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Abstract — Nodal diffusion is currently the preferred neutronics model for industrial reactor core calculations,
which use few-group cross-section libraries generated via standard assembly homogenization. The infinite-medium
flux-weighted cross sections fail to capture the spectral effects triggered in the core environment by nonreflective
boundary conditions at the fuel-assembly edges. This poses a serious limitation to the numerical simulation of
current- and next-generation reactor cores, characterized by strong interassembly heterogeneity.

Recently, a spectral rehomogenization method has been developed at AREVA NP. This approach consists
of an on-the-fly modal synthesis of the spectrum variation between the environmental and infinite-medium
conditions. It uses information coming from both the nodal simulation and the lattice transport calculation
performed to compute the standard cross sections. The accuracy of the spectral corrections depends on the
choice of the basis and weighting functions for the expansion and on the definition of a realistic energy
distribution of the neutron leakage. In this paper, we focus on the first aspect. Two tracks are researched: a
combination of analytical functions (with a physically justified mode) and a mathematical approach building
upon the Proper Orthogonal Decomposition. The method is applied to relevant pressurized-water-reactor
benchmark problems. We show that the accuracy of the cross sections is significantly improved at reasonably
low computational cost and memory requirement. Several aspects of the methodology are discussed, such as
the interplay with space-dependent corrections. We demonstrate that this approach can model not only the
spectral interactions between dissimilar neighbor assemblies but also the spectral effects due to different
physical conditions (namely, multiplicative properties) in the environment and in the infinite medium.

Keywords — Nodal diffusion, homogenization, spectral correction.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Nodal diffusion methods are nowadays one of the
most common computational tools for reactor core

design and operation.1,2 Few-group cross sections used
in nodal codes for three-dimensional full-core simula-
tions derive from standard energy collapsing and spatial
homogenization performed during preliminary lattice
transport calculations with reflective boundary condi-
tions (also referred to as infinite-medium conditions).3

Their preparation involves a set of reference cross
sections (interpolated at proper temperature and dilution
and self-shielded) in a very fine number of energy
groups and a reference condensation spectrum
computed in the most detailed geometry. During the
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core calculation, the cross-section dependence on the
local physical conditions (such as burnup, moderator
density, fuel temperature, and diluted-boron concentra-
tion) is resolved by the interpolation from parameterized
tables as a function of instantaneous and history vari-
ables. The major weakness of this methodology is that
the infinite-medium neutron flux used for cross-section
weighting at the single-assembly calculation stage does
not account for the environmental effects. These arise
when the assembly is located in the reactor core due to
typically nonreflective boundary conditions. Hence, the
equivalence between the nodal representation and the
real global solution from transport can be guaranteed
only if the flux distribution inside the assembly is close
to the infinite-medium one (that is, if the assembly is
surrounded by assemblies of the same type in a large
medium compared to the neutron mean free path).
However, this condition is seldom met in modern reactor
core layouts, characterized by strongly heterogeneous
configurations aiming to reduce the neutron leakage, to
optimize the core-power distribution, and to maximize
the fuel exploitation. Typical examples are fuel loading
patterns combining low-enriched uranium and mixed
oxide (MOX) assemblies; reflector boundaries; layouts
with local, strong burnable absorbers; elaborate inser-
tion schemes of control mechanisms; and depleted-
assembly shuffling strategies. With these increasingly
widespread complex designs, the nodal cross sections
built by the standard homogenization paradigm could
fail to reproduce accurate estimates of the reaction rates
and multiplication factor. Eventually, even with default
adjustments in the construction of parameterized tables
(such as criticality by the fundamental-buckling correc-
tion), high-fidelity simulations of water reactors with
environment-independent homogenization parameters
are only possible for fresh fuel at start-up in weakly
heterogeneous systems. Therefore, the core-
environment conditions need to be modeled to provide
more accurate inputs for nodal solvers.

Heterogeneity-induced effects have an impact on the
neutron flux distribution in both space and energy. For
example, Fig. 1a shows the infinite-medium spatially
averaged neutron spectra (normalized to unity) in two
adjacent UO2 and MOX assemblies at zero burnup.
Figure 1b displays the variation of the spectrum
(in percent) in the two fuel bundles in the core environ-
ment. The perturbation in the neutron distribution is sig-
nificant, especially at thermal energies.

Even if the spatial and spectral effects are tightly
coupled, for the sake of simplicity they are often
addressed separately by reactor analysis methods. In

order to deal with the former, Smith introduced an
efficient iterative method for cross-section
homogenization.4 Recently, a two-dimensional (2-D)
submesh-based rehomogenization scheme has been
adopted in Studsvik’s SIMULATE nodal code,5 and a
spatial rehomogenization method has been developed at
AREVA NP (Ref. 6). Moreover, in most nodal codes a
spatial intraassembly dependence of the nodal cross
sections is imposed to capture burnup and isotopic-
inventory gradients,7,8 and possibly, to model design
heterogeneity.9

In the present work we focus on spectral effects. A
number of techniques have been proposed in the past to

Fig. 1. Spectral effects at a UO2-MOX interface: (a)
infinite-medium assembly-averaged spectra (normalized
to unity) per unit lethargy u and (b) variation of the
spectrum in the two assemblies in the real environment
(in units of percent).
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correct the single-assembly cross sections for these. For
instance, considerable effort has been put into
approaches tabulating the impact of dissimilar neighbor
nodes. One of them, presented by Palmtag, applies an
empirical correlation accounting for local spectral
interactions.10 This method, originally developed for
UO2-MOX interfaces, relies on the observations that
the fractional change in the fast-group cross sections is
proportional to the leakage-to-removal ratio of fast neu-
trons and that the relative variation in spectral index
(raised to a power close to 1) accurately matches the
relative variations in the cross sections. In a similar
approach proposed later called the Leakage Feedback
Method,11 the cross-section functionalization is extended
to the leakage fractions of both groups, and a separate
formulation is proposed for peripheral fuel assemblies
facing the reflector.

Rahnema and Nichita proposed a method to interpolate
the corrections on the nodal cross sections and discontinuity
factors as a function of the surface current-to-flux ratio.12

The tabulated corrections are precomputed during the
lattice-calculation phase via parametric assembly simula-
tions with varying albedo boundary conditions. Recently, a
variant of this approach has been proposed.13 When using
this kind of method, additional lattice calculations are
required to include the auxiliary albedo parameter(s) in the
cross-section libraries. Clarno and Adams employed a spa-
tial superposition of colorsets in order to reduce the number
of extra calculations,14 whereas Rahnema and McKinley
developed a high-order cross-section homogenization
method that does not demand to perform parametric lattice
calculations.15 The latter approach is based on high-order
boundary-condition perturbation theory16,17 and requires
two infinite-medium adjoint functions precomputed as addi-
tional homogenization parameters. Among the other
spectral-correction approaches recently developed, wemen-
tion the recondensation method18 and the semiheteroge-
neous transport-embedded approach.19

In this paper we present AREVA NP’s spectral
rehomogenization method. This approach consists of
estimating the difference between the environmental
and infinite-medium node-averaged spectra. This is
done at the core calculation level by means of a limited
set of known modal components in the domain of
energy. The spectrum variation modal expansion is
solved by Galerkin or Petrov-Galerkin projection of
the local fine-group neutron balance equation over a
set of weighting operators. The energy condensation
defects are thus evaluated on the fly and added to the
nodal cross sections provided by the standard lattice
calculation.

Since the earliest formulation of the method,20 original
work has been done in the definition of its two pillars: the
modal synthesis of the environmental spectrum and a con-
sistent model for the neutron leakage spectral distribution.
In the present work we mainly focus on the first subject.
Two tracks for the search of the trial and test functions are
investigated and compared: a Proper Orthogonal
Decomposition (POD) approach and a more conventional
strategy based on the use of analytical functions (Chebyshev
polynomials) and of a physically justifiedmode (the neutron
fission-emission spectrum). The methodology is validated
by numerical simulations of few assembly-configuration
samples representative of the spectral effects of the envir-
onment observable in a reactor core. The main implementa-
tion features of the method are outlined, and its
approximations and limitations are discussed. We point
out the main advantages and shortcomings of the two
modal approaches in terms of both accuracy and computa-
tional efficiency. An analysis is presented on the interplay
between the spectral rehomogenization method and the
critical-buckling spectrum correction, typically imposed at
the cross-section library preparation stage to reduce the
homogenization defect. We also address the complementar-
ity with space-dependent cross-section corrections. Finally,
preliminary results of a model for the neutron leakage
spectrum are shown.

The paper is structured as follows. Section II presents
the rehomogenization method with the latest develop-
ments. Section III discusses various sets of basis and
weighting operators for the modal synthesis of the spec-
trum change. The implementation of the rehomogeniza-
tion approach in the light water reactor (LWR) two-step
procedure is detailed. Section IV shows numerical results
for some pressurized water reactor (PWR) sample pro-
blems. Section V addresses several aspects of the metho-
dology. Conclusive remarks and recommendations for
future work follow in Sec. VI.

II. DESCRIPTION OF THE METHOD

The spectral rehomogenization method considered in
this work is part of a more general cross-section correc-
tion model aiming to reproduce environmental effects
of various natures. In previous work,21 an analytical
expression was determined for the few-group nodal
cross section homogenized (h) in the real environment,

ΣðhÞ
G;env. This reads as follows:

ΣðhÞ
G;env ¼ ΣðhÞ

G;1 þ δΣðrÞ
G þ δΣðxsÞ

G ; ð1Þ
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where

ΣðhÞ
G;1 = single-assembly cross section (interpolated

from the libraries at the current values of the
local state parameters)

δΣðrÞ
G = homogenization defect due to the flux varia-

tion δΦgðr;EÞ between the real environment
and the infinite-medium conditions

δΣðxsÞ
G = homogenization error due to the variations in

the cross-section distribution caused by the
depletion in the real environment (we encom-
passed in this term the corrections described
in Refs. 7 and 8).

In the same work,21 a flux factorization was used to
decouple the spatial and spectral components of the
homogenization-flux defect. We showed that the follow-
ing approximation holds:

δΣðrÞ
G � δΣðspatÞ

G þ δΣðspectrÞ
G þ δΣðcrossÞ

G ; ð2Þ

where the cross correction δΣðcrossÞ
G represents the contri-

bution of mixed space-energy terms. This component of
the homogenization error accounts for the fact that the
spatial and spectral effects of the environment cannot be
rigorously superposed due to their inherent
nonseparability.

According to our derivation, the spectral cross-section
correction δΣx;G for the reaction type x and the coarse
group G in a generic node can be estimated as follows
(from now on we drop the superscript spectr for the sake of
lightness of the notation):

δΣx;G ¼ 1
�ΦG

ðEþ
G

E�
G

dEΣ1
x;GðEÞδΦGðEÞ ; ð3Þ

where

Eþ
G ; E�

G = G’th-group upper and lower energy bound-
aries, respectively

Σ1
x;GðEÞ = distribution in energy of the infinite-medium

spatially averaged cross section within
group G

�ΦG = nodal integral flux

δΦGðEÞ = variation of the node-averaged neutron
energy spectrum due to environmental
effects.

