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ABSTRACT 
 

One of the important functionalities of Dynamic Spectrum Access is spectrum 
estimation. Accuracy and speed of estimation are the key indicators to select the appropriate 
spectrum estimation technique. In this thesis work, the possibility of employing wavelet 
packet decomposition as a basis for a new spectrum estimation approach is investigated. Once 
the new approach is developed, four types of sources, namely partial band, single tone, multi-
tones, and swept tone, are used to investigate the performance of the proposed wavelet based 
approach. Preliminary comparative analysis between the performance of wavelet based 
approach with conventional techniques, such as Periodogram and Welch technique has also 
been conducted. The studies show that the wavelet based approach offers great flexibility, 
reconfigurability and adaptability. 
 Key to the successful operation of the wavelet based spectrum estimation is the 
choice of the wavelet used. Commonly known wavelets are not suitable for spectrum 
estimation because they result in estimates with poor frequency resolution. To alleviate this 
problem, we design and develop a family of wavelets that are maximally frequency selective 
in nature as our second contribution in this thesis work. To this end, the design constraints are 
first enlisted. Then the problem, originally non-convex, is reformulated into a convex 
optimization problem and solved using Semi Definite Programming (SDP) tools. Through 
simulation studies the benefits of the newly designed wavelets are demonstrated. 

The next contribution of this thesis work is to combine the existing wavelet packet 
multi-carrier modulation (WPMCM) technique with our wavelet based spectrum estimator in 
order to form a wavelet packet transceiver for a dynamic spectrum access environment. To 
enable the wavelet packet transceiver cognitive radio (CR) system to co-exist with other 
Licensed Users (LU), a common spectrum pool is maintained and the WPMCM transmission 
waveform characteristics are shaped to communicate in the idle time-frequency gaps of the 
licensed user. This is achieved by dynamically vacating wavelet packet carriers in and near 
the region of the licensed user spectrum. The spectrum estimation unit is tagged to the 
WPMCM transceiver structure by exploiting the filter bank infrastructure used for Discrete 
Wavelet Packet Transform implementation. Thus spectrum analysis is done at no additional 
cost. In the studies, four types of LUs are employed, namely, partial band, single tone, swept 
and multiple tone. The simulation results show that in the presence of an LU, the proposed 
spectrum adaptation method offers significant BER improvements allowing the CR to operate 
invisibly to the LU. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation of the Research 
In the last few years, the demand for digital wireless communication has increased 

dramatically. Aided by the interoperability of wireless communication network, mainly due to the 
flexible protocols and standards, new and valuable applications such as mobile internet access, 
electronic healthcare monitoring service, sensor networking and many others have emerged. With 
the elegant implementation of layering approach based on Open System Interconnection (OSI) 
model, which supports the convergence between wired and wireless network, newer and newer 
applications and services have emerged and are flourishing like never before. This trend is placing 
great demands on premium radio resources especially the radio spectrum. 

 
Figure 1.1 The NTIA’s frequency allocation chart [1] 

 
Figure 1.1 shows the National Telecommunication and Information Administration’s 

(NTIA) chart of spectrum frequency allocations illustrating how the frequency bands are allocated 
to various services. Figure 1.1 reinforces the fact that most of the available spectrum is licensed 
leaving very little room for newer services. Even when the clamor for free spectrum has grown into 
a shrill note, an interesting study conducted in Berkeley [2] showed that much of the licensed 
frequencies, especially in 3-6MHz band, are rarely used. The study also showed that the usage of 
allocated spectrum varies from 15% to 85% depending on time and geographical location. Such a 
static spectrum allocation policy is clearly wasteful. This paradox of non-availability of spectrum 
even when large swathes of licensed spectrum are under utilized most of the time has prompted a 
rethinking in existing spectrum regulatory policies, leading to the idea of Cognitive Radio and a 
Dynamic Spectrum Access regime. 

Cognitive Radio [2][3] is an intelligent wireless communication system that is cognizant 
(hence the name) of its environment, learns from it and adapts its transmission features according 
to statistical variations in the environment to maximize utilization of premium resources such as 
spectrum while ensuring good Quality of Service (QoS). This dynamic spectrum access paradigm 
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introduced two main entities, namely, primary users or licensed users and secondary users or 
unlicensed users. The primary users are basically the owner of the licensed spectrum while the 
secondary users, also called the cognitive radio, are allowed to transmit and receive signals over the 
licensed spectra or portion of it when the primary user(s) is (are) currently not active. The 
secondary users should have the ability to gauge the radio environment, intelligently exploit the 
unused licensed spectrum and relinquish it when primary users are active, and adapt their 
transmission parameters (including frequency, power, and modulation scheme) in accordance with 
the changing environment and requirements has been promoted. This mechanism should be 
performed in such a way that the secondary users are invisible to primary user. The primary users 
usually do not possess the intelligence on the opportunistic spectrum sharing mechanism. 

In dynamic spectrum access environment, spectrum estimation plays important key to 
gauge the wireless environments over wide frequency bands and identify spectrum holes and 
occupied bands. The challenge is in the identification and detection of primary user signals amidst 
harsh and noisy environments. The result of spectrum estimation is used to provide guidance for 
the secondary users to decide when they may exploit the unused licensed spectrum and when they 
have to relinquish it. In general, speed and accuracy of measurement are the main metrics to 
determine the suitable spectrum analysis tool. These two metrics are important to answer the 
questions of which band is occupied and at what instance. Accuracy of the estimation depends on 
frequency resolution, bias or leakage and variance of the estimated power. The better the frequency 
resolution, the better the accuracy of the estimated power in each frequency point. The bias or 
leakage is related to the side lobe level. High side lobe level reduces the accuracy of power 
estimate at neighboring frequency. Meanwhile variance of the estimate is also important to ensure 
that the power estimate at particular frequency band is always accurate at any time of measurement. 
There are other important metrics too. One is to strike the right trade-off between the time and 
frequency resolution achievable. Due to uncertainty principle, it is not possible to have the best 
frequency and time resolution at the same instance. 

Apart from time and frequency resolution, complexity is very important to assess any 
candidate of spectrum estimation modules for cognitive radio. Since Cognitive Radio systems are 
envisioned to operate on wireless nodes with small size and power, the spectrum estimation 
implementation should be kept as simple as possible. One way to evaluate the complexity is to 
investigate whether the addition of the proposed spectrum estimation approach into the receiver 
would require significant modification and costs. 

Conventional spectrum estimation techniques, like periodogram, are based on Fourier 
expansion which offers excellent frequency resolution but are poor in time detail. Though this can 
be improved through windowing, as in Short Time Fourier Transform (STFT), the results have 
been found unsatisfactory. It is in this context that the possibility of using wavelets and wavelet 
packet transforms, which offer a time-frequency resolution trade-off that can be tuned, has emerged 
as an enticing option. 

1.2 Theme of the Research 
This thesis investigates the possibility of exploiting Discrete Wavelet Packet Transform to 

build new spectrum estimators for Cognitive Radio. The wavelet based spectrum estimator is 
implemented using filter banks by taking advantage of the fact that compactly supported wavelets 
can be derived from perfect reconstruction filter banks [4]. In reality, the implementation of filter 
banks simulates the wavelet packet decomposition, which basically split the given signal into the 
coarse version (low frequency component) and detail version (high frequency component) in each 
decomposition stage. The number of stages is usually limited by the desired level of frequency 
resolution and available computational power.  

While it is possible to implement two-band filter banks based on commonly available 
wavelets such as Symlets, Daubechies and Coiflet, the frequency response of the wavelet 
decomposition filter based on these standard wavelet families is simply not frequency selective by 
nature. Since frequency resolution is absolutely important in spectrum estimation, a new wavelet 
with excellent frequency selectivity is necessary to be used as a basis function for decomposition 
filter. In this thesis, we design a new wavelet using semi definite programming by expressing the 
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design as an optimization problem. The idea is to obtain wavelet decomposition filter having 
optimum frequency selectivity under a set of wavelet constraints. 

Multi-carrier modulation, which divides the incoming high data rate among multiple 
carriers modulated at lower rate, has been mooted as a strong physical layer candidate for 
Cognitive Radio (CR) system design [5]. By merely vacating a set of subcarriers, the spectrum of a 
Multi Carrier Modulation based Cognitive Radio can be easily and flexibly shaped to occupy 
spectral holes without interfering with the licensed users. It has been shown that adaptive Multi 
Carrier Modulation based Cognitive Radio is a robust method to achieve good quality of 
communication and efficient use of the spectrum [5]. Orthogonal Frequency Division Multiplexing 
(OFDM) is an elegant and popular multi-carrier modulation scheme in which the generation and 
modulation of the sub-channels is accomplished using Fourier exponential basis function. However, 
another multi carrier modulation technique based on wavelet called Wavelet Packet Multi Carrier 
Modulation (WPMCM) has emerged as a new candidate. As it is found in [6], it appears that the 
performance of WPMCM is adequate to compete with OFDM when the multi carrier modulation 
technique is expected to provide not only modulation functionality but also spectrum adaptability. 
By considering the possibility of future employment of WPMCM in Cognitive Radio transceiver, 
we propose a method to combine the wavelet based spectrum estimator with WPMCM modules for 
Cognitive Radio System in this thesis. By taking advantage of this single wavelet technology, the 
cohabitation of WPMCM CR system and licensed user (LU) is possible by dynamically activating 
or de-activating CR subcarriers based on the spectrum estimation information provided by wavelet 
based spectrum estimation. Furthermore, the WPMCM receiver structure, which is used for 
demodulation of data, is also used for analysis of the radio environment to identify active/idle 
bands at no additional cost. 

1.3 Objectives and Major Contribution of the Thesis Work 
The primary objectives of this thesis work are:  

• To investigate the possibility of implementing spectrum estimation technique based on 
wavelets and wavelet packet transform. 

• To establish a simulation setup in MATLAB for wavelet based spectrum estimation by 
exploiting filter bank implementation of discrete wavelet transform 

• To evaluate the performance of established wavelet packet based spectrum estimator and 
provide preliminary comparative analysis between it and traditional approaches like 
Periodogram, Welch, Windowed Periodogram and Multitaper Spectrum estimator (MTSE). 

• To design and develop new wavelet decomposition filter that are maximally frequency 
selective and hence best suited to applicability to wavelet based spectrum estimation 

• To evaluate the performance of spectrum estimation module based on the optimal wavelet 
designed using semi definite programming 

• To realize wavelet packet transceiver for spectrum sensing and dynamic spectrum access 
by merging the spectrum estimation module with a Wavelet Packet based Multi Carrier 
Modulation (WPMCM) module. 

1.4 Organization of thesis works 
This thesis report is organized as follows. Chapter 2 provides the theoretical foundation for 

wavelet based spectrum estimation. There are two main parts in this chapter. The first part gives a 
broad overview on the theoretical aspect of spectrum estimation. This includes a survey on 
conventional techniques such as periodogram, Multi Taper Spectrum Estimation as well as new 
techniques proposed for Cognitive Radio. The second part of the chapter gives the details of 
wavelet theory, wavelet transform and its filter bank implementation. It also gives a prelude to 
spectrum estimation using wavelet. 

Chapter 3 discusses about the first contribution of the thesis works, namely, the 
construction of wavelet based spectrum estimation using filter bank approach. The discussion also 
includes some important issues such as the frequency ordering of wavelet packet coefficients, the 
relationship between wavelet packet coefficients and power spectrum density as well as Parseval 
relationship and energy conservation. In the final part of this chapter, we elaborate the experiments 
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conducted to investigate the performance of the wavelet based spectrum estimation. We also try to 
find a preliminary overview on the position of our technique along with conventional periodogram 
approach. 
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Figure 1.2 The organization of the thesis chapters. 

 
In chapter 3 the spectrum estimator uses standard wavelets (which were not originally 

intended for spectrum estimation) that are available in Matlab Toolbox. Hence, in chapter 4, we 
focus on the design and development of a wavelet family that best suits the applicability for 
spectrum estimation. The process basically involves the formulation of design problem into 
optimization problem, transformation of non-convex to convex optimization problem as well as 
deriving the solution by taking advantage of spectral factorization algorithm. In the final part of 
chapter 4, we examine the performance of spectrum estimation based on the designed wavelets and 
their standing vis-à-vis the standard wavelets. A comparative analysis between this spectrum 
estimator and periodogram based approach is also provided here.  

In chapter 5, we demonstrate the combination of the wavelet based spectrum estimator and 
a wavelet packet multi-carrier modulation (WPMCM) technique. The combination of these two 
modules forms wavelet packet transceiver for dynamic spectrum access environment. 

 Chapter 6 is an extremely important one since it gives elaborate explanation about some 
challenges found in this research. The most important challenge is the presence of an infarction 
called spectrum carving which limits the performance of the wavelet based approach. Other 
important challenges and suggested improvements for the future are also documented in this 
chapter. 
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Finally chapter 7 concludes this thesis work and gives overview about possible future 
researches. Figure 1.2 illustrates the organization of the thesis chapters. 
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CHAPTER 2 SPECTRUM ESTIMATION AND WAVELET THEORY 
  

The theory of wavelet and spectrum estimation plays an important basis of this thesis work 
and thus this chapter gives a comprehensive elaboration about these topics. Section 2.1 discusses 
conventional spectrum estimation technique that is popular in telecommunication world. This 
section is started by elaborate discussion about periodogram and its variants. Parametric spectrum 
estimation is also reviewed to give complementary discussion. Even though, spectrum sensing is 
not exactly the same as spectrum estimation, they are built on the same basis and both of them are 
equally important when we talk about dynamic spectrum access. Hence, section 2.2 talks about 
some spectrum sensing and estimation technique that is proposed for dynamic spectrum access. 
Since the wavelet based spectrum estimation discussed in this thesis is built based on filter bank 
architecture, section 2.3 elaborates about how to represent periodogram spectrum estimates from 
filter bank point of view. This section also provides some information about two important 
techniques that were developed mainly based on filter bank paradigm. This includes Filter Bank 
Spectrum Estimator proposed by Farhang-Boroujeny for cognitive radio. We leave the discussion 
about spectrum estimation theory and explore the wavelet theory in section 2.4 that plays an 
important role in this thesis. Finally, section 2.5 gives an example of previous work on spectrum 
estimation based on wavelet. 

2.1 Common Spectrum Estimation Techniques 
In general, spectrum estimation can be categorized into direct and indirect methods. In 

direct method (usually recognized as frequency domain approach), the power spectrum is estimated 
directly from signal being estimated x[n]. On the other hand, in indirect method, also known as 
time domain approach, the autocorrelation function of the signal being estimated Rxx[k] is 
calculated. From this autocorrelation value, the power spectrum density can be found by applying 
the Discrete Fourier Transform on Rxx[k].  

Another way to categorize spectrum estimation methods is by classifying them into 
parametric or non-parametric methods. Parametric method is basically model based approach [7]. 
In this method, a signal is modeled by Auto Regressive (AR), Moving Average (MA) or Auto 
Regressive Moving Average (ARMA) process. Once the signal is modeled, all parameters of the 
underlying model can be estimated from the observed signal. Estimator based on parametric 
method provides higher degree of detail. The disadvantage of parametric method is that if the 
signal is not sufficiently and accurately described by the model, the result is less meaningful. Non 
Parametric methods, on the other hand, do not have any assumption about the shape of the power 
spectrum and try to find acceptable estimate of the power spectrum without prior knowledge about 
the underlying stochastic approach. The following sub-sections give review on some of the 
spectrum estimation methods. 

2.1.1 Periodogram 
The most commonly known spectrum estimation technique is periodogram, which is 

classified as a non parametric estimator. The procedure starts by calculating the Discrete Fourier 
Transform (DFT) of the random signal being estimated, followed by taking the square of it and 
then dividing the result with the number of samples N. The basic idea of periodogram can be 
illustrated as: 

212

0

1 1
( ) ( ) [ ]exp( )

N
p j j
xx

n

S e X e x n j n
N N

ω ω ω
−

=

= = −∑    (2.1) 

The )( ωjp
xx eS  in (2.1) is the periodogram estimate of the power spectra while x[n] and ( )jX e ω  are 

the sequence whose spectrum is to be estimated and the corresponding transform in frequency 
domain, respectively. 

The main issue in periodogram is the use of rectangular windowing of waveform to obtain 
finite length samples. This windowing process introduces a discontinuity (illustrated in figure 2.1) 
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between the original signal and the aliased version produced by a DFT transformation. In the 
frequency domain, the rectangular window results in a Dirichlet Kernel described by the width of 
the main lobe and the level of side lobe [9]. The width of the main lobe is related to the frequency 
resolution of the power spectra, and the level of side lobe is related to the ratio between maximum 
and minimum spectral power that is distinguishable by the estimator. The rectangular window 
compromises the frequency resolution, producing leakage and a biased estimate. In order to 
mitigate the impact of rectangular window, various window functions can be applied on the data 
before the computation of periodogram. This is equivalent to replacing each periodogram 
coefficient by weighted coefficients. This is what happens in the Blackman-Tukey method 
illustrated in sub-section 2.1.3.  

 
Figure 2.1 The effect applying DFT on the truncated version of signal yo(k) has resulted in periodic signal y(k) which 

contains the windowed version of yo(k) and its aliases [8] 
 
Another problem with the periodogram is that the estimates of the power spectral density 

(PSD) are coarse with low precision and large variance which does not improve with more data. 
The only way to improve the variance of the periodogram is to average the PSD coefficients. This 
can be done by computing several (shorter) periodograms and use these to compute averages of 
each PSD coefficient. This method is known as Bartlett method described in sub-section 2.1.4. 
Bartlett method and Blackman-Tukey method can also be combined, so that one computes an 
average of several windowed periodograms. This is the Welch method, which is also explained in 
sub-section 2.1.4. 

2.1.2 Correlogram 
While periodogram is categorized as direct method since it calculates the power spectral 

density directly from input signal x[n], correlogram is classified as indirect method. In correlogram, 
the autocorrelation function of the input signal Rxx[k] is computed. The power spectral density 
(PSD) is then obtained from the Fourier Transform of Rxx[k] illustrated as:  

( ) [ ]exp( )c j
xx xx

k

S e R k j kω ω
∞

=−∞
= −∑     (2.2) 

It is clear from (2.2) that the true autocorrelation value is required for the PSD calculation. 
However, the computation of true autocorrelation value requires infinite length of data and thus 
only approximation is possible. In general, there are two possible ways to compute the 
approximation of autocorrelation value, namely standard biased and standard unbiased estimates 
[8]. The standard unbiased estimate is illustrated as: 

�
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The standard biased estimate is illustrated as: 

 �
1

*1
[ ] [ ] [ ],  0 1

N

xx

n k

R k x n k x n k N
N

−

=

= − ≤ ≤ −∑       (2.4) 

In (2.3) and (2.4), � [ ]xxR k is the approximation of autocorrelation value. Correspondingly, the PSD 

in (2.2) can be calculated by using� [ ]xxR k as a replacement for Rxx[k]. The difference between 
standard unbiased and standard biased in autocorrelation value calculation can be explained as 
follows. Both in (2.3) and (2.4), the shift is over k data points meaning that there are k terms 
missing in the series. Hence, the average should be taken only over N-k terms, which has been 
properly done in (2.3). However, this fact has been ignored in (2.4) and the average is carried out 
over N samples no matter the value of k is. This is why (2.4) is called a biased estimate. 

Another problem within (2.2) is the assumption that the autocorrelation value is of infinite 
length. This is addressed by applying a rectangular window over approximation of autocorrelation 
value and accordingly, the correlogram estimate is expressed as: 

�( ) [ ]exp( )
L

c j
xxxx

k L

w

w

S e R k j kω ω
=−

= −∑      (2.5) 

In (2.5), the length of rectangular window is 2Lw+1 and Lw is usually less than the total number of 
samples of available data. 

2.1.3 Blackman-Tukey method (Windowed Correlogram) 
Blackman-Tukey method is a variant of correlogram that computes the approximated 

autocorrelation � [ ]xxR k according to either (2.3) or (2.4) and later applies a suitable window 
function w[k]. The power spectra density is then obtained by computing the Fourier Transform 

of � [ ]xxR k . Blackman-Tukey method can generally be described as [7]:  

�( ) [ ] [ ]exp( )
L

BT j
xxxx

k L

w

w

S e R k w k j kω ω
=−

= −∑     (2.6) 

In (2.6), ( )BT j
xxS eω is the power spectra density according to Blackman-Tukey method and w[k] is 

the selected window. It is trivial to find that Correlogram can actually be thought as Blackman-
Tukey method with rectangular window. Since (2.6) is the Fourier Transform of the product of 
finite length approximated autocorrelation value and the selected window, (2.6) can be represented 
in fully frequency domain representation, which is actually nothing but the convolution between 
the window kernel and the correlogram found in (2.5). Since the length of the window in (2.6) is 
finite, namely 2Lw+1, the frequency domain representation for (2.6) is: 

  
1

( ) ( ) * ( )
2

BT j j c j
xx xxS e W e S eω ω ω

π
=      (2.7) 

( )c j
xxS eω

in (2.7) is the basic correlogram of signal x[n] calculated through (2.5) while ( )jW eω  is 
the window kernel of w[k]. Equation (2.7) clearly illustrates that Blackman-Tukey method can 
actually be viewed as a process of smoothing the correlogram by convolving the correlogram with 
the kernel of selected window. This smoothing process plays an important role to reduce the bias of 
estimated PSD but this convolution process would reduce the frequency resolution. The amount of 
frequency resolution reduction is strongly related to the size of the main lobe of the window kernel.  

2.1.4 Averaging of periodogram and Welch approach  
Averaging of Periodogram, which is also recognized as Bartlett Method can be employed 

to reduce the PSD variance in the periodogram estimates. The samples are divided into several 
segments and the periodograms of each segment is averaged [10]. Figure 2.2 illustrates the basic 
procedure to implement Bartlett Method. The important thing is to identify a trade off between 
number of samples per segment and number of segments. In theory, the number of segments should 
be maximized in order to minimize the variance of estimated power. However, this also means 
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lowering the number of samples in each sub-sequence resulting in larger bias and poorer frequency 
resolution. By this well known trade-off, Bartlett method is famously recognized as a method that 
compromises the resolution to get smaller variance as a return. Finally, the Bartlett method can be 
illustrated by the following equation. 

21 1

0 0

1 1
( ) [ ]exp( )

M K
ap j
xx

m n

s s

s
s s

S e x n mK j n
M K

ω ω
− −

= =

  = + − 
  

∑ ∑       (2.8) 

In (2.8) )( ωjap
xx eS is Bartlett power spectrum estimate, Ms is the number of segments and Ks is the 

number of samples per segment. 

 
Figure 2.2 Basic procedures for Averaging on Periodogram 

 
In [11], Welch modified the Bartlett method by letting the segments overlap and introduced 

arbitrary windows on data segments before the calculation of periodogram. This method can be 
easily explained by firstly expressing the data segments as: 

[ ] [ ],  0,1,...., 1 and 0,1,...., 1m s s sx l x l mD l K m M= + = − = −            (2.9) 
In (2.9), Ks represents the number of samples per segment and Ms stands for the total number of 
segments. It is interesting to notice that when Ds = Ks, the segments are not overlapped each other. 
When this is the case and the rectangular window is employed, the Welch Method is identical to 
Bartlett Method. Therefore, iDs can be regarded as the starting point of the i-th segment. In general, 
the Welch procedure can be illustrated as [11]: 
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∑ ∑           (2.10) 

In (2.10), )( ωjwp
xx eS is the power spectrum estimate calculated based on Welch approach. While in 

[11] Welch suggests two types of window (Triangular and Hann window), the type of window that 
can be used in this approach is actually arbitrary (such as Blackman, Hamming or Kaiser window).  
Almost all types of time window applied on each segment give smaller weight on samples located 
around the edges of the segment. Therefore, in the final computation of the PSD, different data 
samples are not equally represented. In order to mitigate this issue, segment overlap between two 
segments is introduced. In [7], Porat introduces 50 percent segment overlap. In this case, all data 
samples have equal representation on the average since samples located nearby the edges of a 
particular segment will be placed around the centre of the adjacent segments. 
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As in Bartlett method, the choice of segment size and the number of segments determine 
the frequency resolution and the variance that Welch estimators can offer. Apart from these two 
parameters, the choice of window will play important role as well. As it is mentioned in [7], 
different windows introduce different window Kernels in frequency domain (for example: Dirichlet 
Kernel for rectangular window case) with different levels of side lobe and hence the “leakage”. As 
a result, the choice of window will also determine the dynamic spectrum range of the estimator. 
Different window Kernel also introduces different width of main lobe, which is strongly related to 
frequency resolution. In conclusion, the use of windows can be used as a new lever to tune the 
resolution and the range of the estimator. 

2.1.5 Parametric spectrum estimation 
As mentioned earlier, parametric method is a model based approach in which a signal is 

modeled by Auto Regressive (AR), Moving Average (MA) or Auto Regressive Moving Average 
(ARMA) process. In this method, the data sequence is modeled as an output of difference equation 
excited by discrete time white noise [9]. The difference equation can be represented as follows: 

1 0

[ ] [ ] [ ]
p q

m k
m k

x n a x n m b w n k
= =

= − − + −∑ ∑      (2.11) 

Equation (2.11) illustrates ARMA model or general pole-zero model. In this case, w[n], which is 
commonly known as innovation process [8], is a zero-mean white process.  When the value of p is 
equal to zero, (2.11) becomes: 
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x n b w n k
=

= −∑        (2.12) 

The model illustrated by (2.12) is called all-zero model or Moving Average model. If, instead of p, 
q in (2.11) is equal to zero, the model in (2.11) becomes Auto Regressive model, which is 
represented as:  

0
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=

= − − +∑       (2.13) 

In this discussion of parametric power spectrum estimator, only Auto Regressive model is 
considered as an example. 
 For the sake of simplicity, it is firstly assumed that b0 in (2.13) is equal to 1. In order to 
derive the model for power spectrum estimator, we can apply z-transform on both side of equation 
(2.13) resulting in: 
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By taking into account (2.14), the relationship between power spectrum density of x[n] and w[n] 
can be represented as follows: 
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In (2.15), ( )ar j
xxS eω is Auto Regressive estimate of power spectrum density. In this case, it is 

obvious that the next step to complete the model is to find the value of white noise variance 2
wσ  as 

well as the coefficients am. Since w[n] is white noise, w[n] is uncorrelated with past value of x[n]. 
Therefore, it is possible to find 2wσ  and am by multiplying both side of (2.13) with x[n-k] and take 
the expectation of both sides of the equation. Assuming b0=1, the result would be: 
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For positive value of k, (2.16) is represented as:  
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For alternative representation, a collection of p equations can be obtained from (2.17) with 1≤ k ≤ p. 
These p equations can be expressed altogether as a matrix-vector relation as follows: 
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For zero value of k, (2.16) can be represented as:     
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If we substitute x[n] in (2.19) with (2.13), (2.19) can be represented as: 
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Due to the symmetricity of autocorrelation sequence, both (2.18) and (2.20) can then be 
represented as: 
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These two equations, (2.21) and (2.22) are famously called Yule Walker equation [7]. From the 
illustrated derivation, it is obvious that once the Auto Regressive model for power spectrum density 
has been established, Yule Walker equations should be used to determine the parameter in the Auto 
Regressive model.  

As it is stated in [7], parametric model tries to overcome the limitation inherent in non-
parametric spectrum estimation. As already mentioned, both correlogram and Blackman-Tukey 
approaches apply window on autocorrelation value. In the other words, both assume that the value 

of correlation function � [ ]xxR k  in (2.3) and (2.4) is zero for k > N-1. While this windowing process 
results in reduced frequency resolution, parametric estimation offers better frequency resolution 
and avoids bias in the estimate by performing extrapolation based on a-priori knowledge. In this 
case, the a-priori knowledge is the samples that have already been received. Based on the received 
samples, the model is established and the parameters underlying the model are calculated (the noise 
variance and the coefficient ams). The complete model is later used to estimate the power spectrum 
density through (2.15). 

2.2 A Review of Existing Spectrum Sensing and Estimation Techniques 
available for Dynamic Spectrum Access 

With respect to dynamic spectrum access paradigm, the secondary user (cognitive radio 
(CR) system) should gauge the wireless environment over particular frequency bands in order to 
identify the spectrum holes and occupied band. This functionality is performed by spectrum 
sensing or spectrum estimation module within the CR system. Based on the information provided 
by spectrum estimation module, the CR system can shape its transmitted signal in order to 
eliminate or at least minimize the distortion to other licensed users (LUs). As it is mentioned in 
[42], the challenge of spectrum sensing module is in identification and detection of primary user 
signals amidst harsh and noisy environs. The accuracy and the speed of sensing or estimation 
would play significant roles and thus, in term of spectrum estimation, the time resolution and 



Chapter 2 Spectrum Estimation and Wavelet Theory 

 12 

frequency resolution are the main issue. It is also worth to emphasize that the CR system should 
give up the spectrum when an LU begins transmission. This means that the spectrum sensing or 
estimation process should be conducted continuously. The time difference between two 
consecutive sensing or estimation processes would determine how up-to-date the spectrum 
information is. This is very important especially if we consider the requirement for minimizing the 
interference between the LU signals and CR signals. 

We would like to underline the slight difference between spectrum sensing and spectrum 
estimation here. The interest of spectrum sensing is to identify the presence of user over particular 
frequency band without the need for finding the exact value of power in that band. On the other 
hand, the goal of spectrum estimation technique is to obtain the exact power spectrum density over 
the bands of interest.  The problem in spectrum sensing is more detection problem and thus it is not 
as thorough as spectrum estimation approach. In CR system, spectrum sensing module is more 
desirable due to the fact that the interest is to identify only the presence of primary users in a 
particular band. However, it is also interesting to find that most of spectrum sensing techniques are 
built on the existing spectrum estimation approach. Some spectrum sensing approaches, however, 
are not developed from spectrum estimation technique. 

2.2.1 Pilot detection via match filtering 
Cabric et al in [14] suggest the use of conventional match filter for pilot detection. As 

already well known, the important advantage offered by match filter is the maximization of signal 
to noise ratio. This method assumes that the primary user sends pilot signal with data. The pilot 
signal should be known by secondary users to allow them to perform timing and carrier 
synchronization to achieve coherency [13]. Secondary users should have full prior knowledge of 
modulation type, pulse shaping and packet format. In this scenario, secondary users should provide 
separate dedicated receiver for each primary user class, which is impractical from complexity point 
of view. Other drawbacks of this approach are susceptibility to frequency offsets and the resultant 
loss of synchronization [13]. On the positive side, pilot detection requires minimum sensing time 
because it exploits available a priori knowledge especially the carrier frequency of the primary 
users. Figure 2.3 illustrates Pilot Detection via matched filtering. 

 
Figure 2.3 Pilot detection through match filtering [13] 

 
 

 
Figure 2.4 Implementation of Energy Detection (a) with analog pre-filter and square-law device (b) with Periodogram: 

FFT magnitude squared and averaging [13] 
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2.2.2 Energy detection 
Another approach is Energy Detection, a non-coherent detection technique, where prior 

knowledge of pilot data is not required. Figure 2.4 illustrates the implementation of Energy 
Detection. The first implementation of Energy Detection (figure 2.4a) consists of a low pass filter 
to remove out of band noise and adjacent interference, an analog to digital converter as well as 
square law device to compute the energy. However, this implementation is not flexible for 
narrowband signals and sine waves [13]. Therefore, in [13], a periodogram solution (figure 2.4b) is 
proposed through square magnitude of FFT (Fast Fourier Transform). The result is then averaged. 
Some disadvantages of non-coherent detection are the susceptibility of the detection threshold to 
noise, in-band interference and fading [14]. 

2.2.3 Cyclostationary feature detection 
This method takes advantage of the cyclostationarity of the modulated signal [14]. 

Generally, the transmitted data is taken to be a stationary random process. However, when it is 
modulated with sinusoid carriers, cyclic prefixes (as in OFDM) and code or hoping sequences (as 
in CDMA(Code Division Multiple Access)), a cyclostationarity is induced i.e. the mean, 
autocorrelation and statistics show periodic behavior. This feature is exploited in a detector 
(depicted in figure 2.5) that measures a signal property called Spectral Correlation Function (SCF). 
When parameter αcf in figure 2.5 (called cycle frequency) is 0, the SCF yields the power spectral 
density. 

 

 
   

Figure 2.5 Cyclostationarity feature detector [14] 

2.3 Spectrum Estimation as a Filter Bank Analysis Problem 
From the perspective of spectrum estimation, a filter bank can be considered as an array of 

band pass filters that separates the input signal into several frequency components, each one 
carrying a single frequency sub-band [15]. The filter banks are usually implemented based on 
single prototype filter, which is a low pass filter. This low pass filter is normally used to realize the 
zero-th band of the filter bank while filters in the other bands are formed through the modulation of 
the prototype filter [16]. Figure 2.6 illustrates the main idea of filter bank concept. 

This section basically tries to explore the filter bank paradigm in spectrum estimation. In 
the beginning of this section, periodogram spectral estimator previously illustrated is represented 
based on filter bank point of view. The two elegant approaches, Multi Taper Spectrum Estimation 
(MTSE) and Filter Bank Spectrum Estimation (FBSE), which are purely based on filter bank 
architecture, are also discussed. Since our proposed wavelet based spectrum estimation is entirely 
based on filter bank theory, the discussion about this filter bank paradigm is advantageous for a 
comparative analysis between the proposed wavelet based technique and the existing spectrum 
estimation approach. 

 
Figure 2.6 Graphical representation of filter bank concept [16] 
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2.3.1 Periodogram spectral estimator realization through filter banks 
Spectrum estimation is about finding the power spectrum density (PSD) of a finite sample 

set {x[n], n = 1, 2, …., N} for frequency | |ω π≤ . The classical approach to spectrum estimation is 
to use Fourier transforms to obtain a Periodogram, given as [17]: 
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2 ( 2 )

1

1
( ) [ ]

Np j f j fn
xx

n
S e x n e

N
π π−

=
= ∑      (2.23a)     

For any given frequency fi, (2.23a) can be written as:  
2 2
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It should be noted that (2.23b) is possible since ( 2 ) 1ij f Ne π = . By introducing new variable k = N – 

n, we can rewrite (2.23b) as: 
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where   

( 2 )1
[ ]  for 0,1,2,....., 1ij f k

ih k e k N
N

π= = −     (2.23d) 

We can now concentrate on the summation within the magnitude operation in (2.23c) and express 
this summation as: 
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0
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y N h k x N k
−

=
= −∑        (2.23e) 

By considering the fact that (2.23e) is actually nothing but the truncated convolution sum at 
particular point N, we can rewrite (2.23e) as general convolution sum at the same point associated 
with a linear causal system by padding hi[k] with zeros [43]. When this is the case, (2.23e) can be 
represented as: 
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   (2.24b) 

and window function [ ] 1/w k N= . It is clear that (2.24a) can be perceived as passing N samples 

through a filter having impulse response hi[k] and then taking only single sample of the filtered 
signal at point N. Based on this perspective, it is worth finding the frequency response of the linear 
filter having impulse response hi[k] through the following evaluation: 
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(2.25a) finally gives: 

sin[ ( ) / 2] 1
( ) exp ( )  

2 sin[( ) / 2]
i

i i
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H j
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ω ωω ω ω
ω ω

 − − = −  −   
    (2.25b) 

If w[k] in (2.24b) is taken to be a prototype FIR (Finite Impulse Response) low pass filter, then 
[ ]ih k s will constitute a bank of band pass filters centered at frequencies fis. This filter bank is 

constructed by modulating the prototype filter. By considering (2.23)-(2.25), we can easily find that 
the periodogram estimate at particular frequency point fi can actually be obtained by passing the 
received samples through the band pass filter centered at fi. The power calculation of this estimate 
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is performed based only on a single sample of the output of the filter (see (2.23c), (2.23e) and 
(2.24a)) [43]. 
 The entire periodogram estimates can then be related to the output of several filters in the 
filter bank constructed by modulating a single prototype filter w[k]. For the case of simple 
periodogram, the window function w[k] is rectangular with [ ] 1/w k N= . As it is clear from (2.25), 
the frequency response of filter based on prototype filter having rectangular window as its impulse 
response would have significant level of side lobes. This is actually the main reason why the 
periodogram estimates have high side lobe or large leakages. This problem can be alleviated by 
replacing the rectangular window with a window function with a taper that smoothly decays on 
both sides to obtain a prototype filter with much smaller side lobes. A few popular windows are 
Hanning, Kaiser and Blackman [8].  

