators [35] via serial communication,
which internally use a PID to generate required current (see A.2 for joint parameters used).

Acceleration controller:

The acceleration controller, running at 300 Hz, is a modified implementation of a DFBC controller [41,
48] to generate desired angular accelerations (Bαd). Policy-generated linear accelerations (Wab) and
the desired yaw (Wψr) are decomposed to generate the desired quadrotor attitude (qd). The desired
body z-axis is given by

Bzd =
Wa

∥Wa∥
. (6.1)

The desired x-axis in the intermediate C-frame (new body frame after yaw) is

Cxd =

cosWψr

sinWψr

0

 . (6.2)

The desired body y-axis is computed as

Byd =
Bzd × Cxd

∥Bzd × Cxd∥
. (6.3)

The desired body x-axis then follows from
Bxd = Byd × Bzd. (6.4)

The corresponding rotation matrix is

R(qd) =
[
Bxd

Byd
Bzd

]
. (6.5)

Finally, the desired attitude quaternion is obtained from

qd = Φ(R(qd)) , (6.6)

where Φ : SO(3) → S3 represents the mapping from a rotation matrix to its equivalent unit quaternion
representation.

Next, the tilt-prioritized attitude controller proposed in [5] regulates the attitude error and generates the
desired angular accelerations (Bαd), using the policy-generated body rates (BΩb) as reference:

BΩcmd
b = tiltPrioritizedControl(q, qd), (6.7)

Bαd = BΩcmd
b +KΩ ·

(
BΩb − BΩcurr

b

)
. (6.8)

Finally, the policy-generated linear accelerations (Wab) and desired angular accelerations (Bαd) are
sent to the INDI controller.

INDI controller:

The Incremental Nonlinear Dynamic Inversion (INDI) controller, demonstrated in [41] runs at 300 Hz and
accounts for unmodeled effects on rotational dynamics arising from aerodynamics, center-of-gravity
bias, or differences between rotors, by using instantaneous sensor measurements. INDI calculates the
final rotor speeds (ωcmd) from the desired wrench (W), which consists of combined thrust and torques
in roll, pitch, and yaw directions.
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Policy-generated linear accelerations (Wab) are normalized and multiplied by the system’s mass to
calculate the combined thrust (f ), the first component of the wrench:

f = m ·
∥∥Wab

∥∥ . (6.9)

The desired torques are computed as

τd = τ f + J ·
(
Bαd − BΩ̇f

)
, (6.10)

where τ f is the filtered body torque, J is the inertia matrix, Bαd is the desired angular acceleration from
the acceleration controller, and BΩ̇f is the filtered angular acceleration measurement.

The unmodeled effects on rotational dynamics are captured by filtered angular acceleration measure-
ment (BΩ̇f ) and filtered body torque (τ f), where

τ f = Ḡ1 ω
2
f +∆t−1Ḡ2 (ωf − ωf,k−1) (6.11)

is computed from rotor speed measurements. BΩ̇f and ωf are measured body rates and rotor speeds
obtained by applying a second order low-pass Butterworth filter with 12 Hz cut-off frequency to rawmea-
surements, thereby synchronizing both signals. The subscript k − 1 indicates the previously sampled
value and ∆t is the sampling interval. Ḡ1 and Ḡ2, are the final three rows of the respective allocation
matrices.

Then, the following equation can be used to solve for rotor speeds:

[
f

τ d

]
= Ḡ1 ω

2
cmd +∆t−1Ḡ2 (ωcmd − ωcmd,k−1) , (6.12)

with the only unknown ωcmd which can be determined numerically.

6.2. Training

Figure 6.2: PPO training architecture for the aerial manipulator. Left: Actions sampled from the actor network are converted
by low-level controllers into wrench and joint positions commands, which are applied in simulation via the physics engine.
Right: Mini batches are sampled from memory, losses are calculated and networks are updated via backpropagation, to

generate favorable actions and accurate state-value estimates.

We model the control architecture (6.1) in our training environment and use Proximal Policy Optimiza-
tion to train our agent to perform end-effector pose control. The agent uses an actor-critic architecture
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where both networks are multi-layer perceptrons with hidden layers of size [512, 256, 128] and ELU
activation functions. The actor is responsible for generating actions (at) based on states (st) obtained
from the environment, while the critic generates value estimates 1 (V (st)).

A training iteration can be divided into data collection and learning steps. In data collection, data of
batch size B is collected by the actor taking nsteps across environments, based on observed states.
For learning, a single batch of these trajectories (actions, states, rewards) are split into mini batches
and advantage estimates (Ât) are computed to measure how much better each action was compared
to the expected value. Using this data, relevant losses (LCLIP(θ), LVF(ϕ)) are computed that PPO
backpropogates to update the actor and critic networks. Iteratively, the actor network gets better at
generating more advantageous actions to perform end-effector pose control and the critic gets better
at estimating state values.

In the following sections we detail our training setup involving the training environment, observation
space, action space, reward functions and techniques such as domain randomization for robust trans-
fer.

6.2.1. Training environment
We use Isaac Lab for training our policy as it extensively utilizes GPUs for both simulation and learning,
enabling high data throughput and faster learning. Apart frommodeling the control architecture (Section
6.1) with low-level controllers, we also model filters, rotor models, physical properties of the system.

PPO offers control over multiple aspects of the algorithm, making hyperparameter selection challenging.
We begin with the hyperparameters used in [36] as a starting point.

We train on 4096 environments in parallel, with a rollout (nsteps) size of 24 (B = 4096 × 24) and en-
vironment step frequency of 150 Hz. This corresponds to simulating 0.16 seconds of real time per
environment, every training iteration. Our maximum episode length is 6s, after which the environment
gets timed-out and reset, meaning a single episode will have multiple policy updates.

To achieve a working policy, we train for 2B environment steps (4096 × 500, 000) that takes 5.5 hours
on a consumer grade GPU (NVIDIA RTX 2080 Ti). For other training hyperparameters see Table A.1.

6.2.2. Action and Observation space
The system is controlled through an action space at ∈ R9 containing linear accelerations, body rates,
a reference heading, and joint positions.

Policy generated linear acceleration and body rates serve as references for the low-level controllers -
the acceleration controller and the INDI (Incremental Nonlinear Dynamic Inversion) controller [41], that
send rotor speed commands to control the drone’s movement.