The nodal flux �ΦG is simply defined as

�ΦG ¼ 1

V

ð
V
d~rΦGð~rÞ ; ð4Þ

where V is the volume of the node. We solve for δΦGðEÞ
by a modal-expansion approach. In order to find an
expression for this variable, we consider the neutron
continuous-energy balance equation in the real environ-
ment for a generic homogenized node:

Σt;envðEÞΦenvðEÞ þ LenvðEÞ

¼ χenvðEÞ
keff

ð1
0
dE0νΣf ;envðE0ÞΦenvðE0Þ

þ
ð1
0
dE0Σs;envðE0 ! EÞΦenvðE0Þ ; ð5Þ

where ΦenvðEÞ and LenvðEÞ represent the neutron spec-
trum and the leakage energy distribution in the environ-
mental conditions, respectively. The meaning of the
remaining symbols corresponds to common notation in
reactor physics literature.2 One of the main approxima-
tions of the method is to neglect the dependence of
the cross-section distributions on the environment
[i.e., Σx;envðEÞ � Σx;1ðEÞ]. This assessment will be the
subject of a thorough discussion in Sec. V.A.1 (from now
on, the subscript referring to the type of environment is
dropped from the cross-section notation). We replace the
energy E by a lethargy-like quantity u, defined separately
within each coarse energy group G as

u ¼
ln

E
E�
G

� �

ln
Eþ
G

E�
G

� � : ð6Þ

This change of variable ismade in order to ease the search of
the basis and test functions. The quantity u is bounded
between 0 and 1 in each macrogroup. It is remarked that
this ad hoc variable does not correspond to the definition of
lethargy commonly found in reactor physics textbooks [i.e.,
u ¼ lnðE0=EÞ, with E0 usually set to 10 MeV for reactor
calculations]; in our case, u increases with E. As most nodal
codes employed for LWR analysis make use of two energy
groups, we consider here a two-group framework (NG ¼ 2),
with Eþ

1 ¼ 19:6 MeV, E�
1 ;Eþ

2 ¼ 0:625 eV, and

E�
2 ¼ 1:1� 10�10 MeV. However, the methodology can

be extended to an arbitrary number of groups. In the follow-
ing, we use the notation u1 and u2 to indicate the lethargy
domain within the fast and thermal coarse groups,
respectively.
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Replacing E with u and moving to the two-group
formulation, Eq. (5) can be rewritten, for group G, as

Σt;GðuÞΦenv;GðuÞ þ Lenv;GðuÞ

¼
X2
G0¼1

χGðuÞ
keff

� ð1
0
du0vΣf ;G0 ðu0ÞΦenv;G0 u0ð Þ

þ
ð1
0
du0Σs;G0!G u0 ! uð ÞΦenv;G0 u0ð Þ

!
: ð7Þ

In each coarse group, we define the environmental spec-
trum as the sum of the reference distribution in the
infinite-medium conditions and of the sought spectrum
variation δΦGðuÞ:

Φenv;GðuÞ ¼ �ΦGφ1;GðuÞ þ δΦGðuÞ : ð8Þ

In Eq. (8), the G’th group single-assembly spectrum
φ1;GðuÞ is normalized to unity, and δΦGðuÞ has zero

average. Therefore, the following normalization condition
is satisfied:

ð1
0
duΦenv;GðuÞ ¼ �ΦG : ð9Þ

The spectrum difference is expanded in terms of the
modal components QG;iðuÞ:

δΦGðuÞ ¼
XNQG

i¼1

αG;iQG;iðuÞ ; ð10Þ

where NQG is the group-dependent number of basis func-
tions. We choose basis functions having zero average
within each coarse group to satisfy the condition of
Eq. (9).

We formulate Lenv;GðuÞ as

Lenv;GðuÞ ¼ �LGfL;GðuÞ ; ð11Þ

where fL;GðuÞ is a form function describing the spectral
behavior of the multigroup leakage in the real environ-
ment and �LG is the node-averaged integral leakage. The
latter can be computed as follows:

�LG ¼
X

d¼x;y;z

JG;dþ � JG;d�
Δd

; ð12Þ

where

Δd = node width along direction d

JG;dþ; JG;d� = surface-averaged currents at the node
boundaries d þ and d � .

An estimate of the few-group quantities �ΦG and �LG and
of the multiplication factor keff appearing in Eqs. (7), (8),
and (11) is known from the nodal solution. We assume
that these best-estimate quantities satisfy the balance
equation integrated in energy (this is another approxima-
tion of the method).

If the leakage energy shape is known, the expansion
coefficients αG;i are the only unknowns of the spectral
rehomogenization problem. In order to solve for them, we
set a system of algebraic equations applying a standard
weighted-residual technique to Eq. (7). After substitution
of Eqs. (8), (10), and (11), Eq. (7) is projected over the test
functions WG;jðuÞ (with j ¼ 1; � � � ;NQG) and then inte-
grated over u within each coarse group. The use of a fully
mathematical approach to determine the equations of the
system is justified by the local distortion of shape observed
in the computed spectrum perturbation when physically
justified conditions are imposed. These include the conti-
nuity of the environmental spectrum and of its first deriva-
tive at the boundary between the two energy groups, and
the condition δΦðu ¼ 1Þ ¼ 0 within the fast group. After
projection and some algebraic manipulation, the term cor-
responding to the reaction rate x reads as

ð1
0
duWG; jðuÞΣx;GðuÞΦenv;GðuÞ

¼ �ΦGhR; x;G; j þ
XNQG

i¼1

αG;ihV ; x;G;i; j ; ð13Þ

with the rehomogenization parameters hR; x;G; j and hV ; x;G;i; j
defined as

hR;x;G; j ¼
ð1
0
duWG; jðuÞΣx;GðuÞφ1;GðuÞ ð14aÞ

and

hV ;x;G;i;j ¼
ð1
0
duWG;jðuÞΣx;GðuÞQG;iðuÞ ð14bÞ

The reference coefficients hR; x;G; j carry the information
of the (reference) collapsing spectrum computed in the
infinite lattice, whereas the variational coefficients
hV ; x;G;i; j are defined in terms of the components of the
spectrum perturbation. With the aforementioned
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assumption Σenv
x;GðuÞ � Σ1

x;GðuÞ, the coefficients in Eq. (14)

only depend on infinite-medium quantities (Σx;G, φ1;G),

known at the lattice-calculation level, and on the prede-
fined basis and weighting functions of the modal expan-
sion. There is no dependence on environmental
quantities. Therefore, they can be easily computed during
the cross-section library preparation phase.

Applying the above procedure to the terms appearing
in Eq. (7), the rehomogenization problem can be cast in
the following form:

�ΦGhR;t;G; j þ
XNQG

i¼1

αG;ihV ;t;G;i; j þ cG; j�LG

¼
X2
G 0¼1

�ΦG 0 ðhR;s;G 0!G; j þ
χG; j
keff

hR; f ;G 0 Þ

þ
X2
G 0¼1

XNQG 0

i¼1

αG 0; iðhV ;s;G 0!G;i; j þ
χG; j
keff

hV ; f ;G 0;iÞ ; ð15Þ

where cG; j, χG; j; and the coefficients hR and hV are the

rehomogenization parameters corresponding to the fine-
group neutron leakage, fission-emission spectrum, and
various reaction rates. The variables in Eq. (15) are for-
mulated as follows:

cG; j ¼
ð1
0
duWG; jðuÞfL;GðuÞ ; ð16aÞ

χG; j ¼
ð1
0
duWG; jðuÞχGðuÞ ; ð16bÞ

hR;t;G; j ¼
ð1
0
duWG; jðuÞΣt;GðuÞφ1;GðuÞ ; ð16cÞ

hV ;t;G;i; j ¼
ð1
0
duWG; jðuÞΣt;GðuÞQG;iðuÞ ; ð16dÞ

hR; f ;G ¼
ð1
0
duνΣf ;GðuÞφ1;GðuÞ ; ð16eÞ

hV ; f ;G;i ¼
ð1
0
duνΣf ;GðuÞQG;iðuÞ ; ð16fÞ

hR;s;G 0!G; j ¼
ð1
0
duWG; jðuÞ

ð1
0
du0Σs;G 0!Gðu0! uÞφ1;G 0 ðu0Þ ;

ð16gÞ

and

hV ;s;G 0!G;i; j ¼
ð1
0
duWG; jðuÞ

ð1
0
du0Σs;G 0!Gðu0 ! uÞQG 0;iðu0Þ :

ð16hÞ

Equation (15) reduces to a 2NQG � 2NQG [NGNQG � NGNQG

in a more general form when NQG is the same in each coarse
group] linear system that can be solved for each homoge-
nized region following a nonlinear iteration of the nodal
solution. The quantities �ΦG, �LG; and keff are taken from the
prior, partially converged power iteration of the eigenvalue
calculation, whereas the precomputed rehomogenization
coefficients defined in Eq. (16) are interpolated from the
cross-section libraries as a function of the local conditions.
No additional lattice calculation is needed, neither when
updating the cross sections throughout the nodal simulation
nor at the library level.

After determining the coefficients αG;i, the spectral
cross-section correction for the reaction type x in a gen-
eric node can be computed as

δΣx;G ¼ 1
�ΦG

ð1
0
duΣ1

x;GðuÞδΦGðuÞ ¼ 1
�ΦG

XNQG

i¼1

αG;ihV ;x;G;i;0 ;

ð17Þ

where we have used the fact that WG;0ðuÞ ¼ 1.
In the derivation presented here, no assumption is

made about the spectral distribution of the neutron leak-
age Lenv;GðuÞ. In order for the rehomogenization model to
be applicable, the definition of a suitable form function
fL;GðuÞ is required [Eqs. (11) and (16a)]. In the present
work, the best-estimate shape is taken as input from the
reference transport simulation, even if this is not possible
in routine calculations. This allows us to keep the valida-
tion of the methodology unaffected by the inaccuracy
unavoidably introduced adopting a leakage spectrum
other than the exact one. It is thereby possible to focus
on the effect of the chosen set of basis/weighting func-
tions on the performance of the method. The development
of a model for the leakage distribution is addressed in
Sec. V.C.

The approximations of this rehomogenization
approach (such as the lack of a spectral correction on
the discontinuity factors) are discussed in Sec. V.A.1.

III. MODAL SYNTHESIS OF THE SPECTRUM VARIATION

A paramount point in the definition of a modal-
expansion method for the spectrum perturbation is the
choice of a suitable set of basis and test functions. These
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considerably affect the accuracy of the computed cross-
section corrections.

Two kinds of basis functions have been investigated.
The first approach adopts analytical functions (Chebyshev
polynomials) in combination with a physically justified
mode (the neutron emission spectrum from fission) in the
fast group. The use of the latter is justified by the peak
observed in the spectrum deformation at high energies
(see Fig. 1b). Moreover, the fission spectrum is an appro-
priate trial function because it is mostly insensitive to the
environmental conditions. An attempt has beenmade to find
other modes having physical insight into the nature of the
sought solution. This feature is highly desirable as it com-
monly requires a reasonably low number of basis functions
to reproduce the solution to a satisfactory accuracy.22 The
behavior of neutrons in the epithermal and thermal parts of
the spectrum can be described by the 1=E-type slowing-
down distribution and the Maxwellian distribution charac-
terizing thermal equilibrium with the moderator.23

However, a superposition of these migration modes can be
used to synthesize only the neutron spectrum, not a spec-
trum perturbation. For instance, as the neutron temperature
defining the Maxwellian distribution changes when moving
from the infinite medium to the real environment, the ther-
mal-spectrum variation cannot be described by such a func-
tion. Because of the difficulty of finding physical modes
other than the fission spectrum, an alternative strategy has
been formulated building upon the POD. This choice is
inspired by the search of basis functions capturing some
“information” of the phenomenon under study (i.e., the
spectral interactions in a reactor core).