2.3.2 Multi Taper Spectral Estimator 
The Multi Taper Spectrum Estimator (MTSE), proposed by Thomson [18], uses multiple 

orthogonal prototype filters to improve the variance and reduce the sidelobe and leakage. The 
process is initiated by collecting the last N received samples in a vector x[n] = [x[n] x[n-1] ….. x[n-
N+1]]T and representing it as an incomplete expansion of set of orthogonal slepian base vectors [16] 
[18]: 

1

0

[ ] ( )
pfK

k i k
k

n fκ
−

=

≈ ∑x Dq                       (2.26) 

In (2.26), ( )k ifκ is the expansion coefficients, Kpf is the total number of orthogonal prototype filters, 

kq is the set of orthogonal slepian basis vectors (prolate spherical sequences) derived using a 
minimax algorithm and D is a diagonal matrix with the diagonal elements of 

2 2 ( 1)1,  ,   ...., .i ij f j N fe eπ π −  As in other orthogonal expansion, the expansion coefficients ( )k ifκ can be 

computed from the inner product between expanded signals and the basis as follows [16][18]: 
( ) (  ) [ ]H

k i kf nκ = D q x        (2.27) 
Based on (2.27), the MTSE is formulated as: 
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In order to investigate the relationship between MTSE and Periodogram estimator, we can try to 

derive periodogram estimator from MTSE illustrated in (2.28). If ɵ ( )PSE iS f denotes the 

periodogram spectral estimates at frequency fi derived from MTSE in (2.28), ɵ ( )PSE iS f can be 

obtained by assuming Kpf =1 and thus, there is only one basis vector0q . Indeed if there is only a 

vector 0q in (2.26) containing 1/ N s as its elements, (2.28) becomes periodogram with rectangular 
window. The derivation can be illustrated as follows: 
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    (2.29) 

It is obvious that (2.29) is nothing but periodogram estimates defined in (2.23) 
If we manipulate the elements in q0 such that the elements in 0q exhibit a window function, 

(2.29) becomes the windowed periodogram with window type determined by0q . Hence, (2.28) can 
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actually be interpreted as average of several periodograms with different windows. The averaging 
process in (2.28) is conducted on the data set in its entirety and in this sense MTSE is different 
from the Welch approach [11] where the data samples are segmented and averaged. Moreover, in 
Welch approach the same window is applied on different segments.  

Equation (2.27) can be regarded as Fourier Transform of convolution between the received 
samples x[n] and a filter having kq as its impulse response. Since there are Kpf orthogonal prototype 
filters, the MTSE at frequency point fi is related to multiple outputs obtained from Kpf band pass 
filters. The impulse responses of these Kpf band pass filters are the modulated version of the 
responses of corresponding Kpf prototype filters. Therefore, ( )k ifκ can be viewed as the output of 

kth filter of a group of Kpf band pass filters. Since the PSD estimate at every point fi is related to 
outputs of Kpf band pass filters with centre frequency fi, the filters’ pass band ∆f gives its frequency 
resolution. Hence, (2.28) is the estimate of PSD over the frequency band [fi-∆f/2, fi+∆f/2].  

For a given resolution ∆f, the prototype low pass filters should have pass band between [-
∆f/2, +∆f/2] and minimum energy at stop band to minimize leakage. The variance of the estimate is 
reduced by taking advantage of the presence of multiple prototype (prolate) filters having impulse 
responses derived from the vectorskq . For given frequency band, the output of each band pass 
filter corresponding to different prototype filter is collected and averaged. The output of each band 
pass filter should be independent from each other to effectively reduce the variance of estimated 
power. This is achieved from the orthogonality of the Slepian sequences. In summary, we have two 
constrains in defining the prototype filters based on given frequency resolution ∆f: 

• How to minimize the energy at stop band 
• How to obtain Kpf prototype filters having coefficients orthogonal to each other 

As mentioned in [16], the minimax theorem is used to derive the Slepian sequences. Firstly, 
the autocorrelation matrix R of the observation vector x[n] is computed. The set of eigenvalues λ0 
> λ1 > … > λN-1 of correlation matrix R and the corresponding eigenvectors 0 1 1, ,....., N −q q q  are 
obtained through the following optimizations [16]: 
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In (2.30a) and (2.30b), iq denotes the Euclidean norm of vectoriq . The last step is basically to 

choose the Kpf eigenvectors out of N eigenvectors of the correlation matrix R. These Kpf 
eigenvectors correspond to the largest Kpf eigenvalues and play roles as the Slepian Sequences. 
These would finally become the orthogonal bases vectors kq in (2.26) as well as the prototype filters 
coefficients. 

While Kpf prototype filters having minimum energy in stop band are expected, not all of the 
prototype filters fulfill the expectation. The filter having 0q as its impulse response tends to have 

minimum energy in stop band [16]. However, the filter having 1q as its impulse response does not 

have stop band attenuation as good as that of0q . The reason for this can be explained as follows. 

Filter having 0q as its impulse response has the best stop band attenuation since it is chosen to 
maximize the corresponding eigenvalue in (2.30a) without any constraint. On the other hand, filter 
having 1q is chosen to maximize the corresponding eigenvalue in (2.30b) but with additional 

constraint 1 0 0T =q q mentioned also in (2.30b). The performance of the next derived filter (filters 

having 2 3 1, , .....,
PFK −q q q  as their impulse response) has more deterioration. 

With regard to the need for having minimum leakage, a careful treatment is needed when 
the outputs of each filter corresponding to different prototype filters are averaged. Obviously, they 
should not have the same weight. The output of filter having better stop band attenuation should be 
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given more weight. Thomson offers an iterative algorithm to compute the estimate of power 
spectrum which is illustrated in [18]. Figure 2.7 illustrates the magnitude response of the first seven 
MTSE prolate filters of length 128. In this figure, only the even numbered filters are shown for the 
sake of clarity. These first seven prolate (prototype) filters have 0 1 6, ,.....,q q q  as their impulse 
response. 

 
Figure 2.7 Magnitude responses of the first seven prolate filters of length 128. For clarity, only the even numbered filters are shown. 

The odd numbered filters have responses that fall in between the presented ones [16]. 

2.3.3 Filter Bank Spectral Estimator (FBSE) 
One example of spectrum estimation technique based on filter bank paradigm, which is 

proposed for cognitive radio, is filter bank spectrum estimation. FBSE is proposed by Farhang-
Boroujeny in [16] by employing a pair of matched root Nyquist-filter. The proposal is based on the 
assumption that multicarrier modulation is used as the underlying communication technique. 
Similar to filter bank paradigm employed by periodogram estimator and MTSE, the entire 
frequency spectrum is considered as the output of multiple filters (called filter banks) covering the 
entire frequency bands. While in Thomson’s MTSE, the estimate at frequency point fi is obtained 
by averaging the output of multiple filters constructed based on different prototype filters, FBSE is 
intended to simplify the complexity of MTSE by introducing only one prototype filter in the zero-
th band shown in figure 2.6.  

 
Figure 2.8 The demodulation of received signal with respect to ith subcarrier before it is processed through root-Nyquist 

filter [16]. 
 

The root-Nyquist filter can be explained as follows [19]. Given that H(z) is the transfer 
function of a filter and P(z) the product filter P(z) = H(z)H(z -1), H(z) is said to satisfy the Nyquist 
criterion if : 
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j fk
S

k

P ze Oπ
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−

=

=∑     (2.31) 

In (2.31), OS is an integer called the over sampling factor [19]. In multi-carrier communication, 
such filters are useful to design a pair of matched transmit and received filters whose cascade is a 
Nyquist pulse shape. When |z|=1, then P(z) = H(z)H(z -1)=|H(z)|2. P(z) is called Nyquist filter and 
|H(z)|=P(z)1/2 is called a root Nyquist filter. 
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Based on the previous sub-sections, the implementation of a spectrum estimator using filter 
bank for signal analysis is clear, namely by passing an input signal through a bank of filters. The 
output power of each filter is a measure of the estimated power over the corresponding sub-band. 
Hence the power spectral density (PSD) estimate of i-th sub band of the filter bank is represented 
as [16]: 

ɵ 2
[ ]i

i
S avg y n

N
   =     

     (2.32) 

In (2.32), avg[…] describes time average operator while yi[n] is the output signal of i-th sub band 
filter. The basic idea of FBSE is to assume that filter bank-based multicarrier communication 
technique is used as underlying communication system. The same filter bank can then be used for 
spectrum estimation. In this filter bank architecture, it is presumed that the filters at the receiver 
and transmitter side are a pair of matched root-Nyquist filters H(z) shown in figure 2.8 [19]. In the 
receiver side, the received multicarrier signal is demodulated. For each subcarrier, the 
corresponding portion of the received signal is down-converted to baseband, low pass filtered, and 
decimated [16] before finally forwarded to the root-Nyquist filter as illustrated in figure 2.8. In the 
same time, the receiving module also performs spectrum estimation. Figure 2.9 illustrates the 
simplicity of FBSE. As already clear, H(f ) is the prototype filter, which is root-Nyquist filter while 
the rest of the filters are modulated copies of H(f ). The frequency response of the prototype filter 
H(f ) and its modulated version is described in figure 2.10. 

 
Figure 2.9 Simple illustration of Filter Bank Spectral Estimator (FBSE) proposed by Farhang-Boroujeny [16]. SFBSE(fi) is 

FBSE estimate at i-th frequency sub-band 

 
Figure 2.10 Optimally designed Root Nyquist Filter by Farhang-Boroujeny in [19] as prototype filter for FBSE 

 
According to [16], the correlation properties of the decimated signal samples of each sub-

carrier band are related to the variance of the estimates. In order to investigate the correlation 
properties of the demodulated signal, we start by considering figure 2.8, which shows that: 

22( ) ( ) ( )
i i

j f
y y xx iS f S f f H e π= +         (2.33) 
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In (2.33), ( )
i iy yS f is power spectrum density of yi[n], which is the output signal. Assuming that 

H(z) is narrowband, ( )xx iS f f+  can be approximated by ( )xx iS f . Based on this approximation, it is 
possible to write (2.33) in z domain as: 

)()()()( 1−=Φ zHzHfSz ixxyy ii
                 (2.34) 

)( ixx fS in (2.34) is a constant. It can be noted that the correlation coefficients of yi[n], [ ]
i iy yR k , 

can be obtained from the inverse Z-transform of )(z
ii yyΦ . 

 Since H(z) is designed as root-Nyquist (N) filters (N gives the zero-crossings interval), G(z) 
= H(z)H(z-1) is Nyquist (N) filter. It is required that the time domain function of G(z) satisfies [16]: 
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                      (2.35) 

As a result, the correlation [ ]
i iy yR k bears a resemblance to Nyquist (N) sequence gN[n], where the 

subscript N indicates the zero-crossing spacing of the autocorrelation coefficient. For an 
observation vector yi[n] = [yi[n], yi[n-Lspc], …., yi[n-(Kobs-1)Lspc]] with Lspc is the sample spacing 
and Kobs is the size of observation vector yi[n], the correlation matrix is given as [16]:  
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    (2.37) 

An eigenvalue decomposition is then performed on matrix A. These resultant eigenvalues are used 
to measure the degree of freedom which can later be used to adjust the variance of the estimates.  
 Based on (2.32), we can formulate FBSE estimate in term of elements of observation 
vector yi[n] as follows:  
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=

= −∑       (2.38)  

It is very interesting to compare (2.38) and (2.28) showing how FBSE and MTSE perform 
averaging process in order to reduce the variance of the estimated PSD. From (2.38) as well, the 
importance of matrix A in (2.37) becomes more obvious. Since the independency between 
elements of yi[n] influences the variance of the estimated PSD and the correlation matrix 

i iy yR depends on matrix A, the problem definition can be stated as how to adjust the eigenvalues of 

A in order to approach the desired variance of estimated PSD. More detail on this issue can be 
found in [16].  

A comparative analysis of MTSE and FBSE has been performed by Farhang Boroujeny in 
[16]. It is generally concluded that FBSE is usually better when PSD estimation is performed based 
on larger number of samples. On the other hand, when the available samples of received signal are 
not that much, MTSE is preferable. Another important advantage of FBSE underlined in [16] is the 
possibility of no additional cost to implement FBSE when filter-bank multicarrier modulation is 
employed in the transceiver. This is due to the fact that the same filter bank in receiver module can 
be used for double functionality namely: spectrum estimation and signal demodulation. Finally, it 
is also worthy to note the higher complexity introduced by MTSE. 

2.4 Wavelet Theory 
 The emergence of interest in using wavelets in various applications is mainly motivated by 
the need for frequency content analysis of a signal locally in time. An interesting analogy for the 
frequency content analysis within a given time window is provided by Daubechies [20] who uses 
music notation as an example. Music notation informs the musician about which notes (frequency 
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information) to play at particular time. While Fourier transform gives accurate information on the 
frequency content of a signal, the information about time localization is not readily available. 
Fourier Transform is nothing but orthogonal expansion of time-domain signals in terms of sine and 
cosine basis function. Wavelet Transform is also orthogonal expansion. However, instead of 
decomposing the signals in terms of sine and cosine, a new waveform called wavelet is used as a 
basis function. Similar to other orthogonal expansions, a wavelet expansion of a square integrable 
function 2f L∈  generally expresses the expanded function as a complete, orthonormal set of basis 
functions for the Hilbert Space of square integrable functions. As in the Fourier domain, which is 
more familiarly recognized as frequency domain, the analysis of signals in wavelet domain is 
conducted by analyzing the transform coefficients. 
 This section elaborates some important information about wavelet theory which is used as 
the basis of this thesis. Firstly, the Wavelet Transform is discussed. Two types of wavelet 
transform, namely Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) 
are explained. The discussion about DWT is preceded by review about time-frequency tiling and 
multi resolution, which play a role as important basis for DWT. This is then followed by filter bank 
implementation of DWT and Wavelet Packet Transform (WPT) which is a slight modification of 
DWT. Finally, a review on the most popular wavelet employed in this thesis is given.  

2.4.1 Continuous Wavelet Transform 
 Continuous wavelet transform (CWT) can be defined as an expansion of continuous-time 
functions in terms of two variables, shift and scale. The scale parameter in CWT basically has 
apparent similarity with frequency in Fourier Transform. It describes how a wavelet basis function 
is stretched or contracted. Meanwhile, the shift variable, also known as translation parameter, 
represents the speeding up or the delay of the wavelet. It basically tells the location of the wavelet 
in time. The CWT can be expressed as the inner product between the signal being analyzed and the 
set of wavelet basis functions[4]:  

*1
( , ) ( ) f

t b
CWT a b f t dt

aa
ψ

∞

−∞

− =  
 ∫        (2.39) 

In (2.39), CWTf (a,b) is the CWT of a continuous signal f (t) consisting of several wavelet 
coefficients, which are a function of scale a and translation b. Equation (2.39) clearly illustrates 
that the CWT of a continuous signal f (t) is transform coefficients, which can be viewed as the sum 
of entire time components of the signal multiplied by scaled, shifted versions of the wavelet ψ (t). 
In the other words, there are multiple wavelet basis functions and all of them are generated from 
only single prototype (mother) wavelet. This relation is commonly expressed as: 
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         (2.40) 

The relation shows in (2.40) underlines an enormous advantage offered by wavelet transform by 
allowing it to provide dynamic resolution capability through the use of short basis function 
(contracted version) to obtain good time domain analysis and long basis function to get fine 
frequency domain analysis. The original time domain signal can later be constructed by inverse 
Continuous Wavelet Transform illustrated as [4]: 
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In (2.42), ( )ωΨ is the Fourier transform of ψ (t).  
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Figure 2.11 Problem encountered in Short Time Fourier Transform (STFT) (a) the same window size is applied to signal 

with difference frequency (b) the same resolution at all locations in time frequency plane caused by the use of single 
window [12] 

 
Figure 2.12 Dynamic resolution in time-frequency plane offered by Wavelet Transform (a) the basis functions and 

corresponding time-frequency resolution (b) time-frequency resolution in time-frequency plane [21] 

2.4.2 Discussion about Time-Frequency Tiling 
One simple technique, which provides both time and frequency information, is Short Time 

Fourier Transform (STFT) or Gabor Transform illustrated as [12]: 
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     [ ]{ ( )} ( , ) ( ) ( )  exp( 2 ) 
t

STFT x t X f x t w t j ft dtτ τ π≡ = − −∫   (2.43) 

From (2.43), a trade off between time and frequency resolution can be achieved in STFT by 
altering the dimensions of the window function. Smaller windows mean better time resolution but 
poorer frequency resolution. If the size of the window is extended, time resolution is compromised. 
It should be noted that STFT suggests the use of same window for each collection samples, so the 
frequency resolution for the whole frequency range is uniform. Figure 2.11 illustrates this problem. 
This technique is less appropriate since the signal is always dynamic (even for stationary signal). 
Sometimes, there is discontinuity in the signal and some times there is a signal composed of long 
period sinusoid. Small window is required to locate discontinuity in the time domain though the 
frequency is traded as compensation. On the other hand, large window is enough for long period 
signal and thus best frequency resolution is obtained in this case. This means that dynamic 
resolution in time and frequency is preferred even for single signal realization. 
 

 
Figure 2.13 Time-frequency tiling in wavelet transform [22] 

  
Figure 2.12 clearly shows the advantage of the wavelet transform over Short Time Fourier 

Transform illustrated in figure 2.11. By taking advantage of scaling coefficients a in (2.39), we can 
define contracted basis function, which is sharp in time but low in frequency resolution as well as 
stretched basis function having low time resolution but it is sharp in frequency. Short Time Fourier 
Transform (STFT) is based on conventional Fourier Transform having sines and cosines as its basis 
function. This limits its ability to localize the signal property, such as transients and edges in time 
domain. On the other hand, due to the use of irregular wave shape as basis functions, wavelet 
transform can be exploited to analyze sharp variation and time local features of the signal [22].  
 At low frequencies, wavelet transform provides good frequency resolution but it is poor in 
time information. In contrast, it gives good time resolution and poor frequency resolution at high 
frequency. Thus, the wavelet transform approach can be customized according to the inherent 
properties of the signal.  The encountered signals usually have low frequency components for long 
period of time but they have high frequency components for short durations. Figure 2.13 illustrates 
the time-frequency tiling concept that is employed by wavelet transform. Though it is true for most 
of types of wavelet transforms, such as Discrete wavelet transform, this is not the case for wavelet 
packet transform as it would be clear in later discussion. 
 In figure 2.13, each block covers one coefficient of the wavelet transform in the time-
frequency plane. It is clear from this figure that for higher frequencies, the blocks have narrow 
width but long height illustrating good time resolution but poor frequency resolution. On the other 
hand, the blocks at low frequencies have broad width but short height illustrating poor time 
resolution but good frequency resolution.  
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2.4.3 Multi-resolution analysis 
The orthogonal wavelet expansion can also be seen as a multi-resolution formulation. 

According to Burrus, et al in [23], there are two main components in the multi-resolution 
formulation of wavelet analysis, namely scaling and wavelet functions. The scaling function can be 
defined as: 

2( ) ( ),     k t t k k Lϕ ϕ ϕ= − ∈ ∈Z       (2.44) 

In (2.44), the subspace2( )L ℝ represents square integrable functions in Hilbert space while k implies 
discrete step translation. The subspace that is spanned by linear combination of the scaling function 
in (2.44) and its translated version is imaginable. However, it can be easily found that the size of 
the subspace can be increased by manipulating the scale of the scaling function. This manipulation 
results in two dimensional functions that are generated by basic scaling function through both 
scaling j and translation k as follows:  

/ 2 2
, ( ) 2 (2 ),  with ,   and j j

j k t t k j k Lϕ ϕ ϕ= − ∈ ∈Z    (2.45) 

From (2.45) it is clear that the scaling function can be expressed as a linear combination of the half 
scale scaling function and its shifted versions which are orthogonal to each other. In this case, the 
space spanned by the scaling function with larger scale is included in the space spanned by the 
scaling function with smaller scale. In other word, the space spanned by the scaling function with 
larger scale is a subspace of the space spanned by the scaling function with smaller scale. In order 
to clarify this idea we can define V0 as a subspace spanned by the set of basis functions in (2.44). 
Then we can also construct )(tkϕ for k = 0 via the following way: 

( ) [ ] (2 ) 2,   
n

t h n t n nϕ ϕ= − ∈∑ Z      (2.46) 

Since ϕ(t) in (2.46) is expressed as linear combination of its shifted half scale versions, h[n] defines 
the weight of each half scale component. If V1 is a subspace spanned by set of scaling functions 
ϕ(2t-n), it is clear that V0 ⊂ V1. In general, we can define the subspace Vj as  

, { (2 )}  { ( )}j
j k j k

k k
V Span t Span tϕ ϕ= =      (2.47) 

Therefore, the multiresolution analysis can be defined as a nesting of closed subspaces as follows 
[24]:  

2
2 1 0 1 2{0} .... ....V V V V V L− −⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂    (2.48) 

It is obvious that as j goes to infinity Vj enlarges to cover all energy signals. On the other hand, as j 
goes to minus infinity Vj shrinks down to cover only the zero signal.  

The difference between space spanned by scaling function and its half scale version is 
expressed as the orthogonal complement. This orthogonal complement is spanned by the 
corresponding wavelet function. This means, if we have a certain scaling function with particular 
scale, the space spanned by that scaling function can be decomposed into a subspace and its 
orthogonal complement. The subspace is spanned by the scaling function with double scale of the 
previous scaling function while the orthogonal complement is spanned by the corresponding 
wavelet function. Therefore we can define the space spanned by wavelet Wj as: 

1j j jV V W+ = ⊕        (2.49) 

By performing repetition on (2.49), we may formulate: 

1 1 1

2 2 1

( )

       = ( )

j j j j

j j j j

V V W W

V W W W

+ − −

− − −

= ⊕ ⊕

⊕ ⊕ ⊕    

1 3 3 2 1

0 0 1 2 1

0 0 1 2 1

 = ( )

        = ( ) ......

with: ......

j j j j j j

j j j

j j j

V V W W W W

V W W W W W

V W W W W W

+ − − − −

− −

− −

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
  (2.50) 

As a consequence of (2.50), the entire square integrable functions in Hilbert space can later be 
represented as:  
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2
0 0 1 2( ) ..........L V W W W= ⊕ ⊕ ⊕ ⊕ℝ     (2.51) 

Figure 2.14 illustrates the visualization of spaces Vj and Wj described by (2.49)-(2.50). 

W0 W1 W2

 …... V0 V1 V2 V3 V4

 
Figure 2.14 Illustration of multi-resolution analysis concepts and nested subspaces 

 

 
Figure 2.15 1-level wavelet decomposition applied on noisy signal s having time-varying frequency. The approximation 

component is denoted by a1 while d1 illustrates the detail component 
 

The next step would be to express the wavelet function ψ(t) in multi-resolution concept. 
Since it is clear from (2.49) that W0 ⊂ V1 and by taking (2.46) into consideration, we can express 
the wavelet function ψ(t) as: 

( ) [ ] (2 ) 2    
n

t g n t n nψ ϕ= − ∈∑ Z     (2.52) 

g[n] in (2.52) defines the weight of each half scale component. Since V0 and W0 are orthogonal to 
each other, ψ(t) is orthogonal to ϕ(t). This means there should be special relationship between 
weight coefficients h[n] in (2.46) and g[n] in (2.52) to ensure the orthogonality. This relationship is 
given by [4]: 

[ ] ( 1) [ 1 ],    for [ ] with length of ng n h L n h n L= − − −    (2.53) 
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As for the case of scaling function in (2.45), the wavelet functions can be manipulated through 
scaling and translation as follows:  

/ 2 2
, ( ) 2 (2 ),  with  ,  and j j

j k t t k j k Z Lψ ψ ψ= − ∈ ∈    (2.54) 

Finally, based on the philosophy illustrated above, we can give visual illustration of signal 
decomposition.  Given signal 0( )f t V∈ , we can apply signal decomposition on f (t) as follows [24]: 

1 1

1 2 2

1 2 3 3

1 2 3 4 4

( ) ( ) ( )

       =  ( ) ( ) ( )

       =  ( ) ( ) ( ) ( )

       =  ( ) ( ) ( ) ( ) ( )

where ( )  and ( )j j j j

f t D t A t

D t D t A t

D t D t D t A t

D t D t D t D t A t

D t W A t V− −

= +
+ +
+ + +
+ + + +
∈ ∈

    (2.55)  

In (2.55), Dj(t) is the detail at level j while Aj(t) is recognized as the approximation at level j. Hence, 
the scaling function corresponds to the approximation of a signal while the wavelet function 
describes the detail version of the signal at particular level of decomposition. Figures 2.15-2.17 
depict the decomposition of noisy signals having time-varying frequency into 1-level, 2-level and 
3-level decomposition, respectively. We can see how the behavior of detail and approximation 
components at different level and how the time-varying frequency property is described by wavelet 
and scaling function as a function of scale and translation index. 

 
Figure 2.16 2-level wavelet decomposition applied on noisy signal s having time-varying frequency. The approximation 

component at level-2 is denoted by a2 while dj illustrates the detail component at level j 

2.4.4 Discrete Wavelet Transform 
 Due to practical limitation of CWT, Discrete Wavelet Transform (DWT) is usually more 
preferable to solve practical problems. DWT is developed based on multi-resolution analysis and it 
basically can be used to decompose any function 2( ) ( )f t L∈ ℝ  into scaling and wavelet basis 

function spanning the entire2( )L ℝ . By considering (2.51), the reconstruction formula for DWT 
using finite resolution of wavelet function can be illustrated as follows [23]: 

0

0

0 , ,( ) ( , ) ( ) ( , ) ( )j k j k
k j j k

f t c j k t d j k tϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= +∑ ∑ ∑    
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0 0

0

/2 /2
0( ) ( , )2 (2 ) ( , )2 (2 )j j j j

k j j k

f t c j k t k d j k t kϕ ψ
∞ ∞ ∞

=−∞ = =−∞

= − + −∑ ∑ ∑   (2.56) 

In (2.56), the DWT coefficients c(j0,k) and d(j,k) denote the weight of scaling function
0 , ( )j k tϕ and 

wavelet function , ( )j k tψ , respectively, while j0 defines coarsest scale spanned by the scaling 

function [23]. Correspondingly, the DWT coefficients c(j,k) and d(j,k) can now be defined 
respectively as (2.57) and (2.58):  

  

,

,

/ 2

( , ) ( ), ( )

          ( ) ( ) 

          ( ) 2 (2 ) 

j k

j k

j j

c j k f t t

f t t dt

f t t k dt

ϕ

ϕ

ϕ

=

=

= −

∫
∫

      (2.57) 

  

,

,

/ 2

( , ) ( ), ( )

          ( ) ( ) 

          ( ) 2 (2 ) 

j k

j k

j j

d j k f t t

f t t dt

f t t k dt

ψ

ψ

ψ

=

=

= −

∫
∫

     (2.58) 

In (2.57) and (2.58), ( ), ( )a t b t  denotes the inner product operation between a(t) and b(t). 

 
Figure 2.17 3-level wavelet decomposition applied on noisy signal s having time-varying frequency. The approximation 

component at level-3 is denoted by a3 while dj illustrates the detail component at level j 

2.4.5 Filter bank representation of Discrete Wavelet Transform 
Based on the previous discussion about how scaling and wavelet basis function together 

with corresponding translation and dilatation can be used to construct any function 2( ) ( )f t L∈ ℝ , 
this sub-section intends to elaborate the relationship between DWT, multi-resolution analysis, low-
pass and high pass filtering as well as to discuss how DWT can be practically implemented using 
multi-rate filter bank system. 
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We start the discussion by considering a scaling function ( )k tϕ . Since ( )k tϕ basically can be 
expressed as a linear combination of(2 )k tϕ , ( )k tϕ is the coarse version of (2 )k tϕ  and thus 

( )k tϕ occupies the lower half part of the frequency band occupied by (2 )k tϕ . On the other hand, the 
wavelet function ( )k tψ , as the orthogonal complement of( )k tϕ , resides in the upper half band. 
Figure 2.18 illustrates the relationship between space V1 (spanned by (2 )k tϕ ) and its corresponding 
subspaces, V0 (spanned by ( )k tϕ ) and W0 (spanned by ( )k tψ ). 
 

0.50

V1

V0

W0

 
Figure 2.18 Frequency domain illustration of the relationship between V1, and its two sub-spaces V0 and W0  

  
From the description provided in the previous paragraph and figure 2.18, it is logical to 

associate coarse version of a signal with low frequency component and the detail version with high 
frequency component. Projection of signal with respect to scaling and wavelet basis function can 
logically be actualized through low pass and high pass filtering. Since multiple-level signal analysis 
based on DWT is nothing but signal decomposition into different frequency bands, successive high 
pass and low pass filtering of the time domain signal can be employed. These successive filtering 
should be implemented based on (2.46) and (2.52) famously recognized as two-scale equation. In 
order to find the exact relationship between DWT and the filtering process, we modify two-
equation (2.46) and (2.52) by replacing t with 2 j t k−  in order to obtain more general form of two-
scale equation. The general form of two-scale equation for scaling function with scale j and 
translation k is represented as:  

1

1

(2 ) [ ] (2(2 ) ) 2  

               [ ] (2 2 ) 2

               [ 2 ] (2 ) 2,  , and 2

j j

n

j

n

j

m

t k h n t k n

h n t k n

h m k t m m n m k n

ϕ ϕ

ϕ

ϕ

+

+

− = − −

= − −

= − − ∈ = +

∑

∑

∑ Z� 

  (2.59) 

Likewise, (2.60) illustrates the general form of two-scale equation for wavelet function with scale j 
and translation k. 

1

1

(2 ) [ ] (2(2 ) ) 2  = [ ] (2 2 ) 2

                [ 2 ] (2 ) 2,    ,  and 2

j j j

n n

j

m

t k g n t k n g n t k n

g m k t m n m m k n

ψ ϕ ϕ

ϕ

+

+

− = − − − −

= − − ∈ = +

∑ ∑

∑ Z �
  (2.60) 

The general form of two-scale equations (2.59) and (2.60) have exactly the same meaning 
as the original ones ((2.46) and (2.52)), namely the scaling and wavelet function at scale j are 
weighted sum of the multiple translated versions of scaling function with half-scale (at scale j+1). 
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Based on (2.59) and (2.60), the computation of DWT coefficients c(j,k) at (2.57) and d(j,k) at (2.58) 
can also be redefined as (2.61) and (2.62), respectively.  

( )
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    (2.62) 

Equation (2.61) and (2.62) express how the DWT coefficients for wavelet and scaling 
function at particular scale j can be obtained from linear combination of DWT coefficients from 
smaller scale scaling function (at scale j+1). These two equations also inform us that a convolution 
between DWT coefficients at scale j+1 with filter having impulse response h[n] and g[n] followed  
by down sampling each output with factor 2 will produce new scaling and wavelet DWT 
coefficients at scale j. As a result, the filtering representation of DWT is realized by developing 
half-band low pass filter H and high pass filter G. The low pass filter H and high pass filter G have 
weight values h[n] in (2.46) and g[n] in (2.52), respectively, as their impulse responses. The term 
half-band is used here since g[n] and h[n] are related according to (2.53) which ensures the 
orthogonality between scaling and wavelet function illustrated in (2.46) and (2.52). As a result of 
having relation described by (2.53), the frequency response of G appears as the mirror image at 
normalized frequency of 0.5π of low pass filter H. The filters satisfying (2.53) are also commonly 
known as the Quadrature Mirror Filters (QMF). 

Two scale equations (2.46) and (2.52) can now be seen as discrete time filtering with filters 
H and G, respectively [25]. The sampled version of original signal x[n] is passed through filter G 
and H. The half-band low pass filter H removes all frequencies component higher than half of the 
highest frequency. On the contrary, the high pass filter G eliminates all frequency components 
below half of the highest frequency. Consequently, the number of samples at the output of the filter 
is redundant if Nyquist criterion is considered. In order to eliminate this redundancy, down 
sampling by factor 2 is applied on the output of the filter. The down sampling (decimation) by 
factor 2 is expressed as: 

0 0[ ] [2 ]y n x n=      (2.63) 
In (2.63), x0[n] and y0[n] are the sequence of samples before and after the decimation 

process, respectively. In order to prevent the aliasing caused by the lost of information due to the 
down sampling process, the signal is often passed through anti-aliasing filter prior to the 
decimation. This filter is called the decimation filter. In our case, however, this is not necessary 
since exactly half frequency component is removed prior to down sampling by-2 operation. 

Figure 2.19 illustrates the successive filtering implementation of DWT known as tree 
structured filter bank. As mentioned before, the impulse responses of half band low pass filter H 
and high pass filter G are nothing but the weight values h[n] and g[n] obtained from two-scale 
equations (2.46) and (2.52), respectively. The action of low pass and high pass filtering followed 
by decimation process make up a single-stage decomposition process famously known as two-
channel filter bank. The most important feature in filter bank implementation of DWT is the fact 
that the iteration of the two-channel filter bank is only performed on low pass branch of the tree. 
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For example, it is assumed that the discrete-time input signal is x[n]∈V4 spanning the normalized 
frequency band of [0, π]. Since 3 3 4V W V⊕ = , the signal can be projected into subspace V3 and W3 by 
performing the inner product between x[n] and the scaling function as well as wavelet function that 
scale subspace V3 and W3, respectively. In filter bank domain, these operations are equivalent to the 
convolution between x[n] and h[n] as well as x[n] and g[n] followed by two-rate down sampling. 
The results are level-1 DWT coefficients illustrating the projection of x[n] on the two subspaces. 
The normalized frequency band spanned the projection of x[n] on V3 is [0, 0.5π] while the 
projection of x[n] on W3 spans the normalized frequency band [0.5π, π]. The same process can be 
conducted iteratively on the output of the first-stage low pass filter H in order to obtain the level-2 
DWT coefficients illustrating the projection of x[n] on V2 and W2. 

G
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Coeffients 
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Figure 2.19 The tree structured filter bank implementation of Discrete Wavelet Transform. The down arrow following 

number 2 illustrates decimation or down sampling by factor 2 [12]. 
 
In general, at every level, the filtering and down sampling will result in half the number of 

samples (and thus half the time resolution) and half the frequency bands being spanned (and hence 
doubles the frequency resolution). Figure 2.20 gives rough illustration of the frequency bands 
spanned by each subspaces of the signal x[n] at each output branch of DWT tree. This concept can 
be related to time-frequency tiling shown in figure 2.13. In DWT, the iterative two-channel filter 
bank is not performed on high frequency component. As a result, the higher frequency component 



Chapter 2 Spectrum Estimation and Wavelet Theory 

 30 

has wider bandwidth resulting in poor frequency resolution. However, the higher frequency 
component has larger number of samples resulting in good time resolution. On the other hand, the 
decomposition process is always applied on low-frequency component. Therefore, the lower 
frequency component has lower bandwidth but smaller number of samples resulting in good 
frequency resolution but poor time resolution. 

 
Figure 2.20 The frequency bands spanned by subspaces of signal x[n]at each output branch of DWT tree shown in figure 

2.19. 
 

 
Figure 2.21 The tree structured filter bank implementation of Wavelet Packet Transform. The down arrow followed by 

number 2 illustrates decimation or down sampling by factor 2 [12]. χχχχa,b illustrates sub space spanned by transform 
coefficients at wavelet packet node b at level a. 

2.4.6 Wavelet Packet Transform 

 The filter bank implementation of Discrete Wavelet Transform (DWT) performs iterative 
decomposition only on the low pass filter output. While this approach is good to obtain the multi 
resolution version of the signal being decomposed, recursive decomposition on both low and high 
frequency component is also possible. This is what happens on Wavelet Packet Transform (WPT). 
As it can be seen in figure 2.21, WPT performs the iteration of the 2-channel filter bank on both 
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low pass and high pass branch. The signal to be decomposed is split into the detail (high frequency 
component) and the approximation (low frequency components parts). Instead of just further 
decomposing the approximation part, wavelet packet decomposition also splits the detail parts 
further. For n level of decomposition, the WPT produces 2n different sets of coefficients. In order to 
simplify the discussion, every output point of each filter is named wavelet packet node. For 
example, at decomposition level 5 there would be 32 wavelet packet nodes. The output of each 
wavelet packet node corresponds to particular frequency band. In the example shown in figure 2.21, 
the notation χa,b is used to address the sub space spanned by transform coefficients at node b and 
level a. 

While figure 2.20 clearly shows the non-uniformity of the frequency resolution of DWT, 
each final outputs of the WPT branch has uniform frequency resolution as it is shown in figure 2.22. 
This uniformity is due to the same manner of decomposition in both low and high frequency 
components. Hence, the outputs at wavelet packet nodes in the same level have evenly spaced 
frequency bands. As a result, the time-frequency tiling illustrated in figure 2.13 is not necessarily 
true for WPT. As it is clear from figure 2.21 and 2.22, the coefficients of the wavelet packet 
transform are not naturally ordered by increasing order of frequency. This issue would be clearer in 
chapter 3. 

The mathematical basis of WPT is similar to DWT. However, it is always interesting to 
investigate the relationship between filter bank implementation of WPT and its theoretical 
counterpart. The interested reader is referred to [26] to find out more about the topic. 

 
Figure 2.22 The frequency bands spanned by subspaces of signal x[n]at each wavelet packet node of WPT tree shown in 

figure 2.21. 