Joint positions from the action vector are scaled and treated as references for a PID controller that
generates torques required to actuate the arm. The action vector is given by

at =


Wab
BΩb
Wψr

θr

 ∈ R9, (6.13)

where

Wab ∈ R3, linear acceleration of the body in the world frame, (6.14)
BΩb ∈ R3, angular velocity of the body in the body frame, (6.15)
Wψr ∈ R, reference heading in the world frame, (6.16)
θr ∈ T2, reference vector of two revolute joint angles. (6.17)

1Value estimates, also referred as state estimates in some literature, is the expected return when actions are taken according
to the current policy.
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The observation for the agent at any time step is a 29-dimensional vector that includes linear velocity,
angular velocity, orientation (as a 3 × 3 rotation matrix), normalized joint angles, goal position in the
drone frame, and goal pose in the end-effector frame. We use goal pose information in the drone and
end-effector frames instead of the world frame to make our policy invariant to global coordinates. The
observation vector is given by

ot =



Bvb
BΩb
WRb
θ

Bxgoal
EExgoal

EERgoal[:, 0 : 2]


∈ R29, (6.18)

where

Bvb ∈ R3, linear velocity of the quadrotor base in the body frame, (6.19)
BΩb ∈ R3, angular velocity of the quadrotor base in the body frame, (6.20)
WRb ∈ SO(3), rotation matrix of the quadrotor base w.r.t. the world frame, (6.21)

θ ∈ T2, vector of two revolute joint angles of the manipulator, (6.22)
Bxgoal ∈ R3, goal position expressed in the quadrotor base frame, (6.23)

EExgoal ∈ R3, goal position expressed in the end-effector frame, (6.24)
EERgoal ∈ SO(3), goal orientation in the end-effector frame, (6.25)

EERgoal[:, 0 : 2] ∈ R6, 6D continuous rotation representation from the first two columns of EERgoal.
(6.26)

6.2.3. Rewards
We use reward functions to guide learning. For the pose control task, we define two primary rewards -
one for position and one for orientation, along with additional penalty terms to smooth the action space
and penalize large action magnitudes. These terms reduce oscillations and help ensure stable transfer.
All rewards are scaled by a negative exponential transformation that maps raw reward values between
(0, 1], enabling comparable weighing of individual reward components.

Position reward (Rpos): We use the L2 norm of the difference between the end-effector and goal
positions as the basis for position reward:

Rpos = w1 · e−α1·∥Wxee−Wxgoal∥2 . (6.27)

The α1 value tunes reward sensitivity for local convergence. Larger values increase the gradient magni-
tude near the target but can lead to vanishing gradients far from the target, as the exponential saturates
near zero.

Orientation reward (Rori): We use the smallest geodesic angular difference between the orientations
of the end-effector and the goal, equivalent to our evaluation metric (see Equation (7.2)). We do not
penalize the drone’s orientation directly, as the end-effector orientation already constrains the possible
drone orientations:

Rori = w2 · e−α2·Eori(
Wqee,

Wqgoal). (6.28)

Drone action smoothing reward (Rds): The norm of the difference between the drone action values
dronea =

{
Wab,

BΩb,
Wψr

}
between the current and previous time steps penalizes large deviations in

consecutive actions:
Rds = w3 · e−α3·∥droneat−1−droneat∥2

2 . (6.29)

We found this term beneficial for reliable deployment (discussed in Chapter 8).
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Joint action smoothing reward (Rjs): The absolute difference between joint position action com-
mands (jointa = θr) is penalized to encourage smoother joint actions, producing near-constant torque
with fewer jerks that might destabilize the platform:

Rjs = w4 · e−α4·∥jointat−1−jointat∥
1 . (6.30)

Drone action magnitude reward (Rdmag): The magnitude of drone actions dronea =
{
Wab,

BΩb,
Wψr

}
is penalized to minimize oscillations and overshoot while reaching the goal pose:

Rdmag = w5 · e−α5·∥droneat∥2

2 . (6.31)

The total reward is the weighted sum of all components:

Rt = Rpos +Rori +Rds +Rjs +Rdmag. (6.32)

Index Weight wi Scale αi

1 4.0 1.2
2 1.0 1.0
3 0.5 1.0
4 1.0 1.0
5 0.1 1.0

Table 6.1: Reward weights wi and scaling factors αi used in the total reward function.

6.2.4. References and Resets
We sample goal pose references2 for the end-effector (gripper) during training. A new goal pose is
sampled upon environment resets, which occur when an episode terminates either due to a timeout or
when the drone falls below 0.3 m.

Positions are sampled from the ranges (−1.0, 1.0) m in the X–Y directions and (3.0, 5.0) m in the Z
direction. Orientations are sampled from (−120◦,+120◦) in yaw and (−90◦,+90◦) in both pitch and roll,
covering the reachable workspace.

After resets, the drone base spawns at the same initial position (0.0, 0.0, 3.0) m. However, the manipu-
lator configuration is randomly sampled from (−90◦,+90◦) for each joint, which encourages the drone
to learn to track poses from arbitrary arm configurations.

6.2.5. Domain Randomization
After every reset, we randomly sample a payloadmass to be added to the end-effector from [-15g, 120g]
and scale inertia accordingly. This results in a generalized policy that is able perform pose tracking while
carrying loads up to 200 g in simulation and 140 g in the real world, shown in Results 8.1.2, 9.1.2.

Simulator / Environment Tunable Parameter Friction Model
Isaac Lab (Training Sim) Friction Coefficient Fthresh ≤ µ · Fspatial
Gazebo (Deployment Sim) Static Friction Value (N∙m) Fthresh = Static Friction Value
Real-world Not directly tunable Unknown, typically approximated

Table 6.2: Comparison of friction models in simulation and the real world. In real-world systems, the exact friction model is
typically unknown, motivating domain randomization during training.

The joint friction models (see table 6.2) differ between training and deployment environments resulting
in joint behavior that varies with same control input (see A.0.2 for step responses). This mismatch

2We use the terms references and commands interchangeably, following Isaac Lab terminology for references in goal-
conditioned tasks
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introduces both a sim-to-sim gap and sim-to-real gap, leading to unreliable transfer of arm dynamics.
To address this, we first improve our simulation fidelity by finding friction and stiffness values that result
in similar step response from joint actuators across training, deployment simulators and the hardware.
Once this gap is reduced, we apply domain randomization by scaling joint stiffness and friction to [0.75,
1.25] and [0.0, 1.5] times their default values, respectively.

