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ABSTRACT

One of the important functionalities of Dynamic Sgpem Access is spectrum
estimation. Accuracy and speed of estimation agek#ly indicators to select the appropriate
spectrum estimation technique. In this thesis wdkle, possibility of employing wavelet
packet decomposition as a basis for a new speastimation approach is investigated. Once
the new approach is developed, four types of ssur@mely partial band, single tone, multi-
tones, and swept tone, are used to investigatpdtiermance of the proposed wavelet based
approach. Preliminary comparative analysis betwden performance of wavelet based
approach with conventional techniques, such aéegram and Welch technique has also
been conducted. The studies show that the wavektdbapproach offers great flexibility,
reconfigurability and adaptability.

Key to the successful operation of the waveletebaspectrum estimation is the
choice of the wavelet used. Commonly known wavehlsts not suitable for spectrum
estimation because they result in estimates withr frequency resolution. To alleviate this
problem, we design and develop a family of wavelletd are maximally frequency selective
in nature as our second contribution in this thesigk. To this end, the design constraints are
first enlisted. Then the problem, originally nomwex, is reformulated into a convex
optimization problem and solved using Semi Defirfiegramming (SDP) tools. Through
simulation studies the benefits of the newly desthwavelets are demonstrated.

The next contribution of this thesis work is to done the existing wavelet packet
multi-carrier modulation (WPMCM) technique with owavelet based spectrum estimator in
order to form a wavelet packet transceiver for aayic spectrum access environment. To
enable the wavelet packet transceiver cognitivéord@R) system to co-exist with other
Licensed Users (LU), a common spectrum pool is taaied and the WPMCM transmission
waveform characteristics are shaped to communicatke idle time-frequency gaps of the
licensed user. This is achieved by dynamically tingawvavelet packet carriers in and near
the region of the licensed user spectrum. The gpacestimation unit is tagged to the
WPMCM transceiver structure by exploiting the filteank infrastructure used for Discrete
Wavelet Packet Transform implementation. Thus spettanalysis is done at no additional
cost. In the studies, four types of LUs are empdioyemely, partial band, single tone, swept
and multiple tone. The simulation results show thathe presence of an LU, the proposed
spectrum adaptation method offers significant BEiRRrovements allowing the CR to operate
invisibly to the LU.
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Chapter 1 Introduction

CHAPTER 1 INTRODUCTION

1.1 Motivation of the Resear ch

In the last few years, the demand for digital vdssl communication has increased
dramatically. Aided by the interoperability of wiees communication network, mainly due to the
flexible protocols and standards, new and valuapplications such as mobile internet access,
electronic healthcare monitoring service, senstworking and many others have emerged. With
the elegant implementation of layering approachettasn Open System Interconnection (OSI)
model, which supports the convergence between varetl wireless network, newer and newer
applications and services have emerged and arasthing like never before. This trend is placing
great demands on premium radio resources espettialiyadio spectrum.
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Figure 1.1 The NTIA’s frequency allocation chart [1]

Figure 1.1 shows the National Telecommunication #m@rmation Administration’s
(NTIA) chart of spectrum frequency allocations slitating how the frequency bands are allocated
to various services. Figure 1.1 reinforces the fhat most of the available spectrum is licensed
leaving very little room for newer services. Evehen the clamor for free spectrum has grown into
a shrill note, an interesting study conducted inkBkey [2] showed that much of the licensed
frequencies, especially in 3-6MHz band, are ravslgd. The study also showed that the usage of
allocated spectrum varies from 15% to 85% dependimgime and geographical location. Such a
static spectrum allocation policy is clearly wastefThis paradox of non-availability of spectrum
even when large swathes of licensed spectrum ateruwriilized most of the time has prompted a
rethinking in existing spectrum regulatory poligiésading to the idea of Cognitive Radio and a
Dynamic Spectrum Access regime.

Cognitive Radio [2][3] is an intelligent wireleseraomunication system that is cognizant
(hence the name) of its environment, learns froand adapts its transmission features according
to statistical variations in the environment to imgixe utilization of premium resources such as
spectrum while ensuring good Quality of Service $drhis dynamic spectrum access paradigm
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introduced two main entities, namely, primary userslicensed users and secondary users or
unlicensed users. The primary users are basidadlyotvner of the licensed spectrum while the
secondary users, also called the cognitive rad@abowed to transmit and receive signals over the
licensed spectra or portion of it when the primaser(s) is (are) currently not active. The
secondary users should have the ability to gaugeatio environment, intelligently exploit the
unused licensed spectrum and relinquish it whemamy users are active, and adapt their
transmission parameters (including frequency, ppaed modulation scheme) in accordance with
the changing environment and requirements has Ipeemoted. This mechanism should be
performed in such a way that the secondary usergaisible to primary user. The primary users
usually do not possess the intelligence on the ppistic spectrum sharing mechanism.

In dynamic spectrum access environment, spectruimadton plays important key to
gauge the wireless environments over wide frequdranyds and identify spectrum holes and
occupied bands. The challenge is in the identificadnd detection of primary user signals amidst
harsh and noisy environments. The result of speceatimation is used to provide guidance for
the secondary users to decide when they may expmitinused licensed spectrum and when they
have to relinquish it. In general, speed and acyuE measurement are the main metrics to
determine the suitable spectrum analysis tool. @h@s metrics are important to answer the
questions of which band is occupied and at whaairte. Accuracy of the estimation depends on
frequency resolution, bias or leakage and variafithe estimated power. The better the frequency
resolution, the better the accuracy of the estichg@wer in each frequency point. The bias or
leakage is related to the side lobe level. Higle dimbe level reduces the accuracy of power
estimate at neighboring frequency. Meanwhile vagaaf the estimate is also important to ensure
that the power estimate at particular frequencydbaralways accurate at any time of measurement.
There are other important metrics too. One is tikestthe right trade-off between the time and
frequency resolution achievable. Due to uncertapriyciple, it is not possible to have the best
frequency and time resolution at the same instance.

Apart from time and frequency resolution, complgxg very important to assess any
candidate of spectrum estimation modules for cognitadio. Since Cognitive Radio systems are
envisioned to operate on wireless nodes with smsialk and power, the spectrum estimation
implementation should be kept as simple as possibie way to evaluate the complexity is to
investigate whether the addition of the proposeecspm estimation approach into the receiver
would require significant modification and costs.

Conventional spectrum estimation techniques, likeigodlogram, are based on Fourier
expansion which offers excellent frequency resotutiut are poor in time detail. Though this can
be improved through windowing, as in Short Time f@uTransform (STFT), the results have
been found unsatisfactory. It is in this contexttthe possibility of using wavelets and wavelet
packet transforms, which offer a time-frequencyheatson trade-off that can be tuned, has emerged
as an enticing option.

1.2 Theme of the Resear ch

This thesis investigates the possibility of exphgjtDiscrete Wavelet Packet Transform to
build new spectrum estimators for Cognitive Radibe wavelet based spectrum estimator is
implemented using filter banks by taking advantaféhe fact that compactly supported wavelets
can be derived from perfect reconstruction filtanks [4]. In reality, the implementation of filter
banks simulates the wavelet packet decomposititighwbasically split the given signal into the
coarse version (low frequency component) and degadion (high frequency component) in each
decomposition stage. The number of stages is yslalited by the desired level of frequency
resolution and available computational power.

While it is possible to implement two-band filteartks based on commonly available
wavelets such as Symlets, Daubechies and Coiftet, ftequency response of the wavelet
decomposition filter based on these standard whieshalies is simply not frequency selective by
nature. Since frequency resolution is absolutelgdrtant in spectrum estimation, a new wavelet
with excellent frequency selectivity is necessanpé used as a basis function for decomposition
filter. In this thesis, we design a new wavelenhgssemi definite programming by expressing the
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design as an optimization problem. The idea is litain wavelet decomposition filter having
optimum frequency selectivity under a set of watvetmstraints.

Multi-carrier modulation, which divides the incorgirhigh data rate among multiple
carriers modulated at lower rate, has been moote@ a&trong physical layer candidate for
Cognitive Radio (CR) system design [5]. By merehgating a set of subcarriers, the spectrum of a
Multi Carrier Modulation based Cognitive Radio cha easily and flexibly shaped to occupy
spectral holes without interfering with the licedsgsers. It has been shown that adaptive Multi
Carrier Modulation based Cognitive Radio is a réobogethod to achieve good quality of
communication and efficient use of the spectrum {&}hogonal Frequency Division Multiplexing
(OFDM) is an elegant and popular multi-carrier matlon scheme in which the generation and
modulation of the sub-channels is accomplishedgusourier exponential basis function. However,
another multi carrier modulation technique basedvamelet called Wavelet Packet Multi Carrier
Modulation (WPMCM) has emerged as a new candidsgeit is found in [6], it appears that the
performance of WPMCM is adequate to compete witlD@Rvhen the multi carrier modulation
technique is expected to provide not only modutafimnctionality but also spectrum adaptability.
By considering the possibility of future employmearfitWPMCM in Cognitive Radio transceiver,
we propose a method to combine the wavelet basstdram estimator with WPMCM modules for
Cognitive Radio System in this thesis. By takingattage of this single wavelet technology, the
cohabitation of WPMCM CR system and licensed ukE) (s possible by dynamically activating
or de-activating CR subcarriers based on the gpaogstimation information provided by wavelet
based spectrum estimation. Furthermore, the WPM@kkiver structure, which is used for
demodulation of data, is also used for analysishef radio environment to identify active/idle
bands at no additional cost.

1.30bjectivesand M ajor Contribution of the ThesisWork

The primary objectives of this thesis work are:

* To investigate the possibility of implementing sjpem estimation technique based on
wavelets and wavelet packet transform.

e To establish a simulation setup in MATLAB for waselbased spectrum estimation by
exploiting filter bank implementation of discretavelet transform

* To evaluate the performance of established wayeeket based spectrum estimator and
provide preliminary comparative analysis betweenaiid traditional approaches like
Periodogram, Welch, Windowed Periodogram and Maggt Spectrum estimator (MTSE).

¢« To design and develop new wavelet decompositiderfihat are maximally frequency
selective and hence best suited to applicabilitydvelet based spectrum estimation

* To evaluate the performance of spectrum estimatiodule based on the optimal wavelet
designed using semi definite programming

* To realize wavelet packet transceiver for spectsemsing and dynamic spectrum access
by merging the spectrum estimation module with av&l&t Packet based Multi Carrier
Modulation (WPMCM) module.

1.40rganization of thesisworks

This thesis report is organized as follows. Chaptprovides the theoretical foundation for
wavelet based spectrum estimation. There are two paats in this chapter. The first part gives a
broad overview on the theoretical aspect of spettestimation. This includes a survey on
conventional techniques such as periodogram, Mudper Spectrum Estimation as well as new
techniques proposed for Cognitive Radio. The seqoexdl of the chapter gives the details of
wavelet theory, wavelet transform and its filtemkamplementation. It also gives a prelude to
spectrum estimation using wavelet.

Chapter 3 discusses about the first contributiontlté thesis works, namely, the
construction of wavelet based spectrum estimatgingufilter bank approach. The discussion also
includes some important issues such as the freguandering of wavelet packet coefficients, the
relationship between wavelet packet coefficientd pawer spectrum density as well as Parseval
relationship and energy conservation. In the fpaat of this chapter, we elaborate the experiments
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conducted to investigate the performance of theelet\based spectrum estimation. We also try to

find a preliminary overview on the position of dachnique along with conventional periodogram
approach.

Wavelet Theory of

Theory Spectrum
Estimation CHAPTER
2
Construction of Evaluation of
Wavelet based performance and CHAPTER
Spectrum comparison with 3
Estimator existing methods
Design of Optimum E\f/aluatlon o d
and Maximally Doflofnance a.nh CHAPTER
Frequency Selective comparison o 4
G existing methods and
tandard wavelet:
Spectrum Estimation and
Dynamic Spectrum Access CHAPTER
using Wavelet Packet based 5
Multi-carrier Modulation
CHAPTER
6
CHAPTER
7

Figure 1.2 The organization of the thesis chapters

In chapter 3 the spectrum estimator uses standaxetlets (which were not originally
intended for spectrum estimation) that are avadlabl Matlab Toolbox. Hence, in chapter 4, we
focus on the design and development of a wavelsilfathat best suits the applicability for
spectrum estimation. The process basically involires formulation of design problem into
optimization problem, transformation of non-convexconvex optimization problem as well as
deriving the solution by taking advantage of sp@diactorization algorithm. In the final part of
chapter 4, we examine the performance of spectsiimation based on the designed wavelets and
their standing vis-a-vis the standard wavelets. dfnparative analysis between this spectrum
estimator and periodogram based approach is atsdded here.

In chapter 5, we demonstrate the combination ofsheelet based spectrum estimator and
a wavelet packet multi-carrier modulation (WPMCMEhnique. The combination of these two
modules forms wavelet packet transceiver for dyoapectrum access environment.

Chapter 6 is an extremely important one sinceviegelaborate explanation about some
challenges found in this research. The most impobrthallenge is the presence of an infarction
called spectrum carving which limits the performanaf the wavelet based approach. Other

important challenges and suggested improvementghirfuture are also documented in this
chapter.
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Finally chapter 7 concludes this thesis work angegioverview about possible future
researches. Figure 1.2 illustrates the organizatidhe thesis chapters.
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CHAPTER 2 SPECTRUM ESTIMATION AND WAVELET THEORY

The theory of wavelet and spectrum estimation péaygmportant basis of this thesis work
and thus this chapter gives a comprehensive eléborabout these topics. Section 2.1 discusses
conventional spectrum estimation technique thapadpular in telecommunication world. This
section is started by elaborate discussion abaingmgram and its variants. Parametric spectrum
estimation is also reviewed to give complementasgussion. Even though, spectrum sensing is
not exactly the same as spectrum estimation, theeypuailt on the same basis and both of them are
equally important when we talk about dynamic speuntraccess. Hence, section 2.2 talks about
some spectrum sensing and estimation techniqueighaioposed for dynamic spectrum access.
Since the wavelet based spectrum estimation disduissthis thesis is built based on filter bank
architecture, section 2.3 elaborates about hovepoesent periodogram spectrum estimates from
filter bank point of view. This section also prog& some information about two important
techniques that were developed mainly based aer filank paradigm. This includes Filter Bank
Spectrum Estimator proposed by Farhang-Boroujengdgnitive radio. We leave the discussion
about spectrum estimation theory and explore theelea theory in section 2.4 that plays an
important role in this thesis. Finally, section 8iSes an example of previous work on spectrum
estimation based on wavelet.

2.1 Common Spectrum Estimation Techniques

In general, spectrum estimation can be categorizted direct and indirect methods. In
direct method (usually recognized as frequency dioaproach), the power spectrum is estimated
directly from signal being estimatedin]. On the other hand, in indirect method, also knas
time domain approach, the autocorrelation functadnthe signal being estimateB[K] is
calculated. From this autocorrelation value, thevgrospectrum density can be found by applying
the Discrete Fourier Transform &Q]k].

Another way to categorize spectrum estimation naths by classifying them into
parametric or non-parametric methods. Parametrihadeis basically model based approach [7].
In this method, a signal is modeled by Auto Redves§AR), Moving Average (MA) or Auto
Regressive Moving Average (ARMA) process. Oncedigaal is modeled, all parameters of the
underlying model can be estimated from the obsewsigdal. Estimator based on parametric
method provides higher degree of detail. The digathge of parametric method is that if the
signal is not sufficiently and accurately descrilbydthe model, the result is less meaningful. Non
Parametric methods, on the other hand, do not Aaayeassumption about the shape of the power
spectrum and try to find acceptable estimate ofptheer spectrum without prior knowledge about
the underlying stochastic approach. The followind-sections give review on some of the
spectrum estimation methods.

2.1.1 Periodogram

The most commonly known spectrum estimation teamigs periodogram, which is
classified as a non parametric estimator. The plareestarts by calculating the Discrete Fourier
Transform (DFT) of the random signal being estidatellowed by taking the square of it and
then dividing the result with the number of sampkesThe basic idea of periodogram can be
illustrated as:

_ 1 Cooqna 2
p Wy — W — S
Sh(e) = X&) =2 Texe( w' 2.1)

The Sxpx(ej“’) in (2.1) is the periodogram estimate of the pogpectra whilexn] and X (') are
the sequence whose spectrum is to be estimatedhandorresponding transform in frequency
domain, respectively.

The main issue in periodogram is the use of reciamgvindowing of waveform to obtain
finite length samples. This windowing process idtrees a discontinuity (illustrated in figure 2.1)
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between the original signal and the aliased vergimduced by a DFT transformation. In the

frequency domain, the rectangular window resulta Dirichlet Kernel described by the width of

the main lobe and the level of side lobe [9]. Thdtlwof the main lobe is related to the frequency
resolution of the power spectra, and the levelidé obe is related to the ratio between maximum
and minimum spectral power that is distinguishdijethe estimator. The rectangular window
compromises the frequency resolution, producingdga and a biased estimate. In order to
mitigate the impact of rectangular window, variausdow functions can be applied on the data
before the computation of periodogram. This is egjent to replacing each periodogram

coefficient by weighted coefficients. This is whhappens in the Blackman-Tukey method
illustrated in sub-section 2.1.3.

'y

v, (k)

| v(k) l DFT: v(k) is periodic

0 k

Figure 2.1 The effect applying DFT on the truncated versibaignaly,(k) has resulted in periodic signgk) which
contains the windowed versiony{k) and its aliases [8]

Another problem with the periodogram is that thenestes of the power spectral density
(PSD) are coarse with low precision and large vagawhich does not improve with more data.
The only way to improve the variance of the pergrém is to average the PSD coefficients. This
can be done by computing several (shorter) periaoiog and use these to compute averages of
each PSD coefficient. This method is known as Bdrthethod described in sub-section 2.1.4.
Bartlett method and Blackman-Tukey method can @lsocombined, so that one computes an
average of several windowed periodograms. ThieaswWelch method, which is also explained in
sub-section 2.1.4.

2.1.2 Correlogram

While periodogram is categorized as direct methodesit calculates the power spectral
density directly from input signan], correlogram is classified as indirect methodcdnrelogram,
the autocorrelation function of the input sigi)[k] is computed. The power spectral density
(PSD) is then obtained from the Fourier TransfofrRg k] illustrated as:

S(€9)= Y Rl kexpl- @B 22)

It is clear from (2.2) that the true autocorrelativalue is required for the PSD calculation.
However, the computation of true autocorrelatiofugarequires infinite length of data and thus
only approximation is possible. In general, theme &vo possible ways to compute the
approximation of autocorrelation value, namely dtad biased and standard unbiased estimates
[8]. The standard unbiased estimate is illustrated

N-1

Ro[K :ﬁ X[ kKR O < k& N 2.3)
n=k
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The standard biased estimate is illustrated as:
N-1

Rux[ K] =%z X[n- FkhO< ks N1 (2.4)

n=k
In (2.3) and (2.4),§xx[lq is the approximation of autocorrelation value. @spondingly, the PSD

in (2.2) can be calculated by usiﬁg[lﬂ as a replacement fdR{Kk]. The difference between

standard unbiased and standard biased in autcatiorelvalue calculation can be explained as
follows. Both in (2.3) and (2.4), the shift is oerdata points meaning that there &réerms
missing in the series. Hence, the average shoull®n only oveN-k terms, which has been
properly done in (2.3). However, this fact has biggored in (2.4) and the average is carried out
overN samples no matter the valuekdt. This is why (2.4) is called a biased estimate.

Another problem within (2.2) is the assumption ttiet autocorrelation value is of infinite
length. This is addressed by applying a rectanguladow over approximation of autocorrelation
value and accordingly, the correlogram estimaexgessed as:

Lw ~
Sx(€9)= 2. R kexp(- 9B (2.5)
k=-Ly
In (2.5), the length of rectangular window is,21 andL,, is usually less than the total number of
samples of available data.

2.1.3 Blackman-Tukey method (Windowed Correlogram)
Blackman-Tukey method is a variant of correlogramttcomputes the approximated

autocorrelationﬁxx[lq according to either (2.3) or (2.4) and later applee suitable window
function w[k]. The power spectra density is then obtained hypding the Fourier Transform

of ﬁxx[lq . Blackman-Tukey method can generally be descrasgd]:
lw . _
S (€)= > Rl klexp(- ¢ k (2.6)
k=-Ly

In (2.6), SZ7 (&) is the power spectra density according to Blackifiakey method anaK] is

the selected window. It is trivial to find that Celogram can actually be thought as Blackman-
Tukey method with rectangular window. Since (2$}the Fourier Transform of the product of
finite length approximated autocorrelation valud #me selected window, (2.6) can be represented
in fully frequency domain representation, whichaigually nothing but the convolution between
the window kernel and the correlogram found in X2%nce the length of the window in (2.6) is
finite, namely 2.+ 1, the frequency domain representation for (2.6) is

BT, oy — 1 O % .
x(<%’)—2]TV\(<%"’) S| (2.7)

S, (€“)in (2.7) is the basic correlogram of sigm@t] calculated through (2.5) whil/(€<) is

the window kernel ofw[K]. Equation (2.7) clearly illustrates that Blackrribimkey method can
actually be viewed as a process of smoothing thelogram by convolving the correlogram with
the kernel of selected window. This smoothing pssgqaays an important role to reduce the bias of
estimated PSD but this convolution process woutlllice the frequency resolution. The amount of
frequency resolution reduction is strongly relaiethe size of the main lobe of the window kernel.

2.1.4 Averaging of periodogram and Welch approach

Averaging of Periodogram, which is also recogniasBartlett Method can be employed
to reduce the PSD variance in the periodogram aestisn The samples are divided into several
segments and the periodograms of each segmeneraged [10]. Figure 2.2 illustrates the basic
procedure to implement Bartlett Method. The impatrttning is to identify a trade off between
number of samples per segment and number of segnienheory, the number of segments should
be maximized in order to minimize the variance sifirmated power. However, this also means
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lowering the number of samples in each sub-sequestdting in larger bias and poorer frequency
resolution. By this well known trade-off, Bartlettethod is famously recognized as a method that
compromises the resolution to get smaller variasa return. Finally, the Bartlett method can be
illustrated by the following equation.

sp(e) == > {Ki >+ midexp(- M } 9

In (2.8) Sj‘f(ej‘") is Bartlett power spectrum estimabd, is the number of segments algis the
number of samples per segment.

x[n] |n=0,1,...... , V-1
v
n=0,1,...... , (N/M)-1 n=NIM, ...... ) n=[(M-1)N]J/M, ...... , N-1

Averaged
periodogram
Figure 2.2 Basic procedures for Averaging on Periodogram

In [11], Welch modified the Bartlett method by ietf the segments overlap and introduced
arbitrary windows on data segments before the klon of periodogram. This method can be
easily explained by firstly expressing the datarsemts as:

Xplll ={1+mbJ, 1=0,1,....Kg—1andn= 0,1,..M4 - (2.9)

In (2.9), Ks represents the number of samples per segmenMastands for the total number of
segments. It is interesting to notice that wbgr K, the segments are not overlapped each other.
When this is the case and the rectangular windogmiployed, the Welch Method is identical to
Bartlett Method. ThereforéDs can be regarded as the starting point of fiesegment. In general,

the Welch procedure can be illustrated as [11]:
2

‘ 1 Mg-1 1 Kg1
or(e) = D 1| 2 W] ki mRexp(- ) (2.10)
S m=0 S| |=0

In (2.10), S!P(e'“)is the power spectrum estimate calculated baseeioh approach. While in

[11] Welch suggests two types of window (Triangwdad Hann window), the type of window that
can be used in this approach is actually arbitfsmgh as Blackman, Hamming or Kaiser window).
Almost all types of time window applied on eachreegt give smaller weight on samples located
around the edges of the segment. Therefore, ifitlaé computation of the PSD, different data
samples are not equally represented. In order tigate this issue, segment overlap between two
segments is introduced. In [7], Porat introducep®&fent segment overlap. In this case, all data
samples have equal representation on the average samples located nearby the edges of a
particular segment will be placed around the ceoittbe adjacent segments.
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As in Bartlett method, the choice of segment sizé e number of segments determine
the frequency resolution and the variance that Welstimators can offer. Apart from these two
parameters, the choice of window will play impottaole as well. As it is mentioned in [7],
different windows introduce different window Keraéh frequency domain (for example: Dirichlet
Kernel for rectangular window case) with differémtels of side lobe and hence the “leakage”. As
a result, the choice of window will also determithe dynamic spectrum range of the estimator.
Different window Kernel also introduces differenidih of main lobe, which is strongly related to
frequency resolution. In conclusion, the use ofdeins can be used as a new lever to tune the
resolution and the range of the estimator.

2.1.5 Parametric spectrum estimation

As mentioned earlier, parametric method is a mbdskd approach in which a signal is
modeled by Auto Regressive (AR), Moving Average (M#k Auto Regressive Moving Average
(ARMA) process. In this method, the data sequesceddeled as an output of difference equation
excited by discrete time white noise [9]. The diffece equation can be represented as follows:

X ==Y a, % MY b Ik (211

Equation (2.11) illustrates ARMA model or generalgagzero model. In this case[n], which is
commonly known as innovation process [8], is a zaBan white process. When the valug @
equal to zero, (2.11) becomes:

q

=3 bk (2.12)

k=0
The model illustrated by (2.12) is called all-zenodel or Moving Average model. If, insteadmf
g in (2.11) is equal to zero, the model in (2.11ydmes Auto Regressive model, which is
represented as:

A ==Y 3,k - e pisln 219

In this discussion of parametric power spectrummegbr, only Auto Regressive model is
considered as an example.

For the sake of simplicity, it is firstly assumtitat b, in (2.13) is equal to 1. In order to
derive the model for power spectrum estimator, & @pply z-transform on both side of equation
(2.13) resulting in:

1
X(2 = H(IW ¥, where H()= ———— (2.14)
1+> a,z"
m=1
By taking into account (2.14), the relationshipviesn power spectrum density xjfil andw[n]

can be represented as follows:

0.2

2 (e9) =| H é“")|2 Su( ¥)= > = 3 (2.15)
1+ a, exptjom

In (2.15),S" (€“) is Auto Regressive estimate of power spectrum denbi this case, it is
obvious that the next step to complete the moded fand the value of white noise varianeg as

well as the coefficienta,,. Sincew[n] is white noisew[n] is uncorrelated with past value xi].
Therefore, it is possible to find? anda,, by multiplying both side of (2.13) witk[n-K and take
the expectation of both sides of the equation. Assghby=1, the result would be:

R, =~ a,RI[ k- i+ E[i x nIlk (2.16)

For positive value ok, (2.16) is represented as:

10
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R.[K = —i 3, Rl k= k>0 (2.17)

For alternative representation, a collectiomp equations can be obtained from (2.17) withk ¥ p.
Thesep equations can be expressed altogether as a matigr relation as follows:

R0l R .. R, [F plj|& R.[1]
R RJ01 ... R [Z plla | _ |R.2]
: : P 2 (2.18)
R.Ip-1] RI p-2] ... R[] ][ &, R.[ A
For zero value dk, (2.16) can be represented as:
R[01=-Y a,R[- i+ E Wi 2.19)
If we substituteqn] in (2.19) with (2.13), (2.19) can be represerdsd
p
g, =R01+> a,R [~ (2.20)

Due to the symmetricity of autocorrelation sequenipeth (2.18) and (2.20) can then be
represented as:

ROl R Ro [P~ 1 & Rud]
R RO e R [P~ 2)la | _ | R.[2]

. . Coo |l : (2.21)
RJAP-URI P2 .o RMOT Jla,] [R.[HA

g, =R,[0] +i a,RJ[ mh (2.22)

These two equations, (2.21) and (2.22) are famoeallgd Yule Walker equation [7]. From the
illustrated derivation, it is obvious that once th&to Regressive model for power spectrum density
has been established, Yule Walker equations shmulgsed to determine the parameter in the Auto
Regressive model.

As it is stated in [7], parametric model tries teecome the limitation inherent in non-
parametric spectrum estimation. As already mentipt®th correlogram and Blackman-Tukey
approaches apply window on autocorrelation valnehé other words, both assume that the value

of correlation functionﬁxx[lq in (2.3) and (2.4) is zero féer> N-1. While this windowing process

results in reduced frequency resolution, parametsttimation offers better frequency resolution
and avoids bias in the estimate by performing exlietion based on a-priori knowledge. In this
case, the a-priori knowledge is the samples thet biready been received. Based on the received
samples, the model is established and the paranetderlying the model are calculated (the noise
variance and the coefficieats). The complete model is later used to estimatetiveer spectrum
density through (2.15).

2.2 A Review of Existing Spectrum Sensing and Estimation Techniques
available for Dynamic Spectrum Access

With respect to dynamic spectrum access paradigensécondary user (cognitive radio
(CR) system) should gauge the wireless environroget particular frequency bands in order to
identify the spectrum holes and occupied band. Thrtionality is performed by spectrum
sensing or spectrum estimation module within thesg&em. Based on the information provided
by spectrum estimation module, the CR system capeshts transmitted signal in order to
eliminate or at least minimize the distortion tdet licensed users (LUs). As it is mentioned in
[42], the challenge of spectrum sensing modula igléntification and detection of primary user
signals amidst harsh and noisy environs. The acguaad the speed of sensing or estimation
would play significant roles and thus, in term giestrum estimation, the time resolution and

11
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frequency resolution are the main issue. It is asoth to emphasize that the CR system should
give up the spectrum when an LU begins transmissibis means that the spectrum sensing or
estimation process should be conducted continuoushe time difference between two
consecutive sensing or estimation processes woetdrrdine how up-to-date the spectrum
information is. This is very important especiallyve consider the requirement for minimizing the
interference between the LU signals and CR signals.

We would like to underline the slight differencetween spectrum sensing and spectrum
estimation here. The interest of spectrum sensing identify the presence of user over particular
frequency band without the need for finding theotxalue of power in that band. On the other
hand, the goal of spectrum estimation technique @btain the exact power spectrum density over
the bands of interest. The problem in spectrursiegris more detection problem and thus it is not
as thorough as spectrum estimation approach. Insy&Rem, spectrum sensing module is more
desirable due to the fact that the interest isdemtify only the presence of primary users in a
particular band. However, it is also interestingdinal that most of spectrum sensing techniques are
built on the existing spectrum estimation appro&itme spectrum sensing approaches, however,
are not developed from spectrum estimation teclmiqu

2.2.1 Pilot detection via match filtering

Cabric et al in [14] suggest the use of conventionatch filter for pilot detection. As
already well known, the important advantage offdsgdnatch filter is the maximization of signal
to noise ratio. This method assumes that the pyiraser sends pilot signal with data. The pilot
signal should be known by secondary users to allbem to perform timing and carrier
synchronization to achieve coherency [13]. Secondaers should have full prior knowledge of
modulation type, pulse shaping and packet formathis scenario, secondary users should provide
separate dedicated receiver for each primary uass,ovhich is impractical from complexity point
of view. Other drawbacks of this approach are quisuéty to frequency offsets and the resultant
loss of synchronization [13]. On the positive sigiégt detection requires minimum sensing time
because it exploits available a priori knowledgpeesally the carrier frequency of the primary
users. Figure 2.3 illustrates Pilot Detection vigehed filtering.

Test
Inteerate N statistics
y(b) ntegrate T,
A/D @ samples of !
T Y[n]X,[n]*
Pilot x,,
Figure 2.3 Pilot detection through match filtering [13]
Test
VN Pre Filtering A/D () Average N ———statistic
samples
7-T\'l
(a)
. Test
W) Kppr points ) Average My, ..
AD FFT Il bins N times ta’;stlc
st
(b)

Figure 2.4 Implementation of Energy Detection (a) with angbog-filter and square-law device (b) with Periodog:
FFT magnitude squared and averaging [13]
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2.2.2 Energy detection

Another approach is Energy Detection, a hon-coheatetection technique, where prior
knowledge of pilot data is not required. Figure iluktrates the implementation of Energy
Detection. The first implementation of Energy Déitat (figure 2.4a) consists of a low pass filter
to remove out of band noise and adjacent interéerean analog to digital converter as well as
square law device to compute the energy. Howelirjrnplementation is not flexible for
narrowband signals and sine waves [13]. Therefoid,3], a periodogram solution (figure 2.4b) is
proposed through square magnitude of FFT (Fasti€&otransform). The result is then averaged.
Some disadvantages of non-coherent detection argugteptibility of the detection threshold to
noise, in-band interference and fading [14].

2.2.3 Cyclostationary feature detection

This method takes advantage of the cyclostatignasft the modulated signal [14].
Generally, the transmitted data is taken to beatosiary random process. However, when it is
modulated with sinusoid carriers, cyclic prefixas (h OFDM) and code or hoping sequences (as
in CDMA(Code Division Multiple Access)), a&yclostationarity is induced i.e. the mean,
autocorrelation and statistics show periodic bedravirhis feature is exploited in a detector
(depicted in figure 2.5) that measures a signgbgnty called Spectral Correlation Function (SCF).
When parametea,; in figure 2.5 (called cycle frequency) is 0, theFSyields the power spectral
density.

Ky
I3 .
(1) A/D points Correlfte | | Average Featu're
FFT X(f+a ) X*(f-ay) over T, Detection

Figure 2.5 Cyclostationarity feature detector [14]

2.3 Spectrum Estimation as a Filter Bank Analysis Problem

From the perspective of spectrum estimation, arfliank can be considered as an array of
band pass filters that separates the input sigmal several frequency components, each one
carrying a single frequency sub-band [15]. Theeffilbanks are usually implemented based on
single prototype filter, which is a low pass filtd@ihis low pass filter is normally used to realike
zero-th band of the filter bank while filters iretbther bands are formed through the modulation of
the prototype filter [16]. Figure 2.6 illustratdmtmain idea of filter bank concept.

This section basically tries to explore the filbemk paradigm in spectrum estimation. In
the beginning of this section, periodogram specsiimator previously illustrated is represented
based on filter bank point of view. The two elegapproaches, Multi Taper Spectrum Estimation
(MTSE) and Filter Bank Spectrum Estimation (FBS®&hich are purely based on filter bank
architecture, are also discussed. Since our prdpwseelet based spectrum estimation is entirely
based on filter bank theory, the discussion ablst filter bank paradigm is advantageous for a
comparative analysis between the proposed wavelstdbtechnique and the existing spectrum
estimation approach.

A|HO9|

Prototype filter (0" band)

(1" band) (2" band) (i band)

~r

Figure 2.6 Graphical representation of filter bank conce®f [1
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2.3.1 Periodogram spectral estimator realization through filter banks

Spectrum estimation is about finding the power spet density (PSD) of a finite sample
set [n], n =1, 2, ....,N} for frequency|wk 7. The classical approach to spectrum estimation is

to use Fourier transforms to obtain a Periodoggaven as [17]:
2

Sfx(éz’”)=% > g iz (2.23a)
n=1
For any given frequendy, (2.23a) can be written as:
iomi«_ 1|N ot 1| N ot o]
szx(elznh ) :ﬁ El £ é j2mtn) :N E‘l X]n %an, N-n)) (223b)

It should be noted that (2.23b) is possible siret"é”fi“‘)| =1. By introducing new variablke = N —
n, we can rewrite (2.23b) as:

_ 2 _ 2
Sfx(éz”fi):%‘:g: £ N- K 627100 :‘Nzl B KX N 1}< (2.23¢)

where
hIK =% di2m) for k=0,1,2,......N- - (2.230)

We can now concentrate on the summation withimthagnitude operation in (2.23c) and express
this summation as:

YN = :z; h B k N- K (2.230)

By considering the fact that (2.23e) is actuallythiveg but the truncated convolution sum at
particular pointN, we can rewrite (2.23e) as general convolution atithe same point associated
with a linear causal system by paddinik] with zeros [43]. When this is the case, (2.23®) be
represented as:

VNI = 3§  N- k (2.242)
with
WK 1276 for k=0,1,2,.....,N- :
0 otherwise

h[k]={

and window functionw[k| =1/J/N. It is clear that (2.24a) can be perceived asipgds samples

through a filter having impulse responsgk] and then taking only single sample of the filtere
signal at poinfN. Based on this perspective, it is worth finding frequency response of the linear
filter having impulse responsgKk] through the following evaluation:

(2.24b)

H (o) = 5 hieie =L N i@-ax
(@) kgoh[]e mZe

k=0
1 el@-oN _q (2.25a)
"IN el@a _q
(2.25a) finally gives:
s SinN(g -@)/2] [N_—lj _ }
H; () Jﬁsin[(m—w)/z]eXp[J > @ -w) (2.25b)

If wik] in (2.24b) is taken to be a prototype FIR (Finitgpulse Response) low pass filter, then
h[K s will constitute a bank of band pass filters cexdeat frequenciefs. This filter bank is

constructed by modulating the prototype filter. @nsidering (2.23)-(2.25), we can easily find that
the periodogram estimate at particular frequenaptdpcan actually be obtained by passing the
received samples through the band pass filter cahtsf,. The power calculation of this estimate
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is performedbased only on a single sample of the output of the filter (see (2.23c), (2.23&)d
(2.24a)) [43].

The entire periodogram estimates can then beetelat the output of several filters in the
filter bank constructed by modulating a single ptgpe filter w[k]. For the case of simple
periodogram, the window functios{K] is rectangular witha[K] =1/+/N . As it is clear from (2.25),

the frequency response of filter based on protofiffee having rectangular window as its impulse
response would have significant level of side lobHsis is actually the main reason why the
periodogram estimates have high side lobe or lgkages. This problem can be alleviated by
replacing the rectangular window with a window fiioe with a taper that smoothly decays on
both sides to obtain a prototype filter with muchadler side lobes. A few popular windows are
Hanning, Kaiser and Blackman [8].

