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Dispersion and decay rate of exciton-polaritons and radiative modes in transition
metal dichalcogenide monolayers
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Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 16 October 2017; revised manuscript received 2 May 2018; published 22 May 2018)

The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials
extremely promising for optical and optoelectronic applications. When the excitons interact with the electro-
magnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while
being confined in the out-of-plane direction. In this work, we derive the characteristic equations that determine
both radiative and polaritonic modes in TMDC monolayers and we analyze the dispersion and decay rate of
the modes. The condition for the existence of exciton-polaritons can be described in terms of a strong-coupling
regime for the interaction between the exciton and the three-dimensional continuum of free-space electromagnetic
modes. We show that the threshold for the strong-coupling regime critically depends on the interplay between
nonradiative losses and the dielectric function imbalance at the two sides of the monolayer. Our results illustrate
that a fine control of the dielectric function of the embedding media is essential for realizing exciton-polaritons
in the strong-coupling regime.

DOI: 10.1103/PhysRevB.97.205436

I. INTRODUCTION

Transition metal dichalcogenides (TMDCs) are layered
materials that can be easily exfoliated into stable monolayer
structures of single-atom thickness [1]. In this way, they
can represent a prototypical two-dimensional material, like
graphene and other two-dimensional crystals [2,3]. Due to the
lack of in-plane inversion symmetry and a strong spin-orbit
effect, it is possible to finely control the distribution of electrons
at nondegenerate points in reciprocal space, establishing an
ideal platform for valleytronic applications [4,5]. Moreover,
TMDC monolayers provide a promising framework for con-
structing qubits [6] or topological polaritonic states [7].

TMDC monolayers are direct-gap semiconductors with the
gap located at the K and K ′ points in the first Brillouin
zone. One of the most striking properties is the presence of
exceptionally strong excitons which dominate the response of
the monolayer in the optical range. Such excitons are char-
acterized by extremely high binding energies, even exceeding
a few hundred of meV, which allow the excitons to persist
even at room temperature [8–16]. For these reasons, TMDC
monolayers have attracted a major amount of interest in view
of developing novel optical and optoelectronic devices [17], for
instance, in fields such as photovoltaics [18], photodetection
[19,20], or light emission [10,21].

In the context of semiconductor quantum wells, it was
demonstrated long ago that the quasi-two-dimensional exci-
tons interact with the electromagnetic field and give rise to
exciton-polaritons, i.e., hybrid light-matter modes with an
evanescent field in the out-of-plane direction [22–25]. The
existence of similar polaritonic modes for TMDC monolayers
has been recently predicted by Khurgin [26]. It is essential to
note that these exciton-polaritons are different from the cavity-
polaritons which are obtained by confining the electromag-
netic field within a two-dimensional cavity. Cavity-polaritons,

which have been also recently realized for TMDC monolayers
[27,28], are based on the reversible exchange of energy
between the exciton and a single confined electromagnetic
mode. Conversely, exciton-polaritons are collective modes
that originate from the interaction between the exciton and
the continuum of three-dimensional electromagnetic modes.
Similarly to surface plasmon polaritons, their evanescent
character is due to the momentum mismatch with free-space
electromagnetic radiation: being located outside of the light
cone in frequency-momentum space, they cannot be directly
converted into three-dimensional photons [25].

In light of these considerations, it is clear that, in the
spectrum of two-dimensional systems, confined polaritonic
modes always coexist with radiative modes (or quasinormal
modes), which lie inside the light cone. Radiative modes are
characterized by a complex frequency, with the imaginary
part representing the intrinsic radiative decay rate, and they
correspond to the resonances that are typically observed
in the transmission or reflection spectrum of the system.
Exciton-polaritons, on the other hand, despite being dark to
far-field optical measurements, can be probed by evanescent
waves generated in the Otto configuration [29], with near-field
experiments [30], or by means of suitable gratings [31].

As it has been pointed out in the case of semiconductor
quantum wells for both interband [32] and intersubband
[33,34] transitions, coherence plays an essential role for the
formation of the exciton-polariton. In the presence of an
additional nonradiative decay channel, whose existence is to
be expected in any realistic system, the dispersion and the
characteristics of the exciton-polariton are not only quantita-
tively but also qualitatively affected by the magnitude of the
incoherent losses. A sufficiently high value of nonradiative
losses triggers a transition from the strong-coupling regime
of light-matter interaction, characterized by the emergence of
mixed excitonic-electromagnetic modes, to the weak-coupling
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regime, where the exciton is only perturbatively affected by the
coupling with light. Therefore, it is critical to accurately deter-
mine the effect of nonradiative losses on the dispersion and the
decay rate of the modes in view of exploiting exciton-polaritons
in TMDC monolayers for optoelectronic applications.

There are other important characteristics that differenti-
ate TMDC monolayers from traditional semiconductor het-
erostructures. For instance, since TMDC monolayers are typ-
ically exfoliated on a substrate, there may be a large dielectric
function imbalance between the two embedding optical media
on the two sides of the monolayer, which is also expected to
play a significant role on the electrodynamics of the system.
All these effects need to be taken into account in order to fully
understand the properties of the electromagnetic modes.

In this work, we present a thorough theoretical analysis
of the dispersion and the decay rate of both polaritonic
and radiative modes in TMDC monolayers, as a function of
the nonradiative loss rate and dielectric function imbalance.
Radiative and polaritonic modes are the solutions of the same
master equation and they are classified according to the spatial
profile of the associated electromagnetic field. We show that,
for nonzero nonradiative losses, an additional “anomalous”
dissipation-induced polariton appears. The presence of this ad-
ditional mode is crucial for understanding the strong-weak cou-
pling transition, when it merges with the “ordinary” exciton-
polariton. In order to obtain a complete picture of the nature
of radiative and polaritonic modes in TMDC monolayers,
we perform a parametric study of the modal dispersion by
taking the nonradiative decay rate and the dielectric function
imbalance, i.e., the ratio between the dielectric functions of
the claddings, as free parameters. We demonstrate that in
the presence of a large dielectric function imbalance on the
two surfaces of the monolayer, the maximum amount of
nonradiative losses compatible with the existence of the strong-
coupling regime is much lower than in the symmetric case.
These results indicate that a very fine control of the dielectric
function of the embedding media is essential for maximizing
the effectiveness of exciton-polariton-based applications.