6.3. Summary
In this chapter, we presented a methodology for training a policy to perform end-effector pose control of
an aerial manipulator. We describe the control architecture showing how the RL policy integrates with
low-level controllers. We also detailed the training setup, covering action space, observation space, re-
ward functions, training procedures such as command sampling and domain randomization. Following
chapters describe the implementation details and experimental setup used to validate our methodology.



7
Experimental setup

This chapter describes the experimental setup for deploying1 the learned policy on the aerial manipu-
lator.

First, we present deployment setups, controller integration, modeling and real-world hardware. We then
describe the three tasks chosen to evaluate the trained policy, outline the rationale for their selection
and define metrics used to assess performance.

7.1. Deployment environments

Figure 7.1: Iterative training and deployment using deployment simulator for validating policies

To deploy a functional real-world implementation, we progressively validate our solution in simulation
and real-world. After we train a policy, we deploy it in a simulation that closely mimics the real drone’s
flight conditions, referred as the deployment simulator. Once satisfactory performance is achieved in
the deployment simulator, we deploy our policy on hardware.

7.1.1. Deployment simulator

Figure 7.2: Transferred agent performing end-effector pose control in deployment simulator

1In this context, deploying or transferring refers to using the trained agent from the training simulation environment in another
environment, such as deployment simulator or real-world.

22
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We developed a deployment simulation that closely mimics the real-world flight conditions, with the
same low-level controllers and filters being used in both environments. We use rotor_simulator (a
Gazebo plugin) [14] to simulate the quadrotor flight and ros_control [27] for PID-based joint actuator
control.

System model: We model the physical properties of the aerial manipulator in a URDF, using above
mentioned plugins. The drone body, rotors and arm are modeled as separate links joined to the same
base, seen in figure 7.2. The arm is attached to drone base with two revolute joints, controlling each
degree of freedom. Lastly, a gripper consisting of three links is attached as a fixed body at the arm’s
end.

Control software framework: For control, we use the same software framework, Agilicious[11], in both
real-world and deployment simulator, ensuring the simulation reliably reflects real-world deployment.
The framework ismodified to accommodate the reinforcement learning policy as an outer-loop controller
performing inference onboard and generating commands for subsequent controllers, as shown in the
control architecture (Section 6.1).

Agent transfer: Transferring a trained agent from Isaac Lab involves running a script that converts
PyTorch model weights into ONNX format and provides mean and variance statistics for normalizing
observations. The resulting model file and observation statistics are transferred to Agilicious code base,
where their paths can be specified in a YAML configuration file for deployment.

7.1.2. Real-world setup

Figure 7.3: Hardware communication setup with motion capture system

To validate the proposed method, the trained agent is deployed on Osprey, the aerial manipulator plat-
form. Because the hardware and simulation share the same software framework, deployment requires
minimal changes.

Hardware: The aerial manipulator weighs 860 grams, powered by a Raspberry Pi 5. The manipulator
assembly weighs 200 grams, including the arm with a gripper attached to the base. Two Dynamixel
[35] actuators use a differential gearbox to control both degrees of freedom of the arm.

Policy execution: For short inference times and near real-time performance, the entire policy deploy-
ment code is written in C++. The policy is executed onboard with ONNX Runtime Engine resulting in
an average inference time of 0.18 ms.

Communication: Experiments are performed in a facility (AMR Lab [4]) spanning 13 x 7 m, equipped
with a VICON motion capture system that estimates states using reflective markers on the drone, with
sub-millimeter accuracy. The state estimates are published on a ROS node, used by the drone as
observations for the policy. A pilot ROS node is launched onboard that runs the entire control stack,
including policy inference and low-level controllers. A ROS master, command center node and logger
run on an external system, communicating with the drone via WiFi, which also provides a UI, allowing
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the user to control the drone’s basic functionality and set desired end-effector poses.

Flight procedure: We take off with a safety controller to hover the drone at a certain height (0.5
m). Then, we switch off the safety controller, triggering the policy to take over and control the system
to achieve commanded end-effector poses. For safety purposes, we define an area for the policy to
operate, when crossed the safety controller is triggered, bringing the drone to hover state immediately.

Table 7.1 summarizes differences and similarities between deployment and training environments.

Aspect Training Sim (Isaac Lab) Deployment Sim (Gazebo) Deployment Hardware

Simulation Engine Isaac Sim Gazebo –
Physics Model format USD URDF + Gazebo plugins Real-world physics
Controllers Acceleration, INDI, PID Acceleration, INDI, PID Acceleration, INDI, PID
Rotor Dynamics Simulated using rotor model rotor_simulator plugin Actual rotors
Policy Inference PyTorch (Python) ONNX (C++) ONNX (C++)
Sensing Simulated state estimates Simulated VICON VICON motion capture
Actuation Simulated rotors and joints ros_control + plugins Dynamixel
Control Framework - Agilicious (C++) Agilicious (C++)
Parallelism 4096 environments Single drone sim One physical platform
Evaluation Purpose Training + ablations Policy validation Real-world validation

Table 7.1: Comparison of training simulation, deployment simulation and deployment hardware

7.2. Evaluation tasks and metrics
7.2.1. Tasks
We evaluate policies on three tasks:

1. End-effector pose control: This task assesses our primary objective of precise 6-Dof position-
ing of end-effector in a bounded workspace. The policy is given a sequence of goal poses and
the aerial manipulator must reach and stabilize the end-effector at every commanded pose. Eval-
uation is performed in both deployment simulator and real-world to validate our method with un-
modeled disturbances.

2. Load-carrying2 pose control: To evaluate robustness under physical disturbances, the aerial
manipulator repeats the pose control task, carrying loads between 50 to 200 grams in simulation
and up to 140 grams in real-world experiments. This tests the policy’s ability to accommodate
shift in mass distribution and inertia while maintaining position and orientation control.

3. Path following: This task evaluates the policy’s ability to perform continuous path tracking while
maintaining orientation, serving as a bridge to performing precise contact based tasks such as
push and slide. The end-effector is commanded to follow a figure-8 and straight-line path with
constant orientation. The figure-8 path challenges the system to coordinate joint movements
in two axes, to maintain orientation, while the straight-line path serves as a simpler baseline.
Successfully performing this task indicates readiness to perform contact based manipulation.

Simulation experiments are performed either in the training or deployment simulators. Ablation stud-
ies discussed in the next chapter are done in training environment and their performance on above
mentioned tasks is evaluated by deploying ablated agents in deployment simulator.