The two approaches are presented in Secs. III.A and
III.B.

III.A. The Polynomial-Based Approach

III.A.1. Thermal-Group Basis Functions

In the thermal group, Chebyshev polynomials of the
first kind [TiðuÞ] have been selected. The following recur-
sive formula for TiðuÞ holds:

T0ðuÞ ¼ 1 ;
T1ðuÞ ¼ u ;

TiðuÞ ¼ 2uTi�1ðuÞ � Ti�2ðuÞ; i � 2 : ð18Þ

In the pseudolethargy domain introduced in Sec. II [Eq. (6)],
the thermal-group spectrum variation has value of zero for
u < b, with b � 0:5. Therefore, a modification of Eq. (18)
must be introduced in order for the basis functions to have
zero average value in the interval [b,1] and to be null in the

interval [0,b). The polynomials are first shifted to have zero
average between 0 and 1:

Ti
0ðuÞ ¼ TiðuÞ �

ð1
0
duTiðuÞ; i � 1 : ð19Þ

Then, they are rescaled by means of a unitary Heaviside
function Hðu� bÞ, vanishing for u < b. According to the
microgroup structure adopted in this work, a value of
0.52167 is chosen for b to match the boundary of one
of the fine-energy groups g. After these changes, the
thermal basis functions read as

Q2;iðuÞ ¼ Ti
0ðu0ÞHðu� bÞ; i � 1 ; ð20Þ

where the shifted variable u0 is defined as

u0 ¼ u� b
1� b

: ð21Þ

The first four basis functions computed with Eq. (20) are
shown in Fig. 2. Apparently, the superposition of the
Heaviside function introduces a discontinuity in the
modes for u ¼ b.

III.A.2. Fast-Group Basis Functions

In the fast group, the first trial function is the already
mentioned fission-spectrum migration mode χðuÞ. Several
expressions can be found in the literature for the neutron
fission-emission spectrum. In this work, we use the for-
mulation reported in Lamarsh’s textbook.24 In the energy
domain, this reads as

Fig. 2. Thermal-group polynomial basis functions.
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χðEÞ ¼ nf
ffiffiffiffi
E

p
e�af E ; ð22Þ

with E expressed in mega-electron-volts (MeV).
Equation (22) is derived under the assumption that the
fission-emission distribution does not vary with the
energy of the incident neutron. The coefficient af and
the normalization constant nf depend on the fissioning
nuclides. We consider af ¼ 0:776 and nf ¼ 0:771. These
numerical values correspond to uranium fuel enriched at
less than 10%. We assume that the inaccuracy caused by
using Eq. (22) for other enrichments or different types of
fuel material (such as MOX assemblies) is reasonably
small and acceptable in the context of our application.

After moving from E to u and subtracting the average
value of χ, the basis function reads as

Q1;1ðuÞ ¼ ce�af E�
1 r

u
1 lnðr1Þðru1Þ3=2 � χavg ; ð23Þ

where

χavg ¼
ð1
0
dEχðEÞ ¼ nf

ffiffiffi
π

p

2a3=2f

;

c ¼ nf ðE�
1 Þ3=2;

r1 ¼ Eþ
1

E�
1

: ð24Þ

The remaining trial functions are, as in the thermal group,
Chebyshev polynomials of the first kind (modified to
have zero average value between 0 and 1):

Q1;iðuÞ ¼ T 0
i�1ðuÞ; i � 2 : ð25Þ

The fast-group basis functions are plotted in Fig. 3
for i 2 ½1; 4�.

III.A.3. Weighting Functions

The achievement of satisfactory results with the
above polynomial modes is strongly correlated to the
test functions. Although their choice is in principle arbi-
trary, the weighting operators can be opted for to mini-
mize the error in some sense.22 For instance, the use of
quasi-contiguous double step functions (i.e., 1 inside
specified intervals and 0 outside) has the physical inter-
pretation of requiring that the neutron balance be satisfied
in an integral sense over certain regions of the energy
domain. However, the importance of the various energy
intervals can be sensitive to the specific configuration
and, hence, lack generality. As finding a rigorous justifi-
cation to the choice of the steps was not possible, this
option has been discarded.

An attempt has been made to use the adjoint spec-
trum and the generalized importance functions com-
puted at the lattice-calculation level. The physical
meaning of this approach is to minimize the error on
some characteristic spectrum-dependent integral quan-
tity. Typical observables are, in this sense, the multi-
plication factor, the spectral index, the breeding ratio,
resonance integrals, the 235U and 238U absorption prob-
abilities per fission-emitted neutron, and the 135Xe
worth, but other functionals of the spectrum can be
defined.25 This approach could not be implemented as
a final solution because it produced an ill-conditioned
matrix of the rehomogenization problem. Moreover, the
adjoint and importance-function spectra in the real
environment can differ from the infinite-medium ones.
Hence, their use as test functions might not be rigorous.

Fig. 3. Fast-group analytical basis functions: (a) neutron emission spectrum from fission and (b) Chebyshev polynomials of the
first kind.
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On the basis of these considerations, the most natural
choice is to use Galerkin weighting (that is, using weight-
ing functions equal to the basis functions).

III.B. The POD Approach

The POD is a mathematical technique that has been
widely used in the last decades in many scientific and
engineering fields26,27 and to which a growing interest has
been recently shown also in the nuclear community.28–32 In
the context of our rehomogenization method, the proposed
approach relies on the calculation of the optimal (in a least-
squares sense) orthonormal basis functions for the space
spanned by a set of snapshots of the reference spectrum
variation (generally speaking, a snapshot is the solution of
the equation modeling the problem of interest for a specific
configuration or state of the system). The shape of these
modes is determined by the energy (i.e., the information)
carried within the retained snapshots and can thus capture
some relevant features of the spectral changes. Even if the
POD approach has a mathematical connotation (and not a
physical one), its underpinning idea is to describe the spec-
trum variation as a modulation of functions synthesizing its
main components. This is, to some extent, the same princi-
ple of the MigrationModeMethod for the approximation of
the neutron spectrum.23

As mentioned in Sec. I, interassembly heterogeneity is
the main source of spectral effects, which mostly occur at the
interface between different neighbor regions. Therefore, we
simulate several assembly-interface types to generate snap-
shots of the spectrum variation between the environmental
and infinite-medium conditions. We simplify our analysis by

considering 2-D colorsets (i.e., four-assembly sets). The idea
behind the generation of snapshots can be illustrated with an
example. Figure 4 depicts the fast-group spectrum variation
in a UO2 assembly next to another UO2 assembly with
control rods inserted. Three different curves are shown as a
function of the fuel enrichment in the rodded bundle (1.8%,
2.4%, 3.1%). The enrichment in the unrodded assembly is
fixed (1.8%). Both assemblies have zero burnup.

In the epithermal range (that is, for approximately
u1 < 0.6), the curves exhibit a very much alike outline with
roughly a simple shift among them. Also, a peak is found at
high energies in the three cases. However, as long as the
enrichment in the rodded assembly increases, a distortion of
such peak occurs, with a sign-changing bulge becoming
apparent. This suggests that interassembly heterogeneity in
the enrichment triggers a characteristic component of the
spectrum variation. The spectral interactions between adja-
cent assemblies can be driven by differences in a broad range
of parameters other than the enrichment, such as the fuel
composition and burnup, and by the presence of burnable
poison and control elements. In order to cover the parameter
space of spectral interfaces and to capture as many compo-
nents of the spectrum variation as possible, multiple values of
these heterogeneity variables must be sampled.

For a given configuration (corresponding to a certain set
of the aforementioned parameters), we generate a snapshot
by solving the neutron transport equation for the colorset and
single-assembly configurations. The environmental and
infinite-medium spatially averaged spectra are computed
for each fuel bundle, together with the corresponding varia-
tion. In order to determine the detailed spectrum change, the
numbers of fine-energy groups g used in the fast and thermal
coarse groups are 247 and 34, respectively. For both macro-
groups, the matrix of snapshots AG is obtained collecting the
spectrum variation solutions determined for different pro-
blems. The searched POD modes ensue from the Singular
Value Decomposition (SVD) of AG (Ref. 32). This returns
the following matrix decomposition:

AG ¼ UGSGV
T
G ; ð26Þ

where SG is a diagonal matrix of size nG � Ns (nG is the
number of fine groups for the coarse group G and Ns is the
number of snapshots), whereas UG and VG have dimen-
sions nG � nG and Ns � Ns, respectively. The columns of
the matrix UG are referred to as proper orthonormal modes,
and they are the sought POD basis. The elements of SG,
which are nonnegative and sorted in descending order, are
the singular values of AG. They are proportional to the
energy of each mode, that is, its importance in the modal
approximation of the vector space spanned by AG. If all nG

Fig. 4. Fast-group spectrum perturbation in a 1.8%-enriched
UO2 assembly as a function of the enrichment ehet in the
adjacent rodded UO2 bundle.
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eigenvectors produced by the SVD are used, the error in the
approximation of the original snapshot data goes to 0. The
POD basis set for our rehomogenization method, consisting
of NQG modes, is built from a reduced form of Eq. (26),
taking the first NQG columns of UG. The corresponding
array provides a modal approximation of the snapshot set,
which minimizes the error in the L2-norm compared to all
the other approximations. The rehomogenization problem
is applied using the achieved POD modes also as weighting
functions (Galerkin weighting).

III.C. Integration in the LWR Two-Step Procedure

Figure 5 shows how the rehomogenization method is
integrated in the nodal core calculation and, more in
general, in the two-step procedure commonly adopted in
LWR analysis.

The rehomogenization coefficients are computed [via
Eq. (16)] at the cross-section library level by postprocessing
the results of the fine-group transport simulation. Their
calculation merely requires the solution of further integrals
in the energy domain. The only change in the parameterized
tables is the storage of the additional homogenization para-
meters. If the POD approach is used for the modal synthesis
of the spectrum perturbations, a supplementary step is
needed. Snapshots of the spectrum deformation have to be
collected for various sample assembly configurations. They
are then used to extract, via the SVD, the set of POD basis
vectors with which the rehomogenization parameters are to
be computed during the cross-section library preparation.
The POD-basis calculation (to which we refer as “off-line”
phase) is to be performed prior to the lattice calculation.