The work is organized as follows. In Sec. II, we derive
the master equation for both radiative and polaritonic modes
in TMDC monolayers. In Sec. III, we analyze the dispersion
and the decay rate of the modes for the illustrative example
of tungsten disulfide (WS2). Finally, in Sec. IV, we study
the variation of the modal dispersion as a function of the
nonradiative decay rate and dielectric function imbalance, in
view of elucidating the mechanism of the transition from the
strong-coupling to the weak-coupling regimes.

II. CHARACTERISTIC EQUATION

Transition metal dichalcogenide monolayers are direct-gap
semiconductors with the band gap located at the K and K ′
points in the first Brillouin zone [1,17]. Here and in the
following, we assume that the z axis of the system is oriented
perpendicularly to the monolayer plane (coinciding with the
c axis of the unit cell). The wave function of the electrons
in the monolayer has a finite spatial extent along the out-
of-plane direction of the order of the lattice constant c. The
dielectric function of the monolayer can be calculated from the
electron density response function within the well-established

formalism of linear response theory [35]. As the system is not
translational invariant, the “microscopic” dielectric function
is necessarily nonlocal, i.e., ε = ε(r,r′,ω). The constitutive
relation for the electric displacement field can be equiva-
lently written in terms of the nonlocal tensor susceptibility

χ
(ex)

(z,z′,ω) as follows [25]:

D(z,ω) = ε0

[
εbE(z,ω) +

∫
dz′χ

(ex)
(z,z′,ω)E(z′,ω)

]
, (1)

with εb being the background dielectric function. Such non-
local susceptibility tensor can be computed with ab initio
techniques [35].

In order to avoid the complications of a specific microscopic
model, in this work we will employ a mean-field approximation
[36]. We model the response of the exciton with an effective

local dielectric tensor ε
(eff)

(ω), whose features are described
in terms of phenomenological parameters that can be experi-
mentally determined. Such approximation is justified since the
thickness of the dichalcogenide layer in the c-axis direction,
L, is much smaller than the wavelength of interest (L � λ).

In the following, we will briefly summarize how such
mean-field approximation is derived, following the approach of
Ref. [36]. It has been shown that the traditional Wannier-Mott
model provides a good starting point for describing excitons
in TMDC monolayers [37]. Following the well-established
theory of Wannier-Mott excitons in two-dimensional semicon-
ductor nanostructures [25,36], we can write the nonlocal tensor
susceptibility of the system in the following form:

χ
(ex)

(z,z′,ω) = 1

h̄

∑
α

2gαωα(μ∗
vc ⊗ μvc)|Fα(0)|2

(ωα − iγα/2)2 − ω2
ξα(z)ξα(z′).

(2)
In this equation, the sum runs over all excitons with energies
h̄ωα and Wannier-Mott envelope functions Fα(r‖). Each ex-
citon is characterized by an intrinsic nonradiative decay rate
γα . Recent experiments suggest that nonradiative losses are
mostly determined by phonon-induced intravalley scattering
and intervalley scattering into dark states [38,39]. In our model,
the nonradiative decay rate is treated as a phenomenological
parameter and incorporated as an imaginary part for the
exciton frequency. The symbol μvc indicates the dipole matrix
element of the valence-conduction band transition, whereas
the current term ξα(z) = uc(z)uv(z) is the product of the
c-axis confinement functions uv and uc for electrons in the
valence and conduction bands, respectively. The symbol gα is
a spin-orbit factor. For simplicity, we have explicitly written
only the excitonic contribution to the optical response of the
system. We assume that all additional contributions, including,
for instance, those originating from the continuum of electronic
interband transitions, are included into the local background
dielectric function εb.

The dipole matrix element determines whether excitons
with a given polarization can couple with light, according
to optical selection rules for interband transitions. In-plane
polarized excitons have a dipole moment

μvc ∝ τ x̂ + iŷ, (3)

where τ (τ = ±1) is the valley index designating the in-
equivalent K and K ′ points in the first Brillouin zone [37].
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These excitons are associated with the resonances observed in
normal-incidence spectroscopy or luminescence [9,10,12,13].
Moreover, TMDC monolayers also support out-of-plane polar-
ized excitons, which can be detected with an edge collection
setup [16]. As a result of the splitting between the lowest-
energy conduction bands (which is due to the lack of inversion
symmetry in the unit cell), out-of-plane polarized excitons have
different energies with respect to in-plane ones because they
originate from different interband transitions [16,40].

At this point, we can apply the mean-field approximation.
We treat the in-plane and the out-of-plane polarized exci-
tons separately. Following Ref. [36], we define the effective
local (anisotropic) dielectric function for the dichalcogenide
medium as the ratio between the in-plane space-averaged
electric displacement vector and the in-plane space-averaged
electric field εp(ω) = D(av)

p (ω)/E(av)
p (ω) (p =‖ ,z).

In the case of the in-plane polarized exciton, we can
approximate the in-plane electric field in the layer with its
average over the layer thickness, i.e., E‖(z,ω) � E(av)

‖ (ω) =
(1/L)

∫
L

dz E‖(z,ω). In this way, we can pull out the electric
field term from the integral in Eq. (1). By further taking the
spatial average of Eq. (1) over the layer, we are led to the result
for the in-plane effective dielectric function

ε
(eff)
‖ (ω) = εb‖ + c

L

∑
α

2gαωα(μ‖
vc)2|F (0)|2∣∣∫ dz ξ (z)

∣∣2

h̄c[(ωα − iγα/2)2 − ω2]

= εb‖ + c

L

∑
α


‖
α

(ωα − iγα/2)2 − ω2
, (4)

where the last term serves as a definition of the “bare” exciton
radiative rate 
‖

α .
The situation is different for the out-of-plane polarization.

In this case, the electric displacement field is continuous
across the monolayer interfaces, i.e., Dz(z,ω) � D(av)

z (ω). By
defining pα(ω) = ∫

dz ξα(z) Ez(z,ω)/D(av)
z (ω), multiplying

Eq. (1) by ξα(z), and integrating along z, we obtain the linear
system of equations

∫
dz ξα = ε0εbzpα +

∑
β

2gβωβε0
(
μz

vc

)2|F (0)|2
h̄[(ωβ − iγβ/2)2 − ω2]

Iαβpβ,

(5)

with Iαβ = ∫
dz ξα(z)ξβ(z). This linear system needs to be

solved in order to retrieve the effective out-of-plane dielectric
function

1

ε
(eff)
z (ω)

= 1

εbz

−ε0

L

∑
α

2gαωα

(
μz

vc

)2|F (0)|2 ∫
dz ξ (z)

εbzh̄[(ωα − iγα/2)2 − ω2]
pα(ω).