2.4.7 Inverse Wavelet Transform and Synthesis Filter Bank 
While we have discussed about how signal decomposition using DWT and WPT are 

implemented using tree structured filter bank in the previous two sub-sections, this sub-section 
discusses about signal reconstruction using inverse of DWT or WPT using filter bank as well. It is 
very common to address the tree structured filter banks illustrated in figure 2.19 and 2.21 as 
analysis filter-banks since they are basically employed to analyze a complex signal into either its 
DWT coefficients or wavelet packets coefficients. In order to find the filter bank implementation of 
signal reconstruction, one may recall the DWT reconstruction formula illustrated by (2.56) but this 
time we consider different signal f1(t) in the j+1 scaling function space1 1( ( ) )jf t V +∈ [23]. Hence, 

f1(t) can be simply expressed in term of scaling function at scale j+1 as: 

( 1) / 2 ( 1)
1( ) ( 1, )2 (2 )j j

k

f t c j k t kϕ
∞

+ +

=−∞

= + −∑       (2.64) 

It is also trivial to express this function in terms of scaling and wavelet function at scale j as: 

/ 2 / 2
1( ) ( , )2 (2 ) ( , )2 (2 )j j j j

k k

f t c j k t k d j k t kϕ ψ
∞ ∞

=−∞ =−∞

= − + −∑ ∑     (2.65) 

Next, we can modify (2.65) by substituting the general form of two-scale equations given 
by (2.59) and (2.60) into (2.65). This results in (2.66). 
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( 1) / 2 1 ( 1) / 2 1
1( ) ( , ) [ ]2 (2 2 ) ( , ) [ ]2 (2 2 )j j j j

k n k n

f t c j k h n t k n d j k g n t k nϕ ϕ
∞ ∞

+ + + +

=−∞ =−∞

= − − + − −∑ ∑ ∑ ∑ (2.66) 

Finally, we can multiply both sides of (2.66) by ( 1)(2 ')j t kϕ + −  and also take (2.64) into account. 
After integrating the results of this multiplication, we can express scaling coefficients at scale j+1 
c(j+ 1, k) in terms of scaling and wavelet coefficients at scale j [23]. This is given by (2.67). 

 
Figure 2.23 Two-level two-band Synthesis Filter Bank 

 
Figure 2.24 The tree structured filter bank implementation of Inverse Discrete Wavelet Transform. The up arrow 

following number 2 illustrates up-sampling by factor 2. 
 

( 1, ) ( , ) [ 2 ] ( , ) [ 2 ]
m m

c j k c j m h k m d j m g k m+ = − + −∑ ∑     (2.67) 
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Equation (2.67) actually does the opposite of what is performed by (2.61) and (2.62). It basically 
states that the DWT coefficients at particular level j+1 can be obtained from linear combination of 
both weighted scaling and wavelet coefficients at double scale j. The filter bank implementation of 
(2.67), which is famously known as synthesis filter-bank can be illustrated by figure 2.23. 
 As it is obvious from figure 2.23, in two-band synthesis filter bank, the scaling and wavelet 
coefficients are first up-sampled by factor 2. The up-sampling process by factor 2 can be generally 
expressed as: 

0
0

[ / 2],  if  is an integer
[ ] 2

0             otherwise           

n
x n

y n

= 


      (2.68) 

In (2.68), x0[n] and y0[n] are the sequence of samples before and after the up-sampling process, 
respectively. This up-sampling process basically doubles the number of samples in the input signal 
by inserting a zero between each pair of samples. The scaling coefficients are later filtered by half 
band low pass filter H’ . Correspondingly, the wavelet coefficients are filtered by half band high 
pass filter G’. The outputs of the two filters are summed in order to construct the scaling 
coefficients at the next scale (which is half-scale). By considering figure 2.23 as well as equations 
(2.67), (2.59) and (2.60), it is obvious that the impulse responses of H’  and G’ are time reversed of 
the impulse responses of H and G, respectively. For simplicity, we might address H’  and G’ as 
synthesis filters while H and G can be addressed by analysis filters. 
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Figure 2.25 The tree structured filter bank implementation of Inverse Wavelet Packet Transform. The up arrow following 
number 2 illustrates up-sampling by factor 2.  

 When the signal is decomposed using DWT, it is always possible to reconstruct the 
original signal by employing the inverse of DWT called IDWT (Inverse Discrete Wavelet 
Transform). IDWT does the opposite of what is performed by DWT. Figure 2.24 depicts the 
synthesis filter bank realization of IDWT counterpart of figure 2.19.  Likewise, Inverse Wavelet 
Packet Transform (IWPT) is used to reconstruct the original signal that is previously decomposed 
by WPT. The filter bank implementation of IWPT is illustrated by figure 2.25. 
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2.4.8 Popular Wavelet Families 
 In this thesis, several popular wavelet families are used as a basis of wavelet based 
spectrum estimation. This sub-section is dedicated to give brief introduction about these wavelet 
families. 
 

 
   (a)      (b) 
 

 
(c) (d) 
 

 
   (e)      (f) 
Figure 2.26 Illustration of some wavelet family function (a) Haar (Daubechies-1) (b) Daubechies-2 (c) Daubechies-4 (d) 

Coiflet-2 (e) Coiflet-3 (f) Coiflet-4. 
 
 One of the most popular wavelet families is Daubechies, named after Ingrid Daubechies, 
the leading researcher in the world of wavelet. Daubechies wavelets are compactly supported 
orthonormal wavelets, which allow the discrete wavelet analysis becomes practicable. In practical 
world, Daubechies family is commonly written as dbN, where N is the order. As discrete wavelets, 
the length of Daubechies is 2N. One of the members of Daubechies family is db1, which is 
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famously known as Haar wavelet. Haar wavelet is the simplest wavelet. It is discontinuous and not 
differentiable. The shape of the Haar wavelet is similar to the unit step function. 
 Coiflets is another wavelet family that is used in this thesis. Similar to Daubechies, Coiflets 
family is also normally written as coifN with N as the order and 6N as the length of the wavelet. 
This discrete wavelet is designed by Ingrid Daubechies to be more symmetrical than the 
Daubechies wavelets.  Another wavelet family that is nearly symmetrical is Symlets, which is 
also the variant of Daubechies wavelets. Similar to Daubechies, Symlets are also written as symN 
with N as the order and 2N as the length of the wavelet. Figure 2.26 gives the illustrations of some 
wavelet family functions. Other wavelet families, such as Discrete Meyer, Biorthogonal wavelets 
and Reverse Biorthogonal wavelets are also used in our research. The Biorthogonal wavelets are 
the wavelets where the corresponding wavelet transform can be inverted but they are not 
necessarily orthogonal [4]. The design of biorthogonal wavelets provides more degrees of freedoms 
than orthogonal wavelet. The intention of using biorthogonal wavelets in spectrum estimation 
experiments here is to find the importance of wavelets orthogonality in the performance of the 
spectrum estimation. 

2.5 Existing literature on wavelet based spectrum estimation 
 In the context of dynamic spectrum access and cognitive radio, the use of multiple narrow-
band Band Pass Filter (BPF) might be required by some spectrum sensing technique such as match 
filtering illustrated in sub-section 2.2.1. In [27], Tian and Giannakis propose a wavelet based edge 
detection for spectrum sensing in cognitive radio. In general, this technique eliminates the need of 
multiple narrowband BPF. Moreover, the number of spectrum bands lies within the band of interest 
can be assumed to be unknown. Under this assumption, the use of multiple BPF-s is not only 
challenging but also useless because we even do not know the number of required BPF.   
 In Tian & Giannakis proposal, the wide band of interest should be known and it can be 
defined as a band in the frequency range 0[ , ]

BNf f with bandwidth of 0BNB f f= − . In this band of 

interest, there could be NB spectrum bands and some of them could be occupied. The task is how to 
find NB, the occupied and unoccupied bands and the frequency boundaries of each band. By 
defining the n-th band as Bn : { f ∈ Bn : fn-1 ≤ f < fn}, n = 1, 2, ...., NB, we need to find 

0 1 2 -1< .....
B BN Nf f f f f< < < < . Once the number of spectrum bands NB and the boundaries of every 

band are found, the spectral density estimation for every band is conducted by assuming the smooth 
and flat power spectrum density (PSD) within each band and the presence of discontinuities and 
irregularities around the boundary between two adjacent bands. In addition, additive zero mean 
white is assumed [27]. Figure 2.27 illustrates this idea. 

 
Figure 2.27 Illustration of the assumption used by wavelet based edge detection proposed by Tian and Giannakis in [27] 

 
 Given the wide band of interest0[ , ]

BNf f , Tian and Giannakis method employs wavelets to 

locate the discontinuities and irregularities within the wide band. In other words, the wavelets play 
important roles in order to find the boundaries between bands, and thus the number of narrow 
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bands within the wide band of interest as well. In general, Continuous Wavelet Transform (CWT) 
is used for this purpose. However, instead of applying the CWT on the time domain version of the 
signal, Tian and Giannakis apply the CWT on the PSD. Given a wavelet function( )fψ , the dilated 
version by s of ( )fψ can be defined as:  

  
1

( ) ( )s
f

f
s s

ψ ψ=         (2.69)  

The CWT of the PSD can then be defined as [27]: 
  ( ){ ( )} ( ) ( ) ( )

xx S f x sCWT S f CWT s S f fψ= = ∗     (2.70) 

The next step is by taking into account the fact that the PSD ( )xS f is the Fourier Transform of the 

autocorrelation function ( )xR τ and defined the inverse Fourier Transform of the wavelet function 
( )s fψ as: 

( ) { ( )} ( )s sIFT f sτ ψ τΨ = = Ψ       (2.71) 
In (2.71), IFT { } denotes Inverse Fourier Transform. By taking (2.71) into account, (2.70) can be 
represented as:  

{ ( )} { ( ) ( )}x xCWT S f FT R sτ τ= Ψ      (2.72) 
FT {} in (2.72) denotes Fourier Transform. Given (2.72), Tian and Giannakis investigate the shape 
of the first and second order derivative of { ( )}xCWT S f in order to locate the irregularities and 
discontinuities in the wide band of interest. In general, the first and second order derivative of (2.72) 
can be described by (2.73) and (2.74), respectively [27]. 

'{ ( )} ( )( )  { ( ) ( )}x x s x s
d

CWT S f s S f s FT R s
df

ψ τ τ τ= ∗ = − Ψ   (2.73)  

2
2 2 2

2
''{ ( )} ( )( )  { ( ) ( )}x x s x s

d
CWT S f s S f s FT R s

df
ψ τ τ τ= ∗ = Ψ   (2.74) 

In (2.73) and (2.74), '{ ( )}xCWT S f and ''{ ( )}xCWT S f are the first and second order derivative of 
CWT of the PSD ( )xS f . These two derivatives actually describe the first and second order 
derivatives of ( )xS f smoothed by the wavelet ( )s fψ . 

 According to [27], the local maxima of the first order derivative )}({' fSCWT r  can be used 
to indicate the irregularities of the PSD. Therefore, with regard to the assumption that the PSD is 
smooth within each band, the boundaries of each band can be located by the location of the local 
maxima of )}({' fSCWT r . The same goal can also be achieved by tracking the location of zero 

crossing of the second order derivative )}({'' fSCWT r . Both of these two procedures give the 

location of 0 1 2 -1, , ,....., ,
B BN Nf f f f f . The problem that might emerge in this approach is the 

possibility of noise that could induce local maxima in the shape of first order 
derivative )}({' fSCWT r . However, this problem can be avoided by varying the value of scale 
variable s. By assuming that the noise is random, the local maxima induced by the noise in 

)}({' fSCWT r  for given scale s is less likely to reappear again for different value of s. Hence, the 
actual boundaries of each band are described by the local maxima that always presents in 

)}({' fSCWT r  for any scale s.  
After the boundaries of each band are identified, the level of PSD of the received signal is 

measured with respect to noise PSD. After calculating the average of total PSD, the PSD of the 
received signal is obtained by subtracting noise PSD from the average of total PSD. Tian and 
Giannakis experiment in [27] has shown that the wavelet based edge detection approach has 
successfully identified the number of occupied band within wide band of interest. This method has 
also offered what is called good dynamic spectrum range. 
 Another use of wavelet approach for spectrum sensing is offered by Hur, et al in [28]. The 
idea is to provide combination of coarse and fine sensing resulting in Multi Resolution Spectrum 
Sensing. The received signal is correlated with the modulated wavelet and the result of the 
correlation process represents the spectral contents of the input signal at the band around the carrier 



Chapter 2 Spectrum Estimation and Wavelet Theory 

 37 

frequency that is modulated by the wavelet. The resolution is adjusted by either using wavelet with 
large resolution bandwidth (sparse resolution) or small resolution bandwidth (precise resolution). 
With regard to cognitive radio, the coarse sensing is basically used to examine a wideband 
spectrum in fast manner and to produce information about candidate spectrum segments that are 
unoccupied. If it is needed, the fine sensing can be used to further investigate the candidate 
spectrum segments [28]. However, the speed issues related to the use of double sensing needs to be 
investigated further. 
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CHAPTER 3 DEVELOPMENT OF WAVELET BASED SPECTRUM 
ESTIMATOR 

 
 In this chapter, we elaborate on the construction of the novel wavelet based spectrum 
estimation technique developed in our research. Our novel wavelet based spectrum estimation 
method is based on Wavelet Packet Transform (WPT) introduced in the previous chapter. The filter 
bank architecture is employed in order to realize the WPT. This chapter starts with section 3.1 
which describes how the spectrum estimator is built based on wavelet packet representation. This is 
then followed by a discussion on spectral foot print of the wavelet packet coefficients and their 
frequency ordering. This section also presents the wavelet packet based spectrum estimator as a 
filter bank problem. This representation is useful to simplify the comparative analysis between the 
wavelet based technique with existing spectrum estimation methods such as Periodogram and 
Welch approaches. Parseval relationship and energy conservation is crucial in Fourier Transform 
theory and this energy conservation concept is the main reason why Fourier Transform can be used 
for spectrum estimation. Section 3.2 shows how the wavelet transform is a lossless unitary 
transform like Fourier Transform, and thus can be employed for spectrum estimation. Section 3.3 
talks about the relationship between wavelet packet coefficient and power spectrum density (PSD). 
Section 3.4 explains the simulation setup, experiments, scenarios and results. The results of wavelet 
based estimation is provided together with the estimates of Periodogram and Welch method. 
Section 3.5 gives remarks on the comparative analysis performed in section 3.4 while section 3.6 
concludes this chapter. 

3.1 Spectrum Estimation through Wavelet Packet (WP) Tree Construction 

3.1.1 Wavelet Packet Representation 
In this section, we will describe the proposed spectrum estimation approach based on 

discrete wavelet packet transform using filter banks. It is well known from the theory of wavelets 
that compactly supported wavelet can be derived from perfect reconstruction filter banks [4]. Two 
channel filter banks split the given signal into the coarse version (low frequency component) and 
detail version (high frequency component). The use of high pass and low pass filter removes the 
lower half and the upper half frequency components, respectively. As a result, the output signal 
only spans the half of the frequency band spanned by the input signal. However, the time scale of 
the signal remains unchanged. To retain the same number of samples, the filter outputs are down 
sampled by factor 2. Therefore, one step decomposition process consisting of half band filtering 
and down sampling basically reduces the time resolution by a half and reduces the frequency band 
spanned by the signal by half as well. The scheme is then iterated successively on both the coarse 
and detailed versions until the desired degree of resolution to form a cascaded tree structure.  

Through this hierarchical coding scheme, the signal to be estimated is successively split 
into high and low frequency components. The cascaded two channel filter banks structure 
recursively decomposes the signal being estimated and maps the signal components into the 
frequency domain. This process may be likened to passing the received signal into a sieve of filters 
(filter banks) where the output point of each filter is a wavelet packet node. The output of each 
wavelet packet node corresponds to a particular frequency band. The decomposition of the signal 
into different frequency bands with different resolutions is possible. The resolution of the estimate 
can be adjusted by increasing or decreasing the levels of iteration. The greater the degree of 
decomposition, the better the frequency resolution is. The number of successions is usually limited 
by the desired level of frequency resolution and available computational power. Such successive 
high and low pass filtering results in the decomposition of the signal into wavelet packet 
coefficients at different frequency bands. 

We may recall from chapter 2 that the impulse response of analysis low pass filter h[n] and 
high pass filter g[n] in figure 3.1 should satisfy the two-scale equations illustrated in (2.46) and 
(2.52). Moreover, g[n] and h[n] must be tightly coupled by the Quadrature Mirror Filters (QMF) 
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relation, as in (2.53) to ensure the orthogonality between scaling and wavelet functions. In figure 
3.1, a level-4 decomposition procedure generating 16 wavelet packet coefficients are illustrated. 
These 16 wavelet packet coefficients are produced at 16 wavelet packet nodes corresponding to 16 
outputs of the 16 filters at level 4. It is also possible to utilize the outputs at level 2 or level 3 of the 
tree. This is the advantage of using wavelet packet - the output of every node at every level can be 
chosen according to the desired frequency resolution. The wavelet packet coefficients at the filters 
output actually describe the projection of the signal on the corresponding wavelet and scaling basis 
functions.  

 

 
Figure 3.1 Wavelet packet tree for four levels wavelet packet decomposition. Here H(z) and G(z) denote the low and 
high pass decomposition filters, respectively. The down arrows represent decimation by 2. It should be noted that the 

coefficients of the wavelet packet transform are not ordered by increasing order of frequency. Grey code permutation is 
required to obtain the correct frequency order. 

3.1.2 Frequency Ordering of Wavelet Packet Coefficients  
 It is of great importance to understand the spectral foot print of the wavelet packet 

coefficients and their frequency ordering to be able to identify and isolate coefficient that lie near 
the interference spectrum. The coefficients of the wavelet packet transform are not naturally 
ordered by increasing order of frequency. Instead, they are numbered on the basis of a sequential 
binary grey code value. For example if each coefficient in the level basis is numbered with a 
sequential decimal order (0000, 0001, 0010, 0011,...) the frequency ordering of the coefficients can 
be ordered by frequency by sorting them into Gray code value (0000, 0001, 0011, 0010, 0110,...) 
[29].  

To understand the working of the wavelet packet transform, consider the example shown in 
Figures 3.2 and 3.3 where the decomposition of a signal spanning 0-8 Hz is considered for up to 
two levels. The output of a decomposition process is the result of the scaling function (the low pass 
filter) and the result of the wavelet function (the high pass filter) followed by down sampling. 
Down sampling generates two new filter results with half the number of elements in the time 
domain. In addition to this, it also results in mirroring of the high pass components in the frequency 
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domain. This switches the low and high pass components in a subsequent decomposition as 
exemplified in the figures. When the wavelet packet algorithm is recursively applied the resultant 
wavelet packet coefficients obtained follow the Gray code sequence. 
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Figure 3.2 Level 1 Decomposition: Mirroring of high pass components due to down sampling. In the figure, 2↓ denotes 

down sampling by 2 
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Figure 3.3 Level 2 Decomposition (continued from Figure 3.2): The 2-levels wavelet packet decomposition is applied. 
Due to down sampling all the high frequency parts are mirrored. The low and high pass part is swapped in a subsequent 
transform. In the figure, 2↓ denotes down sampling by 2. Note that the output of the 1st wavelet packet node correspond 
to 0-2Hz, 2nd wavelet packet node correspond to 2-4Hz, 3rd and 4th node correspond to 6-8Hz and 4-6Hz respectively 

 
Because of the Gray code ordering there is a need to formulate the frequency ordering of 

the output of wavelet packet node given the order of the node. Jensen and la Cour-Harbo in [29] 
has found that this relationship is expressible as Gray Code permutation. For example, given the 
decimal number n = 5 having binary representation (in the form of b4 b3 b2 b1) b1 = 1, b2 = 0, b3 = 1, 
b4 = 0, the Gray Code permuted integer GC(n) is defined via the following formula [29]: 

1( )  (   ) mod  2 i i iGC b b b += +      (3.1)  
Hence, given the order of wavelet packet node as follows: 
 0 1 2 3 4 5 6 7 
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, having binary representation: 
 0000  0001 0010 0011 0100 0101 0110 0111 
The Gray code permutation of the binary representation above would be: 
 0000 0001 0011 0010 0110 0111 0101 0100  
Therefore, the wavelet packet node number in increasing frequency would be: 
 0 1 3 2 6 7 5 4 

 
Instead of the usual Gray Code Permutation, we here present an alternative algorithm to 

convert the sequence from Gray to binary. This method is easier since it does not involve any 
binary to decimal conversion and vice versa. If the wavelet packet nodes are in sequence (from the 
smallest number to largest number), the algorithm for obtaining the frequency band order is as 
follows: 

• Initialize a vector alphaalphaalphaalpha with elements 0 and 1 (alpha = [0 1]alpha = [0 1]alpha = [0 1]alpha = [0 1]) 
• Define the required level of wavelet packet decomposition L 
• For j = 2 to L-1 do 

betabetabetabeta = alphaalphaalphaalpha + 2j
; 

Flip the element of betabetabetabeta    
Append beta into the end of alphaalphaalphaalpha        

 
Table 3.1 Relationship between wavelet packet node number, its frequency ordering and the spanned frequency band at 

4th decomposition level 
Wavelet 

packet node 
number 

Frequency 
order number 

Spanned frequency band 
(Case 1: in terms of normalized 

frequency) 

Spanned frequency band (Hz) 
(Case 2: the entire spanned 
frequency is [0, 500 Hz] 

0 0 0 – 0.0625π 0 – 31.25 
1 1 0.0625π - 0.125π 31.25 – 62.5 
2 3 0.1875π - 0. 25π 93.75-125 
3 2 0.125π - 0.1875π 62.5 – 93.75 
4 7 0.4375π - 0.5π 218.75-250 
5 6 0.375π - 0.4375π 187.5-218.75 
6 4 0.25π - 0.3125π 125-156.25 
7 5 0.3125π - 0.375π 156.25-187.5 
8 15 0.9375π - π 468.75-500 
9 14 0.875π - 0.9375π 437.5-468.75 
10 12 0.75π - 0.8125π 375-406.25 
11 13 0.8125π - 0.875π 406.25-437.5 
12 8 0.5π - 0.5625π 250-281.25 
13 9 0.5625π - 0.625π 218.25-312.5 
14 11 0.6875π - 0.75π 343.75-375 
15 10 0.625π - 0.6875π 312.5-343.75 

 
The bottom part of figure 3.1 shows the relationship between the order of wavelet packet 

node number and its frequency ordering for 4-level decomposition. There are 16 nodes in the 
lowest level shown in figure 3.1 corresponding to 16 frequency bands. These 16 frequency bands 
span the normalized frequency range [0,π] or given sampling frequency fs Hz, they span the 
frequency range of [0 Hz, 0.5fs Hz]. If the spanned frequency range is [0 Hz, 500 Hz], the width of 
frequency range spanned by single wavelet packet node at the 4th level is 500Hz/16 = 31.25Hz. 
Table 3.1 gives the relationship between wavelet packet node number, its frequency ordering and 
the spanned frequency band. For clarity, two cases are provided here. The first case is in terms of 
normalized frequency and the second case is for the spanned frequency range of [0 Hz, 500 Hz]. 
Finally, figure 3.4 illustrates the modified structure of wavelet packet tree with 3-level of 
decomposition in order to match the frequency ordering. We can note the difference of this 
structure with the first 3 level of the tree shown in figure 3.1, especially the order of analysis low 
pass filter H and high pass filter G in each level. 
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Figure 3.4 Wavelet packet decomposition of a signal.  Here H and G denote the frequency responses of the low and high 
pass decomposition filters, respectively. The down arrows represent decimation by 2. The xi’s denote the wavelet packet 

coefficients. Besides the decomposition, the Power Spectral Density (PSD) of the decomposed signal components in 
successive octave bands normalized to the Nyquist frequency is shown. The order of filter in each level is modified in 

order to match frequency ordering from 0 to π. 
 

x[n]
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h[4k]*h[2k]*h[k]

h[4k]*h[2k]*g[k]

h[4k]*g[2k]*g[k]
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g[4k]*g[2k]*h[k]

g[4k]*g[2k]*g[k]

g[4k]*h[2k]*g[k]

g[4k]*h[2k]*h[k]

 
Figure 3.5 Wavelet packet based spectrum estimation concept from the point of view of filter bank paradigm. Here 3-
level decomposition is employed resulting in 8 virtual filters splitting the normalized frequency band [0, π] into eight 

sub-bands corresponding to eight estimate points. 
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3.1.3 Wavelet Packet based spectrum estimation as a Filter Bank analysis problem 
From filter bank paradigm point of view, the wavelet packet approach is a natural 

extension to the Multi Taper Spectrum Estimation (MTSE) in the sense that this method also uses 
different orthogonal filters as prototype filters but instead of Slepian sequences the filters are 
derived from tree structures constructed by cascading wavelet packet decomposition filters. Akin to 
MTSE and periodogram, every single point of the wavelet packet spectrum estimates can be 
viewed as an output of a virtual filter having pass band around that point. However, in contrast to 
MTSE and periodogram, these filters are realized by cascading several analysis low pass and/or 
high pass filters, which are derived from single prototype according to two scale equations and 
quadrature mirroring relationship illustrated by (2.46), (2.52), and (2.53), respectively. The impulse 

response of these cascaded filters called wavelet packet duals
~

[ ]i kψ  [6], which can be represented as:  
~

2 1[ ] ( )* (2 )*....* (2 )* (2 );

where,0 2 1

[ ], for lowpass branches
and, ( )

[ ],for highpass branches

J J
i

J

k f k f k f k f k

i

h k
f k

g k

ψ − −=

≤ ≤ −

= 


        (3.2)     

 Figure 3.5 illustrates the filter bank paradigm of the proposed wavelet packet based 
spectrum estimator. As it is obvious from the figure, there are eight virtual filters dividing 
normalized frequency range of [0,π] into 8 sub-bands. In this figure, the decomposition level is 3 
which results in 8 estimate points. The impulse response of each virtual filter in this figure can be 
derived from (3.2). Clearly, higher level of decomposition would increase the number of sub-bands 
(or estimate points) and thus it would increase the frequency resolution. 

3.2 Wavelet Packet Transform and Energy Conservation  
As in the case of Fourier Transform, the relationship between the amplitude of the signal 

and wavelet coefficients needs to be defined in order to develop valid wavelet based spectrum 
estimation. As already known, the Parseval relation proves that the Fourier transform is a lossless 
unitary transform. Likewise, we need to assert if the wavelet packet transforms preserves energy 
too. In order to verify this relation, we can start by representing a function f(x) in Hilbert Space as 
linear combination of the basis function( )i xϕ : 

( ) ( )i i
i

f x xα ϕ=∑        (3.3) 

It is clear from (3.3) that iα can be obtained from inner product between basis function ( )i xϕ and 
function f(x): 

( ), ( )i i x f xα ϕ=        (3.4) 

The norm of the function can be computed from the transform coefficients: 

               
22

( ) ( ), ( )i i
i i

f x x f xα ϕ= =∑ ∑      (3.5)  

By assuming that a function g(x) has transform coefficients βi, we can derive the generalized 
Parseval equation by taking the inner product between two functions f(x) and g(x) in Hilbert Space: 

( ), ( ) ( ), ( ) ( ), ( )i i i i
i i

f x g x f x x x g xα β ϕ ϕ= =∑ ∑    (3.6)  

In (3.6), iα indicates the complex conjugate version ofiα . According to Todorovska and Hao in 
[30], the Parseval relation for Discrete Orthogonal Wavelet Transform and its inverse is obtained 
by substitution on generalized Parseval Equation in (3.6). While the general equations for Discrete 
Wavelet Transform (DWT) have already been given by (2.56)-(2.58), we try to rewrite the DWT 
equations specifically for discrete signal x[n] with respect to our filter bank implementation shown 
in figure 3.4. Discrete wavelet transforms pairs for discrete signal x[n] can be represented as 
follows [30]: 
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∑ ∑∑     (3.7) 

,( , ) [ ], [ ]J kc J k n x nϕ=  and ,( , ) [ ], [ ]j kd j k n x nψ=    (3.8)  

In (3.7) and (3.8), J is the decomposition level and N is total number of samples. The two equations, 
(3.7) and (3.8) are nothing but the synthesis and analysis equations, respectively. The first 
component in the right side of (3.7) is the coarse part of signal x[n], which is represented as linear 

combination of the scaling function , [ ]J k nϕ . On the other hand, the second part in the right side of 

(3.7) is the detail version of x[n], which is represented as linear combination of wavelet 
function , [ ]j k nψ . If we have another signal, y[n] with d(i)(j,k) and c(i)(J,k) as its wavelet packet 

coefficients, the Parseval relation for y[n] and x[n] can be described using (3.6) as: 
/ 2 / 2

( ) ( )

1 1 1

[ ], [ ] [ ] [ ] ( , ) ( , ) ( , ) ( , )
j JJ N N

i i

n j k k

x n y n x n y n d j k d j k c J k c J k
∞

=−∞ = = =

   
= = +   

   
∑ ∑ ∑ ∑    (3.9) 

Using (3.9) and by taking x[n] = y[n], the Parseval relation describing the norm of y[n] can be given 
as [30]: 

/ 2 / 2
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[ ] [ ] ( , ) ( , )
j JJ N N

n j k k

y n y n d j k c J k
∞

=−∞ = = =

 
= = + 

 
∑ ∑∑ ∑        (3.10) 

Equation (3.10) clearly illustrates the lossless nature of wavelet transform. Hence, the discrete 
wavelet transform preserves the time domain energy in wavelet domain. This lossless feature is 
really important and a fundamental reason why the spectrum estimation technique based on 
wavelet can be built.  

Parseval relation holds well for both conventional discrete wavelet transform and wavelet 
packet decomposition. The Parseval relation for wavelet packet can be practically proved as 
follows:  

• Perform wavelet packet decomposition 
• Extract the wavelet coefficients of each node. For three level decomposition, the result 

would be eight vectors of wavelet coefficient namely: cfnode0, cfnode1, …, cfnode7. 
• Calculate the total energy in wavelet packet domain (EWP) from the wavelet coefficients by 

performing an inner product (dot product) of the vector with itself as follows: 

0 0 1 1 7 7* ' * ' .... * 'WP node node node node node nodeE cf cf cf cf cf cf= + + +     (3.11) 
 
Based on Parseval relationship with respect to discrete wavelet transform and wavelet 

packet decomposition illustrated above, we can start to define the wavelet based spectrum estimates. 
Given a certain level of wavelet packet decomposition, the wavelet packet nodes span the 
frequency band from 0 to 0.5fs with fs as the sampling frequency. This fact is the result of filter 
banks theory proposed in [4]. If we have n-level wavelet packet decomposition, there will be 2n 
packet nodes as tree’s leaves. This decomposition will divide [0 0.5fs] into 2n equal band and the 
output of each node in the leaves correspond to each band. The energy contained in particular band 
can be found from inner product of the wavelet packet coefficients vector of the corresponding 
node with itself. It can be noted that we can find the energy for different frequency resolution 
simply by investigating the wavelet coefficients in different levels. The advantage of the wavelet 
packet decomposition is that we do not only have wavelet coefficients of the nodes in the tree’s 
leaves but also those of nodes in different level of the tree.  

3.3 Calculating Power Spectrum Density from Wavelet Packet Coefficients 
As a consequence of the conformance of WPT to Parseval relationship, the power spectrum 

density in mth frequency band (ɵ WPmPSD ) corresponding to mth wavelet packet node can be computed 
from the energy (EWPm) found in the mth node, the frequency band that is spanned by single wavelet 
packet node and total number of samples N as follows: 
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ɵ ( / ( / ))
 
WPm

WPm
WP

E
PSD watt radian sample

N f
=     (3.12) 

3.4 Experiments and Results 

3.4.1 Experiment scenarios, sources and their characteristics  
In order to investigate the performance of the wavelet packet based spectrum estimation 

technique, four different types of sources are considered, namely, partial-band, single tone, multi-
tones and swept tone. The partial-band source has its energy spread over a continuous range of 
frequencies and it occupies the normalized frequency band from 0.25π to 0.75π. The single tone 
source has all of its energy at one frequency and it sits right in the middle of the range spanned by 
wavelet based spectrum estimation, namely at 0.5π. The multi-tones source consists of seven single 
tone sources located at normalized frequency from 0.125π to 0.875π and they are equally spaced. 
Finally, a swept tone source is introduced to test how well the estimation schemes perform when 
there are temporal variations in the frequency occupied. A swept tone source is just like a partial 
band source except that it occupies different bands at different instances. The vastly different 
nature of the test sources will give interesting insights into the operation of the spectrum estimation 
tool. Table 3.2 summarizes the description of sources used in the experiment 

 
Table 3.2 Description of four types of sources used in the experiments 

 Type of sources Description 
1 Partial band • Frequency occupied: [0.25π,0.75π] 
2 Single tone • Frequency occupied: 0.5π 
3 Multi-tones • Consist of 7 single tones occupying normalized 

frequency: 0.125π, 0.25π, 0.375π, 0.5π, 0.625π, 
0.75π and 0.875π 

 4 Swept tone • Different bands are occupied at different 
instances 

• Sweeping the frequency band of [0.2π 0.8π] 
• 20 sweeps (each of 640 samples) 
• One sweep can be divided into 5 sub sweeps 
• The estimate of each sub sweep is displayed 

 
To gauge the swept tone source, 20 sweeps (each of 640 unit samples) are considered. The 

sweep spans the normalized frequency band 0.2π to 0.8π. In order to present the effect of highly 
time-varying frequency on spectrum estimation, the estimate for five portions of a single sweep is 
displayed. The estimation technique depicts the first 128 unit samples of a single sweep followed 
by the next 128 unit samples of the same sweep and so on until the fifth 128 unit samples of the 
same sweep. For this experiment, several wavelet families are investigated namely Daubechies 
families, Coiflet, Symlet, Discrete Meyer, Biorthogonal and Reverse Biorthogonal.  

3.4.2 Result and Analysis 

A. Partial Band Source 

A.1 Analysis on  various wavelet families 
 In this type of source, we try to provide some preliminary assessment on our wavelet based 
estimation approach. A comprehensive analysis is provided in chapter 4. For partial band source, 
the performance of the estimation techniques is mainly evaluated with respect to three different 
metrics: 

• Leakage suppression (rejection at unoccupied band) or sometimes known as side lobe 
suppression 

• Variance of the estimated power spectrum density (PSD) 
• Transition band (transition between active band and unoccupied band). 
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Figure 3.6 Periodogram and wavelet based estimates (Daubechies 15, Symlet 15, and Discrete Meyer) for partial band 
source. The number of samples in this experiment is 12800. 7-level decomposition is used in wavelet based estimation. 

Figures 3.6 and 3.7 depict Periodogram and Welch approach as well as various wavelet 
families based estimates for the case of partial band source. In these figures, the number of samples 
used in the experiment is 12800. For the purpose of this experiment, the Welch approach divides 
the received samples into 399 segments of 64 samples. Two consecutive segments overlap to one 
another by 50%. Before performing the averaging process, Hamming window is applied on each 
segment.  

For the case of wavelet based estimates, 7-level decomposition is used in the experiment 
shown in figures 3.6-3.7. Daubechies-15, Coiflet-5, Symlet-15, Biorthogonal-3.9 and Reverse 
Biorthogonal 3.9 are chosen because they have roughly comparable wavelet filters length. 
Daubechies-15, Coiflet-5, and Symlet-15 have filter length of 30 while both Biorthogonal 3.9 and 
Reverse Biorthogonal 3.9 have filter length of 20. On the other hand, Discrete Meyer having filter 
length of 102 is included here in order to give a rough idea on how the length of the decomposition 
filter impacts the quality of the estimate. 

From figures 3.6 and 3.7, it can be seen that Discrete Meyer wavelet is better than other 
wavelets families in terms of transition band (transition between active band and unoccupied band) 
as well as the variance of the estimated power spectrum density (PSD). However, it should be 
noted that the length of decomposition filter for Discrete Mayer is 102 and thus it introduces more 
complexity in its actual implementation. Among other wavelet families, the PSD estimates based 
on Daubechies-15, Symlet-15 and Coiflet-5 are quite acceptable. All of these three wavelet families 
have filter length of 30. We can notice the poor transition band on the estimates based on these 
three wavelets, which are very likely caused by poor frequency selectivity of their corresponding 
wavelet decomposition filter. On the other hand, the performance of non orthogonal wavelet 
families (Biorthogonal 3.9 and its reverse counter part) is extremely poor and thus their usage is not 
recommended. 

When the performance of the wavelet based estimate is compared to Fourier based 
periodogram, it appears that the transition band of periodogram is moderately superior to wavelet 
based estimate. However, on account of the variance of the estimated PSD, the wavelet approach 
performs significantly better than the periodogram. In the context of dynamic spectrum access as in 
cognitive radio applications, a large variance in the estimate could lead to erroneous judgements in 
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the presence/absence of a source. Hence, in the metric of variance of estimated PSD, it can be said 
that orthogonal wavelet based estimate is preferable in comparison to the periodogram for partial 
band sources with number of samples of 12800.  

