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Abstract

Fast sequencing and analysis of (microorganism, plant or human) genomes will open up new vistas
in fields like personalised medication, food yield and epigenetic research. Current state-of-the-art
DNA pattern matching techniques use heuristic algorithms on computing clusters of CPUs, GPUs and
FPGAs. With genomic data set to eclipse social and astronomical big data streams within a decade, the
alternate computing paradigm of quantum computation is explored to accelerate genome-sequence
reconstruction. The inherent parallelism of quantum superposition of states is harnessed to design a
quantum kernel for accelerating the search process. The project explores the merger of these two
domains and identifies ways to fit these together to design a genome-sequence analysis pipeline with
quantum algorithmic speedup. The design of a genome-sequence analysis pipeline with a quantum
kernel is tested with a proof-of-concept demonstration using a quantum simulator.
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1
Introduction

All fiction that does not violate the laws of physics is fact.
- David Deutsch

While striving to unify the energy forms in quantum gravity, theoretical physicist John Archibald
Wheeler, put forth a more fundamental idea of Digital Physics – the Universe expressed by the co-
herence of toggling bits, a gigantic computer. Is the evolving Universe then just another holographic
simulation unfolding itself? – A question, only a machine as powerful as the Universe can answer. At
the base of any pyramidal discovery by machine learning lies an enormous pool of data, which are
processed to extract information. Patterns are classified to build a knowledge base. Logical decisions
on these carry us further up the ladder towards wisdom, or intelligence. But, can we transcend to the
epitome of programmed enlightenment – artificial intelligence in quantum computing. What was once
confined to the pages of science fiction, is now being discussed increasingly in research laboratories
around the World. This thesis rides the crest of this wave by investigating algorithms to search patterns
using fundamental physical theories for computing.

An intriguing notion that has charmed many great minds is the principle of emergence - structure
from chaos, of complexity from simplicity, of negative entropy and creativity. One such marvellous
creation of the Universe is of life - orchestrated with chemical reactions among inanimate molecules.
The most interesting of these molecules, pervasive to all living organisms big or small, aquatic or
aerial is DNA (and RNA). This code of life encodes the spectacle of biochemical processes: metabolism
and reproduction. It is a program, which depending on environmental inputs act out these processes
- eventually evolving the next generation with a compressed memory of the most eventful of these
stimuli by natural selection. Understanding this code better will enable us to harness many wonders
from personalised drug discovery to genetically modified crops. These sequences of DNA form the
haystack of data for the pattern matching efforts in this thesis.

1.1. Thesis scope
The analysis of DNA sequences poses a big data challenge due to the sheer volume of data gen-

erated. Even in state-of-the-art super-computing clusters, executing the whole genomics pipeline can
take time in the order of days for a human DNA. This low throughput is a major constraint in the devel-
opment of precision medicine applications. Sequence reconstruction is one of the most computation-
intensive blocks of the analysis pipeline. This thesis explores strategies to accelerate the algorithmic
primitive of sub-sequence alignment by harnessing the inherent parallelism in quantum algorithms.
The domain of quantum search-based pattern matching is researched and algorithms are developed
specifically to suit DNA sequence data.

The primary aim of this thesis is two-fold. On the theoretical side, the thesis explores the possibilities
in the merger of the field of bioinformatics algorithms and quantum computation. It discusses the
various algorithms in both these fields and highlights the synergistic bridges between them. On the
more practical side, the assumptions for implementation of these approaches are considered. An
executable scaled down simulation of the quantum algorithm is constructed to test the viability of
pattern recognition on genomic data for the purpose of sequence reconstruction.

1



2 1. Introduction

The thesis is highly interdisciplinary, merging some of the core ideas of computing, biology and
engineering. The major highlights of this thesis are:

• Survey of various pattern matching algorithm in genomics
• Implementations of different existing strategies for quantum pattern search in a simulator
• Development of a new quantum algorithm for DNA sequence alignment
• Discussions on the software architecture of a full-fledged quantum accelerated genome sequence
analysis pipeline

1.2. Research approach
During the research period of the thesis (around 8 months), an iterative amalgamation of breadth

and depth exploration is followed. New promising avenues of quantum algorithms are explored to
understand its applicability, while in parallel, implementations of more conductive approaches are pro-
grammed and tested on a quantum simulator. Some branches of quantum search techniques are
trimmed for the scope of the thesis. These decisions are based on the availability of prior research on
ways to model the problem of genomic sub-sequence alignment, using these approaches.

Currently available quantum computing hardware (or simulators) precludes testing problem in-
stances of realistic sizes. However, a primary goal of the thesis is to provide a malleable foundation
for implementing a full-fledged application pipeline in the future. Thus, the discussions on theoretical
validity of the algorithms are extended by supportive proof-of-concept simulations. The challenge of
the thesis is indeed discussing practical implementation of a proposition that is still transitioning from
science fiction to serious theoretical discussion.

1.3. Organisation
This thesis is structured around chapters.
In Chapter 2, a background in the interdisciplinary fields concerning this thesis is presented. It gives

a broad overview of the developments towards the concerned problem statement from the perspective
of computer engineering, computer science, quantum computing and bioinformatics.

Chapter 3 discusses the existing classical and quantum algorithms for pattern matching in general.
The basic structure of these algorithms is presented and compared.

In Chapter 4, the implementation of these algorithms is presented in the OpenQL and QX simulator
platform. These algorithms are modified for genome sequence data. A new strategy is developed that
is better suited for the specific application.

Chapter 5 concludes the thesis and gives recommendations for future work.



2
Quantum computing and Genomics

Science is beautiful when it makes simple explanations of phenomena or connections between
different observations. Examples include the double helix in biology, and the fundamental equations

of physics. - Stephen Hawking

As mentioned in the previous chapter, the focus of this thesis is to study and develop pattern
matching algorithms for genomic sequences that can be accelerated when executed on a quantum
computer. The thesis is developed at the intersection of multiple fields as shown in Figure 2.1. This
chapter provides the necessary background in each of these fields to appreciate the challenges from
each perspective.

Figure 2.1: Related disciplines of the thesis

Firstly, the outlook of computer engineering are presented, that motivates the research in quan-
tum computers. Then, some fundamental theories and programming models of computer science are
introduced, that provide hard bounds on the results. Next, a background of quantum computation
is elucidated from both the theoretical and practical stance. Finally, some elementary knowledge of
genetics is premised so that the following chapters can be well knitted with these multi-disciplinary
viewpoints.

2.1. Computer engineering
Marvelling on the pervasive and magnificent civilisation that human beings have established, much

of its incredible engineering genius has been made possible by precise computations. But even before
the advent of the space age, before the computer age, or even the industrial age, humanity had firmly
seated themselves at the epitome of evolutionary success. Use of tools to aid in various activities is
arguably a key aspect of intelligent behaviour, which very few animals exhibit. While tools in general,
can mean anything from fire to wheels, we shall in this section, have a brief replay of the evolution of
computing methods over the ages - ultimately converging on the current challenges that motivate us
for further research in this domain.

3



4 2. Quantum computing and Genomics

2.1.1. A historical perspective
The widely used decimal system of counting is mostly attributed to our ten fingers. While this

method of computation is limited to junior schools and might not seem a cognitive spectacle, we shall
see in Section 2.4.1, even monkeys sharing ∼ 99% of our genetic codes, cannot do any of those simple
multiplication tables. Counting on fingers require some amount of memorisation. An easier method
for early humans have been marks on cave walls or counting with stones. The abacus and such a
device are not much different and in Section 2.2.1 the fundamental model of computation, the Turing
Machine, is shown to rely on a very similar construct. Counting with stones, or abacus has a distinct
similarity with quantum computation [1], as we cannot introduce more stones or make them vanish
at one’s will. The total number of stones is conserved, and we can only put them aside or arrange
them into piles that would reflect our calculation result. This leads directly to the intuitive notion of
no-cloning and reversible computation where only the erasure of information costs energy [2].

As civilisation progressed, analog and mechanical computing devices like the Antikythera mechanism
or the astrolabe were invented as special purpose tools to aid calculation. A more general purpose
calculator was invented in the 17th century as the slide rule. Eventually, more autonomy was added
as the machinery became more complex, like Pascal’s calculator or Jacquard’s loom. The loom wove
pattern controlled by a paper tape constructed from punched cards. The cards could be changed
without altering the mechanical design of the loom - a landmark achievement in programmability.

Charles Babbage conceptualised and invented the first mechanical computer, the difference engine,
in the early 19th century, to aid in navigational calculations. Thereafter, he realised a much more
general design called the analytical engine. The input programs and data were provided via punched
cards, while output devices included a printer, a curve plotter and a bell. It incorporated a decimal
arithmetic logic unit (ALU), control flow in the form of conditional branching and loops, and integrated
memory; making it the first design for a general-purpose computer that could be described in modern
terms as Turing-complete.

The era of modern computing began with a flurry of developments concerning World War II. These
devices were electro-mechanical (electric switches driving mechanical relays) having low operating
speeds. They were eventually superseded by much faster all-electric computers, originally using vac-
uum tubes. In 1941, Konrad Zuse built Z3, the World’s first working electro-mechanical programmable,
fully automatic digital computer. Replacement of the hard-to-implement decimal system by the simpler
binary system added to the reliability.

Purely electronic circuit elements gradually replaced their electro-mechanical equivalents in the early
computers like Colossus, ENIAC and EDVAC. As further innovation progressed, some of the architectural
concepts seen in today’s computers became established. These included the pervasive Boolean algebra
for the ALU, instruction-sets for the microcode and the concept of firmware (for device drivers) and
the operating system.

Another significant milestone is the concept of stored program architecture introduced in 1945 by
John von Neumann. The Princeton architecture evolved to be associated with a common bus to the
random-access memory (RAM) preventing instruction fetch and a data operation at the same time. The
alternate more complex Harvard architecture has a dedicated set of address and data bus for each.

2.1.2. The transistor era
The next generation of devices featured silicon-based junction (later, field effect) transistors in

the 1950s. They were smaller and more reliable while requiring less power than vacuum tubes, so
dissipating less heat. What followed is an unprecedented boom in the electronics industry, bringing
with it new applications and dependence on computation heavy insights.

Gordon Moore observed [3] in 1965 that the number of components per integrated circuit doubles
in approximately two years. Moore’s law has proved accurate for more than four decades and has
been instrumental in guiding the research plans and targets for the semiconductor industry. However,
it is an observation or projection based on human ingenuity, not a physical or natural law. The trend
has sustained through a number of enabling factors like complementary metal-oxide-semiconductor
(CMOS), dynamic random-access memory (DRAM), chemically-amplified photoresist, deep UV excimer
laser photolithography, etc.

It is observed in Figure 2.2 that, the single thread performance, operating frequency and power
stagnated around 2005 shifting the trend to multi-core processors. The power consumption of a
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Figure 2.2: 42 Years of Microprocessor Trend Data [4]

transistor is attributed to either the leakage switching current, or the static power, given by the relation:

𝑃 = 𝑃 + 𝑃 = 𝑎𝐶𝑉 𝑓 + 𝑉𝐼
where, 𝑓 ∝ (𝑉−𝑉 )/𝑉 , and 𝐼 ∝ 𝑒𝑥𝑝(−𝑞𝑉 /𝑘𝑇). Thus, an exponential increase in frequency (the
main drive for performance increase before 2005) also gave an exponential increase in power, limiting
the number of transistors that can be kept powered on, per unit chip area. At the architectural level,
pipelining by instruction level parallelism and speculative execution reached a saturation, suggesting
the adoption of explicit parallelism. However, the speedup a program can harness in a multi-core
environment is limited by the parallel fraction of a program, given by Amdahl’s Law:

n-core speedup = 1(1 − 𝑓 ) + 𝑓
𝑛

Not all programs have a structure that can be beneficially partitioned, taking into account the communi-
cation and synchronising overheads among the parts. Thus, the transition to specialised architectures
for specific algorithmic structures is evident. Finally, the advances in memory and processor-memory
interconnect technology did not reach the same level of performance as the processors, increasing the
access stall between each level of cached memory hardware.