(6)
There is an important qualitative difference between the in-

plane and the out-of-plane polarizations. In the in-plane case,
the resonances in the effective dielectric function correspond
to the exciton energies, as it is clear from Eq. (4). Conversely,
in the out-of-plane case, the optical resonances are shifted in
frequency with respect to the “bare” exciton energies. This fact
can be easily illustrated by considering the situation where
only a single out-of-plane polarized exciton is present. The
application of Eqs. (5) and (6) leads us to the effective out-of-

FIG. 1. (a) Scheme of the system considered in this work: a
TMDC monolayer, modeled with an effective dielectric tensor, is
interposed between air and a dielectric substrate, with dielectric con-
stants ε1 and ε2, respectively. (b) Classification of the electromagnetic
modes according to the sign of the real and imaginary parts of the
out-of-plane wave vector kz.

plane dielectric function

1

ε
(eff)
z (ω)

= 1

εbz

[
1 − c

L

2gαωα

(
μz

vc

)2|F (0)|2∣∣∫ dz ξ (z)
∣∣2

εbzh̄c
[
(ωα − iγα/2)2 + �2

α − ω2
]
]

= 1

εbz

− c

L


z
α

(ωα − iγα/2)2 + �2
α − ω2

, (7)

where again the second equation serves as a definition for the
exciton coupling constant 
z

α . The squared frequency of the
resonance is adjusted with respect to the bare exciton value ω2

α

by the term

�2
α = 2gαωα

(
μz

vc

)2|F (0)|2Iαα/(h̄εbz), (8)

which is sometimes called the depolarization shift [24]. The
same term is responsible for the experimentally observed split-
ting between the in-plane and out-of-plane exciton-polaritons
in centrosymmetric semiconductor quantum wells, where the
exciton transition frequencies for the two polarizations would
be degenerate without it [25,36].

We consider a TMDC monolayer interposed between two
semi-infinite half-spaces with dielectric constants ε1 and ε2,
respectively, as sketched in Fig. 1(a). Following the mean-field
theory discussed above, the system can be described with a
stratified local dielectric tensor of the form

ε(z,ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Iε1, z < z0 − L/2

Iε2, z > z0 + L/2

ε
(eff)

(ω), otherwise

(9)

where the monolayer effective susceptibility takes the value

in Eq. (4), i.e., ε
(eff)

(ω) = (I − ẑẑ)ε(eff)
‖ (ω), or in Eq. (6),

ε
(eff)

(ω) = (ẑẑ)ε(eff)
z (ω), according to the exciton polarization.

Following the “quasiparticle” approach in the terminology
of Ref. [41], we mathematically define the electromagnetic
modes of the system as the complex-frequency solutions of
the characteristic wave equation for the electric field

∇ × ∇ × E(r,ω) − ε(z,ω)
ω2

c2
E(r,ω) = 0 (10)
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with outgoing boundary conditions for |z| → ∞. Due to the
translational invariance in the xy plane, we look for solutions of
the form E(r,ω) = E(z,k‖,ω)eik‖·r‖ and classify the solutions
according to the (real) in-plane wave vector k‖. The wave
equation can be solved numerically by using, for instance,
the transfer matrix method [42], as it is well established for
stratified systems. Note that our definition of a mode is very
general, and in some cases (discussed in the following) it
will be applied to strongly dispersionless states, which do not
always adhere to the intuitive picture of an electromagnetic
mode. Nevertheless, such modes represent mathematically
well-defined constructs, which provide a viable description
of light–matter interaction in the system. In particular, for
all the modes calculated in this work, the imaginary part of
the frequency is smaller than the real part [Im(ω)/Re(ω) �
1/100], justifying the validity of the quasiparticle picture.

The characteristic equation for electromagnetic modes can
be further simplified without significant loss of accuracy to
an analytical expression which is particularly convenient for
illustrative purposes. To this end, we will limit ourselves to
the case of a single exciton with energy h̄ω0. Furthermore,
in the case of in-plane polarized excitons, since the thickness
of the TMDC layer is much smaller than the wavelength of
the system, we can make a further simplification by adopting a
current-sheet approximation, i.e., by modeling the monolayer
as an infinitely thin sheet with an excitonic surface current

σ ‖(ω) = iωε0
c


‖
0

(ω0 − iγ0/2)2 − ω2
E‖(z0,ω). (11)

This latter approximation allows us to neglect the effect of
the background dielectric function of the TMDC, while, at
the same time, preserving all the relevant physics of the light-
exciton interaction.

The interaction of in-plane polarized excitons with light
gives rise to two different families of electromagnetic modes:
T modes, with the exciton dipole momentum transverse to the
in-plane wave vector k‖ (corresponding to transverse electric,
or TE, modes) and L modes, with the dipole momentum parallel
to k‖ (corresponding to transverse magnetic, or TM, modes).
By using the single-exciton and current-sheet approximations
and enforcing the boundary conditions for the Hz component of
the magnetic field at the interfaces, we obtain the characteristic
equations for the T modes (TE polarized):

[(ω0 − iγ0/2)2 − ω2](ckz1 + ckz2) − iω2

‖
0 = 0. (12)

Similarly, from the boundary conditions of the in-plane electric
field, we derive the characteristic equation for theLmodes (TM
polarized):

[(ω0 − iγ0/2)2 − ω2]

(
ε1

ckz1
+ ε2

ckz2

)
− i


‖
0 = 0. (13)

Out-of-plane polarized excitons only couple with the z

component of the light field, generating Z modes with TM
polarization. In this case, however, due to the out-of-plane
polarization of the excitons, we cannot use the current-sheet
approximation, but we have to take into account the finite
extension of the internal charge distribution of the electrons.
In order to obtain a simplified characteristic equation, we
can apply the nonlocal theory developed in Ref. [33] in the

long-wavelength approximation. In this way, we are led to the
expression for Z modes:

[(ω0 − iγ0/2)2 + �2
0 − ω2]