The Welch approach shows a slightly better performance than orthogonal wavelet based 
estimate. The averaging of estimates in the Welch approach plays an important role in ensuring that 
the PSD has a small variance while maintaining sharp transition band. However, the transition band 
found in Welch approach is only marginally better than that is found in Discrete Meyer wavelet 
based estimate. This means that there is a great scope for improvement in the wavelet based 
approach especially when the length of the decomposition filter is increased. 
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Figure 3.7 Welch approach and wavelet based estimates (Coiflet-5, biorthogonal 3.9, and reverse biorthogonal 3.9) for 
partial band source. The number of samples in this experiment is 12800.  The overlap percentage and the length of each 

segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 
approach. 7-level decomposition is used in wavelet based estimation. 

 
Figure 3.6 and 3.7 also show that the level of estimated power in unoccupied band for 

Welch approach is higher than for simple periodogram meaning that the Welch approach offers 
poorer rejection in the unoccupied band. This is understandable since Welch approach divides the 
received samples into several segments with lower number of samples before estimating each 
segment. In the other words, the size of window in Welch approach for each segment is 
significantly smaller than in simple periodogram and thus Welch approach introduced wider main 
lobe in its window kernel. As a result, Welch method introduces more leakage than the 
periodogram. The introduction of Hamming window in Welch approach, however, helps to 
improve the rejection in unoccupied band to the level as shown in figure 3.7. The wavelet based 
approach offers slightly better rejection than both Welch and periodogram in the normalized 
unoccupied frequency band of [0, 0.15π] and [0.85π, π]. This means that once the transition from 
active band to unoccupied band is completed, the leakage rejection in unoccupied band offered by 
wavelet based estimates is not that poor.  

Figure 3.8 illustrates the effect of filter length on the performance of the wavelet based 
estimates. In this case, the Daubechies family is selected for the experiment. It should be noted that 
the length of the filter is twice the index of the wavelet. For example, Daubechies-4 has filter 
length of 8. It can also be noted that Haar is actually Daubechies-1 and thus it has a filter length of 
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2. From figure 3.8, it is obvious that the longer the filter length, the smaller the transition band. 
Longer filter length appears to correspond to a better suppression of power in the unoccupied band 
as well. However, a longer filter length also means a higher complexity in the implementation. 
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Figure 3.8 Wavelet based estimates for partial band source using Daubechies family with different filter length. 7-level 

decomposition is used here. The number of samples in this experiment is 12800 
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Figure 3.9 PSD estimates of partial band source according to various decomposition level of Daubechies-20. The number 

of samples in this experiment is 12800. 
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A.2 Analysis on decomposition level 
Figures 3.9-3.12 demonstrate the effect of wavelet decomposition levels on the PSD 

estimates. The results are provided in four different figures for ease of depiction. In figure 3.9, 
wavelet based PSD estimates are displayed at four different decomposition levels, namely 5-level, 
7-level, 9-level and 11-level. Of particular interest with the wavelet packet approach is the variance 
of estimated PSD with increasing / decreasing of decomposition levels. With a decrease in depth of 
signal decomposition, the variance of the estimated PSD achievable is reduced. This is reasonable 
since the lower the decomposition level, the larger the band spanned by single wavelet packet node. 
Therefore, the total energy obtained from single wavelet packet node would be averaged over 
larger frequency band resulting in smaller variance.  
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Figure 3.10 PSD estimates of partial band source according to different decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. This figure is included to describe how the effect of decomposition level on 
wavelet estimates with respect to Periodogram and Welch estimates. The number of samples in this experiment is 12800.  
The overlap percentage and the length of each segment employed in Welch approach is 50% and 64 samples, respectively. 

Hamming window is used in this Welch approach.  

a) Comparison with Welch method and Periodogram 
Even though 11-level wavelet packet decomposition introduces a large variance, it is still 

much smaller than in periodogram (see figure 3.10). The variance is considerably reduced as the 
decomposition level is lowered to 6 though is still larger than in Welch estimates. It can thus be 
inferred from figure 3.9 and 3.10 that the decomposition level of wavelet based spectrum 
estimation can be adjusted to get a variance somewhere in between the variance found in Welch 
and periodogram. As it is clear from section 3.1, the wavelet packet based spectrum estimator 
allows us to exploit not only the wavelet coefficients produced by the node in the leaves of the tree 
but also the coefficients produced by all nodes in all levels of the tree. For example, if the 
decomposition level is set to 11, we do not only get the coefficients of the nodes at the 11th level 
but also at the 10th level, the 9th level and so on. Therefore, we can actually obtain multiple 
estimates from different levels of the tree and hence multiple estimates with different degree of 
variance, in one snapshot and one operation.  Unfortunately, for partial band source, varying the 
decomposition level does not significantly improve the transition band and the side lobe level (the 
rejection in the unoccupied band). This is clear from figures 3.9 and 3.10. 
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Figure 3.11 PSD estimates of partial band source according to different decomposition level of Daubechies-20 together 

with Thomson’s MTSE and Periodogram using Hann window. The number of samples in this experiment is 12800.  
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Figure 3.12 PSD estimates of partial band source according to different decomposition level of Daubechies-20 together 
with Periodogram using Hamming window and Blackman window. The number of samples in this experiment is 12800. 
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b) Comparison with windowed Periodogram and MTSE 
Figures 3.11 and 3.12 show that applying the window to the periodogram reduces the side 

lobes in the estimates. However, the windowing technique does not reduce the large variance of the 
periodogram estimates. In fact, the variance of the estimated PSD in periodogram with various 
windows introduced here are much larger than in 11-level wavelet packet based estimation scheme. 
Lastly, as already discussed in chapter 2, Multi Taper Spectrum Estimation (MTSE) tries to 
minimize the variance of estimated PSD by employing multiple orthogonal prototype filters. As a 
result, it offers much smaller variance compared to periodogram. The derivation of MTSE 
prototype filters based on Slepian sequence has resulted in excellent leakage suppression and thus 
the MTSE easily outperforms the wavelet based approach with respect to rejection at unoccupied 
band. However, the variance of MTSE is still significantly larger than the one found in wavelet 
based estimates presented here. Moreover, the MTSE is complex and difficult to implement.  

A.3 Analysis for the case of small number of samples 
Figures 3.13 and 3.14 depict the performance of wavelet based estimates along with 

periodogram and Welch approach for small number of samples. The number of samples used in the 
experiments is 384. The setting of Welch approach used here is exactly the same as the one used in 
figure 3.7. The purpose of this experiment is to learn about the behavior of the estimators when 
higher speed of estimation is demanded as in the case of cognitive radio. Assuming the sampling 
rate is constant, higher speed of estimation would correspond to smaller number of samples. 
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Figure 3.13 Periodogram and wavelet based estimates (Symlet 15, and Discrete Meyer) for partial band source. The 

number of samples in this experiment is 384. 7-level decomposition is used in wavelet based estimation. 
 
In general, there is no significant different between the Welch estimates found in figure 3.7 

and in figure 3.14 in terms of rejection level in the unoccupied band. This is logical since the size 
of each segment for both cases is the same, namely 64. However, the variance of the Welch 
estimates is increased when the number of samples is reduced because the estimates are now 
averaged over 11 segments instead of 399 (refer figure 3.7). On the other hand, the periodogram 
estimates for 384 samples introduce more leakage than the estimates for 12800 samples shown in 
figure 3.6. This is also reasonable since the size of the window in the case of 384 samples is much 
smaller. Therefore, when this time domain window is transformed into sinc function at frequency 
domain, the width of the main lobe for 384 samples case is larger followed by larger distance 
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between lobes. This results in more leakage as it is clearly shown in figure 3.13. The performance 
of wavelet based estimates also deteriorates when the number of samples is lowered from 12800 to 
384. Apart from the frequency selectivity issue in the wavelet decomposition filters, which is 
independent from number of samples, it seems that the rectangular windowing effect when we take 
finite number of samples from the received signals also happens in wavelet based estimates. 
Another issue which would be discussed in chapter 6 is the impact of spectrum carving in the 
wavelet decomposition filter. With respect to rectangular windowing issue, further analytical and 
mathematical study is needed. 
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Figure 3.14 Welch approach and wavelet based estimates (Coiflet-5, Daubechies-15) for partial band source. The number 

of samples in this experiment is 384.  The overlap percentage and the length of each segment employed in Welch 
approach is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 7-level decomposition 

is used in wavelet based estimation. 

A.4 Summary of Inferences 
 Based on the investigation on the estimates of partial band sources conducted in subsection 
A.1 to A.3, we can summarize our important findings as follows: 

• Wavelet based estimates has significant transition band due to poor frequency selectivity of 
their corresponding wavelet decomposition filter. The reason for this is due to the fact that 
wavelet families used in this experiment are standard wavelets which are not designed 
specifically for spectrum estimation.  

• The decomposition level of wavelet based spectrum estimation can be adjusted to get a 
variance somewhere in between the variance of Welch and periodogram. 

• Varying the decomposition level of wavelet based estimates does not improve the 
transition band and the rejection in the unoccupied band.  

• Even though MTSE and windowed periodogram has successfully minimized the leakage, 
the variance of estimates based on MTSE and windowed periodogram is still poorer than 
the variance of wavelet based estimates with presented decomposition level. 

• As the number of samples is decreased, the leakage introduced by periodogram and 
wavelet based estimates in the unoccupied band become more significant. 

 



Chapter 3 Development of Wavelet Based Spectrum Estimation 

 54 

B. Single Tone Source 

B.1 Analysis on  various wavelet families 
In single tone source, some preliminary evaluation on our wavelet based estimation 

approach is provided for three different metrics: 
• Variance of the estimated power spectrum density (PSD) 
• Frequency resolution  
• Leakage suppression or power rejection at unoccupied band.  

Figures 3.15 and 3.16 describe Periodogram, Welch as well as wavelet based estimates for 
the case of single tone source. The number of samples in these experiments is 12800 while the 
configuration of Welch method used here is the same as in the case of partial band source. The 
same wavelet families as in figure 3.6 and 3.7 are employed here with decomposition level of 7. 
The reasons for selecting these families are the same as in Partial band case. As expected, Discrete 
Meyer wavelet, having much longer filter length, has a slightly better performance than other 
wavelet families in terms of low variance of the estimated PSD in the unoccupied band. However, 
in terms of frequency resolution, all orthogonal wavelet based estimates perform equally well. 
Again, the performance of biorthogonal wavelets is very poor making them unsuitable candidates. 
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Figure 3.15 Periodogram and wavelet based estimates (Daubechies 15, Symlet 15, and Discrete Meyer) for single tone 
source. The number of samples in this experiment is 12800. 7-level decomposition is used in wavelet based estimation. 

 
From the two figures, it is quite interesting to note that the variance of orthogonal wavelet 

based estimate in the case of single tone source is better than that of Periodogram. In terms of 
frequency resolution, the wavelet based estimates also outperforms Welch estimates. While the 
averaging of estimates employed in the Welch approach is the key reason to suppress the variance 
of estimated PSD in partial band sources, the same feature seems to be the key for its poorer 
frequency resolution compared to orthogonal wavelet estimate of the single tone source. It is also 
interesting to consider the well known trade off between the variance of the estimated PSD, size of 
the side lobes and the frequency resolution. So far, Welch approach is considered as an approach 
that best trades off the frequency resolution for the variance. However, more prices are also paid 
here because Welch approach split the signals into smaller segment resulting in more leakage in the 
unoccupied band. Even though the Hamming window is applied on each segment to mitigate this 



Chapter 3 Development of Wavelet Based Spectrum Estimation 

 55 

leakage, the overall side lobe suppression in Welch method is worse than in orthogonal wavelet 
based estimates. This makes the orthogonal wavelet based estimate is more preferable than Welch 
approach for the case of single tone source with number of samples of 12800. 

Meanwhile, the periodogram shown in figure 3.15 seems to have a very good frequency 
resolution and side lobe suppression comparable to wavelet based estimates. However, the large 
variance found in periodogram estimate should be considered. Since the frequency resolution of 
orthogonal wavelet based estimate is just slightly poorer than periodogram estimates, orthogonal 
wavelet approach can still be considered as good alternative for spectrum estimation especially if 
the variance issue is important. 
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Figure 3.16 Welch approach and wavelet based estimates (Coiflet-5, biorthogonal 3.9, and reverse biorthogonal 3.9) for 
single tone source. The number of samples in this experiment is 12800.  The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 7-level decomposition is used in wavelet based estimation. 
 

Figure 3.17 illustrates the effect of filter length on the performance of the Daubechies 
wavelet based estimates for the case of single tone source. There is no clear relationship between 
the length of filter and the frequency resolution of the Daubechies wavelet based estimate. 
However, on account of variance of estimate at the unoccupied band, a clearer pattern emerges 
with increase in filter lengths. It is obvious from figure 3.17 that the longer the decomposition 
filters the smaller the variance of estimated PSD in the unoccupied band. 

B.2 Analysis on decomposition level 

a) Comparison with Welch method and Periodogram 
Similar to the case of partial band source, the effect of wavelet decomposition levels on the 

PSD estimates is illustrated in figure 3.18-3.21. In terms of variance of the estimated PSD, figures 
3.18 and 3.19 exemplifies what has been shown in the partial band case, namely the fact that the 
wavelet based estimates with various level of decomposition have characteristics in between of that 
of periodogram and Welch approach. However, some other aspects are found in these two figures. 
As shown in figure 3.19, the frequency resolution of simple periodogram is excellent but it has 
moderate side lobe suppression with large variance of PSD in the unoccupied band. On the other 
hand, the averaging of periodogram employed by Welch approach is the key reason for its poor 
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frequency resolution in the estimation of single tone source. Welch approach also has slightly 
worse side lobe suppression (due to smaller window size per segment) and much better variance of 
estimated PSD than periodogram. 
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Figure 3.17 Wavelet based estimates for single tone source using Daubechies family with different filter length. 7-level 

decomposition is used here. The number of samples in this experiment is 12800 
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Figure 3.18 PSD estimates of single tone source according to various decomposition level of Daubechies-20. The 

number of samples in this experiment is 12800 
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Meanwhile, it is very interesting to note from figures 3.18 and 3.19 that the frequency 
resolution of wavelet packet decomposition tends to approach that of periodogram as the 
decomposition level is raised from 5 to 11. On the other hand, the frequency resolution of wavelet 
based estimates has a tendency to approach Welch estimates when the decomposition level is 
reduced.  This is logical since the higher the decomposition level, the smaller the frequency band 
that is spanned by single wavelet packet node resulting in better frequency resolution. In this regard 
one can say that the performances of the WP approach can be made to operate between the 
strengths and weaknesses of Welch approach (minimum variance of the estimated PSD but poor 
frequency resolution) and periodogram (excellent frequency resolution but poor variance of the 
estimated PSD) without compromising too much on either of these metrics by merely increasing or 
decreasing the levels of decomposition.  
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Figure 3.19 PSD estimates of single tone source according to different decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. This figure is included to describe how the effect of decomposition level on 
wavelet estimates with respect to Periodogram and Welch estimates. The number of samples in this experiment is 12800.  
The overlap percentage and the length of each segment employed in Welch approach is 50% and 64 samples, respectively. 

Hamming window is used in this Welch approach. 

b) Comparison with windowed Periodogram and MTSE 
Figure 3.20 and 3.21 show the impact of windowing on the reduction of side lobe level of 

the periodogram estimates. As it is clear from theoretical aspect, the introduction of window 
maintain the excellent frequency resolution of the simple periodogram and hence it is still better 
than the frequency resolution of wavelet based estimate with presented decomposition levels. 
However, as in figures 3.18 and 3.19, the same trend also appears here since the frequency 
resolution of wavelet based estimate tends to approach that of the windowed periodogram estimates 
as the wavelet packet decomposition level is increased. This means that there is a promise offered 
by wavelet based estimates as long as the required decomposition level can be fulfilled. The MTSE 
also offer better frequency resolution. In terms of side lobe suppression (rejection of power in the 
unoccupied band), windowed periodogram and MTSE clearly outperforms the wavelet based 
estimate. While the impact of poor frequency selectivity of Daubechies-20 decomposition filter 
tends to dominate in the mediocre transition band for the case of partial band course, the fact that 
the number of samples is finite (or rectangular windowing effect) as well as spectrum carving issue 
(discussed in chapter 6) are mainly suspected for the significant level of PSD at unoccupied band. 
With respect to the excellent performance of MTSE, which is caused by the employment of Slepian 
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sequence as the basis derivation of prototype filters and averaging process, the complexity issue in 
MTSE implied by Farhang-Boroujeny [16] should still be considered. 
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Figure 3.20 PSD estimates of single tone source according to different decomposition level of Daubechies-20 together 

with Thomson’s MTSE and Periodogram using Hann window. The number of samples in this experiment is 12800. 
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Figure 3.21 PSD estimates of single tone source according to different decomposition level of Daubechies-20 together 

with Periodogram using Hamming window and Blackman window. The number of samples in this experiment is 12800. 
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Figure 3.22 Periodogram and wavelet based estimates (Symlet 15, and Discrete Meyer) for single tone source. The 

number of samples in this experiment is 384. 7-level decomposition is used in wavelet based estimation. 
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Figure 3.23 Welch approach and wavelet based estimates (Coiflet-5, Daubechies-15) for single tone source. The number 

of samples in this experiment is 384.  The overlap percentage and the length of each segment employed in Welch 
approach is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 7-level decomposition 

is used in wavelet based estimation. 
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Figure 3.24 Periodogram and wavelet based estimates (Daubechies 15, Symlet 15, and Discrete Meyer) for multi-tones 
source. The number of samples in this experiment is 12800. 7-level decomposition is used in wavelet based estimation. 
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Figure 3.25 Welch approach and wavelet based estimates (Coiflet-5, biorthogonal 3.9, and reverse biorthogonal 3.9) for 
multi-tones source. The number of samples in this experiment is 12800.  The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 7-level decomposition is used in wavelet based estimation 
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B.3 Analysis for the case of small number of samples 
As in the case of partial band source, we also tries to investigate the performance of 

wavelet based estimates along with periodogram and Welch approach for much smaller number of 
samples, which is also set to 384 here. This is described by figures 3.22 and 3.23. Since the 
reduction of number of samples from 12800 to 384 does not alter the size of each segment in the 
Welch approach, this reduction has no impact on the side lobe level. On the other hand both 
periodogram and wavelet based estimates introduce more leakage in 384 samples case. For the case 
of periodogram, the main reason for this is the smaller window size employed in order to take 384 
samples from the received signal. Meanwhile, the deterioration of the wavelet based performance is 
likely to be caused by the rectangular windowing effect which becomes more obvious for smaller 
number of samples. 

B.4 Summary of Inferences 
 Based on the investigation on the estimates of single tone sources conducted in subsection 
B.1 to B.3, we can summarize our finding as follows: 

• The variance of the wavelet based estimates with various decomposition level is between the 
variance of estimates based on periodogram and Welch approach. 

• The frequency resolution of wavelet packet based estimates approach that of periodogram as 
the decomposition level is raised. On the other hand, it approaches the variance of Welch 
estimates as the decomposition level is reduced. 

• More leakage in the estimates is introduced by both periodogram and wavelet based 
approach when the number of samples is significantly reduced. 

• Varying the decomposition level of wavelet based estimates does not improve the rejection in 
the unoccupied band. 

C. Multi-Tones Source 

C.1 Analysis on  various wavelet families 
Figures 3.24 and 3.25 illustrate Periodogram, Welch as well as wavelet based estimates for 

the case of multi-tones source. The number of samples in these experiments is 12800 while the 
configuration of Welch method used here is the same as in the case of partial band and single tone 
source. Same wavelet families as in figure 3.6 and 3.7 are employed here with decomposition level 
of 7. Again, the performance of biorthogonal wavelets is much poorer than the orthogonal wavelet 
based estimates making them unsuitable candidates. The trends in multi-tones estimation are 
similar to those of single-tone estimation. There are no palpable differences in the performances of 
the orthogonal wavelet based estimates in terms of frequency resolution. In terms of variance of the 
estimated PSD, Discrete Meyer is slightly better than other orthogonal wavelet families. 

The performance comparison of Fourier based periodogram and wavelet based estimates 
follow similar trends as in the case of single tone source. The performance of orthogonal wavelet 
based estimates is better than Welch approach estimates in terms of frequency resolution but they 
have comparable power suppression in unoccupied band. The reason for this is the same as in other 
sources namely the averaging of periodogram feature employed by Welch approach. Similar to the 
results found for the case of single tone source, simple periodogram has slightly better frequency 
resolution compared to orthogonal wavelet based approach. The large variance of estimated PSD 
issue inherent in periodogram estimate also appears here.  Other similarities with the case of single 
tone source are also found when we compare the relationship of filter length with the performance 
of orthogonal wavelet based approach (not shown here). 

C.2 Analysis on decomposition level 
Figures 3.26-3.29 illustrate the effect of the decomposition level on the wavelet based PSD 

estimates. In general, the results are similar to single tone source, namely the higher the wavelet 
packet decomposition level, the more similar the estimates to the simple periodogram estimates. On 
the other hand, lowering decomposition level would make the wavelet based estimates approach 
the estimates given by Welch method. 
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Figure 3.26 PSD estimates of multi-tones source according to various decomposition level of Daubechies-20. The 

number of samples in this experiment is 12800. 
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Figure 3.27 PSD estimates of multi-tones source according to different decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. This figure is included to describe how the effect of decomposition level on 
wavelet estimates with respect to Periodogram and Welch estimates. The number of samples in this experiment is 12800.  
The overlap percentage and the length of each segment employed in Welch approach is 50% and 64 samples, respectively. 

Hamming window is used in this Welch approach. 
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Figure 3.28 PSD estimates of multi-tones source according to different decomposition level of Daubechies-20 together 

with Thomson’s MTSE and Periodogram using Hann window. The number of samples in this experiment is 12800. 
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Figure 3.29 PSD estimates of multi-tones source according to different decomposition level of Daubechies-20 together 
with Periodogram using Hamming window and Blackman window. The number of samples in this experiment is 12800. 

 
Similar inferences to single tone case are also obtained when the wavelet based estimates are 

compared to windowed periodogram and MTSE. While increasing the level of decomposition 
would make the frequency resolution of wavelet based estimates approach the frequency resolution 
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of windowed periodogram and MTSE, both MTSE and windowed periodogram outperforms 
wavelet based estimates in terms of power rejection in unoccupied bands. 

C.3 Analysis for the case of small number of samples 
 

Figures 3.30 and 3.31 compare the wavelet packet estimates with Welch and Periodogram 
when the number of samples is low. In general, no significant influence is found on Welch based 
estimates after the number of samples is reduced from 12800 to 384. This is due to no alteration of 
the size of each segment. Both periodogram and wavelet based approach suffers more side lobes 
when the number of samples is reduced. 

C.4 Summary of Inferences 
 Based on the investigation on the estimates of multi-tones sources conducted in subsection 
C.1 to C.3, we find that most of findings found here are similar to the findings that are found in the 
case of single tone estimation, namely: 

• The variance of the wavelet based estimates with various decomposition level is between the 
variance of estimates based on periodogram and Welch approach. 

• The frequency resolution of wavelet packet based estimates approach that of periodogram as 
the decomposition level is raised. On the other hand, it approaches the variance of Welch 
estimates as the decomposition level is reduced. 

• More leakage in the estimates is introduced by both periodogram and wavelet based 
approach when the number of samples is significantly reduced. 

• Varying the decomposition level of wavelet based estimates does not improve the rejection in 
the unoccupied band. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized Frequency (x π rad/sample)

P
ow

er
 / 

F
re

qu
en

cy
 (d

B
/ra

d/
sa

m
pl

e)

 

 
Periodogram
Discrete Meyer
Symlet 15

 
Figure 3.30 Periodogram and wavelet based estimates (Symlet 15, and Discrete Meyer) for multi-tones source. The 

number of samples in this experiment is 384. 7-level decomposition is used in wavelet based estimation. 
 

D. Swept Tone Source 

D.1 Analysis on  various wavelet families 
As mentioned in section 3.4.1, 20 sweeps have been conducted to estimate the swept tone 

source. Here, we do not investigate the spectral estimate of the whole 20 sweeps in one snapshot 
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since it would not give different information from partial band source case. Instead, we investigate 
the snapshot of a portion of single sweep. The total number of samples is 12800 and this leads to 
640 samples per sweep. The goal of this kind of observation is related to the possibility of using the 
wavelet based spectrum estimation for dynamic spectrum access, in which, the occupancy of 
particular frequency band is time varying.  
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Figure 3.31 Welch approach and wavelet based estimates (Coiflet-5, Daubechies-15) for multi-tones source. The number 

of samples in this experiment is 384.  The overlap percentage and the length of each segment employed in Welch 
approach is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 7-level decomposition 

is used in wavelet based estimation. 
 

Figures 3.32-3.34 illustrate Periodogram and Welch approach as well as various wavelet 
families based estimate for five portions (snapshots) of a single sweep. For convenience, we 
address a single snapshot here as a sub-sweep. In these three figures, there are five sub-sweeps 
observed in a single sweep and each sub-sweep corresponds to 20% of the period of a single sweep 
and this leads to 128 samples per sub-sweep. As it is clear from the figures, the first sub-sweep 
corresponds to the left most lobe in those figures due to the fact that the sweep goes from the 
normalized low frequency (0.2π) to high frequency (0.8π). The fifth snapshot, on the other hand 
corresponds to the right most lobe. 

The configuration of Welch approach in figure 3.33 is exactly the same as in single tone 
and partial band source, namely 64 samples per segment with 50% overlapping between segments. 
Hamming window is applied on each segment before averaging. 

As it can be seen from figures 3.32-3.34, the performance of biorthogonal wavelet is worse 
than its orthogonal counterparts and it does not even give the clear location of the five portions of 
the sweep. Among orthogonal wavelets, Discrete Meyer shows slightly better performance than 
others in terms of variance of the estimated PSD in the pass band (the band that is swept). However, 
in terms of transition band and unoccupied band power suppression, there is no clear performance 
difference among the five families of orthogonal wavelets.  
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Legend: Blue => Simple Periodogram, Red Rectangle => Discrete Meyer

 

 

 
Figure 3.32 Periodogram and Discrete Meyer wavelet based estimates for a single sweep of swept tone source. Five 

portions of single sweep is captured (the most left lobe is the first 20% of the sweep; the most right lobe is the fifth 20% 
of the sweep). The number of samples in single sweep is 640 samples. 7-level decomposition is used in wavelet based 

estimation 
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Legend: Blue Star => Welch, Red => Daubechies 15, Black Circle => Symlet 15

 

 

 
Figure 3.33 Welch approach and wavelet based estimates (Symlet 15 and Daubechies-15) for a single sweep of swept 
tone source. Five portions of single sweep are captured (the most left lobe is the first 20% of the sweep; the most right 

lobe is the fifth 20% of the sweep). The number of samples in single sweep is 640 samples. 7-level decomposition is used 
in wavelet based estimation.  The overlap percentage and the length of each segment employed in Welch approach is 

50% and 64 samples, respectively. Hamming window is used in this Welch approach. 
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Legend: Blue Star = > Biorthogonal 3.9, Red = > Coiflet 5

 

 

 
Figure 3.34 Coiflet-5 and Biorthogonal 3.9 wavelet based estimates for a single sweep of swept tone source. Five 

portions of single sweep is captured (the most left lobe is the first 20% of the sweep; the most right lobe is the fifth 20% 
of the sweep). The number of samples in single sweep is 640 samples. 7-level wavelet decomposition is used here. 
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Figure 3.35 Three dimensional plot of energy of spectrum estimates using Daubechies-20 wavelet (2 sweeps, each of 640 

samples) 
 
When those five orthogonal wavelet based estimates are compared to periodogram and 

Welch estimates, some interesting results are found. In general, none of wavelet based estimates 
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can surpass the performance of Welch approach. The use of Hamming window at each segment 
averaged by Welch approach clearly results in excellent side lobe suppression and extremely small 
variance of the estimated PSD. Moreover, the Welch approach still has comparable frequency 
resolution with that of orthogonal wavelet based estimates. On the other hand, the performance of 
orthogonal wavelet based estimates is quite comparable with the periodogram in terms of side lobe 
or unoccupied band power suppression with one advantage found in the use of wavelet based 
estimates due to their moderately smaller variance of the estimated PSD. It should be noted that 
even though the Welch approach seems much stronger in this kind of swept tone source cases, the 
number of samples that is needed to do some averaging might not be sufficient especially when the 
time duration of a sub-sweep or snapshot is extremely small. Figure 3.35 shows a 3-dimensional 
plot of Daubechies-20 wavelet estimate for 2 sweeps of swept tone source. 

Figure 3.36 illustrates the effect of filter length on the performance of the wavelet based 
estimates for the five portions of a single sweep in the case of swept tone source. For clarity of 
expression, only two Daubechies wavelets are depicted in the figure. It is simple to conclude from 
the graph that the estimate based on wavelet with longer filter (Daubechies 20) has a much better 
performance both in terms of variance of the estimated PSD as well as side lobes or power 
suppression at unoccupied band. However, the frequency resolution of the estimate based on both 
Daubechies 4 and Daubechies 20 is roughly the same. 
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Legend: Red => Daubechies 4 Black Circle => Daubechies 20

 

 

 
Figure 3.36 Wavelet based estimate for a single sweep of swept tone source (using Daubechies family with different 

filter length). Five portions of single sweep are captured (the most left lobe is the first 20% of the sweep, the most right 
lobe is the fifth 20% of the sweep). The number of samples in single sweep is 640 samples. 7-level wavelet 

decomposition is used here 

D.2 Analysis on decomposition level 
In this part, a more elaborate investigation is provided on swept-tone source. Apart from 

the inquiry on the impact of decomposition level of the wavelet, we try to enrich the experiments 
by varying the size of a single sub sweep. Three different sizes of sub sweep are examined here. In 
the first case (shown in figure 3.37-3.40), the size of a single sub sweep is exactly the same as in 
part D.1, namely 128 samples. In the second case (shown in figures 3.41-3.46), a single sweep is 
divided into 10 portions (sub-sweeps) and each sub-sweep consists of 64 samples. For the sake of 
visibility, only first four or five sub-sweeps are displayed in these figures. Finally, figures 3.47-
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3.52 illustrates the third case in which a single sweep is divided into 20 sub-sweeps. Each sub-
sweep contains 32 samples. Again, only the first four or five sub-sweeps are shown in these figures. 
The investigation on different size of sub-sweeps is actually intended to illustrate how fast a 
snapshot is taken by the spectrum estimator. The smaller the size of sub-sweep, the faster the 
snapshot is taken. 
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Legend: Pink => db20 (11-level decomposition), Black Circle => db20 (8-level 
decomposition), Blue Rectangle => db20 (5-level decomposition)

 

 

 
Figure 3.37 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 wavelet 

based approach. In this result, the size of a single sub-sweep is 128 samples. 

Based on figures 3.37 and 3.38 we can observe how the performance of wavelet based 
estimates with various decomposition levels is contrasted to simple periodogram and Welch 
approach for sub-sweep size of 128. In terms of the variance of the estimated power spectrum 
density (PSD), similar behavior found in single tone and partial band cases is observed here. For 
higher level of decomposition (11 in this case), the variance of the estimate is larger and the 
wavelet based estimate tends to be comparable to simple periodogram estimate. As the 
decomposition level is decreased, the variance of the wavelet based PSD estimates is decreased as 
well and this variance tends to approach the variance of Welch periodogram estimates. Apart from 
the variance of the estimated PSD, there is no clear difference found when the decomposition level 
of wavelet based estimates is varied. The side lobe suppression and transition band of wavelet 
based estimates for different decomposition level look similar. Meanwhile, figures 3.38 shows that 
the Welch estimates clearly have good side lobe suppression, extremely small variance and 
comparable resolution with the frequency resolution of orthogonal wavelet based estimates. The 
reason for its low side lobe and variance of the PSD is clearly the combination of Hamming 
windowing and averaging process. On the other hand, the performance of orthogonal wavelet based 
estimates is quite comparable with simple periodogram in terms of side lobe or power suppression 
in the uninhabited band. Figure 3.39 and 3.40 basically shows how windowing technique has 
successfully improved side lobe suppression in periodogram estimate and thus it outperforms the 
wavelet based approach with various decomposition levels especially in terms of side lobe 
suppression. The MTSE approach has significantly lowered the estimate variance and improved 
side lobes suppression thanks to the employment of Slepian Sequence as the basis for deriving the 
orthogonal prototype filters. However, it is very interesting to notice that the frequency resolution 
of MTSE is still comparable to wavelet based estimates for the case of sub-sweep size of 128 
samples.  
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Legend: Black Star => Periodogram, Pink Dash => db20 (11-level decomposition)
Green Circle => db20 (6-level decomposition), Blue Rectangle => Welch

 

 

 
Figure 3.38 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. In this result, the size of a single sub-sweep is 128 samples. 
This figure is included to describe how the effect of decomposition level on wavelet estimates with respect to 

Periodogram and Welch estimates.  The overlap percentage and the length of each segment employed in Welch approach 
is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

10

Normalized Frequency (x π rad/sample)

P
ow

er
 / 

F
re

qu
en

cy
 (d

B
/ra

d/
sa

m
pl

e)

Legend: Red => Hann windowed periodogram
Blue => Thomson MTSE

 

 

 
Figure 3.39 PSD estimates of swept tone source according to Thomson’s MTSE and periodogram with Hann window. In 

this result, the size of a single sub-sweep is 128 samples. 
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Legend: Blue => Hamming windowed Periodogram, 
Red Circle => Blackman windowed Periodogram

 

 

 
Figure 3.40 PSD estimates of swept tone source according to periodogram with Hamming and Blackman 

window. In this result, the size of a single sub-sweep is 128 samples. 
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Legend: Black => Hann windowed Periodogram
Red Circle => Thomson MTSE                 

 

 

 
Figure 3.41 PSD estimates of swept tone source according to Thomson’s MTSE and periodogram with Hann window. In 

this result, the size of a single sub-sweep is 64 samples. 
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db20 (11-level decomposition) 1st subsweep
db20 (11-level decomposition) 2nd subsweep

db20 (8-level decomposition) 1st subsweep

db20 (8-level decomposition) 2nd subsweep

db20 (5-level decomposition) 1st subsweep
db20 (5-level decomposition) 2nd subsweep

 
Figure 3.42 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 wavelet 
based approach. In this result, the size of a single sub-sweep is 64 samples. First and second sub-sweeps are displayed 

here 
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db20 (11-level decomposition) 3rd subsweep
db20 (11-level decomposition) 4th subsweep

db20 (8-level decomposition) 3rd subsweep

db20 (8-level decomposition) 4th subsweep

db20 (5-level decomposition) 3rd subsweep
db20 (5-level decomposition) 4th subsweep

 
Figure 3.43 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 wavelet 
based approach. In this result, the size of a single sub-sweep is 64 samples. Third and fourth sub-sweeps are displayed 

here 
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Periodogram 2nd subsweep
db20 (11-level decomp.) 1st subsweep

db20 (11-level decomp.) 2nd subsweep

db20 (6-level decomp.) 1st subsweep

db20 (6-level decomp.) 2nd subsweep
Welch 1st subsweep

Welch 2nd subsweep

 
Figure 3.44 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. In this result, the size of a single sub-sweep is 64 samples. The overlap 
percentage and the length of each segment employed in Welch approach is 50% and 32 samples, respectively. Hamming 

window is used in this Welch approach. First and second sub-sweeps are displayed here. 

0 0.1 0.2 0.3 0.4 0.5 0.6
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized Frequency (x π rad/sample)

P
ow

er
 / 

F
re

qu
en

cy
 (d

B
/ra

d/
sa

m
pl

e)

 

 
Periodogram 3rd sub-sweep

Periodogram 4th sub-sweep
db20 (11-level dec.) 3rd sub-sweep

db20 (11-level dec.) 4th sub-sweep
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Welch 3rd sub-sweep
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Figure 3.45 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. In this result, the size of a single sub-sweep is 64 samples. The overlap 
percentage and the length of each segment employed in Welch approach is 50% and 32 samples, respectively. Hamming 

window is used in this Welch approach. Third and fourth sub-sweeps are displayed here. 
 

The next step would be to observe how all of these estimates behave when the size of a sub-
sweep is reduced to 64. Firstly, it can be observed in figure 3.41 how the frequency resolution of 
Thomson’s MTSE approach has been very bad for the case of sub-sweep size of 64 samples and it 
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is not comparable anymore to wavelet based estimates with various decomposition levels shown in 
figure 3.42 and 3.43. The wavelet based estimates still clearly illustrate distinguishable sub-sweeps 
as shown in those two figures. By considering the complexity of MTSE solution as mentiond by 
Farhang-Boroujeny in [16], the use of MTSE for investigating this kind of highly time varying 
source is questionable. Meanwhile, the frequency resolution of wavelet based estimates tends to be 
worse when the decomposition level is reduced. This is clear from figures 3.42 and 3.43. On the 
other hand, when the decomposition level is increased, the wavelet based estimates have frequency 
resolution similar to that of simple periodogram. This is shown in figures 3.44 and 3.45. 
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Legend: Red Rectangle => Hamming windowed Periodogram
Black => Blackman windowed Periodogram

 

 

 
Figure 3.46 PSD estimates of swept tone source according to periodogram with Hamming and Blackman 

window. In this result, the size of a single sub-sweep is 64 samples. 