2.1.3. Accelerator model
The shift to multi-core alleviated the computing industry, but only for a few years. The drawbacks

of effectively utilising multiple cores, as discussed, keep diminishing the performance returns for the
engineering investment. The next generation of processors included various trade-offs, like dim-silicon
(slowing down cores) and dark-silicon (keeping a majority of the transistors off, or utilising them for
routing) [5].

It is evident that further performance gains would need to bind the application and hardware closer
into application specific integrated circuits (ASIC). A move towards this, preserving the general purpose
programmable design, is the growing dependence on specialised on-chip hardware in the form of
graphics processing units (GPU), field programmable gate arrays (FPGA) and digital signal processors
(DSP). The CPU would off-load tasks to connected accelerators based on the application and structure
of the program. This is an active research area with more specialised accelerators like neuromorphic
chips (mixed-signal architecture reflecting neural structure), ASIC miners (for cryptocurrency mining
using blockchain) and tensor processing units (for neural network based machine learning), among
others.
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Figure 2.3: Accelerator as Co-Processor: heterogeneous computing model

Alternate forms of computations are being explored as well. Memristor refers to two-terminal non-
volatile memory devices based on resistance switching effects [6]. They are useful for nano-electronic
memories, computer logic and neuromorphic architectures. Another example is of DNA computer which
uses DNA biochemistry instead of silicon-based hardware [7]. It is characterised by slow processing
speed but having potentially high parallelism. Finally, quantum computers, the subject of this thesis,
are also a promising candidate which uses fundamental physical principles of quantum mechanics for
computation. Quantum processing units (QPU) are also being developed in the accelerator model of
heterogeneous computation as shown in Figure 2.3.

2.2. Computer science
In this section, the premise of theoretical computer science that motivates the algorithms in the

thesis is presented. The spectrum in between mathematical models of computation and practicality
of algorithms for real-world applications is often overlooked. An asymptotic speedup might render
useless for the concerned problem size, whereas a less lucrative speedup for the right problem size
might give an enormous boost in computing resources needed for the calculation. The thesis is built
on the fundamentals of algorithm design as discussed here, adding to it the implementation issues to
conserve practicality.

2.2.1. Universal computation models
Computation models allow us to describe how a set of outputs are computed given a set of inputs.

It relates to the organisation of units of computation, memories, and communications. These models
enable us to study the performance of algorithms independently of the variations that are specific to
particular implementations and specific technology.

Models of computation can be broadly classified as:
• Sequential models (e.g. Finite state machines, Pushdown automata, Turing Machine, Parallel
random-access machine)

• Functional models (e.g. Lambda calculus, Recursive functions, Combinatory logic, Cellular au-
tomaton, Abstract rewriting systems)

• Concurrent models (e.g. Kahn process networks, Petri nets, Synchronous Dataflow, Interaction
nets, Actor model, Process calculus)

Some of the concepts in the thesis are related to these models, for example, lambda calculus [8]
and functional programming languages like Python. The Turing Machine model, however, is very closely
related to the further discussions in the thesis. It is presented here.

The abstract idea of Turing Machine was proposed by Alan Turing in 1936 to solve the nonexis-
tence of Entscheidungsproblem (an algorithm that evaluates the universal validity of a first-order logic
statement). This mechanical automaton model of the CPU enumerates a subset of strings from a
recursively-enumerable set (Turing recognisable language). The logic of any Turing machine can be
encoded efficiently (within polynomial factors) as input interpreted by another Turing machine. The
idea of Universal Turing Machine (UTM) and thus of stored-program is derived from this formal notion.

A blueprint of a UTM is shown in Figure 2.4. It consists of an infinitely long tape with cells that
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Figure 2.4: Turing Machine mechanics

can be in two states (0/1, on/off, a coin placed up/down). A head has two components, a reader that
senses the state of the cell under the head; and based on the internal decision a printer conditionally
toggles the state. A set of motors move the tape left or right. Now, based on the state of the machine
and the input, the decision is taken by the UTM for next machine state, the printer and motor control.
This decision is based on an algorithm encoded as a program (or a simple state machine). In Section
2.4.1, similarities between a Turing Machine and the biological DNA code execution are discussed.

Turing completeness refers to the ability for a system of instructions to simulate a Turing machine.
Many equivalent models listed above can be thus shown to be universal computation models, for ex-
ample, Rule 110 Wolfram automaton exhibiting class 4 behaviour [9]. A Turing complete programming
language is theoretically capable of expressing all tasks that can be accomplished by computers. While
nearly all programming languages are Turing complete if the limitations of finite memory are ignored,
there are esoteric languages called Turing tarpits (e.g. GolfScript) that produces semantically obfus-
cated but minimal length programs for an algorithm.

2.2.2. Computational complexity
The fundamental question that theoretical computer science strives to answer is: ”What are the

capabilities and limitations of computing machines?” This question is answered by 3 intertwined ap-
proaches:

• Computability theory: What problems are solvable for computers?
• Complexity theory: What makes some problems easy or hard for computers?
• Automata theory: What formal model of computation is required for a problem?
Computability theory works at a larger scale, often answering fundamental questions in mathemat-

ics and computation, like Gödel’s Incompleteness Theorem, the Entscheidungsproblem or the Halting
problem. While these results pose critical limits on the feasibility of any algorithms that are developed,
the work in this thesis, or quantum algorithms, in general, are at a much constrained scale.

Complexity theory bridges the gap between practical algorithms running on computing hardware
made out of simpler grammar of programming languages, and the hierarchy of recursive languages
in computability theory. The complexity of algorithms has been classified into a multitude of classes.
The boundaries and relationships between these classes are sometimes not proven but are based on
current knowledge and popular belief in the scientific community as shown in Figure 2.5(a).

The complexity classes of P and NP, and their relation to quantum complexity classes are of imme-
diate interest for efficient algorithm development. Polynomial time (PTIME or P for short) refers to the
class of algorithms that are efficiently solvable (or tractable) by a deterministic Turing Machine (DTM)
in an amount of time that is polynomial in the size of the input problem. Non-deterministic polynomial
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(a) Complexity hierarchies [10] (b) Asymptotic complexity

Figure 2.5: Theoretical computer science aspects for algorithm design

time (NTIME or NP for short) refers to the set of problems that are tractable by a non-deterministic
Turing Machine (NTM) in polynomial time. In contrast to Turing Machines (examples of DTM), in a
NTM, the set of rules may prescribe more than one action to be performed for any given situation. The
resolution of action is based on thought experiments. A way to look at it is to say that the machine is
the ”luckiest possible guesser”; it always picks a transition that eventually leads to an accepting state,
if there is such a transition. Alternatively, it can be imagined as the machine ”branches” into many
copies, each of which follows one of the possible transitions, thus, instead of a DTM’s single ”computa-
tion path”, NTM follows a ”computation tree”. If at least one branch of the tree halts with an ”accept”
condition, the NTM is said to accept the input.

An alternate definition of NP class is, the set of all decision problems for which the instances where
the answer is ”yes” have efficiently verifiable proofs, as 𝑁𝑃 ∈ 𝑀𝐴 = 𝐼𝑃 ∈ 𝐴𝑀 (Merlin-Arthur Interactive
Proof systems). Whether an algorithm that can be efficiently checked for correctness can also be
efficiently solved is an open question [11] (one of the Millennium problems). However, P can easily be
reasoned to be a subset of NP (might not be a proper subset). Given a certificate for a problem in P,
we can ignore the certificate and just solve the problem in polynomial time, alternatively, a DTM is also
trivially a NTM that just happens to not use any non-determinism. Another important concept here is
of NP-Completeness, which is the set of problems in NP such that every other problem in NP can be
transformed (or reduced) to it in polynomial time.

The Bachmann–Landau notation (or asymptotic notations) are used to describe the limiting be-
haviour of a function with the domain tending towards a particular value (often infinity). The big O
notation is used to classify algorithms according to their running time or space requirements growth
rate with input size. A description of a function in terms of big O notation provides an upper bound on
the growth rate of the function. Formally, for real/complex valued functions f and g defined on some
unbounded subset of the real positive numbers,

𝑓(𝑥) = 𝑂(𝑔(𝑥)) as 𝑥 → ∞
iff ∀ sufficiently large x ∃ 𝑀 ∈ ℜ and 𝑥 ∈ ℜ s.t. ∣𝑓(𝑥)∣ ≤ 𝑀𝑔(𝑥) ∀ 𝑥 > 𝑥 The O notation for a function
𝑓 is derived by the simplification rules:

• If 𝑓(𝑥) is a sum of several terms, term with largest growth rate is kept
• If 𝑓(𝑥) is a product of several factors, constants are omitted

For example, 𝑓(𝑥) = 4𝑥 + 2𝑥 + 100, the order is 𝑂(𝑥 ). Infinite asymptotics often looks over the
lower order terms and constants, which might be the deciding factor for practical applications. As
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shown in Figure 2.5(b), even for exponential problems in 𝑂(𝑛 ) versus constant time 𝑂(1), there is a
cross-over of applicability, where the preference shifts. It is important to estimate where the problem
of interest lies on the horizontal axis for stricter comparison among algorithms. Other kinds of bounds
on asymptotic growth rates use the symbols 𝑜, Ω, 𝜔, and Θ. The Θ notation is used to denote average-
case complexity. While it is much more difficult to prove bound without guarantees on input data, it is
of more practical significance and will be used at times in the thesis.

2.2.3. Algorithmic complexity
Alternate to the views presented above, complexity can also be assessed using algorithmic informa-

tion theory. The Kolmogorov complexity of a solution (output) is the length of the shortest computer
program that produces it. It represents a measure of the computational resources needed to specify
the operation to create the object.

This requires a fixed universal description language (the sensitivity of complexity is relative to the
choice of the language). It can be thought of in terms of Turing tarpits discussed in Section 2.2.1. It
is upper bounded by the length of the output itself (plus a constant factor). However, the exact value
is uncomputable and is intimately connected with the uncomputability of the Halting problem [12].

The notion of Kolmogorov entropy is very useful for compression. Kolmogorov randomness is
achieved if there exists no shorter computer program that can produce the output than itself (i.e.
it is incompressible). Also, the Kolmogorov complexity of the output of a Markov information source,
normalised by the length of the output, converges almost surely (as the length of the output goes to
infinity) to the Shannon information entropy of the source [13].

2.3. Quantum computation
The discussion in Section 2.1 and Section 2.2 have given the basic practical and theoretical premise

of the thesis. In this and the forthcoming section, the fields more directly related to the thesis is
explained.

Nature being inherently quantized, classical computation adheres to the laws of quantum mechanics
as well. The quantum-computing-specific phenomena act however in the atomic/sub-atomic realm
(a size Moore’s transistor scaling law is fast approaching) and harnessing these form the basis of
quantum computation. Quantum computer has come up on the Gartner hype cycle [14] for emerging
technologies for a few years now. In this section, the role of quantum computation, construction
architectures, its basic principles, the inherent advantages as well as known limitations is presented.