2.3.2Multi Taper Spectral Estimator

The Multi Taper Spectrum Estimator (MTSE), propobgdThomson [18], uses multiple
orthogonal prototype filters to improve the varianend reduce the sidelobe and leakadee
process is initiated by collecting the I&steceived samples in a vectdn] = [x[n] x[n-1] ..... x[n-
N+1]]" and representing it as an incomplete expansi@etodf orthogonal slepian base vectors [16]
18]:
[18] -

x(n = > (f)Daq, (2.26)
k=0

In (2.26) 4, (f,)is the expansion coefficients, is the total number of orthogonal prototype fter

g, is the set of orthogonal slepian basis vectorslgprospherical sequences) derived using a
minimax algorithm and D is a diagonal matrix with the diagonal elements of

1,e# %NV Asin other orthogonal expansion, the expansiaffioientsk, (f;) can be
computed from the inner product between expandptls and the basis as follows [16][18]:
K (f) =(D q,)" x[n] (2.27)

Based on (2.27), the MTSE is formulated as:

pf
Swrse( f) = —K— Z |Kk( ﬂ)| (2.28)
pf
In order to investigate the relationship between#Tand Periodogram estimator, we can try to

derive periodogram estimator from MTSE illustratéd (2.28). If Sps( f) denotes the
periodogram spectral estimates at frequefiajerived from MTSE in (2.28)Spse( f)can be
obtained by assuminig,s =1 and thus, there is only one basis veggorindeed if there is only a

vectorg, in (2.26) containing/v/N s as its elements, (2.28) becomes periodogramredtangular
window. The derivation can be illustrated as fokow

Spse( f) = |Ko( f)|2
= (a0 xri|

N-1 1 . 2

= k}_jo—Nexp(J 2Ttk X[n- k* (2.29)
1IN 2
NI Z xn- Mexp(jZHfik){

It is obvious that (2.29) is nothlng but periodagrastimates defined in (2.23)
If we manipulate the elementsdg such that the elements i, exhibit a window function,

(2.29) becomes the windowed periodogram with wintlgve determined by, . Hence, (2.28) can
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actually be interpreted as average of several gpegiams with different windows. The averaging

process in (2.28) is conducted on the data sesieritirety and in this sense MTSE is different

from the Welch approach [11] where the data samglesegmented and averaged. Moreover, in
Welch approach the same window is applied on diffesegments.

Equation (2.27) can be regarded as Fourier Tramsédrconvolution between the received
samplex|n] and a filter havingg, as its impulse response. Since therg@rerthogonal prototype
filters, the MTSE at frequency poifitis related to multiple outputs obtained fréfg band pass
filters. The impulse responses of thd§g band pass filters are the modulated version of the
responses of correspondiig prototype filters. Thereforex, (f) can be viewed as the output of

K" filter of a group ofK,; band pass filters. Since the PSD estimate at gwainyt f; is related to
outputs ofK,; band pass filters with centre frequerficyhe filters’ pass bandf gives its frequency
resolution. Hence, (2.28) is the estimate of PSér tive frequency bandl-Af/2, fi+Af/2).
For a given resolutioAf, the prototype low pass filters should have passltbetween [-

AfI2, +#Af12] and minimum energy at stop band to minimiz&éege. The variance of the estimate is
reduced by taking advantage of the presence ofiptaufprototype (prolate) filters having impulse
responses derived from the vectgys For given frequency band, the output of each baasb p
filter corresponding to different prototype filter collected and averaged. The output of each band
pass filter should be independent from each otheffectively reduce the variance of estimated
power. This is achieved from the orthogonalityted Slepian sequences. In summary, we have two
constrains in defining the prototype filters basedyiven frequency resolutiakf:

« How to minimize the energy at stop band

* How to obtainKys prototype filters having coefficients orthogoralkiach other

As mentioned in [16], the minimax theorem is usedédrive the Slepian sequences. Firstly,
the autocorrelation matriR of the observation vectain] is computed. The set of eigenvaluis
> A; > ... > Ayq Of correlation matrixR and the corresponding eigenvectagsdy,.....Qy-; are
obtained through the following optimizations [16]:

2
Amax = Ao = MaxE ‘qTOx [n1 (2.30a)
oo =1

Toyr12 -
A =maxE ‘qi x[n‘ fori=12,3,...N— .
Jai|=1

subject tog;"q; = 0, for & j <i

(2.30b)

In (2.30a) and (2.30b}|qi || denotes the Euclidean norm of ve@pr The last step is basically to

choose theK,; eigenvectors out oN eigenvectors of the correlation matriR. These K
eigenvectors correspond to the largégt eigenvalues and play roles as the Slepian Segsience
These would finally become the orthogonal basetoves, in (2.26) as well as the prototype filters

coefficients.
While K prototype filters having minimum energy in stomtare expected, not all of the
prototype filters fulfill the expectation. The &it havingdgas its impulse response tends to have

minimum energy in stop band [16]. However, theefilhavingg, as its impulse response does not
have stop band attenuation as good as th@f.ofhe reason for this can be explained as follows.

Filter havingqggas its impulse response has the best stop bamliatien since it is chosen to
maximize the corresponding eigenvalue in (2.30&aut any constraint. On the other hand, filter
having g; is chosen to maximize the corresponding eigenvalué2.30b) but with additional

constraintqfq0 =0mentioned also in (2.30b). The performance of thet werived filter (filters
having d,,ds,.....0k,. -1 as their impulse response) has more deterioration.

With regard to the need for having minimum leakageareful treatment is needed when
the outputs of each filter corresponding to difféngrototype filters are averaged. Obviously, they
should not have the same weight. The output @frfliaving better stop band attenuation should be
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given more weight. Thomson offers an iterative athm to compute the estimate of power
spectrum which is illustrated in [18]. Figure 2lidstrates the magnitude response of the firstrseve
MTSE prolate filters of length 128. In this figuanly the even numbered filters are shown for the
sake of clarity. These first seven prolate (praie)yfilters haveq,,q;,......0g as their impulse
response.

|
I||! |
L
|
1114

MAGNITUDE, dB

L 0.5
NORMALIZED FREQUENCY

Figure 2.7 Magnitude responses of the first seven prolateréilbf length 128. For clarity, only the even nuraléilters are shown.
The odd numbered filters have responses thatfdéletween the presented ones [16].

2.3.3 Filter Bank Spectral Estimator (FBSE)

One example of spectrum estimation technique basefilter bank paradigm, which is
proposed for cognitive radio, is filter bank spentrestimation. FBSE is proposed by Farhang-
Boroujeny in [16] by employing a pair of matcheatrdyquist-filter. The proposal is based on the
assumption that multicarrier modulation is usedttes underlying communication technique.
Similar to filter bank paradigm employed by perigdaim estimator and MTSE, the entire
frequency spectrum is considered as the outputultipte filters (called filter banks) covering the
entire frequency bands. While in Thomson’'s MTSE, éstimate at frequency poinis obtained
by averaging the output of multiple filters consted based on different prototype filters, FBSE is
intended to simplify the complexity of MTSE by iattucing only one prototype filter in the zero-
th band shown in figure 2.6.

exp(-j27fin)

X[n] Hz) | yi!n]

Figure 2.8 The demodulation of received signal with respedt'subcarrier before it is processed through roothity
filter [16].

The root-Nyquist filter can be explained as folloj&8]. Given thatH(2) is the transfer
function of a filter andP(2) the product filteP(z) = H(ZH(z ™), H(2) is said to satisfy the Nyquist
criterion if :

0g-1

Y. P(ze"™)=Q (2.31)
k=0

In (2.31),0s is an integer called the over sampling factor [18] multi-carrier communication,
such filters are useful to design a pair of matdnadsmit and received filters whose cascade is a
Nyquist pulse shape. Whezijd1, thenP(2) = H(2H(z )=H@)F. P(2) is called Nyquist filter and
IH(2)|=P(2)*?is called a root Nyquist filter
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Based on the previous sub-sections, the implementaf a spectrum estimator using filter
bank for signal analysis is clear, namely by pagsin input signal through a bank of filters. The
output power of each filter is a measure of thareded power over the corresponding sub-band.
Hence the power spectral density (PSD) estimatettolsub band of the filter bank is represented

as [16]: .
é('ﬁjz avg |y 1| (2.32)

In (2.32),av( ...] describes time average operator wlhj[@] is the output signal afth sub band
filter. The basic idea of FBSE is to assume thierfibank-based multicarrier communication
technique is used as underlying communication sysléhe same filter bank can then be used for
spectrum estimation. In this filter bank architeetut is presumed that the filters at the receiver
and transmitter side are a pair of matched rooteigdiltersH(z) shown in figure 2.8 [19]. In the
receiver side, the received multicarrier signal demodulated. For each subcarrier, the
corresponding portion of the received signal is dla@enverted to baseband, low pass filtered, and
decimated [16] before finally forwarded to the rbbtquist filter as illustrated in figure 2.8. Ingh
same time, the receiving module also performs spectestimation. Figure 2.9 illustrates the
simplicity of FBSE. As already cledd(f ) is the prototype filter, which is root-Nyquisttér while

the rest of the filters are modulated copie$i(ff). The frequency response of the prototype filter
H(f) and its modulated version is described in figRideO.

> H(f) .| square and | Srpsi{0)
- average >
Srrse(f7)
square and
[ _ - | Sraself
x{n] H(f~/1) fuare an
Sepsilfi-1)
square and rBSEUN-1
g > (:werage | >

Figure 2.9 Simple illustration of Filter Bank Spectral Estitoa(FBSE) proposed by Farhang-Boroujeny [Bajsgf) is
FBSE estimate atth frequency sub-band
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Figure 2.10 Optimally designed Root Nyquist Filter by Farhangr®ujeny in [19] as prototype filter for FBSE

According to [16], the correlation properties oé tlecimated signal samples of each sub-
carrier band are related to the variance of thenagts. In order to investigate the correlation
properties of the demodulated signal, we startdnsidering figure 2.8, which shows that:

Sy (D= Sol f+ D H&™[ (239
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In (2.33),S,,, ( f)is power spectrum density g{n], which is the output signal. Assuming that

H(2) is narrowbandS,( f+ f) can be approximated I8, ( f) . Based on this approximation, it is
possible to write (2.33) in z domain as:
— -1
P, (2 =S (f)H(DH(z™) (2.34)

S.(f;)in (2.34) is a constant. It can be noted that treetation coefficients ofi[n], Ry, [K,
can be obtained from the inverse Z-transforntf, (2).

SinceH(2) is designed as root-Nyquistfilters (N gives the zero-crossings interval)(2)
= H(H(Z") is Nyquist ) filter. It is required that the time domain fuioct of G(2) satisfies [16]:

[ = 1, ifn=0 535
an= 0, ifn=mN mz 0 (2.35)

As a result, the correlatid,, yI[lﬂ bears a resemblance to Nyquis) 6equencey[n], where the
subscript N indicates the zero-crossing spacing of the autelaion coefficient. For an

observation vectoyi[n] = [yi[n], Vi[n-Lspd, ..., Yi[N-(Kops1)Lspd] With Lsyc is the sample spacing
andKysis the size of observation vecigm], the correlation matrix is given as [16]:
Ry, = S, (f)A (2.36)
with A given as:
gN[O] gN[ Lsp(] ---- g l\[ Kobs_l] L spd]
-L o .. Kops2] L
A= gN[ . sp(J gl\[ ] - gl\[ ob-s ] sp (237)
gN[_( Kobs_l)LspJ g rl_( K obs_z) L s,]c """ g [\Q]

An eigenvalue decomposition is then performed otrimmA. These resultant eigenvalues are used
to measure the degree of freedom which can lateseeé to adjust the variance of the estimates.

Based on (2.32), we can formulate FBSE estimateeim of elements of observation
vectory;[n] as follows:

. 1 Kops1
Srase( §) = Z y[ n- kkpc]z (2.38)
obs k=0

It is very interesting to compare (2.38) and (2.38pwing how FBSE and MTSE perform
averaging process in order to reduce the variahtkeoestimated PSD. From (2.38) as well, the
importance of matrixA in (2.37) becomes more obvious. Since the indepayddetween
elements ofy[n] influences the variance of the estimated PSD dm dorrelation matrix
R, ., depends on matrix A, the problem definition carstated as how to adjust the eigenvalues of

A in order to approach the desired variance of estith®SD. More detail on this issue can be
found in [16].

A comparative analysis of MTSE and FBSE has beeiogeed by Farhang Boroujeny in
[16]. It is generally concluded that FBSE is uspktter when PSD estimation is performed based
on larger number of samples. On the other handnwiie available samples of received signal are
not that much, MTSE is preferable. Another impdriivantage of FBSE underlined in [16] is the
possibility of no additional cost to implement FBS8Men filter-bank multicarrier modulation is
employed in the transceiver. This is due to thé ttaat the same filter bank in receiver module can
be used for double functionality namely: spectristingation and signal demodulation. Finally, it
is also worthy to note the higher complexity intnodd by MTSE.

2.4Wavelet Theory

The emergence of interest in using wavelets ifouarapplications is mainly motivated by
the need for frequency content analysis of a sitpwllly in time. An interesting analogy for the
frequency content analysis within a given time vawds provided by Daubechies [20] who uses
music notation as an example. Music notation inothe musician about which notes (frequency
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information) to play at particular time. While Farrtransform gives accurate information on the
frequency content of a signal, the information dbtme localization is not readily available.
Fourier Transform is nothing but orthogonal expansf time-domain signals in terms of sine and
cosine basis function. Wavelet Transform is alsthagonal expansion. However, instead of
decomposing the signals in terms of sine and cpsimew waveform called wavelet is used as a
basis function. Similar to other orthogonal expansj a wavelet expansion of a square integrable

functionf OL? generally expresses the expanded function as @leten orthonormal set of basis

functions for the Hilbert Space of square integedinctions. As in the Fourier domain, which is
more familiarly recognized as frequency domain, #malysis of signals in wavelet domain is
conducted by analyzing the transform coefficients.

This section elaborates some important informagioout wavelet theory which is used as
the basis of this thesis. Firstly, the Wavelet §farm is discussed. Two types of wavelet
transform, namely Continuous Wavelet Transform (Q\&fTd Discrete Wavelet Transform (DWT)
are explained. The discussion about DWT is precdgeckview about time-frequency tiling and
multi resolution, which play a role as importansisgor DWT. This is then followed by filter bank
implementation of DWT and Wavelet Packet Transf¢wT) which is a slight modification of
DWT. Finally, a review on the most popular wavaetployed in this thesis is given.

2.4.1 Continuous Wavelet Transform

Continuous wavelet transform (CWT) can be definedma expansion of continuous-time
functions in terms of two variables, shift and scalhe scale parameter in CWT basically has
apparent similarity with frequency in Fourier Triorm. It describes how a wavelet basis function
is stretched or contracted. Meanwhile, the shifialde, also known as translation parameter,
represents the speeding up or the delay of thelaavebasically tells the location of the wavelet
in time. The CWT can be expressed as the innergtdzbtween the signal being analyzed and the
set of wavelet basis functions[4]:

CWTf(ab——fw( ]f(bdl (2.39)

In (2.39), CWT; (a,b) is the CWT of a continuous signél(t) consisting of several wavelet
coefficients, which are a function of scaleand translatiorb. Equation (2.39) clearly illustrates
that the CWT of a continuous sigrdt) is transform coefficients, which can be viewedhaessum

of entire time components of the signal multipledscaled, shifted versions of the wavelett).

In the other words, there are multiple wavelet $dsnctions and all of them are generated from
only single prototype (mother) wavelet. This ralatis commonly expressed as:

Yol = %w[ﬂ] (2.40)

a

The relation shows in (2.40) underlines an enormamsantage offered by wavelet transform by
allowing it to provide dynamic resolution capalyilithrough the use of short basis function
(contracted version) to obtain good time domainlyai® and long basis function to get fine
frequency domain analysis. The original time domsgnal can later be constructed by inverse
Continuous Wavelet Transform illustrated as [4]:

da db
f(t)—C—JJCWE(abw( j ZZ (2.41)
where
j |l+'(w)| (2.42)

In (2.42), W(w)is the Fourier transform ap (t).
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Figure 2.11 Problem encountered in Short Time Fourier Tramsf(8TFT) (a) the same window size is applied toaig
with difference frequency (b) the same resolutiballlocations in time frequency plane causedhgyuse of single
window [12]
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Figure 2.12 Dynamic resolution in time-frequency plane offebgdWavelet Transform (a) the basis functions and
corresponding time-frequency resolution (b) timegirency resolution in time-frequency plane [21]

2.4.2 Discussion about Time-Frequency Tiling

One simple technique, which provides both time faequency information, is Short Time
Fourier Transform (STFT) or Gabor Transform illaséd as [12]:
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STFR (B = X5 Y=[[@t@wt)]exp(- 277 &t d (2.43)

From (2.43), a trade off between time and frequerasolution can be achieved in STFT by

altering the dimensions of the window function. 8eravindows mean better time resolution but

poorer frequency resolution. If the size of thedaw is extended, time resolution is compromised.
It should be noted that STFT suggests the usemé sgindow for each collection samples, so the
frequency resolution for the whole frequency raisgeniform. Figure 2.11 illustrates this problem.

This technique is less appropriate since the signalways dynamic (even for stationary signal).

Sometimes, there is discontinuity in the signal aache times there is a signal composed of long
period sinusoid. Small window is required to locdiscontinuity in the time domain though the

frequency is traded as compensation. On the otled,Harge window is enough for long period

signal and thus best frequency resolution is obthim this case. This means that dynamic
resolution in time and frequency is preferred efegrsingle signal realization.

Frequency

Time
Figure 2.13 Time-frequency tiling in wavelet transform [22]

Figure 2.12 clearly shows the advantage of the lgaw@ansform over Short Time Fourier
Transform illustrated in figure 2.11. By taking atvage of scaling coefficiendsin (2.39), we can
define contracted basis function, which is sharfinre but low in frequency resolution as well as
stretched basis function having low time resolutio it is sharp in frequency. Short Time Fourier
Transform (STFT) is based on conventional Fourr@an$form having sines and cosines as its basis
function. This limits its ability to localize thégmal property, such as transients and edges ia tim
domain. On the other hand, due to the use of itaeguave shape as basis functions, wavelet
transform can be exploited to analyze sharp variaind time local features of the signal [22].

At low frequencies, wavelet transform provides did@quency resolution but it is poor in
time information. In contrast, it gives good tinesolution and poor frequency resolution at high
frequency. Thus, the wavelet transform approach lmarcustomized according to the inherent
properties of the signal. The encountered sigmslslly have low frequency components for long
period of time but they have high frequency compbsméor short durations. Figure 2.13 illustrates
the time-frequency tiling concept that is employgdvavelet transform. Though it is true for most
of types of wavelet transforms, such as Discreteele transform, this is not the case for wavelet
packet transform as it would be clear in later @hsgon.

In figure 2.13, each block covers one coefficiehtthe wavelet transform in the time-
frequency plane. It is clear from this figure tiat higher frequencies, the blocks have narrow
width but long height illustrating good time residm but poor frequency resolution. On the other
hand, the blocks at low frequencies have broadhwlit short height illustrating poor time
resolution but good frequency resolution.
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2.4.3 Muulti-resolution analysis

The orthogonal wavelet expansion can also be seea @ulti-resolution formulation.
According to Burrus, et al in [23], there are twaim components in the multi-resolution
formulation of wavelet analysis, namely scaling araVvelet functions. The scaling function can be
defined as:

$. () =@(t—k), kOZ 012 (2.44)
In (2.44), the subspaté(R) represents square integrable functions in Hilgesite whilek implies
discrete step translation. The subspace that imsplaby linear combination of the scaling function
in (2.44) and its translated version is imaginablewever, it can be easily found that the size of
the subspace can be increased by manipulatingéhe of the scaling function. This manipulation

results in two dimensional functions that are gatest by basic scaling function through both
scalingj and translatiotk as follows:

;1) =229 t-k), withj kDZ andp0® (2.45)

From (2.45) it is clear that the scaling functi@m e expressed as a linear combination of the half
scale scaling function and its shifted versionscivhare orthogonal to each other. In this case, the
space spanned by the scaling function with largafesis included in the space spanned by the
scaling function with smaller scale. In other waltie space spanned by the scaling function with
larger scale is a subspace of the space spanni Isgaling function with smaller scale. In order
to clarify this idea we can defing as a subspace spanned by the set of basis funatid@.44).

Then we can also construgt (t) for k = 0 via the following way:

p(t)=> Nrg2t-nv2, niz (2.46)

Sinceg(t) in (2.46) is expressed as linear combinationiso$hifted half scale versiortgn] defines
the weight of each half scale componentVifis a subspace spanned by set of scaling functions
@(2t-n), it is clear thaw/, O V,. In general, we can define the subspégces

Vv, = s;kaan{¢k(2j )i =s_kpah¢,»,k( )} (2.47)

Therefore, the multiresolution analysis can berdgfias a nesting of closed subspaces as follows
[24]:

0 0..0V,0V,0V0V0V0..08 (2.48)

It is obvious that as j goes to infinyenlarges to cover all energy signals. On the dihed, as
goes to minus infinity; shrinks down to cover only the zero signal.

The difference between space spanned by scalingidanand its half scale version is
expressed as the orthogonal complement. This atfdgcomplement is spanned by the
corresponding wavelet function. This means, if vageha certain scaling function with particular
scale, the space spanned by that scaling functionbe decomposed into a subspace and its
orthogonal complement. The subspace is spannedebgcaling function with double scale of the
previous scaling function while the orthogonal céenpent is spanned by the corresponding
wavelet function. Therefore we can define the sjspegned by wavel&t as:

Vi, =V, OW (2.49)
By performing repetition on (2.49), we may formaetat
Vin = (V2 OW_)O W
=V OW_ ) )0W_, 0w
Vi = (Vs OW_3)OW_,0 W00 W
=Vo OW, O WO ... OW_,0WwW,0w (2.50)
with: Vo OW, OW O...... OW_,OW,0W

As a consequence of (2.50), the entire square ratibsgy functions in Hilbert space can later be
represented as:
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L>(R) =V, OW, O WO WO......... (2.51)
Figure 2.14 illustrates the visualization of spaé¢esndW described by (2.49)-(2.50).

....cVocVicV,cV;c Vs

e

Figure 2.14 lllustration of multi-resolution analysis conceptsd nested subspaces

Decomposition at level 1:s=a1 +d1.
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Figure 2.15 1-level wavelet decomposition applied on noisyalg having time-varying frequency. The approximation
component is denoted by while d, illustrates the detail component

The next step would be to express the wavelet immef(t) in multi-resolution concept.
Since it is clear from (2.49) that, O V, and by taking (2.46) into consideration, we capress
the wavelet function(t) as:

pt)= diig2t-nv2 niz (2.52)

g[n] in (2.52) defines the weight of each half scalenponent. Sinc®, andW, are orthogonal to
each othery(t) is orthogonal tog(t). This means there should be special relationbeigveen

weight coefficienti[n] in (2.46) andy[n] in (2.52) to ensure the orthogonality. This rgaship is

given by [4]:

g =(-)"H L-1-14, for H A with length of L (2.53)
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As for the case of scaling function in (2.45), thavelet functions can be manipulated through
scaling and translation as follows:

W) =22 @ t-k), with j kO Z andy 0 1? (2.54)

Finally, based on the philosophy illustrated abave,can give visual illustration of signal
decomposition. Given signa(t) 0V, , we can apply signal decompositionfdt) as follows [24]:

f(t) = Dy (1) + Au(D)
=D €)1+ Dy €)r A L)
=Dy €)+ Dy €)+ Da(t) + Ag(t) (2.55)
=D; €)+D, €)+D3€)+ D, €E)+ALL)
whereD; ()OW_; andy (P
In (2.55),D;(t) is the detail at levglwhile A(t) is recognized as the approximation at Igvelence,
the scaling function corresponds to the approxiomatif a signal while the wavelet function
describes the detail version of the signal at paldr level of decomposition. Figures 2.15-2.17
depict the decomposition of noisy signals havinggtivarying frequency into 1-level, 2-level and
3-level decomposition, respectively. We can see ti@abehavior of detail and approximation

components at different level and how the time-wayyrequency property is described by wavelet
and scaling function as a function of scale andstedion index.

Decomposition at level 2: s =a2 +d2 +d1.

T T T T T T T T T T
5_
s 0
5
1 1
T T
5_
32 0
5+
1 1
5_
d2 0
5
1 1
T T T T T T T T T T
5_
d1 0
51
1 1 1 1 1 1 1 1 Il

100 200 300 400 500 600 700 800 900 1000
Figure 2.16 2-level wavelet decomposition applied on noisyalg having time-varying frequency. The approximation
component at level-2 is denoted bywehile d illustrates the detail component at lejvel

2.4.4 Discrete Wavelet Transform

Due to practical limitation of CWT, Discrete WagelTransform (DWT) is usually more
preferable to solve practical problems. DWT is dieped based on multi-resolution analysis and it

basically can be used to decompose any funcfigGh]L?(R) into scaling and wavelet basis

function spanning the entitd(R). By considering (2.51), the reconstruction formfda DWT
using finite resolution of wavelet function canilbastrated as follows [23]:

F) =D clio kB x O+ D D d(i, k(1)

Kk=—0c0 j= jO k=-c0
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f(t) = i (o, k)22 g (2ot —k)+ i i d(j,k)2"%y (2 t- k) (2.56)

k= j=jok=-o
In (2.56), the DWT coefficients(jo,k) andd(j,k) denote the weight of scaling functigy  (t) and
wavelet functiony;, (t) , respectively, whilej, defines coarsest scale spanned by the scaling

function [23]. Correspondingly, the DWT coefficient(j,k) and d(j,k) can now be defined
respectively as (2.57) and (2.58):

c(ik)=(f(1).4,, )
=[1 08, ot (257)
:J.f () 2% (3t-k )t
d(j,k) = (0.4 O)
=[ 1 O Ot (2.58)
:If €) 22y (2t-k )dt
In (2.57) and (2.58)(a(t),b(t)) denotes the inner product operation betwag&nandb(t).

Decomposition at level 3:s=a3 +d3 +d2 +d1.

d,
d, o;wwwwwmmwwwm MMWW
q, WHWWMWWWWWMMWW

100 200 300 400 500 600 700 800 900 1000
Figure 2.17 3-level wavelet decomposition applied on noisyalg having time-varying frequency. The approximation
component at level-3 is denoted kywehile d illustrates the detail component at lejvel

2.4.5 Filter bank representation of Discrete Wavelet Transform
Based on the previous discussion about how scaligwavelet basis function together
with corresponding translation and dilatation canused to construct any functiog) 0 L3(R),

this sub-section intends to elaborate the reldtipnsetween DWT, multi-resolution analysis, low-
pass and high pass filtering as well as to disbass DWT can be practically implemented using
multi-rate filter bank system.
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We start the discussion by considering a scalimgtfang, (t) . Sinceg, (t) basically can be
expressed as a linear combinationggft) , ¢, (t) is the coarse version af (2t) and thus
@, (t) occupies the lower half part of the frequency baocupied by, (2t) . On the other hand, the
wavelet functiow, (t) , as the orthogonal complementgpft) , resides in the upper half band.
Figure 2.18 illustrates the relationship betweesicey; (spanned by, (2t)) and its corresponding
subspaces/, (spanned by, (t) ) andW, (spanned by, (t) ).

|H)|¢
£

<} T
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Wo

A

0 0.51 T o
Figure 2.18 Frequency domain illustration of the relationshgiweenV,, and its two sub-spac¥g and W

From the description provided in the previous peaply and figure 2.18, it is logical to
associate coarse version of a signal with low feegy component and the detail version with high
frequency component. Projection of signal with eetgo scaling and wavelet basis function can
logically be actualized through low pass and higbgfiltering. Since multiple-level signal analysis
based on DWT is nothing but signal decompositida different frequency bands, successive high
pass and low pass filtering of the time domain aigran be employed. These successive filtering
should be implemented based on (2.46) and (2.52pdaly recognized asvo-scale equation. In
order to find the exact relationship between DWT dhe filtering process, we modify two-
equation (2.46) and (2.52) by replacingith 2/t -k in order to obtain more general form of two-
scale equation. The general form of two-scale éguaior scaling function with scalg and
translatiork is represented as:

p2't-k)= Y hng2(2' t- K- V2
=2.hbp @™%= x-ny 2 (2.59)
=Zh - % @ t-mY 2, mmWZ andnx %

Likewise, (2.60) illustrates the general form obtacale equation for wavelet function with sgale
and translatiotk.

w't-K)=) o2 t- -2 =) dip@" 2k N2
:Zg - X$ @*t-my 2, nIZ andx X n (2.60)

The general form of two-scale equations (2.59) @#80) have exactly the same meaning
as the original ones ((2.46) and (2.52)), name#y shaling and wavelet function at scalare
weighted sum of the multiple translated versionsa#ling function with half-scale (at scadel).
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Based on (2.59) and (2.60), the computation of Di@fficientsc(j,k) at (2.57) andi(j,k) at (2.58)
can also be redefined as (2.61) and (2.62), raspbct

c(j,k)=I f(t) 2129 (2 t-k) dt
=[O 2 hin- 2@ @t m)
=Y hm- 2k]J. n;(t) 414125 (341 ¢ ) di (2.61)
= him- 2Kc(j+ 1,m), nZ
d(j,k):j f(t) 2120 (2 t- k) dt
:If () 223 g - &P (27 - m) at
=Y gim- 2|<]j f(t) 21929 (3% t— m) df (2.62)

=Y glm- ] c(j+ L,m), n01Z

Equation (2.61) and (2.62) express how the DWT fadehts for wavelet and scaling
function at particular scalgcan be obtained from linear combination of DWT ftiorents from
smaller scale scaling function (at scpt&). These two equations also inform us that a clution
between DWT coefficients at scgkel with filter having impulse responsgn] andg[n] followed
by down sampling each output with factor 2 will guge new scaling and wavelet DWT
coefficients at scalg As a result, the filtering representation of DWéTrealized by developing
half-band low pass filtel and high pass filte®. The low pass filteH and high pass filteG have
weight valuedh[n] in (2.46) andg[n] in (2.52), respectively, as their impulse resgsnsThe term
half-band is used here singgn] and h[n] are related according to (2.53) which ensures the
orthogonality between scaling and wavelet funcillustrated in (2.46) and (2.52). As a result of
having relation described by (2.53), the frequeregponse ofs appears as the mirror image at
normalized frequency of Ombof low pass filteH. The filters satisfying (2.53) are also commonly
known as the Quadrature Mirror Filters (QMF).

Two scale equations (2.46) and (2.52) can now ée as discrete time filtering with filters
H andG, respectively [25]. The sampled version of origisignal x[n] is passed through filte®
andH. The half-band low pass filtét removes all frequencies component higher thandfatfie
highest frequency. On the contrary, the high pdtsr fG eliminates all frequency components
below half of the highest frequency. Consequeiig,number of samples at the output of the filter
is redundant if Nyquist criterion is considered. dnder to eliminate this redundancy, down
sampling by factor 2 is applied on the output o fiter. The down sampling (decimation) by
factor 2 is expressed as:

Yolnl = xd2 1 (2.63)

In (2.63), %[n] and yo[n] are the sequence of samples before and aftedebamation
process, respectively. In order to prevent thesalgacaused by the lost of information due to the
down sampling process, the signal is often pas$edugh anti-aliasing filter prior to the
decimation. This filter is called the decimatiolidfi. In our case, however, this is not necessary
since exactly half frequency component is remowvaat po down sampling by-2 operation.

Figure 2.19 illustrates the successive filteringplementation of DWT known as tree
structured filter bank. As mentioned before, th@use responses of half band low pass fitler
and high pass filteG are nothing but the weight valubf] and g[n] obtained from two-scale
equations (2.46) and (2.52), respectively. Theoactif low pass and high pass filtering followed
by decimation process make up a single-stage demsitign process famously known &so-
channel filter bank. The most important feature in filter bank implertagion of DWT is the fact
that the iteration of the two-channel filter baskonly performed on low pass branch of the tree.
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For example, it is assumed that the discrete-tmpeiti signal is[n]IV, spanning the normalized
frequency band of [0. Sincev; OW; = V,, the signal can be projected into subspacandW; by

performing the inner product betwexgm] and the scaling function as well as wavelet fiorcthat
scale subspacdé; andWs, respectively. In filter bank domain, these operat are equivalent to the
convolution between[n] and h[n] as well asx{n] and g[n] followed by two-rate down sampling.
The results are level-1 DWT coefficients illustrgtithe projection ok[n] on the two subspaces.
The normalized frequency band spanned the projeatiox[n] on Vs is [0, 0.5% while the
projection ofx[n] on W; spans the normalized frequency band 4. The same process can be
conducted iteratively on the output of the firsiegt low pass filteH in order to obtain the level-2

DWT coefficients illustrating the projection gffin] on V, andWs.
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Figure 2.19 The tree structured filter bank implementatiorDigcrete Wavelet Transform. The down arrow follogvin
number 2 illustrates decimation or down samplindamyor 2 [12].

In general, at every level, the filtering and dosampling will result in half the number of
samples (and thus half the time resolution) anéithalfrequency bands being spanned (and hence
doubles the frequency resolution). Figure 2.20 giveugh illustration of the frequency bands
spanned by each subspaces of the signflat each output branch of DWT tree. This conceyt ¢
be related to time-frequency tiling shown in fig@d3. In DWT, the iterative two-channel filter
bank is not performed on high frequency componasta result, the higher frequency component
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has wider bandwidth resulting in poor frequencyohason. However, the higher frequency
component has larger number of samples resultigpad time resolution. On the other hand, the
decomposition process is always applied on lowtfemgy component. Therefore, the lower
frequency component has lower bandwidth but smallember of samples resulting in good

frequency resolution but poor time resolution.

|H )|
Vo W Wi W, W
0 /16 n/8 /4 n/2 T
Figure 2.20 The frequency bands spanned by subspaces of s[gietl each output branch of DWT tree shown in figure
2.19.
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Figure 2.21 The tree structured filter bank implementatiodvelet Packet Transform. The down arrow followgd b
number 2 illustrates decimation or down samplindamyor 2 [12] X, illustrates sub space spanned by transform

coefficients at wavelet packet node b at level a.

2.4.6 Wavelet Packet Transform

The filter bank implementation of Discrete Wavéeleansform (DWT) performs iterative
decomposition only on the low pass filter outputhil&’ this approach is good to obtain the multi
resolution version of the signal being decomposecijrsive decomposition on both low and high
frequency component is also possible. This is vilagipens on Wavelet Packet Transform (WPT).
As it can be seen in figure 2.21, WPT performsitaation of the 2-channel filter bank on both
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low pass and high pass branch. The signal to bengdeesed is split into the detail (high frequency
component) and the approximation (low frequency ponents parts). Instead of just further
decomposing the approximation part, wavelet pademiomposition also splits the detail parts
further. Fom level of decomposition, the WPT producésiiferent sets of coefficients. In order to
simplify the discussion, every output point of eddter is namedwavelet packet node. For
example, at decomposition level 5 there would bev@2elet packet nodes. The output of each
wavelet packet node corresponds to particular #eguy band. In the example shown in figure 2.21,
the notationy,, is used to address the sub space spanned byotmransbefficients at node and
levela.

While figure 2.20 clearly shows the non-uniformdl/the frequency resolution of DWT,
each final outputs of the WPT branch has uniforagdiency resolution as it is shown in figure 2.22.
This uniformity is due to the same manner of decositmn in both low and high frequency
components. Hence, the outputs at wavelet packé¢sno the same level have evenly spaced
frequency bands. As a result, the time-frequerlaygtillustrated in figure 2.13 is not necessarily
true for WPT. As it is clear from figure 2.21 and®2, the coefficients of the wavelet packet
transform are not naturally ordered by increasirtgoof frequency. This issue would be clearer in
chapter 3.

The mathematical basis of WPT is similar to DWTwtdwer, it is always interesting to
investigate the relationship between filter banklementation of WPT and its theoretical
counterpart. The interested reader is referre@@ptp find out more about the topic.

| )|

A31 A2 X33 X36 X377 X35
31/8 /2 57/8 3n/4 /8 T
Figure2.22 The frequency bands spanned by subspaces of g[gfatl each wavelet packet node of WPT tree shown in
figure 2.21.

2.4.7 Inverse Wavelet Transform and Synthesis Filter Bank

While we have discussed about how signal decomipositsing DWT and WPT are
implemented using tree structured filter bank i previous two sub-sections, this sub-section
discusses about signal reconstruction using inva@r&WT or WPT using filter bank as well. It is
very common to address the tree structured filemkb illustrated in figure 2.19 and 2.21 as
analysis filter-banks since they are basically employed to analyze apbtexnsignal into either its
DWT coefficients or wavelet packets coefficientsorder to find the filter bank implementation of
signal reconstruction, one may recall the DWT retarction formula illustrated by (2.56) but this
time we consider different signélt) in thej+1 scaling function spa¢é, (t) CV,.,) [23]. Hence,

f,(t) can be simply expressed in term of scaling fuomctt scalg¢+1 as:

©

fi) = D c(j+Lk)2I™D2g (2Dt k) (2.64)
k=-0c0
It is also trivial to express this function in tesf scaling and wavelet function at sgaes:
f,(t) = Z c(j, k)22 (2 t-k)+ Z d(j,k)2 "%y (2 t- k) (2.65)
k=00 k=-00

Next, we can modify (2.65) by substituting the gahéorm of two-scale equations given
by (2.59) and (2.60) into (2.65). This results2r6g).
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00

)= c(i,k)D HA20™ 22 - 2k- )+ Z AR 4RI 2@+ 2k 1(2.66)

k=—c0 n k=—c0 n
Finally, we can multiply both sides of (2.66) By2U*Pt-k") and also take (2.64) into account.

After integrating the results of this multiplicatiowe can express scaling coefficients at spele
c(j+1, k) in terms of scaling and wavelet coefficientscatlgj [23]. This is given by (2.67).

d(j,k)
—

2 l» G |
d(j-1,k) ? L c(i+1,k)
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c(js
fz > H’ —f
Lo, 2 e B 4

Figure 2.23 Two-level two-band Synthesis Filter Bank
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Figure 2.24 The tree structured filter bank implementationrferse Discrete Wavelet Transform. The up arrow
following number 2 illustrates up-sampling by fac®o

c(j+1k)=D c(jmhk-2n+> d jm k2 i (2.67)
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Equation (2.67) actually does the opposite of whaierformed by (2.61) and (2.62). It basically
states that the DWT coefficients at particular Ig¥& can be obtained from linear combination of
both weighted scaling and wavelet coefficientsaille scalg. The filter bank implementation of
(2.67), which is famously known agnthesisfilter-bank can be illustrated by figure 2.23.