7.2.2. Metrics
1. Mean reward per episode is used to compare and evaluate training runs in ablation studies. In

some cases, we compare individual components of training reward, such as position or orientation
for additional insight.

2. Position error measures the Euclidean distance between the end-effector and goal positions:

Epos =
∥∥Wxee − Wxgoal

∥∥
2
, (7.1)

2Also referred as payload-carrying.
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where Wxee,
Wxgoal ∈ R3 are the measured end-effector and goal positions in the world frame,

reported in meters.
3. Orientation error is computed from quaternions as the smallest geodesic rotation angle on SO(3)

between the measured and goal orientations:

Eori = 2arccos
(
|qgoal · qee|

)
, (7.2)

where qgoal and qee are unit quaternions, reported in degrees.
4. Success rate is defined as the ratio of poses successfully reached to the total commanded poses.

If the aerial manipulator crashes or touches the ground before reaching a pose, it is marked as
not reached.

5. Rise time is the time taken for the end-effector position to progress from 10% to 90% of the total
distance to the commanded goal position.

6. Settling time is the time taken for the end-effector position to first enter and remain within 10%
of the total distance to the commanded goal position.

7. RMSE (Root Mean Square Error) for path tracking is computed over the entire commanded
path:

ERMSE =

√√√√ 1

N

N∑
i=1

∥∥∥Wpi
ee − Wpi

goal

∥∥∥2
2
, (7.3)

where pi contains position and/or orientation components depending on the metric being evalu-
ated, and N is the number of points considered for evaluation.

We evaluate pose-tracking performance by commanding a pose for 10 s to allow stabilization. Position
and orientation errors are calculated over the final 4 s to evaluate steady state behavior. To interpret
transition behavior we calculate rise time, settling time and RMSE is calculated over the entire path.
This protocol is followed in all experiments unless mentioned otherwise.

7.3. Summary
In this chapter, we described the deployment environments used to validate the proposed method to
arrive at a functional control policy. Flight conditions were replicated by implementing appropriate con-
trollers, filters, modeling physical properties of the system and simulating its dynamics with high fidelity
for reliable transfer. All training and deployment environments share the same controller framework
and setup, ensuring deployment simulator closely reflected real-world behavior.

We define primary tasks to evaluate our method - end-effector pose control, load-carrying pose control
and path following. Then, we introducedmetrics used to evaluate performance on these tasks - position
error, orientation error, rise time, settling time and RMSE.



8
Simulation Results

In this chapter, we present the results of experiments conducted to validate the proposed method in
both training and deployment simulators.

We first report the performance of a baseline policy deployed in our deployment simulation for pose-
tracking, payload-carrying and path following tasks. We then present ablation studies on our training
setup and compare resulting policies with the baseline to assess and validate our design choices.

8.1. Task results
8.1.1. End-effector Pose control
We evaluate pose control performance by deploying our policy in the deployment simulator and tracking
a set of N = 250 randomly generated goal poses (x, y, z, r, p, y). The sampled goal poses span a
bounded workspace - X ∈ [−1, 1], Y ∈ [−1, 1], Z ∈ [1, 2] with Roll ∈ [−90◦, 90◦], Pitch ∈ [−90◦, 90◦]
and Yaw ∈ [−120◦, 120◦]. We sample a new pose every 10s, allowing sufficient time for the system to
reach and maintain a pose to evaluate steady state behavior (seen in Figure 8.2).

Figure 8.1: Pose Error distribution of end-effector tracking 250 randomly generated goals

Position Error (m) Orientation Error (deg) Success Rate

Epos σpos Eori σori (# reached / total)

0.0593 0.0276 7.5670 3.8485 250/250

Table 8.1: Pose tracking error (mean and standard deviation) and success rate over 250 randomly generated goals.

The position error is centered around measured mean of 5.9 cm with a standard deviation of 2.7 cm,
while quaternion based orientation error is centered at 7.5° with standard deviation of 3.8°, showing
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accurate and repeatable end-effector pose control across the workspace.

Figure 8.2: End-effector pose tracking performance in simulation for 5 goals lasting 10 seconds each

Figure 8.3: Rise and Settling time distribution across 250 goal poses tracked

The time-series tracking plot for five consecutive goals (Figure 8.2) shows accurate tracking with mini-
mal overshoot, except when pitch angles reach extremes (−90◦, 90◦), due to discontinuity in Euler angle
representation in gimbal lock. From tracking 250 poses, the end-effector has an average rise time of
1.26 seconds and settle time of 1.86 seconds. Moreover, our policy reaches every pose, with a
success rate of 100%, demonstrating that it is both robust to varying goal configurations and reliable
at achieving poses precisely across the workspace.

8.1.2. Payload carrying

Payload Position Error (m) Orientation Error (deg) Success Rate

Epos σpos Eori σori (# reached / total)

50g 0.078 0.057 21.82 27.59 15/15
100g 0.104 0.063 25.54 24.38 15/15
150g 0.211 0.287 42.04 42.53 14/15
200g 0.229 0.181 41.47 38.80 14/15

Table 8.2: Pose tracking error (mean and standard deviation) and success rate for various payloads.

Weevaluate load carrying pose control performance by deploying our policy in the deployment simulator
and tracking a set of N = 15 goal poses with payloads ranging from 50 grams to 200 grams. To
simulate carrying payloads, we increase the end-effector mass with additional 50 grams to 200 grams
and track same poses, with 10 seconds of hold per pose to evaluate steady state performance. Goals
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are sampled from the same workspace as the previous task - X ∈ [−1, 1], Y ∈ [−1, 1], Z ∈ [1, 2] with
Roll ∈ [−90◦, 90◦], Pitch ∈ [−90◦, 90◦] and Yaw ∈ [−120◦, 120◦].

Figure 8.4: Position error with different payloads Figure 8.5: Orientation error with different payloads

We observe steady increase in both mean pose errors and variance. The performance on position
error is within 10 cm for payloads ranging from 50 g to 100 g, while we observe larger deterioration in
orientation tracking beyond these payloads. The large orientation errors are likely due to differences
in joint dynamics and control frequencies. During training, the arm PID controller operates at 300 Hz,
however the simulation loop is fixed to 333 Hz, as the Gazebo control plugin accepts timestep values
only up to 3 decimal places (0.003 s).

The policy is trained on payloads up to 120 g during training, yet it generalizes beyond its training
distribution when deployed in simulation and carries payloads up to 200 g.