2.3.1. Quantum states
Much of quantum computing is based on the abstract linear algebra of vector spaces, however, for

an intuitive understanding, a simplistic model of the hydrogen atom is considered as depicted in Figure
2.6. In quantum computers, information is stored in quantum bits or qubits. It is a two-level system,
which can be generalised to d-level systems, called qudits, though not needed for this thesis. Quantum
numbers describe values of conserved quantities in the dynamics of a quantum system and form the
levels for quantum computation. They are discrete sets of integers or half-integers (this distinguishes it
from classical mechanics where system variables are continuous, such as mass, charge, or momentum).
For electrons, quantum numbers are the sets of numerical values giving acceptable solutions to the
Schrödinger wave equation for the hydrogen atom, for example, Principal, Azimuthal, Magnetic are Spin
quantum number. A single electron around the nucleus can be thought of as a qubit if its energy states
are restricted to only the ground state and the first excited state, or other properties, for example, the
spin states of up or down.

The principle of superposition states that the quantum state can be an arbitrary superposition of its
basis states. Basic states correspond to measurable parameters (called Hamiltonians), like the energy
level, or the spin; and are denoted by the Dirac notation. In the hydrogen example, the energy levels
corresponds to the basis ∣0⟩ , ∣1⟩, while the spin states are ∣+⟩ , ∣−⟩. Mathematically, superposition of
qubits can thus be a linear combination of 𝛼 ∣0⟩ + 𝛽 ∣1⟩, or, 𝛾 ∣+⟩ + 𝛿 ∣−⟩. These two sets of basis are
orthonormal, thus, a state on one of the basis, is completely unrecognizable in the other basis, as the

interconversion of the basis is given by, ∣+⟩ = ∣0⟩ + ∣1⟩
2 and ∣−⟩ = ∣0⟩ − ∣1⟩

2 , and can be posed in terms
of complementary properties in Heisenberg’s uncertainty principle. Here, the complex constants (called
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Figure 2.6: Hydrogen atom, a simple quantum system

probability amplitudes) should be normalised as their squared value corresponds to the probability of
actually observing the state in the particular basis state, and thus should be preserved as long as the
system is closed. Thus, ∣𝛼∣ + ∣𝛽∣ = 1 and ∣𝛾∣ + ∣𝛿∣ = 1. This is essentially a generalisation of the
theory of probability to complex numbers. The state of a n-qubit system is an arbitrary superposition
over 2 basis states with normalised complex amplitudes as coefficients, with an irrelevant global phase.
Mathematically, it is a vector in n-dimensional Hilbert space (the complex generalisation of Euclidean
space).

Another peculiar quantum mechanical phenomenon is entanglement between states, causing two
qubits to be maximally correlated (or anti-correlated) to each other. Such states are called Bell states,

for example, the singlet, ∣Ψ−⟩ = 1√
2
(∣0⟩ ⊗ ∣1⟩ − ∣1⟩ ⊗ ∣0⟩ ). The qubits 𝐴, 𝐵 are called EPR pairs,

and a measurement result on any qubit completely determines the result prior to measuring the other
qubits. This is due to projective measurement and is discussed subsequently. It is important to note,
entanglement can be used for securing quantum communications, as it is monogamous, however, it
cannot be used for faster-than-light signalling.

Finally, another fundamental postulate of quantum mechanics, the no-cloning principle, restricts
copying of arbitrary quantum states. While this adds to the security of quantum communication, for
quantum computation algorithms, it is often a necessary evil, preventing the initialisation circuit’s output
to create multiple copies by fanout. In Section 4.5.1, the thesis will present ideas to work around this
limitation.

2.3.2. Quantum operators
The model of quantum computer is of in-memory computing, where the data (qubits) are stationary,

and the operations (gates) are applied on it. Quantum gates are arbitrary unitary operators (and thus
reversible) that can be simultaneously applied to the entire superposition similar to classical SIMD. This
gives rise to quantum parallelism. Tables 2.1 and 2.2 presents some of the useful gates for this thesis.
Except for the parameterised rotation gates, the rest are called discrete gates, as the unitary is fully
defined. Just like Boolean logic, quantum gates can also be manipulated using some useful relations as
given in the Table. These relationships will be essential in the design of the final algorithm presented
in Chapter 4.

Like {𝑁𝐴𝑁𝐷}, {𝑁𝑂𝑅}, or {𝐴𝑁𝐷,𝑂𝑅,𝑁𝑂𝑇} gate sets in classical logic, there exists a universal set of
gates on quantum logic, that allows any arbitrary n-qubit unitary to be decomposed with members of
the set. Examples of such sets are, {𝐻, 𝑆, 𝑇𝑜𝑓𝑓𝑜𝑙𝑖}, {𝐻, 𝑇, 𝐶𝑁𝑂𝑇}, {𝑅 , 𝑅 , 𝐶𝑁𝑂𝑇} (not discrete). All of
classical logic can be simulated using either the Toffoli or the Fredkin gate. Any classical logic can be
constructed of NAND and FanOut circuits, proving quantum logic as a super-set of classical logic. NAND
can be made of Toffoli using the inputs 𝐴, 𝐵, 1 ↦ 𝐴, 𝐵, 𝑛𝑎𝑛𝑑(𝐴, 𝐵), while FanOut can be constructed
with 1, 𝐴, 0 ↦ 1, 𝐴, 𝐴. The FanOut is not a violation of no-cloning principle as it is perfectly possible to
clone only the non-superposing states ∣0⟩ and ∣1⟩. Also it is paramount to note, in this thesis, such
reversible transformation of classical algorithm’s circuits are not considered as quantum algorithm, as
given the current state of the art, running the quantum version of the circuit would result in no benefits
in terms of both time efficiency (lower clocking frequency), and energy (though reversible, the quantum
hardware requires enormous amount of energy to cool it to near absolute zero Kelvin). Another vital
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aspect of the universality of gates requires at least 1 non-Clifford gate (e.g. T, Toffoli) as a part of a
discrete set.

Measurement of a state is inherently probabilistic depending on the amplitude of the vector in the
measurement basis. This is based on the general theory of Positive Operator Valued Measure (POVM).
The quantum state collapses the wave-function to one of its classical eigenvalues. On measuring the

state 𝜓 = 1√
3
∣0⟩ + √

2√
3
∣1⟩, the eigenvalue corresponding to the state ∣0⟩ is obtained with probability

1/3rd. The quantum state becomes ∣0⟩ if ∣0⟩ is observed, and thus becomes a classical bivalued state,
represented by double lines in a circuit after the measurement symbol. This is called projective mea-
surement and is a significant difference from classical theories where measurement can be performed
without affecting the system under test. Thus to reconstruct the probability distribution of the state
asymptotically, multiple measurements are required, called state tomographic trials. The exact com-
plex amplitude cannot be assessed, thus allowing a degree of freedom. This arbitrary phase factor can
be ignored with no effect of the solution probability.∣𝜓⟩ 

2.3.3. Quantum hardware models
Apart from using gates to perform quantum computation, there are other models that are being

developed for hardware adoption. In this section, a brief discussion of these models is presented. The
hardware back-end choices follow from the models.

Circuit model
The quantum circuit model described in Section 2.3.2 is an extension of the classical Boolean circuit

model for reversible computation. It was developed alongside the first quantum oracular algorithms.
Oracles are constructs that can provide true-false answers to elaborate questions (discussed in more
details in Chapter 3). The constructs for answering might be complex lengthy circuitry, finally resulting
in a probabilistic yes-no for quantum logic. The crux of the quantum algorithm design involves a clever
process to distil the solution such that the measurement probability is as biased as possible towards
the solution, to such effect that even single runs can produce the results with sufficient confidence.
Popular Oracles are those of Deutsch, Deutsch-Jozsa, Simon, Shor and Grover.

Adiabatic computation
Adiabatic computation was conceived specifically to solve satisfiability problems of the NP-Complete

class. This paradigm is based on the adiabatic theorem, i.e. the possibility of encoding a specific
instance of a given decision problem in a certain Hamiltonian (by capitalising on the well-known fact
that any decision problem can be derived from an optimisation problem by incorporating into it a
numerical bound as an additional parameter). The system is initialised in a ground state of an easy
to construct Hamiltonian and slowly (adiabatically) the system is deformed to the desired Hamiltonian
where measurement of the final ground state reveals the desired optimal value. The speedup of the
algorithm depends crucially on the scaling of the energy gap as the number of degrees of freedom
in the system increases. It was shown to be polynomially equivalent to the circuit model, which
implies, application to an intractable computational problem might not be feasible (intractability many
possibilities of getting stuck in eigenvalues of local minima) and remains an open empirical question.

Measurement based quantum computation
Measurement-based quantum computation allow only non-unitary measurements as computational

steps. Its variants are teleportation quantum computing and one-way quantum computing (cluster
state model). The measurements are performed on a pool of highly entangled states each done in a
different basis which is calculated classically given the result of the earlier measurement. It has shown
promises in a different kind of more fault-tolerant quantum computer architecture.

Topological quantum computation
Topological quantum field theory (TQFT) model are based on exotic physical systems (topological

states of matter). The model was proved to be efficiently simulated on a standard quantum computer
and is thus equivalent, however, its merit lies in its high tolerance to errors resulting from any possi-
ble realisation of a large-scale quantum computer. This is due to many global topological properties
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Table 2.1: Commonly used single qubit quantum gates

Name Unitary Circuit Relations

Identity 𝐼 = [1 0
0 1] 𝐼

Hadamard 𝐻 = 1√
2
[1 1
1 −1] 𝐻

Pauli-X 𝑋 = [0 1
1 0] 𝑋 𝑋 = 𝑖𝑍𝑌 = 𝐻𝑍𝐻

Pauli-Y 𝑌 = [0 −𝑖
𝑖 0 ] 𝑌 𝑌 = 𝑖𝑋𝑍

Pauli-Z 𝑍 = [1 0
0 −1] 𝑍 𝑍 = 𝑖𝑌𝑋 = 𝐻𝑋𝐻

Rotation-X 𝑅 (𝜃) = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 𝑐𝑜𝑠𝜃2 −𝑖𝑠𝑖𝑛𝜃2
−𝑖𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ 𝑅 (𝜃)

Rotation-Y 𝑅 (𝜃) = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣𝑐𝑜𝑠
𝜃
2 −𝑠𝑖𝑛𝜃2

𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ 𝑅 (𝜃)

Rotation-Z 𝑅 (𝜃) = [𝑒− / 0
0 𝑒 / ] 𝑅 (𝜃)

𝑇 𝑇 = [1 0
0 𝑒 / ] 𝑇

𝑇 𝑇 = [1 0
0 𝑒− / ] 𝑇 𝐼 = 𝑇𝑇

Phase 𝑆 = [1 0
0 𝑖] 𝑆 𝑆 = 𝑇



2.3. Quantum computation 13

Table 2.2: Commonly used multi-qubit quantum gates

Name Unitary Circuit Relations

SWAP 𝑆𝑊𝐴𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×× 𝑆𝑊𝐴𝑃 = 𝐶𝑋 𝐶𝑋 𝐶𝑋

Controlled-NOT 𝐶𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ● 𝐶𝑋 = 𝐻 𝐻 𝐶𝑋 𝐻 𝐻
𝑋 𝐶𝑋 = 𝐶𝑋 𝑋
𝑍 𝑍 𝐶𝑋 = 𝐶𝑋 𝑍

Controlled-Phase 𝐶𝑍 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ●
●

𝐶𝑍 = 𝐻 𝐶𝑋 𝐻

Toffoli 𝐶𝐶𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
●
●

𝐶𝐶𝑋 = 𝐻 𝐶𝑋 𝑇 𝐶𝑋
𝑇 𝐶𝑋 𝑇 𝐶𝑋 𝑇 𝑇 𝐻
𝐶𝑋 𝑇 𝐶𝑋 𝑆 𝑇

Fredkin 𝐶𝑆𝑊𝐴𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
●
××
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are, by definition, invariant under deformation, so since most errors are local, information encoded in
topological properties imparts the robustness.