(
kz1

ε1
+ kz2

ε2

)
− ick2

‖

z
0 = 0,

(14)

where �2
0 is the exciton depolarization shift [Eq. (8)]. In all

these equations, we define kzj = (εjω
2/c2 − k2

‖)1/2 (j = 1,2).
This set of equations allows us to investigate the general

properties of the electromagnetic modes of the system from
a simple and analytical model. As it has been stressed in
previous work [32], it is crucial to note that the very same
characteristic equations nonperturbatively describe both po-
laritonic (i.e., spatially confined) and radiative (i.e., spatially
diverging) states. The distinction between the two families of
modes lies in the complex out-of-plane wave vectors kzj =
(εjω

2/c2 − k2
‖)1/2 in the two extremal semi-infinite layers (j =

1,2). Assuming a temporal and spatial dependence for the field
of the form E ∝ ei(k‖·r‖+ikzj |z|−ωt), modes with Im kzj � 0 and
Re kzj � 0 represent exponentially decaying polaritonic states,
whereas modes with Im kzj < 0 and Re kzj > 0 correspond to
exponentially diverging radiative states. The remaining cases
represent unphysical modes with Im ω > 0, which must be
excluded on grounds of energy conservation for passive media
[32,33]. The classification of the modes according to the sign of
the real and imaginary parts of kz is summarized in Fig. 1(b). As
a result, Eqs. (12)–(14) provide us with a full characterization
of the spectrum of the TMDC monolayer. As it is expected
for two-dimensional systems, the complex-frequency solutions
encompass both polaritonic and radiative modes.

III. RADIATIVE AND POLARITONIC MODES

In general, out-of-plane polarized interband transitions in
TMDC monolayers are much weaker than in-plane polarized
ones because they are based on spin-orbit-interaction–induced
band mixing. From theoretical considerations, the authors of
Ref. [16] estimate a ratio between the corresponding radiative
strengths of the order of 
z/
‖ ∼ 10−4–10−2. For this reason,
in the following we will focus exclusively on in-plane polarized
excitons, which are the most promising for technological
applications. We limit ourselves to a single in-plane polarized
exciton of energy h̄ω0, to be identified, for all practical
purposes, with the so-called “A” exciton that dominates the
optical response of TMDC monolayers [43]. For the sake of
completeness, the results for out-of-plane polarized excitons
are presented in the Appendix.

As an illustrative example, we will focus on WS2. The
effective dielectric constant is reported in Ref. [43] from
reflectance measurements on monolayered samples. We can
directly compare our Eq. (4) with the experimental data in
order to estimate the value of the parameters. The experiments
evidence the presence of a Lorentzian peak associated to the
“A” exciton with an energy h̄ω0 = 2.014 eV and a width
h̄γ0 = 0.029 eV [43]. From the reported oscillator strength
of the peak (f0 = 1.9 eV2) and the layer thickness assumed in
the fit (L = 6.18 Å), we derive, by applying Eq. (4), a radiative
rate h̄


‖
0 = f0L/(h̄c) � 6 meV.

As a starting point, we consider the symmetric configuration
of a WS2 monolayer suspended in air (ε1 = ε2 = 1). The
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FIG. 2. (a), (b) Real part and (c), (d) imaginary part of the
frequency dispersion of the electromagnetic modes of a TMDC
monolayer, as a function of the in-plane wave vector. The red
lines, corresponding to in-plane radiative modes, and the blue lines,
corresponding to in-plane polariton modes, have been computed from
Eqs. (12) and (13) for TE polarized T modes (a), (c) and TM polarized
L modes (b), (d). The shaded region marks the light cone. The pa-
rameters are h̄ω0 = 2.014 eV, h̄γ0 = 0.029 eV, h̄


‖
0 = 6 meV,ε1 =

ε2 = 1, corresponding to WS2 in a symmetric configuration. The dots
indicate the results of a full-wave numerical calculation of the modal
frequencies using the experimentally determined dielectric constant
of WS2 [43].

dispersion of the real and the imaginary parts of the complex
frequencies of TE electromagnetic modes (T modes) is shown
in Figs. 2(a) and 2(c), respectively, as a function of the in-
plane wave vector k‖. The red curve represents a radiative
mode (Im kz1 = Im kz2 < 0), while the blue curves represent
polaritonic modes (Im kz1 = Im kz2 > 0). Both curves are
calculated by solving Eq. (12) in the complex-frequency plane.
Figures 2(b) and T(d) similarly show the dispersion and the
imaginary part of the frequencies of TM modes [Eq. (13)]. The
data of the solid curves, computed assuming the current-sheet
and the single-exciton approximations, are compared with the
numerical results (dots) obtained by solving Eq. (1) with the
transfer matrix method [42]. For these results, the experimental
dielectric function of Ref. [43] (parametrized with a set of
Lorentzian functions) has been used. The good agreement
between the exact and the approximate data confirms that it
is possible to use Eqs. (12) and (13) to properly describe the
properties of the electromagnetic modes and the transitions
among the various regimes that can be reached by varying the
parameters of the system.

Our calculations demonstrate the existence of three different
TE electromagnetic modes in suspended WS2 monolayers:
a radiative mode [red curve in Figs. 2(a) and 2(c)] and two
polariton modes (blue curves). It is important to note that the
situation that we are considering here is very different from
the case of ordinary bulk polaritons [25]. In the traditional
picture of a polariton, a single light mode is coupled with

a nearly frequency-degenerate single exciton state, giving
rise to two hybrid light-matter modes. The energy splitting
of the dispersion of the polaritons reflects the amount of
coupling. In the present situation, however, the exciton is
coupled with a continuum of radiation modes, i.e., the set
of light modes indexed by the varying out-of-plane wave
vector kzj = (εjω

2/c2 − k2
‖)1/2 > 0 (j = 1,2). The continuum

of light modes is indicated by shaded region in Fig. 2. The
electromagnetic modes that we discuss in this work represent
quasiparticles or resonances in the continuum, which emerge
from this collective interaction. In particular, the strength of
the interaction with light, whose magnitude is exemplified by
the factor 


‖
0, affects both the dispersion of the modes and the

radiative contribution to the dissipation rates in a nontrivial
manner.