As it is obvious from figure 2.23, in two-band #yesis filter bank, the scaling and wavelet
coefficients are first up-sampled by factor 2. Tipesampling process by factor 2 can be generally
expressed as:

L N .

n/ 2], if — is an intege

Yolnl = %[l 2 J (2.68)
0 otherwise

In (2.68),%[n] andy[n] are the sequence of samples before and aftengksampling process,
respectively. This up-sampling process basicallybiies the number of samples in the input signal
by inserting a zero between each pair of samples.staling coefficients are later filtered by half
band low pass filteH’. Correspondingly, the wavelet coefficients aréefiédd by half band high
pass filterG'. The outputs of the two filters are summed in esrdo construct the scaling
coefficients at the next scale (which is half-spalky considering figure 2.23 as well as equations
(2.67), (2.59) and (2.60), it is obvious that timpulse responses bff andG’ are time reversed of
the impulse responses Bff and G, respectively. For simplicity, we might addrdss andG’ as
synthesis filters whilél andG can be addressed by analysis filters.
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Figure 2.25 The tree structured filter bank implementationrferse Wavelet Packet Transform. The up arrovovaihg
number 2 illustrates up-sampling by factor 2.

When the signal is decomposed using DWT, it isagbvpossible to reconstruct the
original signal by employing the inverse of DWT ledl IDWT (Inverse Discrete Wavelet
Transform). IDWT does the opposite of what is perfed by DWT. Figure 2.24 depicts the
synthesis filter bank realization of IDWT countempaf figure 2.19. Likewise, Inverse Wavelet
Packet Transform (IWPT) is used to reconstructdtiginal signal that is previously decomposed
by WPT. The filter bank implementation of IWPT lisistrated by figure 2.25.
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2.4.8 Popular Wavelet Families

In this thesis, several popular wavelet familiese ased as a basis of wavelet based
spectrum estimation. This sub-section is dedic&tedive brief introduction about these wavelet

families.
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Figure 2.26 lllustration of some wavelet family function (apbt (Daubechies-1) (b) Daubechies-2 (c) Daubechies-

Coiflet-2 (e) Coiflet-3 (f) Coiflet-4.

One of the most popular wavelet familiedDiaubechies, named after Ingrid Daubechies,
the leading researcher in the world of wavelet. ligmhies wavelets are compactly supported
orthonormal wavelets, which allow the discrete wetvanalysis becomes practicable. In practical
world, Daubechies family is commonly written ad\ilvhereN is the order. As discrete wavelets,
the length of Daubechies idN2 One of the members of Daubechies family is dbfickv is
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famously known as Haar wavelet. Haar wavelet isstheplest wavelet. It is discontinuous and not
differentiable. The shape of the Haar waveletnslar to the unit step function.

Coiflets is another wavelet family that is used in thissteeSimilar to Daubechies, Coiflets
family is also normally written as cdifwith N as the order and\6as the length of the wavelet.
This discrete wavelet is designed by Ingrid DaubeExhio be more symmetrical than the
Daubechies wavelets. Another wavelet family tisanhéarly symmetrical iSymlets, which is
also the variant of Daubechies wavelets. SimilaD#éoibechies, Symlets are also written asidym
with N as the order and\Ras the length of the wavelet. Figure 2.26 givesilthstrations of some
wavelet family functions. Other wavelet familiesick as Discrete Meyer, Biorthogonal wavelets
and Reverse Biorthogonal wavelets are also usediinmesearch. The Biorthogonal wavelets are
the wavelets where the corresponding wavelet toamsfcan be inverted but they are not
necessarily orthogonal [4]. The design of biorthwgavavelets provides more degrees of freedoms
than orthogonal wavelet. The intention of usingrthiogonal wavelets in spectrum estimation
experiments here is to find the importance of watgebrthogonality in the performance of the
spectrum estimation.

2.5 Existing literature on wavelet based spectrum estimation

In the context of dynamic spectrum access anditegmadio, the use of multiple narrow-
band Band Pass Filter (BPF) might be required Imyesspectrum sensing technique such as match
filtering illustrated in sub-section 2.2.1. In [27]ian and Giannakis propose a wavelet based edge
detection for spectrum sensing in cognitive rathiogeneral, this technique eliminates the need of
multiple narrowband BPF. Moreover, the number @csum bands lies within the band of interest
can be assumed to be unknown. Under this assumgtienuse of multiple BPF-s is not only
challenging but also useless because we even daoot the number of required BPF.

In Tian & Giannakis proposal, the wide band okmest should be known and it can be
defined as a band in the frequency rapge fy_ ] with bandwidth ofB = fy_ - f,. In this band of

interest, there could k¥ spectrum bands and some of them could be occupiedtask is how to
find Ng, the occupied and unoccupied bands and the fregubaundaries of each band. By
defining then-th band asB, : {f 0 B, : f,s < f < f}, n =1, 2, ...,Ns, we need to find
fo<fy < fy<...<fy, 1< fy,. Once the number of spectrum bahsand the boundaries of every

band are found, the spectral density estimatiomr¥ery band is conducted by assuming the smooth
and flat power spectrum density (PSD) within eaahdband the presence of discontinuities and
irregularities around the boundary between two @adja bands. In addition, additive zero mean

white is assumed [27]. Figure 2.27 illustrates ities.
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Figure 2.27 lllustration of the assumption used by waveletldlasdge detection proposed by Tian and Giannak&7in

Given the wide band of intergdg, fy_1, Tian and Giannakis method employs wavelets to

locate the discontinuities and irregularities witttie wide band. In other words, the wavelets play
important roles in order to find the boundarieswsstn bands, and thus the number of narrow
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bands within the wide band of interest as wellgémeral, Continuous Wavelet Transform (CWT)
is used for this purpose. However, instead of dpglthe CWT on the time domain version of the
signal, Tian and Giannakis apply the CWT on the PSben a wavelet functign(f), the dilated

version bys of (f) can be defined as:

v =290 (2.69)
The CWT of the PSD can then be defined as [27]:
CWH S( J} = CWE (()s= $ )¢ )i (2.70)

The next step is by taking into account the faat the PSDS, ( f) is the Fourier Transform of the
autocorrelation functioR, () and defined the inverse Fourier Transform of theelet function
Ys(f)as:

Ws(D) = IFT{g{ )} =K s) (2.71)

In (2.71),IFT { } denotes Inverse Fourier Transform. By taking7(®) into account, (2.70) can be
represented as:

CWHS(=FTRIY B (2.72)
FT {} in (2.72) denotes Fourier Transform. Given (2)/Tian and Giannakis investigate the shape
of the first and second order derivative ©VT §( j} in order to locate the irregularities and

discontinuities in the wide band of interest. Imgel, the first and second order derivative ofZ}.
can be described by (2.73) and (2.74), respect2aly

CWT{S( T} = SL{ ST )f=- SFT ® ¢ I 2.73)
2
CWT{S( = &0 ST )= & RT2 @) Wi )b (2.74)

In (2.73) and (2.74)CWT{ S( J} andCWT"{ §( J} are the first and second order derivative of
CWT of the PSDg (). These two derivatives actually describe the fasd second order
derivatives ofS,( f) smoothed by the wavelgt(f) .

According to [27], the local maxima of the firsder derivativeCWT{S, (f)} can be used
to indicate the irregularities of the PSD. Therefowith regard to the assumption that the PSD is
smooth within each band, the boundaries of eachk lban be located by the location of the local
maxima ofCWT{S (f)}. The same goal can also be achieved by trackiegatation of zero

crossing of the second order derivaB@T'{S, (f)} . Both of these two procedures give the
location of fy, f;, f5,......fy, 1 .fn, - The problem that might emerge in this approactthis

possibility of noise that could induce local maxima the shape of first order
derivativeCWT{S, (f)} . However, this problem can be avoided by varying value of scale
variable s. By assuming that the noise is random, the locakima induced by the noise in
CWT{S (f)} for given scalesis less likely to reappear again for differentneabfs. Hence, the
actual boundaries of each band are described bylodted maxima that always presents in
CWT{S, (f)} for any scales.

After the boundaries of each band are identified,level of PSD of the received signal is
measured with respect to noise PSD. After caloujathe average of total PSD, the PSD of the
received signal is obtained by subtracting nois® B®m the average of total PSD. Tian and
Giannakis experiment in [27] has shown that the eletvbased edge detection approach has
successfully identified the number of occupied buasitiin wide band of interest. This method has
also offered what is called good dynamic spectrange.

Another use of wavelet approach for spectrum senisi offered by Hur, et al in [28]. The
idea is to provide combination of coarse and fieesing resulting in Multi Resolution Spectrum
Sensing. The received signal is correlated with tiedulated wavelet and the result of the
correlation process represents the spectral canténibe input signal at the band around the aarrie
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frequency that is modulated by the wavelet. Thelut®n is adjusted by either using wavelet with
large resolution bandwidth (sparse resolution)mals resolution bandwidth (precise resolution).
With regard to cognitive radio, the coarse sensmdasically used to examine a wideband
spectrum in fast manner and to produce informagsibout candidate spectrum segments that are
unoccupied. If it is needed, the fine sensing canubed to further investigate the candidate

spectrum segments [28]. However, the speed isslated to the use of double sensing needs to be
investigated further.
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CHAPTER 3 DEVELOPMENT OF WAVELET BASED SPECTRUM
ESTIMATOR

In this chapter, we elaborate on the constructibrthe novel wavelet based spectrum
estimation technique developed in our research. i@wel wavelet based spectrum estimation
method is based on Wavelet Packet Transform (WiRTgduced in the previous chapter. The filter
bank architecture is employed in order to realtze WPT. This chapter starts with section 3.1
which describes how the spectrum estimator is baed on wavelet packet representation. This is
then followed by a discussion on spectral foot pahthe wavelet packet coefficients and their
frequency ordering. This section also presentswiheelet packet based spectrum estimator as a
filter bank problem. This representation is uséfusimplify the comparative analysis between the
wavelet based technique with existing spectrummedion methods such as Periodogram and
Welch approaches. Parseval relationship and ermogygervation is crucial in Fourier Transform
theory and this energy conservation concept isrthim reason why Fourier Transform can be used
for spectrum estimation. Section 3.2 shows how wavelet transform is a lossless unitary
transform like Fourier Transform, and thus can bpleyed for spectrum estimation. Section 3.3
talks about the relationship between wavelet pacgetficient and power spectrum density (PSD).
Section 3.4 explains the simulation setup, expartgjescenarios and results. The results of wavelet
based estimation is provided together with themedtiés of Periodogram and Welch method.
Section 3.5 gives remarks on the comparative aisapesformed in section 3.4 while section 3.6
concludes this chapter.

3.1 Spectrum Estimation through Wavelet Packet (WP) Tree Construction

3.1.1 Wavelet Packet Repr esentation

In this section, we will describe the proposed spme estimation approach based on
discrete wavelet packet transform using filter tsarkis well known from the theory of wavelets
that compactly supported wavelet can be deriveh fperfect reconstruction filter banks [4]. Two
channel filter banks split the given signal inte ttoarse version (low frequency component) and
detail version (high frequency component). The aishigh pass and low pass filter removes the
lower half and the upper half frequency componergspectively. As a result, the output signal
only spans the half of the frequency band spangeithd input signal. However, the time scale of
the signal remains unchanged. To retain the samauof samples, the filter outputs are down
sampled by factor 2. Therefore, one step deconipositrocess consisting of half band filtering
and down sampling basically reduces the time réisolby a half and reduces the frequency band
spanned by the signal by half as well. The schentbdn iterated successively on both the coarse
and detailed versions until the desired degreesislution to form a cascaded tree structure.

Through this hierarchical coding scheme, the sigodbe estimated is successively split
into high and low frequency components. The castamie channel filter banks structure
recursively decomposes the signal being estimatetl maps the signal components into the
frequency domain. This process may be likened $sipg the received signal into a sieve of filters
(filter banks) where the output point of each filie a wavelet packet node. The output of each
wavelet packet node corresponds to a particulgugecy band. The decomposition of the signal
into different frequency bands with different regans is possible. The resolution of the estimate
can be adjusted by increasing or decreasing thelslenf iteration. The greater the degree of
decomposition, the better the frequency resolugoifhe number of successions is usually limited
by the desired level of frequency resolution andilable computational power. Such successive
high and low pass filtering results in the deconipms of the signal into wavelet packet
coefficients at different frequency bands.

We may recall from chapter 2 that the impulse raspmf analysis low pass filtefn] and
high pass filterg[n] in figure 3.1 should satisfy the two-scale eqoadi illustrated in (2.46) and
(2.52). Moreoverg[n] and h[n] must be tightly coupled by the Quadrature MirFilters (QMF)
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relation, as in (2.53) to ensure the orthogondigyween scaling and wavelet functions. In figure
3.1, a level-4 decomposition procedure generatiigvavelet packet coefficients are illustrated.
These 16 wavelet packet coefficients are produtd® avavelet packet nodes corresponding to 16
outputs of the 16 filters at level 4. It is alsepible to utilize the outputs at level 2 or levelf3he
tree. This is the advantage of using wavelet packet output of every node at every level can be
chosen according to the desired frequency resolufibe wavelet packet coefficients at the filters
output actually describe the projection of the algm the corresponding wavelet and scaling basis
functions.

Signal Being
Estimated
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v ¥
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Frequency Ordering

Figure 3.1 Wavelet packet tree for four levels wavelet padeztomposition. Herel(z) andG(2) denote the low and
high pass decomposition filters, respectively. @ben arrows represent decimation by 2. It shoulddted that the
coefficients of the wavelet packet transform areardered by increasing order of frequency. Gregecpermutation is

required to obtain the correct frequency order.

3.1.2 Frequency Ordering of Wavelet Packet Coefficients

It is of great importance to understand the spédwot print of the wavelet packet
coefficients and their frequency ordering to beedtol identify and isolate coefficient that lie near
the interference spectrum. The coefficients of Wevelet packet transform are not naturally
ordered by increasing order of frequency. Instélagly are numbered on the basis of a sequential
binary grey code value. For example if each coieificin the level basis is humbered with a
sequential decimal order (0000, 0001, 0010, O01Lihe frequency ordering of the coefficients can
be ordered by frequency by sorting them into Gragecvalue (0000, 0001, 0011, 0010, 0110,...)
[29].

To understand the working of the wavelet packetdiam, consider the example shown in
Figures 3.2 and 3.3 where the decomposition ofjaasispanning 0-8 Hz is considered for up to
two levels. The output of a decomposition proceghé result of the scaling function (the low pass
filter) and the result of the wavelet function (thigh pass filter) followed by down sampling.
Down sampling generates two new filter results witdif the number of elements in the time
domain. In addition to this, it also results in raiing of the high pass components in the frequency
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domain. This switches the low and high pass commisnen a subsequent decomposition as
exemplified in the figures. When the wavelet pacdgborithm is recursively applied the resultant
wavelet packet coefficients obtained follow the Yscade sequence.
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Figure 3.2 Level 1 Decomposition: Mirroring of high pass campnts due to down sampling. In the figurgd2notes
down sampling by 2
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Figure 3.3 Level 2 Decomposition (continued from Figure 3 e 2-levels wavelet packet decomposition is &gpli

Due to down sampling all the high frequency parésmirrored. The low and high pass part is swappedsubsequent

transform. In the figure, |2denotes down sampling by 2. Note that the outpthieo T wavelet packet node correspond
to 0-2Hz, 29 wavelet packet node correspond to 2-4H2aBd 4" node correspond to 6-8Hz and 4-6Hz respectively

Because of the Gray code ordering there is a reéormulate the frequency ordering of
the output of wavelet packet node given the orddhe node. Jensen and la Cour-Harbo in [29]
has found that this relationship is expressiblé&esy Code permutation. For example, given the
decimal numben = 5 having binary representation (in the fornbpbs b, b;) by=1,b, =0, b3 =1,
b, = 0, the Gray Code permuted integ&€(n) is defined via the following formula [29]:

GC(h) = (b + hy) mod 2 (3.1)

Hence, given the order of wavelet packet node l&sifs:

0 1 2 3 4 5 6 7
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, having binary representation:
0000 0001 0010 0011 0100 0101 0110 0111
The Gray code permutation of the binary represemtatbove would be:
0000 0001 0011 0010 0110 0111 0101 0100
Therefore, the wavelet packet node number in irsongafrequency would be:
0 1 3 2 6 7 5 4

Instead of the usual Gray Code Permutation, we pergent an alternative algorithm to
convert the sequence from Gray to binary. This oubtis easier since it does not involve any
binary to decimal conversion and vice versa. Ifwlaevelet packet nodes are in sequence (from the
smallest number to largest number), the algoritbmobtaining the frequency band order is as
follows:

e Initialize a vector alpha with elements 0 and 1 (alpha = [0 1])
« Define the required Tevel of wavelet packet decomposition L
e For j =2 to L-1do ]

beta = alpha + 2;

Flip the element of beta
Append beta into the end of alpha

Table 3.1 Relationship between wavelet packet node numigefreiuency ordering and the spanned frequency &and
4" decomposition level

Wavelet Frequency Spanned frequency band Spanned frequency band (Hz
packet nodg order number| (Case 1:in terms of normalize (Case 2: the entire spanned

number frequency) frequency is [0, 500 Hz]

0 0 0 - 0.062% 0-31.25

1 1 0.06251- 0.125t1 31.25-62.5

2 3 0.1875t1- 0. 251 93.75-125

3 2 0.125t1- 0.1875t1 62.5 - 93.75

4 7 0.43751- 0.51 218.75-250

5 6 0.3751- 0.4375t1 187.5-218.75

6 4 0.251- 0.31251 125-156.25

7 S 0.31251- 0.375t1 156.25-187.5

8 15 0.93751- 1 468.75-500

9 14 0.8751- 0.93751 437.5-468.75

10 12 0.75r1- 0.81251 375-406.25

11 13 0.81251- 0.8751 406.25-437.5

12 8 0.5m- 0.56251 250-281.25

13 9 0.56251- 0.6251 218.25-312.5

14 11 0.68751- 0.751 343.75-375

15 10 0.6251- 0.68751 312.5-343.75

The bottom part of figure 3.1 shows the relatiopgdhétween the order of wavelet packet
node number and its frequency ordering for 4-led@tomposition. There are 16 nodes in the
lowest level shown in figure 3.1 corresponding €ffequency bands. These 16 frequency bands
span the normalized frequency rangermOor given sampling frequencf Hz, they span the
frequency range of [0 Hz, G:3Hz]. If the spanned frequency range is [0 Hz, B&D the width of
frequency range spanned by single wavelet packe¢ @b the %4 level is 500Hz/16 = 31.25Hz.
Table 3.1 gives the relationship between wavelek@anode number, its frequency ordering and
the spanned frequency band. For clarity, two casegrovided here. The first case is in terms of
normalized frequency and the second case is fosphaned frequency range of [0 Hz, 500 Hz].
Finally, figure 3.4 illustrates the modified struct of wavelet packet tree with 3-level of
decomposition in order to match the frequency ongerWe can note the difference of this
structure with the first 3 level of the tree shoinrfigure 3.1, especially the order of analysis low
pass filterH and high pass filte® in each level.
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Figure 3.4 Wavelet packet decomposition of a signal. He¢@ndG deno
pass decomposition filters, respectively. The dewows represent dec
coefficients. Besides the decomposition, the P@yectral Density (P
successive octave bands normalized to the Nyquaigiéncy is shown.
order to match frequency ordering
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Figure 3.5 Wavelet packet based spectrum estimation conceyt the point of view of filter bank paradigm. H&e
level decomposition is employed resulting in 8uaitfilters splitting the normalized frequency bdfgrm] into eight
sub-bands corresponding to eight estimate points.
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3.1.3 Wavelet Packet based spectrum estimation as a Filter Bank analysis problem

From filter bank paradigm point of view, the wavelgacket approach is a natural
extension to the Multi Taper Spectrum EstimatiomT Q&) in the sense that this method also uses
different orthogonal filters as prototype filtersithinstead of Slepian sequences the filters are
derived from tree structures constructed by casgagdavelet packet decomposition filters. Akin to
MTSE and periodogram, every single point of the el packet spectrum estimates can be
viewed as an output of a virtual filter having passid around that point. However, in contrast to
MTSE and periodogram, these filters are realizectd&gcading several analysis low pass and/or
high pass filters, which are derived from singletptype according to two scale equations and
guadrature mirroring relationship illustrated byd@), (2.52), and (2.53), respectively. The impulse

response of these cascaded filters called wavategh dualé/i[k] [6], which can be represented as:

I = 1" (2R 12770 (277,
where, ki< 2- 1 .

and,f k)= .
g[K],for highpass branches

Figure 3.5 illustrates the filter bank paradigm tbé proposed wavelet packet based
spectrum estimator. As it is obvious from the figuthere are eight virtual filters dividing
normalized frequency range of f),into 8 sub-bands. In this figure, the decomponitievel is 3
which results in 8 estimate points. The impuls@oese of each virtual filter in this figure can be
derived from (3.2). Clearly, higher level of decarsjion would increase the number of sub-bands
(or estimate points) and thus it would increaseftbguency resolution.

H K], for lowpass branches

3.2 Wavelet Packet Transform and Energy Conservation

As in the case of Fourier Transform, the relatigmdietween the amplitude of the signal
and wavelet coefficients needs to be defined iretd develop valid wavelet based spectrum
estimation. As already known, the Parseval relagimves that the Fourier transform is a lossless
unitary transform. Likewise, we need to asserhd wavelet packet transforms preserves energy
too. In order to verify this relation, we can staytrepresenting a functid{x) in Hilbert Space as
linear combination of the basis functigx) :

f(x) = Zai ¢ (X) (3.3)

It is clear from (3.3) that, can be obtained from inner product between basistian ¢, (x) and
functionf(x):

a, =(¢,(x), f(x) (3.4)
The norm of the function can be computed from thegform coefficients:
[£ 0= 2lal = 2}, f () (3.5)

By assuming that a functiog(x) has transform coefficients, we can derive the generalized
Parseval equation by taking the inner product betwe/o functions(x) andg(x) in Hilbert Space:

(F09,900) =X @h = X.(1(.4,00)(4, (,9(x) (3.6)

In (3.6), Ei indicates the complex conjugate versiomrof According to Todorovska and Hao in

[30], the Parseval relation for Discrete Orthogowédvelet Transform and its inverse is obtained
by substitution on generalized Parseval Equatiof3i@). While the general equations for Discrete
Wavelet Transform (DWT) have already been given(h$6)-(2.58), we try to rewrite the DWT
equations specifically for discrete sigmgh] with respect to our filter bank implementatiorosm

in figure 3.4. Discrete wavelet transforms pairs fliscrete signak[n] can be represented as
follows [30]:
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SUEDIETTRG +(Z o k)wj,ka @7
o(3,K) = (@ [nl, ) andd(j.k) = (@ «[n]. X{ri ) (3.8)

In (3.7) and (3.8)J is the decomposition level andis total number of samples. The two equations,
(3.7) and (3.8) are nothing but the synthesis andlyais equations, respectively. The first
component in the right side of (3.7) is the cograg of signak[n], which is represented as linear

combination of the scaling functigh ,[N] . On the other hand, the second part in the riglet af
(3.7) is the detail version ok[n], which is represented as linear combination ofvelet
functiony; [n] . If we have another signay[n] with d”(j,k) andc®(Jk) as its wavelet packet
coefficients, the Parseval relation fgn] andx[n] can be described using (3.6) as:
o J N/2 N2
o= 340 =( SR et ind iy | Eetanean | oo
n=-o j=1 k=1 k=1

Using (3.9) and by takingn] = y[n], the Parseval relation describing the normg[af can be given
as [30]:

5 o ) J N/2 _ ,) N2 )
ol = 3 = 38 s af |+ S 510

Equation (3.10) clearly illustrates the losslestureaof wavelet transform. Hence, the discrete
wavelet transform preserves the time domain enargyavelet domain. This lossless feature is
really important and a fundamental reason why thectsum estimation technique based on
wavelet can be built.

Parseval relation holds well for both conventiod&kcrete wavelet transform and wavelet
packet decomposition. The Parseval relation for elsvpacket can be practically proved as
follows:

« Perform wavelet packet decomposition

e Extract the wavelet coefficients of each node. #oee level decomposition, the result
would be eight vectors of wavelet coefficient naynef ogeo, Cfrodets - -1 Chaoder-

e Calculate the total energy in wavelet packet don(gjp) from the wavelet coefficients by
performing an inner product (dot product) of thetee with itself as follows:

EWP = CfnodeO * Cfnodeol + Cfnodel* CfnodeJ: ot Cfnode 7* Cfnode7l (3-11)

Based on Parseval relationship with respect toreliscwavelet transform and wavelet
packet decomposition illustrated above, we car giatefine the wavelet based spectrum estimates.
Given a certain level of wavelet packet decompasitithe wavelet packet nodes span the
frequency band from 0 to G5with fs as the sampling frequency. This fact is the resufilter
banks theory proposed in [4]. If we handevel wavelet packet decomposition, there will Ze
packet nodes as tree’s leaves. This decompositibmivide [0 0.5 into 2" equal band and the
output of each node in the leaves correspond to lkkacd. The energy contained in particular band
can be found from inner product of the wavelet padtoefficients vector of the corresponding
node with itself. It can be noted that we can fthd energy for different frequency resolution
simply by investigating the wavelet coefficientsdifferent levels. The advantage of the wavelet
packet decomposition is that we do not only haveeha coefficients of the nodes in the tree’s
leaves but also those of nodes in different lev¢he tree.

3.3 Calculating Power Spectrum Density from Wavelet Packet Coefficients
As a consequence of the conformance of WPT to Palrselationship, the power spectrum
density inm" frequency band®SD,,,) corresponding tai” wavelet packet node can be computed

from the energyHuwen) found in them™ node, the frequency band that is spanned by sinaielet
packet node and total number of samess follows:
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PSD,p,, :E‘Ni(watt / (radian/ sample)) (3.12)

fWP
3.4 Experiments and Results

3.4.1 Experiment scenarios, sources and their characteristics

In order to investigate the performance of the wetvpacket based spectrum estimation
technique, four different types of sources are icmed, namely, partial-band, single tone, multi-
tones and swept tone. The partial-band sourcetbhasnergy spread over a continuous range of
frequencies and it occupies the normalized frequdrand from 0.2 to 0.751 The single tone
source has all of its energy at one frequency 8aitsi right in the middle of the range spanned by
wavelet based spectrum estimation, namely at .Be multi-tones source consists of seven single
tone sources located at normalized frequency frdi@3 to 0.87% and they are equally spaced.
Finally, a swept tone source is introduced to best well the estimation schemes perform when
there are temporal variations in the frequency pmzli A swept tone source is just like a partial
band source except that it occupies different baatddifferent instances. The vastly different
nature of the test sources will give interestingghts into the operation of the spectrum estinmatio
tool. Table 3.2 summarizes the description of sesirsed in the experiment

Table 3.2 Description of four types of sources used in theegdments

Type of sources Description
1 | Partial band »  Frequency occupied: [0.23.757
2 | Single tone » Frequency occupied: 05
3 | Multi-tones » Consist of 7 single tones occupying normalized
frequency: 0.126, 0.25t, 0.3751, 0.5, 0.6257,
0.75tand 0.87%
4 | Swept tone » Different bands are occupied at different

instances
*  Sweeping the frequency band of [0.2.8r]
* 20 sweeps (each of 640 samples)
* One sweep can be divided into 5 sub sweeps
* The estimate of each sub sweep is displayed

To gauge the swept tone source, 20 sweeps (eg@0aiinit samples) are considered. The
sweep spans the normalized frequency bantt @2.8t In order to present the effect of highly
time-varying frequency on spectrum estimation,@bmate for five portions of a single sweep is
displayed. The estimation technique depicts that i28 unit samples of a single sweep followed
by the next 128 unit samples of the same sweepsarah until the fifth 128 unit samples of the
same sweep. For this experiment, several wavetsiliés are investigated namely Daubechies
families, Coiflet, Symlet, Discrete Meyer, Biorthatal and Reverse Biorthogonal.

3.4.2 Result and Analysis
A. Partial Band Source

A.1 Analysison various wavelet families
In this type of source, we try to provide somdiprmary assessment on our wavelet based
estimation approach. A comprehensive analysisasiged in chapter 4. For partial band source,
the performance of the estimation techniques imiyavaluated with respect to three different
metrics:
« Leakage suppression (rejection at unoccupied bandjometimes known as side lobe
suppression
« Variance of the estimated power spectrum densBpjP
¢ Transition band (transition between active bandwmatcupied band).
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Figure 3.6 Periodogram and wavelet based estimates (DaulsetfjeSymlet 15, and Discrete Meyer) for partialba
source. The number of samples in this experimeh2&90. 7-level decomposition is used in wavelsebzestimation.

Figures 3.6 and 3.7 depict Periodogram and Welgromgh as well as various wavelet
families based estimates for the case of partiadlls@urce. In these figures, the number of samples
used in the experiment is 12800. For the purpogaisfexperiment, the Welch approach divides
the received samples into 399 segments of 64 sampyeo consecutive segments overlap to one
another by 50%. Before performing the averaging@ss, Hamming window is applied on each
segment.

For the case of wavelet based estimates, 7-levsndgosition is used in the experiment
shown in figures 3.6-3.7. Daubechies-15, CoifletSymlet-15, Biorthogonal-3.9 and Reverse
Biorthogonal 3.9 are chosen because they have kpugimparable wavelet filters length.
Daubechies-15, Coiflet-5, and Symlet-15 have filéergth of 30 while both Biorthogonal 3.9 and
Reverse Biorthogonal 3.9 have filter length of @0. the other hand, Discrete Meyer having filter
length of 102 is included here in order to giv@agh idea on how the length of the decomposition
filter impacts the quality of the estimate.

From figures 3.6 and 3.7, it can be seen that BisdMeyer wavelet is better than other
wavelets families in terms of transition band (siion between active band and unoccupied band)
as well as the variance of the estimated powertspacdensity (PSD). However, it should be
noted that the length of decomposition filter fas@ete Mayer is 102 and thus it introduces more
complexity in its actual implementation. Among atleavelet families, the PSD estimates based
on Daubechies-15, Symlet-15 and Coiflet-5 are caiteeptable. All of these three wavelet families
have filter length of 30. We can notice the poansition band on the estimates based on these
three wavelets, which are very likely caused byrgoeguency selectivity of their corresponding
wavelet decomposition filter. On the other hande frerformance of non orthogonal wavelet
families (Biorthogonal 3.9 and its reverse couptart) is extremely poor and thus their usage is not
recommended.

When the performance of the wavelet based estinsateompared to Fourier based
periodogram, it appears that the transition bangesfodogram is moderately superior to wavelet
based estimate. However, on account of the variahtee estimated PSD, the wavelet approach
performs significantly better than the periodogrémthe context of dynamic spectrum access as in
cognitive radio applications, a large variancehia ¢stimate could lead to erroneous judgements in
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the presence/absence of a source. Hence, in thie mievariance of estimated PSD, it can be said
that orthogonal wavelet based estimate is preferabotomparison to the periodogram for partial
band sources with number of samples of 12800.

The Welch approach shows a slightly better perfaceathan orthogonal wavelet based
estimate. The averaging of estimates in the Webghaach plays an important role in ensuring that
the PSD has a small variance while maintainingghansition band. However, the transition band
found in Welch approach is only marginally betteart that is found in Discrete Meyer wavelet
based estimate. This means that there is a greaesior improvement in the wavelet based
approach especially when the length of the decoitipodilter is increased.

Power/frequency (dB/rad/sample)

—— Coiflet-5
—P— Biorthogonal 3.9 |7~ " "~
Rewerse Biorthogonal 3.9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized Frequency (x 1t rad/sample)

Figure 3.7 Welch approach and wavelet based estimates (Ebifl@orthogonal 3.9, and reverse biorthogona) &0
partial band sourc&@he number of samples in this experiment is 1280k overlap percentage and the length of each

segment employed in Welch approach is 50% and iles, respectively. Hamming window is used in Wisich
approach. 7-level decomposition is used in wauedsed estimation.

Figure 3.6 and 3.7 also show that the level ofnestiéd power in unoccupied band for
Welch approach is higher than for simple periodograeaning that the Welch approach offers
poorer rejection in the unoccupied band. This idenstandable since Welch approach divides the
received samples into several segments with lowenber of samples before estimating each
segment. In the other words, the size of windowWelch approach for each segment is
significantly smaller than in simple periodograndahus Welch approach introduced wider main
lobe in its window kernel. As a result, Welch methotroduces more leakage than the
periodogram. The introduction of Hamming window VMelch approach, however, helps to
improve the rejection in unoccupied band to theslleas shown in figure 3.7. The wavelet based
approach offers slightly better rejection than bdtelch and periodogram in the normalized
unoccupied frequency band of [0, Orl&nd [0.8%, =]. This means that once the transition from
active band to unoccupied band is completed, thiealge rejection in unoccupied band offered by
wavelet based estimates is not that poor.

Figure 3.8 illustrates the effect of filter lengbim the performance of the wavelet based
estimates. In this case, the Daubechies familglected for the experiment. It should be noted that
the length of the filter is twice the index of thevelet. For example, Daubechies-4 has filter
length of 8. It can also be noted that Haar isatiDaubechies-1 and thus it has a filter lendth o
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2. From figure 3.8, it is obvious that the longke ffilter length, the smaller the transition band.
Longer filter length appears to correspond to #éebastuppression of power in the unoccupied band
as well. However, a longer filter length also mearsgher complexity in the implementation.
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Figure 3.8 Wavelet based estimates for partial band souriog Baubechies family with different filter lengtflevel
decomposition is used here. The number of sampléss experiment is 12800
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Figure 3.9 PSD estimates of partial band source accordivgtious decomposition level of Daubechies-20. Tinalmer
of samples in this experiment is 12800.
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A.2 Analysis on decomposition level

Figures 3.9-3.12 demonstrate the effect of wavdktomposition levels on the PSD
estimates. The results are provided in four diffefigures for ease of depiction. In figure 3.9,
wavelet based PSD estimates are displayed at fiiarait decomposition levels, namely 5-level,
7-level, 9-level and 11-level. Of particular intstrevith the wavelet packet approach is the variance
of estimated PSD with increasing / decreasing ocbdgosition levels. With a decrease in depth of
signal decomposition, the variance of the estim&8® achievable is reduced. This is reasonable
since the lower the decomposition level, the latgerband spanned by single wavelet packet node.
Therefore, the total energy obtained from singlevelet packet node would be averaged over
larger frequency band resulting in smaller variance

Power/Frequency (dB/rad/sample)

50 I | Periodogram -
Daubechies 20 (11-level decomposition)
—%— Daubechies 20 (6-level decomposition)

—&— Welch Approach

0.1 0.2 oﬁs 0.4 0.5 oﬁe 0.7 0.8 0.9 1
Normalized Frequency (x 1t rad/sample)

Figure 3.10 PSD estimates of partial band source accordimtifferent decomposition level of Daubechies-20 thge
with Periodogram and Welch Estimate. This figurenduded to describe how the effect of decompaositevel on
wavelet estimates with respect to Periodogram aetth\estimates. The number of samples in this éxeat is 12800.
The overlap percentage and the length of each segem#ployed in Welch approach is 50% and 64 sampdepectively.

Hamming window is used in this Welch approach.

-60
0

a) Comparison with Welch method and Periodogram

Even though 11-level wavelet packet decompositidroduces a large variance, it is still
much smaller than in periodogram (see figure 3.T@ variance is considerably reduced as the
decomposition level is lowered to 6 though is $ttger than in Welch estimates. It can thus be
inferred from figure 3.9 and 3.10 that the decontmws level of wavelet based spectrum
estimation can be adjusted to get a variance soerenwh between the variance found in Welch
and periodogram. As it is clear from section 3He wavelet packet based spectrum estimator
allows us to exploit not only the wavelet coeffiti® produced by the node in the leaves of the tree
but also the coefficients produced by all nodesalinlevels of the tree. For example, if the
decomposition level is set to 11, we do not onlythe coefficients of the nodes at thé"14vel
but also at the T0level, the § level and so on. Therefore, we can actually obtairitiple
estimates from different levels of the tree andceemultiple estimates with different degree of
variance, in one snapshot and one operation. Umfately, for partial band source, varying the
decomposition level does not significantly imprdie transition band and the side lobe level (the
rejection in the unoccupied band). This is cleanfifigures 3.9 and 3.10.
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Figure 3.11 PSD estimates of partial band source accordiniiffierent decomposition level of Daubechies-20 thge

with Thomson’s MTSE and Periodogram using Hann wimdThe number of samples in this experiment i0028
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Figure 3.12 PSD estimates of partial band source accordimtifferent decomposition level of Daubechies-20 thge
with Periodogram using Hamming window and Blackmamdow. The number of samples in this experimerit2800.
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b) Comparison with windowed Periodogram and MTSE

Figures 3.11 and 3.12 show that applying the wintlothe periodogram reduces the side
lobes in the estimates. However, the windowingniegre does not reduce the large variance of the
periodogram estimates. In fact, the variance ofdbiémated PSD in periodogram with various
windows introduced here are much larger than itet&} wavelet packet based estimation scheme.
Lastly, as already discussed in chapter 2, MultpeFaSpectrum Estimation (MTSE) tries to
minimize the variance of estimated PSD by employmgtiple orthogonal prototype filters. As a
result, it offers much smaller variance comparedpaviodogram. The derivation of MTSE
prototype filters based on Slepian sequence haftedsn excellent leakage suppression and thus
the MTSE easily outperforms the wavelet based ambravith respect to rejection at unoccupied
band. However, the variance of MTSE is still sigrahtly larger than the one found in wavelet
based estimates presented here. Moreover, the NST&HEnplex and difficult to implement.