 
Since the size of sub-sweep is reduced to 64, we also modify the segment size in the Welch 

approach from 64 to 32 in order to keep the presence of averaging process in this approach. It can 
be found from figure 3.44 and 3.45 that the use of smaller segment in Welch approach has resulted 
in worse frequency resolution. However, the use of Hamming windowing and averaging still keep 
the variance of estimated PSD and side lobe level remain low. Figure 3.41 and 3.46 generally 
shows the effect of windowing technique on simple periodogram. In terms of frequency resolution, 
the performance of periodogram with Hann, Blackmann and Hamming Windows is still 
comparable to that of wavelet based estimates with high level of decomposition (8-level or 11-
level). However, periodogram with windowing offer better side lobe or suppression at the 
unoccupied band compared to wavelet based estimates with various decomposition levels. 

The last case would be to observe the behavior of the estimates when the size of the sub-
sweep is further reduced to to 32 samples. In this experiment, we modify the configuration of the 
Welch approach. Since, it is only 32 samples available as a snapshot, the segment size in Welch 
approach is reduced from 32 to 16 in order to keep the averaging process in the Welch approach. 
However, this segment size reduction has completely jeopardized the frequency resolution as it is 
shown in figures 3.47 and 3.48. This makes Welch unsuitable for estimating the swept tone source 
with 32 samples per sub-sweep. In general, the important lesson that can be acquired from the use 
of Welch periodogram is the fact that the number of available samples that is needed to do some 
averaging might be just simply not sufficient enough to get acceptable result especially when the 
time duration of a snapshot is extremely small. 
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Figure 3.47 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. In this result, the size of a single sub-sweep is 32 samples. The overlap 
percentage and the length of each segment employed in Welch approach is 50% and 16 samples, respectively. Hamming 

window is used in this Welch approach. First and second sub-sweeps are displayed here. 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Normalized Frequency (x π  rad/sample)

P
ow

er
 / 

F
re

qu
en

cy
 (d

B
/ra

d/
sa

m
pl

e)

 

 

Periodogram 3rd sub-sweep

Periodogram 4th sub-sweep
db-20 (11-level decomp.) 3rd sub-sweep

db-20 (11-level decomp.) 4th sub-sweep

db-20 (6-level decomp.) 3rd sub-sweep

db-20 (6-level decomp.) 4th sub-sweep
Welch 3rd sub-sweep

Welch 4th sub-sweep

 
Figure 3.48 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 together 

with Periodogram and Welch Estimate. In this result, the size of a single sub-sweep is 32 samples. The overlap 
percentage and the length of each segment employed in Welch approach is 50% and 16 samples, respectively. Hamming 

window is used in this Welch approach. Third and fourth sub-sweeps are displayed here. 
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Figures 3.47–3.52 generally show that the performance of all spectrum estimation 
techniques is worse when the size of a sub sweep is further reduced to 32 samples. For the case of 
wavelet based estimates, higher decomposition levels have resulted in better frequency resolution 
as it shown in figures 3.47-3.50. Similar to the case of sub-sweep size of 128 and 64 samples, 
higher decomposition level leads to frequency resolution similar to simple periodogram. The 
phenomena showing how all spectrum estimation techniques get worse when the snapshot size is 
extremely reduced is quite understandable for the case of swept tone source. Swept tone source 
basically simulates how a particular user occupies a certain frequency point at certain time point. 
This means that both high time and frequency resolution are required to get accurate power 
spectrum density snapshot of this kind of source. In fact, the concept of uncertainty principle 
expressed by Vitterli and Herley in [21] has clearly excluded the possibility to have both good time 
and frequency resolution in the same occasion. However, this kind of interference is quite good to 
be used as indicator to assess the performance of spectrum estimation techniques with respect to 
dynamic spectrum access. 
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Figure 3.49 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 wavelet 
based approach. In this result, the size of a single sub-sweep is 32 samples. First and second sub-sweeps are displayed 

here 

D.3 Summary of Inferences 
 Based on the investigation on the estimates of swept tone sources conducted in subsection 
D.1 to D.2, we can summarize our finding as follows: 

• For different sub-sweep size, the wavelet based estimates with various decomposition level 
has comparable variance, frequency resolution as well as side lobe level with periodogram 
estimates.  

• Periodogram has windowing techniques as additional weapons to suppress the side lobe 
level and this has resulted in more favorable estimates especially for larger size of sub-
sweep. 

• Welch based estimates get worse when the size of one sub-sweep is reduced. The reason 
for this issue is the fact that the size of each segment to be averaged is just simply too small 
especially for sub-sweep size of 32 samples. 
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• MTSE also performs badly for sweep tone sources when the size of sub-sweep is still 
moderate (64 samples) and when wavelet based estimates still have fair performance. 
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Figure 3.50 PSD estimates of swept tone source according to various decomposition level of Daubechies-20 wavelet 
based approach. In this result, the size of a single sub-sweep is 32 samples. Third and fourth sub-sweeps are displayed 

here 
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Legend: Blue Circle => Hann windowed Periodogram
Red => Thomson MTSE

 

 

 
Figure 3.51 PSD estimates of swept tone source according to Thomson’s MTSE and periodogram with Hann window. In 

this result, the size of a single sub-sweep is 32 samples. 
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Legend : Red Circle => Hamming windowed Periodogram,
Black => Blackman windowed Periodogram

 

 

 
Figure 3.52 PSD estimates of swept tone source according to periodogram with Hamming and Blackman window. In this 

result, the size of a single sub-sweep is 32 samples 

3.5 Remarks on the Comparative Analysis with Existing Techniques 
 We would like to emphasize that we have no intention to say that one approach is better 
than the other when we compare our wavelet based approach to periodogram and Welch. It should 
be remember that we only employ one setting of Welch approach namely with segement length of 
64 and overlap percentage of 50% (though we also employ segment length of 32 and 16 in swept 
tone case). There is still a great deal of possible parameter combinations of Welch approach that 
can end up with different estimation performance. As an example, when we say that we can vary 
the variance of wavelet based estimates by tuning the decomposition level, the similar way can also 
be done in Welch by varying the number of segments and the segment length. However, they 
cannot be simply compared since both of them are completely different mechanism. Our intention 
in the comparative analysis provided in section 3.4 is to give some tastes and flavors about how the 
wavelet based estimates behave and where its position with regard to conventional approach.  

3.6 Summary of the Chapter 
 In this chapter, the application of wavelet packet transform for spectrum estimation 

technique was proposed and investigated. Four classes of sources with different features and 
characteristics are used to gauge the operation of the developmental system and the results were 
compared with that of well-known periodogram and Welch estimates. The performance metrics 
used were variance and frequency resolution of the estimated PSD as well as side-lobe level or 
suppression at the unoccupied band. We also investigated the impact of decomposition level on the 
wavelet based estimates.  

In general, it is easily found that orthogonal wavelet based spectrum estimates with various 
decomposition level tend to behave in between the performances of periodogram and Welch 
estimates especially in terms of variance of the estimated PSD and frequency resolution. When the 
decomposition level is increased, the variance of the orthogonal wavelet based estimate is higher 
but its frequency resolution gets better and the performance approaches that of periodogram. 
Meanwhile, the variance of the wavelet based estimated PSD and its frequency resolution approach 
those of Welch approach once the decomposition level is reduced. The Welch approach has 
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problems with tracking irregularities and locating sharp band sources due to its limited frequency 
resolution while the periodogram has problem with its large variance when it is used to estimate 
wide band sources. Thus, the pliability of wavelet packet based method to tune the variance and its 
frequency resolution by adjusting the decomposition level is advantageous especially if we 
consider the possibility to obtain multiple wavelet based estimates from different level of wavelet 
packet tree. 

MTSE proposed by Thomson in [18], is quite promising for suppressing the variance of the 
estimates in wide band cases and it also has extremely good frequency resolution in narrow band 
cases. However, the variance of the estimate for the wide band cases is still worse than wavelet 
based estimates. Moreover, the complexity issue introduced in MTSE should be considered.  

Of particular interest is the estimation of a swept tone source that varies with time. In this 
type of source, wavelet based estimates with various decomposition level has comparable variance, 
frequency resolution as well as side lobe level with periodogram. However, again, the periodogram 
has windowing techniques as additional weapons to suppress the side lobe level making it more 
favorable than wavelet based approach. It is also very interesting to note how the Welch based 
estimates gets worse when the size of one sub-sweep is reduced due to its too little segment size in 
order to do averaging process. This makes wavelet based estimates more competitive than Welch 
estimates when the window of opportunity available to collect sufficient samples for averaging is 
limited. Apart from Welch approach, MTSE also performs badly for sweep tone sources when the 
size of sub-sweep is still moderate (64 samples) and when wavelet based estimates still have fair 
performance. 

The wavelet packet based approach gives all wavelet coefficients at all decomposition 
levels. The presence of all of these coefficients allows the possibility to obtain multiple estimates 
from different level of the tree with different degree of variance and frequency resolution, in one 
snapshot and one operation. This feature can be exploited to construct an adaptable and re-
configurable spectrum estimation mechanism. Since the wavelet packet based approach always 
operates between the strengths and the weaknesses of the periodogram and Welch approaches in 
terms of variance and the frequency resolution as well as given that it is impractical to employ both 
periodogram (for narrowband sources) and Welch (for wideband sources) estimation apparatus in 
one receiver. And also that it is meaningless to switch between these two techniques during the run 
time as there would be no apriori knowledge on whether the incoming signal is narrow band or 
wide band signal. The possibility of using a single wavelet based spectrum estimator block to deal 
with both narrowband and wideband sources looks desirable and attractive. Clearly this kind of 
flexibility offered by wavelet based spectrum estimation technique is of enormous advantage in a 
dynamic and time variant environment. This is the first point that can be inferred from this chapter. 

We should not ignore, however, the possibility of Welch approach to tune the variance of 
the estimated PSD and the frequency resolution by employing different segment size and 
consequently, different number of segments. However, given the received samples, this 
theoretically requires different operation. On the other hand, in wavelet based approach, we may 
obtain multiple estimates from different level of wavelet packet tree in single run time (since 
wavelet packet coefficients at certain level are basically obtained from the wavelet coefficients at 
the previous level). Further research in complexity issues, however, still needs to be conducted and 
so far we cannot say that one technique is better than the other. 
 The wavelets used in this chapter were standard wavelets available in the Matlab toolbox. 
These wavelets were originally developed for applications such as image processing or encryption, 
and hence may not be suitable for spectrum estimation. Therefore, it is important to derive new and 
frequency selective wavelets that best suit the applicability of wavelet theory for spectrum 
estimation. This is the second point deduced from this chapter and we shall delve on this in the next 
chapter. 
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CHAPTER 4 OPTIMAL DESIGN OF WAVELET FOR WAVELET BASED 
SPECTRUM ESTIMATION 

 
The attributes of the wavelet packet based spectrum estimation greatly depend on the set of 

filter banks it uses. Choosing the right filter is a delicate task. The filters cannot be arbitrarily 
chosen and instead have to satisfy a number of constraints. These constrains are fundamental 
constrains for valid wavelet construction. They include orthogonality constraint, compact support, 
K-regularity and vanishing moments. With respect to spectrum estimation, additional constraints 
might be required. In the previous chapter, we found that commonly available wavelets are not 
frequency selective in nature. Therefore, the spectrum estimator based on these wavelets results in 
estimates with poor transition between the occupied band and unoccupied band. It would therefore 
be interesting to design new wavelets that best suit applicability for spectrum estimation. 

The wavelet tool is actually a double edged sword. On one hand there is an enormous 
opportunity and scope for customization and adaptation. On the other hand there are no clear 
guidelines to choose the best wavelet for a given application. In this chapter, we focus on the 
design and development of a wavelet family that is maximally frequency selective in nature. We 
start the discussion by investigation of relationship between the properties of wavelet 
decomposition filter and the performance of the estimation (section 4.1). In this section, we 
generate different types of sources and develop important metrics to justify the quality of 
estimation on those sources. We later try to figure out the relationship between these metrics and 
the properties of wavelet decomposition filter via the computation of correlation coefficient. Based 
on the inferences drawn from the studies, in section 4.2, we try to formulate our design as an 
optimization problem. This optimization problem basically contains objective function and some 
budgets. Apart from constraints that are related to desired frequency response of the decomposition 
filter, there are other constraints on wavelet bases that should be considered in order to guarantee 
the designed wavelet is valid. Turning out that the optimization problem is non-convex susceptible 
to instabilities and inaccuracies, we reformulate the non-convex optimization problem into linear 
optimization problem, which is definitely convex. This is discussed in section 4.3. Hence, in order 
to do so, the optimization problem that is originally defined in terms of filter coefficients as 
variable constraint is defined in term of autocorrelation sequence of the filter coefficients. Hence, 
the solution would be in term of autocorrelation sequence as well. We need a special technique 
called spectral factorization discussed in section 4.4 in order to obtain the solution in term of filter 
coefficients. Section 4.5 delves on a method to simplify the problem and make it computationally 
more palatable. The convex optimization problem is solved by using semi definite programming 
tool called Sedumi. The performance of wavelet based spectrum estimator based on our optimal 
wavelet solution is discussed in section 4.6. The performance of our optimal wavelet based 
spectrum estimator is compared with that of standard wavelet based estimator as well as with that 
of conventional techniques such as Periodogram, in the same section. Section 4.7 summarizes the 
chapter. 

4.1 Relationship between the properties of wavelet decomposition filter and the 
performance of the estimation 

In this section, the relationship between the properties of decomposition filter and the 
performance of the corresponding wavelet based estimates is investigated by running simulations 
that involve nine different types of sources occupying different band in the range of normalized 
frequency from 0 to π. Table 4.1 lists these nine types of sources. The wavelet packet 
decomposition level used in this investigation is 7. 

To measure the performance of the wavelet based estimates, we develop some important 
metrics, namely: 

• The average of power spectrum density (PSD) at the unoccupied band  
• The maximum side lobe 
• The PSD variance at the unoccupied band 
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• Frequency resolution of the estimate 
Those four indicators are common for all sources involved in the investigation. Meanwhile, there 
are additional indicators that are available for all sources except for single tone source, namely: 

• Width of the transition band 
• The variance of the PSD at the occupied (active) band 

The width of the transition band in the estimate basically illustrates the transition from the occupied 
band to the unoccupied band. Ideally, this width should be zero meaning there should be immediate 
decrease or discontinuity of the PSD curve in the border of occupied and unoccupied band.  
 

Table 4.1 Nine types of source that is used for the purpose of investigation on the correlation between the properties of 
wavelet decomposition filter and the performance indicator of the estimation 

Name Type of Source Normalized Active Frequency 
Type-A Partial Band Source [0.25π, 0.75π] 
Type-B Single Tone Source 0.5π 
Type-C Partial Band Source [0.375π, 0.625π] 
Type-D Partial Band Source [0.4375π, 0.5625π] 
Type-E Band Stop Source [0, 0.25π] and [0.75π, π] 
Type-F Band Stop Source [0, 0.375π] and [0.625π, π] 
Type-G Band Stop Source [0, 0.4375π] and [0.5625π, π] 
Type-H Multiple Partial Band Source [0, 0.2π], [0.4π, 0.61π] and [0.82π, π] 
Type-I Multiple Partial Band Source [0, 0.14π], [0.29π, 0.42π], [0.57π, 0.7π] and [0.86π, π] 

   
Based on these metrics, we try to investigate which properties of the wavelet decomposition 

filter that has strong correlation with those metrics. The properties of the frequency response of 
decomposition filters to be investigated are as follows: 

• The width of transition band  
• The variance of the pass-band  
• The variance of the stop-band  
• The average power at the rejection band (stop band) relative to the pass band  

It can be easily found that those four indicators are commonly used to judge the quality of the filter.  
 For each indicator of the wavelet decomposition filter and each indicator of the estimates, 
correlation coefficient is calculated in order to investigate the relationship between each pair of 
indicators. The formula for correlation coefficient of two random variables, X and Y can be 
represented as follows: 

][][

],[
,

YVarXVar

YXCov
YX =ρ     (4.1) 

In (4.1), ],[ YXCov  denotes the covariance between random variables X and Y while ][ XVar  
represents the variance of X. The correlation coefficient between each pair of indicators mentioned 
above is computed by collecting data from several orthogonal wavelet families namely Daubechies 
(db1 to db 20), Symlet (sym1 to sym20), Coiflet (coif1 to coif 5) and Discrete Meyer. For each 
wavelet, all indicators with respect to the decomposition filter and the estimates are collected. The 
correlation coefficient for each pair of indicators is calculated 100 times for each source. Later, the 
average and the standard deviation of the correlation coefficients, E[ρ] and σρ respectively, are 
calculated. The results are all tabulated in Appendix A.1 (tables A.1.1 to A.1.9) which illustrate the 
average and standard deviation of 100 correlation coefficients computed for each pair of indicators 
in each source. For the case of single tone source, the correlation coefficients obtained from Haar 
(Daubechies-1) and Symlet-1 wavelets are excluded because the performance of the wavelet based 
estimates for single tone source using those two wavelets are exceptional and thus, they can be 
considered as outliers in the statistic world. The criteria that we use to describe the correlation 
between the two indicators are indicated in table 4.2. 

Based on the analysis conducted (which are tabulated in A.1.1 to A.1.9), it can be inferred 
that: 
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• All four indicators chosen from the frequency response of the wavelet decomposition 
filters have strong influence on two indicators found in the estimates, namely average of 
PSD at the unoccupied band and maximum side lobes.  

• In general, moderate correlation is also found between the four filter’s indicators and the 
width of the transition band and PSD variance at the unoccupied band.  

• The frequency resolution seems do not have correlation with the four filter’s indicators. 
However, the frequency resolution of the estimation can be enhanced by increasing the 
decomposition level. Moreover, from the results found from the previous chapter, it can be 
learnt that the orthogonality of the wavelets used in the spectrum estimation approach 
seems to play important role on the frequency resolution of the estimate for the case of 
single tone sources.  

• Unclear correlation is also found between the four filter’s indicators and the PSD variance 
of the occupied band even though a quite significant relation is found between width of the 
transition band and PSD variance in the occupied band. 

 
Table 4.2 Criteria used to describe the correlation between the properties of wavelet decomposition filter and the 

performance indicator of the estimation. In this table, E[ρ] and σρ represents the mean and the standard deviation of 
correlation coefficients between the two indicators, respectively 

Criterion Inference 
E[ρ]  > 0.8 Strongly correlated 
(0.8 > E[ρ]   > 0.5) and (σρ < 0.1) Correlated 
(0.8 > E[ρ]   > 0.5) and (σρ > 0.1) Correlated (with some note that the variance of the 

correlation is significant) 
(0.5 > E[ρ]   > 0.3) and (σρ < 0.1) Weakly correlated 
(0.3 > E[ρ]   > 0) and (σρ < 0.1) Uncorrelated 
(0.5 > E[ρ]   > 0) and (σρ > 0.1) Not clear 

 
In conclusion, the four indicators of the frequency response of the wavelet decomposition 

filters, namely the width of transition band, the variance of the pass-band, the variance of the stop-
band, and the average power at the rejection band (stop band) can be used as guides in the design of 
the wavelet for spectrum estimation. Orthogonality is another important factor in this wavelet 
design. 

 

 
Figure 4.1 Plot of magnitude response |H(ω)|2 of the designed optimal filter [32] 



Chapter 4 Optimal Design of Wavelet for Wavelet Based Spectrum Estimation 

 83 

4.2 Stating Wavelet Design as an Optimization Problem 
With respect to the design of wavelet for wavelet packet based spectrum estimation, the 

actual design problem is to design the wavelet filters that are used to compose the wavelet packet 
tree structure shown in figure 3.4, which is used as the basis of the spectrum estimator. The 
fundamental idea is about finding the filter coefficients of the low pass decomposition filter. Once 
the filter coefficient of the half band low pass filter is obtained, the filter coefficients of high pass 
decomposition filter can later be acquired through the use of Quadrature Mirror Relationship 
between the half band low pass and high pass decomposition filters. We would later immediately 
find that the design of low pass filter can be expressed as optimization problem based on two sets 
of constraints namely the wavelet constraints and desired design constraints. The optimization 
problem can later be expressed as convex optimization problem allowing the use of convex 
optimization tools to obtain the solutions. 

From common knowledge of the filter design, it is generally not possible to minimize the 
width of the transition band, the variance of the pass and stop band as well as the mean of the stop 
band simultaneously. As a result, we try to adopt Parks and McClellan equi-ripple design of FIR 
filter [31] as our basis. Figure 4.1 illustrates the magnitude response of the low pass filter being 
optimized. In the figure, ωp and ωs, denote normalized pass and stop band frequencies, respectively, 
[0, ω p] is called the pass-band, [ωs,π] is called the stop-band and [ωp, ωs] is the transition band B. ∆ 
is the maximum value of the tolerance or ripple, In general, Parks and McClellan equi-ripple design 
tries to minimize the ripple ∆ in figure 4.1 given the transition band B = ωs-ωp by using the so-
called Remez Exchange algorithm [31]. 

 However, in addition to Parks and McClellan proposal, we should also incorporate 
additional wavelet constraints into our design. As it is clear from [23], those additional contraints 
are regularity condition, double shift orthogonality, and the fact that the wavelet should be 
compactly supported allowing decomposition filter to have finite impulse response. These three 
constraints are mandatory for the design of valid wavelets. These constraints are presented in sub 
section 4.2.1-4.2.3 in term of low pass filter coefficient as the variable constraint.  

4.2.1 Compact support or admissibility constraint 
This constraint is necessary to ensure that the wavelet has finite non-zero coefficient and 

thus the impulse response of the wavelet decomposition filter is finite as well. According to [24], 
this property can be derived by simply integrating both sides of the two-scale equation in (2.46) as 
follows 

[ ]( ) (2 ) 2  
n

t dt h n t n dtϕ ϕ
∞ ∞

−∞ −∞

= −∑∫ ∫  

[ ]( ) 2 (2 )  
n

t dt h n t n dtϕ ϕ
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−∞ −∞
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[ ]( ) 2 0.5 (2 ) (2 ) 
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∞ ∞

−∞ −∞

= − −∑∫ ∫      (4.2a) 

By assuming u = 2t-n, equation (4.2a) can be further processed as follows: 
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∫
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∫

 

Finally we obtain the compactly supported wavelet constraint as: 
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[ ] 2  
n

h n =∑        (4.2b) 

It should be noted that the derivation that is given above is only possible if the scaling function is 
absolutely integrable and the integration of the scaling function is non-zero. Due to this fact, (4.2b) 
is also recognized as the wavelet existence constraint.  

4.2.2 Paraunitary or double shift orthogonality constraint 
The paraunitary or the orthogonality condition, which is one of the pivotal wavelet 

properties, actually emerges from the concept of multi-resolution concept defining the so-called 
two scale equation [23]. This constraint becomes a reason why it is possible to generate 
orthonormal wavelets and why it is possible to ensure perfect reconstruction of the decomposed 
signals.  

This constraint is derived from the orthonormality between scaling function and its shifted 
version as follows: 

( ) ( ) ( )t t k dt kϕ ϕ δ
∞

−∞

− =∫        (4.3a) 

Taking into account two-scale equation (2.46) in (4.3a) we can obtain: 
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[ ] [ ]2 ( ) for 0,1,.....( / 2) 1
n

h n h n k k k Lδ− = = −∑          (4.3b) 

Equation (4.3b) is called double shift orthogonality relation of the wavelet low pass filters impulse 
responses. In (4.3b), L illustrates the length of the low pass wavelet filter impulse response.  

4.2.3 K-Regularity constraint 
K-regularity is also an important measure for it determines the smoothness of the wavelets. 

It is defined in terms of the regularity index K which gives the number of times the wavelet is 
continuously differentiable [4]. Regularity index (K) also gives the number of zeros that the filter 
has at normalized frequency ω =π. Therefore, the frequency response of the low pass filter should 
have the following structure [23]: 

1
( ) ( )

2

Kje
H Q

ω
ω ω

− +=   
 

 with ( ) 0Q π ≠                   (4.4a) 

In (4.4a), Q(ω) is a factor of H(ω) that does not have any single zero at ω=π. Having K number of 
zeros at ω=π also mean that ( )H ω is K-times differentiable and its derivatives are zero when they 

are evaluated at ω=π. By considering that: 

  [ ]( ) exp( )
n

H h n j nω ω= −∑         

The k-th order derivative of H(ω) would be: 

[ ]( ) ( ) ( ) exp( )k k

n

H h n jn j nω ω= − −∑      (4.4b) 

The evaluation on (4.4b) at ω=π would result in: 

[ ]( ) ( ) ( ) exp( )k k

n

H h n jn j nπ π= − −∑  
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[ ]0 ( ) ( ) (e )k k j n

n

h n j n π−= −∑  

[ ]0 ( ) ( 1)k n

n

h n n= −∑        

Therefore, we can formulate our K-regularity constraint in term of low pass filter coefficients as:  

[ ]( ) ( 1) 0k n

n

h n n − =∑  for k = 0,1,2,…. K-1    (4.5) 

4.2.4 Optimization Problem 
The design goal is to generate filters with the desired transition band B=ωs-ωp illustrated in 

figure 4.1 and minimum error ∆ even while satisfying the wavelet constraints. For a given the 
transition band B, the optimization problem can be formally stated as:  

MINIMIZE ∆∆∆∆  
under the constraints of: 

[ ] 2  
n

h n =∑                       (4.2b) 

[ ] [ ]2 ( ) for 0,1,.....( / 2) 1
n

h n h n k k k Lδ− = = −∑            (4.3b)   

[ ]( ) ( 1) 0 for 0,1,2,..... 1k n

n

h n n k K− = = −∑      (4.5) 

2
0 ( )  for ,sH ω ω ω π≤ ≤ ∆ ∈                      (4.6) 

with fixed value of L and K. 
From the optimization problem listed above, we can say that the design procedure actually 

comprises of defining a low pass FIR filter, satisfying the regularity, paraunitary, compact support 
and frequency selectivity conditions, expressed in the form of an impulse response h[n] or a 
transfer function H(z). In this case, regularity, paraunitary and compact supports are mandatory for 
the design of valid wavelets. Meanwhile, frequency selectivity represented by stop band constraint 
in (4.6) is an additional condition to the three mandatory ones. This actually shows the flexibility 
and adaptation properties of wavelet based approach. For our wavelet packet based spectrum 
estimation, stop band constraint represents the engineering requirement for frequency selectivity. 
Based on the specifications, other constraints may be incorporated. 

We can also see that, for a filter of length L, the design problem is essentially solving L 
unknown filter coefficients from L linear equations. Of these L linear equations, L/2 equations 
come from the paraunitary and admissibility constraints, K equations come from the regularity or 
flatness constraint and the remaining L/2 – K conditions offer the room for maneuverability to 
establish the desired wavelet property such as frequency selectivity in our case. The larger the 
value of L/2-K is, the greater the degree of freedom for frequency selectivity and the greater the 
loss in regularity. There is therefore a trade-off between frequency selectivity and regularity. 
Wavelets such as the Daubechies family are maximally flat with regularity order K=L/2 and hence 
they are not frequency selective 

It should be noted that we define the stop band constraint only within the range of ω ∈ 
[ωs,π] due to the built in anti-symmetry of (|H(ω)|2-1) about ω = π/2 in figure 4.1 [32]. The stop 
band constraint can be further expanded by performing some manipulation on |H(ω)|2 term as 
follows: 
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Hence, the stop band constraint can be written as: 
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∈   

                 (4.8) 

From (4.3b) and (4.8), it is obvious that both double shift orthogonality and stop band 
constraints are non linear and non convex. Therefore, the whole optimization problem becomes 
non-linear as well as non-convex. It is possible to solve this non convex optimization problem but 
there is susceptibility that the solution found is only locally optimal instead of globally optimal [33].  
In the other words, trying to solve non-convex optimization problem may not yield the optimal 
solution. Furthermore, they may warrant the usage of sophisticated solvers that can blow up the 
complexity. 

4.3 Transformation of non-convex problem into linear optimization problem 
Fortunately, it is possible to transform our non-convex optimization problem into linear 

optimization problem by transforming the variable constraint h[n] in the four constraints into new 
variable constraints, namely autocorrelation sequence rh[l], which is defined as:  

[ ] [ ] [ ]h
m z

r k h m h m k
∈

= +∑                   (4.9) 

By taking into account inherent symmetry property of the autocorrelation sequence at k=0, namely: 
rh[l]=  rh[-l], the four constraints in (4.2b),(4.3b),(4.5) and (4.6) can be rewritten. 

4.3.1 Compact support or admissibility constraint 

It is possible to represents the compact support constraint in (4.2b) in terms of 
autocorrelation sequence rh[ l] by first defining the autocorrelation sequence in a more precise way: 

1
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In (4.10), L is the length of the FIR filter to be designed. It should be noted that due to symmetry 
property at l= 0, we have: 

 rh[-l] = rh[l]   for    l < 0                  (4.11) 
The compact support constraint in (4.2b) can then be modified through the following way: 
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By taking m = n + l, we have:   
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Then, by reverse the order of the summation operation and by taking the fact that the impulse 
response of filter h[n] only has non-zero value at 0 ≤ n ≤ L-1, we obtain:  
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The compact support constraint in (4.2b) can then be formulated as: 
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Due to the double shift orthonormality constraints presented by (4.3b) and the fact that the 
symmetry property holds for autocorrelation sequence, (4.12b) can further presented as: 
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Equation (4.13) becomes the compactly supported wavelet constraint in term of autocorrelation 
sequence rh[l]. 

4.3.2 Double shift orthogonality constraint 

The double shift orthogonality constraint presented in (4.3b), can be reformulated in terms 
of autocorrelation sequence rh[ l] through the following way: 

[ ] [ ]2 [2 ] ( )h
m

h m h m k r k kδ+ = =∑                  (4.14) 

It should be noted that (4.14) is obtained by applying n – 2k = m on (4.3b). Hence the final double 
shift orthogonality constraint in term of autocorrelation sequence rh[l] is: 
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Again we make use of the symmetry property to limit the number of constraints. In contrast to 
(4.3b) which was non-convex, (4.15) consists of linear equalities and is also convex. 

4.3.3 K-Regularity constrain 

The regularity constraint can be reformulated in terms of autocorrelation sequence rh[l] by 
taking the square of the absolute value of equation (4.4a) as follows: 
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    (4.16) 

By comparing (4.4a) to (4.16), we can find that requiring the transfer function H(ω) to have K 
zeros at Nyquist frequency (ω = π) is equivalent to requiring |H(ω)|2 to have 2K zeros at ω = π. By 
considering the fact that |H(ω)|2 is the Fourier transform of autocorrelation sequence of rh[l],  we 
can represent the 2k-th order derivative of | H(ω) |2 as follows: 
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The evaluation on (4.17) at ω=π would result in: 
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By considering the fact that the value of l for the case of FIR filter having length of L is –(L-1) ≤ l 
≤ (L-1), (4.18) can be represented as: 
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In (4.19), K represents the regularity index of the wavelet that is required to be fulfilled. Making 
use of symmetry property of the autocorrelation sequence rh[ l] and the fact that the term with l=0 
has zero value, (4.19) can be further simplified as: 
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Equation (4.20) imposes the regularity constraint in term of autocorrelation sequence rh[l]. 
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4.3.4 Stop band constraint 

The stop band constraint presented in (4.8) can be represented in terms of autocorrelation 
sequence by defining n=m+k. Hence, (4.7) can be represented as: 

[ ]2 ( )( ) [ ] [ ] j k j k
h

m k k
H h m h m k e r k eω ωω − −= + =∑ ∑ ∑   (4.21) 

Therefore, the stop band constraint in (4.8) can be written as: 
[ ]0   for all ,πj k

h s
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r k e ω ω ω−≤ ≤ ∆ ∈  ∑       (4.22) 

The autocorrelation sequence rh[k] is symmetric at k=0, (i.e, rh[l] = rh[-l]) [34]. Hence, (4.21) can 
be modified as: 
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Consequently, the stop band constraint in (4.22) is written as: 
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4.4 Spectral factorization and discretization on stop band constraint 
The reformulated optimization problem consists of the objective function and constraints 

expressed in terms of autocorrelation sequence rh[l] and therefore the optimal solution will also be 
in the autocorrelation domain. Since our interest is the filter coefficients h[n], we need to be able to 
obtain h[n] from rh[l]. In general, there are infinite sequences of filter coefficients that can be 
obtained from given rh[ l]. However, by using spectral factorization algorithm proposed in [35], it is 
possible to obtain unique sequence of filter coefficients having minimum-phase property [36]. The 
spectral factorization of an autocorrelation sequence rh[l] can be performed as long as the 
logarithmic function of its Fourier transform Rh(ω), which is nothing but |H(ω)|2, remains in ℜ. To 
ensure this an additional constraint is enforced: 
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Based on (4.23), time domain representation of (4.25) can be written as: 
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Since we have infinite number of inequalities in the constraints defined in (4.26), a discretization 
process needs to be performed in the interval ω ∈ [0,π]. This is necessary in order to make the 
optimization problem practically solvable using available optimization programs. One way to do 
discretization proposed in [36] is by replacing continuous variable ω with a discrete variable ωi = 
iπ/d, which is defined on a finite set i = [0,…,d]. A typical value of d according to [36] is 15n. As a 
result, the constraint required for successful spectral factorization after applying the discretization 
process can be represented as: 
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for i = 0, 1, …, d      (4.27) 
For clarity, we refer (4.27) as spectral factorization constraint.  

Similar to the spectral factorization constraints, the number of stop band constraints 
defined in (4.24) is also infinite. Hence, discretization process is needed on stop band constraints in 
order to make the optimization problem becomes practically solvable. After implementing 
discretization, the stop band constraints in (4.24) can be rewritten as:  
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If we compare (4.27) with (4.28) and take into account the fact that we exploit the built in 
anti-symmetry of (|H(ω)|2-1) about ω = π/2 in figure 4.1 [32], it can be easily found that spectral 
factorization constraint (4.27) will be automatically satisfied if the stop band constraint (4.28) is 
satisfied. In other word, the stop band constraint (4.28) is more stringent than the spectral 
factorization constraint (4.27). 

In summary, our optimization problem in term of autocorrelation sequence rh[ l] can be 
defined as: 

MINIMIZE ∆∆∆∆  
under the constraints of: 
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This optimization problem is clearly linear and convex. 

4.5 Reformulating the optimization problem in Q(ωωωω) function domain 
As it can be noticed from section 4.4, the optimization problem is entirely linear. Hence, 

any linear programming technique can theoretically be used to solve this optimization problem. 
Since, in general, linear optimization problem is a subset of convex optimization problem, any 
tools or algorithm that commonly used to solve convex optimization problem should be capable to 
solve this optimization problem as well. However, a numerical problem may arise when the 
optimization problem formulated in section 4.4 to be practically solved by using the available 
convex or linear optimization program. This numerical problem is caused by the fact that matrix of 
the linear system composed by regularity constraint in (4.20) becomes ill-conditioned when the 
value of L and K increases [32][34]. In order to alleviate this problem, the optimization problem 
should be further reformulated in term of autocorrelation sequence rq[l]. In the other word, the 
analysis of the optimization problem is shifted from the domain of H(ω) into the domain of Q(ω) 
based on (4.4a). In order to simplify the reformulation process, (4.16) is represented as: 

2 21 1
( ) ( )

2 2

K Kj je e
H Q

ω ω
ω ω

−   + +=       
   

 

( )( )2 2
1 1

( ) ( )
4

K
j je e

H Q

ω ω

ω ω
− + +

 =
  
 

 

( )2 21 cos( )
( ) ( )

2

K

H Q
ω

ω ω
 +

=   
 

     (4.29) 

Hence, the time domain representation of (4.29) can be denoted as [34]: 
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As for [ ]hr l , symmetry property also holds for autocorrelation sequence [ ]qr l . The constraints now 

can be redefined in term of autocorrelation sequence [ ]qr l . 

1) Compactly Supported Wavelet constraint: The reformulation of compactly supported 
wavelet constraint in term of autocorrelation sequence rq[l] is obtained by combining (4.2b) and 
(4.29) as well as setting ω = 0. It can be noticed that: 
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By substituting (4.29) into (4.31a) we obtain: 
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Hence, we finally come up with the compactly supported wavelet constraint in term of 
autocorrelation sequence rq[ l] as follows: 
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2) Double Shift Orthogonality constraint: Based on (4.15) and (4.30), the double shift 
orthogonality constraint in term of autocorrelation sequence rq[l] can be represented as:  
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  (4.32) 

Equation (4.32) defines double shift orthogonality constraints in term of autocorrelation sequence 
rq[l]. 