Quantum random access machine
For the numerous classical computing models presented in Section 2.2.1, the corresponding quan-

tum analogues can be derived, like quantum automata, or quantum Turing machines (QTM). The mod-
els interesting for the development of quantum hardware and programming languages are presented
here. While the QTM model is simplistic, for practical purposes transition descriptions get complex
and clumsy compared to other equivalent models like the circuit and the QRAM model. The quantum
circuit model does not provide a mechanism for controlling with a classical machine the operations on
quantum memory. The model of quantum random access machine (QRAM) is built on the usual trend
of a quantum computer based on the circuit model is controlled by a classical device encoding the
algorithm. QRAM provides a convenient model for developing quantum programming languages as it
is based on quantum pseudocode description of the computation.

Physical implementation
Nowadays, there are various potential candidates for the hardware back-end being pursued. Super-

conducting integrated circuits are Josephson junction based harmonic oscillators coherently controllable
and measurable by magnetic flux pulses and microwaves. Quantum dot architectures are based on
individual electrons confined in quantum dot (quantum well potential), made in silicon or 𝑆𝑖 or 𝐺𝑎𝐴𝑠,
controllable using magnetic flux pulses, and inter-dot gate voltage and measurable using tunnelling
current measurements. Ion traps are based on alkali metal ions confined in an ion trap using electric
fields and controllable/measurable by laser pulses. Other candidates like NMR type spin qubits (not
a viable candidate anymore), Nitrogen-vacancy centre based, photonic qubits and Majorana fermion
based topological qubits (not yet built) are actively being researched as well.

2.3.4. Quantum systems view
Moving towards a broader view of constructing a useful quantum computer, the requirements from

the models must be quantifiable. This is given by the DiVincenzo’s criteria [15] for quantum computation
and communication (last 2):
1. A scalable physical system with well characterised qubits.
2. The ability to initialise the state of the qubits to a simple fiducial state.
3. Long relevant decoherence times.
4. A universal set of quantum gates.
5. A qubit-specific measurement capability.
6. The ability to inter-convert stationary and flying qubits.
7. The ability to faithfully transmit flying qubits between specified locations.
Useful quantum computation would require a full stack architecture. The underlying quantum pro-

cessor needs to be interfaced with the quantum algorithmic descriptions. Such a full stack is on the
roadmap of Delft University of Technology’s quantum research. The QuTech quantum computer system
stack [16] is described bottom-up here:

• Quantum chip refers to the physical hardware housing the qubits as discussed above.
• Quantum-Classical interface comprises of ADC and DAC and their controls for interacting with the
physical qubits.

• Micro-architecture takes into account the precise timing controls and the instruction pipelines.
• Quantum Instruction Set Architecture defines the runtime operations of both classical control and
quantum parts of the algorithm. It encapsulates the hardware dependence.

• Quantum Runtime Unit is responsible for scheduling the operations required for the compiler
code. This includes quantum error correction (QEC) and qubit logical to physical mapping.

• Compiler and Programming language is the interface for the algorithm designer to precisely define
the quantum operators and state in abstracted high-level constructs.

• Quantum Algorithm descriptions are in computer science or mathematical state evolution de-
signed to perform the desired task. They need to be decomposed into programming constructs
as input to the compiler.

Of course, a full stack quantum computer is an area of active research, but it is not available
for immediate use at the time of writing this thesis. However, quantum simulators are available that
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Figure 2.7: Quantum computer system stack [16]

abstract the layers of the stack below the compiler. The output of the compiler is an optimised low-level
code (typically, in some form of quantum assembly language), which can be simulated. Simulation is
obviously not scalable else we wouldn’t need a quantum computer in the first place. However, it is
possible to handle this exponential complexity of simulation for a reasonable qubit size of ∼ 50, which
is enough for proof of concept demonstration of the quantum parts of the algorithm considered in the
thesis. Quantum computers are modelled as accelerators as described. Thus, it would also require
computation support of the host CPU. A typical hybrid algorithm will have a quantum part, as well as a
classical part. The classical part can be executed in the host CPU, while the quantum part is offloaded
to the accelerator/simulator.

Notably some of the early quantum computing services will probably be modelled as cloud based
Platform as a Service (PaaS), for example, Q Experience [17] (IBM), Alibaba Cloud [18] (Alibaba),
Quantum Infinity [19] (QuTech), Forest [20] (Rigetti). This would require delegated computation from
a smaller, constricted quantum device at the client end to maintain blind computation. Such models
and other privacy issues are not considered in this thesis.

2.3.5. Quantum complexity
In Section 2.2.2, the complexity classes for classical computation is discussed. To compare the

efficiency of quantum algorithms, it is crucial to compare them with the current best algorithm on
classical computers and their complexity. It is worth noting here that, the other accelerator models
considered in Section 2.1.3 are theoretically equivalent to a classical computation and do not provide
any new capabilities from the standpoint of computability theory. For example, if the space required for
the solution of a problem grows exponentially with the size of the problem on von-Neumann machines,
in a DNA computer it still grows exponentially, thus the amount of DNA required will soon be too large
to be practical. The relationships of quantum computation complexity classes with the classes hierarchy
are not fully understood and are riddled with many open conjectures. While there are many quantum
classes as well, two of them are particularly important for the thesis and are presented below.

Bounded-error quantum polynomial (BQP) time is the class of decision problems solvable by a
quantum circuit whose length and number of qubits scale polynomially with respect to the instance
size. Like the classical complexity class of BPP (bounded-error probabilistic polynomial time), the error
probability is bounded by at most 1/3 for all instances; BPP being the class considered to be practical on
a classical computer. Using Chernoff bound, the constant 1/3rd can be reduced arbitrarily on repetition.
Adding post selection capabilities to BQP gives the class PostBQP (its classical version being 𝐵𝑃𝑃 ).
As P is a subset of BQP, it is interesting to study algorithms that fall outside P, but in BQP. Such algorithms
include integer factorisation (Shor’s algorithm), discrete logarithm, Jones polynomial approximations
for certain roots of unity, etc.

The second quantum complexity class of importance is Quantum Merlin Arthur (QMA), the quantum
analogue of Merlin Arthur (MA) probabilistic complexity class. QMA is related to BQP in the same
way NP is related to P, or MA is related to BPP. It consists of decision problems for which there is a
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polynomial-size quantum proof (Merlin) which convinces a polynomial-time quantum verifier (Arthur)
with high probability for every true answer; else it is rejected by the verifier with high probability
for false answers. Examples of such problems are QCSAT (quantum circuit satisfiability), non-identity
check, quantum clique, etc. Quantum Interactive Polynomial (QIP(k)) time is a generalisation of QMA
where Merlin and Arthur can interact for k rounds. Though the P and PSPACE relation is not proved,
the general belief for the hierarchy is:

𝑃 ⊆ 𝐵𝑃𝑃 ⊆ 𝐵𝑄𝑃 ⊆ 𝑁𝑃 ⊆ 𝑀𝐴 ⊆ 𝑄𝑀𝐴 ⊆ 𝑃𝑃 = 𝑃𝑜𝑠𝑡𝐵𝑄𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸 = 𝑄𝐼𝑃
Thus, though quantum computers might not be able to make NP problems efficient [21], there are

problems of interest in BQP as well. Also, it is interesting to note, for many problems in NP, quantum
algorithms offer polynomial speedup, which can boost these problems into the domain of practicality
(like the application explored in this thesis). Based on current physical theory, quantum computers
are the most general kind of computers physically allowed [22]. More exotic computers would require
some refinement of the laws of physics (like non-linearity allowing faster than light travel, violating
uncertainty principle, or using closed timelike curves). Till then, it is the most powerful machine at our
disposal, one that in principle, is a model of the Universe itself - a quantum extension of John Wheeler’s
remark - It from Qubit [23].

2.4. Bioinformatics
The field of bioinformatics uses computer programming methodologies for analysis, particularly in

the field of genomics. Genomics concerns the application of DNA sequencing methods and bioinformat-
ics algorithms to understand the structure and function of the genome of an organism. This discipline
has revealed insights with scientific and clinical significance. These include studies on causes that drive
cancer progression, intra-genomic processes influencing evolution, enhancing food quality and quantity
from plants and animals. An exciting prospect is personalised medicine, in which accurate diagnosis
testing can identify patients who can benefit from precisely targeted therapies [24].

In this section, the basic structure of DNA is presented. Thereafter, the current sequencing and
analysis pipeline is explained. Finally, the challenges of modern genomics is elucidated from the data
volume perspective.

2.4.1. DNA structure
Deoxyribonucleic acid (DNA) is a thread-like long polymer made of nucleotides carrying the ge-

netic instructions used in the growth, development, functioning and reproduction of all known living
organisms (and many viruses). It is the storehouse of biological information.

Within eukaryotic cells (of animals, plants, fungi and protists) DNA is organised into long structures
called chromosomes as shown in Figure 2.9. During cell division these chromosomes are duplicated
in the process of DNA replication, providing each cell with its own complete set of chromosomes. Eu-
karyotic organisms store most of their DNA inside the cell nucleus and some of their DNA in organelles,
such as mitochondria or chloroplasts, in contrast to prokaryotes (like bacteria and archeas), which store
their DNA directly in the cytoplasm.

In eukaryotic chromosomes, chromatin proteins such as histones compact and organize DNA. These
compact structures guide the interactions between DNA and other proteins, helping to control which
parts of the DNA are transcribed, called methylation. The spatial arrangement of the DNA affects gene
activity and expression. The study of heritable gene function that does not directly involve the DNA
sequence is called epigenetics.

The four nucleotide bases found in DNA are the purines: adenine (A) and cytosine (C); and the
pyrimidines: guanine (G) and thymine (T). A fifth pyrimidine nucleobase, uracil (U), usually takes the
place of thymine in Ribonucleic acid (RNA). RNA is another polymeric molecule essential for various bi-
ological roles in coding, decoding, regulation, expression of genes and also form the genetic makeup of
some viruses. These four bases are attached to the sugar-phosphate to form the complete nucleotide.
Adenine pairs with thymine and guanine pairs with cytosine represented by A-T and G-C base pairs
(bp). This structure is formalised by Chargaff’s Parity rules, which are:
1. A double-stranded DNA molecule globally has percentage base pair equality, i.e. %𝐴 = %𝑇 and

%𝐺 = %𝐶
2. Both %𝐴 = %𝑇 and %𝐺 = %𝐶 are valid for each of the two DNA strands, a global feature of the
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Figure 2.8: DNA structure

base composition in a single DNA strand
Besides DNA sequence, some of the basic relevant terms of bioinformatics are introduced here:
• Gene - sequence of DNA (or RNA) which codes for a molecule that has a function.
• Allele - variation in codes for a gene.
• Genotype - the allele for a gene that the organism possesses.
• Phenotype - observable characteristics or traits in an organism due to the genotype and other
environmental factors.

• Genome - the total genetic material of an organism consisting of DNA (or RNA). It includes
all genes (the coding regions), the non-coding DNA, as well as the genetic material from the
mitochondria and chloroplasts.