8.1.3. Path following
We evaluate path following performance of our policy over a figure-8 (8.7a) and straight line (8.7b) path,
while maintaining end-effector orientation. By dynamically updating goal poses at 100 Hz, the policy
used for end-effector pose control can be applied without retraining. Performance is evaluated over 5
complete loops of each path.

Path Position RMSE (m) Orientation RMSE (deg)

Figure-8 0.5873 10.0629
Straight line 0.2244 6.2898

Table 8.3: RMSE of position and orientation errors for simulated path following tasks.

Figure 8.6: Drone and Manipulator coordination (whole-body control) to maintain constant orientation while following figure-8
path
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(a) Figure-8 path followed by end-effector in deployment simulator. (b) Straight line path followed by end-effector in deployment simulator

Figure 8.7: 3D path following performance in the deployment simulator for two scenarios

In figure-8 path following task, the manipulator has to maintain orientation while coordinating move-
ments with the drone along both degrees of freedom of the joints, roll - while moving laterally (See
Figure 8.6) and pitch - when it moves forward and backward. This dual-axis coordination is more
complex than a straight line task, where coordination is limited to a single axis. As a result, figure-8
path following exhibits higher orientation and position tracking errors (Table 8.3).

8.2. Ablation results
To study the impact of design choices and validate them, we perform ablations on various components
of our training setup. Our primary method of evaluation is using mean of total reward per episode
(episode return) across all environments from training runs lasting 2.5 hours. Where necessary, com-
parison is done on a specific component of total reward such as position, orientation or action smoothing
episode returns.

In some ablations, where episode returns are not sufficient to comment on the impact or to gain addi-
tional insight, we deploy both the baseline and ablated agents in the deployment simulator and evaluate
them by comparing pose tracking performance using previously defined metrics (See 7.2.2).

8.2.1. Observation space ablations
Joint position

We remove joint positions from the observation space and observe a significant drop in orientation
learning (Figure 8.8).

By removing joint state information, the environment transitions from fully observable Markov Decision
Process (MDP) to Partially Observable Markov Decision Process (POMDP). In the ablated setup, joint
positions are not explicitly provided, but are still internally used to compute end-effector pose via forward
kinematics for the remaining observation vector. Theoretically, the agent has enough information to
calculate joint positions from end-effector and drone pose, but must do so through internal computation.

As a result, the policy must allocate some capacity to infer the hidden state, reducing sample efficiency
and increasing complexity of learning actions for aligning orientation. The observed reduction in ori-
entation reward suggests that explicitly observable joint positions significantly help achieve orientation
control by making the environment fully observable.

Drone position
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Figure 8.8: Comparison of orientation rewards without joint
positions in observation space

Figure 8.9: Comparison of position rewards without drone
position in observation space

In the observation space, we include drone position information by expressing goal position in drone
frame. By removing this information, we observe substantial decrease in position tracking reward
(Figure 8.9), while other reward terms remain unaffected.

Consistent with the previous ablation, removing drone position information also transitions the environ-
ment to a POMDP. In this case as well, the missing state can be inferred via inverse kinematics using
the joint positions, however requires additional computation and increases task difficulty. Thus, explicit
drone position information plays a crucial role in making our system states fully observable.

From a system-level perspective, effects of above ablations align with the control decomposition:

• Position control is primarily governed by the drone base.
• Orientation control is largely handled by the arm.

Therefore, removing drone information impairs position tracking performance, while removing joint in-
formation impairs orientation performance.

8.2.2. Action space and Low-level controller choices

Figure 8.10: Comparison of total reward between low-level
controller choices

Figure 8.11: Comparison of action smoothing reward
between low-level controller choices

Effect of Acceleration controller

Training our agent only with an INDI inner-loop controller by sending combined thrust and reference
angular velocities, led to a policy with oscillatory behavior as a result of difficulty in learning to smooth
drone control inputs, observed by the lower action smoothing reward at the end of a training loop (Fig
8.11). Adding an acceleration controller and fully utilizing the action space results in improved pose
control and faster convergence with higher rewards (Fig 8.10).

The combined effect of low total rewards with significantly lower action smoothing rewards indicates that
the agent struggles with exploration when using only the INDI controller. Using only the INDI controller
eventually converges, however training takes roughly four times longer than using both acceleration
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and INDI controller. This might be attributed to several factors:

1. The acceleration controller provides richer control authority, by using linear accelerations for both
thrust calculation and attitude control. However, INDI only uses the reference body rates to control
attitude, reducing policy’s ability to express coordinated position and attitude control.

2. Moreover, only using INDI removes a level of abstraction and giving the policy direct or low-level
control. This aligns with [20], showing low-level interfaces can be detrimental for RL performance.

8.2.3. Domain randomization

Figure 8.12: Position tracking reward comparison with
end-effector mass randomization

Figure 8.13: Orientation tracking reward comparison without
friction randomization

End-effector mass

We randomize end-effector mass between 0.5 to 5 times its default mass of 30 g, corresponding to 15
g to 150 g.

As seen in Figure 8.12, we observe a higher position reward with end-effector mass randomization.
This improvement can be attributed to exploration induced by mass variation. When encountered with
varying mass, the agent is forced to develop more robust control actions. This mass randomization
acts like controlled exploration for the agent and prevents it from fitting to a single mass configuration,
ultimately improving position tracking. Additionally, we deploy both policies in the simulator and com-
pare pose tracking performance on N = 20 poses while carrying a payload of 100 g. Without mass
randomization the policy exhibited oscillatory and unstable behavior, and crashed before reaching all
poses. Therefore, we reduced P gains of our joints identically in both conditions.

From figure 8.14, it is evident that randomizing end-effector mass improves position tracking perfor-
mance.

Figure 8.14: Position tracking error comparison with
end-effector mass randomization

Figure 8.15: Orientation tracking error comparison with
end-effector mass randomization

Joint friction:

By removing joint friction randomization, we observe a substantial drop in orientation learning rewards.
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Similar to the previous ablation, the setup with constant friction overfits to a narrow set of end-effector
mass and joint stiffness values. When these properties are randomized with constant friction, a stick
and slip motion is observed, resulting in unpredictable arm dynamics and reduced orientation learning,
as seen in Figure 8.13. Because friction models in real-world are typically unknown, these results
motivate randomizing joint friction during training.