3) Spectral Factorization constraint: The easiest way to reformulate the spectral 
factorization constraint in term of autocorrelation sequence rq[l] is by combining (4.25) and (4.29) 
as follows: 

[ ]2
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     (4.33) 

Since the term ( )1 cos ω+ in (4.33) is always positive, the constraint in (4.33) can be simplified as: 

[ ]2
( ) 0         for 0,Q ω ω π≥ ∈       (4.34) 

By taking into account discretization in the interval [ ]0,ω π∈ as already mentioned in section 4.4, 

the spectral factorization constraint in term of autocorrelation sequence rq[ l] can be defined as: 
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It is clear from (4.4) that since Q(ω) has K zeros less than H(ω), the length of the filter q[n] would 
be Lq = L – K. 

4) Stop band constraint: Similar to the case of spectral factorization constraints, the stop 
band constraints in term of autocorrelation sequence rq[l] is obtained by combining (4.7), (4.8) and 
(4.29) as follows:  

2
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2

K

sQ
ω

ω ω ω π
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≤ ≤ ∆ ∈     
 

  

By taking into account discretization in the interval ,sω ω π∈  as already mentioned in section 4.4, 

the stop band constraint in term of autocorrelation sequence rq[l] can be defined as: 
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and Lq = L – K.           (4.36) 

It is clear from equation (4.29) that when the optimization problem is expressed in term of 

autocorrelation sequence rq[l], the necessity for 2
( )H ω  to have 2K zeros at ω = π has been 

imposed implicitly. Therefore, the regularity constraints are not explicitly expressed when the 
optimization problem is conducted in ( )Q ω domain.  

Similar to the case of H(ω) domain in section 4.4, we find that the spectral factorization 
constraint in (4.33) and (4.35) will be automatically satisfied if the stop band constraint (4.36) is 
satisfied by considering the fact that we take into account the built in anti-symmetry of (|H(ω)|2-1) 
about ω = π/2 in figure 4.1 [32]. In other word, the stop band constraint (4.36) is more stringent 
than the spectral factorization constraint (4.35). 

 
In summary, our optimization problem in term of autocorrelation sequence rq[ l] can be 

defined as: 
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 and Lq = L – K.    (4.36) 

Once we find the optimal autocorrelation sequence rq[l], the spectral factorization is employed in 
order to derive the optimal sequence q[l] from rq[l]. Finally, the optimal wavelet low pass filter 
coefficients can be computed using the time domain equivalent of (4.4a) [34]: 

[ ]
0

[ ] 2
K

K

k

K
h l q l k

k
−

=

 
= − 

 
∑     (4.37) 
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4.6 Results and Analysis 

4.6.1 Solving the Convex Optimization Problem  
Since the optimization problem illustrated in section 4.5 is linear optimization problem and 

thus it is also convex optimization problem, any linear programming tools as well as convex 
optimization solver can be used to solve this problem. In this case, we choose SeDuMi [37] as 
generic Semi Definite Programming (SDP) solvers to solve the convex optimization problem listed 
in section 4.5. In addition to SeDuMi, we also incorporate Yalmip toolbox [38] in order to allow 
the optimization problems to be expressed in higher level language. We have used Yalmip to 
describe our optimization problem and SeDuMi solver to obtain the optimal solution for given 
parameters. At the end of the filter design process, the coefficients of the analysis low pass filter 
will be generated. From the analysis low pass filter (LPF) h[n], the high pass filter (HPF) g[n] can 
be obtained through the Quadrature Mirror Filter Banks (QMF) equations illustrated by (2.53). And 
from these set of filters, the wavelet packet based spectrum estimator structure can be realized. 
Figure 4.2 illustrates the flow chart describing the design process. From this figure, it is clear that 
the design process can be divided into two main parts namely analytical part and numerical part. In 
analytical part, we try to modify our non-convex problem into convex problem followed by the 
conversion of the expression from autocorrelation rh[l] domain into autocorrelation rq[l] domain. 
The numerical part basically tries to solve the convex problem in term of variable constraints rq[l]. 
After that, another analytical process is performed in order to derive optimum low pass filter 
coefficients h[n] from sequences q[n], which is obtained by applying spectral factorization on rq[l].  
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Figure 4.2 Flow chart of the optimum wavelet design process for wavelet packet based spectrum estimation 

 
We use the spectral factorization algorithm that is proposed by Stephen Boyd from 

Stanford University [35]. From given autocorrelation sequence, this spectral factorization algorithm 
tries to derive filter coefficients with length L having minimum phase property. We decide to use 
this spectral factorization algorithm since a filter having minimum phase property is definitely 
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stable. We would like to emphasize that as long as the spectral factorization constraint (4.33) is 
satisfied, it is guaranteed that we can obtain at least one solution of filter coefficients q[n] [35].  
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Figure 4.3 Frequency response of Daubechies-15, Coiflet-5 and the designed wavelet low pass (LPF) and high pass (HPF) 

filter with L=30, K=7, B=0.2π 

4.6.2 Comparison between the designed wavelet and standard wavelet family 

A. Frequency and Impulse Response of Designed Filter 
In this part, we tries to present illustration about the frequency response of our optimally 

designed wavelet low pass and high pass filter. We consider examples with filter lengths L=30 and 
L=40. Indeed it is possible to consider filters with other lengths too. In the first example shown in 
figure 4.3, the frequency response of the designed wavelet filters is compared with Daubechies and 
Coiflet wavelet filters. All of these wavelet filters have filter length of 30. In this figure, K-
regularity index of 7 and transition band (B) of 0.2π is applied on the designed wavelet filters. 
From figure 4.3, it can be found that our proposed wavelet filters have better frequency selectivity 
than its Daubechies and Coiflet counterparts. A small price however is paid in terms of the small 
ripples introduced in the side lobe. However, the frequency response of our proposed wavelet filter 
is generally still more preferable. Figure 4.4 presents similar comparison for L=40. In this figure, 
only the frequency response of our optimal wavelet and Daubechies-20 filters are displayed.  

Figure 4.5 and 4.6 describes the impulse response of the high and low pass filters of the 
optimally designed wavelets for L=30 K=7 B=0.2π and L=40 K=8 B=0.2π, respectively. The 
coefficients of the designed wavelet filter for L=30 K=7 B=0.2π and L=40 K=8 B=0.2π are 
presented in appendix A.2 (tables A.2.1 and A.2.2, respectively). 
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Figure 4.4 Frequency response of Daubechies-20 and the designed wavelet low pass (LPF) and high pass (HPF) filter 

with L=40, K=8, B=0.2π 
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Figure 4.5 Impulse response of the designed optimal wavelet filter with length =30, K-regularity = 7, overall transition 

band = 0.2π. 
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Figure 4.6 Impulse response of the designed optimal wavelet filter with length = 40, K-regularity = 8, overall transition 

band = 0.2π. 
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Figure 4.7 Estimates of Partial Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed 

optimal wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition 
level used here is 7. The number of samples in this experiment is 12800 
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B. Evaluation of Spectrum Estimator performance 
Next, we try to examine the performance of spectrum estimation based on our designed 

wavelet. For this purpose, three types of sources are considered. Two of them have been already 
introduced in chapter 3, namely partial band source and single tone source. A partial band source is 
constructed to occupy the normalized frequency band of 0.25π-0.75π.  The single tone source has 
all of its energy at one frequency and it sits right in the middle of the range spanned by the wavelet 
based spectrum estimation, namely at 0.5π. The third source is the new source introduced here as 
multi-band source. In this kind of source, three active bands are constructed to occupy the 
normalized frequency bands of 0.08π-0.19π, 0.47π-0.58π, and 0.86π-0.97π, respectively. 
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Figure 4.8 Estimates of Single Tone Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 12800 

B.1 Partial Band source 
Figure 4.7 illustrates how spectrum estimation with the newly designed wavelet compares 

with estimates based on standard wavelet family for partial band case. Here, the number of samples 
is set to 12800. The specifications for the optimal wavelet are L (length) = 30, K (regularity index) 
= 7 and B (transition bandwidth) = 0.2π. It is clear from the figure that the optimal wavelet 
outperforms Daubechies, Coiflet and Symlet wavelets of the same length. The improvements are 
with regard to frequency selectivity and the sharp transition between occupied band and 
unoccupied band. This is logical since our wavelet filter is specifically designed to have optimum 
frequency selectivity.  

B.2 Single Tone source 
On the other hand figure 4.8 illustrates that, in single tone source, no significant difference 

is found between the performance of the estimator based on our designed wavelet and that based on 
standard wavelets. For extremely narrow band source like single tone source, the frequency 
resolution issue is more related to decomposition level rather than the frequency selectivity of the 
response of decomposition filter. This is why there is no perceivable difference between the results 
when different wavelets are used. 
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B.3 Multiple-Bands source 
The newly developed wavelets perform better than existing standard wavelets of 

comparable lengths in estimating multiple narrower band source shown in figure 4.9. Due to better 
frequency selectivity in decomposition filter, our designed wavelet offers greater side lobe 
suppression compared to standard wavelet families. This side lobe appears due to spectrum carving 
effect produced by iterative decomposition process when the frequency response of decomposition 
filter is not frequency selective enough. Since the spectrum carving issue is extremely important in 
our wavelet based spectrum estimation proposal, chapter 6 would discuss this issue. Other 
noticeable advantages of designed wavelet compared to standard wavelet families are in terms of 
frequency selectivity of the estimates and sharper transition between occupied and unoccupied 
bands. 
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Figure 4.9 Estimates of Multiple Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 12800 

B.4 Estimation for small number of samples 
The next investigation is to find out how the wavelet based spectrum estimator performs 

for much smaller number of samples. The goal of this investigation is to examine our proposed 
estimators in dynamic spectrum environment where the speed of estimation is an issue and thus the 
number of samples might be limited.  For this purpose, we consider the three types of source 
mentioned before for 1152 samples and 384 samples. These are depicted in figures 4.10-4.12 for 
the case of 1152 samples and in figures 4.13-4.15 in the case of 384 samples. In general, it can be 
found that the reduction of samples space has resulted in poorer side lobe level and higher variance 
of estimated power spectral density (PSD) both in the occupied and non unoccupied band. 
However, it is also found from those six figures that the spectrum estimation based on our designed 
wavelet performs better than that based on standard wavelets in term of transition from occupied to 
unoccupied band (see figures 4.10 and 4.13) and side lobe level (see figures 4.12 and 4.15). The 
key reason for the optimal designed wavelet based approach to have lower side lobe level in the 
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estimation of the multi band source is better resistance to the spectrum carving effect (to be 
discussed in chapter 6).  
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Figure 4.10 Estimates of Partial Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 1152 
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Figure 4.11 Estimates of Single Tone Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 1152 
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Figure 4.12 Estimates of Multiple Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 1152 
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Figure 4.13 Estimates of Partial Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 384 
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Figure 4.14 Estimates of Single Tone Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 384 
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Figure 4.15 Estimates of Multiple Band Source based on Coiflet-5, Daubechies-15, Symlet-15 and the designed optimal 

wavelet filter with length=30, K-regularity = 7, overall transition band = 0.2π. The wavelet decomposition level used here 
is 7. The number of samples in this experiment is 384 
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Apart from higher variance produced by all wavelet based estimator, the results for single 
tone source shown in figures 4.11 and 4.14 tell the same story as in the case of 12800 samples. No 
significant difference is found between the performance of spectrum estimation based on designed 
wavelet and that based on standard wavelet. This, once again, underlines the lack of impact of the 
frequency selectivity of decomposition filters on the estimation of extremely narrow band source. 
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Figure 4.16 Detection and false alarm probability of spectrum estimation based on various wavelet families. In this 

scenario, the length of wavelet decomposition filter is 30, the wavelet decomposition level is 7 and the sample space is of 
size 12800. The K-Regularity of the designed wavelets with SDP is 7 with a normalized transition band of 0.2π. 

C. Evaluation of Receiver Operating Characteristic 
To better gauge the system performance of the spectrum estimator based on optimally 

designed wavelet in comparison with standard wavelet, the receiver operating characteristic (ROC) 
is used as the second figure of merit. To obtain the probability of detection (Pd) and false alarm 
(Pfa), we divide the normalized frequency range [0,π] into 128 equal bands (or frequency bins). 
Each bin is occupied by 1 source meaning that we have overall 128 sources. These 128 sources are 
randomly activated / deactivated and the Pd and Pfa are calculated for each given threshold out of 
total 100 experiments. The way the source activation and deactivation is conducted is similar to the 
activation and deactivation of sub carriers in OFDM transmission. The threshold is varied manually 
from -3dB to -15dB. The number of samples here is 12800. An active source would have around -
2.1 dB power. Figure 4.16 depicts the Pd and Pfa as a function of threshold level which clearly 
underlines the superiority of the newly designed wavelet in relation to other wavelet families of the 
same filter length. The frequency selectivity inherent in the proposed wavelet has allowed spectrum 
estimator built on it to have much better Pd and Pfa for all thresholds in comparison to Daubechies, 
Symlet and Coiflet based estimators. Similar result is also found when the size of sample space is 
reduced to 384 as shown in figure 4.17. Here the spectrum estimator based on newly designed 
wavelet moderately outperforms that based on standard wavelets. Finally, the receiver operating 
characteristic (ROC) shown in figure 4.18 gives more justification on the superiority of the 
estimator based on the designed wavelet. 
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Figure 4.17 Detection and false alarm probability of spectrum estimation based on various wavelet families. In this 

scenario, the length of wavelet decomposition filter is 30, the wavelet decomposition level is 7 and the sample space is of 
size 384. The K-Regularity of the designed wavelets with SDP is 7 with a normalized transition band of 0.2π. 
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Figure 4.18 Receiver operating characteristic of spectrum estimation based on various wavelet families. In this scenario, 
the length of wavelet decomposition filter is 30, the wavelet decomposition level is 7 and the sample space is of size 384. 

The K-Regularity of the designed wavelets with SDP is 7 with a normalized transition band of 0.2π. 
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Figure 4.19 Detection and false alarm probability of spectrum estimation based on newly designed wavelet with 

variations on filter lengths. In this scenario, the wavelet decomposition level is 7 and the sample space is of size 12800. 
The K-Regularity of the designed wavelets with Semi Definite Programming (SDP) is 7 with a transition band of 0.2π. 
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Figure 4.20 Detection and false alarm probability of spectrum estimation based on newly designed wavelet with 

variations on filter lengths. In this scenario, the wavelet decomposition level is 7 and the sample space is of size 384. The 
K-Regularity of the designed wavelets with Semi Definite Programming (SDP) is 7 with a transition band of 0.2π. 
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The key point that makes it possible is to play with K-Regularity. In Daubechies and 
Symlet wavelet families, all of L equations provided by L impulse response in filter with length of 
L has been exploited to provide double shift orthogonality (requiring L/2 equations) and L/2 
regularity index (also requiring L/2 equations). Hence, there is no degree of freedom that remains 
in order to be exploited for providing frequency selectivity feature. On the other hand, it is possible 
to have regularity index of K < L/2 in our designed wavelet and this has provide L/2-K equations as 
degree of freedom which is basically used by the optimization tool to minimize the ripple in pass 
band and stop band given certain transition band as it is shown in figure 4.1. 
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Figure 4.21 Receiver operating characteristic of spectrum estimation based on newly designed wavelet with variations on 
filter lengths. In this scenario, the wavelet decomposition level is 7 and the sample space is of size 384. The K-Regularity 

of the designed wavelets with Semi Definite Programming (SDP) is 7 with a transition band of 0.2π. 

4.6.3 Other Evaluation and Studies 
 In addition to the results presented in the previous section, the impact of some parameters 
on receiver operating characteristic is studied based on the same experiment setup employed in part 
C of sub-section 4.6.2. In figure 4.19, the results shows that for a given regularity order, the longer 
the decomposition filters, the better the Pd and Pfa of the estimates. This is reasonable since we 
have more degree of freedom to minimize the pass band and stop band ripple. Likewise, for a given 
filter length, lower K regularity index results in greater degree of freedom available to minimize the 
pass/stop band ripple yielding better performance results. Figure 4.20 generally shows that the 
impact of different decomposition filter length on the Pd and Pfa of the estimates is less significant 
for much smaller number of samples. However, it is still clearly illustrated that longer 
decomposition results in better performance. This fact is also justified by receiver operating 
characteristic (ROC) shown in figure 4.21.  

Figure 4.22 describes the influence of transition band variation on the detection and false 
alarm probability. The result basically exemplifies the importance of frequency selectivity on the 
quality of the estimates. Here, narrower transition band produces lower false alarm and higher 
detection probability which is valid since narrower transition band means better frequency 
selectivity and the use of wavelet filter with better frequency selectivity would theoretically leads 
to spectrum estimator with better performance. Figure 4.23 shows the same phenomenon for 
smaller number of samples (384 samples). The impact of varying transition band on the Pd and Pfa 
of the estimates is less significant here. However, it is still obvious that narrow transition band of 
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the decomposition filter corresponds to better performance of the spectrum estimator. This is 
justified by the receiver operating characteristic (ROC) shown in figure 4.24. 
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Figure 4.22 Detection and false alarm probability of spectrum estimation based on newly designed wavelet with 

variations on transition band. In this scenario, the length of wavelet decomposition filter is 40, the wavelet decomposition 
level is 7 and the sample space is of size 12800. The K-Regularity of the designed wavelets with Semi Definite 

Programming (SDP) is 6. 
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Figure 4.23 Detection and false alarm probability of spectrum estimation based on newly designed wavelet with 

variations on transition band. In this scenario, the length of wavelet decomposition filter is 40, the wavelet decomposition 
level is 7 and the sample space is of size 384. The K-Regularity of the designed wavelets with Semi Definite 

Programming (SDP) is 6. 
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Figure 4.24 Receiver operating characteristic of spectrum estimation based on newly designed wavelet with variations on 
transition band. In this scenario, the length of wavelet decomposition filter is 40, the wavelet decomposition level is 7 and 
the sample space is of size 384. The K-Regularity of the designed wavelets with Semi Definite Programming (SDP) is 6. 
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Figure 4.25 The impact of varying number of samples on detection and false alarm probability. In this scenario, the 

length of wavelet decomposition filter is 40 and the wavelet decomposition level is 7. The K-Regularity of the designed 
wavelets with Semi Definite Programming (SDP) is 8 with a normalized transition band of 0.3π. 
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Figure 4.26 The impact of varying number of samples on receiver operating characteristic. In this scenario, the length of 
wavelet decomposition filter is 40, the wavelet decomposition level is 7. The K-Regularity of the designed wavelets with 

Semi Definite Programming (SDP) is 8 with a normalized transition band of 0.3π. 
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Figure 4.27 Detection and false alarm probability of spectrum estimation based on periodogram, Welch approach and 
newly designed wavelet with filter lengths of 40, K-regularity index of 8 and transition band 0.3π. In this scenario, the 
wavelet decomposition level is 9 and the sample space is of size 384. The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 128 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and 
deactivated. 
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Figure 4.25 describes the impact of varying number of samples on detection and false 
alarm probability. As it is clear from the figure, we should aware that the quality of the 
performance drops for smaller number of samples. This obviously shows that the size of snapshot 
windows does have an impact on the performance of wavelet based spectrum estimation. The 
figure also shows that the smaller the number of sample, the larger the drop in performance quality. 
The receiver operating characteristic in figure 4.26 justifies the inference. 

4.6.4 Comparison between the designed wavelet based spectrum estimators, 
Periodogram and Welch approach 

A. Investigation on Detection and False Alarm Probability with varying thresholds level 
In this sub-section, we try to compare the performance of the spectrum estimator based on 

the designed wavelet with that of periodogram and Welch approach. With regard to the designed 
wavelet used here, the length of the decomposition filter is 40 with K-regularity index of 8 and 
transition band of 0.3π. The wavelet decomposition level is 9. The sample space in this experiment 
is of size 384 because we would like to assess the performance for few numbers of samples. 
Though it is certainly possible to obtain the variation of the performance by using different 
parameters of the designed wavelet, we just fix the parameters here in order to obtain rough view 
about the position of our wavelet based spectrum estimators along with periodogram and Welch. 
The overlap percentage and the length of each segment employed in Welch approach is 50% and 
64 samples, respectively. Hamming window is used in this Welch approach.  The setup of this 
experiment used here is similar to the setup in part C of sub-section 4.6.2. We basically divide the 
normalized frequency range [0,π] into 128 frequency bins. 
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Figure 4.28 Detection and false alarm probability of spectrum estimation based on periodogram, Welch approach and 

newly designed wavelet with lengths of 40, K-regularity index of 8 and transition band 0.3π. In this scenario, the wavelet 
decomposition level is 9 and the sample space is of size 384. The overlap percentage and the length of each segment 

employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 64 
sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and deactivated. 

Each source occupies 2 frequency bins 
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In figure 4.27, 128 sources occupy 128 frequency bins in the normalized frequency range 
of [0,π]. These 128 sources are randomly activated / deactivated and the Pd and Pfa are calculated 
for each given threshold out of total 100 experiments. An active source would have around -2.1 dB 
power. The result shows in figure 4.27 generally exemplifies what has been found in chapter 3. The 
performance of our wavelet based approach is somewhere in between that of Welch and 
Periodogram. In most of threshold values, Welch approach offers better probability of detection but 
very poor probability of false alarm due to its poorer frequency resolution. Since the length of each 
segment employed in Welch approach is 64 samples which is only 1/6 of the number of samples, 
the averaging process introduced in Welch does not offer much significant improvement of the 
variance of estimated PSD when it is compared to periodogram. On the other hand, periodogram 
has better probability of false alarm but poor probability of detection due to higher variance of 
estimated PSD. This underlines some advantages offered by wavelet approach. In wavelet based 
estimates the performance can be adjusted by varying the parameters of the designed wavelet such 
as length of filter, transition band and especially decomposition level in the wavelet packet tree. 
Even though, wavelet based approach seems to be not competitive enough compared to 
periodogram in term of false alarm probability, the re-configurability and adaptability feature of 
wavelet based approach might be promising. The reason of poorer false alarm probability in 
wavelet based spectrum estimation is clearly the spectrum carving issue that might introduce side 
lobes as high as -9dB as it would be explained in chapter 6. 
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Figure 4.29 Detection and false alarm probability of spectrum estimation based on periodogram, Welch approach and 

newly designed wavelet with lengths of 40, K-regularity index of 8 and transition band 0.3π. In this scenario, the wavelet 
decomposition level is 9 and the sample space is of size 384. The overlap percentage and the length of each segment 

employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch approach. 32 
sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and deactivated. 

Each source occupies 4 frequency bins 
 
While in figure 4.27, 128 narrow band sources are randomly activated and deactivated 

along 128 frequency bins in the normalized frequency band of [0,π], we try to investigate the 
performance of the three spectrum estimators for wider-band sources. In figure 4.28, 64 sources are 
randomly activated and deactivated over 128 frequency bins in the range of [0,π]. Each source 
occupies 2 frequency bins. As it can be seen from this figure, the performance of the periodogram, 
Welch approach and the spectrum estimation based on the design wavelet is better than that is 
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shown in figure 4.27. This means, the spectrum estimators generally perform better for wider band 
sources. This fact is also exemplified when the width of the band spanned by each source is 
increased to 4 and 8 frequency bins in figure 4.29 and 4.30, respectively. From figures 4.28-4.30, 
we also observe similar phenomenon to that is found in figures 4.27. The performance of wavelet 
based approach is basically in between that of periodogram and Welch. 
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Figure 4.30 Detection and false alarm probability of spectrum estimation based on periodogram, Welch approach 

and newly designed wavelet with lengths of 40, K-regularity index of 8 and transition band 0.3π. In this scenario, the 
wavelet decomposition level is 9 and the sample space is of size 384. The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 
approach. 16 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated 

and deactivated. Each source occupies 8 frequency bins 

B. Investigation on Receiver Operating Characteristic 
In this part, we try to compare the receiver operating characteristic of the estimator based 

on the designed wavelet with that of periodogram and Welch approach. The sample space in this 
experiment is of size 384 and the setup of the experiment is similar to part A of sub-section 4.6.4. 
The setting of Welch approach is exactly the same as in the previous part. In figure 4.31, 128 
sources occupying 128 frequency bins in the normalized frequency range of [0,π] are randomly 
activated /deactivated. From this figure, it is found that the performance of Welch approach is the 
poorest. We also found that wavelet based spectrum estimator with decomposition filter length of 
40, K-regularity of 8, transition band of 0.3π and decomposition level of 9 has poorer performance 
than periodogram for false alarm probability less than 0.25. When the length of decomposition 
filter is increased to 50 and the K-regularity is decreased to 7, the performance of wavelet based 
estimator is slightly improved. This is valid since increasing the length of the filter and decreasing 
the K-regularity would provide more degree of freedom for improving the frequency selectivity of 
the wavelet filter. From this stage, we might exploit the flexibility of wavelet based approach. 
Since it is possible to obtain the wavelet coefficients from all wavelet packet nodes at all levels 
within one snapshot and one operation, it is also reasonable to display the estimates from 
decomposition level less than 9 in the plots. In this case, we display the estimates based on wavelet 
with decomposition levels of 7 (the filter length, K-regularity and transition band are fixed to 50, 7 
and 0.3π, respectively) and we can see that the wavelet based approach with this setting 
outperforms periodogram for almost all value of false alarm probability. Once again, we would like 
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to emphasize that the estimates based on wavelet approach with decomposition levels of 7 and 9 
are obtained from the same snapshot and from single operation. 
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Figure 4.31 Receiver operating characteristic of spectrum estimation based on periodogram, Welch approach and newly 

designed wavelet. In this scenario, the sample space is of size 384. The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 128 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and 
deactivated. 

 
We now try to investigate the receiver operating characteristic of the estimators for wider 

band sources. In figure 4.32-4.34, the number of frequency bins occupied by each source is 2, 4, 
and 8 bins, respectively. From these three figures, it is clear that the wider the bandwidth of the 
source, the better the performance of the estimation. The most significant improvement, however, 
happens on Welch based estimation. While in figure 4.32, the receiver operating characteristic 
(ROC) of Welch approach is still clearly poorer than periodogram and wavelet based approach, 
figure 4.34 shows that the performance of Welch approach surpasses that of periodogram and 
wavelet based approach with decomposition level of 9. Again, in these three figures, we can simply 
reduce the decomposition level from 9 to 7 in order to improve the receiver operating characteristic 
of wavelet based approach. 
 The results shown in figures 4.31-4.34 emphasize the inference that is drawn from chapter 
3. Welch approach performs worse for narrower band source due its poor frequency resolution. 
Once the bandwidth of the source to be estimated is increased, the drawback caused by limited 
frequency resolution is less significant and this results in dramatic improvement of the Welch ROC. 
Periodogram, on the other hand, still has to deal with the larger variance of the estimated PSD. This 
variance problem still has significant impact on the performance of periodogram estimates for 
wider band making the improvement is less significant compared to the one observed from the case 
of Welch. 
 It is important to learn that we should not make careless conclusions on the ROC of the 
spectrum estimations. The performance of every method clearly depends on the setting of the 
estimators. For example, the size of the segment employed in Welch method is clearly vital and 
different size would end up with completely different performance. However, at least we can figure 
out that increasing the size of each segment would make the performance of Welch method 
approaches that of periodogram assuming the use of the same window. Similar case also holds for 
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wavelet based spectrum estimation. The use of different decomposition level while keeping the 
same wavelet specification (filters length, regularity index and transition band) may results in 
different ROC. Varying the decomposition filter length, regularity index and transition band would 
results in even more variations in performance. Even though, it is irrelevant to make simple 
justification among the three techniques, we might at least highlight the advantage of wavelet based 
spectrum estimation here. The possibility to obtain wavelet coefficients from all wavelet packet 
nodes at all levels provides multiple estimates with different trade off. This is done based only on 
one snapshot and through one-time operation. 
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Figure 4.32 Receiver operating characteristic of spectrum estimation based on periodogram, Welch approach and newly 

designed wavelet. In this scenario, the sample space is of size 384. The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 64 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and 
deactivated. 

4.7 Summary and Conclusion of the Chapter 
In this chapter, we presented the design of optimum wavelets which have greater frequency 

selectivity than common wavelet families such as Symlet, Coiflet and Daubechies. The need for 
frequency selectivity feature was deduced after an exhaustive analysis on the relationship between 
the property of wavelet decomposition filter and the performance indicators. In our design, we 
exploited Semi Definite Programming (SDP) after stating the entire constraints and objective 
functions as a non-convex optimization problem. We later manipulated and modified the problems 
into linear optimization problem and used SDP tools to solve it. In the modification process, we 
had expressed the problem in terms of autocorrelation sequence of filter coefficients as variable 
constraints instead of merely the filter coefficients. The key idea is to compromise the regularity 
constraints in order to get more degree of freedom allowing the optimization tool to obtain more 
suppressed pass and stop band ripple in the frequency response of decomposition filters given the 
transition band. The simulation results revealed that the spectrum estimator based on designed 
wavelet has a better performance compared to estimator based on well known wavelets, such as 
Daubechies, Symlets, and Coiflet. Therefore, it is reasonable to conclude that the Semi Definite 
Programming and optimization approach has provide efficient tools to design new wavelet with 
desired frequency selectivity feature, which suits spectrum estimation application. 
 



Chapter 4 Optimal Design of Wavelet for Wavelet Based Spectrum Estimation 

 113 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 

Periodogram
Welch
Designed Wavelet Length = 40
K-regularity = 8 Trans. Band = 0.3π
Decomp. Level = 9
Designed Wavelet Length = 50
K-regularity = 7 Trans. Band = 0.2π
Decomp. Level = 9
Designed Wavelet Length = 50
K-regularity = 7 Trans. Band = 0.2π
Decomp. Level = 7

 
Figure 4.33 Receiver operating characteristic of spectrum estimation based on periodogram, Welch approach and newly 

designed wavelet. In this scenario, the sample space is of size 384. The overlap percentage and the length of each 
segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this Welch 

approach. 32 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly activated and 
deactivated. 
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Figure 4.34 Receiver operating characteristic of spectrum estimation based on periodogram, Welch approach and 
newly designed wavelet. In this scenario, the sample space is of size 384. The overlap percentage and the length of 
each segment employed in Welch approach is 50% and 64 samples, respectively. Hamming window is used in this 
Welch approach. 16 sources occupying 128 frequency bins in the normalized frequency range [0,π] are randomly 

activated and deactivated. 
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From the investigation of receiver operating characteristic, we also found that the 
performance of our wavelet based spectrum estimation strongly depends on the decomposition 
level as well as the wavelet settings such as decomposition filter length, regularity index, and 
transition band. By keeping the same decomposition filter length, regularity index and transition 
band, it is possible to exploit the wavelet coefficients produced by wavelet packet nodes in the 
different levels to provide multiple estimates with different performance. Since wavelet based 
estimates, Welch and periodogram estimates perform differently with different settings, it is 
therefore irrelevant to simply say that one approach is better than the others. However, it is 
reasonable to conclude that the flexible alteration of the parameters such as wavelets filter length, 
configured transition band in the frequency response of the decomposition filter, and especially 
decomposition levels has converted wavelet packet based spectrum estimation into a reconfigurable 
and adaptable system giving it a competitive edge. The main inference from the use of wavelet 
based estimate is the possibility to obtain wavelet coefficients from all wavelet packet nodes at all 
levels, which provides multiple estimates with different trade off. This is done based only on one 
snapshot and through one-time operation. 
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CHAPTER 5 A WAVELET PACKET TRANSCEIVER FOR SPECTRUM 
ESTIMATION AND DYNAMIC SPECTRUM ACCESS 

 
The paradox of non-availability of spectrum even when large swathes of licensed spectrum 

is underutilized most of the time has prompted a rethinking in existing spectrum regulatory policies. 
While traditional spectrum allocation schemes follow a static approach where established 
frequency bands are allocated and assigned to fixed licensees, the new approach envisioned is a 
Dynamic Spectrum Access (DSA) model where unlicensed users may rent unused spectrum from 
licensed users on a need-to-need basis. To actualize this vision, the development of Cognitive 
Radios [39] or wireless systems that intelligently adapt their transmission parameters (including 
frequency, power, and modulation scheme) in accordance with the changing environment and 
requirements has been promoted.  

Multi-carrier modulation (MCM) has been mooted as a strong physical layer candidate for 
Cognitive Radio system design [5]. By merely vacating a set of subcarriers, the spectrum of a 
MCM based Cognitive Radio can be easily and flexibly shaped to occupy spectral gaps without 
interfering with the Licensed Users. It has been shown that adaptive MCM based Cognitive Radio 
is a robust method to achieve good quality of communication and efficient use of the spectrum [5]. 

In traditional implementations of MCM, as in Orthogonal Frequency Division Multiplexing 
(OFDM), the generation and modulation of the sub-channels is accomplished digitally using 
Fourier bases. In [6], the replacement of the conventional Fourier-based complex exponential 
carriers of OFDM with orthonormal wavelet packet bases is proposed. The wavelet packet bases are 
derived from perfect reconstruction two-band FIR filter banks. Cohabitation of the Wavelet Packet 
Multi Carrier Modulation (WPMCM) based Cognitive Radio systems with existing licensed users is 
actualized by shaping its transmission waveform by adaptively activating or vacating sub-carriers in 
a way that it utilizes the unoccupied time-frequency gaps of the Licensed Users. The idea is to 
dynamically sculpt the Cognitive Radio transmission signal so that it has no or very little time-
frequency components competing with the Licensed Users. This way the Cognitive Radio can 
seamlessly blend with the Licensed Users operation. Furthermore, the WPMCM receiver structure, 
which is used for demodulation of data, could also be used for analysis of the radio environment to 
identify active/idle bands - at no additional cost!  

In this chapter, we demonstrate the wavelet based spectrum adaptation for Dynamic 
Spectrum Access by combining the wavelet based spectrum estimator proposed in the previous 
chapters with the WPMCM setup. The wavelet based spectrum estimation simply exploits the 
existing filter bank infrastructure used to conduct the Discrete Wavelet Packet Transform (DWPT) 
and its inverse in WPMCM. Based on the wavelet based estimates, the WPMCM Cognitive Radio 
(CR) system dynamically activates and deactivates the carriers in order to allow the cohabitation 
between CR and Licensed User (LU) system. The spectrum estimator and the spectrum shaping 
module are connected by an intermediate module that processes the radio spectrum information and 
converts it into a data vector that can readily be used by the spectrum shaping module to activate 
and deactivate subcarriers. In the simulation study, we employ four types of LU, namely partial 
band, single tone, multi-tones and swept tone LU. The organization of this chapter is as follows. In 
section 5.1, the blocks of the proposed system are elucidated. Section 5.2 gives elaborate discussion 
about the experiment scenario considered in the simulation studies as well as the results of the 
experiments. Finally section 5.3 summarizes this chapter. 

5.1 System Description 
Figure 5.1 depicts the proposed WPMCM based CR transceiver setup. The major blocks of 

the system are a) WPMCM transceiver, b) Spectrum estimator, c) Spectral Vector generator and d) 
spectrum adaptor. 

5.1.1 Wavelet Packet Multicarrier Modulation 
The wavelet packet theory can be viewed as an extension of Fourier analysis. The basic 
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idea of both transformations is the same: projecting an unknown signal on a set of known basis 
functions to obtain insights on the nature of the signal. Any function S(n) in L2(ℜ ) can be 
expressed as the sum of weighted wavelet packets. In communication systems, this means that a 
signal can be seen as the sum of modulated wavelet packets leading to the idea of WPMCM. The 
WPMCM signal is composed of multicarrier symbols obtained from a sum of modulated and 
weighted wavelet packet waveforms ξ. In the discrete time domain this signal S(n) can be 
expressed as: 

      log ( )2

1

,
0

( ) ( )C

C
k

u k
u k

S n a n uCξ
−

=

= −∑∑      (5.1) 

 
Figure 5.1 Block diagram of the proposed WPMCM Transceiver. The receiver contains discrete wavelet packet 
transformer (DWPT) used to estimate the spectrum and extract the data transmitted. The transmitter contains inverse 
discrete wavelet packet transformer (IDWPT) used to construct multi-carrier modulated signals. IDWPT and DWPT are 
implemented using filter bank analysis. H’  and G’ are the low and high pass reconstruction filters while H and G are the 
low and high pass decomposition filters. Down and up arrows refer to down and up-sampling, respectively 
 
In (5.1) C is the number of subcarriers while u and k are the symbol and subcarrier indices, 
respectively. The constellation symbol modulating kth subcarrier in uth symbol is represented as au,k.  
Time and frequency limited wavelet packet bases ξ(t) can be derived by iterating discrete half-band 
high g[n] and low-pass h[n] filters, recursively defined by [4]: 
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In (5.2) subscript l denotes the level in the tree structure and superscript p indicates the sub-carrier 
index at given tree depth. Equation (5.2) is nothing but two-scale equation which has already been 
expressed in more general form by (2.46). In the case of (5.2), the low pass filter h[n] and high pass 
filter g[n] play a role as analysis filters. As already explained in chapter 2, the analysis filters have 
mirrors called synthesis filters which are also a pair of low-high pass filter combo {h’[n], g’[n]}. 
The two synthesis and analysis filters share a tight Quadrature Mirror Filters (QMF) relationship.  
For paraunitary QMF filter pairs of length L, the relationship is given as:  

[ 1 ] ( 1) [ ]ng L n h n− − = −                                     (5.3) 

It should be noted that (5.3) is exactly the QMF relationship expressed by (2.53). We rewrite it here 
for the sake of convenience. The analysis and synthesis filters are basically complex conjugate time 
reversed versions of one another i.e.  