The length of genomes varies greatly among organisms. The size correlates with features like
cell size, cell division rate, taxon, body size, metabolic rate, developmental rate, organ complexity,
geographical distribution, or extinction risk. They vary as much as 1759 bp in viruses (Porcine circovirus
type 1) to 13×10 in fishes (Protopterus aethiopicus), 15×10 in plants (Paris japonica) and 67×10
in amoebas (Polychaos dubium). The human genome is approximately 3.289×10 bp long. In general,
somatic cells have two identical copies of 23 chromosomes (one from each parent). Comparative
genetics study genetic similarities between organisms. Interesting results from various sources suggest
similarity of human genes with other organisms like other human (99.9%), chimpanzees (99%), mouse
(92%), cats (90%), cows (85%), dogs (84%), zebra-fish (73%), chicken (65%), fruit-fly and banana
(60%), honey-bee (44%), grapes (24%), yeast (18%), E. Coli bacteria (7%). The similarities imply
some basic metabolic principles that unfold in the cellular realm resulting in same ’sub-routines’ and
gives the first-cut implication on the error tolerance bound for genomics. However, it is evident that
genetic similarity is not a complete picture of biological similarity. The non-coding regions (sometimes,
shortsightedly referred as junk DNA) are an active area of research as they form around 98% of the
human genome. They consist of meta-codes for the 3D folding of the DNA in the chromosome and
other expression control (enhancers, silencers, promoters, insulators, operators, etc) information for
the genes.

Looking at the above definitions from an abstracted view of computation, parallels can be drawn
in the biological model of information processing for metabolism. The program as the genome, the
phenotype as the output, and the environmental chemistry triggering as inputs. More specifically,
evolution and metabolism can be abstracted as an evolving quine (self-replicating code) that follows
an ouroboros learning model. The processes of DNA replication (production of identical DNA helices
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from a single double-stranded DNA molecule) and Gene expression (triggering of metabolic activities
by chemical factors of the cell environment using protein synthesis) are responsible for choreographing
most of the functionality of a cell in an organism.

2.4.2. Sequencing technologies
Sequencing technologies can be broadly classified into three generations. The first generation of

sequencing machines relied on Sanger chemistry. These included Applied Biosystems Prism 3730 and
the Molecular Dynamics MegaBACE. The read sizes were in the range of 500 bp to 1000 bp long.

The second generation of DNA sequencing platforms are the most popular ones that are in use
presently. These machines are referred to as short-read sequencers or next-generation sequencers
(NGS). They are characterised by highly parallel operation, higher yield, simpler operation and much
lower cost per read [25]. Commercial platforms include Genome Sequencer from Roche 454 Life Sci-
ences, Solexa Genome Analyzer from Illumina, SOLiD System from Applied Biosystems, Heliscope from
Helicos among others. NGS reads are shorter (in the 50 bp to 500 bp range) and thus pack less infor-
mation per read, increasing the complexity of sequence assembly. To satisfy minimum overlap criteria
they required higher coverage, which in turn escalates data volume for processing. The characteristic
error profiles of the machines change with technology, and the algorithms can be tuned for some of
the platform-specific errors.

The third generation sequencers produce even longer reads, with much better quality than the first
generations. They are called Single Molecule Sequencers (SMS). Examples of such platforms are Pacific
Biosciences machines and Oxford nanopores which uses quantum tunnelling resistance differences to
identify base pairs on a graphene sheet.

Sequencers produce observations of the target DNA molecule in the form of reads. Reads are
sequences of base calls plus a numeric quality value (QV) for each base call. Useful platforms deliver
paired-end reads, i.e., read pairs constrained by relative orientation and separation in the target. These
reads span repeats longer than individual reads and is thus beneficial to assembly. Most platforms
excluded QV analysis due to overheads on processing and memory.

The development of this thesis is considered keeping in mind input data from NGS platform (particu-
larly Illumina reads). Particularly, the FASTQ data format for input data is considered as it is the de facto
standard for storing the output of high-throughput sequencing instruments. It comprises nucleotide
sequence reads (FASTA) plus its corresponding quality scores (confidence values of the measurement).
The format has four lines per sequence. The first line begins with a ’@’ character and is followed by a
sequence identifier and an optional description. The next line is the raw sequence letters. Line three
begins with a ’+’ character and is optionally followed by the same sequence identifier and description.
And the final line encodes the quality values for the sequence in line two in ASCII characters. An
example (Source: Wikipedia) is shown below :

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

2.4.3. Reconstruction technologies
Once the sequencing of the biological sample provides a collection of raw reads, the data processing

steps begin. These steps are summarised in the Broad Institute’s GATK pipeline in Figure 2.9, which
includes the major processing stages like alignment, duplicate marking, variant calling, annotation and
conclusion. One of the most computation-intensive yet parallisable of this process is the Map-to-Ref
step for reconstruction as shown in Figure 2.10 and will be the focus of the thesis.

Ideally, storing 3 billion bp of the human genome encoded in a Radix-4 (2 bit) numbers would be
around 700 MB. However, reads are over-sampled for sequencing, resulting in data of around 200 GB
(30x sequence data plus quality values). As the cost of whole-genome sequencing (WGS) continues to
drop as shown in Figure 2.11(b), more and more data are churned out. This staggering computational
demand motivates this thesis.

The reads obtained from sequencing needs to be reconstructed to a complete genome before
analysis can be carried out. Sequence reconstruction can be done in two ways.

• De-novo assembly of reads
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Figure 2.9: Broad Institute GATK Best Practices Pipeline [26]

Figure 2.10: Breakdown of processing time per NGS pipeline stage [27]

• Ab-initio reference based alignment of reads
Normally multiple copies of the DNA is made before fragmenting it for the sequencer. Thus, a portion

of the data will be preserved in multiple copies which are chopped off at different places resulting in
data overlaps which facilitate stitching. This method is called De-Novo reconstruction, as no other data
than the sequenced read is used for reconstruction. However, it is computationally expensive and done
normally for the first time a new species is sequenced.

In Ab-Initio method, the DNA reads are matched to a trusted existing reference of the species. This
is similar to a pattern matching problem, of finding the index of the read in the reference. However,
this method introduces bias based on the reference since ironically, the next step after reconstruction
is to discover variation from the reference for identifying implications. Even ab-initio method is com-
putationally infeasible for exact matches, and thus heuristic methods are employed in state of the art
toolchains.

Sequence reconstruction being the primary target of the thesis, detailed algorithms will be discussed
in further detail in Chapter 3.

2.4.4. Big data perspective
The digital age proliferated in the early 2000s, with an enormous increase in data volume. The

ability of commonly used software tools to capture, curate, manage, and process data within a tolerable
elapsed time was challenged with the advent of ’big data’. Big Data is characterised with the Vs concept,
which commonly includes:

• Volume: the quantity of generated and stored data
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• Variety: the type and nature of the data
• Velocity: the speed at which the data is generated and processed
• Veracity: the data quality of captured data can vary greatly
• Value: the potential insights that can be derived after processing

Data Mining on such sources typically involves processes for anomaly detection, association rule learn-
ing, clustering, classification, regression or summarization.

Social media (like Twitter feeds) and nuclear reactor measurements (like CERN’s particle collider) are
common examples of big data, where parallel processing of unstructured data requires an infrastructure
of computation clusters. Big data analytics has helped health-care improve by providing personalised
medicine and prescriptive analytics, clinical risk intervention and predictive analytics, waste and care
variability reduction, automated external and internal reporting of patient data, standardised medical
terms and patient registries and fragmented point solutions.

(a) Exponential growth of DNA sequencing [28] (b) Cost of genome sequencing [29]

Figure 2.11: Trends in genomics data

In this thesis, our focus will be on data generated from genomics research or DNA sequencing
service platforms. An analysis comparing data in genomics, astronomy, video (YouTube), and Internet
data (Twitter), suggested that the term ”genomical” [28] instead of ”astronomical” should be used to
refer to enormous data sizes. Genomics data is projected to become the largest producer of big data
within the decade, eclipsing all other sources of information generation, including astronomical as well
as social data as shown in Figure 2.11(a). At the same time, genomics is expected to become an integral
part of our daily life, providing insight and control over many of the processes taking place within our
bodies and in our environment. Therefore, effective and cost-efficient computational solutions are
necessary to allow society to benefit from the potential positive impact of genomic information.

Rapid progress in genomics is based on exponential advances in the capability of sequencing tech-
nology. However, to keep up with these advances, which outpace Moore’s Law, new computational
challenges of efficiently analysing and storing the vast quantities of genomics data needs to be ad-
dressed. Despite the continual development of tools to process genomic data, current approaches are
still yet to meet the requirements for large-scale clinical genomics. In this case, patient turnaround
time, ease-of-use, resilient operation and running costs are critical.

At the moment, algorithms developed for DNA analysis use a considerable amount of approximations
and heuristics to manage the computational complexity of DNA analysis, especially for human genomes.
This results in introducing various biases in the results, which limit our ability to derive the full potential
benefit from the results. Quantum computing promises to become a computational game changer,
allowing the calculation of various algorithms much faster. We shall, in this thesis, look for potential
ways to accelerate DNA sequence analysis and strive to reduce the heuristic approximations in the
quantum algorithms.



3
Algorithms for DNA sequence

reconstruction

Science is what we understand well enough to explain to a computer. Art is everything else we do.
- Donald Knuth

In this chapter, the central problem of the thesis is formally defined. The various existing classical
and quantum algorithms that relate to the problem of genomic pattern matching is described.

3.1. Problem definition
This thesis explores the approaches towards genomic pattern matching using quantum algorithms.

The problem is dissected at two levels of granularity: the quantum kernel that yields a promising
speedup for the core module; and the broader design of the entire pipeline that would house the
kernel as its integral part.

3.1.1. Sub-sequence alignment
The core module of an alignment based genome sequence assembly is a reference based sub-

sequence aligner. This problem is the crux of biomolecular sequence analysis, dictated by the first fact,
high sequence similarity usually implies significant functional or structural similarity [30].

A distinction between the use of string and sequence is imperative here. A string refers to an
ordered list of contiguous characters, whereas, a sequence allows interspersing of characters of the
sequence with other characters outside interest as long as the ordering of the embedded sequence is
maintained. To illustrate this, for the reference string, 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦, an example of a sub-string (as
well as a sub-sequence) is 𝑔𝑟𝑎𝑝ℎ, while 𝑔𝑎𝑝 is only a sub-sequence.

Optimal alignment of a sub-sequence is based on the metric of edit distance for approximately
matching the sub-string spanning the comparison length. The transformation operations allowed are
insertion, deletion and substitution/replacement. Multiple insertions in the pattern are termed as gaps.
Each required transformation for an alignment trial can be associated with a weighted penalty as the
cost function for the algorithm. It is worth noting that, edit or Levenshtein distance is upper bounded
by the Hamming distance between the two string.

The recurrence relation for calculating the Levenshtein distance between strings 𝑇 and 𝑃 of length
𝑁 and 𝑀 respectively can be established. Here, the most general case is considered, where each
operation between each pair of characters can have different associated cost.

𝐿𝐷 , (𝑖, 𝑗) = 𝑚𝑖𝑛
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐿𝐷 , (𝑖 − 1, 𝑗) + 𝑓 (𝑇 )
𝐿𝐷 , (𝑖, 𝑗 − 1) + 𝑓 (𝑃 )
𝐿𝐷 , (𝑖 − 1, 𝑗 − 1) + 𝑓 (𝑇 , 𝑃 )

where, 𝑓 (𝑇 , 𝑃 ) = 𝑠𝑢𝑏(𝑇 , 𝑃 ), when 𝑇(𝑖) is substituted with 𝑃(𝑗), 𝑟 if otherwise they are equal.
Similarly the functions 𝑓 and 𝑓 can be defined based on a transformation matrix. 𝐿𝐷 , (𝑖, 𝑗) is the
distance between the first 𝑖 characters of 𝑇 and the first 𝑗 characters of 𝑃.