8.2.4. Reward design choices
Action smoothing

Including action smoothing penalty during training is crucial for stable transfer performance. Without
this term, the agent generates oscillating actions, frequently saturating actuators and causing the end-
effector to oscillate near the goal as shown in Figure 8.16.

Figure 8.16: End-effector trajectory of agents deployed in deployment simulator, trained with and without action smoothing

The observed tracking error across N = 20 poses, is slightly lower (Figure 8.17) for the agent trained
without action smoothing, likely due to higher agility and faster response from the quadrotor base when
it’s control inputs are not smoothed. However, this comes at the cost of stability, as the end-effector
and quadrotor, both oscillate when they reach the goal pose, as seen by the blue cluster in Figure 8.16,
which is unfavorable for transfer.

Figure 8.17: Position error of agents deployed in simulation
tracking 20 poses

Figure 8.18: Orientation error of agents deployed in
simulation tracking 20 poses
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8.2.5. Conclusion
Above ablations validate key choices wemake in action space, observation space, rewards and domain
randomization. Based on their results, we highlight some takeaways that might be applicable to training
RL-based controllers for aerial manipulators and related domains -

1. Full state observability improves performance: While the agent can learn with partial observ-
ability, explicitly providing critical state variables such as, joint positions or goal in drone frame,
ensures full observability, resulting in higher training rewards.

2. Higher-level control abstractions accelerate learning: Direct low-level control using RL can
be detrimental during both deployment and training, as observed by 4x longer training time with
INDI controller. Introducing abstractions such as a higher level controller can help reduce training
time and improve final performance.

3. Domain randomization enhances robustness and generalization: Randomizing parameters
such as payload mass and friction improves agent’s ability to generalize beyond the training
distribution and helps avoid overfitting to a single configuration. This acts like a form of controlled
exploration and improving task performance.

4. Action smoothing rewards are essential for transfer: Penalizing abrupt changes in actions
leads to smoother trajectories and minimizes frequent actuator saturation. While action smooth-
ing might decrease agility, it improves orientation performance and allows reliable transfer.

These findings guided the development of the proposed methodology and training a functional policy.
In the next chapter, we further validate our choices and evaluate controller performance through real-
world experiments.
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Real-world results

In this chapter, we validate our method in practical conditions by performing experiments in real-world.
Like experiments performed in deployment simulator, we evaluate performance using the metrics
(7.2.2) and tasks (7.2.1) defined earlier - end-effector pose control, load-carrying pose control and
path following.

9.1. Real-world results

Figure 9.1: End-effector pose control performed by policy running onboard in real-world (video link).

9.1.1. End-effector Pose control
We validate end-effector pose control on physical system by sending N = 10 randomly generated
poses (x, y, z, r, p, y). The commanded poses are sampled from the same bounded workspace as in
simulation - X ∈ [−1, 1], Y ∈ [−1, 1], Z ∈ [1, 2] with Roll ∈ [−90◦, 90◦], Pitch ∈ [−90◦, 90◦] and Yaw
∈ [−120◦, 120◦]. Each pose is maintained for 10 seconds, giving time for convergence. The scale of
this experiment is reduced considering experimental time and safety constraints, however serves as a
validation for simulation results.
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Figure 9.2: Pose error distribution of tracking 10 poses in real-world

Position Error (m) Orientation Error (deg) Success Rate

Epos σpos Eori σori (# reached / total)

0.0536 0.0166 8.8078 7.1834 10/10

Table 9.1: Pose tracking error (mean and standard deviation) and success rate over 10 randomly generated goals.

The mean position and orientation errors are 5.3 cm and 8.8°, showing repeatable and accurate pose
tracking in real-world, validating our training methodology.

Figure 9.3: Pose tracking performance in real-world for 5 goals lasting 10 seconds each

Figure 9.4: Rise and Settling time distribution across 10 goals tracked
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The time-series tracking plot for five consecutive goals (Figure 9.3) shows accurate tracking with some
overshoot in orientation axes. Over 10 poses, the end-effector has an average rise time of 1.26 seconds
and settle time of 1.61 seconds. Our policy reliably and precisely achieves poses across the workspace
in real-world.

9.1.2. Payload carrying

Figure 9.5: end-effector pose control while carrying 140g payload, performed by policy running onboard in real-world (video
link).

To evaluate end-effector pose control performancewhile carrying payloadwe sendN = 7 randomly gen-
erated poses (x, y, z, r, p, y). The commanded poses are sampled from the same bounded workspace
as our previous task of pose control without payload. Under similar conditions we compare pose control
performance between carrying 50 grams and 140 grams of payload.

Category Mean Error Std. Deviation (σ)
(m / deg) (m / deg)

50 g Position (Epos) 0.0995 m 0.0695 m
50g Orientation (Eori) 12.5020° 3.0619°

140 g Position (Epos) 0.0954 m 0.0505 m
140g Orientation (Eori) 15.7006° 4.8312°

Table 9.2: Mean and standard deviation of position error and orientation error for 50 g and 140 g payload conditions over the
evaluated goal poses in real-world.

https://youtu.be/B9-BqWARBDc
https://youtu.be/B9-BqWARBDc
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Figure 9.6: Pose tracking performance in real-world for 5 goals lasting 10 seconds each, with 50 g and 140 g payload

The average position error while carrying 50 grams is 9.9 cm with similar value for 140 gram scenario.
However, the orientation error is 3° more while carrying 140 grams. A possible reason is that position
control is primarily governed by quadrotor base, which is less affected by additional payload. Whereas,
orientation control is largely handled by the arm, particularly roll and pitch, making it susceptible to load
induced disturbances (see roll and pitch responses in Figure 9.6). The abrupt change observed in roll
angle is caused by a discontinuity in Euler-angle representation, which occurs due to gimbal lock (see
other dimensions represented in A.2).

Apart from minor oscillations in the arm, our policy demonstrates capability of carrying payloads while
accurately maintaining poses with position errors of approximately 10 cm and orientation errors of
15°. Moreover, the policy generalizes beyond its training distribution in real-world, by carrying a
payload of 140 grams, despite being trained only on loads up to 120 grams. Tests on higher payloads
were avoided due to limited gripper size and safety considerations.

9.1.3. Path following
We evaluate performance on path following task by commanding the end-effector to track a figure 8
path and a straight line path, both while maintaining constant end-effector orientation. The figure 8 path
tests the system’s ability to coordinate motion in both degrees of freedom of the arm, while maintaining
the commanded pose. The straight line serves as a simpler baseline to maintain orientation by primarily
requiring pitch axis coordination between arm and the drone (visible in Figure 9.7b).