During the core calculation, a steady-state flux iteration
of the nodal eigenvalue problem is first performed using the

infinite-medium cross sections interpolated from the libraries
at the current values of the state parameters in the various
nodes. At the end of the nonlinear iteration, the nodal infor-
mation (�ΦG, �LG, keff ) is used to solve the spectral rehomo-
genization problem. As this is done locally, sweeping the
nodes of the system, the algorithm is easily parallelizable.
Depending on the coupled neutronics/thermal-hydraulic
iteration control criterion, the following may be stated:

1. If no thermal-feedback calculation is performed
after the nodal-flux iteration, the single-assembly cross
sections are updated with the spectral correction com-
puted by rehomogenization.

2. If the thermal-feedback update is activated, the
thermal-hydraulic calculation is performed using as
input the nodal power �PG distribution from the prior
flux iteration; after interpolation from the parameterized
tables at the new values of the state parameters, the cross
sections are updated with the spectral correction pre-
viously computed by rehomogenization.

Alternatively, the rehomogenization update can be
implemented at an intermediate step between the nodal-flux
and the thermal-feedback iterations. The calculation con-
tinues until convergence of all the coupled fields. Note that
the flux solver is not changed by the rehomogenization
module. Therefore, the method can be easily integrated in
already existing core simulators.

IV. VALIDATION

In this section the results of the spectral rehomogeniza-
tion method are presented for some benchmark problems.

Cross-section
libraries

Snapshot-set
calculation SVD POD Basis

Thermal-hydraulic
update

Rehom. data set
(hR, hV )

Cross-section correction
Σx,G = Σ∞

x,G + δΣx,G
LATTICE CODE

Modal
approach?

Spectral
rehom. problem

Nodal-flux iteration
(CMFD + NEM)

Off-line

phase

Core

calculation

Σ∞
x,G

POD

Polynomial

δΣx,G

keff, ΦG, LG

State
Parameters

State
Parameters

Power
distribution

(P̄G)

Fig. 5. Flow diagram of spectral rehomogenization within the LWR two-step calculation.
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Both POD-based and polynomial-based approaches are
considered. The analysis of the results is introduced by a
description of the procedure followed for the validation.

IV.A. Procedure

We apply spectral rehomogenization to three test
cases exhibiting significant heterogeneity: a UO2 colorset
with burnable poison rods (example 1), a UO2 colorset
hosting silver-indium-cadmium (AIC) control rods
(example 2), and a UO2/MOX colorset (example 3).
The nodal calculations are performed with BRISINGR,
a Delft University of Technology in-house–developed
code based on a standard nonlinear Coarse Mesh Finite
Difference (CMFD) – Nodal Expansion Method (NEM)
solution strategy. The two-group homogenization para-
meters are computed by the SERPENT continuous-
energy Monte Carlo neutron transport code.33 Version
2.1.28 of SERPENT is used in combination with the
JEFF3.1 nuclear data library.34

The single-assembly calculations for group-constant
generation are run with 750 active cycles of 7.5 × 105

source neutrons (50 inactive cycles are discarded to allow
the initial fission-source distribution to converge). This
choice results in 5.63 × 108 active neutron histories. A
standard deviation lower than 2.5% has been found for all
the input cross sections and discontinuity factors.
Therefore, an uncertainty-propagation analysis is deemed
not to be necessary for the scope of this work. No critical-
buckling correction is applied to the two-group cross
sections (as clarified later, this choice is consistent with
the calculation of the snapshots in the POD-approach
framework). We use two-group diffusion coefficients
computed with the Cumulative Migration Method35

(CMM). The simulations are made for initial-core iso-
thermal conditions (i.e., without thermal hydraulics and
fuel depletion feedbacks). The values of the main state
parameters correspond to standard hot-full-power condi-
tions (namely, Tfuel = 846 K, Tmod = 582 K, p = 158 bar).
We adopt a nodalization of 2� 2 nodes per assembly.

The nodal calculations are compared to the reference
solution from SERPENT. In this work, we address only the
errors in the node-averaged quantities. For each benchmark
problem, the results of four types of simulation are shown:
(a) with standard infinite-medium cross sections from the
parameterized libraries, (b) with cross sections corrected by
means of the reference spectral defect, (c) with polynomial-
based spectral rehomogenization of cross sections, and (d)
with POD-based spectral rehomogenization of cross sec-
tions. For both modal approaches, rehomogenization is

applied with NQG ¼ 4 in each coarse group. The reference
spectral defect is evaluated, in line with Eq. (17), by collap-
sing the fine-group cross-section distribution Σ1

x;GðuÞ with

the reference spectrum variation δΦref
G ðuÞ computed in

SERPENT:

δΣref ;spectr
x;G ¼ 1

�ΦG

ð1
0
duΣ1

x;GðuÞδΦref
G ðuÞ : ð27Þ

This choice is made because of the double nature (spatial
and spectral) of the homogenization error. Since only the
spectral error is addressed here, the homogenization
defect cannot be fully corrected. In the analysis, the errors
in the nodal cross sections are computed as

ΔΣx;G ¼ Σx;G � Σref
x;G

Σref
x;G

� 100% ; ð28Þ

where Σx;G is the infinite-medium or rehomogenized

cross section and Σref
x;G is the reference cross section

(i.e., homogenized in the colorset environment).
The snapshots for the calculation of the PODmodes are

computed with SERPENT as well. Each 281-group
spectrum variation solution is obtained running 5.25 × 106

active neutron histories. This value is a reasonably good
compromise between statistical accuracy and computational
effort. For reasons related to the computing time, the
B1 critical-spectrum calculation is not performed for the
fine-group flux distributions. More details about the proce-
dure for the generation of snapshots are given for each test
case in Sec. IV.B.

IV.B. Numerical Results

IV.B.1. Example 1: UO2 Colorset with Pyrex Rods

The 2-D colorset is depicted in Fig. 6. It consists of four
17� 17 PWR fuel assemblies of fresh UO2 having two
different compositions: the former with 1.8% enrichment,
the latter with 3.1% enrichment and 16 rods containing
burnable absorber (Pyrex). The concentration of diluted
boron in the moderator is 700 parts per million (ppm).

In this configuration, the interassembly spectral
effects are driven by the different enrichments and by
the local presence of burnable poison elements. In order
to calculate a set of POD modes, we generate 100 snap-
shots by means of a single-parameter analysis, with the
content of borosilicate glass in the heterogeneous
assembly (namely, the assembly with poison rods) as
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the parametric variable. Solutions of the spectrum var-
iation are computed sampling uniformly the target range
[5.9 × 10−5, 1.8 × 10−3] atoms/cm3 for the concentration

of boron in the burnable-absorber rods Nbp
B10

. The snap-

shots are taken at a diluted-boron concentration of
1465 ppm. In the nodal calculation we simulate the

colorset for one of the values of Nbp
B10

spanned by the

snapshot matrix (i.e., 9.3 × 10−4 atoms/cm3). This is
done in order to test the capability of the POD modes
to accurately reproduce the solutions used to build the
original snapshot set. The chosen absorber concentration
corresponds to keff = 1.08733 (reference value).

Figure 7 shows the best-fit curves of the reference
spectrum variation in the heterogeneous assembly. These
have been computed with the polynomial basis functions
and with the first four POD modes generated by the
above procedure. The latter are plotted in Fig. 8. The
POD operators fit very well the reference curves.

By comparing Figs. 7 and 8, it is apparent that the first-
and second-order POD basis retrieve the global shape of the
reference spectrum perturbation. The spiky profiles obser-
vable in the higher-order modes, especially in the epithermal
region, contribute to the reconstruction of the fine details of
δΦðuÞ, including those associated with the resonances.
Obviously, the Chebyshev polynomials cannot reproduce
such fine details due to their smoothness. However, they
fit the average behavior of the reference curves precisely.
The POD modes inherit the property of the δΦ snapshots to
have zero average within each macrogroup.

The spectrum change estimated by rehomogenization
with the two modal strategies is plotted in Fig. 9. The
polynomial approach accurately predicts the perturbation
in the epithermal region, whereas the reconstruction of
the high-energy peak is less precise. In the thermal group,
the computed curve is “tilted” with respect to the refer-
ence one due to the discontinuity in the analytical defini-
tion of the modified Chebyshev polynomials. With the

UO2

3.1% +
Pyrex

UO2

1.8%

UO2

1.8%

UO2

3.1% +
Pyrex

(a) (b) (c)

Fig. 6. (a) Assembly set and layout of the UO2 fuel assemblies with (b) 1.8% enrichment and (c) 3.1% enrichment and Pyrex
rods. The two bundles host 25 and 9 Zircaloy-4 guide tubes, respectively.

Fig. 7. Example 1: Best fit of the (a) thermal-group and (b) fast-group reference spectrum deformation (per unit u) for the
assembly hosting burnable absorber rods. The perturbation is computed with respect to the assembly-averaged fluxes �ΦG from the
reference transport calculation.
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POD method, the reconstruction is excellent in the fast
group. The prediction in the thermal group is also very
accurate in the assembly with burnable absorber, whereas
a slight overestimation of the reference-curve magnitude
is observed in the homogeneous assembly (i.e., the
assembly without poison rods).

Table I reports the results in terms of keff and assembly
average power Pavg for nodal calculations a, b, c, and d.

The number of power iterations for the convergence of the
eigenvalue problem is also given. The power errors within
parentheses correspond to the fast (first value) and thermal
(second value) groups. The effectiveness of rehomogeniza-
tion in improving the nodal fission power is apparent,
while the gain in accuracy in the multiplication factor is
somewhat limited. This is caused by the fact that the
effects of spatial changes in the flux distribution are not

Fig. 8. (a) Thermal-group and (b) fast-group POD basis functions computed via the method of snapshots and SVD for a one-
parameter analysis of example 1.

Fig. 9. Example 1: Spectrum variation per unit u computed by rehomogenization.
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accounted for by the present method. Tables II and III
show the errors in the nodal cross sections for the two
assemblies. For both approaches, the cross-section correc-
tions computed by rehomogenization reproduce almost
exactly the reference ones (calculation b). No significant
difference is found between the two sets of basis functions
despite the higher accuracy of the POD approach emerging
from Fig. 9, especially within the thermal group.

As seen in Table I, the rehomogenization method
causes an increase in the number of nonlinear iterations by
a factor of 1.9 when Chebyshev polynomials are used and
by a factor of 2.8 when the POD modes are adopted. The
number of power iterations reported in Table I corresponds
to a tolerance of 10�5 for the relative variation of the keff
estimate and of the nodal-flux distribution 2-norm.