21
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Figure 3.1: DNA sub-sequence alignment problem

The sub-sequence alignment problem is thus defined as the index 𝑖 ∈ 𝑁 of 𝑇 where the alignment
of 𝑃 starts, which gives the minimum edit distance. The resultant edit transcript forms the other output
from the required algorithm if multiple sequences need to be stitched for reconstruction. This is shown
in Figure 3.1. The short read is sequentially matched for each of the 𝑁 − 𝑀 + 1 starting index in
the reference genome. The aligner outputs the index of minimum Hamming distance (here, 21) and
optionally, the nearest match in the reference.

3.1.2. Quantum pipeline
While the sub-sequence aligner solves the core module, it needs to be embedded in a larger wrapper

to achieve practicality for the genomic pattern matching. This design of the full pipeline would be very
different between a classical and a quantum computer. In classical genomic analysis, the wrapper
tracks the indices for multiple such pattern matches, and eventually uses the data to reconstruct the
collection of patterns (of short reads) to a genome, before proceeding with the rest of the GATK pipeline
as discussed in Section 2.4.3. Few additional details would be presented in the discussion on BWA-MEM,
but this thesis would steer clear of the rest of the classical pipeline and concentrate on implementing
the sub-sequence aligner itself. Thus, the index of the alignment is the final result for all quantum
algorithms to be discussed.

However, even obtaining the index of a single search pattern in a larger reference is not a trivial
single run in the quantum algorithm. The approach is very different from some of the best classical
algorithms based on dynamic programming. The primary reason is - the answer lies in a probabilistic
state and on measuring the quantum state, we obtain a single result based on the Hamiltonian. Multiple
trials of the projective measurement converge on an estimate of the result. To add to this, quantum
states cannot be cloned, thus, the entire process needs to be repeated to get a single approximate
index or the modal state. Though this is not the primary focus of the thesis, it will be dealt with some
more depth in Section 4.5.1 while comparing the various schemes in totality.

3.2. Bioinformatics algorithms for sequence reconstruction
The impact of computation on biology is on the rise, from the prediction of symptoms by medical

imaging to studies on neuronal or protein structures. A vast majority of computational microbiology
algorithm deals with pattern matching of character strings. This is because the most fundamental
molecular chemistry structure of the DNA can be abstracted well with just the nucleotide bases as
explained in Section 2.4.1. A set of three consecutive bases produce the codon for amino acids which
encode the production of enzymes and proteins required for various metabolism. Indeed, plenty of
inferences can be derived just from the analysis of the DNA sequence. Before starting to develop
corresponding quantum algorithmic constructs, it is vital to assess the development of the classical
algorithms, from the most basic idea, to what’s being currently used. Since the principles of quan-
tum computation are fundamentally different, it’s not the state-of-the-art algorithm but a more basic
primitive for which the quantum kernel needs to be constructed.

The following section gives a broad overview of some of the milestone algorithms in the field of
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pattern matching and DNA sequencing. It is by no means a comprehensive survey [31] [32], and is
selectively focused on the ideas more crucial towards the development of the quantum counterparts.

3.2.1. Naive linear search
The naive approach to sub-string matching involves matching the pattern string 𝑃 of length 𝑀 in

a reference string 𝑇 of length 𝑁 ≥ 𝑀. Both the strings 𝑃 and 𝑇 is made up of characters from the
alphabet Σ. Thus, each character comparison takes time proportional to the number of binary digits
required to represent the characters in the alphabet. Let this be represented by 𝐴 = ∣Σ∣. In the naive
approach, the pattern is placed at the first index, and each consecutive characters in the pattern and
the corresponding character in the reference is compared. If the end of the pattern is reached, the
index is returned with a success flag, else, the pattern is shifted by one place and the comparison is
restarted from the beginning of the pattern. Shifting 𝑃 with respect to 𝑇 is actually done by a constant
time increment of the search pointer thus no data transfer is incurred.

In the worst case, the number of comparisons is thus equal to 𝑀 ∗ (𝑁−𝑀+ 1)∗𝐴. An example of
such a case is when the pattern over the DNA alphabet is, say, 𝐴𝐴𝐶 in a reference 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇. Here,
𝐴 = 2 as two bits are sufficient to encode the 4 bases of 𝐴, 𝐶, 𝐺, 𝑇 as 00, 01, 10, 11. 𝑁 = 8 and 𝑀 = 3.
Thus the first comparison proceeds as 𝐴𝐴𝐶, 𝐴𝐴𝐴, or 000001, 000000 and thus takes 6 units of time.
The worst case as is follows is 3 ∗ (8 − 3 + 1) ∗ 2 = 36.

3.2.2. Improved exact string matching
The core idea of improving on the naive approach is developing a strategy such that, after a mis-

match, more than one place shift is done to the pattern comparison position. This requires some pre-
processing of either 𝑃 or 𝑇 before the search phase. Two of the most popular exact string matching
algorithm of Boyer-Moore and Knuth-Pratt-Morris is sketched here. The pre-processing of the original
algorithms are slightly different. The description as given in [30] is followed here.

Fundamental pre-processing
The fundamental pre-processing algorithm calculates 𝑍 (𝑆) for each position 𝑖 ∈ [0⋯(∣𝑆∣ − 1)] as

the length of the longest substring of 𝑆 that starts at index 𝑖 and matches a prefix of 𝑆. This step
itself can be used as a search algorithm if 𝑆 = 𝑃$𝑇 of length 𝑁 +𝑀 + 1 ($ is a character outside the
alphabet set for the pattern and reference text strings). In this method, 𝑍 (𝑆) is always less than 𝑀 as
encountering $ for prefix will always result in a mismatch. Indices 𝑗 for which 𝑍 (𝑆) = 𝑀 are alignment
positions where 𝑃 occurs in 𝑇[(𝑗−𝑀−1)⋯(𝑗−2)]. As an example, let’s consider 𝑇 = 𝑔𝑎𝑎𝑐𝑔𝑡𝑎𝑎𝑐𝑡𝑡𝑎 and
𝑃 = 𝑎𝑎𝑐𝑡 (𝑁 = 12 and 𝑀 = 4). Thus, 𝑍(𝑎𝑎𝑐𝑡$𝑔𝑎𝑎𝑐𝑔𝑡𝑎𝑎𝑐𝑡𝑡𝑎) = {0, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 1}.
Since, 𝑍 = 𝑀, the position of 𝑃 in 𝑇 is at index 11− 4− 1 = 6 of 𝑇 (by convention for this thesis, 1st
character is at index 0). There exist algorithms for calculating 𝑍 in linear time and independent of the
length of the alphabet (as only a comparison for a mismatch is required).

Boyer-Moore algorithm
The Boyer-Moore algorithm has a linear worst case search time but what makes it efficient is that it

has a sub-linear average case. It employs two main heuristics over the naive approach. Firstly, for every
right-shift of 𝑃 in 𝑇 on misalignment, the character-by-character comparison starts from the right-end
of 𝑃. Secondly, it employs the ”extended bad character match rule” that takes both 𝑂(𝑀) time and
space. By this rule, on mismatch at position (𝑀 − 𝑖) of 𝑃 with position 𝑗 of 𝑇 with characters 𝑦 and 𝑥
respectively, 𝑃 is right-shifted such that, the closest 𝑥 to the left of (𝑀 − 𝑖) in 𝑃 aligns with position 𝑗
of 𝑇. This is an improvement for sparse alphabets (like DNA sequences) over the bad character match
rule, which just shifts 𝑃 right such that the rightmost 𝑥 in 𝑃 aligns with 𝑇 . The extended version trades
more look-up table space in pre-processing (the simple version needs only 𝑂(𝐴) space).
Kruth-Pratt-Morris algorithm

The Kruth-Pratt-Morris algorithm also runs in worst-case linear time like the pre-processing based
search and the Boyer-Moore algorithm. However, it has two main advantages. It can be adapted for
real-time string matching and its improvement, as suggested by the Aho-Corasick algorithm, extends
the linear time for a set of patterns. The pre-processing step involves calculating the failure function,
𝑊(𝑃) for 𝑖 ∈ [0⋯(𝑀 − 1)] as the length of the longest proper suffix of 𝑃[0⋯𝑖], that matches a prefix
in 𝑃. Thus for 𝑃 = 𝑎𝑎𝑐𝑡, the reference text independent pre-processing gives 𝑊(𝑎𝑎𝑐𝑡) = 0, 1, 0, 0. For
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Table 3.1: Cost matrix

Sub A C G T Ins
A 1 -1 -1 -1 -0.4
C -1 1 -1 -1 -0.4
G -1 -1 1 -1 -0.4
T -1 -1 -1 1 -0.4
Del -0.4 -0.4 -0.4 -0.4 0

the search phase, if a mismatch is encountered at position (𝑖 + 1) in 𝑃 and 𝑘 in 𝑇, the alignment is
shifted to the right by (𝑖 −𝑊) places. Additionally for real time search, 𝑊 for each character 𝑐 ∈ Σ
is calculated such that, 𝑃(𝑖 + 1) = 𝑐, and the required 𝑊 is chosen such that the mismatch character
𝑇 = 𝑐.

The two approaches discussed above are fundamental for understanding DNA sequence alignment
and easily extendable for the development of more complex algorithms in further sections. Another
approach for an exact matching algorithm which gives similar run-time is based on suffix trees, which
can also generalise to other problems in computer science but are not of immediate interest.

3.2.3. Approximate matching using dynamic programming
While the time complexity of some of the best exact approaches is attractive, the performance

degrades quickly as they are not suitable for an approximate match, something very common for
DNA sequences. These are due to read errors and needs to be considered for the algorithms to be
developed in the thesis. The only way to extend the exact algorithms is to include wildcard characters
in the alphabet which are to be ignored in the match phase. This increases the search space as now
each wildcard character can match with any alphabet.

Needleman-Wunsch algorithm
The notion of sub-sequence and Levenshtein distance is already introduced in Section 3.1.1. Trans-

formation matrices like BLOSUM and PAM are popular for protein sequence comparison, whereas for
DNA, normally an unweighted simpler matrix is used. For example, the BLAST algorithm uses +5 for
matches and −4 for mismatch penalty. No single scheme is right for all application and remains an
experimentally tunable metric. A fully worked out example over the DNA alphabet is considered here.
Let the cost matrix be defined as given in Table 3.1 over the three operations and four alphabets.
One substitution equals an insertion followed by a deletion, thus, unless they add up to a value less
than the substitution cost, these operations are redundant. Now for translating 𝑠 = 𝑎𝑎𝑐𝑡𝑔𝑡𝑔𝑐𝑎𝑐𝑡𝑎 to
𝑠 = 𝑎𝑎𝑐𝑐𝑡𝑔𝑔𝑐𝑎𝑐𝑡𝑡, the following alignment is considered:
𝑠 ∶ aac↓tgtgcacta
𝑠 ∶ aacctg↑gcactt
This alignment costs 10 − 0.4 − 0.4 − 1 = 8.2. Alignments for approximate matching are not unique.
For the sequence considered, a higher cost but valid edit would be to align the sequence with only
substitutions.
𝑠 ∶ aactgtgcacta
𝑠 ∶ aacctggcactt
This gives a cost of 8 − 4 = 4 (in fact the edit penalty here equals the Hamming distance).

The process described above is called the Global Sequence Alignment (GSA) between two strings.
The minimum alignment cost can be found by the Needleman-Wunsch algorithm. The table is initialised
with the two strings aligned along the two axes. The first row and first column are filled by starting
from 0 and subtracting 1 for each cell. Thereafter, it is filled gradually by considering cells which already
has their top, left, and top-left neighbours already filled. The maximum of these values are taken, and
1 is added/subtracted based on a match/mismatch on the corresponding characters of the row and
column of the two strings respectively. The table for the two strings of the previous section is shown
in Figure 3.2. The colour gradient represents the value, while the superimposed alignment grid shows
which of the three paths were used to calculate the cell’s value. It is evident that multiple paths exist
with same total cost in the edit graph. As a simple example, both
𝑠 ∶ aac↓tgtgcacta
𝑠 ∶ aa↓ctgtgcacta
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aligns to
𝑠 ∶ aacctg↑gcactt
The graph is traversed from the two diagonal ends to find the transcript for the minimum edit path.