(a) Top view of end-effector following a figure-8 path, with reference
path colored in green (video link).

(b) Side view of end-effector following a straight line while maintaining
constant orientation (video link).

Figure 9.7: Path-following performance in two real-world scenarios.

Path Position RMSE (m) Orientation RMSE (deg)

Figure-8 0.8167 14.3915
Straight line 0.1960 5.5607

Table 9.3: RMSE of position and orientation errors for the two path following tasks.

As seen in Table 9.3, the RMSE of figure 8 path is 0.82 m in position and 14° in orientation compared
to lower RMSE in the straight line scenario with 0.19 m and 5.5°, reflecting the policy’s ability to track
relatively simple paths with greater accuracy. These results are consistent with observations from
the deployment simulator, where figure-8 required continuous roll-pitch coordination, leading to larger
deviations.

These results demonstrate that the policy is able to successfully follow complex paths while main-
taining orientation, despite not being explicitly trained for path following.

https://youtu.be/XMzoPaRUO1A
https://youtu.be/L1NMsSBdvrw
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9.2. Summary
We validate our method by evaluating control performance on three tasks - end-effector pose control,
load-carrying pose control and path following, in both simulation and real-world deployments. Table 9.4
summarizes the performance for all evaluated tasks (Section 7.2.1).

Task Sim Real-world

Pos (m) Ori (°) Pos (m) Ori (°)

Pose control 0.060 7.5 0.053 8.8
Payload (50 g) 0.078 21.0 0.099 12.0
Payload (140 g) 0.132 25.7 0.095 15.0
Payload (200 g) 0.220 41.0 – –
Figure-8 path (RMSE) 0.587 10.1 0.817 14.4
Straight line path (RMSE) 0.224 6.3 0.196 5.6

Table 9.4: Summary of simulation vs. real-world performance across tasks.

In end-effector pose control task, we evaluate performance acrossN = 250 poses in the simulation and
N = 10 poses in real-world and observe comparable performance, showing accurate and repeatable
pose tracking with reliable transfer.

In the payload-carrying pose control task, we evaluate performance with payloads ranging from 40 g
to 200 g in simulation, on N = 15 poses. In real-world, we limit to 50 g and 140 g masses on N = 7
poses due to gripper limitations and safety concerns. Interestingly, robustness to weight is higher in
real-world with minimal increase in pose errors between 50 g and 140 g payloads. The large orientation
errors in simulation are due to differences in joint dynamics and control frequencies.

For path following, we evaluate performance in both simulation and real-world over a figure-8 and
straight line path. Higher errors are observed on figure-8 path in both deployments due to demands in
multi-axis coordination, compared to more simple single-axis coordination in straight line path following.

Through ablations, we find that high-level controller abstractions accelerate learning and that action
smoothing and domain randomization ensure reliable sim-to-sim and sim-to-real transfer.
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Conclusion

This thesis addressed the challenge of whole body control of underactuated aerial manipulator equipped
with a two-degree-of-freedom manipulator arm. Aerial manipulation is complex due to coupled dynam-
ics of the drone platform and manipulator, as well as influence of external disturbances. Traditional
model-based control strategies rely on precise system identification and degrade with model inaccu-
racies, unmodeled disturbances, or with need of rapid adaptation. To overcome these limitations, this
thesis explores reinforcement learning-based control, using PPO (Proximal Policy Optimization) to learn
robust control policies for aerial manipulation using interaction data from simulation.

As a precursor to aerial manipulation, we define end-effector pose control as our primary task. We
demonstrate that a learned PPO-based policy can achieve 100% of commanded poses (with an aver-
age 5.3 cm and 9° of position and orientation error) in the reachable workspace and validate it through
experiments in simulation and real-world. Next, we evaluate our policy’s robustness to shift in weight
distribution and external disturbances by carrying a payload using the end-effector. The policy demon-
strates strong generalization capabilities, maintaining stability and accurate pose control under condi-
tions not encountered during training, by carrying payloads up to 140 grams in real-world experiments.
Results from real-world experiments are consistent with policy’s performance in simulation and in some
cases, also show improvement, indicating policy transfer without degradation.

We extend our evaluation to continuous path tracking capability while maintaining orientation, serving
as a bridge to perform precise contact based manipulation tasks in the future. Experiments with both
straight line and figure-8 path tracking confirmed that the learned whole-body control policy coordinated
motion between the manipulator and quadrotor base to maintain orientation. This validates that the RL-
based policy not only handles discrete pose commands but also generalizes to continuous coordinated
path tracking without any modifications in the method.

We perform ablation studies to gain additional insights in our design choices. Domain randomization
of end-effector mass reduced positional error, acting as a form of controlled exploration and increasing
robustness. Removing intermediate control abstractions and giving the policy direct access to low-level
control was detrimental. This resulted in poorer final performance and with longer convergence time
compared to including a higher level control abstraction. This finding is consistent with prior literature on
detrimental effect of using direct low-level control [20] and its degraded sim-to-real transferability. Ad-
ditionally, action smoothing reward was found to be significantly important to avoid actuator saturation
and ensure reliable transfer.

In conclusion, this thesis developed and validated a robust whole-body control policy for an un-
deractuated aerial manipulator. Themethodology develops a policy demonstrating end-effector pose
control capabilities with high accuracy, robustness to disturbances, real-time capability (inference time
of 0.18 ms) and whole-body coordination, meeting defined requirements in Section 3.2. The findings
and methodology lay a foundation to extending RL-based control to contact rich aerial manipulation
tasks, with potential applications in industrial inspection and assembly operations.
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10.0.1. Limitations
Although the proposed training method is model-free and avoids the complexity of deriving an accurate
system model in comparison to model-based methods, this complexity is not entirely eliminated, it is
shifted to improving simulation fidelity. In RL, the absence of an accurate systemmodel is compensated
by need of a simulation that accurately reflects the real-world conditions to collect interaction data.
This step is non-trivial (more in Section A.0.1), given the difference in actuator properties, body inertia,
low-level controllers and other properties that need modeling to simulate real-world conditions. For
successful sim-to-real transfer, the simulation needs to accurately reflect real-world conditions before
domain randomization can improve robustness. Moreover, our method is not entirely model-free. The
quadrotor model is used by low-level controllers, which is a simplified model of our entire system, while
the learned policy captures the coupling between the arm and the quadrotor.