The radiative mode [red curve in Figs. 2(a) and 2(c)] lies
partially inside the continuum of light states. Therefore, it can
be excited by incident plane waves with matching in-plane
wave vector and it accounts for the exciton peak which is
observed in the reflectivity spectra of TMDC monolayers. As
it is the case for two-dimensional excitons in the presence of
nonradiative dissipation, the dispersion of the radiative mode
continues in the region outside the light cone, where direct
coupling to incoming and outgoing light waves is not available.
This phenomenon reflects the availability of an indirect channel
for the conversion of excitons into bulk photons (and vice
versa) mediated by nonradiative processes.

The imaginary part of the modal dispersion is shown in
Fig. 2(c). The imaginary part of the frequency is directly related
to the total decay rate of the mode, i.e., to the loss rate of the
excitation energy, according to

γtot = −2 Im(ω). (15)

As it can be seen from Fig. 2(c), the total decay rate of the radia-
tive mode is always larger than the nonradiative dissipation rate
γ0, reflecting the additional radiative contribution to the losses
of the system. For small values of the in-plane momentum, the
total decay rate closely follows the perturbative solution

γtot � γ0 + 1

2

ω0

‖
0√

ω2
0 − c2k2

‖
, (16)

which can be obtained from Eq. (12). The perturbative approxi-
mation is not valid in proximity to the light line, where it would
actually predict a divergence of the decay rate. On the contrary,
the nonperturbative solution, displayed in Fig. 2(c), shows a
maximum for the decay rate close to the light line, after which
the rate abruptly drops to γ0, as it is typical for TE-polarized
modes [32]. Please note that in all dispersion plots, such as
Figs. 2(a) and 2(b), only the shift of the mode frequency with
respect to the bare exciton frequency (h̄ω0 = 2.014 eV) is
depicted. For instance, all the modes in Fig. 2 have frequencies
around 2 eV, about two orders of magnitude larger than the
corresponding imaginary parts.

In addition to the radiative mode, the system supports
two distinct polariton branches. The polariton branch outside
the light cone, indicated with (i) in Fig. 2(a), is a common
feature of two-dimensional excitonic systems. The properties
of this particular mode for TMDC monolayers have been also
described in Ref. [26]. The dispersion of the mode closely
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resembles that of surface plasmon polaritons originating at
the interface between metals and dielectrics. The second
polaritonic branch, indicated with (ii) in Fig. 2(a), is located
within the light cone and represents what is typically called an
“anomalous” polariton. The existence of this mode is entirely
due to the presence of nonradiative dissipation. The existence
of dissipation-induced modes in electromagnetic systems has
been known for a long time. Two important examples for TM-
polarized electromagnetic waves are Brewster and Zenneck
modes at the interface of two different optical media. Some of
these modes have played an important role in the development
of radio engineering at the beginning of the 20th century [44].
Despite being located inside the light cone, a dissipation-
induced mode constitutes a fully bound state, i.e., a state with
a spatially decaying profile of the field, and it is orthogonal to
the modes in the radiative continuum of the system. Similar
to other spatially confined modes, it could be visualized with
near-field microscopy techniques [32]. It is interesting to note
that the dispersion branch of the dissipation-induced polariton
abruptly ends close to the edge of the light cone. The exact
location of the vanishing point depends on the dissipation level
of the system, as it will be discussed in more detail in the
following section.

The imaginary part of the polariton dispersion is shown
in Fig. 2(c) and it is related to the total decay rate according
to Eq. (15). The polariton modes have values of the decay
rate which are always lower than the exciton nonradiative
dissipation rate γ0. It can be clearly seen that the end point of
the dispersion of the dissipation-induced polariton in Fig. 2(a)
corresponds to a value Im ω = 0. The vanishing of the polari-
ton decay rate close to the light line reflects the increase of the
light fraction of the mode with respect to the exciton fraction.

The results for TM polarization display a simpler behavior.
As shown in Figs. 2(b) and 2(d), there are two modes, whose
dispersion curves are very close to the original exciton in
both the real and imaginary parts. Since only the in-plane
components of the electric field couple with the excitonic
mode, light-matter interaction is reduced. As a result, the
reversible exchange of energy between the exciton and the
radiation field cannot take place and the modes are dominated
by the excitonic component. The flatness of the dispersion
implies a very low group velocity of the modes. Together with
the finite dissipation rate, the low group velocity suggests a
physical picture where the modes are strongly localized within
a short coherence length.

At this point, we analyze the dispersion of electromagnetic
modes in the nonsymmetric case ε1 �= ε2. This is an indispens-
able extension of our investigation since a common method of
preparing TMDC monolayers involves exfoliation on top of a
dielectric substrate [1], which we can model with the dielectric
constant ε2. For the sake of illustration, we assume ε1 = 1 and
ε2 = 2.25. The dispersion of the real and imaginary parts of
the modes are plotted in Figs. 3(a) and 3(c) and Figs. 3(b) and
3(d) for TE and TM polarizations, respectively.

Similarly to the previous case, it is possible classify the
modes as polaritonic and radiative according to the sign of
Imkz. Due to the dielectric function imbalance, the z com-
ponents of the wave vector in the upper and lower cladding
(kz1 and kz2) need to be analyzed independently. The values
of the real and imaginary parts of kz1 and kz2 for the TE

FIG. 3. (a), (b) Real part and (c), (d) imaginary part of the
frequency dispersion of the electromagnetic modes of a TMDC
monolayer, as a function of the in-plane wave vector. The picture
represents the nonsymmetric case ε1 = 1 and ε2 = 2.25. All other
parameters of the system are the same as in Fig. 2. Red lines: radiative
modes; blue lines: polariton modes; dashed purple lines: modes
with radiative character in air (ε1) and polaritonic in the substrate
(ε2); dashed green lines: mixed modes with opposite character, i.e.,
radiative in the substrate and polaritonic in air. The shaded regions
depict the light cones for ε1 and ε2. Similarly to Fig. 2, the dots indicate
the results of a full-wave numerical calculation with the experimental
dielectric constant of WS2. (e), (f) Plot of the imaginary part vs the
real part of the out-of-plane wave vector kz in the ε1 (e) and ε2 media
(f), for the TE modes also shown in (a) and (c).

modes are shown in Figs. 3(e) and 3(f), respectively. The
results reveal the existence of a fully radiative mode (Im kz1 <

0, Im kz2 < 0, red curve in Fig. 3) and a fully polaritonic
mode (Im kz1 > 0, Im kz2 > 0, blue curve), in analogy with
the symmetric case of Fig. 2. Notably, additional anomalous
electromagnetic modes of mixed character also appear. These
include, on the one hand, a mode with radiative character in
the upper layer and polaritonic character in the lower layer
(Im kz1 < 0,Im kz2 > 0, purple curves) and, on the other hand,
a mode which is polaritonic in the upper layer and radiative
in the lower layer (Im kz1 > 0, Im kz2 < 0, green curves). The
presence of polaritonic (radiative) modes inside (outside) the
corresponding light cone is a dissipation-induced effect that
is entirely due to the intrinsic nonradiative decay rate γ0 of
the exciton, similarly to the case of the anomalous polariton
branch of Fig. 2.