Figure 3.2: Scoring matrix and alignment grid for Needleman-Wunsch example

Smith-Waterman algorithm
In many biological applications, the alignment score between two substrings of s1 and s1 might

actually be larger than the alignment score between the entire strings. The Local Sequence Alignment
(LSA) problem attempts to maximize it over all possible substrings. It finds the longest paths from the
source (0, 0) to every other vertex by adding edges of weight 0 in the edit graph, making the source
vertex a predecessor of every vertex in the graph. This is called the Smith-Waterman algorithm. For
each node, the scoring matrix elements 𝑠 , is calculated as:

𝑠 , = 𝑚𝑎𝑥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0
𝑠 − , + 𝛿(𝑠1 ,−)
𝑠 , − + 𝛿(−, 𝑠2 )
𝑠 − , − + 𝛿(𝑠1 , 𝑠2 )

where, the function 𝛿 represents the weighted insertion, deletion and substitution penalties. The
process is similar to the GSA, except now, for each pair of nodes in the matrix, a path is attempted,
instead of only the end-to-end path. A case is shown here, where LSA proves more advantageous than
GSA.
𝐺𝑆𝐴 − 𝑠 ∶ ..t..cc.c.agt..tatgt.caggggacacg..a.gcatgcaga.gac
𝐺𝑆𝐴 − 𝑠 ∶ aattgccgcc.gtcgt.t.ttcag....ca.gttatg..t.cagat..c
𝐿𝑆𝐴 − 𝑠 ∶ ..................tcccagttatgtcaggggacacgagcatgcagagac
𝐿𝑆𝐴 − 𝑠 ∶ aattgccgccgtcgttttcagcagttatgtcagatc..................
Though GSA has 23 matches, it has 26 penalties; whereas, the 12 matches and 6 substitutions of LSA,
often reflect a higher degree of structural similarity based on the circumstance. In long-read alignment,
it is preferable to find local matches because a long read is more fragile to structural variations and
misassemblies in the reference compared to mismatches towards the ends.

3.2.4. Heuristic algorithms
There are many advanced approaches that are built on the basic algorithms because natively, they

are costly in terms of memory and processing. Modifications include allowing multiple consecutive
insertion/deletion with a lesser sub-sequence penalty, called gap penalty. Various other improvements
include adopting it for multiple sequences, block alignment, four-Russian speedup, graph-based ap-
proaches, etc. Here, a historic development of the currently used algorithms is presented, bridging
the previous section with the state-of-the-art. The quantum approaches are significantly different
and tends to avoid heuristics to harness the quantum parallelism for speedup, preserving algorithmic
simplicity.

Local alignment software like FASTA and BLAST were first developed in the 1990s. Faster methods
to find DNA sequence matches of capillary sequencing reads against a large reference genome was
developed since, e.g. MegaBLAST, SSAHA2, BLAT and PatternHunter. With NGS technology even faster
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(10-1000 times) algorithms were developed, e.g. SOAP, MAQ, Bowtie and BWA. This generation of
sequencers generated millions of short (∼ 100bp) reads. Efficiently aligning these reads against a long
reference sequence (like the human genome) poses a new challenge for alignment tools. Acceleration
techniques like spaced seed templates spanning the entire read, or quickly filter out poor matches, by
applying q-gram filtration or by bounding the search process are used.

Hash table indexing is a popular choice for speeding up alignment. Alternatively, a Smith–Waterman-
like dynamic programming [33] can be applied between a query pattern and the suffix tree of the
reference, aligning the search pattern against each sub-sequence sampled from the suffix tree via a
top-down traversal. The suffix tree can also be represented by an FM-index [34]. Instead of using the
original string, the Burrows-Wheeler Transform (BWT) can be used for the FM-index, to reduce memory
footprint [35]. This algorithm, BWT-SW, is still slower than BLAST on long query sequences as it finds
all matches. Heuristics are used to further accelerate it, creating Burrows-Wheeler Aligner (BWA) [36],
trading Smith-Waterman algorithm’s guarantee to find all local hits with speed for both short and long
query sequences. It follows the seed-and-extend paradigm. BWA-SW builds FM-indices for both the
reference and the query sequence. It implicitly represents the reference sequence in a prefix trie and
represents the query sequence in a prefix directed acyclic word graph (DAWG). Two heuristic rules
are applied to accelerate the process over BWT-SW. Traversal on the DAWG is carried in the outer
loop pruning low-scoring matches at each node to restrict the dynamic programming. Secondly, only
largely non-overlapping alignments on the query sequence are considered. One of the popular algo-
rithms today is an improvement of BWA-SW called, BWA-MEM, and is based on an algorithm finding
super-maximal exact matches (SMEMs) [37].

3.2.5. De novo assembly
Returning to the two types of sequence reconstruction as sketched in Section 2.4.2, the algorithms

discussed so far fall under alignment-based approaches. It is clear from the discussions that, current
techniques trade speed and memory for accuracy. These heuristics make the problem tractable for
higher sized genomes like that of a human. However, the approximations and errors introduced are
on the way against further progress in critical application domains like personalised medicine. Given
enough computing power, de novo sequencing is highly desirable. Thus, since quantum computing
presents itself as an ultimate computing machine, it is worth exploring the problem of de novo se-
quencing. There are two main methods for de novo sequencing: Overlap/Layout/Consensus (OLC)
methods (relying on overlap graph) and de Bruijn Graph (DBG) methods (using K-mer graph).

Figure 3.3: Overlap-Layout-Consensus genome assembly algorithm [38]

Overlap-Layout-Consensus method
An overlap graph represents the sequencing reads as nodes and their overlaps pre-computed by

(computationally expensive) pair-wise sequence alignments as edges. Paths through the graph are the
potential contigs and can be converted to sequence. Formally, it is a Hamiltonian cycle, a path that
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travels to every node of the graph exactly once and ends at the starting node, including each read
once in the assembly. There is no known efficient algorithm for finding a Hamiltonian cycle as it is in
the NP-Complete class. Though it was feasible for microbial genome (in 1995) and the human genome
(in 2001) NGS projects have abandoned it due to the computational burden.

de Bruijn graph
In de Bruijn graph the nodes represent all possible fixed-length strings of length K (K-mer graph).

The edges represent fixed-length suffix-to-prefix perfect overlaps between sub-sequences that were
consecutive in the larger sequence. In WGS assembly, the K-mer graph represents the input reads.
Each read induces a path and those with perfect overlaps induce a common path. Thus, perfect overlaps
are detected implicitly without any pair-wise sequence alignment calculation, the major advantage with
respect to OLC methods. However, compared to overlap graphs, K-mer graphs are more sensitive to
repeats and sequencing errors as K is much less than read size. By construction, the graph contains
a path corresponding to the original sequence. For an ideal scenario, this is the Eulerian path, that
traverses each edge exactly once, which is a tractable problem with run-time proportional to the number
of edges in the graph.

Though graphs built from real sequencing data are more complicated, assembly by this approach
is a by-product of the graph construction. Real-world WGS data induces various problems in both
these methods. Examples are spurs (short, dead-end divergences from the main path), bubbles (paths
that diverge then converge), frayed rope pattern (paths that converge then diverge) and cycles (paths
that converge on themselves) [25]. Common causes of these complexities are attributed to repeats in
the target and sequencing error in the reads. Most optimal graph reductions belong to NP-hard class
of problems, thus assemblers (like Euler, Velvet, ABySS, AllPaths, SOAPdenovo) rely on heuristics to
remove redundancy, repair errors or otherwise simplify the graph.

The choice of algorithms is based on the quality, quantity and structure of the genome data. Current
short-read sequencing technologies produce very large numbers of reads favouring DBG methods. SMS
for third generation sequencing produces high-quality long reads which could favour OLC methods
again. For sure, to solve de novo sequencing, graph algorithms are required, a field not as well
developed as search algorithms for quantum computing. While for OLC methods, quantum computing
is unlikely to give significant advantages in the pathfinding stage as it is NP-Complete. However, de
novo assembly still needs the pair-wise alignment as a major pre-processing step. Thus, sub-sequence
alignment is a primitive [39] that is pervasive in bioinformatics - the focus of the quantum algorithms
developed in this thesis.

3.3. Quantum search algorithms
The field of quantum algorithm development came into focus in the mid-1980s with the works of

David Deutsch [40] and others. A decade later, Peter Shor [41] showed an advantage of quantum
computing over classical computation in practical disciplines like cryptography leading to widespread
research boost in this domain. Shor’s algorithm for factorisation is often partnered with Grover’s search
algorithm [42] [43] as the two most popular quantum algorithms for demonstrating practical compu-
tational advantage. Many quantum algorithms has been developed since then. A curated directory
can be found in the Quantum Algorithm Zoo [44], which categorically describes the various quan-
tum algorithm. The first category is Algebraic Number Theoretic. It includes problems like factoring,
discrete-log, Pell’s equation, verifying matrix products, constraint satisfaction, etc. The Approximation
and Simulation category includes problems like quantum simulation, adiabatic algorithms, semi-definite
programming, Zeta functions, simulated annealing, etc. However, the category that interests this the-
sis most are the Oracular algorithms. This includes many sub-categories like searching, Abelian Hid-
den Subgroup, non-Abelian Hidden Subgroup, Bernstein-Vazirani, Deutsch-Jozsa, structured search,
pattern matching, welded tree, graph collision, matrix commutativity, counterfeit coins, search with
wildcards, network flows, machine learning, and many more. Note, not all these algorithms provide a
super-polynomial speedup. New fields of quantum algorithms research employ applying the rules of
quantum mechanics to game theory to model the situation of conflict between competing agents. The
impact of quantum information processing on classical scenarios can be studied. Quantum games can
be also used to analyse typical quantum situations like state estimation and cloning. Quantum walks
also provide another promising method for developing new quantum algorithms. It was also shown
that quantum walks can be used to perform a universal quantum computation.
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The development of quantum algorithms is a very lively area of research. For this thesis, however,
the focus is on a small part of this landscape. In this section, Grover’s search is reviewed to build the
foundation for the other algorithms in the thesis. Thereafter, some preliminary modifications of the
original algorithms by others are stated, that increases the applicability of the search procedure.

3.3.1. Grover’s search
Section 3.1 models the core of the quantum algorithm as a kernel that would allow indexing a

search string in the reference string. Since no pre-processing is done on the reference string, except
slicing it to the search string size chunks, the database is essentially unsorted. L. Grover, in his paper
[43] describes the quantum approach to solving the search problem in such a database. A closer look
at Grover’s search is elucidated here. It is the foundation for the more specialised algorithms that are
discussed in later sections.

In the original Grover’s algorithm, there is exactly one item which matches the search criteria. The
artificial mathematical formalism of Grover’s search is to reduce the number of queries required to
the database to find the answer by a polynomial (more specifically, quadratic) factor. A one-to-one
correlation between the classical worst-case time of 𝑂(𝑁) queries (N being equal to the number of
database entries), and the quantum run-time of 𝑂(√𝑁) is not fully justified, as the quantum query
itself works in a different technique, evolving the entire superposition of the database states. However,
this is the inherent parallelism of quantum algorithms that we tend to harness.