            * *'[ ] [ ] and '[ ] [ ]h n h n g n g n= − = −      (5.4) 

The linear combination relationship presented by (5.1) is realized by implementing wavelet 
packet reconstruction in the transmitter by using Inverse Discrete Wavelet Packet Transform 
(IDWPT). As it is clear from figure 5.1, wavelet packet (WP) reconstruction employs multi-
channel filter bank consisting of cascaded two-channel synthesis filters (H’ and G’).  

An incoming high-rate serial data stream is divided into several lower-rate parallel data 
streams. The data in each parallel branch is used as an input of the corresponding branch (WP node) 
in WP reconstruction tree. In every stage of reconstruction, the data in each branch is up-sampled 
by 2 before they are passed through the corresponding low or high pass half-band filter. These half-
band filtering and up-sampling processes form one stage reconstruction process. The entire 
cascaded reconstruction process is actually analogous to sub-carriers modulation process in OFDM 
and it simulates the IDWPT as found in figure 5.1. The wavelet packet sub-carries with index i at 
tree level J [ ]i

J kξ  used at the transmitter end are derived from the synthesis filters through a simple 
convolution rule leading to: 

2 1[ ] ( ) * ( / 2) *....* ( / 2 )* ( / 2 );
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= 


   (5.5) 

In (5.5), h’[ k] and g’[ k] stand for the impulse responses of low pass and high pass synthesis filters, 
respectively.  
 Later in the receiver, the Discrete Wavelet Packet Transform (DWPT) block (see figure 
5.1), which is also used for spectrum estimation, is employed to perform WP data demodulation. 

The wavelet packet dualsɶ [ ]
s

J kξ , for sub-carriers with index s at tree level J, are used to extract the 

estimate of the transmitted data symbols. This is performed by taking advantage of the 

orthogonality between the wavelet packet [ ]i
J kξ and wavelet packet dual ɶ [ ]

s

J kξ  expressed as [6]: 

[ ], [ ] [ ]i s
J Jk k i sξ ξ δ< >= −ɶ       (5.6) 

In (5.6) .,.< > represents the scalar product operator and δ is the kronecker delta with δ[ i] = 1 if i = 

0, and it is 0 otherwise. The corresponding wavelet packet dualsɶ [ ]
i

J kξ  used at the receiver are 
obtained from the analysis filters through the discrete wavelet packet transform (DWPT): 
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ɶ 2 1[ ] ( ) * (2 ) *....* (2 ) * (2 );

where,0 2 1
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In (5.7), i, J, h[k] and g[k] are the sub-carrier index, tree level, the impulse responses of low and 
high pass analysis filter, respectively. We can note the similarity between (5.7) and (3.2) leading us 
to the fact that the demodulation module in WPMCM can be exploited for spectrum estimation. 

In the receiver, the estimate of each sub channel,u ka
⌢

is given as [6]: 

2, log ( )( [ ]* )k
u k C Ca R n ξ= ↓⌢ ɶ       (5.8) 

In (5.8), R[n] is the received signal, * denotes the convolution operator and the down arrow 
represents decimation by C with C = 2J where J is the decomposition or reconstruction level. 

,u ka
⌢

in (5.8) is the estimation of constellation encoded uth data symbol modulating the kth waveform. 

As shown in figure 5.1, the estimates go through constellation de-mapping process before it is 
passed to parallel to serial converter in order to obtain the actual data. 

5.1.2 Wavelet based spectrum estimation module in WPMCM receiver 
 The operation detail of wavelet based spectrum estimation and how it is built has already 
been discussed in chapter 3. Here, we just intend to emphasize that the spectrum estimation 
functionality can be provided by the same wavelet packet decomposition block used for multi-
carrier de-multiplexing of the received signal in the WPMCM receiver block. It should also be 
noted here that the frequency band that is spanned by spectrum estimator is exactly the same as the 
frequency band spanned by WPMCM subcarriers generated by the IDWPT block. Therefore, when 
cognitive radio systems use WPMCM as their multi-carrier modulation technique, the spectrum 
estimation module can be included with virtually no additional cost. 

5.1.3 Thresholding and Spectral Notching 
The information about the radio environment given by spectrum estimation module is 

passed to the spectrum vector generator (see figure 5.1). Here, the spectral information is mapped 
into a spectrum vector containing ones and zeros. The zeros correspond to bands which are 
occupied and the ones represent bands that are free (spectrum holes). The pattern of ones and zeros 
effectively characterizes the desired magnitude of the spectral estimate. The threshold is performed 
on a sub-band-by-sub-band basis whereby the power contained in each sub-band is independently 
compared to a predetermined threshold. The threshold value is defined in terms of the noise power. 
When sub-band power exceeds the threshold, interference is declared present and all of the sub-
band coefficients are set to a value of zero. If sub-band power does not exceed the threshold, all of 
the sub-band coefficients are retained (set to one). 

It is quite possible that the frequency bands adjacent to the occupied bands (the band that 
has power above threshold) have power just below the threshold. Therefore, sometimes it is 
required to deactivate the carriers surrounding the occupied band. For this purpose, spectrum vector 
manipulation block is added to do some manipulation on spectrum vector in order to obtain the 
desired activated and de-activated frequency bands. Furthermore, the decomposition levels of the 
tree structure used for spectrum estimator and WPMCM demodulation can be different. Hence, the 
spectrum vector should be modified accordingly into a format that is matched to the reconstruction 
level in the transmitter. This spectrum-vector matching process is also performed by spectrum 
vector manipulation block.  

Finally, the spectrum manipulation block produces final spectrum vector that is used to 
inform the Inverse Discrete Wavelet Packet Transform (IDWPT) block in the transmitter about 
deactivated carriers.  
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5.1.4 Transmission Waveform Shaping 
Based on the spectrum vector, sub-channels of the WP MCM system that lie in and around 

the spectrum of the LU are vacated to facilitate coexistence. This way the CR transmission signal is 
dynamically sculpted such that it has no or very little time-frequency components competing with 
the LU and the CR operation is made invisible to the LU.   In order to keep all of this mechanism to 
work properly, a pilot channel is required for communication between transmitter and receiver 
regarding to the state of the occupied and unoccupied frequency bands. 

5.2 Experiments, Results and Analysis 

5.2.1 Experiment Scenarios 
 In order to investigate the performance of the wavelet packet transceivers for dynamic 
spectrum access, we consider a WPMCM system operating with 128 equally spaced carriers 
derived from a level-7 cascaded tree. The same tree structure is used at the receiver to gauge the 
radio environment. To simplify the evaluation of the system performance, no distortions such as 
Inter Symbol Interference (ISI) or Inter Carrier Interference (ICI) are considered. The modulation 
scheme used is Quadrature Phase Shift Keying (QPSK). We use the optimal wavelet family 
designed in chapter 4 using Semi Definite Programming (SDP) tool. The optimal wavelet has 
decomposition filter length of 50 K-regularity of 7 and transition band of 0.2π. This was chosen 
based on empirical data which gave the best Probability of detection (Pd) and Probability of false 
alarm (Pfa) combination. A recap of the analysis conducted in sub-sections 4.6.2 and 4.6.3 would 
also be useful to understand these choices. Of course, more thorough experiments can be conducted 
in order to arrive at optimal specifications that give the best performance while maintaining 
acceptable level of complexity. 

Table 5.1 Probability of detection and false alarm of optimal wavelet based spectrum estimates for various threshold 
levels. The length of wavelet decomposition filter used here is 50 with K-regularity index of 7 and transition band of 0.2π 

Threshold Level (dB) Probability of Detection (Pd) Probability of False Alarm (Pfa) 
-3 0.8825 0 
-5 0.9997 4.6627e-004 
-7 1 0.0512 
-9 1 0.1285 
-11 1 0.2097 
-13 1 0.3496 
-15 1 0.4923 
-17 1 0.5910 
-19 1 0.7295 
-21 1 0.7883 
-23 1 0.7903 
-25 1 0.7959 

 
Table 5.1 illustrates the value of Pd and Pfa of the specified optimal wavelet based 

estimates for different threshold level. By considering the performance of the spectrum estimator 
based on the selected wavelet shown in table 5.1, we select the threshold level of -7dB to evaluate 
the presence/absence of a LU since this threshold value gives Pd = 1 with minimum probability of 
false alarm. It should be noted that the power level of the active band that is used in this experiment 
would be exactly the same as the one that is used in sub-sections 4.6.2 and 4.6.3, and thus the 
choice of threshold level is definitely valid. Lastly, the cognitive modules at the transmitter and 
receiver are taken to be always aware of the transmission characteristics, including details of the 
active and deactivated carriers. To gauge the performance of the proposed WPMCM system, four 
types of LU are considered namely: partial band, single tone, multi-tones and swept tone sources. 
The detail descriptions about these four sources can be found in sub-sections 3.4.1 and 3.4.2. For 
partial band and swept tone source, we decide to employ 7-level wavelet decomposition while 11-
level wavelet decomposition is used for estimating single tone and multi-tone source. The 
fundamental reason for this is found in chapter 3 showing the fact that higher level of 
decomposition gives better frequency resolution, which is appropriate to locate extremely narrow 
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band sources such as single tone and multi-tone. On the other hand, increasing the decomposition 
level tends to increase the variance of estimated PSD. For partial band source, high variance of 
estimated PSD in the pass band is undesirable since it might reduce the probability of detection for 
a given threshold. 
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Figure 5.2 Result of spectrum adaptation (partial band LU case) based on Wavelet approach. Only carriers 

correspond to frequency bands with LU energy above threshold are deactivated (66 carriers). The wavelet decomposition 
filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet 

decomposition level is used in spectrum estimation module 

5.2.2 Results and Analysis 

A. Partial Band Source 
The blue curve in figure 5.2 illustrates the wavelet packet based Power Spectral Density 

(PSD) estimates of the partial band LU. Based on this estimate, the shape of the CR spectrum is 
adapted so the interference between existing LU signal and CR signal is minimized. The red curve 
in figure 5.2 depicts the PSD of the CR signal (with carriers coinciding with LU deactivated). 
Meanwhile, figure 5.3 basically shows the effect of deactivation of four additional carriers in the 
neighboring of carriers coinciding with LU.  

Figure 5.4 illustrates the Bit Error Rate (BER) performance of WPMCM CR in the 
presence of a partial band LU. It is clear from the BER curves that spectral adaptation of the CR 
source greatly reduces the interference energy between CR and LU and improves its operation. 
However, the interference energy is not completely suppressed by merely deactivating the carriers 
that coincide with LU since a transition band between the occupied and unoccupied band exist for 
both LU and CR. Hence, deactivation of neighboring carriers is required. When additional carriers 
buffering the sides of the LU are removed the interference energy is reduced further and for the 
case of removal of six additional neighboring carriers, the performance reaches the theoretical limit. 
In general, the reduction in Bit Error Rate (BER) for different number of vacated carriers is much 
clearer for higher number of signal to noise ratio (SNR)  
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Figure 5.3 Result of spectrum adaptation (partial band LU case) based on Wavelet approach. Two carriers in 

the left and two carriers in the right side of bands having energy above threshold are also deactivated (In total, 70 carriers 
are vacated). The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band 

of 0.2π. The 7-level wavelet decomposition level is used in spectrum estimation module 
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Figure 5.4 Performance of wavelet based spectrum estimation and adaptation in WPMCM CR system for partial band 
LU case. The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band of 

0.2π. The 7-level wavelet decomposition level is used in spectrum estimation module 
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Figure 5.5 Result of spectrum adaptation (multi-tone LU case) based on wavelet based approach. Only carriers 

correspond to the frequency bands with energy above threshold are deactivated (14 carriers). The wavelet decomposition 
filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 11-level wavelet 

decomposition level is used in spectrum estimation module 
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Figure 5.6 Result of spectrum adaptation (multi-tone LU case) based on wavelet based approach. Two frequency bands 
in the left and two bands in the right side of bands having energy above threshold are also deactivated (total 42 carriers). 
The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 

11-level wavelet decomposition level is used in spectrum estimation module 
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Figure 5.7 Performance of wavelet based spectrum estimation and spectrum adaptation in WPMCM CR system for multi 

tone licensed user case. The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and 
transition band of 0.2π. The 11-level wavelet decomposition level is used in spectrum estimation module 

B. Multi-tones Source 
Figure 5.5 shows the wavelet packet based estimated PSD of the multi-tone LU as well as 

the spectrum shaped CR. Similar to the case for partial band LU, the spectrum estimate provided by 
wavelet based approach (blue color) is used as an input for spectrum vector generation block (see 
figure 5.1) to decide which carriers to be turn off. Then, the spectrum adaptation process would be 
performed correspondingly. In figure 5.5, only the CR carriers that coincide with LU are 
deactivated. The figure shows how the adapted CR’s signal perfectly fit with the LU signal even 
though no additional carriers apart from the ones that coincide with LU bands are deactivated. 
Meanwhile, figure 5.6 basically shows the effect of deactivation of two additional carriers in the 
neighboring of each carrier coinciding with LU resulting in total of 42 vacated carriers. The 
corresponding BER performance curves are plotted in Figure 5.7. The PSD and BER curves clearly 
show the ameliorative impact of spectrum shaping on the performance of the CR system. 
Interestingly, unlike the case of the partial band source, it is enough to vacate only those CR 
carriers (totaling 14) that co-exist with the LU to obtain excellent performances. This means that no 
additional carriers neighboring the LU band have to be deactivated. 

C. Single Tone Source 
Figure 5.8 illustrates the wavelet packet based estimates on the single tone LU as well as 

the spectrum adapted CR. In general, the result observed in single tone LU case is actually similar 
to the result observed in multi-tones LU case and this validates the fact that wavelet based spectrum 
estimate actually perform very well for narrow band source case. From figure 5.8, it can be found 
that no significant leakage is introduced by the adapted CR signal into the band occupied by LU 
even though there is no extra carriers deactivation. Figure 5.9, once again, justifies the excellent 
performance of wavelet based spectrum estimation. The very accurate estimation provided by 
wavelet based approach allows the carrier deactivation only at the band coinciding with LU to be 
good enough. Additional carriers deactivation makes almost no improvement on the performance 
of the WPMCM CR system. 
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Figure 5.8 Result of spectrum adaptation (single tone LU case) based on wavelet based approach. Only carriers 

correspond to the frequency bands with energy above threshold are deactivated (2 carriers). The wavelet decomposition 
filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 11-level wavelet 

decomposition is used in spectrum estimation module 
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Figure 5.9 Performance of wavelet based spectrum estimation and spectrum adaptation in WPMCM CR system for 

single tone licensed user case. The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and 
transition band of 0.2π. The 11-level wavelet decomposition is used in spectrum estimation module 
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D. Swept tone Source 
Similar to the experiments conducted in chapter 3, to gauge the swept tone LU, 20 sweeps 

(each of 640 unit samples) in the normalized frequency band 0.2π- 0.8π are considered. In order to 
track the temporal variations in the frequency, three different scenarios are provided.  

In the first scenario, the spectrum estimation module catches a snapshot (or sub-sweep) 
containing 128 samples corresponding to 20% of a single sweep. Hence, five snapshots of a single 
sweep are available. Based on each 128-samples snapshot, spectrum vector generator has to 
determine the carriers to be turned off and the WPMCM transmitter will adapt the spectrum of the 
transmitted signal correspondingly. Figure 5.10 depicts the LU and CR PSD curve for this first 
scenario. In this figure, only the PSD of the fourth and the fifth sub-sweeps of LU signal are 
displayed together with the corresponding adapted CR PSD. It should also be noted that only the 
carriers that coincide with LU are deactivated in this figure. If the interference between the LU and 
CR signals needs to be reduced, it is possible to additionally deactivate the carriers adjacent to the 
band occupied by LU. Figure 5.11 illustrates the effect of deactivation of four additional carriers 
that are adjacent to the LU band. 
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Figure 5.10 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 
of 128 samples. In this case, every single sweep contains 5 sub-sweeps and only the 4th and 5th sub-sweeps are displayed. 

Only carriers correspond to the bands with energy above threshold are deactivated. The wavelet decomposition filters 
used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet decomposition is 

used in spectrum estimation module 
 
In the second scenario, the size of the snapshot is reduced to 64 samples corresponding to 

10% of a single sweep. The process of carrier deactivation and spectrum adaptation are now based 
on smaller number of samples. Figure 5.12 illustrates the combination between adapted WPMCM 
CR PSD and LU PSD viewed by wavelet based spectrum estimator. In this figure, only the PSD of 
the ninth and the tenth sub-sweeps of LU signal are displayed together with the corresponding 
adapted CR PSD. In addition, only the carriers corresponding to the band occupied by LU are 
deactivated in this figure. The effect of deactivation of four additional carriers adjacent to the LU 
band for the purpose of interference reduction is illustrated in figure 5.13. 
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Figure 5.11 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 
of 128 samples. Every single sweep contains 5 sub-sweeps and only the 4th and 5th sub-sweeps are displayed. In this case, 

two bands in the left and two bands in the right side of bands having energy above threshold are also deactivated. The 
wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-

level wavelet decomposition is used in spectrum estimation module 
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Figure 5.12 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 
of 64 samples. In this case, every single sweep contains 10 sub-sweeps and only the 9th and 10th sub-sweeps are displayed. 

Only carriers correspond to the bands with energy above threshold are deactivated. The wavelet decomposition filters 
used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet decomposition is 

used in spectrum estimation module 
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Figure 5.13 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 

of 64 samples. Every single sweep contains 10 sub-sweeps and only the 9th and 10th sub-sweeps are displayed. In this 
case, two bands in the left and two bands in the right side of bands having energy above threshold are also deactivated. 

The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-
level wavelet decomposition is used in spectrum estimation module 
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Figure 5.14 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 

of 32 samples. In this case, every single sweep contains 20 sub-sweeps and only the 19th and 20th sub-sweeps are 
displayed. Only carriers correspond to the bands with energy above threshold are deactivated. The wavelet decomposition 

filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet 
decomposition is used in spectrum estimation module 
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Figure 5.15 Result of spectrum adaptation based on wavelet approach for the case of swept tone LU with sub-sweep size 
of 32 samples. Every single sweep contains 20 sub-sweeps and only the 19th and 20th sub-sweeps are displayed. In this 
case, two bands in the left and two bands in the right side of bands having energy above threshold are also deactivated. 

The wavelet decomposition filters used here have length of 50, K-regularity index of 7 and transition band of 0.2π. The 7-
level wavelet decomposition is used in spectrum estimation module 

 
Finally, in the third scenario, the size of snapshot is further reduced to 32 samples 

corresponding to 5% of a single sweep. Figure 5.14 and 5.15 illustrates the PSD of the last two sub-
sweeps of LU signal together with the associate adapted CR PSD for no additional carrier 
deactivation and the deactivation of two additional carriers in each side of LU band, respectively. 

Figures 5.16-5.18 show the BER performance of WPMCM based CR system for sweep-
sizes of 128, 64 and 32, respectively. In general, the greater the number of sub-sweep samples, the 
greater the information available on the LU features and hence the greater the scope for adapting 
the CR characteristics to evade the LU. Thus significant improvements in the CR performance can 
be achieved when the size of the radio snapshot is 128 samples or more (see Figure 5.16). And 
when the number of samples available to judge the spectrum is low (say 64 or 32 samples) the 
accuracy of the judgment on occupied and idle bands falters and the CR performance suffers 
(Figures 5.17 and 5.18). This issue can also be related to the frequency resolution aspect. If we 
consider some results related to swept tone source shown in figures 3.32-3.52, we can find that the 
frequency resolution and thus the accuracy of the estimates tend to deteriorate when the size of the 
snapshot is reduced. This phenomenon is found not only for wavelet based estimates but also for 
periodogram and Welch estimates. This fact explains the inaccuracy of the judgment on occupied 
and idle bands.  

On the other hand, a smaller sample space also means a faster spectrum analysis and 
greater opportunity to track temporal variations. For the case of swept tone case, these temporal 
variations are quite significant since different frequency is occupied at different instant. Due to 
uncertainty principle [21], it is not possible to have the best frequency and time resolution at the 
same time. Hence it is important to strike the right balance between the time and frequency 
resolutions achievable. Herein lies the advantage of employing the wavelet packet transforms for 
spectrum analysis – one can tailor the level of decomposition to obtain the required frequency 
resolution. 
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Figure 5.16 Performance of wavelet based spectrum estimation and spectrum adaptation in WPMCM CR system for 

swept tone LU case with sub-sweep size of 128 samples. The wavelet decomposition filters used here have length of 50, 
K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet decomposition is used in spectrum estimation 

module 
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Figure 5.17 Performance of wavelet based spectrum estimation and spectrum adaptation in WPMCM CR system for 

swept tone LU case with sub-sweep size of 64 samples. The wavelet decomposition filters used here have length of 50, 
K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet decomposition is used in spectrum estimation 

module 
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Figure 5.18 Performance of wavelet based spectrum estimation and spectrum adaptation in WPMCM CR system for 

swept tone LU case with sub-sweep size of 32 samples. The wavelet decomposition filters used here have length of 50, 
K-regularity index of 7 and transition band of 0.2π. The 7-level wavelet decomposition is used in spectrum estimation 

module 

5.3 Summary of the Chapter  
In this chapter, the wavelet based spectrum adaptation for Dynamic Spectrum Access was 

investigated by combining the novel wavelet based spectrum estimation and the proposed 
WPMCM in [6]. The wavelet packet transform is used for spectrum estimation, spectrum shaping 
as well as multi carrier modulation technique, thus paving way for an efficient and low cost 
Cognitive Radio (CR) system. The spectrum estimation unit is tagged to the WPMCM transceiver 
structure by exploiting the filter bank infrastructure used for Discrete Wavelet Packet Transform 
implementation and hence the spectrum analysis is done at virtually no additional cost. Based on 
the result of wavelet based estimates, the cohabitation of the CR system with Licensed User (LU) is 
actualized by dynamically activating and deactivating the CR carriers in a way that the CR and LU 
systems do not have any competing time-frequency components. Threshold operation and some 
manipulation on the spectrum estimates results are required before the final decision about the 
carriers to be deactivated is made.   

Through simulation studies, the usefulness and potential of the WPMCM based for 
developing CR systems was demonstrated. These studies exemplify how well the proposed wavelet 
based spectrum adaptation performs in the presence of LU and Additive White Gaussian Noise 
(AWGN). In general, the performance of wavelet based estimates in the case of narrow band LU is 
excellent since virtually no additional carrier deactivation is required apart from the ones 
coinciding with the LU. The additional carrier deactivation is still required for partial band case. Of 
particular interest is the estimation of a swept tone LU that varies with time. The wavelet based 
spectrum adaptation performs well for the snapshot size of 128 samples. However, poor 
performance is shown for much smaller snapshot size (32 samples) due to poor estimates provided 
by wavelet based spectrum estimation block. This phenomenon can be understood by considering 
uncertainty principle which states that it is not simultaneously possible to have very good time and 
frequency resolution. 

The analysis conducted in this chapter are preliminary and needs to be carried further 
particularly with respect to the demonstration of the flexibility, adaptability and reconfigure ability 



Chapter 5 A Wavelet Packet Transceiver for Spectrum Estimation and Dynamic Spectrum 
Access 

 131 

offered by wavelet packet modulation based transceiver. We still have not considered more 
complex scenario including how to distinguish the signal transmitted by LU from the signal 
produced by other CR users. Moreover, we also has not taken into account the need for echo 
cancellation to make sure that the spectrum estimator of a CR system is not burdened by the signal 
that is produced by its own transmitter. It should also be noted that the mechanism that is 
introduced for WPMCM transceiver here requires a pilot channel. The pilot channel is needed by a 
CR system to inform its communication pair (another CR system) about the subcarriers that are 
currently used. Overall, the performance results of the simulation studies make us to conclude that 
this wavelet based system indeed can be a useful tool in the design of adaptive systems for dynamic 
spectrum access. 
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CHAPTER 6 CHALLENGES AND BOTTLENECKS 
  

We have thus far investigated the spectrum estimation tool based on wavelet and also 
developed a family of new optimal wavelets which are maximally frequency selective and are best 
suited for wavelet based spectrum estimator. In the fifth chapter, we combined the wavelet based 
spectrum estimator with a Multi-carrier Modulation scheme based on Wavelet packets and 
demonstrated its operation in the context of dynamic spectrum access. 

In this chapter we enlist and document the challenges and problems encountered in the 
realization of the systems. 

6.1 Introduction to spectrum carving issue 
 Spectrum carving is a major issue in the wavelet packet based spectrum estimation. 
Spectrum carving occurs because the wavelet filters used for decomposing the given signal are 
non-ideal filters having a non-zero transition band. The wavelet packet estimator uses multiple 
orthogonal filters derived from tree structures constructed by cascading wavelet packet 
decomposition filter. Hence, the spectrum estimates can be considered as outputs of series of 
virtual filters spanning the normalized frequency range of [0,π]. For example, if we have 6-level 
decomposition, the normalized frequency range of [0,π] is split into 64 equal bands and the 
estimate on each band correspond to the output of single virtual filter. Hence, there would be 64 
virtual filters in total. The impulse response of each virtual filter is cumulative convolution of the 
impulse responses of the cascaded analysis low pass and/or high pass filter from the wavelet packet 
tree root to the leaf (while taking into account down sampling by factor 2 at each filtering stage). 
As already mentioned in chapter 3, the impulse response of this cascaded filters structure is called 

wavelet packet duals
~

[ ]i kψ  [6], which can be represented as:  
~

2 1[ ] ( )* (2 )*....* (2 )* (2 );

where,0 2 1

[ ], for lowpass branches
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[ ], for highpass branches
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        (6.1) 

Equation (6.1) is exactly the same as (3.2). We have reproduced it here for ready reference. When 
the wavelet packet tree structure is constructed by iterating the wavelet filters, it results in residual 
artifacts in the stop band. 

We will illustrate this phenomenon by considering level-5 wavelet packet decomposition 
and explain how spectrum carving progresses at each level. In this example, we use the maximally 
frequency selective wavelets developed in chapter 4 using SDP. The length of the wavelet 
decomposition filter here is 40 with K-regularity index of 6 and transition band of 0.2π. While 
level-5 decomposition results in 32 virtual filters, we will only focus on one branch for ease and 
clarity of depiction. In this example, the virtual filter considered would ideally span the normalized 
frequency range of [0.53125π, 0.5625π]. 

The first two stages of decomposition are shown in figure 6.1. Since we would like to 
obtain the response of virtual filter spanning the frequency range of [0.53125π, 0.5625π] which is 
in the upper half band of [0, π] band, the first half band filtering should be high pass filtering. This 
is described by the blue curve in figure 6.1. The output of this first high pass filtering should 
logically span the frequency band of [0.5π,π]. Hence the next filtering should be the one that 
removes the upper half band of this frequency range, which is [0.75π, π] and keep the lower half 
frequency component, which is in the range of [0.5π, 0.75π]. However, we need to remember that 
between these two filtering stages, down sampling by factor-2 is performed. As a result, instead of 
doing low pass half band filtering in the 2nd stage, we perform high pass filtering again. The high 
pass filter would cover the frequency range of [0.25π, 0.5π] but its alias version would span the 
range of [0.5π, 0.75π]. Therefore, we actually take the advantage of the alias version of high pass 
filter covering [0.25π, 0.5π] in order to maintain the lower half of [0.5π,π]. This aliasing or 
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mirroring caused by down sampling is the reason why the ordering of wavelet packet nodes follow 
the Gray code sequence (refer chapter 3, especially figure 3.2). 

The frequency response of second stage filtering including its mirror version is illustrated 
by the red curve in figure 6.1. The resultant of these two filtering stages and down sampling 
process between stages is illustrated by the black curve in figure 6.1. An interesting phenomenon 
can be found from this figure. Apart from the desired response at normalized frequency range of 
[0.5π, 0.75π], there are some residual components between 0.2π and 0.5π as well as between 0.75π 
and 0.9π. The reason for the emergence of these residues is the fact that the frequency response of 
the half band filter is not perfectly flat and square. Instead, it has non-zero transition band as well 
as a few ripples in the stop band. Even the maximally frequency selective filter banks designed in 
Chapter 4 are not ideal filters and hence they too are marginally affected by these infarctions. 
Figure 6.2 shows the precise location of the cumulative convolution between the first and second 
stage of half band filtering with down-sampling by-2 between stages described by figure 6.1 in the 
wavelet packet tree.  
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to Level-2 decomposition
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Figure 6.1 The first two half-band filtering stages (with down sampling by factor 2 in between) in order to derive the 

cumulative frequency response of the virtual filter at level-5 of the wavelet packet tree. In this example, we try to derive 
the virtual filter spanning the normalized frequency range of [0.53125π, 0.5625π]. We use our designed wavelet with 

decomposition filter length of 40, K-regularity of 6 and transition band of 0.2π 
 
As the decomposition process is carried on into the higher level, some of the existing 

residual components grow and other new residual components would emerge to form side lobes 
with significant level. This formation of side lobes in the frequency response of cumulative filters 
is known as spectrum carving effect. 

Figure 6.3 illustrates the progression for the level third and fourth decomposition and 
Figure 6.4 gives the progression for level fifth decomposition. It is clear from these figures that 
spectrum carving becomes more and more significant as the decomposition level is increased. 
Figure 6.5 shows the precise location of the cumulative convolution between the first, second, third, 
fourth and fifth stage of half band filtering with down-sampling by-2 between stages described by 
figures 6.3 and 6.4 in the wavelet packet tree.  
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Figure 6.2 Wavelet packet decomposition of a signal.  Here H and G denote the frequency responses of the low and high 
pass decomposition filters, respectively. The down arrows followed by ‘2’ represent decimation by 2. The order of filter 

in each level has already matched the frequency ordering from 0 to π. The cascaded two high pass filter with down 
sampling process in between within the red dashed box illustrates the first two half band filtering stages described in 

figure 6.1 
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Figure 6.3 The third and fourth stages of half-band filtering process (with down sampling by factor 2 in between) in 

order to derive the cumulative frequency response of the virtual filter at level-5 of the wavelet packet tree. In this 
example, we try to derive the virtual filter spanning the normalized frequency range of [0.53125π, 0.5625π]. We use our 

designed wavelet with decomposition filter length of 40, K-regularity of 6 and transition band of 0.2π 
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Figure 6.4 The fifth stage of half-band filtering process (with down sampling by factor 2 in between) in order to derive 
the cumulative frequency response of the virtual filter at level-5 of the wavelet packet tree. In this example, we try to 

derive the virtual filter spanning the normalized frequency range of [0.53125π, 0.5625π]. We use our designed wavelet 
with decomposition filter length of 40, K-regularity of 6 and transition band of 0.2π 
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Figure 6.5 Wavelet packet decomposition of a signal.  Here H and G denote the low and high pass decomposition filters, 
respectively. The down arrows followed by ‘2’ represent decimation by 2. The order of filter in each level has already 

matched the frequency ordering from 0 to π. The cascaded high pass and low pass filters with down sampling process in 
between surrounded by the blue dashed lines illustrates the first four half band filtering stages described in figure 6.3. 
Meanwhile, the first five half band filtering stages with down sampling process in between described in figure 6.4 is 

illustrated by cascaded structure surrounded by pink dash lines 
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Figure 6.6 Spectrum carving effect on 3-level wavelet packet decomposition based on Daubechies-20. From this figure, 

it is clear that two -25 dB side lobes emerge due to the spectrum carving effect 
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Figure 6.7 Spectrum carving effect on 3-level wavelet packet decomposition based on our designed wavelet. The 

designed wavelet has decomposition filter length of 40, K-regularity of 6 and transition band of 0.2π. No significant side 
lobe appears in this figure 
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6.2 Maximally frequency selective wavelet versus standard wavelets in tackling 
Spectrum Carving 

Figure 6.6 and 6.7 illustrates the impact of spectrum carving on 3-level wavelet packet 
decomposition based on Daubechies-20 and our designed wavelet, respectively. As in the previous 
five figures, the length of the decomposition filter of the designed wavelet is 40 with K-regularity 
index of 6 and transition band of 0.2π. From figure 6.6 and 6.7, it is obvious that the wavelet packet 
decomposition based on the newly designed wavelet is more resistant to spectrum carving effect. 
For example, the 3-level Daubechies-20 wavelet packet decomposition has side lobes at -25 dB 
while no significant side lobes appear for the case of the designed wavelet. 
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Figure 6.8 Spectrum carving effect on 5-level wavelet packet decomposition based on Daubechies-20. From this figure, 

it is clear that around -7 dB side lobe emerges due to the spectrum carving effect 
 

Figure 6.8 and 6.9 illustrate how the spectrum carving causes greater harm for higher levels 
of decomposition. For level-5 decomposition case, the wavelet packet decomposition based on our 
designed wavelet still outperforms that based on Daubechies-20 in term of side lobe level.  

We can now summarize our finding about spectrum carving effect as the main issue in the 
performance of wavelet based spectrum estimation. It can be concluded that the reason for the 
emergence of spectrum carving is due to the combination of two factors. The first aspect is due to 
the fact that all the wavelet decomposition filters have a transition band which tapers between the 
pass and stop bands. The poorer the frequency selectivity, the greater the impact of spectrum 
carving is. The second aspect is the mirroring or aliasing effect on the frequency response of 
decomposition filters due to the presence of down sampling by 2 factors following the half band 
filtering in every decomposition stage. The imperfection of frequency selectivity features in 
decomposition filter has resulted in residual components in the stop band of the frequency response 
of cascaded filters at different stages (the down sampling process is also taken into account here). 
As the decomposition process is carried on into the higher level, some of the existing residual 
components would grow and other new residual components would emerge to form side lobes with 
significant level. This spectrum carving effect becomes more significant at higher level of 
decomposition. 
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Figure 6.9 Spectrum carving effect on 5-level wavelet packet decomposition based on our designed wavelet. The 

designed wavelet has decomposition filter length of 40, K-regularity of 6 and transition band of 0.2π. Side lobe level of 
around -9 dB appears due to the spectrum carving effect. 

  
The analysis on spectrum carving effect can be used to provide thorough evaluation on 

some results found in chapter 3. As it is found in chapter 3, the performance of wavelet based 
spectrum estimation for extremely narrow band sources is much better than that of the estimation 
for partial band (very wide band sources). In partial band (wide band) signal, the received energy is 
spread over frequency band spanned by a large number of virtual filters. Each virtual filter 
introduced different amount of residual response at the different location in the frequency domain. 
Hence, for partial band case, more residual energy is produced in the unoccupied band especially 
the bands adjacent to the frequency bands occupied by the source resulting in poor transition band. 
On the other hand, in single tone and multi-tone cases, the received energy is focused on particular 
frequency that is spanned by one or two virtual filters. Since the number of virtual filters that pass 
the receive signal is minimum, the number of residual energy in the stop band is also minimized 
resulting in much better transition band than in the case of partial band.   

6.3 The challenges encountered in wavelet design 
 There are issues in the design of the maximally frequency selective wavelets, that best suit 
applicability to spectrum estimation, too. The wavelet design problem is expressed as an 
optimization problem by incorporating the wavelet constraints as well as frequency selectivity 
constraints. This problem in its original form is non-convex. Though non convex problem can be 
solved, they are susceptible to be caught in locally optimal solution instead of being globally 
optimal. We solve this challenge by representing our design problem in terms of autocorrelation 
sequence of the low pass filter coefficients instead of the filter coefficients itself. This 
transformation successfully converted the design problem from non-convex to convex. At this 
juncture, however, a new problem emerged. This challenge is related to the fact that the regularity 
constraints are vulnerable to numerical problem. This was addressed by reformulating the 
optimization problem into Q(ω) domain instead of H(ω) (refer section 4.5). The last issue in design 
process is to get back stable low pass filter coefficients from the autocorrelation sequence. 
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Fortunately, this was easily addressed by employing spectral factorization algorithm proposed in 
[35] 

6.4 Time resolution issue in spectrum estimation for Dynamic Spectrum Access 
 When we talk about spectrum estimation for Dynamic Spectrum Access, it is natural to 

discuss its employability for cognitive radio (CR) system. In the context of CR system, speed and 
accuracy of measurements are very important to determine the suitable spectrum estimation 
technique for CR. Speed and accuracy are important to answer the questions of which band is 
occupied and at what instance. While accuracy (which is strongly related to frequency resolution, 
bias or leakages and variance of the estimates) was investigated in this thesis, we have not touched 
the time resolution aspect. Time resolution can be related to how fast estimation is performed for a 
given sampling rate. When the time period between successive estimation is shorter, we obtain 
better information about the instance at which the frequency bands are occupied. In addition, faster 
estimation also means smaller number of samples as well as smaller snapshot window. 