An analysis is now carried out on the impact of
the diffusion-coefficient spectral correction δDG. The
diffusion coefficient can be rehomogenized in a simi-
lar fashion to the other cross sections by defining its
zeroth-order variational coefficient:

hV ;D;G;i;0 ¼
ð1
0
duD1

G ðuÞQG;iðuÞ : ð29Þ

Hence, the following relation holds for δDG:

δDG ¼ 1
�ΦG

XNQG

i¼1

αG;ihV ;D;G;i;0 : ð30Þ

We consider as example the calculation with the refer-
ence spectral corrections (calculation b). In the version of
SERPENT used in this work, the CMM can be only
applied when the homogenized region covers the entire
geometry. Therefore, the simulation is repeated with the
outflow transport approximation36 for the calculation of
the diffusion coefficients (in this way, a comparison
between the environmental and infinite-medium values
is possible). For this option, Table IV reports the main
results of the simulations with (e) the reference correc-
tions on the cross sections and (f) the reference

TABLE I

Example 1: Errors in the Multiplication Factor and Nodal Fission Power

Simulation
Number of Power

Iterations Δkeff (pcm)

UO2 1.8%
UO2 3.1% + 16 Burnable

Poison Rods

Error on Pavg (%) Error on Pavg (%)

Standard (a) 8 −403 0.55 (0.68, 0.53) −0.48 (−0.49, −0.49)
Reference δΣspectr (b) 8 −373 0.03 (0.37, −0.04) −0.02 (−0.26, 0.04)
Spectral rehomogenization
Chebyshev (c)

15 −369 −0.02 (0.37, −0.09) 0.01 (−0.26, 0.09)

Spectral rehomogenization
POD (d)

22 −369 −0.01 (0.36, −0.09) 0.01 (−0.26, 0.08)

TABLE II

Example 1: Errors in the Nodal Cross Sections of the Assembly Without Pyrex Rods

UO2 1.8% Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.00877 0.0690 0.00485 0.0815 0.539 1.309 0.513 0.0178 1.238

Simulation Error (%)

Standard (a) −0.25 0.73 0.40 0.82 −0.25 0.27 −0.27 0.13 0.25
Reference δΣspectr (b) 0.04 0.17 0.14 0.24 0.0 −0.05 0.0 −0.03 −0.06
Spectral rehomogenization
Chebyshev (c)

0.06 0.11 0.15 0.17 −0.01 −0.07 −0.01 −0.04 −0.08

Spectral rehomogenization
POD (d)

0.0 0.10 0.14 0.17 0.0 −0.08 0.0 −0.05 −0.09
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corrections on the cross sections and diffusion coeffi-
cients. In calculation f the correction δDG is also com-
puted with the reference spectrum change. The errors Δ in
the nodal power and diffusion coefficients are expressed
in percentage.

Rehomogenization with the reference spectrum var-
iation nullifies the errors in DG. However, the diffusion-
coefficient corrections have clearly no impact on the
integral parameters. This is because the corrections δDG

are not large enough to bring about appreciable changes
in the neutron flux distribution. Such consideration can be
justified as follows. If Table I (calculation b) and
Table IV (calculation e) are compared, it appears that
the outflow transport approximation produces a signifi-
cant variation of the error in the thermal power with
respect to the CMM. As the other input parameters of
the nodal calculation are unchanged, this variation is only
caused by the differences between the values of DG

computed with the two definitions, which are quite
large. For instance, in the assembly with Pyrex rods the
fast-group diffusion coefficient from the outflow trans-
port approximation is 6.2% higher than the one from the
CMM, whereas the thermal-group value is nearly 10%
lower. On the other hand, the corrections δDG computed

by rehomogenization are much smaller: −0.33% (G ¼ 1)
and 0.51% (G ¼ 2) in the homogeneous assembly;
0.33% (G ¼ 1) and −0.73% (G ¼ 2) in the heterogeneous
one. Thus, the errors in the integral parameters are unaf-
fected. This feature has been systematically observed also
for the other benchmark problems. It can be concluded
that the diffusion-coefficient rehomogenization does not
bring any substantial benefit to the accuracy of the nodal
calculation.

IV.B.2. Example 2: UO2 Colorset with AIC Control Rods

The colorset is made of four 17� 17 UO2 bundles
with 1.8% enrichment (Fig. 10). Two assemblies host 24
AIC control rods. No boron is present in the moderator
(CB10 ¼ 0 ppm). The reference multiplication factor is
0.98860.

In order to build a set of snapshots representative of
the spectral effects induced by control elements and dif-
ferent enrichments, we parameterize the system using
three variables:

1. the fuel enrichment, which is homogeneously
sampled in the interval [2.1%, 3.6%] for both

TABLE IV

Example 1: Impact of Diffusion-Coefficient Rehomogenization

Simulation Δkeff (pcm)

UO2 1.8% UO2 3.1% + 16 Burnable Poison Rods

ΔPavg ΔD1 ΔD2 ΔPavg ΔD1 ΔD2

Reference δΣspectr (e) −376 0.42 (0.52, 0.40) 0.29 −0.48 −0.37 (−0.37, −0.37) −0.28 0.72
Reference δΣspectr and δDG (f) −376 0.42 (0.52, 0.41) −0.05 0.03 −0.37 (−0.37, −0.37) 0.05 −0.02

TABLE III

Example 1: Errors in the Nodal Cross Sections of the Assembly with Pyrex Rods

UO2 3.1% + 16 Burnable Poison
Rods Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.0101 0.1040 0.00659 0.132 0.525 1.296 0.499 0.016 1.190

Simulation Error (%)

Standard (a) 0.27 −0.49 −0.22 −1.11 0.26 −0.49 0.27 −0.17 −0.50
Reference δΣspectr (b) −0.02 0.33 −0.11 −0.21 0.0 0.0 0.0 0.0 −0.02
Spectral rehomogenization
Chebyshev (c)

−0.03 0.33 −0.10 −0.21 0.0 0.0 0.0 0.05 −0.02

Spectral rehomogenization
POD (d)

0.01 0.34 −0.09 −0.20 0.0 0.02 0.0 0.06 0.0
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the rodded and unrodded assemblies (20 combi-
nations are selected)

2. the number of control rods inserted in each hetero-
geneous fuel bundle (4, 8, 12, 16, 24, 28), changed
keeping the symmetry in the assembly layout

3. the types of control rods (AIC and B4C).

A total number of 240 snapshots are computed. In
order to verify whether the POD approach can accurately
predict the spectrum deformation for unseen problems
(i.e., problems whose solution was not included in the
snapshot array), rehomogenization is applied to the

present colorset also with the set of modes determined
for example 1. In the analysis, we refer to the nodal
simulations with the POD modes of examples 1 and 2
as d1 and d2, respectively.

The spectrum deformation computed by rehomogen-
ization is reported in Fig. 11. The set of POD basis
functions from the multiparameter analysis perfectly
reconstructs the fast-group deformation. A very accurate
outcome is also found with the set of modes derived for
the colorset with Pyrex rods, even if a slight distortion of
the computed distributions arises within the fast group in
proximity of the high-energy peak. In the thermal group,

UO2

1.8% + AIC

UO2

1.8%

UO2

1.8%

UO2

1.8% + AIC

(a) (b) (c)

Fig. 10. (a) Assembly set and layout of the (b) unrodded and (c) rodded UO2 fuel assemblies with 1.8% enrichment. The bundle
without control rods hosts 25 empty guide tubes.

Fig. 11. Example 2: Spectrum variation per unit u computed by rehomogenization.
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no appreciable difference is encountered between the two
calculations. In both of them, the magnitude of the spec-
trum variation is underestimated in the higher part of the
thermal domain (u2 2 [0.85,1.0]) and in its intermediate
region (u2 2 [0.6,0.85]), especially in the assembly with
control rods. With the polynomial approach, in the fast
group the computed high-energy peak is shifted toward
higher values of u with respect to the reference curve. In
the thermal group, similar considerations hold as for the
POD basis functions.

The inaccuracy observed in the predicted thermal-
spectrum perturbation can be explained as follows. For

the rodded assembly, the relative correction δΣref ;spectr
a;2 is

0.59%. However, the global variation δΣref ;tot
a;2 (that is, the

relative difference between the cross sections homoge-
nized in the colorset environment and in the single-
assembly configuration) is −0.71%. This means that the

spatial correction must go in the opposite direction of the
spectral one and that it constitutes a significant part of the
homogenization defect (under the hypothesis of full
superimposition of the two corrections, it would corre-

spond to a relative change δΣref ;spat
a;2 � −1.31%). Since

the thermalizing effect of the spatial term is not taken into
account here, the method predicts a harder spectrum (that
is, it underestimates δΦ2 as previously highlighted). In

the unrodded assembly, δΣref ;spectr
a;2 is −0.37%, whereas the

global variation δΣref ;tot
a;2 is −0.56%. Hence, the spatial

correction must be δΣref ;spat
a;2 � −0.19%. As in this case

the mismatch between the two corrections is smaller, the
differences between the simulated and reference curves
are less evident.

The errors in the integral parameters and nodal
cross sections are reported in Tables V, VI, and VII.
The unexpectedly small error on keff in the standard

TABLE V

Example 2: Errors in the Multiplication Factor and Nodal Fission Power

Simulation
Number of Power

Iterations
Δkeff
(pcm)

UO2 1.8%
UO2 1.8% + 24 AIC

Rods

Error on
Pavg (%) Error on Pavg (%)

Standard (a) 10 58 3.03 (0.98, 3.41) −4.70 (−1.17, −5.61)
Reference δΣspectr (b) 10 −486 1.14 (0.47, 1.28) −1.77 (−0.56, −2.10)
Spectral rehomogenization
Chebyshev (c)

17 −513 1.25 (0.73, 1.36) −1.94 (−0.87, −2.24)

Spectral rehomogenization POD (d1) 25 −543 1.14 (0.60, 1.25) −1.77 (−0.71, −2.06)
Spectral rehomogenization POD (d2) 20 −524 1.16 (0.50, 1.29) −1.80 (−0.60, −2.13)

TABLE VI

Example 2: Errors in the Nodal Cross Sections of the Unrodded Assembly

UO2 1.8% Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.00827 0.0557 0.00485 0.0837 0.534 1.313 0.509 0.0174 1.256

Simulation Error (%)

Standard (a) 1.61 0.56 0.51 0.60 0.68 0.16 0.56 3.80 0.14
Reference δΣspectr (b) 0.05 0.20 −0.12 0.23 −0.02 −0.05 −0.02 −0.07 −0.06
Spectral rehomogenization
Chebyshev (c)

−0.53 0.21 0.05 0.24 −0.14 −0.04 −0.13 −0.23 −0.05

Spectral rehomogenization
POD (d1)

−0.08 0.21 −0.07 0.24 −0.08 −0.04 −0.07 −0.38 −0.05

Spectral rehomogenization
POD (d2)

−0.04 0.20 −0.14 0.24 −0.06 −0.04 −0.05 −0.29 −0.06
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calculation is the result of fortuitous error compensa-
tion as evidenced by the high deviations in the nodal
power. This error cancellation vanishes when spectral
rehomogenization is applied. The simulation with the
reference corrections is well reproduced by the calcu-
lations with the rehomogenized cross sections. It still
exhibits a somewhat high error in the multiplication
factor and thermal power, which confirms the need of
applying spatial rehomogenization to fully take into
account the environmental effects. For instance, it has
been found that when applying the POD-based
spectral rehomogenization (calculation d2) to the
cross sections rehomogenized with the reference spa-
tial corrections, the error in keff drops from −524 to
−3 pcm.

When looking at the deviations in the nodal cross
sections, the underestimation of the spectrum change in
different regions of the thermal domain causes some
beneficial error cancellation in thermal absorption in
both assemblies as well as in thermal production νΣf ;2

in the fuel bundle without control rods. Despite the
inaccuracy in the calculation of the thermal-spectrum
change, the corrections determined by rehomogeniza-
tion are very close to the reference ones, apart from a
slight overestimation of δνΣf ;2 in the rodded assembly
and of δΣs;1!2 in the unrodded one. The fast-absorption
correction is overestimated when Chebyshev polyno-
mials are used. This is because the polynomial basis
functions do not capture the resonance peaks in the
epithermal region (for u1 2 ½0:05; 0:25�), where the
computed spectrum variation underestimates (in mag-
nitude) the reference curve. Since the fine-group
absorption cross sections are considerably high in
proximity of the resonance energies, an overestimated

δΣa;1 is found in the rodded assembly (the opposite
occurs in the unrodded one).