A.3 Analysisfor the case of small number of samples

Figures 3.13 and 3.14 depict the performance ofeledvbased estimates along with
periodogram and Welch approach for small numbeaaiples. The number of samples used in the
experiments is 384. The setting of Welch approagdihere is exactly the same as the one used in
figure 3.7. The purpose of this experiment is tarheabout the behavior of the estimators when
higher speed of estimation is demanded as in the chcognitive radio. Assuming the sampling
rate is constant, higher speed of estimation woatdespond to smaller number of samples.

w N =
o o o

Power / frequency (dB/ rad/sample)
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Periodogram

—*— Discrete Meyer

SO R AT T A —©— Symlet-15 -
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Normalized Frequency (x pi rad/sample)

Figure 3.13 Periodogram and wavelet based estimates (SymletritbDiscrete Meyer) for partial band source. The
number of samples in this experiment is 384. 74ldeeomposition is used in wavelet based estimation

In general, there is no significant different betwehe Welch estimates found in figure 3.7
and in figure 3.14 in terms of rejection level retunoccupied band. This is logical since the size
of each segment for both cases is the same, nabdelyHowever, the variance of the Welch
estimates is increased when the number of samplesduced because the estimates are now
averaged over 11 segments instead of 399 (refarefig.7). On the other hand, the periodogram
estimates for 384 samples introduce more leakagye tthe estimates for 12800 samples shown in
figure 3.6. This is also reasonable since the aizbe window in the case of 384 samples is much
smaller. Therefore, when this time domain windowré@sformed into sinc function at frequency
domain, the width of the main lobe for 384 samplase is larger followed by larger distance

52



Chapter 3 Development of Wavelet Based Spectrum Estimation

between lobes. This results in more leakage a&sdkearly shown in figure 3.13. The performance
of wavelet based estimates also deteriorates wieenumber of samples is lowered from 12800 to
384. Apart from the frequency selectivity issuetlie wavelet decomposition filters, which is
independent from number of samples, it seems ligatetctangular windowing effect when we take
finite number of samples from the received sigrao happens in wavelet based estimates.
Another issue which would be discussed in chaptées the impact of spectrum carving in the
wavelet decomposition filter. With respect to recpalar windowing issue, further analytical and
mathematical study is needed.
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Figure 3.14 Welch approach and wavelet based estimates (€6ifleaubechies-15) for partial band soufidee number
of samples in this experiment is 384. The ovepamentage and the length of each segment empioyeich
approach is 50% and 64 samples, respectively. Hagwmindow is used in this Welch approach. 7-lexsamposition

is used in wavelet based estimation.

A.4 Summary of Inferences
Based on the investigation on the estimates digbdwand sources conducted in subsection
A.1to A.3, we can summarize our important findimggollows:

* Wavelet based estimates has significant transt@rd due to poor frequency selectivity of
their corresponding wavelet decomposition filtemeTreason for this is due to the fact that
wavelet families used in this experiment are stethdeavelets which are not designed
specifically for spectrum estimation.

* The decomposition level of wavelet based spectratimation can be adjusted to get a
variance somewhere in between the variance of Waidhperiodogram.

e Varying the decomposition level of wavelet basedineses does not improve the
transition band and the rejection in the unoccupiguad.

* Even though MTSE and windowed periodogram has sgbgdy minimized the leakage,
the variance of estimates based on MTSE and windgweeiodogram is still poorer than
the variance of wavelet based estimates with ptededtecomposition level.

e As the number of samples is decreased, the leakdgsluced by periodogram and
wavelet based estimates in the unoccupied bandri®owre significant.

53



Chapter 3 Development of Wavelet Based Spectrum Estimation

B. Single Tone Source

B.1 Analysis on various wavelet families

In single tone source, some preliminary evaluation our wavelet based estimation
approach is provided for three different metrics:
¢ Variance of the estimated power spectrum densBp(P
* Frequency resolution
* Leakage suppression or power rejection at unocdupaed.

Figures 3.15 and 3.16 describe Periodogram, Wedchedl as wavelet based estimates for
the case of single tone source. The number of gmriplthese experiments is 12800 while the
configuration of Welch method used here is the samé the case of partial band source. The
same wavelet families as in figure 3.6 and 3.7esmployed here with decomposition level of 7.
The reasons for selecting these families are theesa#s in Partial band case. As expected, Discrete
Meyer wavelet, having much longer filter lengthshea slightly better performance than other
wavelet families in terms of low variance of théiraated PSD in the unoccupied band. However,
in terms of frequency resolution, all orthogonalvelat based estimates perform equally well.
Again, the performance of biorthogonal waveletgagy poor making them unsuitable candidates.
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Figure 3.15 Periodogram and wavelet based estimates (DaulzethjeSymlet 15, and Discrete Meyer) for singleston
source. The number of samples in this experimeb2890. 7-level decomposition is used in wavelsebaestimation.

From the two figures, it is quite interesting taathat the variance of orthogonal wavelet
based estimate in the case of single tone sourbetisr than that of Periodogram. In terms of
frequency resolution, the wavelet based estimatas @utperforms Welch estimates. While the
averaging of estimates employed in the Welch ambrdsthe key reason to suppress the variance
of estimated PSD in partial band sources, the simatire seems to be the key for its poorer
frequency resolution compared to orthogonal wavedtimate of the single tone source. It is also
interesting to consider the well known trade offiween the variance of the estimated PSD, size of
the side lobes and the frequency resolution. Soviaich approach is considered as an approach
that best trades off the frequency resolution far variance. However, more prices are also paid
here because Welch approach split the signalssmtdler segment resulting in more leakage in the
unoccupied band. Even though the Hamming windoapj@ied on each segment to mitigate this
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leakage, the overall side lobe suppression in Welethod is worse than in orthogonal wavelet
based estimates. This makes the orthogonal walvateld estimate is more preferable than Welch
approach for the case of single tone source withbar of samples of 12800.

Meanwhile, the periodogram shown in figure 3.15ns®¢0 have a very good frequency
resolution and side lobe suppression comparablgateelet based estimates. However, the large
variance found in periodogram estimate should besidered. Since the frequency resolution of
orthogonal wavelet based estimate is just slightgrer than periodogram estimates, orthogonal
wavelet approach can still be considered as gamdnative for spectrum estimation especially if
the variance issue is important.

20

—— Welch
—H&— Caoiflet 5
—+— Biorthogonal 3.9

0 ---- Reverse Biorthogonal 3.9

Power / frequency (dB/ rad/sample)

Normalized Frequency (x pi rad/sample)
Figure 3.16 Welch approach and wavelet based estimates (€biflsiorthogonal 3.9, and reverse biorthogona) &8
single tone sourc&he number of samples in this experiment is 1280 overlap percentage and the length of each
segment employed in Welch approach is 50% and iles, respectively. Hamming window is used in Wisich
approach. 7-level decomposition is used in waumdstd estimation.

Figure 3.17 illustrates the effect of filter lengtim the performance of the Daubechies
wavelet based estimates for the case of singledonece. There is no clear relationship between
the length of filter and the frequency resolutioh tbe Daubechies wavelet based estimate.
However, on account of variance of estimate atuheccupied band, a clearer pattern emerges
with increase in filter lengths. It is obvious frafigure 3.17 that the longer the decomposition
filters the smaller the variance of estimated PSiEhe unoccupied band.

B.2 Analysis on decomposition level

a) Comparison with Welch method and Periodogram

Similar to the case of partial band source, thectfbf wavelet decomposition levels on the

PSD estimates is illustrated in figure 3.18-3.2iltdrms of variance of the estimated PSD, figures
3.18 and 3.19 exemplifies what has been showndmditial band case, namely the fact that the
wavelet based estimates with various level of dgusition have characteristics in between of that
of periodogram and Welch approach. However, sotheraspects are found in these two figures.
As shown in figure 3.19, the frequency resolutidrsionple periodogram is excellent but it has

moderate side lobe suppression with large variafideSD in the unoccupied band. On the other
hand, the averaging of periodogram employed by Welaproach is the key reason for its poor
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decomposition is used here. The number of sampléss experiment is 12800
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frequency resolution in the estimation of singleecsource. Welch approach also has slightly
worse side lobe suppression (due to smaller winsiae/ per segment) and much better variance of

estimated PSD than periodogram.

Figure 3.17 Wavelet based estimates for single tone sourecgy Baubechies family with different filter lengfflevel
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Figure 3.18 PSD estimates of single tone source accordingtiows decomposition level of Daubechies-20. The
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Meanwhile, it is very interesting to note from figs 3.18 and 3.19 that the frequency
resolution of wavelet packet decomposition tendsapproach that of periodogram as the
decomposition level is raised from 5 to 11. Ondbeer hand, the frequency resolution of wavelet
based estimates has a tendency to approach Weidnates when the decomposition level is
reduced. This is logical since the higher the dguosition level, the smaller the frequency band
that is spanned by single wavelet packet nodetieguh better frequency resolution. In this regard
one can say that the performances of the WP approan be made to operate between the
strengths and weaknesses of Welch approach (miniwasiance of the estimated PSD but poor
frequency resolution) and periodogram (excelleegjfiency resolution but poor variance of the
estimated PSD) without compromising too much ohegibf these metrics by merely increasing or
decreasing the levels of decomposition.
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(6-level decomposition)
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Figure 3.19 PSD estimates of single tone source accordingfterdit decomposition level of Daubechies-20 togeth
with Periodogram and Welch Estimate. This figurencduded to describe how the effect of decompasitevel on
wavelet estimates with respect to Periodogram aetth\estimates. The number of samples in this éxeet is 12800.
The overlap percentage and the length of each sggam#ployed in Welch approach is 50% and 64 sampdepectively.

Hamming window is used in this Welch approach.

b) Comparison with windowed Periodogram and MTSE

Figure 3.20 and 3.21 show the impact of windowinglte reduction of side lobe level of
the periodogram estimates. As it is clear from tegcal aspect, the introduction of window
maintain the excellent frequency resolution of siaple periodogram and hence it is still better
than the frequency resolution of wavelet basedmedd with presented decomposition levels.
However, as in figures 3.18 and 3.19, the samedt@Bo appears here since the frequency
resolution of wavelet based estimate tends to agprthat of the windowed periodogram estimates
as the wavelet packet decomposition level is iregdaThis means that there is a promise offered
by wavelet based estimates as long as the reqié@amposition level can be fulfilled. The MTSE
also offer better frequency resolution. In termsioe lobe suppression (rejection of power in the
unoccupied band), windowed periodogram and MTSErkleoutperforms the wavelet based
estimate. While the impact of poor frequency sélagtof Daubechies-20 decomposition filter
tends to dominate in the mediocre transition bamdHe case of partial band course, the fact that
the number of samples is finite (or rectangulardeining effect) as well as spectrum carving issue
(discussed in chapter 6) are mainly suspectechfosignificant level of PSD at unoccupied band.
With respect to the excellent performance of MT®Eich is caused by the employment of Slepian
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sequence as the basis derivation of prototypediliad averaging process, the complexity issue in
MTSE implied by Farhang-Boroujeny [16] should db# considered.
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Figure 3.20 PSD estimates of single tone source accordingferent decomposition level of Daubechies-20 thget
with Thomson’s MTSE and Periodogram using Hann wimdThe number of samples in this experiment i0028
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Figure 3.21 PSD estimates of single tone source accordingf&rent decomposition level of Daubechies-20 thget
with Periodogram using Hamming window and Blackmamdow. The number of samples in this experimeri2800.

58



Chapter 3 Development of Wavelet Based Spectrum Estimation

20 { { { { [ — Periodogram
| | | | 1 —+— Discrete Meyer
| | | | —S— Symlet 15

10/ - R | T

Power / frequency (dB/rad/sample)

U'
W)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (x pi rad/sample)
Figure 3.22 Periodogram and wavelet based estimates (Sym|etriitbDiscrete Meyer) for single tone source. The
number of samples in this experiment is 384. 7{ldeeomposition is used in wavelet based estimation

— Welch
—+— Coiflet 5

Power/frequency (dB/rad/sample)

Normalized Frequency (x pi rad/sample)

Figure 3.23 Welch approach and wavelet based estimates (€6iflBaubechies-15) for single tone souiige number
of samples in this experiment is 384. The ovepagentage and the length of each segment empioyeich
approach is 50% and 64 samples, respectively. Hagwmindow is used in this Welch approach. 7-lexedamposition

is used in wavelet based estimation.
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Figure 3.24 Periodogram and wavelet based estimates (DaulsethjeSymlet 15, and Discrete Meyer) for multi-tone
source. The number of samples in this experimeb2890. 7-level decomposition is used in wavelsebaestimation.
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Figure 3.25 Welch approach and wavelet based estimates (€biflsiorthogonal 3.9, and reverse biorthogona) &8
multi-tones source. The number of samples in tkiggment is 12800. The overlap percentage antetigth of each
segment employed in Welch approach is 50% and B4les, respectively. Hamming window is used in Wislch
approach. 7-level decomposition is used in waJssed estimation
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B.3 Analysis for the case of small number of samples

As in the case of partial band source, we alsa ttee investigate the performance of
wavelet based estimates along with periodogramvéelth approach for much smaller number of
samples, which is also set to 384 here. This isrie=i by figures 3.22 and 3.23. Since the
reduction of number of samples from 12800 to 38dsdaot alter the size of each segment in the
Welch approach, this reduction has no impact onside lobe level. On the other hand both
periodogram and wavelet based estimates introduce leakage in 384 samples case. For the case
of periodogram, the main reason for this is thellemavindow size employed in order to take 384
samples from the received signal. Meanwhile, therdwation of the wavelet based performance is
likely to be caused by the rectangular windowinigafwhich becomes more obvious for smaller
number of samples.

B.4 Summary of Inferences

Based on the investigation on the estimates @leitone sources conducted in subsection
B.1 to B.3, we can summarize our finding as follows

« The variance of the wavelet based estimates witlows decomposition level is between the
variance of estimates based on periodogram andh/égpigroach.

* The frequency resolution of wavelet packet basédates approach that of periodogram as
the decomposition level is raised. On the otherdh@napproaches the variance of Welch
estimates as the decomposition level is reduced.

« More leakage in the estimates is introduced by hmthodogram and wavelet based
approach when the number of samples is signifigaatiuced.

* Varying the decomposition level of wavelet basdtheses does not improve the rejection in
the unoccupied band.

C. Multi-Tones Source

C.1 Analysison various wavelet families

Figures 3.24 and 3.25 illustrate Periodogram, Wekhvell as wavelet based estimates for
the case of multi-tones source. The number of sesnpl these experiments is 12800 while the
configuration of Welch method used here is the samim the case of partial band and single tone
source. Same wavelet families as in figure 3.6&iicare employed here with decomposition level
of 7. Again, the performance of biorthogonal watels much poorer than the orthogonal wavelet
based estimates making them unsuitable candidates.trends in multi-tones estimation are
similar to those of single-tone estimation. Thererzo palpable differences in the performances of
the orthogonal wavelet based estimates in ternfiegéiency resolution. In terms of variance of the
estimated PSD, Discrete Meyer is slightly bettantbther orthogonal wavelet families.

The performance comparison of Fourier based pegiaio and wavelet based estimates
follow similar trends as in the case of single taperce. The performance of orthogonal wavelet
based estimates is better than Welch approachatssnn terms of frequency resolution but they
have comparable power suppression in unoccupied. @dre reason for this is the same as in other
sources namely the averaging of periodogram feammgloyed by Welch approach. Similar to the
results found for the case of single tone souriceple periodogram has slightly better frequency
resolution compared to orthogonal wavelet basedoggp. The large variance of estimated PSD
issue inherent in periodogram estimate also apgeaes Other similarities with the case of single
tone source are also found when we compare theoredaip of filter length with the performance
of orthogonal wavelet based approach (not showa)her

C.2 Analysis on decomposition level

Figures 3.26-3.29 illustrate the effect of the deposition level on the wavelet based PSD
estimates. In general, the results are similaiirigle tone source, namely the higher the wavelet
packet decomposition level, the more similar théredes to the simple periodogram estimates. On
the other hand, lowering decomposition level wounlake the wavelet based estimates approach
the estimates given by Welch method.
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Daubechies 20 (Decomposition Level: 11)
—&— Daubechies 20 (Decomposition Lewel: 9)
y| —*— Daubechies 20 (Decomposition Level: 7)
—+—— Daubechies 20 (Decomposition Lewel: 5)
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Figure 3.26 PSD estimates of multi-tones source accordingt@us decomposition level of Daubechies-20. The
number of samples in this experiment is 12800.
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Figure 3.27 PSD estimates of multi-tones source accordingftereént decomposition level of Daubechies-20 togeth
with Periodogram and Welch Estimate. This figurenduded to describe how the effect of decompassitevel on
wavelet estimates with respect to Periodogram aetth\estimates. The number of samples in this éxeat is 12800.
The overlap percentage and the length of each sggemgployed in Welch approach is 50% and 64 sampdepectively.

Hamming window is used in this Welch approach.
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Figure 3.28 PSD estimates of multi-tones source accordingdfterdnt decomposition level of Daubechies-20 tbget
with Thomson’s MTSE and Periodogram using Hann windThe number of samples in this experiment i0028
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Figure 3.29 PSD estimates of multi-tones source accordingdfterdnt decomposition level of Daubechies-20 tbget
with Periodogram using Hamming window and Blackmamdow. The number of samples in this experimerit2800.

Similar inferences to single tone case are alsainéd when the wavelet based estimates are
compared to windowed periodogram and MTSE. Whileréasing the level of decomposition
would make the frequency resolution of wavelet Haesstimates approach the frequency resolution
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of windowed periodogram and MTSE, both MTSE and deimed periodogram outperforms
wavelet based estimates in terms of power rejeati@moccupied bands.

C.3 Analysisfor the case of small number of samples

Figures 3.30 and 3.31 compare the wavelet packiebass with Welch and Periodogram
when the number of samples is low. In general,igoificant influence is found on Welch based
estimates after the number of samples is reduced 12800 to 384. This is due to no alteration of
the size of each segment. Both periodogram and letabbesed approach suffers more side lobes
when the number of samples is reduced.

C.4 Summary of Inferences

Based on the investigation on the estimates ofitaries sources conducted in subsection
C.1to C.3, we find that most of findings foundéare similar to the findings that are found in the
case of single tone estimation, namely:

* The variance of the wavelet based estimates witlows decomposition level is between the
variance of estimates based on periodogram andh/égpigroach.

* The frequency resolution of wavelet packet basédhates approach that of periodogram as
the decomposition level is raised. On the otherdh@napproaches the variance of Welch
estimates as the decomposition level is reduced.

« More leakage in the estimates is introduced by khmthodogram and wavelet based
approach when the number of samples is signifigaatiuced.

* Varying the decomposition level of wavelet basdtheses does not improve the rejection in
the unoccupied band.
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Periodogram
—*— Discrete Meyer
—S— Symlet 15
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Figure 3.30 Periodogram and wavelet based estimates (SymjetritbDiscrete Meyer) for multi-tones source. The
number of samples in this experiment is 384. 74ldeeomposition is used in wavelet based estimation

D. Swept Tone Source

D.1 Analysison various wavelet families

As mentioned in section 3.4.1, 20 sweeps have beeducted to estimate the swept tone
source. Here, we do not investigate the specttahate of the whole 20 sweeps in one snapshot
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since it would not give different information fropartial band source case. Instead, we investigate
the snapshot of a portion of single sweep. Thd tatmber of samples is 12800 and this leads to
640 samples per sweep. The goal of this kind oéwfadion is related to the possibility of using the
wavelet based spectrum estimation for dynamic spectaccess, in which, the occupancy of
particular frequency band is time varying.

Power / Frequency (dB/rad/sample)

Coiflet 5
—+— Daubechies 15

0.4 0.5 0.6
Normalized Frequency (x 1t rad/sample)

Figure 3.31 Welch approach and wavelet based estimates (€b6ifleaubechies-15) for multi-tones sourtke number
of samples in this experiment is 384. The ovepagentage and the length of each segment empioyeich
approach is 50% and 64 samples, respectively. Hagnmindow is used in this Welch approach. 7-lexsslaposition

is used in wavelet based estimation.

Figures 3.32-3.34 illustrate Periodogram and Welpproach as well as various wavelet
families based estimate for five portions (snapshaf a single sweep. For convenience, we
address a single snapshot here aalasweep. In these three figures, there are five sub-sweeps
observed in a single sweep and each sub-sweepsponas to 20% of the period of a single sweep
and this leads to 128 samples per sub-sweep. isclear from the figures, the first sub-sweep
corresponds to the left most lobe in those figutes to the fact that the sweep goes from the
normalized low frequency (0@ to high frequency (018. The fifth snapshot, on the other hand
corresponds to the right most lobe.

The configuration of Welch approach in figure 3i83xactly the same as in single tone
and partial band source, nhamely 64 samples peresggnith 50% overlapping between segments.
Hamming window is applied on each segment befoegaming.

As it can be seen from figures 3.32-3.34, the parémce of biorthogonal wavelet is worse
than its orthogonal counterparts and it does neheyive the clear location of the five portions of
the sweep. Among orthogonal wavelets, Discrete Mehews slightly better performance than
others in terms of variance of the estimated PSthérpass band (the band that is swept). However,
in terms of transition band and unoccupied bandgsauppression, there is no clear performance
difference among the five families of orthogonaveiets.
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Legend: Blue => Ssimple Periodogram, Red Rectangle => Discrete veyer
1 V'q r,wl ] 1 - - - - -1 ——— ]
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Figure 3.32 Periodogram and Discrete Meyer wavelet based astgrfor a single sweep of swept tone source. Five
portions of single sweep is captured (the mostdbie is the first 20% of the sweep; the most righe is the fifth 20%
of the sweep). The number of samples in single pug640 samples. 7-level decomposition is usedavelet based
estimation

Legend: Blue Star => Welch, Red => Daubechies 15, Black Circle => Symlet 15
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Figure 3.33 Welch approach and wavelet based estimates (Syland Daubechies-15) for a single sweep of swept
tone source. Five portions of single sweep areutagt(the most left lobe is the first 20% of theesw; the most right
lobe is the fifth 20% of the sweep). The numbesarhples in single sweep is 640 samples. 7-leverdposition is used
in wavelet based estimation. The overlap percensagl the length of each segment employed in Wagphoach is
50% and 64 samples, respectively. Hamming windouseéd in this Welch approach.
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Legend: Blue Star = > Biorthogonal 3.9, Red = > Coiflet 5
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Figure 3.34 Coiflet-5 and Biorthogonal 3.9 wavelet based eatén for a single sweep of swept tone source. Five
portions of single sweep is captured (the mostdbie is the first 20% of the sweep; the most righe is the fifth 20%
of the sweep). The number of samples in single pug640 samples. 7-level wavelet decompositiarsed here.

Wavelet based spectrum estimation with Daubechies-20 wavelet
for Swept Tone Source
Five Portions of Two Sweeps are illustrated
First Portion w.r.t Lowest Frequency
Fifth Portion w.r.t Highest Frequency

AT

Energy (Joule)

Normalized Frequency
(x Tt rad/sample)

5
,34% Sub-sweep

11
Figure 3.35 Three dimensional plot of energy of spectrum esté®s using Daubechies-20 wavelet (2 sweeps, ea@t0of
samples)

When those five orthogonal wavelet based estimatescompared to periodogram and
Welch estimates, some interesting results are fomdeneral, none of wavelet based estimates
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can surpass the performance of Welch approach.usbeof Hamming window at each segment

averaged by Welch approach clearly results in éeweside lobe suppression and extremely small
variance of the estimated PSD. Moreover, the Welgproach still has comparable frequency
resolution with that of orthogonal wavelet basetingstes. On the other hand, the performance of
orthogonal wavelet based estimates is quite corbfgareith the periodogram in terms of side lobe

or unoccupied band power suppression with one ddganfound in the use of wavelet based

estimates due to their moderately smaller variafcthe estimated PSD. It should be noted that
even though the Welch approach seems much strimgjeis kind of swept tone source cases, the
number of samples that is needed to do some angragight not be sufficient especially when the

time duration of a sub-sweep or snapshot is extsesmall. Figure 3.35 shows a 3-dimensional

plot of Daubechies-20 wavelet estimate for 2 sweédgsvept tone source.

Figure 3.36 illustrates the effect of filter lengih the performance of the wavelet based
estimates for the five portions of a single sweephie case of swept tone source. For clarity of
expression, only two Daubechies wavelets are dagpict the figure. It is simple to conclude from
the graph that the estimate based on wavelet withdr filter (Daubechies 20) has a much better
performance both in terms of variance of the edBohePSD as well as side lobes or power
suppression at unoccupied band. However, the freryueesolution of the estimate based on both
Daubechies 4 and Daubechies 20 is roughly the same.

Legend: Red => Daubechies 4 Black Circle => Daubechies 20

# AR T

al

A

f
Il

y 7

4

Power / Frequency (dB/rad/sample)

Normalized Frequency (x 1t rad/sample)

Figure 3.36 Wavelet based estimate for a single sweep of steeptsource (using Daubechies family with différen
filter length). Five portions of single sweep aaptured (the most left lobe is the first 20% of skaeep, the most right
lobe is the fifth 20% of the sweep). The numbesarhples in single sweep is 640 samples. 7-levetleav
decomposition is used here

D.2 Analysis on decomposition level

In this part, a more elaborate investigation isvigted on swept-tone source. Apart from
the inquiry on the impact of decomposition leveltlod wavelet, we try to enrich the experiments
by varying the size of a single sub sweep. Thré&erdnt sizes of sub sweep are examined here. In
the first case (shown in figure 3.37-3.40), thee 9 a single sub sweep is exactly the same as in
part D.1, namely 128 samples. In the second cdsev(sin figures 3.41-3.46), a single sweep is
divided into 10 portions (sub-sweeps) and eachssudep consists of 64 samples. For the sake of
visibility, only first four or five sub-sweeps atbsplayed in these figures. Finally, figures 3.47-
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3.52 illustrates the third case in which a singheeap is divided into 20 sub-sweeps. Each sub-
sweep contains 32 samples. Again, only the first i five sub-sweeps are shown in these figures.
The investigation on different size of sub-sweepsactually intended to illustrate how fast a
snapshot is taken by the spectrum estimator. Thadlemthe size of sub-sweep, the faster the
shapshot is taken.

Legend: Pink => db20 (11-level decomposition), Black Circle => db20 (8-level
decomposition), Blue Rectangle => db20 (5-level decomposition)

Power / Frequency (dB/rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Normalized Frequency (x 1t rad/sample)

Figure 3.37 PSD estimates of swept tone source accordingriousadecomposition level of Daubechies-20 wavelet
based approach. In this result, the size of asisgb-sweep is 128 samples.

Based on figures 3.37 and 3.38 we can observe hewpeérformance of wavelet based
estimates with various decomposition levels is @stéd to simple periodogram and Welch
approach for sub-sweep size of 128. In terms ofvéméance of the estimated power spectrum
density (PSD), similar behavior found in singledcnd partial band cases is observed here. For
higher level of decomposition (11 in this casek thariance of the estimate is larger and the
wavelet based estimate tends to be comparable mplesi periodogram estimate. As the
decomposition level is decreased, the varianc@®fravelet based PSD estimates is decreased as
well and this variance tends to approach the veeaf Welch periodogram estimates. Apart from
the variance of the estimated PSD, there is na dié@rence found when the decomposition level
of wavelet based estimates is varied. The side flppression and transition band of wavelet
based estimates for different decomposition lewekIsimilar. Meanwhile, figures 3.38 shows that
the Welch estimates clearly have good side lobgraggion, extremely small variance and
comparable resolution with the frequency resoludrorthogonal wavelet based estimates. The
reason for its low side lobe and variance of th® R$§ clearly the combination of Hamming
windowing and averaging process. On the other htnedperformance of orthogonal wavelet based
estimates is quite comparable with simple periodogin terms of side lobe or power suppression
in the uninhabited band. Figure 3.39 and 3.40 bHgishows how windowing technique has
successfully improved side lobe suppression inodedram estimate and thus it outperforms the
wavelet based approach with various decompositenel$ especially in terms of side lobe
suppression. The MTSE approach has significantiyeted the estimate variance and improved
side lobes suppression thanks to the employmeS8tegfian Sequence as the basis for deriving the
orthogonal prototype filters. However, it is ventdresting to notice that the frequency resolution
of MTSE is still comparable to wavelet based estamdor the case of sub-sweep size of 128
samples.
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Legend: Black Star => Periodogram, Pink Dash => db20 (11-level decomposition)
Green Circle => db20 (6-level decomposition), Blue Rectangle => Welch
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Figure 3.38 PSD estimates of swept tone source according fousadecomposition level of Daubechies-20 together
with Periodogram and Welch Estimate. In this reshk size of a single sub-sweep is 128 samples.
This figure is included to describe how the effeictiecomposition level on wavelet estimates widpeet to
Periodogram and Welch estimates. The overlap ptrge and the length of each segment employed loh/ég@proach
is 50% and 64 samples, respectively. Hamming windoused in this Welch approach.

Legend: Red => Hann windowed periodogram
Blue => Thomson MTSE
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Figure 3.39 PSD estimates of swept tone source according éon$bn’s MTSE and periodogram with Hann window. In
this result, the size of a single sub-sweep issE2fiples.
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Legend: Blue => Hamming windowed Periodogram,
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Figure 3.40 PSD estimates of swept tone source accordingrtogmgram with Hamming and Blackman
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Red Circle => Thomson MTSE

Legend: Black => Hann windowed Periodogram
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Figure 3.41 PSD estimates of swept tone source according éon$bn’s MTSE and periodogram with Hann window. In
this result, the size of a single sub-sweep issfdes.
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Power / Frequency (dB/rad/sample)

Figure 3.42 PSD estimates of swept tone source accordingrtousadecomposition level of Daubechies-20 wavelet
based approach. In this result, the size of asisgb-sweep is 64 samples. First and second sugpswaee displayed

Power / Frequency (dB/rad/sample)

Figure 3.43 PSD estimates of swept tone source accordingrtousadecomposition level of Daubechies-20 wavelet
based approach. In this result, the size of asisgb-sweep is 64 samples. Third and fourth sulessvare displayed

db20 (11-level decomposition) 1st subsweep
——— db20 (11-level decomposition) 2nd subsweep
—©— db20 (8-level decomposition) 1st subsweep
—©— db20 (8-level decomposition) 2nd subsweep
—4— db20 (5-level decomposition) 1st subsweep

0.7
Normalized Frequency (x 1t rad/sample)

here

= wil'
1,

I (oA
I w‘w‘;‘!ﬁ‘ W
| h“ﬁ" . )

—— db20 (11-level decomposition) 3rd subsweep
——— db20 (11-level decomposition) 4th subsweep
d —©— db20 (8-level decomposition) 3rd subsweep
| —e—db20 (8-level decomposition) 4th subsweep
' —4— db20 (5-level decomposition) 3rd subsweep

~—4— db20 (5-level decomposition) 4th subsweep

!
|

0.3 0.4 0.5 0.6 0.7
Normalized Frequency (x it rad/sample)

here

72



Chapter 3 Development of Wavelet Based Spectrum Estimation

—%— Periodogram 1st subsweep

—%— Periodogram 2nd subsweep

—— db20 (11-level decomp.) 1st subsweep
db20 (11-level decomp.) 2nd subsweep

| —©— db20 (6-level decomp.) 1st subsweep
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Figure 3.44 PSD estimates of swept tone source according fousadecomposition level of Daubechies-20 together
with Periodogram and Welch Estimate. In this reshk size of a single sub-sweep is 64 samplesoVeedap
percentage and the length of each segment empioy&elch approach is 50% and 32 samples, respéctidamming
window is used in this Welch approach. First arebed sub-sweeps are displayed here.
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Figure 3.45 PSD estimates of swept tone source according fousadecomposition level of Daubechies-20 together
with Periodogram and Welch Estimate. In this reshk size of a single sub-sweep is 64 samplesoVeedap
percentage and the length of each segment employ&elch approach is 50% and 32 samples, respéctidamming
window is used in this Welch approach. Third andaio sub-sweeps are displayed here.

The next step would be to observe how all of thestgnates behave when the size of a sub-
sweep is reduced to 64. Firstly, it can be obsemdiure 3.41 how the frequency resolution of
Thomson’s MTSE approach has been very bad fordke of sub-sweep size of 64 samples and it
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is not comparable anymore to wavelet based estinveté various decomposition levels shown in
figure 3.42 and 3.43. The wavelet based estimaileslsarly illustrate distinguishable sub-sweeps
as shown in those two figures. By considering thenglexity of MTSE solution as mentiond by
Farhang-Boroujeny in [16], the use of MTSE for istigating this kind of highly time varying
source is questionable. Meanwhile, the frequensglution of wavelet based estimates tends to be
worse when the decomposition level is reduced. Ehidear from figures 3.42 and 3.43. On the
other hand, when the decomposition level is ina@éathe wavelet based estimates have frequency
resolution similar to that of simple periodograrhisTis shown in figures 3.44 and 3.45.

Legend: Red Rectangle => Hamming windowed Periodogram
Black => Blackman windowed Periodogram
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Figure 3.46 PSD estimates of swept tone source accordingrtogmgram with Hamming and Blackman
window. In this result, the size of a single suteewis 64 sampie

Since the size of sub-sweep is reduced to 64, seerabdify the segment size in the Welch
approach from 64 to 32 in order to keep the presef@veraging process in this approach. It can
be found from figure 3.44 and 3.45 that the ussnodller segment in Welch approach has resulted
in worse frequency resolution. However, the uselainming windowing and averaging still keep
the variance of estimated PSD and side lobe lesmlam low. Figure 3.41 and 3.46 generally
shows the effect of windowing technique on simmeqrogram. In terms of frequency resolution,
the performance of periodogram with Hann, Blackmamd Hamming Windows is still
comparable to that of wavelet based estimates kigh level of decomposition (8-level or 11-
level). However, periodogram with windowing offeetter side lobe or suppression at the
unoccupied band compared to wavelet based estimé@tesarious decomposition levels.

The last case would be to observe the behaviohefestimates when the size of the sub-
sweep is further reduced to to 32 samples. IndReriment, we modify the configuration of the
Welch approach. Since, it is only 32 samples abkglas a snapshot, the segment size in Welch
approach is reduced from 32 to 16 in order to Kbepaveraging process in the Welch approach.
However, this segment size reduction has complgeelyardized the frequency resolution as it is
shown in figures 3.47 and 3.48. This makes Welduitable for estimating the swept tone source
with 32 samples per sub-sweep. In general, the ritapblesson that can be acquired from the use
of Welch periodogram is the fact that the numbeawdilable samples that is needed to do some
averaging might be just simply not sufficient enlbig get acceptable result especially when the
time duration of a snapshot is extremely small.
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Figure 3.47 PSD estimates of swept tone source according fousadecomposition level of Daubechies-20 together
with Periodogram and Welch Estimate. In this reshk size of a single sub-sweep is 32 samplesoVedap
percentage and the length of each segment empioyelch approach is 50% and 16 samples, respéctidamming
window is used in this Welch approach. First armbad sub-sweeps are displayed here.
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Figure 3.48 PSD estimates of swept tone source according fousadecomposition level of Daubechies-20 together
with Periodogram and Welch Estimate. In this reshk size of a single sub-sweep is 32 samplesoVeedap
percentage and the length of each segment empioy&elch approach is 50% and 16 samples, respéctidamming
window is used in this Welch approach. Third andaio sub-sweeps are displayed here.
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Figures 3.47-3.52 generally show that the perfoomanf all spectrum estimation
techniques is worse when the size of a sub swekptier reduced to 32 samples. For the case of
wavelet based estimates, higher decompositionddvave resulted in better frequency resolution
as it shown in figures 3.47-3.50. Similar to thseaf sub-sweep size of 128 and 64 samples,
higher decomposition level leads to frequency rggmh similar to simple periodogram. The
phenomena showing how all spectrum estimation fgaes get worse when the snapshot size is
extremely reduced is quite understandable for #e® @f swept tone source. Swept tone source
basically simulates how a particular user occupiegrtain frequency point at certain time point.
This means that both high time and frequency réisoluare required to get accurate power
spectrum density snapshot of this kind of sourcefakt, the concept of uncertainty principle
expressed by Vitterli and Herley in [21] has clgakcluded the possibility to have both good time
and frequency resolution in the same occasion. Mewyehis kind of interference is quite good to
be used as indicator to assess the performancgecfram estimation techniques with respect to
dynamic spectrum access.

10
— 11-level decomposition (1st sub-sweep)

11-level decomposition (2nd sub-sweep)
—O— 8-level decomposition (1st sub-sweep)
—O— 8-level decomposition (2nd sub-sweep)
—k— 5.jewel decomposition (1st sub-sweep)
—%— S-lewl decomposition (2nd sub-sweep)

o
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-30 D
0.1 . . . . 0.5

Normalized Frequency (x it rad/sample)
Figure 3.49 PSD estimates of swept tone source accordingriousadecomposition level of Daubechies-20 wavelet
based approach. In this result, the size of asisgb-sweep is 32 samples. First and second sutpsvaee displayed
here

D.3 Summary of Inferences

Based on the investigation on the estimates opsteme sources conducted in subsection
D.1to D.2, we can summarize our finding as follows

« For different sub-sweep size, the wavelet basdrhatss with various decomposition level
has comparable variance, frequency resolution #isaseside lobe level with periodogram
estimates.

» Periodogram has windowing techniques as additiaregpons to suppress the side lobe
level and this has resulted in more favorable exBm especially for larger size of sub-
sweep.

¢ Welch based estimates get worse when the size @kob-sweep is reduced. The reason
for this issue is the fact that the size of eagimsmnt to be averaged is just simply too small
especially for sub-sweep size of 32 samples.
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« MTSE also performs badly for sweep tone sourcesnwthe size of sub-sweep is still
moderate (64 samples) and when wavelet based éssistill have fair performance.