In addition to the increase in the number of modes, the modal
dispersion in the nonsymmetric case is qualitatively different
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from the symmetric case, especially for TE polarization. Both
the real and the imaginary parts of the frequency are weakly
affected by the coupling with light. The dispersion of the
electromagnetic modes spans a small frequency range around
the original exciton frequency of the order of 


‖
0. Although it

is still possible to formally classify the modes as polaritons
or radiative modes according to the sign of Imkz, the physical
interpretation of the behavior of the system is very different
than in the symmetric case of Fig. 2. On the one hand,
the symmetric system is characterized by the presence of a
“traditional” dispersive polaritonic mode [Fig. 2(a)]; on the
other hand, in the nonsymmetric case the solutions of the
characteristic equation correspond to dispersionless modes,
which can be interpreted as weak perturbations over the
original exciton. This behavior can be interpreted as a signature
of the weak-coupling (perturbative) regime of light-matter
interaction.

It is essential to note that the results of this section show
that two systems with the same exciton frequency and the
same absorption losses can have very different electromagnetic
modes, and even be in different coupling regimes, depending
on the dielectric function imbalance of the claddings. Conse-
quently, in the next section we will explore the relation between
the nonradiative rate and the dielectric function imbalance
and their combined effect on the qualitative properties of the
electromagnetic modes of the system.

IV. PARAMETRIC ANALYSIS OF THE
STRONG-COUPLING TRANSITION

In the previous section, we describe the dispersion and
decay rate of electromagnetic modes in WS2 monolayers. Our
results show large qualitative differences in the number, prop-
erties, and character of the modes for different polarizations
and different values of the substrate dielectric constant. In
order to understand the origin of these differences, in this
section we treat the exciton nonradiative dissipation rate γ0

and the substrate dielectric constant ε2 as free parameters,
and we explore the variations of the modal dispersion in
this parameter space. Moreover, this approach allows us to
extend our considerations to other TMDC monolayers in a
straightforward way, by choosing the suitable parameters on a
case-by-case basis.

The key for interpreting the variations in the polariton
dispersion is to describe them in terms of a strong-weak
coupling transition [32,34]. It is essential to note, though, that
in our case the definition of strong-coupling regime does not
require the presence of any form of optical confinement: the
phenomena under investigation entirely arise from the inter-
action between the exciton and the continuum of free-space
radiation.

As a starting point, we consider the limiting case of a
symmetric configuration of the dielectric constant (ε1 = ε2 =
1) and we assume that only the nonradiative dissipation rate γ0

is varying. This particular situation is the most similar to the
case of semiconductor quantum wells and has been extensively
investigated in that context [32]. Figure 4(a) displays the
dispersion of the real part of the TE polariton frequency as a
function of the in-plane wave vector and for selected values of
γ0. For γ0 = 0, a single polaritonic mode is present, which lies

FIG. 4. (a) Dispersion of the real part of the frequency of TE
polaritons in TMDC monolayers as a function of the in-plane wave
vector. The different curves refer to different values of the nonradiative
decay rate of the exciton γ0, indicated by the labels (the rates are
expressed in meV). We assume a symmetric configuration with ε1 =
ε2 = 1. (b) Dispersion of the polariton modes similarly to (a), but
in the assumption of no absorption losses (γ0 = 0) and for different
values of the substrate dielectric constant ε2, indicated by the labels.
The values of the remaining parameters are the same as in Fig. 2.

outside the light cone. This mode represents a fully bound state
with Im ω = 0. In this regime, our analysis is fully consistent
with previous works on the theory of exciton-polaritons in
two-dimensional systems [22–26].

With increasing γ0, the dispersion of this mode slightly
shifts to lower frequencies and closer to the light line. In
addition, when the dissipation is larger than the threshold
level [32]

γthr = 

‖
0/(2

√
ε1), (17)

a second dissipation-induced polariton branch (anomalous
polariton) emerges inside the light cone. This branch ends at
a finite in-plane wave vector, where the imaginary part of the
frequency drops to zero. When we increase the nonradiative
dissipation, the ending point moves towards to edge of the light
cone. At the threshold value

γtran = 3
√

3

4 × 21/3

(
(
‖

0)2ω0

ε1

)1/3

, (18)

the two polaritonic branches intersect. This is the signature of
the transition from the strong-coupling regime, when the po-
laritonic branches are separated, to the weak-coupling regime,
when the branches cross each other. The threshold for such a
transition is defined in an unambiguous way by the intersection
point. In the example of Fig. 4, we calculate a threshold
γtran � 43 meV. The transition to the crossing regime for
γ0 > γtran is clearly identifiable in the figure when comparing
the curves for γ0 = 40 meV with those for γ0 = 50 meV.

As a second case, we consider the situation without non-
radiative losses (γ0 = 0) and we change the value of the
dielectric constant of the substrate with respect to the upper
air cladding (ε2 �= ε1). The dispersion curves of the real part
of the polariton frequency for several values of ε2 between
ε2 = 1 = ε1 and ε2 = 1.6 are depicted in Fig. 4(b). As there
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are no absorption losses, the anomalous polariton is indeed
not present and the only polariton mode lies outside of the
light cone. Interestingly and at variance with the symmetric
case, when the polariton dispersion extends all the way to
zero frequency in the limit k‖ → 0, the modal dispersion in
the nonsymmetric case is characterized by a finite cutoff.
Each cutoff point corresponds to the intersection between the
polariton dispersion curve and the substrate material light line
ω = ck‖/

√
ε2. The corresponding frequency of the mode at the

cutoff is obtained as

ωcutoff =
√

ω2
0 + (
‖

0)2

4(ε2 − ε1)
− 


‖
0

2
√

ε2 − ε1
. (19)

The cutoff points lie on the curve

k‖ =
√√√√ε1

ω2

c2
+ ω4(
‖

0)2

c2
(
ω2

0 − ω2
)2 (ω < ω0), (20)

which is shown by the dotted line in Fig. 4(b). As can be
observed, the extent of the modal dispersion in frequency
space is reduced with the increasing of the dielectric constant
imbalance. In the limit ε2 � ε1, this frequency range can be
estimated as

ω − ω0 � 

‖
0

2
√

ε2 − ε1
. (21)

For instance, in the case ε1 = 1 and ε2 = 2.25, the polariton
dispersion will be restricted to a frequency range of the
order ω − ω0 � 0.45


‖
0. These results show that the dielectric

constant imbalance between the external claddings is a crucial
factor in the qualitative dispersion of the polariton modes in
TMDC monolayers.