In this test case, the gap between the two modal
approaches in terms of additional nonlinear iterations is
much less substantial. As shown in Table V, the number
of outer iterations increases by a factor of 1.7 when the
polynomial basis is used and by a factor of 2 with the
POD approach. In the framework of the POD analysis,
the modes computed for example 1 (i.e., a colorset with
burnable absorber rods) can approximate the spectrum
perturbation with an accuracy comparable to those com-
puted ad hoc for rodded configurations. This is because
spectral interactions in the two example problems share
common features.

IV.B.3. Example 3: UO2/MOX Colorset

The third colorset, which is shown in Fig. 12, con-
sists of two 18� 18 UO2 and MOX assemblies. The UO2

assembly has enrichment of 2.1%. Three different fuel
pin types are present in the MOX assembly: with low Pu
content (1.78% 239Pu, 0.22% 235U) at the assembly cor-
ners, with intermediate Pu content (2.53% 239Pu,
0.21% 235U) along the assembly outer edges, and with
high Pu content (3.86% 239Pu, 0.20% 235U) in the remain-
der of the fuel bundle. The concentration of soluble boron
in the moderator is 2907 ppm. The reference multiplica-
tion factor is 1.00194.

The polynomial-based rehomogenization is applied
with four (calculation c1) and seven (calculation c2)
modes in the fast group. In the latter case, the
fission spectrum and the Chebyshev functions of orders
1 through 6 are used. The POD-based rehomogenization
is applied making use of three sets of basis functions:

TABLE VII

Example 2: Errors in the Nodal Cross Sections of the Rodded Assembly

UO2 1.8% + 24 AIC rods Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.0116 0.0817 0.00474 0.0853 0.534 1.286 0.507 0.0153 1.203

Simulation Error (%)

Standard (a) −1.71 0.71 −0.64 −0.93 −0.80 −0.38 −0.66 −4.77 −0.46
Reference δΣspectr (b) 0.60 1.28 0.19 −0.12 0.02 0.05 0.0 0.01 −0.04
Spectral rehomogenization
Chebyshev (c)

1.02 1.15 −0.09 −0.30 0.13 −0.05 0.12 −0.17 −0.14

Spectral rehomogenization
POD (d1)

0.66 1.15 0.0 −0.30 0.08 −0.05 0.07 0.07 −0.13

Spectral rehomogenization
POD (d2)

0.58 1.15 0.10 −0.30 0.04 −0.05 0.03 −0.06 −0.13

18 GAMARINO et al. · NODAL CROSS-SECTION REHOMOGENIZATION

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 190 · APRIL 2018



1. the POD modes computed for example 1 (set d1)

2. the POD modes obtained from a multiparameter
study for the present configuration (set d2)

3. the POD modes obtained assembling all the
snapshots computed for the three benchmark
problems investigated in this work (set d3).

We refer to the nodal simulations with these three
sets of basis functions as d1, d2, and d3, respectively. The
generation of snapshots for the UO2-MOX interface is
performed following the example of test cases 1 and 2,
namely, considering the UO2 enrichment and the Pu con-
tent in the three MOX assembly pin types as parametric
variables. The purpose of calculation d3 is to verify
whether rehomogenization, applied with few modes, can
still synthesize effectively the spectral deformations asso-
ciated with various assembly-interface types, exhibiting a
considerably unlike behavior of δΦ (especially in the fast
range). This property of the POD modes is essential for
the feasibility of the methodology at an industrial level, in
which the use of modes not depending on the type of fuel
element would be highly desirable.

Figure 13 shows theUO2 assembly fast-group spectrum
variation calculated with the set of modes d1. In this case,
rehomogenization has been applied with the basis functions
resulting from the SVD of high-order Legendre polynomial
best fits of the original snapshots. This strategy eliminates
the noise caused by a different pattern of the spectrum
change fine details in the two configurations, still preserving
the global shape of the snapshots. Although the accuracy of
the calculation is acceptable in the epithermal range, the
method is not capable of recreating the bump observable at
the end of the pseudolethargy domain (for u1 2 [0.87,1.0]).
This is expected, as the POD basis computed for the colorset
with Pyrex rods has not been trained to reproduce such a
localized, abruptly sign-changing feature. We already
observed this particular shape in Fig. 4, when the effect of
increasing enrichment on the δΦ distribution was shown for

an assembly set with control rods (also for a generic
UO2-MOX interface, it has been found that such component
of the spectrum deformation becomes more pronounced
when the enrichment in the UO2 bundle is increased).

The spectrum variation computed with calculations
c1, c2, and d3 is shown in Fig. 14. As results obtained
with simulation d2 are almost identical to those of simu-
lation d3, they are not reported for the sake of brevity.
Rehomogenization with the set of modes d3 faithfully
reproduces the bulge observed in the fast group. Such
outcome can be achieved only by a proper training of
the POD modes, that is, if solutions exhibiting this
particular feature are included in the snapshot array.
This can be deduced from Fig. 15a, showing the fast-
group POD basis functions computed from the snapshot
set d3. Apparently, the shape of the high-energy bulge
is retained by the second-, third-, and fourth-order
modes. The second mode also inherits the steep profile

Fig. 13. Example 3: Fast-group spectrum variation in the
UO2 assembly computed with the POD modes derived
for example 1.

MOX
UO2

2.1%

UO2

2.1%
MOX

(a) (b) (c)

Fig. 12. (a) Assembly set and layout of the (b) UO2 and (c) MOX fuel assemblies. The MOX assembly is made of three fuel pin
types differing for their Pu content and U enrichment.
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visible in the epithermal range (within u1 2 [0,0.1]) for
the UO2 and MOX assemblies (see Fig. 14). The beha-
vior of the singular values for the computed modes is
shown in Fig. 15b. The first four basis functions have
significantly higher singular values than the remaining
ones. This suggests that they retain most of the infor-
mation carried by the original snapshot set and that they

are sufficient for an accurate reconstruction of the
solution.

The polynomial-based rehomogenization with only
four modes in the fast group cannot fit the bulge shape
due to its strongly varying outline. The computed δΦðuÞ
exhibits a monotonic behavior until the upper pseudo-
lethargy boundary. A misprediction in the highest part of

Fig. 14. Example 3: Spectrum variation per unit u computed by rehomogenization.

Fig. 15. (a) Fast-group POD modes computed by the SVD of the ensemble of snapshot sets built for examples 1, 2, and 3.
(b) Singular values of the basis functions.
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the spectrum affects the rehomogenization of the pro-
duction cross section. Because of the fast fissions of
238U, the νΣf distribution usually assumes its higher
values for u1 > 0:8 (if one does not consider the reso-
nance spikes). Hence, the error on δΦ1 for u1 2 ½0:9; 1:0�
has more weight in the calculation of the few-group
correction. A significantly better prediction is achieved
increasing the number of fast-group basis functions to
seven.

The errors in the integral parameters and nodal cross
sections are shown in Tables VIII, IX, and X. Also in
this case, a limitation of the method due to the exclusion
of spatial effects is apparent: in the MOX assembly, the
error on νΣf ;2 corrected with the reference δνΣf ;2

increases compared to the infinite-medium value. The
same occurs for fast fission in both assemblies and for
thermal absorption in the MOX bundle. We verified
that the errors in Σa;2 and νΣf ;2 in the latter assembly
vanish when spectral rehomogenization is applied in

combination with the reference spatial cross-section cor-
rections. Previous considerations about the mispredic-
tion of δΦ1 in calculation c1 are confirmed by the errors
in the fast-group cross sections (and fast-group nodal
power).

When rehomogenization is applied, the number of
power iterations increases by a factor of 1.7 and 1.9
when seven and four polynomial basis functions are
used in the fast group, respectively. An increment of 2.2
is found with the POD modes from set d3.

V. DISCUSSION

In this section, we address a number of aspects of
interest of the method. The approximations made in its
derivation are discussed, together with convergence fea-
tures, computational cost, and memory requirements.
Some conclusions are drawn about the comparison

TABLE VIII

Example 3: Errors in the Multiplication Factor and Nodal Fission Power

Simulation
Number of Power

Iterations Δkeff (pcm)

UO2 2.1% MOX

Error on Pavg (%) Error on Pavg (%)

Standard (a) 10 30 0.73 (0.26, 0.86) −0.55 (−0.15, −0.71)
Reference δΣspectr (b) 10 −7 −0.21 (0.53, −0.45) 0.15 (−0.30, 0.38)
Spectral rehomogenization Chebyshev (c1) 19 21 −0.21 (0.92, −0.59) 0.16 (−0.53, 0.49)
Spectral rehomogenization Chebyshev (c2) 17 24 −0.29 (0.53, −0.57) 0.21 (−0.31, 0.47)
Spectral rehomogenization POD (d1) 27 −18 −0.16 (0.31, −0.34) −0.12 (−0.18, 0.28)
Spectral rehomogenization POD (d3) 22 −21 −0.25 (0.51, −0.50) 0.18 (−0.29, 0.42)

TABLE IX

Example 3: Errors in the Nodal Cross Sections of the UO2 Assembly

UO2 2.1% Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.00927 0.0894 0.00547 0.0979 0.534 1.302 0.508 0.0171 1.211

Simulation Error (%)

Standard (a) −0.61 1.12 0.07 1.27 −0.33 0.53 −0.37 1.18 0.50
Reference δΣspectr (b) 0.11 0.18 0.35 0.30 0.01 0.01 0.01 −0.05 0.0
Spectral rehomogenization
Chebyshev (c1)

0.28 0.13 0.76 0.24 0.0 0.0 0.0 −0.1 −0.02

Spectral rehomogenization
Chebyshev (c2)

0.17 0.23 0.34 0.33 0.02 0.07 0.02 −0.08 0.06

Spectral rehomogenization
POD (d1)

0.23 0.11 0.05 0.22 0.16 −0.03 0.16 0.24 −0.04

Spectral rehomogenization
POD (d3)

0.05 0.12 0.31 0.24 0.0 −0.02 0.0 −0.10 −0.03
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between the polynomial and POD approaches for the
spectrum-change synthesis. The relation between reho-
mogenization and the B2 spectral correction is consid-
ered. Finally, a preliminary analysis on a model for the
leakage spectral distribution is made.

V.A. Remarks

V.A.1. Approximations in the Formulation of the Method

As mentioned in Sec. II, the rehomogenization
coefficients are computed with the fine-group infinite-
medium cross-section distributions [Eq. (16)]. This is an
approximation because Eq. (5) is rigorously valid in the
real environment, where deviations of the ΣðuÞ distribu-
tions occur. These are due to variations of the fuel, fission
product, and burnable absorber isotopic concentrations Ni

with respect to the infinite-medium depletion and of the
fine-group microscopic cross sections σiðuÞ. The latter
are influenced by self-shielding effects in the heteroge-
neous arrangement of the fuel elements inside the assem-
bly. In the core environment the flux distribution
obviously changes not only at the assembly level but
also at the cell and pin levels, especially in the surround-
ings of the border with a different region. Strong spatial
perturbations of the spectrum inside the cell can cause
variations of the ratio between the flux in the fuel rod and
in the moderator. This results in a modification of the
resonance escape probability.