10

Power / Frequency (dB/rad/sample)

— db20 (11-level decomp.) 3rd subsweep
—— db20 (11-level decomp.) 4th subsweep
—©— db20 (8-level decomp.) 3rd subsweep
—©— db20 (8-level decomp.) 4th subsweep
—%— db20 (5-level decomp.) 3rd subsweep

db20 (5-level decomp.) 4th subsweep
0.2 0.25 0.3 0.35 . . 0.5

Normalized Frequency (x 1t rad/sample)

-30

Figure 3.50 PSD estimates of swept tone source accordingriousadecomposition level of Daubechies-20 wavelet
based approach. In this result, the size of asisgb-sweep is 32 samples. Third and fourth sulessvare displayed
here

Legend: Blue Circle => Hann windowed Periodogram
Red => Thomson MTSE
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Figure 3.51 PSD estimates of swept tone source according éon$bn’s MTSE and periodogram with Hann window. In
this result, the size of a single sub-sweep isa@2mes.
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Legend : Red Circle => Hamming windowed Periodogram,
Black => Blackman windowed Periodogram

Power / Frequency (dB/rad/sample)

Normalized Frequency (x 1t rad/sample)

Figure 3.52 PSD estimates of swept tone source accordingriodqugram with Hamming and Blackman window. In this
result, the size of a single sub-sweep is 32 sample

3.5 Remarks on the Compar ative Analysiswith Existing Techniques

We would like to emphasize that we have no intento say that one approach is better
than the other when we compare our wavelet baseagh to periodogram and Welch. It should
be remember that we only employ one setting of Walgproach namely with segement length of
64 and overlap percentage of 50% (though we alguansegment length of 32 and 16 in swept
tone case). There is still a great deal of posgblameter combinations of Welch approach that
can end up with different estimation performance.ah example, when we say that we can vary
the variance of wavelet based estimates by tutiegiecomposition level, the similar way can also
be done in Welch by varying the number of segments the segment length. However, they
cannot be simply compared since both of them aneptetely different mechanism. Our intention
in the comparative analysis provided in sectioni8# give some tastes and flavors about how the
wavelet based estimates behave and where itsqrositth regard to conventional approach.

3.6 Summary of the Chapter

In this chapter, the application of wavelet packeinsform for spectrum estimation
technique was proposed and investigated. Four edas$ sources with different features and
characteristics are used to gauge the operatiadheoflevelopmental system and the results were
compared with that of well-known periodogram andl&ieestimates. The performance metrics
used were variance and frequency resolution ofetanated PSD as well as side-lobe level or
suppression at the unoccupied band. We also ipatet the impact of decomposition level on the
wavelet based estimates.

In general, it is easily found that orthogonal wetéased spectrum estimates with various
decomposition level tend to behave in between thdopmances of periodogram and Welch
estimates especially in terms of variance of thieneged PSD and frequency resolution. When the
decomposition level is increased, the variancenefdrthogonal wavelet based estimate is higher
but its frequency resolution gets better and thdopmance approaches that of periodogram.
Meanwhile, the variance of the wavelet based estichRSD and its frequency resolution approach
those of Welch approach once the decompositionl lsveeduced. The Welch approach has
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problems with tracking irregularities and locatisigarp band sources due to its limited frequency
resolution while the periodogram has problem withlarge variance when it is used to estimate
wide band sources. Thus, the pliability of wavelatket based method to tune the variance and its
frequency resolution by adjusting the decompositievel is advantageous especially if we
consider the possibility to obtain multiple wavebetsed estimates from different level of wavelet
packet tree.

MTSE proposed by Thomson in [18], is quite prongsiar suppressing the variance of the
estimates in wide band cases and it also has esfiyegood frequency resolution in narrow band
cases. However, the variance of the estimate ®mitlde band cases is still worse than wavelet
based estimates. Moreover, the complexity issuednted in MTSE should be considered.

Of particular interest is the estimation of a swipte source that varies with time. In this
type of source, wavelet based estimates with varitacomposition level has comparable variance,
frequency resolution as well as side lobe levehwigriodogram. However, again, the periodogram
has windowing techniques as additional weaponsippress the side lobe level making it more
favorable than wavelet based approach. It is aby interesting to note how the Welch based
estimates gets worse when the size of one sub-s&e@eguced due to its too little segment size in
order to do averaging process. This makes wavelstd estimates more competitive than Welch
estimates when the window of opportunity availaoleollect sufficient samples for averaging is
limited. Apart from Welch approach, MTSE also penfe badly for sweep tone sources when the
size of sub-sweep is still moderate (64 sampled)vaimen wavelet based estimates still have fair
performance.

The wavelet packet based approach gives all wavelefficients at all decomposition
levels. The presence of all of these coefficiefitsras the possibility to obtain multiple estimates
from different level of the tree with different deg of variance and frequency resolution, in one
shapshot and one operation. This feature can b®ieg to construct an adaptable and re-
configurable spectrum estimation mechaniSimce the wavelet packet based approach always
operates between the strengths and the weaknesties meriodogram and Welch approaches in
terms of variance and the frequency resolutionelsag given that it is impractical to employ both
periodogram (for narrowband sources) and Welch fideband sources) estimation apparatus in
one receiver. And also that it is meaningless titcctkmbetween these two techniques during the run
time as there would be no apriori knowledge on Wwhethe incoming signal is narrow band or
wide band signal. The possibility of using a singlavelet based spectrum estimator block to deal
with both narrowband and wideband sources lookgat#s and attractive. Clearly this kind of
flexibility offered by wavelet based spectrum egtiion technique is of enormous advantage in a
dynamic and time variant environment. This is fin& point that can be inferred from this chapter.

We should not ignore, however, the possibility oflé¥h approach to tune the variance of
the estimated PSD and the frequency resolution mplaying different segment size and
consequently, different number of segments. Howewgven the received samples, this
theoretically requires different operation. On tither hand, in wavelet based approach, we may
obtain multiple estimates from different level ohwelet packet tree in single run time (since
wavelet packet coefficients at certain level arsidaly obtained from the wavelet coefficients at
the previous level). Further research in compleigisyies, however, still needs to be conducted and
so far we cannot say that one technique is bétéer the other.

The wavelets used in this chapter were standaxethets available in the Matlab toolbox.
These wavelets were originally developed for agpiims such as image processing or encryption,
and hence may not be suitable for spectrum estmalfiherefore, it is important to derive new and
frequency selective wavelets that best suit theliggplity of wavelet theory for spectrum
estimation. This is the second point deduced fioisi¢dhapter and we shall delve on this in the next
chapter.
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CHAPTER 4 OPTIMAL DESIGN OF WAVELET FOR WAVELET BASED
SPECTRUM ESTIMATION

The attributes of the wavelet packet based speatstimation greatly depend on the set of
filter banks it uses. Choosing the right filterasdelicate task. The filters cannot be arbitrarily
chosen and instead have to satisfy a number oftreams. These constrains are fundamental
constrains for valid wavelet construction. Theylide orthogonality constraint, compact support,
K-regularity and vanishing moments. With respecspectrum estimation, additional constraints
might be required. In the previous chapter, we €btimat commonly available wavelets are not
frequency selective in nature. Therefore, the spetestimator based on these wavelets results in
estimates with poor transition between the occupet and unoccupied band. It would therefore
be interesting to design new wavelets that bestguyilicability for spectrum estimation.

The wavelet tool is actually a double edged sw@d.one hand there is an enormous
opportunity and scope for customization and adeptatOn the other hand there are no clear
guidelines to choose the best wavelet for a givaplieation. In this chapter, we focus on the
design and development of a wavelet family thahaximally frequency selective in nature. We
start the discussion by investigation of relatiopstbetween the properties of wavelet
decomposition filter and the performance of thenssiion (section 4.1). In this section, we
generate different types of sources and developoitapt metrics to justify the quality of
estimation on those sources. We later try to figauethe relationship between these metrics and
the properties of wavelet decomposition filter tha computation of correlation coefficient. Based
on the inferences drawn from the studies, in secli®, we try to formulate our design as an
optimization problem. This optimization problem igally contains objective function and some
budgets. Apart from constraints that are relatedetsired frequency response of the decomposition
filter, there are other constraints on wavelet bakat should be considered in order to guarantee
the designed wavelet is valid. Turning out thatdp&mization problem is non-convex susceptible
to instabilities and inaccuracies, we reformuldte hon-convex optimization problem into linear
optimization problem, which is definitely convexhi$ is discussed in section 4.3. Hence, in order
to do so, the optimization problem that is origipalefined in terms of filter coefficients as
variable constraint is defined in term of autoclatien sequence of the filter coefficients. Hence,
the solution would be in term of autocorrelationjgence as well. We need a special technique
called spectral factorization discussed in sedfighin order to obtain the solution in term oféfilt
coefficients. Section 4.5 delves on a method tgbfynthe problem and make it computationally
more palatable. The convex optimization problersdlved by using semi definite programming
tool called Sedumi. The performance of wavelet Baggectrum estimator based on our optimal
wavelet solution is discussed in section 4.6. Theefgpmance of our optimal wavelet based
spectrum estimator is compared with that of stathdeavelet based estimator as well as with that
of conventional techniques such as Periodograrthdrsame section. Section 4.7 summarizes the
chapter.

4.1 Relationship between the properties of wavelet decomposition filter and the
perfor mance of the estimation

In this section, the relationship between the priige of decomposition filter and the
performance of the corresponding wavelet basedthatds is investigated by running simulations
that involve nine different types of sources océngydifferent band in the range of normalized
frequency from O tom. Table 4.1 lists these nine types of sources. Wawelet packet
decomposition level used in this investigation.is 7

To measure the performance of the wavelet basaéchagss, we develop some important
metrics, namely:

* The average of power spectrum density (PSD) atitleecupied band
¢ The maximum side lobe
e The PSD variance at the unoccupied band
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* Frequency resolution of the estimate

Those four indicators are common for all sourceslived in the investigation. Meanwhile, there
are additional indicators that are available fbsalrces except for single tone source, namely:

*  Width of the transition band

» The variance of the PSD at the occupied (activajiba
The width of the transition band in the estimatsitzlly illustrates the transition from the occupie
band to the unoccupied band. Ideally, this widthusth be zero meaning there should be immediate
decrease or discontinuity of the PSD curve in threler of occupied and unoccupied band.

Table 4.1 Nine types of source that is used for the purpdsevestigation on the correlation between thepprties of
wavelet decomposition filter and the performanakaator of the estimation

Name Type of Source Nor malized Active Frequency

Type-A Partial Band Source [0.25m, 0.757

Type-B Single Tone Source 0.5

Type-C Partial Band Source [0.375m, 0.6257]

Type-D Partial Band Source [0.43751, 0.56257

Type-E Band Stop Source [0, 0.257 and [0.751, 10

Type-F Band Stop Source [0, 0.3751 and [0.625t, 11

Type-G Band Stop Source [0, 0.43751 and [0.562% 1

Type-H Multiple Partial Band Source [0, 0.2, [0.4r, 0.641 and [0.831, 1

Type-I Multiple Partial Band Source | [0, 0.14r], [0.29m, 0.421, [0.57m, 0.7 and [0.88r, 1

Based on these metrics, we try to investigate whiciperties of the wavelet decomposition
filter that has strong correlation with those nmestriThe properties of the frequency response of
decomposition filters to be investigated are a®vwd:

» The width of transition band

e The variance of the pass-band

* The variance of the stop-band

* The average power at the rejection band (stop hafetjve to the pass band
It can be easily found that those four indicatees@mmonly used to judge the quality of the filter

For each indicator of the wavelet decomposititterfiand each indicator of the estimates,
correlation coefficient is calculated in order twvéstigate the relationship between each pair of
indicators. The formula for correlation coefficieat two random variablesX andY can be
represented as follows:
Co\ X,Y]

Yo, = 4.1
XY NafxvarY] (4.1)
In (4.1), Co X,Y] denotes the covariance between random variablasdY while Var[ X]

represents the variance Xf The correlation coefficient between each paiindfcators mentioned
above is computed by collecting data from sevetthlogonal wavelet families namely Daubechies
(dbl1 to db 20), Symlet (syml to sym20), Coifleti{tdo coif 5) and Discrete Meyer. For each
wavelet, all indicators with respect to the decosiipan filter and the estimates are collected. The
correlation coefficient for each pair of indicatesscalculated 100 times for each source. Later, th
average and the standard deviation of the coroelatpefficients,E[g] and o, respectively, are
calculated. The results are all tabulated in AppeAdL (tables A.1.1 to A.1.9) which illustrate the
average and standard deviation of 100 correlati&fficients computed for each pair of indicators
in each source. For the case of single tone sotheegorrelation coefficients obtained from Haar
(Daubechies-1) and Symlet-1 wavelets are excluéeduse the performance of the wavelet based
estimates for single tone source using those tweelsts are exceptional and thus, they can be
considered as outliers in the statistic world. Thiéeria that we use to describe the correlation
between the two indicators are indicated in tabke 4

Based on the analysis conducted (which are talmbiaté.1.1 to A.1.9), it can be inferred
that:
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e All four indicators chosen from the frequency resp® of the wavelet decomposition
filters have strong influence on two indicatorsriduin the estimates, namedyer age of
PSD at the unoccupied band andmaximum side lobes.

* In general, moderate correlation is also found betwthe four filter's indicators and the
width of thetransition band andPSD variance at the unoccupied band.

* The frequency resolution seems do not have coivalatith the four filter's indicators.
However, the frequency resolution of the estimatian be enhanced by increasing the
decomposition level. Moreover, from the resultsnfddrom the previous chapter, it can be
learnt that the orthogonality of the wavelets ugedhe spectrum estimation approach
seems to play important role on the frequency temw of the estimate for the case of
single tone sources.

* Unclear correlation is also found between the fiter's indicators and the PSD variance
of the occupied band even though a quite significalation is found between width of the
transition band and PSD variance in the occupied ba

Table 4.2 Criteria used to describe the correlation betwberproperties of wavelet decomposition filter dmel
performance indicator of the estimation. In thisliéaE[ g andag, represents the mean and the standard deviation of
correlation coefficients between the two indicatoespectively

Criterion Inference
E[d >0.8 Strongly correlated
(0.8 >E[g] >0.5)andg§,<0.1) Correlated
(0.8 >E[0g] >0.5) andg, > 0.1) Correlated (with some note that the variance of |the
correlation is significant)
(0.5>E[g] >0.3)andg§,<0.1) Weakly correlated
(0.3>E[g] >0)and§, <0.1) Uncorrelated
(0.5>E[g] >0)and§,>0.1) Not clear

In conclusion, the four indicators of the frequemegponse of the wavelet decomposition
filters, namely the width of transition band, theriance of the pass-band, the variance of the stop-
band, and the average power at the rejection tsiod band) can be used as guides in the design of
the wavelet for spectrum estimation. Orthogonaiityanother important factor in this wavelet
design.
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Figure 4.1 Plot of magnitude respongé([J[ of the designed optimal filter [32]

82



Chapter 4 Optimal Design of Wavelet for Wavelet Based Spectrum Estimation

4.2 Stating Wavelet Design as an Optimization Problem

With respect to the design of wavelet for waveletket based spectrum estimation, the
actual design problem is to design the wavelegrBlthat are used to compose the wavelet packet
tree structure shown in figure 3.4, which is usedtl®e basis of the spectrum estimator. The
fundamental idea is about finding the filter cogifints of the low pass decomposition filter. Once
the filter coefficient of the half band low pashéi is obtained, the filter coefficients of highgs
decomposition filter can later be acquired througk use of Quadrature Mirror Relationship
between the half band low pass and high pass dexsitign filters. We would later immediately
find that the design of low pass filter can be esged as optimization problem based on two sets
of constraints namely the wavelet constraints aesirdd design constraints. The optimization
problem can later be expressed as convex optiraizgtroblem allowing the use of convex
optimization tools to obtain the solutions.

From common knowledge of the filter design, it engrally not possible to minimize the
width of the transition band, the variance of thegand stop band as well as the mean of the stop
band simultaneously. As a result, we try to adagak® and McClellan equi-ripple design of FIR
filter [31] as our basis. Figure 4.1 illustrateg tlmagnitude response of the low pass filter being
optimized. In the figureg, anda, denote normalized pass and stop band frequemesectively,

[0, wy] is called the pass-bandyx] is called the stop-band and}| «w] is the transition banB. A

is the maximum value of the tolerance or ripplegémeral, Parks and McClellan equi-ripple design
tries to minimize the ripplé in figure 4.1 given the transition bald= «:-a), by using the so-
called Remez Exchange algorithm [31].

However, in addition to Parks and McClellan prapsve should also incorporate
additional wavelet constraints into our design.itis clear from [23], those additional contraints
are regularity condition, double shift orthogonglind the fact that the wavelet should be
compactly supported allowing decomposition filterhave finite impulse response. These three
constraints are mandatory for the design of valayelets. These constraints are presented in sub
section 4.2.1-4.2.3 in term of low pass filter ¢méént as the variable constraint.

4.2.1 Compact support or admissibility constraint

This constraint is necessary to ensure that theelwahas finite non-zero coefficient and
thus the impulse response of the wavelet deconpoditter is finite as well. According to [24],
this property can be derived by simply integratigh sides of the two-scale equation in (2.46) as
follows

0

J g(t)dt= TZ h[ | g(2t- 2t

—o N

<) ©

[ #0dt=v23 H[ [ p(2t-mat

[

J p0dt=v23 1] j 0.56 (2t— n)d (2= n) (4.23)
By assumingi = 2t-n, equation (4.2a) can be further processed asifsilo

j p(t)dt=05/2> h| n]j @ (U)d(u)

j S(t)dt
= =0.5/2) h[n|
j #(u)du n

—00

Finally we obtain the compactly supported wavetetstraint as:
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D h[n]=+2 (4.2b)

n

It should be noted that the derivation that is gi@bove is only possible if the scaling function is
absolutely integrable and the integration of thaisg function is non-zero. Due to this fact, (4.2b
is also recognized as the wavelet existence canstra

4.2.2 Paraunitary or double shift orthogonality constraint

The paraunitary or the orthogonality condition, ebhiis one of the pivotal wavelet
properties, actually emerges from the concept oftifresolution concept defining the so-called
two scale equation [23]. This constraint becomeseason why it is possible to generate
orthonormal wavelets and why it is possible to emquerfect reconstruction of the decomposed
signals.

This constraint is derived from the orthonormabgtween scaling function and its shifted
version as follows:

[ sp-10dt=3(k (4.33)

Taking into account two-scale equation (2.46) i3} we can obtain:

[

th[n]qﬁ(zt— 2> H gt K- M2 des(B

Zo N m

2> [y h[n”¢(2t— g (t- K- m ded( §
2> h[n>] h[njj 0.5 (2t= npp (2(t kK- m) d29= 5 (K

D h[nj n-2K =5(K for k= 0,1,....(L/2) : (4.3b)

Equation (4.3b) is called double shift orthogoryatilation of the wavelet low pass filters impulse
responses. In (4.30),illustrates the length of the low pass wavelgéfilmpulse response.

4.2.3 K-Regularity constraint

K-regularity is also an important measure for iedgines the smoothness of the wavelets.
It is defined in terms of the regularity ind&which gives the number of times the wavelet is
continuously differentiable [4]. Regularity inde)(also gives the number of zeros that the filter
has at normalized frequeney=sz Therefore, the frequency response of the low plies should
have the following structure [23]:

H (@) :[“e_jw

In (4.4a),Q(w) is a factor oH(w) that does not have any single zeramatr. Having K number of
zeros atw=rralso mean thaH (w) is K-times differentiable and its derivatives are zetwen they

are evaluated at=sz By considering that:

H(«) = h[n|exp( jown)
Thek-th order derivative; offi(w) would be:

H® () =Y h[n] (= jn)* exp(- jewn) (4.4b)
The evaluation on (4.4b) na.t:ﬂwould result in:

H® () =3 h[n| (- i) expt- jzm)

K
] Q(w) with Q(m) #0 (4.4a)
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0= h[n[( i)"Y

0=> h[n] (n*(-1)"
Therefore, we can formulate okirregularity constraint in term of low pass filteyefficients as:

>[N (N*(-1)"=0 fork=0,1,2,...K-1 (4.5)

4.2.4 Optimization Problem

The design goal is to generate filters with tharedstransition ban®=wsw, illustrated in
figure 4.1 and minimum errch even while satisfying the wavelet constraints. Rogiven the
transition band, the optimization problem can be formally stated a

MINIMIZE A

under the constraints of:
D h[n]=+2 (4.2b)
D h[nj n-2K =5(K for k= 0,1,....(L/2) : (4.3b)
> h[n[(nN*(-1)" =0 for k= 0,1,2,...K~ (4.5)
0<|H (a))|2 <A for w0, , 7] (4.6)

with fixed value ofL andK.

From the optimization problem listed above, we say that the design procedure actually
comprises of defining a low pass FIR filter, safiis§ the regularity, paraunitary, compact support
and frequency selectivity conditions, expressedhia form of an impulse respon$gn] or a
transfer functiorH(2). In this case, regularity, paraunitary and comgapports are mandatory for
the design of valid wavelets. Meanwhile, frequeselectivity represented by stop band constraint
in (4.6) is an additional condition to the threena@tory ones. This actually shows the flexibility
and adaptation properties of wavelet based apprdach our wavelet packet based spectrum
estimation, stop band constraint represents theeagng requirement for frequency selectivity.
Based on the specifications, other constraints loesiypcorporated.

We can also see that, for a filter of lengththe design problem is essentially solving
unknown filter coefficients fronL linear equations. Of thede linear equationsl./2 equations
come from the paraunitary and admissibility constsaK equations come from the regularity or
flatness constraint and the remainik — K conditions offer the room for maneuverability to
establish the desired wavelet property such asuémcy selectivity in our case. The larger the
value ofL/2K is, the greater the degree of freedom for frequesatectivity and the greater the
loss in regularity. There is therefore a tradedoétween frequency selectivity and regularity.
Wavelets such as the Daubechies family are maxmflall with regularity ordeK=L/2 and hence
they are not frequency selective

It should be noted that we define the stop bandstcaimt only within the range ab O
[ca,1] due to the built in anti-symmetry ofH(«)|*1) aboutw = 192 in figure 4.1 [32]. The stop
band constraint can be further expanded by perfajnsome manipulation omi(c)f term as
follows:

IH(@)* = H(e“)H(e?)
{Zh[n]e'j““j[z i é“mj
IH(@)|* =S hin ff rp eJerm 4.7)

Hence, the stop band constraint can be written as:
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0< Y Y h[n]H n] €19 <A

for all wO[ ws, 7]

From (4.3b) and (4.8), it is obvious that both deushift orthogonality and stop band
constraints are non linear and non convex. Thesefibre whole optimization problem becomes
non-linear as well as non-convex. It is possibledlve this non convex optimization problem but
there is susceptibility that the solution founaisy locally optimal instead of globally optimal3B
In the other words, trying to solve non-convex mitation problem may not yield the optimal
solution. Furthermore, they may warrant the usagsophisticated solvers that can blow up the
complexity.

(4.8)

4.3 Transformation of non-convex problem into linear optimization problem

Fortunately, it is possible to transform our nomgex optimization problem into linear
optimization problem by transforming the variabtestrainth[n] in the four constraints into new
variable constraints, namely autocorrelation segegil], which is defined as:

ra[k] = %ZH nj b m+ k (4.9)

By taking into account inherent symmetry propeftyhe autocorrelation sequencekal, namely:
ru[l]= ra[-1], the four constraints in (4.2b),(4.3b),(4.5) 44d5) can be rewritten.

4.3.1 Compact support or admissibility constraint

It is possible to represents the compact supportsteaint in (4.2b) in terms of
autocorrelation sequencgl] by first defining the autocorrelation sequencea imore precise way:

f[1="y hrikin+]for 10 (4.10)
n=0

In (4.10),L is the length of the FIR filter to be designedshbuld be noted that due to symmetry
property al=0, we have:

r[-1] =refl] for 1<0 (4.112)
The compact support constraint in (4.2b) can theembdified through the following way:

L_

ih[n]zx/i

:h[nlg =2

By takingm = n + |, we have:

L-1L-n-1

D> > h[n]n[n+1]=2

n=0 I=-n
Then, by reverse the order of the summation operaaind by taking the fact that the impulse
response of filteh[n] only has non-zero value akn < L-1, we obtain:

L-1 L-1-1
> > h[n]h[n+1]=2 (4.12a)
I==(L-1) n=0
The compact support constraint in (4.2b) can treefobmulated as:
L-1
> onl]=2 (4.12b)
I=—(L-1)
Due to the double shift orthonormality constraiptesented by (4.3b) and the fact that the
symmetry property holds for autocorrelation seqeefd.12b) can further presented as:

rh[0]+2§rh[l]:2
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L-

RSO = (4.13)

=1
Equation (4.13) becomes the compactly supportedel@aonstraint in term of autocorrelation
sequencey[l].

4.3.2 Double shift orthogonality constraint

The double shift orthogonality constraint presente®.3b), can be reformulated in terms
of autocorrelation sequencgl] through the following way:
> h[mlh[m+2K= §[2K=a(h (4.14)
m
It should be noted that (4.14) is obtained by apgly —2k = m on (4.3b). Hence the final double
shift orthogonality constraint in term of autocdaten sequencg|[l] is:

1, fork = 0
fl2k] = (k) = {0 otherwise

with k = o,1,.....{L—_1J
2

Again we make use of the symmetry property to lithe number of constraints. In contrast to
(4.3b) which was non-convex, (4.15) consists adinequalities and is also convex.

(4.15)

4.3.3 K-Regularity constrain

The regularity constraint can be reformulated imgeof autocorrelation sequengfl] by
taking the square of the absolute value of equdtiota) as follows:

—iw K iw K
H@ :[“Z ' J {“f ] Q@ (4.16)
By comparing (4.4a) to (4.16), we can find thatuidgg the transfer functiom(c) to haveK
zeros at Nyquist frequency(= 7) is equivalent to requiringd[«) [’ to have K zeros atw= 7z By
considering the fact that(a)f is the Fourier transform of autocorrelation seqeeofr.[l], we
can represent the&k2h order derivative of () F as follows:

(2k) . .
(H@F)™ = ZnE™ expe @) (4.17)
|
The evaluation on (4.17) aE=1twould result in:

(HaP)™ = [ exoe )

0= [ O* ()

lerh NO*(-) =o (4.18)

By considering the fact that the valuel dér the case of FIR filter having length lofis (L-1) < |
< (L-1), (4.18) can be represented as:

L-1
> (-1) ()*r,[I]=0fork=0, 1, ..K-1 (4.19)
I=-L+1
In (4.19),K represents the regularity index of the wavelet ihaequired to be fulfilled. Making
use of symmetry property of the autocorrelatioruseger,[l] and the fact that the term with 0

has zero value, (4.19) can be further simplified as
L-1

> (1) ()*r,l]=0fork=0,1, ....... K-1 (4.20)
=1

Equation (4.20) imposes the regularity constrairierm of autocorrelation sequengg].
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4.3.4 Stop band constraint

The stop band constraint presented in (4.8) carejpesented in terms of autocorrelation
sequence by defining=m+k. Hence, (4.7) can be represented as:

[H(@) =z himl i m+ k 6190 =5 ([ § el (4.21)
m k k
Therefore, the stop band constraint in (4.8) cawitdgen as:
0y [k]e"™* <A forallwO[w, n] (4.22)
k

The autocorrelation sequenggk] is symmetric ak=0, (i.e,ry[l] = ry[-]) [34]. Hence, (4.21) can
be modified as:

|H (C())|2 =r, [O]+z|:rh[|](e_l‘(4j +eja) )

|H@)* =r,[0] + 2|Zrh[| ] costd )

(4.23)
for 1=1,2,...L - land wO[ @, 7]
Consequently, the stop band constraint in (4.2@)igen as:
0<r,[0]+ 22 r,[l] costd <A
[ (4.24)

forl=1,2,..L -1 andml][a)S 1;]

4.4 Spectral factorization and discretization on stop band constraint

The reformulated optimization problem consistsh# bbjective function and constraints
expressed in terms of autocorrelation sequegiteand therefore the optimal solution will also be
in the autocorrelation domain. Since our intereshe filter coefficient[n], we need to be able to
obtain h[n] from ry[l]. In general, there are infinite sequences oéffiltoefficients that can be
obtained from givem,[I]. However, by using spectral factorization algorithroposed in [35], it is
possible to obtain unique sequence of filter comdfits having minimum-phase property [36]. The
spectral factorization of an autocorrelation segeen[l] can be performed as long as the
logarithmic function of its Fourier transforRy(w), which is nothing but(&)f, remains irdl. To
ensure this an additional constraint is enforced:

H@|’20  forwO] Of] (4.25)

Based on (4.23), time domain representation ob{4can be written as:
rn[0] + 22y [l ] cosed )= 0
|

forl =1,2,...L - 1 andwO[ 0]
Since we have infinite number of inequalities ie ttonstraints defined in (4.26), a discretization
process needs to be performed in the intewal [0,1]. This is necessary in order to make the
optimization problem practically solvable using iéaale optimization programs. One way to do
discretization proposed in [36] is by replacing tbamous variables with a discrete variable; =
in/d, which is defined on a finite set [0,...,d]. A typical value ofd according to [36] is I As a
result, the constraint required for successful spetactorization after applying the discretizatio
process can be represented as:

L-1
r[0]+ 2% ry[l] cosi(al /d ) =0
1=1

fori=0,1,...,d (4.27)
For clarity, we refer (4.27) as spectral factoiimatconstraint.

Similar to the spectral factorization constrainise number of stop band constraints
defined in (4.24) is also infinite. Hence, disazation process is needed on stop band constraints i
order to make the optimization problem becomes tmally solvable. After implementing
discretization, the stop band constraints in (4c24) be rewritten as:

(4.26)
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L-1
0<r,[0]+ 2% ry[I] cosita /d ) <A
1=1

(4.28)
for i :{&W*d, ..... d
T

If we compare (4.27) with (4.28) and take into acdathe fact that we exploit the built in
anti-symmetry of |H(c)|*-1) aboutw = 192 in figure 4.1 [32], it can be easily found tisgiectral
factorization constraint (4.27) will be automatigatatisfied if the stop band constraint (4.28) is
satisfied. In other word, the stop band constr&th28) is more stringent than the spectral
factorization constraint (4.27).

In summary, our optimization problem in term of gudrrelation sequencg[l] can be
defined as:

MINIMIZE A
under the constraints of:
L-1
1
1 == 4.13
) 2nl1=3 (4.13)

a=a={o o 0

2) ' (4.15)
withk=0,1,..... {EJ
L-1

3) Y (1) ()*r,[Il]=0 fork=0,1, ....... L K-1 (4.20)
1=1

L-1
0<r,[0]+ 2% ry[l] cosi( /d ) < A
=1

o (4.28)
fori = {—S-l* d,..... d
T

This optimization problem is clearly linear and eer.

4)

4.5 Reformulating the optimization problem in Q(a) function domain

As it can be noticed from section 4.4, the optirticza problem is entirely linear. Hence,
any linear programming technique can theoretichlyused to solve this optimization problem.
Since, in general, linear optimization problem isubset of convex optimization problem, any
tools or algorithm that commonly used to solve @ngptimization problem should be capable to
solve this optimization problem as well. Howevernamerical problem may arise when the
optimization problem formulated in section 4.4 t® practically solved by using the available
convex or linear optimization program. This numakigroblem is caused by the fact that matrix of
the linear system composed by regularity constri@nt4.20) becomes ill-conditioned when the
value ofL andK increases [32][34]. In order to alleviate this lgeon, the optimization problem
should be further reformulated in term of autodatien sequencey[l]. In the other word, the
analysis of the optimization problem is shiftednfrthe domain oH(«) into the domain 0Q(w)
based on (4.4a). In order to simplify the reformiolaprocess, (4.16) is represented as:

i \K i \K
1+e J (1+eI ] |Q(w)|2

2 _
M@= 2 2

. IIUREN
M@ = &Sw)} Q@)

2
Hence, the time domain representation of (4.29)eadenoted as [34]:

K
|H (w)|2 — (1+ COS@»J |Q(a))|2 (429)
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] =272 éK(niKK}q[' -n] I=0,1,...., L1 (4.30)

As forn[I], symmetry property also holds for autocorrelasequence[l] . The constraints now
can be redefined in term of autocorrelation seqegfit.
1) Compactly Supported Wavelet constraint: The reformulation of compactly supported

wavelet constraint in term of autocorrelation sewea[I] is obtained by combining (4.2b) and
(4.29) as well as setting= 0. It can be noticed that:

> h[n] = H@)| , = Hdexp(- wn)

n

-2

w=0

H@f| =2 (4.31a)
w=0
By substituting (4.29) into (4.31a) we obtain:

-jw K jow K
e
w=0
Q| =2
w=0
Lg-1
{rq[0]+22 rqll] cose )}
i=1

Hence, we finally come up with the compactly supgedrwavelet constraint in term of
autocorrelation sequencgl] as follows:

o [0]+ 2L|‘*§‘lqu[| =2 (4.31b)

w=0

2) Double Shift Orthogonality constraint: Based on (4.15) and (4.30), the double shift
orthogonality constraint in term of autocorrelatsgguence,[l] can be represented as:

r,[21] = 272K éK[niKK}q[z -n]=dl], | =0,1,........, L%J
éK(niKK]rq[m -n]=22%0[1], 1 =0.1,..... .., L%J (4.32)
Equation (4.32) defines double shift orthogonatipnstraints in term of autocorrelation sequence
rqll].

3) Spectral Factorization constraint: The easiest way to reformulate the spectral
factorization constraint in term of autocorrelat®eguence,[l] is by combining (4.25) and (4.29)
as follows:

|H(@* =0 forwO[ 071]

K
(1+cozs(a))] \Q((u)\2 >0 forwO| 071] (4.33)
Since the term.+ cogw) in (4.33)is always positive, the constraint in (4.33) carsieplified as:

lQ()° 20 forwO|[ 071] (4.34)
By taking into account discretization in the inwer[O,n] as already mentioned in section 4.4,
the spectral factorization constraint in term afo@orrelation sequencgfl] can be defined as:

Lg-1 .
rq[0]+2 X ry[l]cosit ¢ )= dfori=0,1,...d (4.35)
1=1
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It is clear from (4.4) that sind®(«) hasK zeros less thaH(w), the length of the filteg[n] would
bel,=L-K

4) Stop band constraint: Similar to the case of spectral factorization craists, the stop
band constraints in term of autocorrelation seqeegt is obtained by combining (4.7), (4.8) and
(4.29) as follows:

0<|H (a))|2 <A forwO[ a, 7]

K
0< (“L;(w)] |Q(a))|2 <A forwO[ aw, 77]

By taking into account discretization in the int@rw| w, 77]as already mentioned in section 4.4,
the stop band constraint in term of autocorrelasequence[l] can be defined as:

K —
05(%} (rq[o]+ 2% 1 [1] cosit 4 )]sA
=1

for i :{“’s}a ....... dandLy=L - K. (4.36)
Vs

It is clear from equation (4.29) that when the mjiation problem is expressed in term of
autocorrelation sequenag[l], the necessity fofH(a))|2 to have K zeros atw = 77 has been

imposed implicitly. Therefore, the regularity camagbts are not explicitly expressed when the
optimization problem is conducted @(w) domain.

Similar to the case dfi(w) domain in section 4.4, we find that the spectaatorization
constraint in (4.33) and (4.35) will be automalfigaatisfied if the stop band constraint (4.36) is
satisfied by considering the fact that we take axtoount the built in anti-symmetry dfH(a)|*1)
aboutw = 172 in figure 4.1 [32]. In other word, the stop baswhstraint (4.36) is more stringent
than the spectral factorization constraint (4.35).

In summary, our optimization problem in term of @adrrelation sequencg[l] can be
defined as:

MINIMIZE A
under the constraints of:
Ly-1
1) ry[0]+2X r[l]=2 (4.31b)
I=1
K 2K a2k
2)n:z_K[n+ Kjrq[m n] = 22K o[l
for 1=0,1,..... ., {LT‘l J (4.32)

K -
3)05(%} (rq[0]+2Lqurq[l]cosi(ﬂ d )]sA
1=1

for i :[&—I*d ....... d andLg=L—K (4.36)
Vs

Once we find the optimal autocorrelation sequenfé the spectral factorization is employed in
order to derive the optimal sequergié] from ry[l]. Finally, the optimal wavelet low pass filter
coefficients can be computed using the time doregirnvalent of (4.4a) [34]:

K (K
h{1] :2—K2[k]q[l—k] (4.37)
k=0
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4.6 Resultsand Analysis

4.6.1 Solving the Convex Optimization Problem

Since the optimization problem illustrated in seeté.5 is linear optimization problem and
thus it is also convex optimization problem, anyeéir programming tools as well as convex
optimization solver can be used to solve this poblin this case, we choose SeDuMi [37] as
generic Semi Definite Programming (SDP) solversdlve the convex optimization problem listed
in section 4.5. In addition to SeDuMi, we also immrate Yalmip toolbox [38] in order to allow
the optimization problems to be expressed in higbeel language. We have used Yalmip to
describe our optimization problem and SeDuMi soliembtain the optimal solution for given
parameters. At the end of the filter design proctss coefficients of the analysis low pass filter
will be generated. From the analysis low passrfilté’F) h[n], the high pass filter (HPF)[n] can
be obtained through the Quadrature Mirror FiltenlBa(QMF) equations illustrated by (2.53). And
from these set of filters, the wavelet packet baggectrum estimator structure can be realized.
Figure 4.2 illustrates the flow chart describing thesign process. From this figure, it is cleat tha
the design process can be divided into two maitspemely analytical part and numerical part. In
analytical part, we try to modify our non-convexoblem into convex problem followed by the
conversion of the expression from autocorrelatigj domain into autocorrelation,[l] domain.
The numerical part basically tries to solve thevesnproblem in term of variable constraingH].
After that, another analytical process is perfornedrder to derive optimum low pass filter
coefficientsh[n] from sequenceg[n], which is obtained by applying spectral factoti@a onr[l].

All expressions

Design in termI of_
Specification Objective L > autocorrelation
Function Al | Translate the seauences rq[l]
. non- All expressions expressions >
euessons | comex | ntemor | S YALMIP
. hi .
Constraints filter problem to autocorrelation domain to (pnma.|
Wavelet coefficients convex | Seauences ralll r[f] domain » Conversion)
Requirements Wavelet hil | problem o
a q | Ll
Criterion All expressions in|
Primal Form
Optimal

Autocorrelation
sequences /]

constraints

are satisfied? SeDumi

Solver

Error NO
STOP |j=—
Message
NO A

Filter coefficients

Ml - - Sequences
Derive filter qlfl Spectral
 coefficients h[/] from |« Factorization
sequences q[f]

Figure 4.2 Flow chart of the optimum wavelet design processvavelet packet based spectrum estimation

We use the spectral factorization algorithm thatpisposed by Stephen Boyd from
Stanford University [35]. From given autocorrelatigequence, this spectral factorization algorithm
tries to derive filter coefficients with lengthhaving minimum phase property. We decide to use
this spectral factorization algorithm since a filteaving minimum phase property is definitely
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stable. We would like to emphasize that as longhasspectral factorization constraint (4.33) is
satisfied, it is guaranteed that we can obtaieadtlone solution of filter coefficienggn] [35].