At this point, we can consider the general case of varying
both the dissipation rate and the dielectric function imbalance.
The situation can be understood in the light of the previous
limiting cases. As an example, in Fig. 5(a) we show the
dispersion curves of the real part of the polariton frequency for
the case γ0 = 10 meV and for selected values of the substrate
dielectric function ε2. For low values of the dielectric function
imbalance, the situation is analogous to the symmetric case
in the strong-coupling regime. It is evident the presence of a
traditional polaritonic mode with a definite dispersion spans
a large fraction of the frequency space. A further increase
of the dielectric function imbalance triggers the transition to
the weak-coupling regime. The original polaritonic branch
turns into a dispersionless localized mode, reflecting a global
loss of coherence and an increase of weight of the excitonic
component with respect to the radiative one. In addition to the
ordinary polariton, the anomalous dissipation-induced polari-
ton branch originates inside the light cone. The dispersion of
the dissipation-induced mode ends at a point in proximity to
the air light line, as highlighted by the inset of Fig. 5(a). It is
noteworthy that the transition to the weak-coupling regime can
be flagged by the intersection of the two modal branches, which
takes place above a threshold value for ε2. In the example in the
figure, the threshold is ε2 � 1.36 [as confirmed by Fig. 5(b)].
The intersection of the branches is clearly identifiable by
comparing the ε2 = 1.3 and the 1.4 curves.

FIG. 5. (a) Dispersion of the real part of the frequency of TE
polaritons in TMDC monolayers as a function of k‖ for different values
of the substrate dielectric constant ε2, indicated by the labels. We
assume the exciton nonradiative rate γ0 = 10 meV. The values of the
remaining parameters are the same as in Fig. 2. The inset shows a
closeup of the dispersion close to the air light line. (b) The critical
value of the nonradiative decay rate of the exciton (normalized to
the exciton frequency) for the strong-weak coupling transition, as a
function of the substrate dielectric constant ε2. The different curves
refer to different values of the ratio 


‖
0/ω0, indicated by the labels.

As the character of the polaritonic mode drastically changes
between the strong-coupling and the weak-coupling regime,
it is important to quantify the threshold for such transition.
As pointed out by the previous discussion, the weak-coupling
transition is a smooth phenomenon, which gradually takes
place with varying the parameters of the system. Neverthe-
less, following the approach of Ref. [32], we define in an
unambiguous way a threshold for the transition as the value
of the nonradiative dissipation rate at which the ordinary and
the anomalous polaritons are exactly degenerate in frequency.
Rigorously, we define the threshold as the value of γ0 for which
the characteristic equation [Eq. (12), (13), or (14)] possesses a
pair of degenerate solutions in the complex-frequency plane at
a certain value of k‖. Such threshold depends on both the bare
radiative strength 


‖
0 and the dielectric function imbalance.

The magnitude of the absorption rate that is required to trigger
the transition can therefore be very different from the value in
Eq. (18), which applies only to the symmetric case.

We have numerically computed the threshold values for the
nonradiative dissipation rate and we plot them in Fig. 5(b)
as a function of the substrate dielectric constant ε2 and for
different values of the bare radiative strength 


‖
0 (as usual,

we assume ε1 = 1). It becomes clear that the absorption
rate greatly reduces with increasing the dielectric constant
imbalance. For instance, in the case of a WS2 monolayer
on glass (
‖

0 = 6 meV and ε2 = 2.25), we obtain a critical
absorption rate γ0 ∼ 5 meV. These considerations explain why
in Sec. III we find that in the symmetric case the TE-polarized
polariton is in the strong-coupling regime, as opposed to the
weak-coupling regime in the nonsymmetric case. Figure 5(b)
can be considered as a simple phase diagram for the properties
of the polariton modes in TMDC monolayers. The regions
above and below each curve represent the weak-coupling
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and the strong-coupling regimes, respectively. Every different
system, i.e., combination of TMDC material and surroundings,
can be identified by a single point on the diagram, as long as the
single-exciton approximation remains valid. This allows us to
predict the dispersion and the decay rate of TMDC monolayers
in a unified way.

V. CONCLUSIONS

Following the theory of Wannier-Mott excitons in two-
dimensional systems, we derive the characteristic equations
for the electromagnetic modes supported by TMDC mono-
layers interposed between two different optical media. The
parameters required for modeling the excitonic resonances are
derived from an effective dielectric function, which allows
for a straightforward comparison with experiments. The same
characteristic equation determines both exciton-polaritons and
radiative modes, whose electric field is spatially decaying or
diverging in the out-of-plane direction, respectively. Exciton-
polaritons are spatially confined modes (the electromagnetic
analog of bound states) and they originate from the collective
interaction between the exciton and the three-dimensional
radiation continuum. They are analogous to the exciton-
polaritons that are well known from the theory of traditional
semiconductor heterostructures. Note that light confinement
in these modes has a different origin than in the case of
cavity-polaritons, where the exciton is coupled to a single
spatially confined radiation mode.

The frequency dispersions and the decay rates of the
radiative modes and exciton-polaritons are determined nonper-
turbatively from the complex-frequency solutions of the char-
acteristic equations. The amount of nonradiative dissipation
affects the dispersion of the modes in a profound way. One of
the most notable consequences of dissipation is the formation
of “anomalous” polaritons, which occurs for sufficiently high
nonradiative losses. At variance with “ordinary” polaritons,
such anomalous modes lie inside the light cone, despite
being dark to far-field radiation. Therefore, they could be
experimentally detected with near-field techniques. It is still a
question open for future research whether dissipation-induced
modes could provide practical benefits for the development of
particular optoelectronic devices. Nevertheless, the existence
of such modes needs to be taken into account in all kinds
of practical applications. For instance, at the very least,
dissipation-induced modes represent an additional channel for
light to couple with, which cannot be ignored in efficiency or
energy balance calculations.