In view of these considerations, as mentioned in
Sec. V.A.2, a procedure for an on-the-fly update of the
rehomogenization coefficients has been developed to

account for changes in the nuclide content Ni. In this
section, we briefly investigate the impact of using
infinite-medium microscopic cross-section distributions
in Eq. (16). We consider the UO2/MOX colorset
(example 3), in which the effects of within-cell flux
distribution are expected to be more relevant due to the
high flux gradients at the interface between the two
assemblies (see Fig. 14). As shown in Fig. 16, in the
MOX assembly, deviations up to 1.5% are found
between the environmental and infinite-medium ΣaðuÞ
distributions in the thermal range and at the highest
energies of the fast group. The nuclide densities are the

Fig. 16. Example 3: Variation of the MOX assembly
absorption cross-section spectral distribution between
the environmental and infinite-medium conditions.

TABLE X

Example 3: Errors in the Nodal Cross Sections of the MOX Assembly

MOX Σa;1 Σa;2 νΣf ;1 νΣf ;2 Σt;1 Σt;2 Σs;1!1 Σs;1!2 Σs;2!2

Reference (cm�1) 0.0142 0.260 0.00990 0.375 0.526 1.517 0.498 0.0131 1.254

Simulation Error (%)

Standard (a) 0.02 0.42 0.02 0.58 0.39 −0.64 0.43 −0.87 −0.90
Reference δΣspectr (b) −0.08 0.88 −0.25 1.08 −0.01 0.34 −0.01 0.04 0.23
Spectral rehomogenization
Chebyshev (c1)

−0.22 0.91 −0.47 1.13 0.0 0.26 0.0 0.20 0.13

Spectral rehomogenization
Chebyshev (c2)

−0.19 0.82 −0.30 1.04 −0.01 0.16 −0.01 0.20 0.03

Spectral rehomogenization
POD (d1)

−0.24 0.81 −0.26 0.98 −0.10 0.30 −0.10 −0.02 0.20

Spectral rehomogenization
POD (d3)

0.0 0.90 −0.25 1.11 0.0 0.30 0.0 0.08 0.17
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same in the single-assembly and colorset calculations,
so the only differences are due to the fine-group micro-
scopic cross sections. The observed errors are compar-
able, in terms of magnitude, to those of the two-group
single-assembly cross sections.

Table XI shows the results of the calculations with
POD-based rehomogenization in which the hR and hV
parameters (other than hV ;x;G;i;0 coefficients) have been
computed with the environmental and single-assembly
σðuÞ distributions. The errors Δ in the nodal power and
cross sections are expressed in percentage. The differ-
ences in the nodal cross sections between the two simula-
tions are negligible in the thermal range and small in the
fast one (they mostly concern fast-group absorption). The
deviations in the integral parameters are also not relevant.
This outcome is because variations in the fine-group
microscopic cross sections are considerably smaller than
variations in the spectrum, which have a larger effect. A
similar outcome has been found for the remaining test
cases considered in this work. Hence, it may be con-
cluded that the use of the infinite-lattice σðuÞ distribu-
tions in the calculation of the hR;x;G;j and hV ;x;G;i;j
coefficients (with j � 0) does not affect the performance
of the method. We remark that it is mathematically con-
sistent to use the infinite-medium distributions in Eqs. (3)
and (17) (i.e., for j ¼ 0) due to the derivation made in our
previous work.21

Another approximation of the method is that the
cross-section corrections are averaged over the node,
whereas in reality the magnitude of the spectral effects
is significantly higher at the interface with the neighbor
assemblies. For the UO2-MOX interface of example 3,
Fig. 17 shows the reference spectrum variation (per unit
of standard lethargy) in the UO2 bundle as a function of
the distance from the assembly edge. The magnitude of
the node-averaged perturbation corresponds to that
observed approximately 3 cm away from the assembly
border (that is, within the third row of fuel cells). The
high spatial gradients in the spectrum change suggest that
mixed space-energy terms (currently neglected by the
method) can be important and should be modeled.

As a final remark, this rehomogenization approach
does not correct the few-group discontinuity factors,
which depend by definition on heterogeneous spatial
form functions. Since our approach relies on assembly-
averaged distributions, a rigorous way has not been found
so far to determine a spectral correction for this kind of
homogenization parameter. However, a correction on the
discontinuity factors is computed by the spatial rehomo-
genization method that has been developed in parallel to
the spectral one.6
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V.A.2. Implementation Features and Calculational
Efficiency

In order to dampen numerical oscillations occurring
with Galerkin projection, an underrelaxation factor θ has
been introduced for the spectrum variation. Hence, at
each rehomogenization update m; the computed expan-
sion coefficients αmG;i are corrected as follows:

αm
0

G;i ¼ θαmG;i þ ð1� θÞαðm�1Þ0
G;i ; ð31Þ

where αðm�1Þ0
G;i is the estimate from the previous iteration.

This feature demands to store the coefficients αG;i for
each node of the domain (this is the only significant
memory requirement of the method at the online calcula-
tion level). An optimal underrelaxation factor θ ¼ 0:5
has been found.

According to the calculational scheme of Fig. 5,
the iterations between the nodal-flux solution and the
spectral rehomogenization problem are nested in the
thermal-hydraulic and depletion feedback updates.
Therefore, their cost is amortized. As shown in
Sec. IV.B, for the case with no feedbacks, the method
produces an increase in the number of nonlinear itera-
tions by a factor between 1.7 and 1.9 with the polyno-
mial synthesis and between 2 and 2.8 with the POD
approach. We deem that this loss of computational effi-
ciency is fully compensated by the observed gain in

accuracy. For the final application of the methodology
(i.e., with a leakage model based on nodal information
and feedbacks included), our goal is to limit the incre-
ment in running time with respect to a standard nodal
calculation below a factor of 2.

The memory requirement for the storage of the hR and
hV coefficients in the cross-section libraries can be easily
quantified. We consider χðuÞ ¼ 0 along the whole thermal-
group energy domain (which trivially results in χ2; j = 0,"j),
and we define the removal coefficients hR;r;G; j ¼ hR;t;G; j �
hR;s;G!G; j and hV ;r;G;i; j ¼ hV ;t;G;i; j � hV ;s;G!G;i; j. With this
choice, for a generic point in the state-parameter space, the
total number of rehomogenization entries to be tabulated is

given by
PNG

G¼1
ð2N2

QG
þ 7NQGÞ þ NQ1 þ NG. In a two-group

framework and using four basis functions in each coarse
group (NQG = 4), this translates into 126 coefficients. In
order to limit the library growth, a method has been devel-
oped to store the rehomogenization parameters only as a
function of burnup. It consists of an on-the-fly update to
account for the differences between the local values of
moderator density, soluble-boron and xenon concentrations,
and the predetermined table-point values at which the spec-
tral coefficients are computed. This is accomplished by
defining the isotopic rehomogenization coefficients for
H2O,

10B, and 135Xe. The method has been successfully
tested in AREVANP’s ARTEMIS nodal code.37 Its descrip-
tion will be addressed in future publications.

V.A.3. About the Comparison of the Modal Approaches

The results presented in Sec. IV.B showed that the
POD modes reconstruct the reference spectrum variation
very accurately. Because of their capability of inheriting
properties of the snapshots, they can also faithfully repro-
duce the details of the transport solution, such as reso-
nance absorption spikes. In the thermal group, the
spectrum perturbation is a smooth function and exhibits
a very similar outline for different assembly-interface
types. As a result, the thermal POD modes computed
for a few test cases can be easily generalized to other
configurations. On the other hand, in the fast group the
spectrum deformation can contain significantly different
components depending on the assembly interface. Hence,
the POD basis functions have to be properly trained to
capture a number of them. Purely mathematical modes
can only fit the global behavior of the spectrum change.
When local (energy-wise), strongly varying components
are present (such as for the UO2-MOX interface), they
fail to reconstruct satisfactorily the shape of the

Fig. 17. UO2-MOX interface: spectrum perturbation (per
unit lethargy) in the UO2 bundle as a function of the
distance from the assembly edge. The percent variation is
referred to the assembly-averaged total (i.e., one-group)
flux.
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perturbation in the fast group. The use of more basis
functions in this energy range can attenuate such defi-
ciency. However, for some test cases this option has been
found to cause unphysical oscillations in the δΦ solution
when leakage form functions other than the reference one
are used. Limiting the number of modes to four is thus
advisable. In all the benchmark problems examined in
Sec. IV.B, the nodal calculation with POD-based reho-
mogenization converges more slowly than that with the
polynomial-based approach.

Another feature of interest in the comparison
between the two strategies is the conditioning of the
spectral rehomogenization problem. For the simulations
of example 1, Table XII reports the condition
number CA of the solving matrix corresponding to the
two assemblies. The problem formulated with the
POD modes is significantly better conditioned thanks
to their orthonormality properties. In order to avoid
numerical instabilities, the polynomial basis functions
should be orthonormalized by the stabilized Gram-
Schmidt process.38 With this transformation, the reho-
mogenization linear system has a condition number of
the same order of magnitude as that achieved with the
POD operators.

In this work, we have limited our analysis on the
POD approach to the calculation of sets of modes for a
few relevant configurations. In order to exploit the
POD-based rehomogenization at an industrial level,
one has to find a set of proper orthonormal basis func-
tions effectively usable for several assembly-interface
types. Therefore, a more extensive research of snapshots
has to be performed. As the number of snapshots fixes
the computational burden of the POD off-line phase, and
on the other hand, limits the achievable knowledge of
the spectrum-change components, an effective sampling
strategy has to be developed. This would have the
advantage of reducing the amount of costly computa-
tions and of boosting the capability of the POD basis to

reproduce the solution of problems not included in the
snapshot set. In previous work,32 we highlighted that
the POD modes have a weak dependence on state
parameters other than burnup. Moreover, we showed
that some helpful insight into the snapshot selection
process can be given by the analysis of the singular
values of the snapshot matrices A1 and A2 [Eq. (26)].
We believe that the search of a more general set of
modes can be tackled by combining an adaptive
approach for the retention of snapshots (based on the
singular-value decreasing importance) with a suitable
numerical technique (such as sparse grids39) for the
representation of high-dimensional functions.

V.B. Relation with the B 2 Correction

In this section an analysis is made on the interplay
between our spectral rehomogenization method and
another type of spectral cross-section correction: the
critical-buckling B2 correction.