LPF (Designed Wawelet,
K-regularity =7,
Transition Band = 0.21)
HPF (Designed Wawelet
K-regularity = 7,
Transition Band = 0.21)
———— LPF (Coiflet-5)
e HPF (Coiflet-5)
----- LPF (Daubechies 15)
HPF (Daubechies 15)

Magnitude (dB)

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency(xrt rad/sample)

Figure 4.3 Frequency response of Daubechies-15, Coiflet-Glaadesigned wavelet low pass (LPF) and high (H4B§)
filter with L=30,K=7,B=0.2t

4.6.2 Comparison between the designed wavelet and standard wavelet family

A. Frequency and I mpulse Response of Designed Filter

In this part, we tries to present illustration abthe frequency response of our optimally
designed wavelet low pass and high pass filter cdvesider examples with filter lengths30 and
L=40. Indeed it is possible to consider filters wather lengths too. In the first example shown in
figure 4.3, the frequency response of the desigveeetlet filters is compared with Daubechies and
Coiflet wavelet filters. All of these wavelet filte have filter length of 30. In this figuré-
regularity index of 7 and transition banB) (of 0.2t is applied on the designed wavelet filters.
From figure 4.3, it can be found that our proposedelet filters have better frequency selectivity
than its Daubechies and Coiflet counterparts. Allsprece however is paid in terms of the small
ripples introduced in the side lobe. However, tiegfiency response of our proposed wavelet filter
is generally still more preferable. Figure 4.4 prés similar comparison far=40. In this figure,
only the frequency response of our optimal wavahet Daubechies-20 filters are displayed.

Figure 4.5 and 4.6 describes the impulse respoh#igechigh and low pass filters of the
optimally designed wavelets fdr=30 K=7 B=0.2t and L=40 K=8 B=0.2r, respectively. The
coefficients of the designed wavelet filter fbr30 K=7 B=0.2t and L=40 K=8 B=0.2t are
presented in appendix A.2 (tables A.2.1 and A2&pectively).
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LPF (Designed Wavelet
K-regularity=8,
Transition Band=0.21)
HPF (Designed Wavelet
— K-regularity=8,
Transition Band=0.21)
_____ Low Pass Filter
(Daubechies 20)
_____ High Pass Filter
(Daubechies 20)

Magnitude (dB)

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8
Normalized Frequency(xrt rad/sample)

Figure 4.4 Frequency response of Daubechies-20 and the desigameelet low pass (LPF) and high pass (HPF) filter
with L=40,K=8, B=0.2t

Impulse Response of the Designed Wavelet Low Pass Filter

(Length=30, K-regularity=7, Transition Band=0.211)
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Impulse Response of the Designed Wavelet High Pass Filter
(Length=30, K-regularity=7, Transition Band=0.21)
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Figure 4.5 Impulse response of the designed optimal wavilet fvith length =30, K-regularity = 7, overalbnsition
band = 0.2.
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Impulse Response of the Designed Wavelet Low Pass Filter
(Length = 40, K-regularity = 8, Transition Band=0.21)
T
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Impulse Response of the Designed Wavelet High Pass Filter
(Length = 40, K-regularity = 8, Transition Band=0.21)
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Figure 4.6 Impulse response of the designed optimal wavétet fvith length = 40, K-regularity = 8, overatbnsition
band = 0.2.
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Designed Wawelet with SDP Approach
(Length=30 Regularity=7, Trans. Band =0.27)
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Figure 4.7 Estimates of Partial Band Source based on Cdfl&aubechies-15, Symlet-15 and the designed
optimal wavelet filter with length=30, K-regularity7, overall transition band = G1i2The wavelet decomposition
level used here is 7. The number of samples inetkgeriment is 12800
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B. Evaluation of Spectrum Estimator performance

Next, we try to examine the performance of spectastimation based on our designed
wavelet. For this purpose, three types of sourcesansidered. Two of them have been already
introduced in chapter 3, namely partial band soartsingle tone source. A partial band source is
constructed to occupy the normalized frequency lEr@25w0.75t The single tone source has
all of its energy at one frequency and it sits righthe middle of the range spanned by the wavelet
based spectrum estimation, namely attOEhe third source is the new source introducee lasr
multi-band source. In this kind of source, thredivacbands are constructed to occupy the
normalized frequency bands of 0r88.19rt, 0.470.58T, and 0.86:-0.97r, respectively.

2 Designed wavelet with SDP approach |
—+— (Length=30 K-regularity=7 :

Transition Band=0.2m) i
10y —+* - Daubechies-15 - - L\ ***** i e
—S— Symlet-15 !
Coiflet-5 |

Power / Frequency (dB/ rad/sample)

Normalized Frequency (x Tt rad/sample)

Figure 4.8 Estimates of Single Tone Source based on Coifl&abibechies-15, Symlet-15 and the designed optimal
wavelet filter with length=30, K-regularity = 7, esall transition band = Or2 The wavelet decomposition level used here
is 7. The number of samples in this experimen2B0D

B.1 Partial Band source

Figure 4.7 illustrates how spectrum estimation vifith newly designed wavelet compares
with estimates based on standard wavelet familpéotial band case. Here, the number of samples
is set to 12800. The specifications for the optimalelet ard (length) = 30K (regularity index)
= 7 andB (transition bandwidth) = Or2 It is clear from the figure that the optimal whete
outperforms Daubechies, Coiflet and Symlet wavedétthe same length. The improvements are
with regard to frequency selectivity and the sharansition between occupied band and
unoccupied band. This is logical since our wavéliglr is specifically designed to have optimum
frequency selectivity.

B.2 Single Tone source

On the other hand figure 4.8 illustrates that,ingke tone source, no significant difference
is found between the performance of the estimadseth on our designed wavelet and that based on
standard wavelets. For extremely narrow band solikee single tone source, the frequency
resolution issue is more related to decompositemell rather than the frequency selectivity of the
response of decomposition filter. This is why thisrao perceivable difference between the results
when different wavelets are used.

96



Chapter 4 Optimal Design of Wavelet for Wavelet Based Spectrum Estimation

B.3 Multiple-Bands source

The newly developed wavelets perform better thamstieg standard wavelets of
comparable lengths in estimating multiple narroba@nd source shown in figure 4.9. Due to better
frequency selectivity in decomposition filter, odesigned wavelet offers greater side lobe
suppression compared to standard wavelet families. side lobe appears due to spectrum carving
effect produced by iterative decomposition proagksen the frequency response of decomposition
filter is not frequency selective enough. Sincegpectrum carving issue is extremely important in
our wavelet based spectrum estimation proposalptena would discuss this issue. Other
noticeable advantages of designed wavelet comparsethndard wavelet families are in terms of
frequency selectivity of the estimates and shatpsersition between occupied and unoccupied
bands.

Power / Frequency (dB/ rad/sample)

—S— Daubechies-15
—+H— Symlet-15
Coiflet-5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (x Tt rad/sample)
Figure 4.9 Estimates of Multiple Band Source based on Ceflddaubechies-15, Symlet-15 and the designed aptim

wavelet filter with length=30, K-regularity = 7, esall transition band = Or2 The wavelet decomposition level used here
is 7. The number of samples in this experimen2B0D

-60

B.4 Estimation for small number of samples

The next investigation is to find out how the watdbased spectrum estimator performs
for much smaller number of samples. The goal of thvestigation is to examine our proposed
estimators in dynamic spectrum environment whegestieed of estimation is an issue and thus the
number of samples might be limited. For this pggowe consider the three types of source
mentioned before for 1152 samples and 384 samplesse are depicted in figures 4.10-4.12 for
the case of 1152 samples and in figures 4.13-41bd case of 384 samples. In general, it can be
found that the reduction of samples space hastegsiun poorer side lobe level and higher variance
of estimated power spectral density (PSD) both ha bccupied and non unoccupied band.
However, it is also found from those six figureattthe spectrum estimation based on our designed
wavelet performs better than that based on standavelets in term of transition from occupied to
unoccupied band (see figures 4.10 and 4.13) arelisluk level (see figures 4.12 and 4.15). The
key reason for the optimal designed wavelet bagpdoach to have lower side lobe level in the
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estimation of the multi band source is better tasise to the spectrum carving effect (to be
discussed in chapter 6).

Power / Frequency (dB/ rad/sample)

Designed wavelet with SDP approach

(Length=30 K-regularity=7 Trans.Band=0.27) |

—+— Daubechies-15

‘ —&— Symlet-15

‘ | Coiflet-5

40 il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized Frequency (x 1t rad/sample)
Figure 4.10 Estimates of Partial Band Source based on Cdfl&aubechies-15, Symlet-15 and the designed optima

wavelet filter with length=30, K-regularity = 7, esall transition band = Or2 The wavelet decomposition level used here
is 7. The number of samples in this experimentlE2l

Designed wawelet with SDP approach
—+— (Length=30 K-regularity=7
Trans.Band=0.27)
—+— Daubechies-15
——6— Symlet-15
Coiflet-15

Power / Frequency (dB/ rad/sample)

Normalized Frequency (x Tt rad/sample)
Figure 4.11 Estimates of Single Tone Source based on CoiflBabibechies-15, Symlet-15 and the designed optimal
wavelet filter with length=30, K-regularity = 7, esall transition band = 012 The wavelet decomposition level used here
is 7. The number of samples in this experimentlE2l
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Figure 4.12 Estimates of Multiple Band Source based on Cefilddaubechies-15, Symlet-15 and the designed aptim
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Figure 4.13 Estimates of Partial Band Source based on C&fl€@aubechies-15,

Symlet-15 and the designed optima
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Figure 4.14 Estimates of Single Tone Source based on CoiflBabibechies-15, Symlet-15 and the designed optimal

wavelet filter with length
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Apart from higher variance produced by all wavélased estimator, the results for single
tone source shown in figures 4.11 and 4.14 telktme story as in the case of 12800 samples. No
significant difference is found between the perfance of spectrum estimation based on designed
wavelet and that based on standard wavelet. Thig again, underlines the lack of impact of the
frequency selectivity of decomposition filters dre testimation of extremely narrow band source.
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Figure 4.16 Detection and false alarm probability of spectestimation based on various wavelet families. is th
scenario, the length of wavelet decompositionrfike30, the wavelet decomposition level is 7 dreldample space is of
size 12800. The K-Regularity of the designed waselth SDP is 7 with a normalized transition bafid.2r.

C. Evaluation of Receiver Operating Characteristic

To better gauge the system performance of the gpecestimator based on optimally
designed wavelet in comparison with standard wayveie receiver operating characteristic (ROC)
is used as the second figure of merit. To obtaghpgrobability of detectionRy) and false alarm
(Pra), we divide the normalized frequency rangeatnto 128 equal bands (or frequency bins).
Each bin is occupied by 1 source meaning that we baerall 128 sources. These 128 sources are
randomly activated / deactivated and ByeandP;, are calculated for each given threshold out of
total 100 experiments. The way the source actinaiod deactivation is conducted is similar to the
activation and deactivation of sub carriers in OFD&hsmission. The threshold is varied manually
from -3dB to -15dB. The number of samples here2B80D. An active source would have around -
2.1 dB power. Figure 4.16 depicts tRg and Py, as a function of threshold level which clearly
underlines the superiority of the newly designedelet in relation to other wavelet families of the
same filter length. The frequency selectivity irdrdrin the proposed wavelet has allowed spectrum
estimator built on it to have much betirandP, for all thresholds in comparison to Daubechies,
Symlet and Coiflet based estimators. Similar reisuitlso found when the size of sample space is
reduced to 384 as shown in figure 4.17. Here theetspm estimator based on newly designed
wavelet moderately outperforms that based on stdndavelets. Finally, the receiver operating
characteristic (ROC) shown in figure 4.18 gives engustification on the superiority of the
estimator based on the designed wavelet.
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Figure 4.17 Detection and false alarm probability of spectestimation based on various wavelet families. is th

scenario, the length of wavelet decompositionrfike30, the wavelet decomposition level is 7 dr@lgample space is of
size 384. The K-Regularity of the designed waveléts SDP is 7 with a normalized transition band .
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Figure 4.18 Receiver operating characteristic of spectrunmegton based on various wavelet families. In thEngrio,
the length of wavelet decomposition filter is 3 tvavelet decomposition level is 7 and the sammpéee is of size 384.
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Figure 4.19 Detection and false alarm probability of spectestimation based on newly designed wavelet with
variations on filter lengths. In this scenario, W@velet decomposition level is 7 and the sampéeayis of size 12800.
The K-Regularity of the designed wavelets with S&mfinite Programming (SDP) is 7 with a transitlzemd of 0.2.
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Figure 4.20 Detection and false alarm probability of spectestimation based on newly designed wavelet with

variations on filter lengths. In this scenario, t@velet decomposition level is 7 and the sampéeayis of size 384. The
K-Regularity of the designed wavelets with Semiibigd Programming (SDP) is 7 with a transition bafid.2r.
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The key point that makes it possible is to playhvktRegularity. In Daubechies and
Symlet wavelet families, all df equations provided bl impulse response in filter with length of
L has been exploited to provide double shift ortimadity (requiringL/2 equations) and./2
regularity index (also requiring/2 equations). Hence, there is no degree of freetth@airemains
in order to be exploited for providing frequencyestivity feature. On the other hand, it is possibl
to have regularity index d€ < L/2 in our designed wavelet and this has proli#K equations as
degree of freedom which is basically used by th#nopation tool to minimize the ripple in pass
band and stop tlaand given certain transition bantisshown in figure 4.1.
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0.85 SDP Approach

Filter Length = 30
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Filter Length = 34
SDP Approach
Filter Length = 42
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Filter Length = 50
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Probability of Detection

Probability of False Alarm
Figure 4.21 Receiver operating characteristic of spectrummeston based on newly designed wavelet with vamgtion
filter lengths. In this scenario, the wavelet deposition level is 7 and the sample space is of 38k The K-Regularity
of the designed wavelets with Semi Definite Prograng (SDP) is 7 with a transition band of 0.2

4.6.3 Other Evaluation and Studies

In addition to the results presented in the previsection, the impact of some parameters
on receiver operating characteristic is studiecdthas the same experiment setup employed in part
C of sub-section 4.6.2. In figure 4.19, the ressittsws that for a given regularity order, the lange
the decomposition filters, the better thg and Py, of the estimates. This is reasonable since we
have more degree of freedom to minimize the pasd bad stop band ripple. Likewise, for a given
filter length, lowerK regularity index results in greater degree of foeedvailable to minimize the
pass/stop band ripple yielding better performareslts. Figure 4.20 generally shows that the
impact of different decomposition filter length tite Py andP;, of the estimates is less significant
for much smaller number of samples. However, itstdl clearly illustrated that longer
decomposition results in better performance. Tlaist fis also justified by receiver operating
characteristic (ROC) shown in figure 4.21.

Figure 4.22 describes the influence of transitiandvariation on the detection and false
alarm probability. The result basically exemplifibg importance of frequency selectivity on the
quality of the estimates. Here, narrower transiti@md produces lower false alarm and higher
detection probability which is valid since narrowgansition band means better frequency
selectivity and the use of wavelet filter with leetfrequency selectivity would theoretically leads
to spectrum estimator with better performance. f6gd.23 shows the same phenomenon for
smaller number of samples (384 samples). The impfagarying transition band on thi® andPy,
of the estimates is less significant here. Howeitas, still obvious that narrow transition band of

104



Chapter 4 Optimal Design of Wavelet for Wavelet Based Spectrum Estimation

the decomposition filter corresponds to better grenbince of the spectrum estimator. This is

justified by the receiver operating characteri@®©OC) shown in figure 4.24.
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Figure 4.22 Detection and false alarm probability of spectestimation based on newly designed wavelet with
variations on transition band. In this scenarie, l#ngth of wavelet decomposition filter is 40, thavelet decomposition
level is 7 and the sample space is of size 12806 KFRegularity of the designed wavelets with SBxiinite
Programming (SDP) is 6.
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Figure 4.23 Detection and false alarm probability of spectestimation based on newly designed wavelet with
variations on transition band. In this scenarie, l#ngth of wavelet decomposition filter is 40, wvelet decomposition
level is 7 and the sample space is of size 384 KFRegularity of the designed wavelets with Semfifiee
Programming (SDP) is 6.
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Figure 4.24 Receiver operating characteristic of spectrum egton based on newly designed wavelet with vanietion
transition band. In this scenario, the length ofi@let decomposition filter is 40, the wavelet deposition level is 7 and
the sample space is of size 384. The K-Regulafitiedesigned wavelets with Semi Definite Prograngn{SDP) is 6.
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Figure 4.25 The impact of varying number of samples on detectind false alarm probability. In this scenartie, t
length of wavelet decomposition filter is 40 and thavelet decomposition level is 7. The K-Regweaoitthe designed
wavelets with Semi Definite Programming (SDP) isith a normalized transition band of 8.3
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Figure 4.27 Detection and false alarm probability of spectestimation based on periodogram, Welch approach and
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approach. 128 sources occupying 128 frequencyibitie normalized frequency rangerfPare randomly activated and
deactivated.
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Figure 4.25 describes the impact of varying numifesamples on detection and false
alarm probability. As it is clear from the figurgye should aware that the quality of the
performance drops for smaller number of sampless dbviously shows that the size of snapshot
windows does have an impact on the performance adfelet based spectrum estimation. The
figure also shows that the smaller the number wipde, the larger the drop in performance quality.
The receiver operating characteristic in figured4istifies the inference.

4.6.4 Comparison between the designed wavelet based spectrum estimators,
Periodogram and Welch approach

A. Investigation on Detection and False Alarm Probability with varying thresholds level

In this sub-section, we try to compare the perforoeaof the spectrum estimator based on
the designed wavelet with that of periodogram arelcW approach. With regard to the designed
wavelet used here, the length of the decomposttitar is 40 with K-regularity index of 8 and
transition band of 0718 The wavelet decomposition level is 9. The sarsplgce in this experiment
is of size 384 because we would like to assesspémrmance for few numbers of samples.
Though it is certainly possible to obtain the véoia of the performance by using different
parameters of the designed wavelet, we just fixpdw@ameters here in order to obtain rough view
about the position of our wavelet based spectruimasors along with periodogram and Welch.
The overlap percentage and the length of each segeneployed in Welch approach is 50% and
64 samples, respectively. Hamming window is usethis Welch approach. The setup of this
experiment used here is similar to the setup ih @asf sub-section 4.6.2. We basically divide the
normalized frequency range f)into 128 frequency bins.
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Figure 4.28 Detection and false alarm probability of spectestimation based on periodogram, Welch approach and
newly designed wavelet with lengths of #Bregularity index of 8 and transition band .& this scenario, the wavelet
decomposition level is 9 and the sample spaces&zef384. The overlap percentage and the lengtaati segment
employed in Welch approach is 50% and 64 sampdspectively. Hamming window is used in this Welppr@ach. 64
sources occupying 128 frequency bins in the nomeelfrequency range f},are randomly activated and deactivated.
Each source occupies 2 frequency bins
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In figure 4.27, 128 sources occupy 128 frequenosg o the normalized frequency range
of [0,7]. These 128 sources are randomly activated / dedetl and théy andPs, are calculated
for each given threshold out of total 100 experiteeAn active source would have around -2.1 dB
power. The result shows in figure 4.27 generallgneglifies what has been found in chapter 3. The
performance of our wavelet based approach is soemwin between that of Welch and
Periodogram. In most of threshold values, Welchr@ggh offers better probability of detection but
very poor probability of false alarm due to its perdfrequency resolution. Since the length of each
segment employed in Welch approach is 64 sampléshvid only 1/6 of the number of samples,
the averaging process introduced in Welch doesoffet much significant improvement of the
variance of estimated PSD when it is compared tmgegram. On the other hand, periodogram
has better probability of false alarm but poor @dubty of detection due to higher variance of
estimated PSD. This underlines some advantagesedffey wavelet approach. In wavelet based
estimates the performance can be adjusted by atlign parameters of the designed wavelet such
as length of filter, transition band and especidcomposition level in the wavelet packet tree.
Even though, wavelet based approach seems to becorpetitive enough compared to
periodogram in term of false alarm probability, fieeconfigurability and adaptability feature of
wavelet based approach might be promising. Theorea@d poorer false alarm probability in
wavelet based spectrum estimation is clearly tietspm carving issue that might introduce side
lobes as high as -9dB as it would be explainedapter 6.
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Figure 4.29 Detection and false alarm probability of spectestimation based on periodogram, Welch approach and
newly designed wavelet with lengths of #Bregularity index of 8 and transition band i.& this scenario, the wavelet
decomposition level is 9 and the sample spaces&ef384. The overlap percentage and the lengtladi segment
employed in Welch approach is 50% and 64 sampdspectively. Hamming window is used in this Welppr@ach. 32
sources occupying 128 frequency bins in the nomeelfrequency range f},are randomly activated and deactivated.
Each source occupies 4 frequency bins

While in figure 4.27, 128 narrow band sources amdomly activated and deactivated
along 128 frequency bins in the normalized freqyeband of [Of], we try to investigate the
performance of the three spectrum estimators fdewiband sources. In figure 4.28, 64 sources are
randomly activated and deactivated over 128 frequdrins in the range of [ij. Each source
occupies 2 frequency bins. As it can be seen flisfigure, the performance of the periodogram,
Welch approach and the spectrum estimation basetheomlesign wavelet is better than that is
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shown in figure 4.27. This means, the spectrunmedtirs generally perform better for wider band

sources. This fact is also exemplified when thethvidf the band spanned by each source is
increased to 4 and 8 frequency bins in figure 428 4.30, respectively. From figures 4.28-4.30,
we also observe similar phenomenon to that is faorfigures 4.27. The performance of wavelet

based approach is basically in between that obdegram and Welch.
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Figure 4.30 Detection and false alarm probability of spectestimation based on periodogram, Welch approach
and newly designed wavelet with lengths of K@gegularity index of 8 and transition band .3 this scenario, the
wavelet decomposition level is 9 and the sampleesjzof size 384. The overlap percentage ancetigth of each
segment employed in Welch approach is 50% and B4les, respectively. Hamming window is used in Wislch
approach. 16 sources occupying 128 frequency hitisei normalized frequency rangerfi0are randomly activated

and deactivated. Each source occupies 8 frequensy b

B. Investigation on Receiver Operating Characteristic

In this part, we try to compare the receiver opegatharacteristic of the estimator based
on the designed wavelet with that of periodogram Arelch approach. The sample space in this
experiment is of size 384 and the setup of the rax@@t is similar to part A of sub-section 4.6.4.
The setting of Welch approach is exactly the saménahe previous part. In figure 4.31, 128
sources occupying 128 frequency bins in the nomedlifrequency range of ), are randomly
activated /deactivated. From this figure, it isriduthat the performance of Welch approach is the
poorest. We also found that wavelet based speotstimator with decomposition filter length of
40, K-regularity of 8, transition band of @tand decomposition level of 9 has poorer perforreanc
than periodogram for false alarm probability lekant 0.25. When the length of decomposition
filter is increased to 50 and the K-regularity ecckased to 7, the performance of wavelet based
estimator is slightly improved. This is valid sincereasing the length of the filter and decreasing
the K-regularity would provide more degree of freedfor improving the frequency selectivity of
the wavelet filter. From this stage, we might exptbe flexibility of wavelet based approach.
Since it is possible to obtain the wavelet coeéfits from all wavelet packet nodes at all levels
within one snapshot and one operation, it is aksasonable to display the estimates from
decomposition level less than 9 in the plots. Is tase, we display the estimates based on wavelet
with decomposition levels of 7 (the filter lengiregularity and transition band are fixed to 50, 7
and 0.3t respectively) and we can see that the waveleedbapproach with this setting
outperforms periodogram for almost all value oéahlarm probability. Once again, we would like
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to emphasize that the estimates based on wavelebagh with decomposition levels of 7 and 9
are obtained from the same snapshot and from sopgieation.
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Figure 4.31 Receiver operating characteristic of spectrummeton based on periodogram, Welch approach antynew
designed wavelet. In this scenario, the sampleesisaaf size 384. The overlap percentage and tigiHeof each
segment employed in Welch approach is 50% and @les, respectively. Hamming window is used in Wisich
approach. 128 sources occupying 128 frequencyibitie normalized frequency rangerfPare randomly activated and
deactivated.
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We now try to investigate the receiver operatingrahteristic of the estimators for wider
band sources. In figure 4.32-4.34, the number edufency bins occupied by each source is 2, 4,
and 8 bins, respectively. From these three figlitds, clear that the wider the bandwidth of the
source, the better the performance of the estimafibe most significant improvement, however,
happens on Welch based estimation. While in figu®2, the receiver operating characteristic
(ROC) of Welch approach is still clearly poorerrthgeriodogram and wavelet based approach,
figure 4.34 shows that the performance of Welchreggh surpasses that of periodogram and
wavelet based approach with decomposition lev8l. éfgain, in these three figures, we can simply
reduce the decomposition level from 9 to 7 in otdemprove the receiver operating characteristic
of wavelet based approach.

The results shown in figures 4.31-4.34 emphasiedriference that is drawn from chapter
3. Welch approach performs worse for narrower bsmarce due its poor frequency resolution.
Once the bandwidth of the source to be estimatedcigased, the drawback caused by limited
frequency resolution is less significant and tleisutts in dramatic improvement of the Welch ROC.
Periodogram, on the other hand, still has to dét#l the larger variance of the estimated PSD. This
variance problem still has significant impact om fherformance of periodogram estimates for
wider band making the improvement is less significmpared to the one observed from the case
of Welch.

It is important to learn that we should not malkeetess conclusions on the ROC of the
spectrum estimations. The performance of every owkttiearly depends on the setting of the
estimators. For example, the size of the segmepla@md in Welch method is clearly vital and
different size would end up with completely diffetgerformance. However, at least we can figure
out that increasing the size of each segment wouddte the performance of Welch method
approaches that of periodogram assuming the udeafame window. Similar case also holds for
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wavelet based spectrum estimation. The use ofrdiffedecomposition level while keeping the
same wavelet specification (filters length, regtyamdex and transition band) may results in
different ROC. Varying the decomposition filter ¢gh, regularity index and transition band would
results in even more variations in performance.rEtleough, it is irrelevant to make simple
justification among the three techniques, we maheast highlight the advantage of wavelet based
spectrum estimation here. The possibility to obtaavelet coefficients from all wavelet packet
nodes at all levels provides multiple estimateswlifferent trade off. This is done based only on
one snapshot and through one-time operation.
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Figure 4.32 Receiver operating characteristic of spectrunmegton based on periodogram, Welch approach antynew
designed wavelet. In this scenario, the sampleesigaaf size 384. The overlap percentage and tigtHeof each
segment employed in Welch approach is 50% and Bles, respectively. Hamming window is used in Wisich
approach. 64 sources occupying 128 frequency hitigei normalized frequency rangerfi0are randomly activated and
deactivated.

4.7 Summary and Conclusion of the Chapter

In this chapter, we presented the design of optimawvelets which have greater frequency
selectivity than common wavelet families such amigy, Coiflet and Daubechies. The need for
frequency selectivity feature was deduced afteexdraustive analysis on the relationship between
the property of wavelet decomposition filter an@ ferformance indicators. In our design, we
exploited Semi Definite Programming (SDP) aftertistathe entire constraints and objective
functions as a non-convex optimization problem. lfer manipulated and modified the problems
into linear optimization problem and used SDP tdolsolve it. In the modification process, we
had expressed the problem in terms of autocoroelaequence of filter coefficients as variable
constraints instead of merely the filter coeffi¢tgenThe key idea is to compromise the regularity
constraints in order to get more degree of freedtiowing the optimization tool to obtain more
suppressed pass and stop band ripple in the freguesponse of decomposition filters given the
transition band. The simulation results revealeat the spectrum estimator based on designed
wavelet has a better performance compared to dstirbased on well known wavelets, such as
Daubechies, Symlets, and Coiflet. Therefore, ite@sonable to conclude that the Semi Definite
Programming and optimization approach has provitleient tools to design new wavelet with
desired frequency selectivity feature, which ssjtectrum estimation application.
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From the investigation of receiver operating chimastic, we also found that the
performance of our wavelet based spectrum estimatioongly depends on the decomposition
level as well as the wavelet settings such as dposition filter length, regularity index, and
transition band. By keeping the same decomposfiler length, regularity index and transition
band, it is possible to exploit the wavelet coééiits produced by wavelet packet nodes in the
different levels to provide multiple estimates witlifferent performance. Since wavelet based
estimates, Welch and periodogram estimates perfdifferently with different settings, it is
therefore irrelevant to simply say that one apphnoé&c better than the others. However, it is
reasonable to conclude that the flexible alteratbthe parameters such as wavelets filter length,
configured transition band in the frequency respookthe decomposition filter, and especially
decomposition levels has converted wavelet packstd spectrum estimation into a reconfigurable
and adaptable system giving it a competitive eddee main inference from the use of wavelet
based estimate is the possibility to obtain wavebetfficients from all wavelet packet nodes at all
levels, which provides multiple estimates with eifint trade off. This is done based only on one
shapshot and through one-time operation.
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CHAPTER 5 A WAVELET PACKET TRANSCEIVER FOR SPECTRUM
ESTIMATION AND DYNAMIC SPECTRUM ACCESS

The paradox of non-availability of spectrum everewlarge swathes of licensed spectrum
is underutilized most of the time has promptedthing&ing in existing spectrum regulatory policies.
While traditional spectrum allocation schemes folla static approach where established
frequency bands are allocated and assigned to figedsees, the new approach envisioned is a
Dynamic Spectrum Access (DSA) model where unlicénssers mayent unused spectrum from
licensed users on a need-to-need basis. To aautdig vision, the development of Cognitive
Radios [39] or wireless systems that intelligerafjapt their transmission parameters (including
frequency, power, and modulation scheme) in accm&avith the changing environment and
requirements has been promoted.

Multi-carrier modulation (MCM) has been mooted astrang physical layer candidate for
Cognitive Radio system design [5]. By merely vaogta set of subcarriers, the spectrum of a
MCM based Cognitive Radio can be easily and flgx#itaped to occupy spectral gaps without
interfering with the Licensed Users. It has beeowshthat adaptive MCM based Cognitive Radio
is a robust method to achieve good quality of comication and efficient use of the spectrum [5].

In traditional implementations of MCM, as in Ortloogl Frequency Division Multiplexing
(OFDM), the generation and modulation of the subrectels is accomplished digitally using
Fourier bases. In [6], the replacement of the cotiveal Fourier-based complex exponential
carriers of OFDM with orthonormal wavelet packesésis proposed. The wavelet packet bases are
derived from perfect reconstruction two-band FIRefibanks. Cohabitation of the Wavelet Packet
Multi Carrier Modulation (WPMCM) based Cognitive dRa systems with existing licensed users is
actualized by shaping its transmission wavefornadigptively activating or vacating sub-carriers in
a way that it utilizes the unoccupied time-frequegaps of the Licensed Users. The idea is to
dynamically sculpt the Cognitive Radio transmissggnal so that it has no or very little time-
frequency components competing with the Licensedrd&JsThis way the Cognitive Radio can
seamlessly blend with the Licensed Users operakiorthermore, the WPMCM receiver structure,
which is used for demodulation of data, could dsaised for analysis of the radio environment to
identify active/idle bandsat no additional cost

In this chapter, we demonstrate the wavelet bagedtmim adaptation for Dynamic
Spectrum Access by combining the wavelet basedtrspecestimator proposed in the previous
chapters with the WPMCM setup. The wavelet basesttspm estimation simply exploits the
existing filter bank infrastructure used to conditha Discrete Wavelet Packet Transform (DWPT)
and its inverse in WPMCM. Based on the wavelet h@&stimates, the WPMCM Cognitive Radio
(CR) system dynamically activates and deactivdiescarriers in order to allow the cohabitation
between CR and Licensed User (LU) system. The gpacestimator and the spectrum shaping
module are connected by an intermediate moduleptisaesses the radio spectrum information and
converts it into a data vector that can readilyjubed by the spectrum shaping module to activate
and deactivate subcarriers. In the simulation study employ four types of LU, nhamely patrtial
band, single tone, multi-tones and swept tone Lié drganization of this chapter is as follows. In
section 5.1, the blocks of the proposed systenelagdated. Section 5.2 gives elaborate discussion
about the experiment scenario considered in thelation studies as well as the results of the
experiments. Finally section 5.3 summarizes thagpoér.

5.1 System Description

Figure 5.1 depicts the proposed WPMCM based CRs¢riner setup. The major blocks of
the system are a) WPMCM transceiver, b) Spectruimator, ¢) Spectral Vector generator and d)
spectrum adaptor.

511 Wavelet Packet Multicarrier Modulation
The wavelet packet theory can be viewed as an sixierof Fourier analysis. The basic
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idea of both transformations is the same: projgcan unknown signal on a set of known basis
functions to obtain insights on the nature of tigna. Any functionS(n) in L7 ) can be
expressed as the sum of weighted wavelet packetsorhmunication systems, this means that a
signal can be seen as the sum of modulated wavatiiets leading to the idea of WPMCM. The
WPMCM signal is composed of multicarrier symbolgaited from a sum of modulated and
weighted wavelet packet wavefornds In the discrete time domain this signgn) can be
expressed as:

(V=YY g, (n ug 61
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Figure 5.1 Block diagram of the proposed WPMCM Transceivehe Treceiver contains discrete wavelet packet
transformer (DWPT) used to estimate the spectruchesttract the data transmitted. The transmittertaioa inverse
discrete wavelet packet transformer (IDWPT) useddwstruct multi-carrier modulated signals. IDWRWDWPT are
implemented using filter bank analysk$. andG’ are the low and high pass reconstruction filtehiiexH andG are the
low and high pass decomposition filters. Down apartrows refer to down and up-sampling, respegtivel

In (5.1) C is the number of subcarriers whileand k are the symbol and subcarrier indices,
respectively. The constellation symbol modulatfigubcarrier it symbol is represented ag;.
Time and frequency limited wavelet packet ba§8scan be derived by iterating discrete half-band
high g[n] and low-pas$[n] filters, recursively defined by [4]:
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&2 (t) =23 h[nl&P(t-2"n)
E0(t) =V2) glnl&P(t-2'n)

In (5.2) subscript denotes the level in the tree structure and sapptp indicates the sub-carrier
index at given tree deptEquation (5.2) is nothing but two-scale equationcivlhas already been
expressed in more general form by (2.46). In tlse ad (5.2), the low pass filtlfn] and high pass
filter g[n] play a role as analysis filters. As already ekmd in chapter 2, the analysis filters have
mirrors called synthesis filters which are also a paiftosi-high pass filter comboR{[n], g'[n]}.
The two synthesis and analysis filters share a t@imdrature Mirror Filters (QMF) relationship.
For paraunitary QMF filter pairs of length the relationship is given as:

glL-1-n]=(-1)"H A (5.3)
It should be noted that (5.3) is exactly the QMIatienship expressed by (2.53). We rewrite it here
for the sake of convenience. The analysis and sgigHilters are basically complex conjugate time
reversed versions of one another i.e.

hin=h[-dand g[ri= g[- b (5.4)

The linear combination relationship presented b$)(k realized by implementing wavelet
packet reconstruction in the transmitter by usingerse Discrete Wavelet Packet Transform
(IDWPT). As it is clear from figure 5.1, wavelet gkt (WP) reconstruction employs multi-
channel filter bank consisting of cascaded two-aehsynthesis filtersH’ and G').

An incoming high-rate serial data stream is dividietb several lower-rate parallel data
streams. The data in each parallel branch is useth &put of the corresponding branch (WP node)
in WP reconstruction tree. In every stage of retroction, the data in each branch is up-sampled
by 2 before they are passed through the correspgraiv or high pass half-band filter. These half-
band filtering and up-sampling processes form otages reconstruction process. The entire
cascaded reconstruction process is actually anasogosub-carriers modulation process in OFDM
and it simulates the IDWPT as found in figure S he wavelet packet sub-carries with indeat
tree level) &[K] used at the transmitter end are derived from yhehssis filters through a simple

convolution rule leading to:

EIKI = f(R* ((K2)*..* {K2°3* ¢ K27,

where,(xi< 3-1 (5.5)
and f k)= h'TK], for Io.vvpass branches
g'[K], for highpass branches

In (5.5),[K] andg[K] stand for the impulse responses of low pass #giu ass synthesis filters,
respectively.

Later in the receiver, the Discrete Wavelet Padkensform (DWPT) block (see figure
5.1), which is also used for spectrum estimatisremployed to perform WP data demodulation.

(5.2)

The wavelet packet du£§[k] , for sub-carriers with indeg at tree levell, are used to extract the
estimate of the transmitted data symbols. This ésfgpmed by taking advantage of the

orthogonality between the wavelet packélk] and wavelet packet dudl [k] expressed as [6]:
<&KL &R >=di-3 (5.6)
In (5.6) <.,.>represents the scalar product operator @rsdthe kronecker delta witfi] = 1 if i =

0, and it is O otherwise. The corresponding wavpbatket dualé’![k] used at the receiver are
obtained from the analysis filters through the itz wavelet packet transform (DWPT):
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EIK=1(0* (2R*..* 2728 277k

where,(xi< 2-1
h[ K], for lowpass branches

and,f k)= .
g[ K], for highpass branches

In (5.7),i, J, h[K] and g[K] are the sub-carrier index, tree level, the impuissponses of low and
high pass analysis filter, respectively. We carertbe similarity between (5.7) and (3.2) leading us
to the fact that the demodulation module in WPMCM be exploited for spectrum estimation.

In the receiver, the estimate of each sub chaﬁm,eis given as [6]:

5 - £k

au,k - (F{ r]* Iogz(CQ l C (58)
In (5.8), R[n] is the received signal, * denotes the convolutaperator and the down arrow
represents decimation by with C = 2’ whereJ is the decomposition or reconstruction level.
ii,,k in (5.8) is the estimation of constellation encod®dlata symbol modulating thé&' waveform.

As shown in figure 5.1, the estimates go throughstelation de-mapping process before it is
passed to parallel to serial converter in ordextii@ain the actual data.