Wavelet transform has been widely known as transformation that provides both time and 
frequency information. This fact has naturally encourages a hypothesis promoting the possibility of 
employing wavelet transform for CR since both time and frequency information about occupied 
spectrum are urgently needed. It is thus interesting to relate this time resolution issue mentioned in 
the previous paragraph with time frequency tiling in wavelet transform shown in figure 2.13. This 
figure clearly shows the trade off between time resolution and frequency resolution in continuous 
wavelet transform. In discrete implementation, the trade off between time and frequency resolution 
can be clearly seen from one stage of wavelet decomposition. In wavelet decomposition, every 
stage consists of half band filtering followed by down sampling by factor 2. Therefore, after single 
stage decomposition, the frequency resolution is increased by 2 since the output signal only spans 
the half of the frequency band covered by the input signal. On the other hand, the time resolution is 
reduced by half due to the down sampling process. It should be noted here that the number of 
samples are reduced by half but the snapshot window remains the same. This is slightly different 
from the time resolution issue mentioned in the previous paragraph stating that reduction of time 
resolution is identical to reduction of snapshot window. Due to this issue, it is quite challenging to 
expect a new wavelet based spectrum estimation technique that can also provide tunable time 
resolution for cognitive radio.    

6.5 The effect of fading channel on the wavelet based spectrum estimation 
 When fading channels separate the receivers from the licensed users in the dynamic 
spectrum access environment, new challenges emerge. Due to the multi-path propagation in fading 
channel, different multi-path components may reach the receiver at different instances. Due to 
phase difference, difference components can combine constructively/destructively resulting in a 
resultant component having much larger/smaller amplitude than the original signal.  

There are two types of fading, narrow band fading (or flat fading) and wide band fading (or 
frequency selective fading). These two types of fading are easily explained in terms of digital 
communication. In narrow band fading, the root mean square of the delay spread is smaller than the 
duration of a transmitted pulse in digital communication. Delay spread describes the variation of 
time difference among multi-paths components. When the channel delay spread is transformed into 
frequency domain, the result is called channel coherence bandwidth. In flat fading, the bandwidth 
of the signal is smaller than channel coherence bandwidth meaning that all frequency components 
experience the same magnitude of fading. On the other hand, in frequency selective fading, the 
channel delay spread is larger than the duration of the transmitted pulse while the bandwidth of the 
transmitted signal is wider than the channel coherence bandwidth. As a result, different frequency 
components of the signal experience different fading.  
 In a fading channel, the wavelet based spectrum estimates may become inaccurate since it 
may not describe the actual power spectrum density (PSD) of the transmitted signals. Instead, it 
actually gives the multiplication of the actual PSD and the channel frequency response. In the 
context of cognitive radio (CR), some frequency components of the signal transmitted by licensed 
users (LU) that experiences fading might end up at level below the threshold set by the CR 
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receivers. The spectrum estimation module in the CR receiver would decide that the corresponding 
bands are currently not occupied and thus the CR transmitter might exploit that band. As a result, 
the LU and CR transmission may hinder one-another. This challenge, however, is common to all 
spectrum estimators (and not necessarily with wavelet based estimators alone) and is usually 
classified as channel estimation problem rather than spectrum estimation problem. 
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH TOPICS 

7.1 Conclusions 
 In this thesis work, we developed a wavelet packet based spectrum estimator and 
conducted investigations on its performance. Since the theory of wavelets and wavelet packets are 
tightly coupled with filter bank analysis, wavelet based spectrum estimation is formulated as a filter 
bank analysis problem. To gauge the performance of the estimator, four different sources with 
different characteristics were utilized. The sources were single tone, multi-tones, partial band and 
swept tone (a source which occupied different frequencies at different instances). The 
performances were compared and contrasted with that of traditional approaches like Periodogram, 
Welch, Windowed periodogram and MTSE. 
 We also designed new wavelets with excellent frequency selectivity features to optimize 
the performance of the estimator. A comparative analysis between spectrum estimation based on 
the newly designed wavelets and standard wavelets were also carried out. 

Finally, a wavelet packet transceiver that combined the wavelet packet based spectrum 
estimator with a Multi-carrier modulator was established.  

The core conclusions of all these efforts can be summarized as follows:  
• The wavelet transform is a unitary transform and conserves energy. It is also possible to 

seamlessly move from the wavelet domain to the frequency domain without any loss. 
• A valid spectrum estimation based on wavelet can be built by exploiting filter banks 

structure of wavelet packet decomposition.  
• The decomposition level of the wavelet packet tree can be tuned to adjust the performance 

of the wavelet based estimates with respect to variance of the estimated PSD and frequency 
resolution.  

• The wavelet based estimates at various decomposition levels tend to behave between the 
performance of Welch approach (with the particular setting mentioned in chapter 3 and 4) 
and periodogram in term of variance of the estimates and frequency resolution offered. 
Welch estimates have low variances but poor frequency resolution while Periodogram 
estimates have large variation but guarantees. This inference is supported by the 
investigations on receiver operating characteristic carried out in chapter 4. 

• The wavelet packet based approach gives all wavelet coefficients at all decomposition 
levels. The presence of all of these coefficients allows obtaining multiple estimates from 
different level of the tree with different degree of variance and frequency resolution, in one 
snapshot and one operation. This feature can be exploited to construct an adaptable and re-
configurable spectrum estimation mechanism. Clearly this kind of flexibility offered by 
wavelet based spectrum estimator (and not available in periodogram and Welch estimates) 
is of enormous advantage in a dynamic and time variant environment.  

• Maximally frequency selective wavelets that suppressed the pass and stop band ripples 
were developed by compromising the regularity constraints. The solver Semi Definite 
Programming used for solving the optimization problem was found to be quite efficient. 

• The estimators based on the newly designed optimum wavelet decomposition filter yielded 
better performance than ones based on standard wavelets such as Coiflets, Symlets and 
Daubechies.  

• We also successfully tagged the wavelet based spectrum estimation unit to a WPMCM 
transceiver structure by exploiting the filter bank infrastructure used for Discrete Wavelet 
Packet Transform implementation. Hence the spectrum analysis is done at virtually no 
additional cost. From simulation studies, assuming the presence of Licensed Users (LU), it 
was found that the performance of complete WPMCM transceiver is excellent for 
extremely narrow band LU and good for wide band LU. 

• Spectrum carving was identified as the main issue that limits the performance of the 
wavelet based spectrum estimator. Spectrum carving emerges because the wavelet filters 
have a non-zero transition band. When the wavelet packet tree structure is constructed by 
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iterating the wavelet filters, it results in residual artifacts which sometimes occur in the 
stop band 

• The impact of spectrum carving is not significant for extremely narrow band cases but can 
be deleterious for wideband sources. This also explains why WPMCM transceivers are 
excellent for extremely narrow band LU 

7.2 Future Research Topics 

7.2.1 Addressing the spectrum carving issue 
 As already discussed before, in section 6.1.1, spectrum carving emerges because the 
cascaded filters that should theoretically be confined to a particular frequency band have residual 
component in other bands. With respect to WPMCM transmitter, a particular multi-carrier 
component that should theoretically only have frequency components at particular band may also 
have residual components at other band. In the context of cognitive radio applications this may 
complicate the shaping of the CR characteristics in order to enable it to cohabitate with LU. 
 Fred Harris in [40] has proposed the employment of Interpolated Tree Orthogonal 
Multiplexing (ITOM) as an antidote for spectrum carving. While, in WPMCM (as well as in the 
wavelet based spectrum estimation), only two half band filters are employed in the filter bank 
structure, ITOM uses four half band interpolating filters in its filter bank structure. These four half 
band filters are low pass filter, high pass filter and two Hilbert Transform filters [41]. The 
mitigation of spectrum carving is done by careful selection of half band filters in each branch of 
ITOM. Unfortunately, both [40] and [41] do not provide the specifics on the actual rules that 
govern the placement of particular half band filters in different branches of the ITOM tree. The 
results provided in [40]-[41] appear promising and hence it will be interesting to investigate the 
possibility of exploiting the tree structured used by ITOM for spectrum estimation purposes. 

7.2.2 Investigation on time resolution issue 
 Time information is very important when the spectrum estimation is employed as spectrum 
sensing tool for cognitive radio system to detect the licensed user. However, it is also clear that 
there is ambiguity about the definition of time resolution from the perspective of spectrum 
estimation and the time resolution from the perspective of wavelet packet decomposition. Before 
we perform a research on the time resolution aspect of the wavelet based spectrum estimation, this 
ambiguity should be resolved.  

If we assume that the sampling rate is fixed, the time resolution would be related to the size 
of the snapshot window and hence, the number of samples. From chapter 3, it can be found that 
difference number of samples (and snapshot window) seems to impact the performance of the 
wavelet based estimates. While in periodogram this can be easily explained analytically by using 
Fourier Transform and the concept of rectangular windowing, analytical explanation for the case of 
wavelet based estimates still needs to be investigated.  

7.2.3 Investigation on the impact of fading channel on WPMCM Transceiver 
 In chapter 5, we combined the wavelet based spectrum estimator and WPMCM in one 

transceiver and tested its operation. However the channel considered was a benign AWGN channel. 
Hence it would be important that the work is extended to study the operation of the WPMCM 
transceiver under realistic wireless communication channel with multi-paths and in the presence of 
shadowing.  

7.2.4 Comparative analysis with the combination of traditional OFDM and FFT 
based spectrum estimators 

While we have already combined the WPMCM and wavelet based spectrum estimators to 
form spectrum shaping technique based on wavelet, it is always possible to develop a similar 
technique by combining OFDM as a mature multi-carrier modulation technique with FFT based 
spectrum estimator. Even though it is not quite appropriate to compare these two spectrum shaping 
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techniques due to the existence of broad range of performance metrics, it is always interesting to 
observe the BER performance of the both system in order to find out the position of one technique 
with respect to the other. The impact of both AWGN channel and fading channel should also be 
investigated. The result of this study can play a role as a basis for further comprehensive 
comparative analysis between two systems. 

7.2.5 Analysis of WPMCM based CR impact on primary user 
 In Chapter 5 we studied as to how various sources (single tone, multi tone, partial band and 
swept tone) influenced the performance of a WPMCM transceiver. A similar study on how these 
sources were affected by the WPMCM based CR operation is also due and necessary. 

7.2.6 Pilot Channel and Echo Cancellation issue in WPMCM transceiver 
As already mentioned in chapter 4, we have not considered the mechanism to distinguish 

the signal transmitted by LU from the signal produced by other CR users. Furthermore, we also has 
not taken into account the need for echo cancellation to make sure that the spectrum estimator of a 
CR system is not burdened by the signal that is produced by its own transmitter. It has also been 
mentioned that the mechanism that is introduced for WPMCM transceiver here requires a pilot 
channel. The pilot channel is needed by a CR system to inform its communication pair (another CR 
system) about the subcarriers that are currently used. We propose all this issues in WPMCM 
transceiver as another important research topic. 

7.2.7 Investigation on the complexity issues of wavelet based spectrum estimation 
 Last but not the least, a thorough complexity analysis of the Wavelet packet based 
spectrum estimator as well as the WPMCM transceiver is important. Theoretically speaking, the 
wavelet based spectrum estimation is quite simple since it is just implemented based on iterative 
half band filtering and down sampling by factor-2. Nevertheless, it is important to find out the 
position of this technique in relation to existing spectrum estimation approaches from the stand 
point of system complexity. Information about complexity aspect would be extremely important for 
comparative analysis between different spectrum estimation techniques in order to assess whether 
the advantages offered by each technique is worthy or not after the complexity aspect is considered. 
 Some aspects that might be included with respect to investigation on complexity are the 
optimal decomposition levels, how the complexity grows with increasing decomposition level 
and/or increasing wavelet decomposition filter length, what kind of optimizations can be employed 
in the computer simulation programs to reduce the complexity and in the hardware realization. 
From the design perspective, it would also be useful to try other semi definite programming tools 
apart from SeDuMi especially to solve wavelet design optimization problems with considerably 
large filter length and large regularity index. Further study on convex optimization problems might 
also be required.  

7.2.8 Treatment of Finite Length Data Samples 
 The wavelet based spectrum estimator that is developed in this thesis work is based on 
Wavelet Packet Transform. As any spectral estimation method, the wavelet transform suffers from 
discontinuities (abrupt transition) in the edge of the data blocks which may lead to the emergence 
of additional high frequency components in the estimates. This undesirable effect is known as the 
edge effect [44]. The current wavelet based spectrum estimator has not included additional 
technique to handle this edge effect. With respect to this issue, we propose further study on existing 
techniques such as circular convolution and symmetric extension and the possibility of employing 
them in our wavelet based spectrum estimator. In addition, the windowing and segment overlap 
approach introduced by Welch on Periodogram may also be employed in wavelet based approach. 
The window may be applied on the received samples before passing the samples through the 
wavelet packet tree. Apart from the investigation on the employment of these possible techniques, 
further analysis with respect to Parseval theory as well as some trade offs related to the possibility 
of information loss needs to be conducted. We consider all of these issues as possible further 
research. 
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7.2.9 Position of wavelet based spectrum estimation with respect to existing cognitive 
radio spectrum sensing techniques 
 While it is our desire to use wavelet based spectrum estimation technique for dynamic 
spectrum access, we confined ourselves in this work to address the problems of spectrum 
estimation and hardly touched the real issues of spectrum sensing like signal detection in the 
presence of noise, exploitation of signal features such as cyclo-stationarity for detection. 
Furthermore, throughout this thesis work, we always compared the wavelet based approach with 
Periodogram and Welch methods. This is because these are also estimation techniques as against 
Energy Detection and Cyclostationary Feature Detection, which are spectrum sensing techniques 
and hence deal with detection problems. Hence, in the future we would like to alter the framework 
of the research topic to include spectrum sensing problems, particularly, in the context of Cognitive 
Radio and Dynamic Spectrum Access applications.  

7.3 Concluding Remarks 
At this juncture it is worth underlining the fact that the work carried out in this thesis, on 

applying wavelets and wavelet packet transform for spectrum estimation, is pioneering (albeit 
preliminary) in many ways. Much work remains to be done before the proposed methodology can 
be considered mature and viable for real-time systems.  
 In this work we focused on realizing the system and on evaluating the frequency resolution 
and accuracy offered by the wavelet based solution. The challenges contending the implementation 
and possible improvements, as suggested in Chapter 6 and Section 7.2, have to be addressed in the 
future. 
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APPENDIX A: ADDITIONAL TABLES FOR CHAPTER 4 

A.1 Investigation on the relationship between the properties of decomposition 
filter and the performance of wavelet based estimates 

 As already mentioned in section 4.1, the relationship between the properties of 
decomposition filter and the performance of the corresponding wavelet based estimates is 
investigated by running simulations that involve nine different types of sources occupying different 
band in the range of normalized frequency from 0 to π. These nine types of sources (from type A to 
type I) have been listed in table 4.1. The correlation coefficient for each pair of indicators is 
calculated 100 times for each source. Later, the average and the standard deviation of the 
correlation coefficients, E[ρ] and σρ respectively, are calculated. The results are all tabulated in 
tables A.1.1 to A.1.9 of this appendix. These tables illustrate the average and standard deviation of 
100 correlation coefficients computed for each pair of indicators in each source. The criteria that 
we use to describe the correlation between the two indicators are indicated in table 4.2.  
 

Table A.1.1 Correlation coefficient between the indicators found in the frequency response of wavelet decomposition 
filter and wavelet based estimates for the case of Type-A source 

Wavelet 
Decomposition 

Filter Indicators 

Indicators of the Wavelet based 
Estimates 

Average of 
the 

Correlation 
Coefficients 

Standard 
Deviation of  the 

Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 

0.99931 0.00013 Strongly correlated 

Variance of the 
pass-band 

Average power at the unoccupied 
band 

0.80659 0.00263 Strongly correlated 

Variance of the 
stop-band 

Average power at the unoccupied 
band 

0.83217 0.00251 Strongly correlated 

Average power at 
the rejection band 

(stop band) 

Average power at the unoccupied 
band 0.89532 0.00207 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.94444 0.02343 Strongly correlated 

Variance of the 
pass-band Width of the transition band 0.63351 0.06876 Correlated 

Variance of the 
stop-band 

Width of the transition band 0.66249 0.06622 Correlated 

Average power at 
the rejection band 

(stop band) 
Width of the transition band 0.74236 0.05849 Correlated 

Width of transition 
band Maximum side lobe 0.98150 0.00630 Strongly correlated 

Variance of the 
pass-band 

Maximum side lobe 0.80968 0.03611 Strongly correlated 

Variance of the 
stop-band 

Maximum side lobe 0.83265 0.03341 Strongly correlated 

Average power at 
the rejection band 

(stop band) 
Maximum side lobe 0.88981 0.02615 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.81792 0.01783 Strongly correlated 

Variance of the 
pass-band 

Power variance in the unoccupied 
band 

0.31594 0.02827 Weakly correlated 

Variance of the 
stop-band 

Power variance in the unoccupied 
band 

0.35339 0.02806 Weakly correlated 

Average power at 
the rejection band 

(stop band) 

Power variance in the unoccupied 
band 

0.46181 0.02694 Weakly correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.59106 0.19066 

Correlated (Note: the 
variance of the 
correlation is 
significant) 
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Variance of the 
pass-band 

Frequency resolution of the 
estimate 

0.25523 0.24093 Not clear 

Variance of the 
stop-band 

Frequency resolution of the 
estimate 

0.28390 0.23724 Not clear 

Average power at 
the rejection band 

(stop band) 

Frequency resolution of the 
estimate 

0.36014 0.22949 Not clear 

Width of transition 
band 

Power variance in the occupied 
band 0.62644 0.14075 

Correlated (Note: the 
variance of the 
correlation is 
significant) 

Variance of the 
pass-band 

Power variance in the occupied 
band 0.13265 0.15825 Not clear 

Variance of the 
stop-band 

Power variance in the occupied 
band 

0.16664 0.15909 Not clear 

Average power at 
the rejection band 

(stop band) 

Power variance in the occupied 
band 

0.26754 0.15992 Not clear 

  
Table A.1.2 Correlation coefficient between the indicators found in the frequency response of wavelet 

decomposition filter and wavelet based estimates for the case of Type-B source  

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation of  

the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 

0.55062 0.00000 Correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 0.47323 0.00000 Weakly Correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.46972 0.00000 Weakly Correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 

0.51847 0.00000 Correlated 

Width of transition 
band Maximum side lobe 0.65689 0.00000 Correlated 

Variance of the pass-
band Maximum side lobe 0.76122 0.00000 Correlated 

Variance of the stop-
band 

Maximum side lobe 0.75728 0.00000 Correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.73158 0.00000 Correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.46729 0.00000 Weakly Correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 

0.30188 0.00000 Weakly Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.30023 0.00000 Weakly Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.37162 0.00000 Weakly Correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.00000 0.00000 Uncorrelated 

Variance of the pass-
band 

Frequency resolution of the 
estimate 

0.00000 0.00000 Uncorrelated 

Variance of the stop-
band 

Frequency resolution of the 
estimate 

0.00000 0.00000 Uncorrelated 

Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 

0.00000 0.00000 Uncorrelated 
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Table A.1.3 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-C source 

Wavelet 
Decomposition 

Filter Indicators 

Indicators of the 
Wavelet based Estimates 

Average of 
the 

Correlation 
Coefficients 

Standard 
Deviation of  the 

Correlation 
Coefficients 

Inferences 

Width of 
transition band 

Average power at the 
unoccupied band 

0.99256 0.00069 Strongly correlated 

Variance of the 
pass-band 

Average power at the 
unoccupied band 

0.85694 0.00279 Strongly correlated 

Variance of the 
stop-band 

Average power at the 
unoccupied band 0.87916 0.00262 Strongly correlated 

Average power at 
the rejection band 

(stop band) 

Average power at the 
unoccupied band 0.93213 0.00205 Strongly correlated 

Width of 
transition band 

Width of the transition 
band 

0.97187 0.01488 Strongly correlated 

Variance of the 
pass-band 

Width of the transition 
band 0.74314 0.04199 Correlated 

Variance of the 
stop-band 

Width of the transition 
band 

0.77079 0.04012 Correlated 

Average power at 
the rejection band 

(stop band) 

Width of the transition 
band 

0.83909 0.03498 Strongly Correlated 

Width of 
transition band 

Maximum side lobe 0.94954 0.00940 Strongly correlated 

Variance of the 
pass-band 

Maximum side lobe 0.85827 0.02128 Strongly correlated 

Variance of the 
stop-band 

Maximum side lobe 0.87855 0.01893 Strongly correlated 

Average power at 
the rejection band 

(stop band) 
Maximum side lobe 0.92382 0.01379 Strongly correlated 

Width of 
transition band 

Power variance in the 
unoccupied band 

0.92633 0.01257 Strongly correlated 

Variance of the 
pass-band 

Power variance in the 
unoccupied band 

0.51394 0.02696 Correlated 

Variance of the 
stop-band 

Power variance in the 
unoccupied band 

0.54962 0.02663 Correlated 

Average power at 
the rejection band 

(stop band) 

Power variance in the 
unoccupied band 

0.64760 0.02484 Correlated 

Width of 
transition band 

Frequency resolution of 
the estimate 

0.69129 0.17072 
Correlated (Note: the variance of 

the correlation is significant) 
Variance of the 

pass-band 
Frequency resolution of 

the estimate 
0.53018 0.24751 

Correlated (Note: the variance of 
the correlation is significant) 

Variance of the 
stop-band 

Frequency resolution of 
the estimate 

0.54951 0.24426 
Correlated (Note: the variance of 

the correlation is significant) 
Average power at 
the rejection band 

(stop band) 

Frequency resolution of 
the estimate 

0.59824 0.23185 
Correlated (Note: the variance of 

the correlation is significant) 

Width of 
transition band 

Power variance in the 
occupied band 

0.77501 0.13590 
Correlated (Note: the variance of 

the correlation is significant) 
Variance of the 

pass-band 
Power variance in the 

occupied band 0.41006 0.18044 Not clear 

Variance of the 
stop-band 

Power variance in the 
occupied band 

0.44137 0.17820 Not clear 

Average power at 
the rejection band 

(stop band) 

Power variance in the 
occupied band 0.52661 0.17213 

Correlated (Note: the variance of 
the correlation is significant) 
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Table A.1.4 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-D source  

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation 

of  the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 

0.98966 0.00114 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 

0.86821 0.00375 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.88944 0.00352 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.93971 0.00271 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.94940 0.02322 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.69501 0.05658 Correlated 

Variance of the stop-
band 

Width of the transition band 0.72547 0.05448 Correlated 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.79983 0.04819 Correlated 

Width of transition 
band Maximum side lobe 0.89691 0.00749 Strongly correlated 

Variance of the pass-
band 

Maximum side lobe 0.95643 0.00591 Strongly correlated 

Variance of the stop-
band 

Maximum side lobe 0.96711 0.00483 Strongly correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.98431 0.00237 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.96424 0.00994 Strongly correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 

0.61181 0.02753 Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.64527 0.02714 Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.73444 0.02488 Correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.69845 0.16642 
Correlated (Note: the 

variance of the correlation 
is significant) 

Variance of the pass-
band 

Frequency resolution of the 
estimate 

0.58134 0.26444 
Correlated (Note: the 

variance of the correlation 
is significant) 

Variance of the stop-
band 

Frequency resolution of the 
estimate 

0.59857 0.25845 
Correlated (Note: the 

variance of the correlation 
is significant) 

Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 

0.63984 0.24118 
Correlated (Note: the 

variance of the correlation 
is significant) 

Width of transition 
band 

Power variance in the occupied 
band 

0.74891 0.14368 
Correlated (Note: the 

variance of the correlation 
is significant) 

Variance of the pass-
band 

Power variance in the occupied 
band 0.44006 0.18129 Not clear 

Variance of the stop-
band 

Power variance in the occupied 
band 

0.46776 0.17894 Not clear 

Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 

0.54249 0.17316 
Correlated (Note: the 

variance of the correlation 
is significant) 
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Table A.1.5 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-E source 

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation of  

the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 

0.99935 0.00012 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 

0.80592 0.00257 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.83152 0.00246 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.89477 0.00203 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.93717 0.02959 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.61136 0.07941 Correlated 

Variance of the stop-
band 

Width of the transition band 0.64109 0.07615 Correlated 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.72361 0.06758 Correlated 

Width of transition 
band Maximum side lobe 0.98103 0.00678 Strongly correlated 

Variance of the pass-
band 

Maximum side lobe 0.81110 0.03869 Strongly correlated 

Variance of the stop-
band 

Maximum side lobe 0.83408 0.03573 Strongly correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.89111 0.02813 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.81715 0.01806 Strongly correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 

0.31510 0.02885 Weakly correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.35248 0.02865 Weakly correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.46081 0.02747 Weakly correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.54509 0.24180 

Correlated (Note: the 
variance of the 
correlation is 
significant) 

Variance of the pass-
band 

Frequency resolution of the 
estimate 

0.21580 0.29142 Not clear 

Variance of the stop-
band 

Frequency resolution of the 
estimate 

0.24219 0.29038 Not clear 

Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 

0.31514 0.28600 Not clear 

Width of transition 
band 

Power variance in the occupied 
band 0.63421 0.13500 

Correlated (Note: the 
variance of the 
correlation is 
significant) 

Variance of the pass-
band 

Power variance in the occupied 
band 0.13317 0.16224 Not clear 

Variance of the stop-
band 

Power variance in the occupied 
band 

0.16777 0.16188 Not clear 

Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 

0.27015 0.16058 Not clear 
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Table A.1.6 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-F source 

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation of  

the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 0.99245 0.00182 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 0.85634 0.00822 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.87859 0.00744 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.93166 0.00548 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.93781 0.03238 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.66750 0.07803 Correlated 

Variance of the stop-
band 

Width of the transition band 0.69543 0.07506 Correlated 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.76897 0.06693 Correlated 

Width of transition 
band Maximum side lobe 0.96260 0.00856 Strongly correlated 

Variance of the pass-
band 

Maximum side lobe 0.84985 0.03230 Strongly correlated 

Variance of the stop-
band 

Maximum side lobe 0.86957 0.02951 Strongly correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.91646 0.02263 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.93981 0.02252 Strongly correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 0.55519 0.05918 Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.58990 0.05655 Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.68346 0.05020 Correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.45059 0.25808 Not clear 

Variance of the pass-
band 

Frequency resolution of the 
estimate 

0.12011 0.31270 Not clear 

Variance of the stop-
band 

Frequency resolution of the 
estimate 

0.14440 0.31262 Not clear 

Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 

0.21458 0.30757 Not clear 

Width of transition 
band 

Power variance in the occupied 
band 0.75371 0.12573 

Correlated (Note: the 
variance of the 
correlation is 
significant) 

Variance of the pass-
band 

Power variance in the occupied 
band 0.40546 0.17126 Not clear 

Variance of the stop-
band 

Power variance in the occupied 
band 0.43507 0.16959 Not clear 

Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 0.51677 0.16264 

Correlated (Note: the 
variance of the 
correlation is 
significant) 
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Table A.1.7 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-G source  

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation 

of  the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 

0.98907 0.00249 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 

0.86925 0.00845 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.89038 0.00766 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.94031 0.00561 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.85296 0.09626 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.65903 0.11969 
Correlated (Note: the 

variance of the correlation 
is significant) 

Variance of the stop-
band 

Width of the transition band 0.68287 0.11776 
Correlated (Note: the 

variance of the correlation 
is significant) 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.74254 0.11269 

Correlated (Note: the 
variance of the correlation 

is significant) 
Width of transition 

band Maximum side lobe 0.91682 0.02458 Strongly correlated 

Variance of the pass-
band Maximum side lobe 0.84327 0.03704 Strongly correlated 

Variance of the stop-
band 

Maximum side lobe 0.85720 0.03430 Strongly correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.89388 0.02660 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.95505 0.02323 Strongly correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 

0.60875 0.06844 Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.64082 0.06596 Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.72740 0.05864 Correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.43808 0.22749 Not clear 

Variance of the pass-
band 

Frequency resolution of the 
estimate 

0.12237 0.28952 Not clear 

Variance of the stop-
band 

Frequency resolution of the 
estimate 

0.14414 0.28833 Not clear 

Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 

0.20996 0.28157 Not clear 

Width of transition 
band 

Power variance in the occupied 
band 

0.60325 0.22860 
Correlated (Note: the 

variance of the correlation 
is significant) 

Variance of the pass-
band 

Power variance in the occupied 
band 

0.36587 0.24378 Not clear 

Variance of the stop-
band 

Power variance in the occupied 
band 

0.38770 0.24323 Not clear 

Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 

0.44653 0.24219 Not clear 
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Table A.1.8 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-H Source  

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation 

of  the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 0.99073 0.00110 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 0.85102 0.00605 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.87497 0.00549 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.93039 0.00409 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.89661 0.05495 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.67414 0.09552 Correlated 

Variance of the stop-
band 

Width of the transition band 0.69983 0.09226 Correlated 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.76538 0.08321 Correlated 

Width of transition 
band Maximum side lobe 0.99379 0.00298 Strongly correlated 

Variance of the pass-
band 

Maximum side lobe 0.78070 0.03222 Correlated 

Variance of the stop-
band 

Maximum side lobe 0.80746 0.02982 Strongly correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.87345 0.02405 Strongly correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.99212 0.00413 Strongly correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 0.75848 0.03053 Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.78872 0.02853 Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.86121 0.02347 Strongly correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.84992 0.08288 Strongly correlated 

Variance of the pass-
band 

Frequency resolution of the 
estimate 0.56308 0.19682 

Correlated (Note: the 
variance of the correlation 

is significant) 

Variance of the stop-
band 

Frequency resolution of the 
estimate 0.59285 0.18915 

Correlated (Note: the 
variance of the correlation 

is significant) 
Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 0.67023 0.16926 

Correlated (Note: the 
variance of the correlation 

is significant) 
Width of transition 

band 
Power variance in the occupied 

band 0.89810 0.04922 Strongly Correlated 

Variance of the pass-
band 

Power variance in the occupied 
band 0.54856 0.10572 

Correlated (Note: the 
variance of the correlation 

is significant) 

Variance of the stop-
band 

Power variance in the occupied 
band 0.58249 0.10223 

Correlated (Note: the 
variance of the correlation 

is significant) 
Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 0.67196 0.09312 Correlated 
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Table A.1.9 Correlation coefficient between the indicators found in the frequency response of wavelet 
decomposition filter and wavelet based estimates for the case of Type-I source  

Wavelet 
Decomposition Filter 

Indicators 

Indicators of the Wavelet based 
Estimates 

Average of the 
Correlation 
Coefficients 

Standard 
Deviation 

of  the 
Correlation 
Coefficients 

Inferences 

Width of transition 
band 

Average power at the unoccupied 
band 0.99779 0.00037 Strongly correlated 

Variance of the pass-
band 

Average power at the unoccupied 
band 0.81262 0.00575 Strongly correlated 

Variance of the stop-
band 

Average power at the unoccupied 
band 0.83862 0.00531 Strongly correlated 

Average power at the 
rejection band (stop 

band) 

Average power at the unoccupied 
band 0.90150 0.00414 Strongly correlated 

Width of transition 
band 

Width of the transition band 0.89467 0.02671 Strongly correlated 

Variance of the pass-
band 

Width of the transition band 0.54922 0.05721 Correlated 

Variance of the stop-
band 

Width of the transition band 0.58022 0.05555 Correlated 

Average power at the 
rejection band (stop 

band) 
Width of the transition band 0.66722 0.05068 Correlated 

Width of transition 
band Maximum side lobe 0.66816 0.06678 Correlated 

Variance of the pass-
band 

Maximum side lobe 0.66139 0.06954 Correlated 

Variance of the stop-
band 

Maximum side lobe 0.66702 0.07076 Correlated 

Average power at the 
rejection band (stop 

band) 
Maximum side lobe 0.67699 0.07224 Correlated 

Width of transition 
band 

Power variance in the unoccupied 
band 

0.99240 0.00342 Strongly Correlated 

Variance of the pass-
band 

Power variance in the unoccupied 
band 0.77416 0.02759 Correlated 

Variance of the stop-
band 

Power variance in the unoccupied 
band 

0.80385 0.02570 Strongly Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the unoccupied 
band 

0.87411 0.02090 Strongly Correlated 

Width of transition 
band 

Frequency resolution of the 
estimate 

0.86444 0.10055 Strongly Correlated 

Variance of the pass-
band 

Frequency resolution of the 
estimate 0.60784 0.22027 

Correlated (Note: the 
variance of the correlation 

is significant) 

Variance of the stop-
band 

Frequency resolution of the 
estimate 0.63514 0.21212 

Correlated (Note: the 
variance of the correlation 

is significant) 
Average power at the 
rejection band (stop 

band) 

Frequency resolution of the 
estimate 0.70569 0.19026 

Correlated (Note: the 
variance of the correlation 

is significant) 
Width of transition 

band 
Power variance in the occupied 

band 0.94356 0.02973 Strongly Correlated 

Variance of the pass-
band 

Power variance in the occupied 
band 0.63746 0.06851 Correlated 

Variance of the stop-
band 

Power variance in the occupied 
band 0.66863 0.06639 Correlated 

Average power at the 
rejection band (stop 

band) 

Power variance in the occupied 
band 0.75017 0.05949 Correlated 
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A.2 Example of impulse responses of the high and low pass filters of the 
optimally designed wavelets using SDP Approach 

Tables A.2.1 and A.2.2 give the coefficients of the designed wavelet filter illustrated in 
figure 4.5 and 4.6, respectively 

Table A.2.1 Optimal filter coefficients for filter length L=30, K-regularity=7 Transition Band=0.2π 
Index Low Pass Filter High Pass Filter Index Low Pass Filter High Pass Filter 

1 0.0000 -0.0201 16 -0.0611 -0.0074 
2 -0.0000 0.1437 17 0.0206 -0.0395 
3 0.0001 -0.4279 18 0.0892 -0.0017 
4 0.0002 0.6521 19 -0.0357 0.0223 
5 -0.0006 -0.4454 20 -0.1296 0.0055 
6 0.0001 -0.0789 21 0.0469 -0.0097 
7 0.0024 0.3037 22 0.1943 -0.0049 
8 -0.0026 -0.0350 23 -0.0350 0.0026 
9 -0.0049 -0.1943 24 -0.3037 0.0024 
10 0.0097 0.0469 25 -0.0789 -0.0001 
11 0.0055    0.1296 26 0.4454 -0.0006 
12 -0.0223 -0.0357 27 0.6521 -0.0002 
13 -0.0017 -0.0892 28 0.4279 0.0001 
14 0.0395 0.0206 29 0.1437 0.0000 
15 -0.0074 0.0611 30 0.0201 0.0000 

 
Table A.2.2 Optimal filter coefficients for filter length L=40, K-regularity=8 Transition Band=0.2π 

Index Low Pass Filter High Pass Filter Index Low Pass Filter High Pass Filter 
1 0.0000 -0.0071 21 -0.0404 -0.0018 
2 0.0000 0.0630 22 0.0035 0.0261 
3 0.0000 -0.2416 23 0.0586 0.0047 
4 0.0000 0.5128 24 -0.0110 -0.0154 
5 0.0001 -0.6110 25 -0.0818 -0.0053 
6 -0.0000 0.2958 26 0.0194 0.0077 
7 -0.0001 0.1849 27 0.1122 0.0044 
8 0.0004 -0.2882 28 -0.0249 -0.0030 
9 0.0001 -0.0275 29 -0.1538 -0.0028 
10 -0.0013 0.2128 30 0.0179 0.0006 
11 0.0006 -0.0179 31 0.2128 0.0013 
12 0.0028 -0.1538 32 0.0275 0.0001 
13 -0.0030 0.0249 33 -0.2882 -0.0004 
14 -0.0044 0.1122 34 -0.1849 -0.0001 
15 0.0077 -0.0194 35 0.2958 0.0000 
16 0.0053 -0.0818 36 0.6110 0.0001 
17 -0.0154 0.0110 37 0.5128 -0.0000 
18 -0.0047 0.0586 38 0.2416 0.0000 
19 0.0261 -0.0035 39 0.0630 -0.0000 
20 0.0018 -0.0404 40 0.0071 0.0000 
 

 

Figure 4.5 and 4.6 describes the impulse response of the high and low pass filters of the 
optimally designed wavelets for L=30 K=7 B=0.2π and L=40 K=8 B=0.2π, respectively. The 
coefficients of the designed wavelet filter for L=30 K=7 B=0.2π and L=40 K=8 B=0.2π are 
presented in appendix A.2 (tables A.2.1 and A.2.2, respectively). 
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