In the framework of single-assembly transport calcu-
lations, it is common practice to adjust the neutron-leakage
rate in the homogenized assembly to enforce a multiplica-
tion factor equal to unity.40 This is accomplished by adding
an artificial leakage cross section Σleak;g to the fine-group
absorption cross section. Such additional cross section is
defined as

Σleak;g ¼ DgB
2 ; ð32Þ

where Dg is the leakage coefficient of group g and B2 is
the buckling coefficient fulfilling the condition k1 ¼ 1:
In this way, the cross-section distributions can be col-
lapsed with a more realistic spectrum, i.e., a spectrum
closer to that of the critical core. The calculation of B2 is
based on the fundamental-mode assumption and is
usually performed using a B1 homogeneous method.40

Refined approaches consider the space and energy depen-
dence of the buckling coefficient.41,42 Even if this type of
correction is meant to reduce the spectral differences
between the infinite medium and the core environment,
it cannot reproduce in any way the spectral effects caused
by unlike neighbors. It is therefore of interest to verify
whether or not a relation of complementarity exists
between this kind of cross-section correction and the
one computed by rehomogenization.

For the analysis, we consider a rodded configuration
similar to that modeled in example 2 (Sec. IV.B.2), con-
sisting of a UO2 assembly with 1.8% enrichment next
to another UO2 assembly with 2.4% enrichment and

TABLE XII

Example 1: Condition Number of the Assembly-
Rehomogenization Linear System

CA UO2 1.8%

UO2 3.1% + 16
Burnable Poison

Rods

Chebyshev 437 792 439 739
POD 91 96
Chebyshev
(Gram-Schmidt)

324 341
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24 AIC-type control rods. In order to be consistent with the
fundamental-buckling approach, we study the critical-
colorset configuration, achieved with a diluted-boron con-
centration of 222 ppm. We compare the results of the nodal
calculations having the following cross-section inputs:

1. infinite-medium cross sections without B2 cor-
rection (a)

2. infinite-medium cross sections with B2 correc-
tion (b)

3. cross sections rehomogenized by the δΣG com-
puted with the reference spectrum variation
δΦG ¼ Φenv;G � Φ1;G (c)

4. cross sections rehomogenized by the δΣG com-
puted with the reference spectrum variation

δΦB2

G ¼ Φenv;G �ΦB2

1;G (d).

By Φ1;G and ΦB2

1;G; we denote the noncritical and critical

(i.e., B2-corrected) infinite-medium spectra, respectively.
The single-assembly and colorset transport calculations
for the present analysis are performed with the
APOLLO2-A deterministic lattice transport code.43 This
choice allows us to avoid the computational burden of a
281-group B1 spectrum calculation in SERPENT.

APOLLO2-A features two approaches for the calcu-
lation of the diffusion coefficient: the outflow transport
approximation36 and the B1 method.40 The former is the
only option when single-assembly calculations are per-
formed without critical buckling and is therefore chosen
for this analysis. If no B2 correction is performed, the
values of k1 in the unrodded and rodded assemblies
are 1.16433 and 0.82913, respectively. Criticality is
achieved with B2 ¼ 0:002608 in the former and with
B2 ¼ �0:003083 in the latter.

Figure 18 shows, for the unrodded assembly, the overall
spectrum variation (per unit of standard lethargy) between the
critical-colorset environment and the critical and noncritical
infinite lattices. The environmental and infinite-lattice spectra
are normalized to unity. Clearly, the perturbation has lower
magnitude when it is computed with respect to the buckling-
corrected spectrum, especially for high energies. This can be
explained by observing that given a positive value of B2 (i.e.,
an outgoing neutron flow), the differences between the cri-
tical and noncritical infinite-medium spectra depend on two
effects going in opposite directions: the higher leakage rate in
the fast range (which tends to thermalize the spectrum) and
the lower number of fast neutrons available for being scat-
tered to thermal energies (which hardens the spectrum). The
second effect is preeminent: with the B2 correction, the

spectral index in the unrodded assembly increases from
3.304 to 3.482. Since the spectrum is hardened by the assem-
bly with control rods in the colorset environment, the spec-
trum variation is attenuated by the B2 correction.

Table XIII shows the errors in the integral parameters
and nodal cross sections for calculations a, b, c, and d. The
deviations in the nodal power and cross sections are
expressed in percentage. Comparing simulations a and b,
it appears that the B2 correction significantly reduces the
errors in the fast production and fast-to-thermal scattering
cross sections, whereas it considerably overcorrects the fast
absorption and fast total cross sections. As thermal neutrons
are much less “leakage-prone,” the correction has little
influence on the thermal cross sections. The calculation
with buckling exhibits significantly lower errors in the
nodal power but a much higher error in keff . In calculations
c and d, the errors are very close. The differences in the
nodal cross sections between the two simulations (observa-
ble, for instance, in the error in fast fission) lie within the
range of accuracy of the calculation. The same holds for the
errors in keff and in the nodal power. This suggests that
rehomogenization is not influenced by the fact that the
infinite-medium cross sections are generated at conditions
very far from criticality (16 433 pcm off criticality in the
unrodded assembly, −17 087 pcm off criticality in the
rodded one). Apparently, the method can reproduce both

neighbor effects (which cannot be modeled by the B2

Fig. 18. Critical colorset UO2 (1.8%-enriched)/UO2

(2.4%-enriched) + 24AIC control rods: unrodded-assembly
spectrum change in the real environment with respect to the
critical and noncritical infinite lattices. The neutron spectra
are normalized to unity.
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correction) and spectral effects due to different physical
conditions between the core environment and the infinite
lattice (i.e., different multiplicative properties). Therefore,
the two corrections are not complementary.

Although the fundamental-buckling correction is
widely adopted in the preparation of cross-section libraries,
its application is notoriously not rigorous when simulating
noncritical conditions in which the spectrum differs from
the critical one.44–46 These include reactor core transients
and subcritical states during power outage. For example, in
Ref. 46 it is shown that the use of B2-tweaked cross sections
can have a large impact on the nodal simulation of transients
strongly deviating from criticality. Spectral rehomogeniza-
tion makes the critical-buckling procedure redundant. Thus,
the B2 approach can be eliminated from the preparation of
the cross-section libraries. In this way, no bias is introduced
in the simulation of noncritical conditions, and one of the
limitations in the current methodology for cross-section
generation is removed (with an advantage also in terms of
the computational cost of the lattice calculation).

V.C. A Model for the Leakage Spectral Distribution

In the calculations performed in this paper, the leak-
age energy distribution from the reference transport solu-
tion has been used in the rehomogenization problem. In
the final implementation of the methodology, this shape is
to be computed on the basis of nodal information.

In a preliminary attempt, a flat-leakage approximation
was used, setting Lenv;GðuÞ equal to the few-group nodal
value �LG [i.e., fL;GðuÞ ¼ 1 in Eq. (11)]. This approach was
tested in combination with step functions as weighting
operators for the rehomogenization problem (under the
assumption of a constant leakage distribution, the use of
Galerkin weighting with zero-averaged basis functions
would result in cG; j ¼ 0). Not surprisingly, this rough
approximation gave poor results and had to be abandoned.

The leakage-projection coefficient cG; j [Eq. (16a)]
can be computed using information from the fine-group
lattice transport calculation. In this case, the form func-
tion approximating the environmental leakage has to be
prescribed a priori or defined as a function of infinite-
medium quantities that are known a priori. A possibility
is to use the infinite-medium fundamental-leakage distri-
bution f1L;G. We define it, with normalization to unity, as

f1L;GðuÞ ¼
DB2ðuÞφ1;GðuÞð1

0
duDB2ðuÞφ1;GðuÞ

: ð33Þ
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This straightforward approach avoids formulating more
complex models. However, the leakage distribution in the
real environment can differ significantly from that in the
infinite-medium critical assembly. Moreover, such strategy
can be used only with B2-corrected cross-section libraries.
Hence, it lacks generality, and it might suffer from the
deficiencies of the B1 calculation highlighted in Sec. V.B.

An alternative method that has been recently developed
is based on the application of Fick’s law to the neutron
spectra. The local leakage shape is thus defined as a func-
tion of the difference between the environmental spectrum
in the node and the environmental spectra in the surround-
ing nodes. According to this diffusive approach, the leakage

spectral distribution f k;diffL;G at the interface kl between two

adjacent nodes k and l is formulated for node k as follows:

f k;diffL;G ðuÞ ¼ ckG �D
kl
GðuÞðΦk

env;GðuÞ � Φl
env;GðuÞÞ ; ð34Þ

where

ckG = normalization constant

�Dkl
GðuÞ = average diffusion coefficient

Φm
env;GðuÞ (with m ¼ k; l) = environmental spectrum in

node m computed by
rehomogenization.

This nonlinear strategy has given very accurate results
for several benchmark problems and is so far the best
candidate for the final implementation in the ARTEMIS
code.37 For example, Fig. 19 shows the fast-group leakage
distributions computed with the fundamental-mode and dif-
fusive approaches for the unrodded assembly of example 2
(Sec. IV.B.2). From the comparison with the reference
environmental leakage, it emerges that the second method
gives a very accurate approximation, especially in the
epithermal region of the spectrum.

Other approaches have been investigated, including a
modal synthesis of the leakage form function. A thorough
description of these models is deferred for subsequent
publication.

VI. CONCLUSIONS

In this work, we have presented an on-the-fly modal-
synthesis method for spectral rehomogenization of nodal
cross sections. The approach has a physical foundation.
This feature distinguishes it from other spectral-correction
methods available in literature, most of which resort to
empirical correlations and to the tabulation of precalculated
corrections.

The method has been validated for assembly configura-
tions typically encountered in PWR cores. The case with no
thermal or depletion feedbacks has been considered. Focus
has been given to the definition of effective sets of basis and
weighting functions for the environmental spectrum recon-
struction. The rehomogenization algorithm can reproduce
very accurately the spectral effects on the cross sections
when the reference leakage energy distribution is used. The
results of a model for the leakage spectrum, relying on nodal
information and lattice-calculation data, are also promising.
The method has an acceptable computational burden, and the
changes to the cross-section parameterized tables merely
consist of the inclusion of additional homogenization coeffi-
cients. Another benefit is that the B1 critical-spectrum correc-
tion is no longer needed.

A limitation of this approach is that it can only correct a
part of the homogenization error. In order to fully capture
core-environment effects, it cannot be decoupled from an
effective spatial rehomogenization. Based on the results
presented in this paper, a combined spatial and spectral
rehomogenization scheme may contribute to obtain signifi-
cantly more accurate estimates of LWR power distribution
and multiplication factor from nodal diffusion codes still
using the single-assembly homogenization paradigm.

Future work will include the validation of the leakage
spectral model and the application of the methodology to
configurations with thermal hydraulics and depletion feed-
backs and to whole-core calculations. It will be demonstrated
that this approach can model spectral effects associated with

Fig. 19. Example 2: Fast-group leakage spectrum in the
unrodded assembly, computed with a nonlinear diffusive
model and with the fundamental-mode approximation [in
units of neutrons/(cubic centimeters · second)].
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not only interassembly heterogeneity but also local changes
in the nuclide densities. This feature might be exploited to
devise a rehomogenization-based cross-section model in
which the interpolation of the cross sections versus state
parameters other than burnup and fuel temperature is
removed. Other topics to be addressed are the analysis on
boiling-water-reactor assembly configurations and the exten-
sion of the POD approach to industrial calculations. Finally,
an investigation of the effect of the spatial discretization on
the method is of great interest, with particular attention to
applications in the context of pin-by-pin calculations.
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