(5.7)

5.1.2 Wavelet based spectrum estimation modulein WPMCM receiver

The operation detail of wavelet based spectrummasibn and how it is built has already
been discussed in chapter 3. Here, we just intendntphasize that the spectrum estimation
functionality can be provided by the same wavekstket decomposition block used for multi-
carrier de-multiplexing of the received signal metWPMCM receiver block. It should also be
noted here that the frequency band that is spabpepectrum estimator is exactly the same as the
frequency band spanned by WPMCM subcarriers gesekiat the IDWPT block. Therefore, when
cognitive radio systems use WPMCM as their multiiea modulation technique, the spectrum
estimation module can be included with virtuallyadditional cost.

5.1.3 Thresholding and Spectral Notching

The information about the radio environment given dpectrum estimation module is
passed to the spectrum vector generator (see figlije Here, the spectral information is mapped
into a spectrum vector containing ones and zerd® Zeros correspond to bands which are
occupied and the ones represent bands that arésfreetrum holes). The pattern of ones and zeros
effectively characterizes the desired magnitudihefspectral estimate. The threshold is performed
on a sub-band-by-sub-band basis whereby the poweaioed in each sub-band is independently
compared to a predetermined threshold. The thrdsredlie is defined in terms of the noise power.
When sub-band power exceeds the threshold, interderis declared present and all of the sub-
band coefficients are set to a value of zero. b-sand power does not exceed the threshold, all of
the sub-band coefficients are retained (set to.one)

It is quite possible that the frequency bands ajato the occupied bands (the band that
has power above threshold) have power just belosvtkimeshold. Therefore, sometimes it is
required to deactivate the carriers surroundingottwipied band. For this purpose, spectrum vector
manipulation block is added to do some manipulatianspectrum vector in order to obtain the
desired activated and de-activated frequency bdaashermore, the decomposition levels of the
tree structure used for spectrum estimator and WMMIEmodulation can be different. Hence, the
spectrum vector should be modified accordingly mtmrmat that is matched to the reconstruction
level in the transmitter. This spectrum-vector rhatg process is also performed by spectrum
vector manipulation block.

Finally, the spectrum manipulation block produceslf spectrum vector that is used to
inform the Inverse Discrete Wavelet Packet Tramsfg{DWPT) block in the transmitter about
deactivated carriers.
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5.1.4 Transmission Waveform Shaping

Based on the spectrum vector, sub-channels of fReVM@M system that lie in and around
the spectrum of the LU are vacated to facilitatexéstence. This way the CR transmission signal is
dynamically sculpted such that it has no or vettjeltime-frequency components competing with
the LU and the CR operation is made invisible ®lth). In order to keep all of this mechanism to
work properly, a pilot channel is required for commitation between transmitter and receiver
regarding to the state of the occupied and unoecufpequency bands.

5.2 Experiments, Resultsand Analysis

5.2.1 Experiment Scenarios

In order to investigate the performance of the Wetvpacket transceivers for dynamic
spectrum access, we consider a WPMCM system opgratith 128 equally spaced carriers
derived from a level-7 cascaded tree. The samestreeture is used at the receiver to gauge the
radio environment. To simplify the evaluation oéthystem performance, no distortions such as
Inter Symbol Interference (ISI) or Inter Carrietdrference (ICl) are considered. The modulation
scheme used is Quadrature Phase Shift Keying (QP®4) use the optimal wavelet family
designed in chapter 4 using Semi Definite Programn(iSDP) tool. The optimal wavelet has
decomposition filter length of 5B-regularity of 7 and transition band of ©.2This was chosen
based on empirical data which gave the best Priityabi detection Py) and Probability of false
alarm fy,) combination. A recap of the analysis conducteduh-sections 4.6.2 and 4.6.3 would
also be useful to understand these choices. Otepurore thorough experiments can be conducted
in order to arrive at optimal specifications thategthe best performance while maintaining
acceptable level of complexity.

Table 5.1 Probability of detection and false alarm of optimalvelet based spectrum estimates for varioustibtes
levels. The length of wavelet decomposition filtised here is 50 with K-regularity index of 7 arahsition band of 072

Threshold Level (dB) Probability of Detection (Py) | Probability of False Alarm (Pyy)

-3 0.8825 0

-5 0.9997 4.6627e-004
-7 1 0.0512

-9 1 0.1285
-11 1 0.2097
-13 1 0.3496
-15 1 0.4923
-17 1 0.5910
-19 1 0.7295
-21 1 0.7883
-23 1 0.7903
-25 1 0.7959

Table 5.1 illustrates the value &f; and Pg, of the specified optimal wavelet based
estimates for different threshold level. By considlg the performance of the spectrum estimator
based on the selected wavelet shown in table %elsalect the threshold level of -7dB to evaluate
the presence/absence of a LU since this threstadlee \givesPy = 1 with minimum probability of
false alarm. It should be noted that the powerllef/éhe active band that is used in this experimen
would be exactly the same as the one that is usenlb-sections 4.6.2 and 4.6.3, and thus the
choice of threshold level is definitely valid. Ligstthe cognitive modules at the transmitter and
receiver are taken to be always aware of the tresssom characteristics, including details of the
active and deactivated carriers. To gauge the pedoce of the proposed WPMCM system, four
types of LU are considered namely: partial banaglsi tone, multi-tones and swept tone sources.
The detail descriptions about these four sourcasbeafound in sub-sections 3.4.1 and 3.4.2. For
partial band and swept tone source, we decide fdanY-level wavelet decomposition while 11-
level wavelet decomposition is used for estimatsiggle tone and multi-tone source. The
fundamental reason for this is found in chapter Hdwsng the fact that higher level of
decomposition gives better frequency resolutionicivlis appropriate to locate extremely narrow
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band sources such as single tone and multi-tongh®wother hand, increasing the decomposition
level tends to increase the variance of estimateD.H-or partial band source, high variance of
estimated PSD in the pass band is undesirable gintght reduce the probability of detection for
a given threshold.
0

————— H Licensed User (LU) PSD
—%— Cognitive Radio (CR) PSD

Power / Frequency (dB / rad/sample)

0.5 0.6

Normalized Frequency (x it rad/sample)
Figure 5.2 Result of spectrum adaptation (partial band LUet&sised on Wavelet approach. Only carriers
correspond to frequency bands with LU energy altbreshold are deactivated (66 carriers). The wadgleomposition
filters used here have length of 50, K-regulanitgex of 7 and transition band of §.Zhe 7-level wavelet
decomposition level is used in spectrum estimatioadule

5.2.2 Resultsand Analysis

A. Partial Band Source

The blue curve in figure 5.2 illustrates the watgacket based Power Spectral Density
(PSD) estimates of the partial band LU. Based @ d@ktimate, the shape of the CR spectrum is
adapted so the interference between existing Lbasignd CR signal is minimized. The red curve
in figure 5.2 depicts the PSD of the CR signal lfwéarriers coinciding with LU deactivated).
Meanwhile, figure 5.3 basically shows the effectdefctivation of four additional carriers in the
neighboring of carriers coinciding with LU.

Figure 5.4 illustrates the Bit Error Rate (BER) fpemance of WPMCM CR in the
presence of a partial band LU. It is clear from BtR curves that spectral adaptation of the CR
source greatly reduces the interference energydstvCR and LU and improves its operation.
However, the interference energy is not compleselypressed by merely deactivating the carriers
that coincide with LU since a transition band betwéhe occupied and unoccupied band exist for
both LU and CR. Hence, deactivation of neighboxagiers is required. When additional carriers
buffering the sides of the LU are removed the fetence energy is reduced further and for the
case of removal of six additional neighboring @sj the performance reaches the theoretical limit.
In general, the reduction in Bit Error Rate (BER) @lifferent number of vacated carriers is much
clearer for higher number of signal to noise ré8blR)

120



Chapter 5 A Wavelet Packet Transceiver for Spectrum Estimation and Dynamic Spectrum
Access

Power / Frequency (dB / rad/sample)

0 0.1 0.2 03 04 05 06 07 0.8 09 1
Normalized Frequency (x 1t rad/sample)

Figure 5.3 Result of spectrum adaptation (partial band LUeréssed on Wavelet approach. Two carriers in
the left and two carriers in the right side of bsuhdving energy above threshold are also deadtiateotal, 70 carriers
are vacated). The wavelet decomposition filterglus®e have length of 5B;regularity index of 7 and transition band
of 0.2t. The 7-level wavelet decomposition level is ugedpectrum estimation module
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Figure 5.4 Performance of wavelet based spectrum estimatidradaptation in WPMCM CR system for partial band
LU case. The wavelet decomposition filters usee tewve length of 5-regularity index of 7 and transition band of
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Figure 5.5 Result of spectrum adaptation (multi-tone LU cds®ed on wavelet based approach. Only carriers
correspond to the frequency bands with energy atioeshold are deactivated (14 carriers). The veavddcomposition
filters used here have length of $0regularity index of 7 and transition band of).Zhe 11-level wavelet
decomposition level is used in spectrum estimatioadule
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Figure 5.6 Result of spectrum adaptation (multi-tone LU cds®ed on wavelet based approach. Two frequenasban
in the left and two bands in the right side of tmheving energy above threshold are also deadtiigdtal 42 carriers).

The wavelet decomposition filters used here hangtkeof 50, K-regularity index of 7 and transitioand of 0.2. The
11-level wavelet decomposition level is used incepen estimation module
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Figure 5.7 Performance of wavelet based spectrum estimatidrspectrum adaptation in WPMCM CR system for multi
tone licensed user case. The wavelet decompofitiers used here have length of 50, K-regulaniigex of 7 and
transition band of 072 The 11-level wavelet decomposition level is usespectrum estimation module

B. Multi-tones Source

Figure 5.5 shows the wavelet packet based estini&& of the multi-tone LU as well as
the spectrum shaped CR. Similar to the case faigbband LU, the spectrum estimate provided by
wavelet based approach (blue color) is used asgut for spectrum vector generation block (see
figure 5.1) to decide which carriers to be turn dffien, the spectrum adaptation process would be
performed correspondingly. In figure 5.5, only t&R carriers that coincide with LU are
deactivated. The figure shows how the adapted GRisal perfectly fit with the LU signal even
though no additional carriers apart from the oregt toincide with LU bands are deactivated.
Meanwhile, figure 5.6 basically shows the effectdefictivation of two additional carriers in the
neighboring of each carrier coinciding with LU régg in total of 42 vacated carriers. The
corresponding BER performance curves are plottédgare 5.7. The PSD and BER curves clearly
show the ameliorative impact of spectrum shapingtloe performance of the CR system.
Interestingly, unlike the case of the partial bawlirce, it is enough to vacate only those CR
carriers (totaling 14) that co-exist with the LUdbtain excellent performances. This means that no
additional carriers neighboring the LU band havbdaleactivated.

C. Single Tone Source

Figure 5.8 illustrates the wavelet packet basednasts on the single tone LU as well as
the spectrum adapted CR. In general, the resulirebd in single tone LU case is actually similar
to the result observed in multi-tones LU case &nsltalidates the fact that wavelet based spectrum
estimate actually perform very well for narrow bawlirce case. From figure 5.8, it can be found
that no significant leakage is introduced by thapaed CR signal into the band occupied by LU
even though there is no extra carriers deactivattigure 5.9, once again, justifies the excellent
performance of wavelet based spectrum estimatidve Very accurate estimation provided by
wavelet based approach allows the carrier deaivainly at the band coinciding with LU to be
good enough. Additional carriers deactivation maskesost no improvement on the performance
of the WPMCM CR system.
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Figure 5.8 Result of spectrum adaptation (single tone LU hased on wavelet based approach. Only carriers
correspond to the frequency bands with energy atimeshold are deactivated (2 carriers). The wawggeomposition
filters used here have length of $0regularity index of 7 and transition band of).Zhe 11-level wavelet

decomposition is used in spectrum estimation module
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Figure 5.9 Performance of wavelet based spectrum estimatidrspectrum adaptation in WPMCM CR system for
single tone licensed user case. The wavelet decsitiofilters used here have length of BBregularity index of 7 and
transition band of 072 The 11-level wavelet decomposition is used ircspen estimation module
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D. Swept tone Source

Similar to the experiments conducted in chaptdo 3jauge the swept tone LU, 20 sweeps
(each of 640 unit samples) in the normalized fregyédand 0.% 0.8t are considered. In order to
track the temporal variations in the frequencyeé¢hdifferent scenarios are provided.

In the first scenario, the spectrum estimation nedatches a snapshot (or sub-sweep)
containing 128 samples corresponding to 20% ohglsisweep. Hence, five snapshots of a single
sweep are available. Based on each 128-sampleshsiaspectrum vector generator has to
determine the carriers to be turned off and the V@RMransmitter will adapt the spectrum of the
transmitted signal correspondingly. Figure 5.10ictspthe LU and CR PSD curve for this first
scenario. In this figure, only the PSD of the fouend the fifth sub-sweeps of LU signal are
displayed together with the corresponding adaptRdPSD. It should also be noted that only the
carriers that coincide with LU are deactivatedhis figure. If the interference between the LU and
CR signals needs to be reduced, it is possiblelditianally deactivate the carriers adjacent to the
band occupied by LU. Figure 5.11 illustrates thieafof deactivation of four additional carriers
that are adjacent to the LU band.

10k -— - —— — — — -

20 ----

Power / Frequency (dB / (rad/sample))

] \f
30 4 X Y- 0~
|
|
|
|
|
|

40P ---- [ R ey E e N
—©&— LU PSD 4th sub-sweep
—8— CR PSD 4th sub-sweep
—— LU PSD 5th sub-sweep
CR PSD 5th sub-sweep
0 0.1 0.2 0.3 0.4

Normalized Frequency (x mt rad/sample)

-50

Figure 5.10 Result of spectrum adaptation based on wavelegbaph for the case of swept tone LU with sub-swsep
of 128 samples. In this case, every single sweafnit 5 sub-sweeps and only tffeahd &' sub-sweeps are displayed.
Only carriers correspond to the bands with enelbgye threshold are deactivated. The wavelet decsitipo filters
used here have length of 30regularity index of 7 and transition band off).Zhe 7-level wavelet decomposition is
used in spectrum estimation module

In the second scenario, the size of the snapshretisced to 64 samples corresponding to
10% of a single sweep. The process of carrier deditin and spectrum adaptation are now based
on smaller number of samples. Figure 5.12 illusgahe combination between adapted WPMCM
CR PSD and LU PSD viewed by wavelet based speatsiimator. In this figure, only the PSD of
the ninth and the tenth sub-sweeps of LU signaldisplayed together with the corresponding
adapted CR PSD. In addition, only the carriers esponding to the band occupied by LU are
deactivated in this figure. The effect of deaciwatof four additional carriers adjacent to the LU
band for the purpose of interference reductiofiustrated in figure 5.13.
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Figure 5.11 Result of spectrum adaptation based on wavelegbaph for the case of swept tone LU with sub-swsep
of 128 samples. Every single sweep contains 5 sigess and only théand %' sub-sweeps are displayed. In this case,
two bands in the left and two bands in the rigle©f bands having energy above threshold aredalactivated. The
wavelet decomposition filters used here have leng80,K-regularity index of 7 and transition band off.Zhe 7-
level wavelet decomposition is used in spectrunmadion module
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Figure 5.12 Result of spectrum adaptation based on wavelegbaph for the case of swept tone LU with sub-swsep
of 64 samples. In this case, every single sweetnmn10 sub-sweeps and only tifeadd 18 sub-sweeps are displayed.
Only carriers correspond to the bands with enebgyve threshold are deactivated. The wavelet decsitipo filters
used here have length of 30regularity index of 7 and transition band off).Zhe 7-level wavelet decomposition is
used in spectrum estimation module
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Figure 5.13 Result of spectrum adaptation based on wavelegbaph for the case of swept tone LU with sub-swsep
of 64 samples. Every single sweep contains 10 sgeyss and only thé"gand 18" sub-sweeps are displayed. In this
case, two bands in the left and two bands in tjig Side of bands having energy above thresholdlacedeactivated.
The wavelet decomposition filters used here hangtleof 50 K-regularity index of 7 and transition band off.Zhe 7-
level wavelet decomposition is used in spectrunmadion module
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Figure 5.14 Result of spectrum adaptation based on wavelegbaph for the case of swept tone LU with sub-swsep
of 32 samples. In this case, every single sweemim20 sub-sweeps and only th& 28d 28" sub-sweeps are
displayed. Only carriers correspond to the bands energy above threshold are deactivated. The letadecomposition
filters used here have length of B0regularity index of 7 and transition band off).Zhe 7-level wavelet

decomposition is used in spectrum estimation module
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Figure 5.15 Result of spectrum adaptation based on wavelabaph for the case of swept tone LU with sub-swsep
of 32 samples. Every single sweep contains 20 sgess and only the Tand 28" sub-sweeps are displayed. In this
case, two bands in the left and two bands in tjiet Side of bands having energy above thresholdlacedeactivated.

The wavelet decomposition filters used here hangtheof 50,K-regularity index of 7 and transition band off.Zhe 7-

level wavelet decomposition is used in spectrunmadion module

Finally, in the third scenario, the size of snapsi® further reduced to 32 samples
corresponding to 5% of a single sweep. Figure &ridt5.15 illustrates the PSD of the last two sub-
sweeps of LU signal together with the associatepi@dh CR PSD for no additional carrier
deactivation and the deactivation of two additioreatriers in each side of LU band, respectively.

Figures 5.16-5.18 show the BER performance of WPMigdded CR system for sweep-
sizes of 128, 64 and 32, respectively. In genénal greater the number of sub-sweep samples, the
greater the information available on the LU featuaed hence the greater the scope for adapting
the CR characteristics to evade the LU. Thus sigamt improvements in the CR performance can
be achieved when the size of the radi@pshotis 128 samples or more (see Figure 5.16). And
when the number of samples available to judge peetsum is low (say 64 or 32 samples) the
accuracy of the judgment on occupied and idle bdalters and the CR performance suffers
(Figures 5.17 and 5.18). This issue can also km#eelto the frequency resolution aspect. If we
consider some results related to swept tone s@lmoen in figures 3.32-3.52, we can find that the
frequency resolution and thus the accuracy of stienates tend to deteriorate when the size of the
snapshot is reduced. This phenomenon is found mgtfor wavelet based estimates but also for
periodogram and Welch estimates. This fact expldiesinaccuracy of the judgment on occupied
and idle bands.

On the other hand, a smaller sample space alsosredaster spectrum analysis and
greater opportunity to track temporal variationsr Ehe case of swept tone case, these temporal
variations are quite significant since differenécfuency is occupied at different instant. Due to
uncertainty principle [21], it is not possible tave the best frequency and time resolution at the
same time. Hence it is important to strike the trighlance between the time and frequency
resolutions achievable. Herein lies the advantdgenploying the wavelet packet transforms for
spectrum analysis — one can tailor the level ofodgmsition to obtain the required frequency
resolution.
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Figure 5.16 Performance of wavelet based spectrum estimatidrspectrum adaptation in WPMCM CR system for
swept tone LU case with sub-sweep size of 128 sssnphe wavelet decomposition filters used here fevgth of 50,
K-regularity index of 7 and transition band of).Zhe 7-level wavelet decomposition is used in spet estimation
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Figure 5.17 Performance of wavelet based spectrum estimatidrspectrum adaptation in WPMCM CR system for
swept tone LU case with sub-sweep size of 64 sanplee wavelet decomposition filters used here hevgth of 50,
K-regularity index of 7 and transition band of).Zhe 7-level wavelet decomposition is used in Bpet estimation
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Figure 5.18 Performance of wavelet based spectrum estimatidrspectrum adaptation in WPMCM CR system for
swept tone LU case with sub-sweep size of 32 sanplee wavelet decomposition filters used here hevgth of 50,
K-regularity index of 7 and transition band of).Zhe 7-level wavelet decomposition is used in spet estimation
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5.3 Summary of the Chapter

In this chapter, the wavelet based spectrum adaptfdr Dynamic Spectrum Access was
investigated by combining the novel wavelet baspdcsum estimation and the proposed
WPMCM in [6]. The wavelet packet transform is uded spectrum estimation, spectrum shaping
as well as multi carrier modulation technique, thpaving way for an efficient and low cost
Cognitive Radio (CR) system. The spectrum estimatinit is tagged to the WPMCM transceiver
structure by exploiting the filter bank infrastrut used for Discrete Wavelet Packet Transform
implementation and hence the spectrum analysisng @t virtually no additional cost. Based on
the result of wavelet based estimates, the cohainitaf the CR system with Licensed User (LU) is
actualized by dynamically activating and deactivgihe CR carriers in a way that the CR and LU
systems do not have any competing time-frequencypooents. Threshold operation and some
manipulation on the spectrum estimates resultsregaired before the final decision about the
carriers to be deactivated is made.

Through simulation studies, the usefulness and npiateof the WPMCM based for
developing CR systems was demonstrated. Theseestagemplify how well the proposed wavelet
based spectrum adaptation performs in the preseht®) and Additive White Gaussian Noise
(AWGN). In general, the performance of wavelet ldasstimates in the case of narrow band LU is
excellent since virtually no additional carrier deéaation is required apart from the ones
coinciding with the LU. The additional carrier d&aation is still required for partial band casd. O
particular interest is the estimation of a sweptet@.U that varies with time. The wavelet based
spectrum adaptation performs well for the snaps$ige of 128 samples. However, poor
performance is shown for much smaller snapshot(82esamples) due to poor estimates provided
by wavelet based spectrum estimation block. Thenpmenon can be understood by considering
uncertainty principle which states that it is niohdtaneously possible to have very good time and
frequency resolution.

The analysis conducted in this chapter are prelimgirand needs to be carried further
particularly with respect to the demonstrationtad flexibility, adaptability and reconfigure abylit
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offered by wavelet packet modulation based tramsceiWe still have not considered more
complex scenario including how to distinguish thgnal transmitted by LU from the signal
produced by other CR users. Moreover, we also lmhsaken into account the need for echo
cancellation to make sure that the spectrum estintdta CR system is not burdened by the signal
that is produced by its own transmitter. It shoaldo be noted that the mechanism that is
introduced for WPMCM transceiver here requireslatmihannel. The pilot channel is needed by a
CR system to inform its communication pair (anotB& system) about the subcarriers that are
currently used. Overall, the performance resultthefsimulation studies make us to conclude that
this wavelet based system indeed can be a usefuhtthe design of adaptive systems for dynamic
spectrum access.
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CHAPTER 6 CHALLENGES AND BOTTLENECKS

We have thus far investigated the spectrum estimaibol based on wavelet and also
developed a family of new optimal wavelets which araximally frequency selective and are best
suited for wavelet based spectrum estimator. Infiftte chapter, we combined the wavelet based
spectrum estimator with a Multi-carrier Modulati@mtheme based on Wavelet packets and
demonstrated its operation in the context of dyeaspectrum access.

In this chapter we enlist and document the chadlenand problems encountered in the
realization of the systems.

6.1 Introduction to spectrum carving issue

Spectrum carving is a major issue in the wavekstkpt based spectrum estimation.
Spectrum carving occurs because the wavelet fililsexl for decomposing the given signal are
non-ideal filters having a non-zero transition bamtle wavelet packet estimator uses multiple
orthogonal filters derived from tree structures staucted by cascading wavelet packet
decomposition filter. Hence, the spectrum estimai@s be considered as outputs of series of
virtual filters spanning the normalized frequenepnge of [Or]. For example, if we have 6-level
decomposition, the normalized frequency range 6ff[Gs split into 64 equal bands and the
estimate on each band correspond to the outpunhglesvirtual filter. Hence, there would be 64
virtual filters in total. The impulse response atk virtual filter is cumulative convolution of the
impulse responses of the cascaded analysis lowapagsr high pass filter from the wavelet packet
tree root to the leaf (while taking into accountmtlosampling by factor 2 at each filtering stage).
As already mentioned in chapter 3, the impulseaesp of this cascaded filters structure is called

wavelet packet duaﬁq[k] [6], which can be represented as:

wilk = (K> f(2R*..* f277R* {2 778;
where, ki< 2-1 (6.1)
and.f K ):{h[k],for lowpass branches

g[K], for highpass branches
Equation (6.1) is exactly the same as (3.2). Weshraproduced it here for ready reference. When
the wavelet packet tree structure is constructeddgting the wavelet filters, it results in resad
artifacts in the stop band.

We will illustrate this phenomenon by consideriegdl-5 wavelet packet decomposition
and explain how spectrum carving progresses at leseh In this example, we use the maximally
frequency selective wavelets developed in chaptarsihg SDP. The length of the wavelet
decomposition filter here is 40 witk-regularity index of 6 and transition band of 1@.2Vhile
level-5 decomposition results in 32 virtual filtevge will only focus on one branch for ease and
clarity of depiction. In this example, the virtuéder considered would ideally span the normalized
frequency range of [0.531850.56257].

The first two stages of decomposition are showiigare 6.1. Since we would like to
obtain the response of virtual filter spanning fileguency range of [0.531850.56251 which is
in the upper half band of [@] band, the first half band filtering should be igass filtering. This
is described by the blue curve in figure 6.1. Thepat of this first high pass filtering should
logically span the frequency band of [f]. Hence the next filtering should be the one that
removes the upper half band of this frequency rangpech is [0.7%t 1] and keep the lower half
frequency component, which is in the range of Q@& 751. However, we need to remember that
between these two filtering stages, down samplingabtor-2 is performed. As a result, instead of
doing low pass half band filtering in th&"&tage, we perform high pass filtering again. Tt h
pass filter would cover the frequency range of $&,20.51 but its alias version would span the
range of [0.5;, 0.757. Therefore, we actually take the advantage ofdlies version of high pass
filter covering [0.2%t 0.5 in order to maintain the lower half of [013]. This aliasing or
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mirroring caused by down sampling is the reason thleyordering of wavelet packet nodes follow
the Gray code sequence (refer chapter 3, espefighe 3.2).

The frequency response of second stage filterinlyiding its mirror version is illustrated
by the red curve in figure 6.1. The resultant odseh two filtering stages and down sampling
process between stages is illustrated by the ldacke in figure 6.1. An interesting phenomenon
can be found from this figure. Apart from the dediresponse at normalized frequency range of
[0.5m, 0.757, there are some residual components betweenahd 0.5t as well as between 0.5
and 0.9t The reason for the emergence of these residuks i®ct that the frequency response of
the half band filter is not perfectly flat and stpianstead, it has non-zero transition band a$ wel
as a few ripples in the stop band. Even the majnfi@quency selective filter banks designed in
Chapter 4 are not ideal filters and hence theyawmo marginally affected by these infarctions.
Figure 6.2 shows the precise location of the cutivddaconvolution between the first and second
stage of half band filtering with down-sampling Bysetween stages described by figure 6.1 in the

wavelet packet tree.
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Figure 6.1 The first two half-band filtering stages (with dowampling by factor 2 in between) in order to detive
cumulative frequency response of the virtual fiietevel-5 of the wavelet packet tree. In thisregke, we try to derive

the virtual filter spanning the normalized frequgnange of [0.5312f 0.56251. We use our designed wavelet with
decomposition filter length of 40, K-regularity @fand transition band of G2

-100

As the decomposition process is carried on intohigier level, some of the existing
residual components grow and other new residualpoments would emerge to form side lobes
with significant level. This formation of side labé the frequency response of cumulative filters
is known as spectrum carving effect.

Figure 6.3 illustrates the progression for the llabhérd and fourth decomposition and
Figure 6.4 gives the progression for level fifthcdmposition. It is clear from these figures that
spectrum carving becomes more and more signifieanthe decomposition level is increased.
Figure 6.5 shows the precise location of the cutiudaconvolution between the first, second, third,
fourth and fifth stage of half band filtering wittown-sampling by-2 between stages described by
figures 6.3 and 6.4 in the wavelet packet tree.
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Figure 6.2 Wavelet packet decomposition of a signal. He¢@ndG denote the frequency responses of the low and high
pass decomposition filters, respectively. The dawows followed by ‘2’ represent decimation by 2eTorder of filter
in each level has already matched the frequenagrimigi from O tat The cascaded two high pass filter with down
sampling process in between within the red dasbedllustrates the first two half band filteringages described in

figure 6.1
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Figure 6.3 The third and fourth stages of half-band filterprgcess (with down sampling by factor 2 in betweaan)
order to derive the cumulative frequency resporigbeovirtual filter at level-5 of the wavelet patkree. In this
example, we try to derive the virtual filter spampthe normalized frequency range of [0.5312556251. We use our
designed wavelet with decomposition filter lengti0, K-regularity of 6 and transition band of 1.2
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Figure 6.4 The fifth stage of half-band filtering process twitown sampling by factor 2 in between) in ordedé¢oive
the cumulative frequency response of the virtdtgrfiat level-5 of the wavelet packet tree. In #ample, we try to
derive the virtual filter spanning the normalizeefuency range of [0.531850.56251. We use our designed wavelet
with decomposition filter length of 40, K-regularivf 6 and transition band of G12
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Figure 6.5 Wavelet packet decomposition of a signal. Hé@ndG denote the low and high pass decomposition filters
respectively. The down arrows followed by ‘2’ repeat decimation by 2. The order of filter in eaevel has already
matched the frequency ordering from 0tdrhe cascaded high pass and low pass filtersdeitim sampling process in
between surrounded by the blue dashed lines #testrthe first four half band filtering stages dibs in figure 6.3.
Meanwhile, the first five half band filtering stageith down sampling process in between describddjure 6.4 is
illustrated by cascaded structure surrounded bly gash lines
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Figure 6.6 Spectrum carving effect on 3-level wavelet pacleztamnposition based on Daubechies-20. From thisdjgu
it is clear that two -25 dB side lobes emerge dubhé spectrum carving effect
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Figure 6.7 Spectrum carving effect on 3-level wavelet pacleztainposition based on our designed wavelet. The
designed wavelet has decomposition filter lengtd®fK-regularity of 6 and transition band of ..o significant side
lobe appears in this figure
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6.2 Maximally frequency selective wavelet ver sus standard waveetsin tackling
Spectrum Carving

Figure 6.6 and 6.7 illustrates the impact of speuticarving on 3-level wavelet packet
decomposition based on Daubechies-20 and our dskigavelet, respectively. As in the previous
five figures, the length of the decomposition filté the designed wavelet is 40 withregularity
index of 6 and transition band of @ Zrom figure 6.6 and 6.7, it is obvious that threevelet packet
decomposition based on the newly designed waveletare resistant to spectrum carving effect.
For example, the 3-level Daubechies-20 wavelet gtadecomposition has side lobes at -25 dB
while no significant side lobes appear for the ae#fsbe designed wavelet.
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Figure 6.8 Spectrum carving effect on 5-level wavelet pacleztomnposition based on Daubechies-20. From thisdjgu
it is clear that around -7 dB side lobe emergestduke spectrum carving effect

1

Figure 6.8 and 6.9 illustrate how the spectrumiogreauses greater harm for higher levels
of decomposition. For level-5 decomposition calke,wavelet packet decomposition based on our
designed wavelet still outperforms that based oubehies-20 in term of side lobe level.

We can now summarize our finding about spectrunaicgreffect as the main issue in the
performance of wavelet based spectrum estimationar be concluded that the reason for the
emergence of spectrum carving is due to the cortibmaf two factors. The first aspect is due to
the fact that all the wavelet decomposition filteesse a transition band which tapers between the
pass and stop bands. The poorer the frequencytisiélecthe greater the impact of spectrum
carving is. The second aspect is the mirroring l@simg effect on the frequency response of
decomposition filters due to the presence of domamging by 2 factors following the half band
filtering in every decomposition stage. The impetifen of frequency selectivity features in
decomposition filter has resulted in residual cormgrus in the stop band of the frequency response
of cascaded filters at different stages (the doamming process is also taken into account here).
As the decomposition process is carried on intohigher level, some of the existing residual
components would grow and other new residual cormpisrwould emerge to form side lobes with
significant level. This spectrum carving effect tees more significant at higher level of
decomposition.
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Figure 6.9 Spectrum carving effect on 5-level wavelet paclestainposition based on our designed wavelet. The
designed wavelet has decomposition filter lengtA@fK-regularity of 6 and transition band of .8ide lobe level of
around -9 dB appears due to the spectrum carviegtef

The analysis on spectrum carving effect can be tsquovide thorough evaluation on
some results found in chapter 3. As it is founctlapter 3, the performance of wavelet based
spectrum estimation for extremely narrow band sesiis much better than that of the estimation
for partial band (very wide band sources). In patiand (wide band) signal, the received energy is
spread over frequency band spanned by a large nmupfbeirtual filters. Each virtual filter
introduced different amount of residual responsthatdifferent location in the frequency domain.
Hence, for partial band case, more residual energyoduced in the unoccupied band especially
the bands adjacent to the frequency bands occlyyi¢ide source resulting in poor transition band.
On the other hand, in single tone and multi-toreesathe received energy is focused on particular
frequency that is spanned by one or two virtuéfd. Since the number of virtual filters that pass
the receive signal is minimum, the number of residenergy in the stop band is also minimized
resulting in much better transition band than i ¢hse of partial band.

6.3 The challenges encountered in wavelet design

There are issues in the design of the maximadgfency selective wavelets, that best suit
applicability to spectrum estimation, too. The wavedesign problem is expressed as an
optimization problem by incorporating the wavelenstraints as well as frequency selectivity
constraints. This problem in its original form ismconvex. Though non convex problem can be
solved, they are susceptible to be caught in Ipcafitimal solution instead of being globally
optimal. We solve this challenge by representing aesign problem in terms of autocorrelation
sequence of the low pass filter coefficients indteaf the filter coefficients itself. This
transformation successfully converted the desigrblpm from non-convex to convex. At this
juncture, however, a new problem emerged. Thislehgé is related to the fact that the regularity
constraints are vulnerable to numerical problemisTivas addressed by reformulating the
optimization problem int@(w) domain instead dfl(w) (refer section 4.5). The last issue in design
process is to get back stable low pass filter cdeffts from the autocorrelation sequence.
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Fortunately, this was easily addressed by emplogmegrtral factorization algorithm proposed in
[35]

6.4 Timeresolution issuein spectrum estimation for Dynamic Spectrum Access

When we talk about spectrum estimation for Dyna®pectrum Access, it is natural to
discuss its employability for cognitive radio (CR)stem. In the context of CR system, speed and
accuracy of measurements are very important torm&ie the suitable spectrum estimation
technique for CR. Speed and accuracy are impotta@inswer the questions of which band is
occupied and at what instance. While accuracy (wrgcstrongly related to frequency resolution,
bias or leakages and variance of the estimatesjrwastigated in this thesis, we have not touched
the time resolution aspect. Time resolution candbeted to how fast estimation is performed for a
given sampling rate. When the time period betwasteassive estimation is shorter, we obtain
better information about the instance at whichfteguency bands are occupied. In addition, faster
estimation also means smaller number of sampleshss smaller snapshot window.

Wavelet transform has been widely known as transdtion that provides both time and
frequency information. This fact has naturally emeges a hypothesis promoting the possibility of
employing wavelet transform for CR since both tieme frequency information about occupied
spectrum are urgently needed. It is thus interggtrrelate this time resolution issue mentioned in
the previous paragraph with time frequency tilinganiavelet transform shown in figure 2.13. This
figure clearly shows the trade off between timeohatson and frequency resolution in continuous
wavelet transform. In discrete implementation, tilagle off between time and frequency resolution
can be clearly seen from one stage of wavelet dposition. In wavelet decomposition, every
stage consists of half band filtering followed klynesh sampling by factor 2. Therefore, after single
stage decomposition, the frequency resolutiondeesed by 2 since the output signal only spans
the half of the frequency band covered by the igyrial. On the other hand, the time resolution is
reduced by half due to the down sampling procdasshduld be noted here that the number of
samples are reduced by half but the snapshot windavains the same. This is slightly different
from the time resolution issue mentioned in thevimgs paragraph stating that reduction of time
resolution is identical to reduction of snapshobdaw. Due to this issue, it is quite challenging to
expect a new wavelet based spectrum estimatiomitpeh that can also provide tunable time
resolution for cognitive radio.

6.5 The effect of fading channel on the wavelet based spectrum estimation

When fading channels separate the receivers framlidensed users in the dynamic
spectrum access environment, new challenges eniaugeto the multi-path propagation in fading
channel, different multi-path components may retiwh receiver at different instances. Due to
phase difference, difference components can comtidmstructively/destructively resulting in a
resultant component having much larger/smaller gug# than the original signal.

There are two types of fading, narrow band fadorglat fading) and wide band fading (or
frequency selective fading). These two types oinfigcare easily explained in terms of digital
communication. In narrow band fading, the root meguare of the delay spread is smaller than the
duration of a transmitted pulse in digital commuatiicn. Delay spread describes the variation of
time difference among multi-paths components. Wihenchannel delay spread is transformed into
frequency domain, the result is called channel mfee bandwidth. In flat fading, the bandwidth
of the signal is smaller than channel coherencelwitith meaning that all frequency components
experience the same magnitude of fading. On therdtand, in frequency selective fading, the
channel delay spread is larger than the duratiaghefransmitted pulse while the bandwidth of the
transmitted signal is wider than the channel calmédandwidth. As a result, different frequency
components of the signal experience different fgdin

In a fading channel, the wavelet based spectrummai®s may become inaccurate since it
may not describe the actual power spectrum defBiBD) of the transmitted signals. Instead, it
actually gives the multiplication of the actual P@Dbd the channel frequency response. In the
context of cognitive radio (CR), some frequency ponents of the signal transmitted by licensed
users (LU) that experiences fading might end upeetl below the threshold set by the CR
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receivers. The spectrum estimation module in ther€River would decide that the corresponding
bands are currently not occupied and thus the @msimitter might exploit that band. As a result,
the LU and CR transmission may hinder one-anoffieis challenge, however, is common to all
spectrum estimators (and not necessarily with vetvbhsed estimators alone) and is usually

classified as channel estimation problem rathar #gectrum estimation problem
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH TOPICS

7.1 Conclusions

In this thess work, we developed a wavelet packet based spectrum estimator and
conducted investigations on its performance. Since the theory of wavelets and wavelet packets are
tightly coupled with filter bank analysis, wavel et based spectrum estimation is formulated as a filter
bank analysis problem. To gauge the performance of the estimator, four different sources with
different characteristics were utilized. The sources were single tone, multi-tones, partial band and
swept tone (a source which occupied different frequencies at different instances). The
performances were compared and contrasted with that of traditional approaches like Periodogram,
Welch, Windowed periodogram and MTSE.