Unlike model-based methods, reinforcement learning does not provide any mathematical safety guar-
antees. While our policy demonstrated robustness in varying conditions, the lack of formal safety proofs
mean that unwanted behaviors could still emerge. In the future, hybrid methods of combining RL and
controllers with safety guarantees or switching between controllers can be considered, while performing
aerial manipulation in uncontrolled environments.

The policy is trained and evaluated in an environment with perfect state information. Our simulation and
real-world lab environment provide noise free state estimates, rarely achievable outside ideal settings.
In practice, if state estimates arrive from variety of sensors, they might include noise, latency and
drift. These conditions might further reveal limitations of our policy on robustness and generalization
capabilities.

10.0.2. Future work
This work achieves an important precursor to aerial manipulation - robust end-effector pose control.
The methodology and design choices presented can be extended to perform precise contact base ma-
nipulation tasks such as push-slide, pick-place or tool use, by including object states in the observation
[7].

For performing precise contact rich tasks, the control policy could benefit from additional sensing ca-
pability such as force feedback, tactile feedback or vision based tracking [15] for obstacle avoidance,
object detection and control forces exerted during manipulation.

To deploy such a setup in real-world, state estimation and localization must be achieved without relying
on an expensive motion capture setup. Promising approaches include IMU and vision based odometry
[37] , visual-inertial fusion [29], or SLAM based methods using multi-modal sensor integration.

We evaluate our policy on path following task, despite not being explicitly trained on it. Future work
could explore training methods tailored for path-following to improve tracking and stability. Including
information about upcoming path few time steps in the future might improve tracking performance.
Combining accurate path-following, with grasping capabilities could enable complex aerial manipulation
tasks such as pick-place and knob-turning.
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A
Appendix

A.0.1. Transfer challenges
Learning based methods rely on extensive data collection and exploration, which is safely obtained
using simulations. However, minor differences between environments can induce behaviors learned in
simulation that are infeasible in real-world or cause instable response.

We encountered multiple such sim-to-real and sim-to-sim challenges. We tackle this by either in-
creasing environment fidelity or training the agent to be robust against differences using domain ran-
domization.

1. High frequency oscillation in arm motion: We encountered high frequency oscillations in
arm after transferring our trained agent to the deployment simulator, due to difference in PID
controllers that generate joint torques. The default PID implementation in Isaac Lab uses joint
velocity to calculate the D term (D = −d∗ v), however the ros_control plugin in Gazebo uses rate
of error (D = −d∗ ((et−1−et)/dt)). This generates a D term that fluctuates and influences torque
applied rapidly. Rewriting the implementation in Isaac Lab to match the ros_control plugin, fixes
the gap.

2. Low frequency oscillation in arm motion: Low frequency oscillations in arm were observed in
both simulation and hardware deployment due to differences in friction model mentioned earlier
(See 6.2). This makes it impossible to generate same joint responses with matching control
inputs and joint properties (As seen in Figure A.1). We resolve this gap by randomizing friction
coefficients during training.

3. Oscillation in quadrotor roll axis: When deployed in deployment simulation, the quadrotor
oscillated in roll axis due to differences in sequence of applying desired rotor thrusts, within a
control step. Since neither environments simulate actual rotor spin, thrusts are computed from
desired rotor speeds (f = ctω

2, where ct is the thrust coefficient) and applied as forces on each
rotor in body frame.

In the deployment simulator, thrusts were generated using current rotor speeds ωk, then updated
ωk+1 with the motor model using references from INDI.

In the training environment, we first updated ωk+1 with the same motor model using ωref,k from
INDI, then applied thrust using ωk+1.

Although resulting rotor speeds are identical, the deployment simulator introduces one-step delay
in thrust application. With this delay the policy encounters a slower actuator response compared
to training and oscillates in the deployment simulator. Aligning the thrust update order in both
simulators eliminated the oscillation.
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A.0.2. Arm actuator step response
Notice the difference in step responses across all simulators and real-world, making domain random-
ization of joint properties necessary.

Figure A.1: Step response comparison of joints commanded to move the arm along pitch axes, in all - training simulator
(isaaccurrent_joint_pos), deployment simulator (gazebocurrent_joint_pos) and real-world (osprey)

A.0.3. Additional Results

Figure A.2: Pose tracking performance in real-world on 5 consecutive goals, with 50 g and 140 g payload.
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A.0.4. PPO Hyperparameters

Policy (Gaussian)
Network layers [512, 256, 128]
Activations ELU (all layers)
clip_log_std True
log std (min / max / init) −20.0 / 2.0 / 0.0

Value (Deterministic)
Network layers [512, 256, 128]
Activations ELU (all layers)
PPO agent
Rollouts 24
Learning epochs 5
Mini-batches 4
Discount factor γ 0.99
GAE λ 0.95
Learning rate 5× 10−4

Ratio clip ϵ 0.2
Value clip 0.2
Entropy loss scale 0.005
Value loss scale 1.0
Grad-norm clip 1.0
Time-limit bootstrap True
Preprocessing / Trainer
State preprocessor RunningStandardScaler
Value preprocessor RunningStandardScaler
Trainer SequentialTrainer (timesteps = 500,000)
Number of environments 4096

Table A.1: Key PPO hyperparameters and model configuration (SKRL [38]).

A.0.5. Manipulator joint parameters

Parameter Training sim Deployment sim Real world

Control rate (Hz) 300 333 300
Effort limit 1 N-m 1 N-m —
Velocity limit (rad/s) 5 5 10
Tunable friction parameter 0.04–0.20 (randomized) 0.10 N-m —
Joint 1 gains (Kp,Ki,Kd) (1.0, 0.01, 0.3) (1.0, 0.01, 0.3) (1.0, 0.0, 0.31)
Joint 2 gains (Kp,Ki,Kd) (1.0, 0.01, 0.1) (1.0, 0.01, 0.1) (1.0, 0.0, 0.31)

Table A.2: Arm PID configuration across training simulator, deployment simulator, and real-world experiments.

A.0.6. Real-world experiment videos
1. End-effector pose control (Link)

2. Load-carrying pose control (Link)

3. Figure-8 path following ((Link)

4. Straight line path following (Link)

https://youtu.be/8OnV6pRAAns
https://youtu.be/B9-BqWARBDc
https://youtu.be/XMzoPaRUO1A
https://youtu.be/L1NMsSBdvrw
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