A second important effect of nonradiative dissipation is to
trigger a transition between the strong-coupling and the weak-
coupling regimes of light-matter interaction. Interestingly, the
dissipation threshold for the transition is not fixed, but it
strongly depends on the dielectric function imbalance at the
two sides of the monolayer. As an illustrative case, we consider
a loss rate of the order of 30 meV, compatible with existing
experimental data [43]. Our results show that the system is
in the strong-coupling regime when suspended in air, yet
in the weak-coupling regime when deposited on a dielectric
substrate. After the transition to the weak-coupling regime,
the ordinary and anomalous polaritonic branches, which are
well separated in the strong-coupling regime, merge together

in a single, mostly dispersiveless, electromagnetic mode. This
mode bares little resemblance with the original polariton and
reflects a strongly localized state with a predominant excitonic
component.

We also demonstrate how the threshold for this transition is
generally affected by the dielectric constant imbalance. For
instance, in our illustrative system, the maximum amount
of nonradiative losses compatible with the strong-coupling
regime drops from about γ0 � 40 meV to about γ0 � 5 meV
when the dielectric function of one of the embedding media
changes from ε = 1 to 2.25. These results demonstrate that
a fine control of the optical properties of the claddings is
necessary to access the strong-coupling regime for exciton-
polaritons. Such a control can be obtained, for instance, by
encapsulating the TMDC monolayer into a stack of two-
dimensional atomic crystals (such as hexagonal boron nitride),
effectively realizing van der Waals heterostructures [3,16].

In summary, the electromagnetic spectrum of TMDC mono-
layers displays a rich variety of both radiative and polaritonic
modes, whose characteristics are strongly dependent on the
properties of both the excitonic system and the surrounding
environment. Notably, the character of the polaritonic modes is
strongly affected by the dielectric constant imbalance at the two
sides of the monolayer. By carefully tuning these parameters, it
is possible to access the strong-coupling regime of interaction
between the excitons and the continuum of electromagnetic
radiation.
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APPENDIX: OUT-OF-PLANE POLARIZED EXCITONS

In this Appendix, we will present some results for the elec-
tromagnetic modes originating from out-of-plane-polarized
excitons (Z modes). The modes can be computed by solving the
characteristic equation reported in Eq. (14). First, we consider
radiative modes in the perturbative approximation. We assume
a solution of the form ω = ω̃0 − iγtot/2. To first order in γ0

and γrad, the solution of Eq. (14) is

ω̃2
0 = ω2

0 + �2
0, (A1)

γtot = γ0 + ck2
‖


z
0/(kz1/ε1 + kz2/ε2), (A2)

with kzj = (εj ω̃
2
0/c

2 − k2
‖)1/2. The frequency ω̃0 determines

the spectral position of the resonance in far-field optical
spectra at non-normal incidence. It is relevant that, in the
case of Z modes, the resonance energy h̄ω̃0 is not the
“bare” exciton energy h̄ω0, but includes the contribution of
the depolarization shift �2

0. The exact calculation of the
depolarization shift requires the knowledge of the electronic
structure of the material [see Eq. (8)] and goes beyond the
scope of this work. However, it is important to take into
account its effect for an accurate comparison of spectroscopic
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FIG. 6. (a), (b) Real part and (c), (d) imaginary part of the
frequency dispersion of the Z modes of a TMDC monolayer, originat-
ing from out-of-plane polarized excitons. We assume 
z

0 = 10−5ω̃0,
ε1 = 1, and ε2 = 2.25. Moreover, (a), (c) γ0 = 0.1
z

0, and (b), (d)
γ0 = 3
z

0. Red lines: radiative modes; blue lines: polariton modes;
dashed purple lines: radiative modes in the ε1 layer and polaritonic
in ε2; dashed green lines: radiative modes in ε2 and polaritonic in ε1.
The shaded regions depict the light cones for ε1 and ε2. All curves are
a function of the in-plane wave number k‖.

data with electronic computations. Moreover, Eq. (A2) shows
that the radiative part of the decay rate goes to zero for
k‖ → 0, as expected for out-of-plane (TM) polarized modes.

In Fig. 6, we present the dispersion �ω = ω − ω̃0 and the
imaginary part of the frequencies of electromagnetic modes,
extracted from the nonperturbative solutions of Eq. (14). All
curves are normalized to the exciton coupling strength 
z

0. In
Ref. [16], a ratio 
z

0/

‖
0 ∼ 10−4–10−2 is estimated for TMDC

monolayers. For the sake of illustration, in this example we
assume 
z

0 = 10−5ω̃0. Moreover, we assume a nonsymmetric
dielectric function configuration with ε1 = 1 and ε2 = 2.25.
Figures 6(a) and 6(c) represent the low dissipating case γ0 =
0.1 
z

0, whereas Figs. 6(b) and 6(d) correspond to the stronger
dissipation γ0 = 3 
z

0. Similarly to Fig. 3, we distinguish
fully radiative and polaritonic modes (red and blue curves,
respectively), and mixed-character modes that are radiative or
polaritonic only in one of the two surrounding layers (green
and purple curves).

In general, the dispersion of the modes shows very similar
features to those that we have previously discussed for in-
plane polarized excitons. In Fig. 6(a), which exemplifies the
strong-coupling regime of interaction with light, the polariton
dispersion (blue curve) is characterized by a finite cutoff,
in agreement with the presence of the dielectric function
imbalance between the embedding layers [compare Fig. 4(b)].
In Fig. 6(b), on the contrary, the polaritonic dispersion extends
all the way into the light cone: as discussed in Sec. IV, this
fact is a signature of the weak-coupling regime [compare
Fig. 3(a)]. However, the strongly reduced interaction with light
of the exciton implies a much lower threshold for the transition
between the strong- and weak-coupling regimes than for in-
plane polarized excitons. In the example of Fig. 6, we obtain
a threshold γ0 � 2 
z

0, which is less than 1 meV (assuming
ω̃0 � 2 eV). This modest coupling with light explains our focus
on in-plane polarized electromagnetic modes in the rest of the
work.
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