We aso designed new wavelets with excellent frequency selectivity features to optimize
the performance of the estimator. A comparative analysis between spectrum estimation based on
the newly designed wavelets and standard wavel ets were also carried out.

Finally, a wavelet packet transceiver that combined the wavelet packet based spectrum
estimator with a Multi-carrier modul ator was established.

The core conclusions of all these efforts can be summarized as follows:

e The waveet transform is a unitary transform and conserves energy. It is also possible to
seamlessly move from the wavel et domain to the frequency domain without any loss.

e A valid spectrum estimation based on wavelet can be built by exploiting filter banks
structure of wavel et packet decomposition.

* The decomposition level of the wavelet packet tree can be tuned to adjust the performance
of the wavelet based estimates with respect to variance of the estimated PSD and frequency
resol ution.

* The wavelet based estimates at various decomposition levels tend to behave between the
performance of Welch approach (with the particular setting mentioned in chapter 3 and 4)
and periodogram in term of variance of the estimates and frequency resolution offered.
Welch estimates have low variances but poor frequency resolution while Periodogram
estimates have large variation but guarantees. This inference is supported by the
investigations on receiver operating characteristic carried out in chapter 4.

¢ The wavelet packet based approach gives all wavelet coefficients a all decomposition
levels. The presence of al of these coefficients alows obtaining multiple estimates from
different level of the tree with different degree of variance and frequency resolution, in one
snapshot and one operation. This feature can be exploited to construct an adaptable and re-
configurable spectrum estimation mechanism. Clearly this kind of flexibility offered by
wavelet based spectrum estimator (and not available in periodogram and Welch estimates)
is of enormous advantage in a dynamic and time variant environment.

« Maximaly frequency selective wavelets that suppressed the pass and stop band ripples
were developed by compromising the regularity constraints. The solver Semi Definite
Programming used for solving the optimization problem was found to be quite efficient.

* The estimators based on the newly designed optimum wavel et decomposition filter yielded
better performance than ones based on standard wavelets such as Coiflets, Symlets and
Daubechies.

*  We dso successfully tagged the wavelet based spectrum estimation unit to a WPMCM
transceiver structure by exploiting the filter bank infrastructure used for Discrete Wavel et
Packet Transform implementation. Hence the spectrum analysis is done at virtualy no
additional cost. From simulation studies, assuming the presence of Licensed Users (LU), it
was found that the performance of complete WPMCM transceiver is excelent for
extremely narrow band LU and good for wide band LU.

e Spectrum carving was identified as the main issue that limits the performance of the
wavelet based spectrum estimator. Spectrum carving emerges because the wavelet filters
have a non-zero transition band. When the wavelet packet tree structure is constructed by
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iterating the wavelet filters, it results in residual artifacts which sometimes occur in the
stop band

e Theimpact of spectrum carving is not significant for extremely narrow band cases but can
be deleterious for wideband sources. This dso explains why WPMCM transceivers are
excellent for extremely narrow band LU

7.2 Future Resear ch Topics

7.2.1 Addressing the spectrum carving issue

As dready discussed before, in section 6.1.1, spectrum carving emerges because the
cascaded filters that should theoretically be confined to a particular frequency band have residud
component in other bands. With respect to WPMCM transmitter, a particular multi-carrier
component that should theoretically only have frequency components at particular band may aso
have residual components a other band. In the context of cognitive radio applications this may
complicate the shaping of the CR characteristicsin order to enableit to cohabitate with LU.

Fred Harris in [40] has proposed the employment of Interpolated Tree Orthogonal
Multiplexing (ITOM) as an antidote for spectrum carving. While, in WPMCM (as well as in the
wavelet based spectrum estimation), only two haf band filters are employed in the filter bank
structure, ITOM uses four half band interpolating filtersin its filter bank structure. These four half
band filters are low pass filter, high pass filter and two Hilbert Transform filters [41]. The
mitigation of spectrum carving is done by careful selection of half band filters in each branch of
ITOM. Unfortunately, both [40] and [41] do not provide the specifics on the actua rules that
govern the placement of particular half band filters in different branches of the ITOM tree. The
results provided in [40]-[41] appear promising and hence it will be interesting to investigate the
possibility of exploiting the tree structured used by ITOM for spectrum estimation purposes.

7.2.2 Investigation on time resolution issue

Time information is very important when the spectrum estimation is employed as spectrum
sensing tool for cognitive radio system to detect the licensed user. However, it is dso clear that
there is ambiguity about the definition of time resolution from the perspective of spectrum
estimation and the time resolution from the perspective of wavelet packet decomposition. Before
we perform aresearch on the time resolution aspect of the wavelet based spectrum estimation, this
ambiguity should be resolved.

If we assume that the sampling rate is fixed, the time resolution would be related to the size
of the snapshot window and hence, the number of samples. From chapter 3, it can be found that
difference number of samples (and snapshot window) seems to impact the performance of the
wavelet based estimates. While in periodogram this can be easily explained analytically by using
Fourier Transform and the concept of rectangular windowing, analytical explanation for the case of
wavelet based estimates still needs to be investigated.

7.2.3 Investigation on the impact of fading channel on WPM CM Transceiver

In chapter 5, we combined the wavelet based spectrum estimator and WPMCM in one
transceiver and tested its operation. However the channel considered was abenign AWGN channel.
Hence it would be important that the work is extended to study the operation of the WPMCM
transceiver under realistic wireless communication channel with multi-paths and in the presence of
shadowing.

7.2.4 Compar ative analysis with the combination of traditional OFDM and FFT
based spectrum estimators

While we have aready combined the WPMCM and wavelet based spectrum estimators to
form spectrum shaping technique based on wavelet, it is dways possible to develop a similar
technique by combining OFDM as a mature multi-carrier modulation technique with FFT based
spectrum estimator. Even though it is not quite appropriate to compare these two spectrum shaping
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techniques due to the existence of broad range of performance metrics, it is aways interesting to
observe the BER performance of the both system in order to find out the position of one technique
with respect to the other. The impact of both AWGN channel and fading channel should aso be
investigated. The result of this study can play a role as a basis for further comprehensive
comparative anaysis between two systems.

7.2.5 Analysis of WPMCM based CR impact on primary user

In Chapter 5 we studied as to how various sources (single tone, multi tone, partial band and
swept tone) influenced the performance of a WPMCM transceiver. A similar study on how these
sources were affected by the WPMCM based CR operation is aso due and necessary.

7.2.6 Pilot Channel and Echo Cancellation issuein WPMCM transceiver

As aready mentioned in chapter 4, we have not considered the mechanism to distinguish
the signal transmitted by LU from the signal produced by other CR users. Furthermore, we also has
not taken into account the need for echo cancellation to make sure that the spectrum estimator of a
CR system is not burdened by the signal that is produced by its own transmitter. It has also been
mentioned that the mechanism that is introduced for WPMCM transceiver here requires a pilot
channel. The pilot channel is needed by a CR system to inform its communication pair (another CR
system) about the subcarriers that are currently used. We propose dl this issues in WPMCM
transceiver as another important research topic.

7.2.7 Investigation on the complexity issues of wavelet based spectrum estimation

Last but not the least, a thorough complexity anaysis of the Wavelet packet based
spectrum estimator as well as the WPMCM transceiver is important. Theoretically speaking, the
wavelet based spectrum estimation is quite simple since it is just implemented based on iterative
half band filtering and down sampling by factor-2. Nevertheless, it is important to find out the
position of this technique in relation to existing spectrum estimation approaches from the stand
point of system complexity. Information about complexity aspect would be extremely important for
comparative analysis between different spectrum estimation techniques in order to assess whether
the advantages offered by each technique is worthy or not after the complexity aspect is considered.

Some aspects that might be included with respect to investigation on complexity are the
optimal decomposition levels, how the complexity grows with increasing decomposition level
and/or increasing wavel et decomposition filter length, what kind of optimizations can be employed
in the computer ssimulation programs to reduce the complexity and in the hardware realization.
From the design perspective, it would aso be useful to try other semi definite programming tools
apart from SeDuMi especidly to solve wavelet design optimization problems with considerably
large filter length and large regularity index. Further study on convex optimization problems might
also be required.

7.2.8 Treatment of Finite Length Data Samples

The wavelet based spectrum estimator that is developed in this thesis work is based on
Wavelet Packet Transform. As any spectra estimation method, the wavel et transform suffers from
discontinuities (abrupt trangition) in the edge of the data blocks which may lead to the emergence
of additional high frequency components in the estimates. This undesirable effect is known as the
edge effect [44]. The current wavelet based spectrum estimator has not included additional
technique to handle this edge effect. With respect to thisissue, we propose further study on existing
techniques such as circular convolution and symmetric extension and the possibility of employing
them in our wavelet based spectrum estimator. In addition, the windowing and segment overlap
approach introduced by Welch on Periodogram may aso be employed in wavelet based approach.
The window may be applied on the received samples before passing the samples through the
wavelet packet tree. Apart from the investigation on the employment of these possible techniques,
further analysis with respect to Parseval theory as well as some trade offs related to the possibility
of information loss needs to be conducted. We consider al of these issues as possible further
research.
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7.2.9 Position of wavelet based spectrum estimation with respect to existing cognitive
radio spectrum sensing techniques

While it is our desire to use wavelet based spectrum estimation technique for dynamic
spectrum access, we confined ourselves in this work to address the problems of spectrum
estimation and hardly touched the real issues of spectrum sensing like signa detection in the
presence of noise, exploitation of signal features such as cyclo-stationarity for detection.
Furthermore, throughout this thesis work, we always compared the wavelet based approach with
Periodogram and Welch methods. This is because these are aso estimation techniques as against
Energy Detection and Cyclostationary Feature Detection, which are spectrum sensing techniques
and hence deal with detection problems. Hence, in the future we would like to ater the framework
of the research topic to include spectrum sensing problems, particularly, in the context of Cognitive
Radio and Dynamic Spectrum Access applications.

7.3 Concluding Remarks

At this juncture it is worth underlining the fact that the work carried out in this thesis, on
applying wavelets and wavelet packet transform for spectrum estimation, is pioneering (albeit
preliminary) in many ways. Much work remains to be done before the proposed methodology can
be considered mature and viable for rea-time systems.

In this work we focused on realizing the system and on eval uating the frequency resolution
and accuracy offered by the wavelet based solution. The challenges contending the implementation
and possible improvements, as suggested in Chapter 6 and Section 7.2, have to be addressed in the
future.
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Appendix

APPENDIX A: ADDITIONAL TABLES FOR CHAPTER 4

A.1lnvestigation on the relationship between the properties of decomposition
filter and the performance of wavelet based estimates

As already mentioned in section 4.1, the relatighsbetween the properties of
decomposition filter and the performance of theresponding wavelet based estimates is
investigated by running simulations that involveendifferent types of sources occupying different
band in the range of normalized frequency from f.{dhese nine types of sources (from type A to
type 1) have been listed in table 4.1. The cori@batcoefficient for each pair of indicators is
calculated 100 times for each source. Later, thereme and the standard deviation of the
correlation coefficientsE[g and o, respectively, are calculated. The results araasililated in
tables A.1.1 to A.1.9 of this appendix. These talillastrate the average and standard deviation of
100 correlation coefficients computed for each pdimdicators in each source. The criteria that

we use to describe the correlation between thandioators are indicated in table 4.2.

Table A.1.1 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet decomjpositi
filter and wavelet based estimates for the caSe/pé-A source

Wavelet Aver age of Standard
" Indicators of the Wavelet based the Deviation of the
Decomposition . Correlati Correlati Inferences
Filter Indicators Estimates orrelation orrelation
Coefficients Coefficients
Width of transition | Average power at the unoccupied 0.99931 0.00013 Strongly correlated
band band
Variance of the Average power at the unoccupigd 0.80659 0.00263 Strongly correlated
pass-band band
Variance of the Average power at the unoccupigd 0.83217 0.00251 Strongly correlated
stop-band band
Average power at Average power at the unoccupigd
the rejection band 0.89532 0.00207 Strongly correlated
band
(stop band)
Width g];ggns't'on Width of the transition band 0.94444 0.02343 Strongly correlated
Variance of the Width of the transition band 0.63351 0.06876 Correlated
pass-band
Variance of the Width of the transition band 0.66249 0.06622 Correlated
stop-band
Average power at
the rejection band Width of the transition band 0.74236 0.05849 Correlated
(stop band)
Width ggargnsmon Maximum side lobe 0.98150 0.00630 Strongly correlated
Variance of the Maximum side lobe 0.80968 0.03611 Strongly correlated
pass-band
Variance of the . .
stop-band Maximum side lobe 0.83265 0.03341 Strongly correlated
Average power at
the rejection band Maximum side lobe 0.88981 0.02615 Strongly correlated
(stop band)
Width of transition | Power variance in the unoccupied 0.81792 0.01783 Strongly correlated
band band
Variance of the Power variance in the unoccupied 0.31594 0.02827 Weakly correlated
pass-band band
Variance of the Power variance in the unoccupied 0.35339 0.02806 Weakly correlated
stop-band band
Average power at Power variance in the unoccupied
the rejection band 0.46181 0.02694 Weakly correlated
band
(stop band)
Correlated (Note: the
Width of transition Frequency r_esolutlon of the 0.59106 0.19066 variance of t_he
band estimate correlation is
significant)
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Variance of the Frequency r_esolutlon of the 0.25523 0.24093 Not clear
pass-band estimate
Variance of the Frequency r_esolutlon of the 0.28390 0.23724 Not clear
stop-band estimate
Average power at .
the rejection band Frequency r_esolutlon of the 0.36014 0.22949 Not clear
estimate
(stop band)
Correlated (Note: the
Width of transition Power variance in the occupied 0.62644 0.14075 variance of t_he
band band correlation is
significant)
Variance of the Power variance in the occupied
pass-band band 0.13265 0.15825 Not clear
Variance of the Power variance in the occupied 0.16664 0.15909 Not clear
stop-band band
Average power at Power variance in the occupied
the rejection band P 0.26754 0.15992 Not clear
band
(stop band)

Table A.1.2 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatethi® case of ype-B source

Standard
Wavelet . Averageof the | Deviation of
Decomposition Filter Indlcatorsgs:ihne];lt\l;velet b Correlation the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition Average power at the unoccupigd 0.55062 0.00000 Correlated
band band
Variance of the pass-| Average power at the unoccupied 0.47323 0.00000 Weakly Correlated
band band
Variance of the stop-| Average power at the unoccupigd 0.46972 0.00000 Weakly Correlated
band band
Average power at the| .
rejection band (stop Average power at the unoccupied 0.51847 0.00000 Correlated
band
band)

Width g;gg”s'“o” Maximum side lobe 0.65689 0.00000 Correlated
Variance of the pass- Maximum side lobe 0.76122 0.00000 Correlated
Variance of fhe stop- Maximum side lobe 0.75728 0.00000 Correlated
Average power at the

rejection band (stop Maximum side lobe 0.73158 0.00000 Correlated

band)

Width of transition Power variance in the unoccupied 0.46729 0.00000 Weakly Correlated

band band

Variance of the pass-| Power variance in the unoccupied 0.30188 0.00000 Weakly Correlated
band band

Variance of the stop-| Power variance in the unoccupied 0.30023 0.00000 Weakly Correlated
band band

Average power at the Power variance in the unoccupied

rejection band (stop band P 0.37162 0.00000 Weakly Correlated

band)

Width of transition Frequency r_esolutlon of the 0.00000 0.00000 Uncorrelated

band estimate

Variance of the pass- Frequency r_esolutlon of the 0.00000 0.00000 Uncorrelated
band estimate

Variance of the stop- Frequency r_esolutlon of the 0.00000 0.00000 Uncorrelated
band estimate

Average power at the Frequency resolution of the

rejection band (stop q y 0.00000 0.00000 Uncorrelated

band)

estimate
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Table A.1.3 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet

decomposition filter and wavelet based estimatethi® case ofype-C source

f

f

f

Aver age of Standard
Deyavelet Indicators of the the Deviation of the e ences
Filter Inpdicators Wavelet based Estimates | Correlation Correlation

Coefficients Coefficients

W'.d.th of Average power at the 0.99256 0.00069 Strongly correlated
transition band unoccupied band
Variance of the Average power at the 0.85694 0.00279 Strongly correlated

pass-band unoccupied band
Variance of the Average power at the 0.87916 0.00262 Strongly correlated

stop-band unoccupied band
Average power a Average power at the
the rejection band g€ pC 0.93213 0.00205 Strongly correlated
unoccupied band
(stop band)

Width of Width of the transition | 7147 0.01488 Strongly correlated
transition band band
Variance of the Width of the transition

pass-band band 0.74314 0.04199 Correlated
Variance of the Width of the transition 0.77079 0.04012 Correlated

stop-band band

Average power a . .
the rejection band  V1dth Ofbt;‘[fd"ans'“o” 0.83909 0.03498 Strongly Correlated
(stop band)

W'.d.th of Maximum side lobe 0.94954 0.00940 Strongly correlated
transition band
Variance of the Maximum side lobe 0.85827 0.02128 Strongly correlated

pass-band
Variance of the . .

stop-band Maximum side lobe 0.87855 0.01893 Strongly correlated

Average power a
the rejection band Maximum side lobe 0.92382 0.01379 Strongly correlated
(stop band)

Width of Power variance in the
transition band unoccupied band 0.92633 0.01257 Strongly correlated
Variance of the Power variance in the 0.51394 0.02696 Correlated

pass-band unoccupied band
Variance of the Power variance in the 0.54962 0.02663 Correlated

stop-band unoccupied band
Average power a Power variance in the
the rejection band - 0.64760 0.02484 Correlated
unoccupied band
(stop band)

Width of Frequency resolution of Correlated (Note: the variance 0
transition band the estimate 0.69129 0.17072 the correlation is significant)
Variance of the Frequency rgsolutlon of 0.53018 0.24751 Correlated (N_ote:_ th(_e variance o

pass-band the estimate the correlation is significant)
Variance of the Frequency r_esolutlon of 0.54951 0.24426 Correlated (N_ote:_ the_,- variance o

stop-band the estimate the correlation is significant)
Average power a . . .
the rejection band Frequency rgsolutlon of 0.59824 0.23185 Correlated (N_ote._ th(_e variance o
the estimate the correlation is significant)
(stop band)

Wl_d_th of Power variance in the 0.77501 0.13590 Correlated (N_ote:_ the_,- variance o
transition band occupied band the correlation is significant)
Variance of the Power variance in the

pass-band occupied band 0.41006 0.18044 Not clear
Variance of the Power variance in the 0.44137 0.17820 Not clear

stop-band occupied band

Average power a . . . .
the rejection band Power variance in the 0.52661 0.17213 Correlated (Note: the variance o

(stop band)

occupied band

f

the correlation is significant)
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Table A.1.4 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatehi® case of Type-D source

n

n

n

n

n

Standard
Wavelet . Average of the Deviation
Decomposition Filter Indlcatorsgstrn(:;/tV;velet based Correlation of the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition | Average power at the unoccupigd
band band 0.98966 0.00114 Strongly correlated
Variance of the pass-| Average power at the unoccupigd 0.86821 0.00375 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.88944 0.00352 Strongly correlated
Average power at the .

rejection band (stop Average pows;r?é the unoccupied 0.93971 0.00271 Strongly correlated

band)

Width (t));:cajnsmon Width of the transition band 0.94940 0.02322 Strongly correlated
Varlancsac: dthe pass Width of the transition band 0.69501 0.05658 Correlated
Vanancsa(r)]f dthe stop- Width of the transition band 0.72547 0.05448 Correlated
Average power at the|
rejection band (stop Width of the transition band 0.79983 0.04819 Correlated

band)

Width gfatnrgnsmon Maximum side lobe 0.89691 0.00749 Strongly correlated
Vanancsacr)]f dthe pass Maximum side lobe 0.95643 0.00591 Strongly correlated
Varlancbeacr)]fdthe stop- Maximum side lobe 0.96711 0.00483 Strongly correlated
Average power at the
rejection band (stop Maximum side lobe 0.98431 0.00237 Strongly correlated

band)

Width of transition Power variance in the unoccupied 0.96424 0.00994 Strongly correlated

band band
Variance of the pass- Power variance in the unoccupied
band band 0.61181 0.02753 Correlated
Variance of the stop-| Power variance in the unoccupied 0.64527 0.02714 Correlated
band band
Average power at the Power variance in the unoccupied
rejection band (stop P 0.73444 0.02488 Correlated
band
band)
. . . Correlated (Note: the
Width of transition Frequency r_esolutlon of the 0.69845 0.16642 | variance of the correlatio
band estimate S
is significant)
. - Correlated (Note: the
Variance of the pass-| Frequency r_esolutlon of the 0.58134 0.26444 | variance of the correlatio
band estimate T
is significant)
. . Correlated (Note: the
Variance of the stop- Frequency r_esolutlon of the 0.59857 0.25845 | variance of the correlatio
band estimate S
is significant)
Average power at the . Correlated (Note: the
rejection band (stop Frequency r_esolutlon of the 0.63984 0.24118 | variance of the correlatio
estimate T
band) is significant)
. . . . . Correlated (Note: the
Width of transition Power variance in the occupied 0.74891 0.14368 | variance of the correlatio
band band S
is significant)
Variance of the pass-{ Power variance in the occupied 0.44006 0.18129 Not clear
band band
Variance of the stop-| Power variance in the occupied 0.46776 0.17894 Not clear
band band
Average power at the Power variance in the occupied Correlated (Note: the
rejection band (stop band P 0.54249 0.17316 | variance of the correlatio

band)

is significant)

|
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Table A.1.5 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatethi® case of Type-E source

Standard
Wavelet . Averageof the | Deviation of
Decomposition Filter Indlcatorsgstrn(:;/tve;velet based Correlation the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition Average power at the unoccupied
band band 0.99935 0.00012 Strongly correlated
Variance of the pass-| Average power at the unoccupied 0.80592 0.00257 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.83152 0.00246 Strongly correlated
Average power at the, .

rejection band (stop Average powg;r?(tj the unoccupied 0.89477 0.00203 Strongly correlated

band)

Width g;tnrgnsmon Width of the transition band 0.93717 0.02959 Strongly correlated
Varlanct()eac':f dthe pass- Width of the transition band 0.61136 0.07941 Correlated
Varlancsazzthe stop- Width of the transition band 0.64109 0.07615 Correlated
Average power at the
rejection band (stop Width of the transition band 0.72361 0.06758 Correlated

band)

Width gl;;rgnsmon Maximum side lobe 0.98103 0.00678 Strongly correlated
Vanancbeacr:f dthe pass- Maximum side lobe 0.81110 0.03869 Strongly correlated
Varlancbea%fdthe stop- Maximum side lobe 0.83408 0.03573 Strongly correlated
Average power at the
rejection band (stop Maximum side lobe 0.89111 0.02813 Strongly correlated

band)

Width of transition Power variance in the unoccupied 0.81715 0.01806 Strongly correlated

band band
Variance of the pass-| Power variance in the unoccupied
band band 0.31510 0.02885 Weakly correlated
Variance of the stop-| Power variance in the unoccupied 0.35248 0.02865 Weakly correlated
band band
Average power at the Power variance in the unoccupied
rejection band (stop band P 0.46081 0.02747 Weakly correlated
band)
Correlated (Note: the
Width of transition Frequency r‘esolutlon of the 0.54509 0.24180 variance of t_he
band estimate correlation is
significant)
Variance of the pass- Frequency r_esolutlon of the 0.21580 0.29142 Not clear
band estimate
Variance of the stop- Frequency r_esolutlon of the 0.24219 0.29038 Not clear
band estimate
Average power at the Frequency resolution of the
rejection band (stop q yr 0.31514 0.28600 Not clear
estimate
band)
Correlated (Note: the
Width of transition Power variance in the occupied variance of the
band band 063421 0.13500 correlation is
significant)

Variance of the pass-| Power variance in the occupied 0.13317 0.16224 Not clear
band band

Variance of the stop-| Power variance in the occupied 0.16777 0.16188 Not clear
band band

Average power at the Power variance in the occupied

rejection band (stop band P 0.27015 0.16058 Not clear

band)
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Table A.1.6 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatethi case of Type-F source

Standard
Wavelet . Averageof the | Deviation of
Decomposition Filter Indlcatorsgstrn(:;/tve;velet based Correlation the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition Average power at the unoccupied
band band 0.99245 0.00182 Strongly correlated
Variance of the pass-| Average power at the unoccupied 0.85634 0.00822 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.87859 0.00744 Strongly correlated
Average power at the, .

rejection band (stop Average powg;r?(tj the unoccupied 0.93166 0.00548 Strongly correlated

band)

Width g;tnrgnsmon Width of the transition band 0.93781 0.03238 Strongly correlated
Varlanct()eac':f dthe pass- Width of the transition band 0.66750 0.07803 Correlated
Varlancsazzthe stop- Width of the transition band 0.69543 0.07506 Correlated
Average power at the
rejection band (stop Width of the transition band 0.76897 0.06693 Correlated

band)

Width gl;;rgnsmon Maximum side lobe 0.96260 0.00856 Strongly correlated
Vanancbeacr:f dthe pass- Maximum side lobe 0.84985 0.03230 Strongly correlated
Varlancbea%fdthe stop- Maximum side lobe 0.86957 0.02951 Strongly correlated
Average power at the
rejection band (stop Maximum side lobe 0.91646 0.02263 Strongly correlated

band)

Width of transition Power variance in the unoccupied 093981 0.02252 Strongly correlated

band band
Variance of the pass-| Power variance in the unoccupied
band band 0.55519 0.05918 Correlated
Variance of the stop-| Power variance in the unoccupied 0.58990 0.05655 Correlated
band band
Average power at the Power variance in the unoccupied
rejection band (stop P 0.68346 0.05020 Correlated
band
band)
Width of transition Frequency resolution of the
band estimate 0.45059 0.25808 Not clear
Variance of the pass- Frequency resolution of the
band estimate 0.12011 0.31270 Not clear
Variance of the stop- Frequency resolution of the
band estimate 0.14440 0.31262 Not clear
Average pawer at the Frequency resolution of the
rejection band (stop q yr 0.21458 0.30757 Not clear
estimate
band)
Correlated (Note: the

Width of transition Power variance in the occupied variance of the

band band 0.75371 012573 correlation is

significant)

Variance of the pass-| Power variance in the occupied 0.40546 0.17126 Not clear

band band
Variance of the stop-| Power variance in the occupied

band band 0.43507 0.16959 Not clear

Correlated (Note: the

Average power at the Power variance in the occupied variance of the
rejection band (stop P 0.51677 0.16264

band)

band

correlation is
significant)
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Table A.1.7 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatethi® case of Type-G source

h

h

h

n

Standard
Wavelet . Average of the Deviation
Decomposition Filter Indlcatorsgstrn(:;/tV;velet based Correlation of the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition | Average power at the unoccupigd
band band 0.98907 0.00249 Strongly correlated
Variance of the pass-| Average power at the unoccupigd 0.86925 0.00845 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.89038 0.00766 Strongly correlated
Average power at the| .
rejection band (stop Average powg;r?(tj the unoccupied 0.94031 0.00561 Strongly correlated
band)
Width g;:gnsmon Width of the transition band 0.85296 0.09626 Strongly correlated
Variance of the pass- Correlated (Note: the
band P Width of the transition band 0.65903 0.11969 | variance of the correlatio
is significant)
. Correlated (Note: the
Vanancsazfdthe stop- Width of the transition band 0.68287 0.11776 | variance of the correlatio
is significant)
Average power at the| Correlated (Note: the
rejection band (stop Width of the transition band 0.74254 0.11269 | variance of the correlatio
band) is significant)
Width gfatnrgnsmon Maximum side lobe 0.91682 0.02458 Strongly correlated
Varlancga?]fdthe pass Maximum side lobe 0.84327 0.03704 Strongly correlated
Vanancsaz];the stop- Maximum side lobe 0.85720 0.03430 Strongly correlated
Average power at the|
rejection band (stop Maximum side lobe 0.89388 0.02660 Strongly correlated
band)
Width of transition Power variance in the unoccupied
band band 0.95505 0.02323 Strongly correlated
Variance of the pass-| Power variance in the unoccupied 0.60875 0.06844 Correlated
band band
Variance of the stop-| Power variance in the unoccupied
band band 0.64082 0.06596 Correlated
Average power at the| . . .
rejection band (stop Power variance in the unoccupigd 0.72740 0.05864 Correlated
band
band)
Width of transition Frequency r_esolutlon of the 0.43808 0.22749 Not clear
band estimate
Variance of the pass- Frequency r_esolutlon of the 0.12237 0.28952 Not clear
band estimate
Variance of the stop- memw@mMmmﬂm 0.14414 0.28833 Not clear
band estimate
Average power at the Frequency resolution of the
rejection band (stop q yr 0.20996 0.28157 Not clear
estimate
band)
) . . . . Correlated (Note: the
Width of transition Power variance in the occupied 0.60325 0.22860 | variance of the correlatio
band band e
is significant)
Variance of the pass-| Power variance in the occupied 0.36587 0.24378 Not clear
band band
Variance of the stop-| Power variance in the occupied 0.38770 0.24323 Not clear
band band
Average power at the Power variance in the occupied
rejection band (stop P 0.44653 0.24219 Not clear

band)

band
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Table A.1.8 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimateghi® case of Type-H Source

Standard
Wavelet . Average of the Deviation
Decomposition Filter Indlcatorsgstrn(:;/tV;velet based Correlation of the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition | Average power at the unoccupigd
band band 0.99073 0.00110 Strongly correlated
Variance of the pass-| Average power at the unoccupigd 0.85102 0.00605 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.87497 0.00549 Strongly correlated
Average power at the .

rejection band (stop Average pows;r?é the unoccupied 0.93039 0.00409 Strongly correlated

band)

Width (t));:cajnsmon Width of the transition band 0.89661 0.05495 Strongly correlated
Varlancsac: dthe pass Width of the transition band 0.67414 0.09552 Correlated
Vanancsa(r)]f dthe stop- Width of the transition band 0.69983 0.09226 Correlated
Average power at the|
rejection band (stop Width of the transition band 0.76538 0.08321 Correlated

band)

Width gfatnrgnsmon Maximum side lobe 0.99379 0.00298 Strongly correlated
Vanancsacr)]f dthe pass Maximum side lobe 0.78070 0.03222 Correlated
Varlancbeacr)]fdthe stop- Maximum side lobe 0.80746 0.02982 Strongly correlated
Average power at the
rejection band (stop Maximum side lobe 0.87345 0.02405 Strongly correlated

band)

Width of transition Power variance in the unoccupied 0.99212 0.00413 Strongly correlated

band band
Variance of the pass- Power variance in the unoccupied
band band 0.75848 0.03053 Correlated
Variance of the stop-| Power variance in the unoccupied 0.78872 0.02853 Correlated
band band
Aw%ﬂwmmmeamthMwmwkd

rejection band (stop band P 0.86121 0.02347 Strongly correlated

band)

Width of transition Frequency resolution of the

band estimate 0.84992 0.08288 Strongly correlated
. . Correlated (Note: the
Variance of the pass- Frequency r_esolutlon of the 0.56308 0.19682 variance of the correlation
band estimate S
is significant)
. - Correlated (Note: the
Variance of the stop- memwememﬂm 0.59285 0.18915 variance of the correlation
band estimate R
is significant)
Average power at the Frequency resolution of the Correlated (Note: the
rejection band (stop q yr 0.67023 0.16926 variance of the correlation
estimate T
band) is significant)
Width of transition Power variance in the occupied
band band 0.89810 0.04922 Strongly Correlated
. . . . Correlated (Note: the
Variance of the pass-| Power variance in the occupied 0.54856 0.10572 variance of the correlation
band band R
is significant)
Variance of the stop-| Power variance in the occupied Correlated (Note: the
0.58249 0.10223 variance of the correlation
band band T
is significant)
Average power at the Power variance in the occupied
rejection band (stop P 0.67196 0.09312 Correlated

band)

band
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Table A.1.9 Correlation coefficient between the indicatorsrfdun the frequency response of wavelet
decomposition filter and wavelet based estimatethi® case of Type-I source

Standard
Wavelet . Average of the Deviation
Decomposition Filter Indlcatorsgstrn(:;/tV;velet based Correlation of the Inferences
Indicators Coefficients Correlation
Coefficients
Width of transition | Average power at the unoccupigd
band band 0.99779 0.00037 Strongly correlated
Variance of the pass-| Average power at the unoccupigd 0.81262 0.00575 Strongly correlated
band band
Variance of the stop-| Average power at the unoccupigd
band band 0.83862 0.00531 Strongly correlated
Average power at the .

rejection band (stop Average pows;r?é the unoccupied 0.90150 0.00414 Strongly correlated

band)

Width (t));:cajnsmon Width of the transition band 0.89467 0.02671 Strongly correlated
Varlancsac: dthe pass Width of the transition band 0.54922 0.05721 Correlated
Vanancsa(r)]f dthe stop- Width of the transition band 0.58022 0.05555 Correlated
Average power at the|
rejection band (stop Width of the transition band 0.66722 0.05068 Correlated

band)

Width gfatnrgnsmon Maximum side lobe 0.66816 0.06678 Correlated
Vanancsacr)]f dthe pass Maximum side lobe 0.66139 0.06954 Correlated
Varlancbeach]f dthe stop- Maximum side lobe 0.66702 0.07076 Correlated
Average power at the
rejection band (stop Maximum side lobe 0.67699 0.07224 Correlated

band)

Width of transition Power variance in the unoccupied 0.99240 0.00342 Strongly Correlated

band band
Variance of the pass- Power variance in the unoccupied
band band 0.77416 0.02759 Correlated
Variance of the stop-| Power variance in the unoccupied 0.80385 0.02570 Strongly Correlated
band band
Aw%ﬂwmmmeamthMwmwkd

rejection band (stop band P 0.87411 0.02090 Strongly Correlated

band)

Width of transition Frequency resolution of the

band estimate 0.86444 0.10055 Strongly Correlated
. . Correlated (Note: the
Variance of the pass- HmmmwmmMmmﬂm 0.60784 0.22027 variance of the correlation
band estimate S
is significant)
. - Correlated (Note: the
Variance of the stop- Frequency r_esolutlon of the 0.63514 0.21212 variance of the correlation
band estimate S
is significant)
Average power at the Frequency resolution of the Correlated (Note: the
rejection band (stop q yr 0.70569 0.19026 variance of the correlation
estimate T
band) is significant)
Width of transition Power variance in the occupied
band band 0.94356 0.02973 Strongly Correlated
Variance of the pass-{ Power variance in the occupied 0.63746 0.06851 Correlated
band band
Variance of the stop-| Power variance in the occupied
band band 0.66863 0.06639 Correlated
Average power at the Power variance in the occupied
rejection band (stop P 0.75017 0.05949 Correlated

band)

band
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A.2 Example of impulse responses of the high and low passfilters of the
optimally designed wavelets using SDP Approach

Tables A.2.1 and A.2.2 give the coefficients of thesigned wavelet filter illustrated in
figure 4.5 and 4.6, respectively

Table A.2.1 Optimal filter coefficients for filter length=30, K-regularity=7 Transition Band=0r2

Index | Low PassFilter | High PassFilter | Index | Low PassFilter | High PassFilter
1 0.0000 -0.0201 16 -0.0611 -0.0074
2 -0.0000 0.1437 17 0.0206 -0.0395
3 0.0001 -0.4279 18 0.0892 -0.0017
4 0.0002 0.6521 19 -0.0357 0.0223
5 -0.0006 -0.4454 20 -0.1296 0.0055
6 0.0001 -0.0789 21 0.0469 -0.0097
7 0.0024 0.3037 22 0.1943 -0.0049
8 -0.0026 -0.0350 23 -0.0350 0.0026
9 -0.0049 -0.1943 24 -0.3037 0.0024
10 0.0097 0.0469 25 -0.0789 -0.0001
11 0.0055 0.1296 26 0.4454 -0.0006
12 -0.0223 -0.0357 27 0.6521 -0.0002
13 -0.0017 -0.0892 28 0.4279 0.0001
14 0.0395 0.0206 29 0.1437 0.0000
15 -0.0074 0.0611 30 0.0201 0.0000

Table A.2.2 Optimal filter coefficients for filter length=40, K-regularity=8 Transition Band=0r2

Index | Low PassFilter | High PassFilter | Index | Low PassFilter | High PassFilter
1 0.0000 -0.0071 21 -0.0404 -0.0018
2 0.0000 0.0630 22 0.0035 0.0261
3 0.0000 -0.2416 23 0.0586 0.0047
4 0.0000 0.5128 24 -0.0110 -0.0154
5 0.0001 -0.6110 25 -0.0818 -0.0053
6 -0.0000 0.2958 26 0.0194 0.0077
7 -0.0001 0.1849 27 0.1122 0.0044
8 0.0004 -0.2882 28 -0.0249 -0.0030
9 0.0001 -0.0275 29 -0.1538 -0.0028
10 -0.0013 0.2128 30 0.0179 0.0006

11 0.0006 -0.0179 31 0.2128 0.0013
12 0.0028 -0.1538 32 0.0275 0.0001
13 -0.0030 0.0249 33 -0.2882 -0.0004
14 -0.0044 0.1122 34 -0.1849 -0.0001
15 0.0077 -0.0194 35 0.2958 0.0000
16 0.0053 -0.0818 36 0.6110 0.0001
17 -0.0154 0.0110 37 0.5128 -0.0000
18 -0.0047 0.0586 38 0.2416 0.0000
19 0.0261 -0.0035 39 0.0630 -0.0000
20 0.0018 -0.0404 40 0.0071 0.0000

Figure 4.5 and 4.6 describes the impulse respoh#isechigh and low pass filters of the
optimally designed wavelets fdr=30 K=7 B=0.2t and L=40 K=8 B=0.2r, respectively. The
coefficients of the designed wavelet filter fbr30 K=7 B=0.2t and L=40 K=8 B=0.2t are
presented in appendix A.2 (tables A.2.1 and Ai2z&pectively).
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