Grover search is however provably optimal, thus no other algorithm, classical or quantum, can give
a better runtime with the same initial conditions. However, it makes up for the lower (with respect to
QFT) speed-up benefit in 2 ways:
1. Grover assumes an unstructured database search, which is rarely the case. We often have some
idea of the data which can be exploited.

2. Searching is a very general problem in computer science and thus the impact factor of the time
reduction is of great interest to researchers.

An alternate view of Grover’s algorithm can be ”inverting a function” instead of ”searching a database”.
Given a function 𝑦 = 𝑓(𝑥) that can be evaluated on a quantum computer, Grover’s algorithm can
calculate 𝑥. It can be used to efficiently determine the number of solutions to an N-item search
problem, allowing it to perform exhaustive searches on solutions of NP-complete problems, reducing
the required computational resource.

Figure 3.4: Grover search steps

Grover’s search starts out with an equal superposition of states, i.e. each database entry has an
equal probability of being the answer. The initial state can be described as:

∣𝜓 ⟩ = 1√
𝑁

−

∑
=

∣𝑖⟩
It is an oracular algorithm, i.e. it assumes the existence of an Oracle function (a common algorithm
construct), which can produce an yes or no answer for a query in constant time. In the search proce-
dure, the Oracle is consulted, which rotates the phase of the answer by 𝜋 radians. Thus the Unitary
matrix is a diagonal matrix with all diagonal elements being 1 except at the row/column where the
search entry and can be described as:

𝑂 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑗 ≠ 𝑘
−1, if 𝑗 = 𝑘 and 𝑗 = 𝑖
1, otherwise∣𝜓 ⟩ = 𝑂 ∣𝜓 ⟩

The next step is an inversion about the mean value of the states. This is known as the Grover gate, or
the diffusion operator which is responsible for the amplitude amplification of the result. This operation
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can be described as:

𝐺 = 2 ∣𝜓 ⟩ ⟨𝜓 ∣ − 𝐼∣𝜓 ⟩ = 𝐺 ∣𝜓 ⟩
Grover search guarantees the probability of the solution state to reach near unity on iterating the last
two steps

√
𝑁 times.

Figure 3.5: Grover search example for 3 qubits

An example run for the search is shown in Figure 3.5. For the 3 qubit case, there are a total of
6 steps as the iteration requirement is

√
2 ≈ 2 for the Oracle and inversion about mean step. At

each step, the internal real amplitude of the states is shown in green (left), and its squared value,
the measurement probability is shown in blue (right). The initialisation step erases each qubit’s state,
resetting it to ∣0⟩. Then, the Hadamard gate on each qubit takes the state to an equal superposition
of every possible 3-qubit basis states (3-bit binary strings). The next step is the Oracle call, which is
a black box for the algorithm. It marks one of the states by inverting it (rotating it by 𝜋). However,
this negative sign has no effect on the measurement probability. The amplitude is amplified by the
inversion about mean step. The first run gives a measurement probability of 78%. Repeating it for the
optimal number of iteration increases it to 94.5%.

For a detailed algebraic analysis, let the state at iteration 𝑗 of the Grover search be:∣𝜓(𝑘 , 𝑙 )⟩ = 𝑘 ∣𝑖 ⟩ + ∑𝑙 ∣𝑖⟩ , where 𝑘 = 𝑙 = 1√
𝑁

The first step of the iteration marks 𝑖 , to flip the state to −𝑘 ∣𝑖 ⟩. The mean is thus given by:
𝜇 =

(𝑁 − 1)𝑙 − 𝑘
𝑁

Each state gets transformed by the Grover gate from 𝛼 ∣𝑖⟩ to (2𝜇 −𝛼 ) ∣𝑖⟩. Thus, the recursive relation
for the states can be expressed as:

𝑘 + = 2(𝑁 − 1)𝑙 − 𝑘
𝑁 − (−𝑘 ) = 𝑁 − 2

𝑁 𝑘 +
2(𝑁 − 1)

𝑁 𝑙
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𝑙 + = 2(𝑁 − 1)𝑙 − 𝑘
𝑁 − 𝑙 = −2

𝑁 𝑘 +
𝑁 − 2
𝑁 𝑙

The recurrence can be solved by taking 1/𝑁 = 𝑠𝑖𝑛 𝜃, to give the closed-form equation :

𝑘 = 𝑠𝑖𝑛((2𝑗 + 1)𝜃 and 𝑙 = 1√
𝑁 − 1

𝑐𝑜𝑠((2𝑗 + 1)𝜃
Setting 𝑘 = 1, where 𝑗 is the optimal number of iterations, we get,

𝑗 = (2𝑚 + 1)𝜋 − 2𝜃
4𝜃 = (2𝑚 + 1)𝜋 − 2𝑠𝑖𝑛− (1/√𝑁)

4𝑠𝑖𝑛− (1/√𝑁) , where 𝑚 ∈ Z

However, the equation is continuous while 𝑗 ∈ Z+. Approximating the equation, if we iterate ⌊𝜋√𝑁/4⌋
times, the probability of failure is just 1/𝑁 when 𝑁 is large.

3.3.2. Generalising quantum search algorithms
Grover’s search was enhanced by two subsequent research [45] [46] that will allow us to apply this

search in our context. The improvements discussed in this section are:
• Multiple known number of solutions
• Arbitrary distribution of initial amplitude
• Multiple unknown number of solutions by randomising iterations over multiple runs
• Multiple unknown number of solutions by counting number of solutions

Multiple known solutions

The case for multiple known solutions is considered first. Let 𝑡 be the number of solutions (known
in advance), and 𝑆 be the set of states considered as solutions. The transformation generalises to:

∣𝜓(𝑘 , 𝑙 )⟩ =∑
∈
𝑘 ∣𝑖⟩ +∑

∉
𝑙 ∣𝑖⟩ ⟼ ∣𝜓(𝑁 − 2𝑡

𝑁 𝑘 +
2(𝑁 − 𝑡)

𝑁 𝑙 , −2𝑡𝑁 𝑘 +
𝑁 − 2𝑡
𝑁 𝑙 )⟩ = ∣𝜓(𝑘 + , 𝑙 + )⟩

The modification involves taking 𝑡/𝑁 = 𝑠𝑖𝑛 𝜃, to give the solutions as:

𝑘 = 1√
𝑡 𝑠𝑖𝑛((2𝑗 + 1)𝜃) and 𝑙 = 1√

𝑁 − 𝑡
𝑐𝑜𝑠((2𝑗 + 1)𝜃)

The probability of measuring any one of the solution state is maximised when 𝑙 is close to 0, which
yields the relation:

𝑗 = (2𝑚 + 1)𝜋 − 2𝜃
4𝜃 = (2𝑚 + 1)𝜋 − 2𝑠𝑖𝑛− (𝑡/√𝑁)

4𝑠𝑖𝑛− (𝑡/√𝑁) , where 𝑚 ∈ Z

which can now be approximated for integer iteration as ⌊𝜋4√𝑁
𝑡 ⌋. The solution state probability upper-

bounded by 1/𝑡, can now be written wholly in terms of 𝑡 and 𝑁 as:

𝑘 = 1
𝑡 𝑠𝑖𝑛 ((2 ⌊𝜋4√𝑁

𝑡 ⌋ + 1)𝑠𝑖𝑛− √
𝑡
𝑁)

Arbitrary initial amplitude

The second improvement that is needed is to consider an arbitrary initial amplitude for multiple
known solutions. Instead of working with the amplitudes directly, the mean and variance of the solution
and non-solution states are considered.

𝑘 = 1
𝑡 ∑

∈
𝑘 and 𝜎 = 1

𝑡 ∑
∈

∣𝑘 − 𝑘∣
𝑙 = 1

𝑁 − 𝑡 ∑
∉
𝑙 and 𝜎 = 1

𝑁 − 𝑡 ∑
∉

∣𝑙 − 𝑙∣
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Note, the variance equations are time-independent. The mean over these states after the solution
states are marked (Oracle called) is given by:

𝜇 =
(𝑁 − 𝑡)𝑙 − 𝑡𝑘

𝑁
The dynamics dictated by Grover’s algorithm can be described by the time-dependence of this average,
giving the recurrences as:

𝑘 + = 2𝜇 + 𝑘 and 𝑙 + = 2𝜇 − 𝑙
Since the 2𝜇 factors are added to every term in the set, the mean itself evolves as:

𝑘 + = 2𝜇 + 𝑘 and 𝑙 + = 2𝜇 − 𝑙
The solution to this recursion in closed-from is given by:

𝑘 = 𝑘 𝑐𝑜𝑠(𝜔𝑗) + 𝑙
√
𝑁 − 𝑡
𝑡 𝑠𝑖𝑛(𝜔𝑗)

𝑙 = −𝑘
√

𝑡
𝑁 − 𝑡 𝑠𝑖𝑛(𝜔𝑗) + 𝑙 𝑐𝑜𝑠(𝜔𝑗)

where, 𝜔 = 𝑐𝑜𝑠− (1 − 2𝑡
𝑁 ) The optimal number of iterations and probability of success is given by:

𝑗 =
(2𝑚 + 1)𝜋2 − 2𝑡𝑎𝑛− (𝑘

𝑙

√
𝑡

𝑁 − 𝑡)
2𝑐𝑜𝑠− (1 − 2𝑡

𝑁 )
𝑃 = 1 −∑

∉
∣𝑙 − 𝑙∣

These two relations are very useful as 𝑗 is used to calculate the number of iterations that the program
needs, and thereby the number of gates that would be executed. The 𝑃 value helps in understanding
the applicability of the search algorithm on a given set of data.

Multiple unknown solutions (by randomising iterations of multiple runs)
The next modification that is needed is the case for multiple solutions when the number of solutions

is not known in advance. There are two ways in which such a problem can be attacked. When the
number of solutions is not known, the number of required iterations cannot be predicted in advance.
Thus, if a random iteration limit is chosen over all possible values for iterations (from the value for 1
solution to all states being solution states), then with a finite probability, the right number of iteration
will be chosen. If this probability is high, the solution state is amplified with a high probability. This is the
intuition behind the first method. Using trigonometric formula for compound angles and summation
trigonometric series expansions, for real numbers 𝛼, 𝛽 and an arbitrary positive integer 𝛿, we can
derive:

−

∑
=

𝑐𝑜𝑠(𝛼 + 2𝛽𝑗) = 𝑠𝑖𝑛(𝛿𝛽)𝑐𝑜𝑠(𝛼 + (𝛿 − 1)𝛽)
𝑠𝑖𝑛𝛽

for the case, 𝛼 = 𝛽,
−

∑
=

𝑐𝑜𝑠((2𝑗 + 1)𝛼) = 𝑠𝑖𝑛(2𝛿𝛼)
2𝑠𝑖𝑛𝛼

Let 𝑡 be the number of unknown solutions. The total probability of measuring a solution state after 𝑗
iteration (using previously derived relations and ∣𝑆∣ = 𝑡) is,

𝑃 =∑
∈
𝑘 = 𝑠𝑖𝑛 ((2𝑗 + 1)𝜃)



32 3. Algorithms for DNA sequence reconstruction

The average success probability when 0 ≤ 𝑗 ≤ 𝛿 (and simplified by the relation 2𝑠𝑖𝑛 𝛾 = 1− 𝑐𝑜𝑠(2𝛾)),
is,

𝑃 =
−

∑
=

1
𝛿 𝑠𝑖𝑛 ((2𝑗 + 1)𝜃) = 1

2𝛿

−

∑
=

(1 − 𝑐𝑜𝑠(2(2𝑗 + 1)𝜃)) = 1
2 −

𝑠𝑖𝑛(4𝛿𝜃)
4𝛿𝑠𝑖𝑛(2𝜃)

To get a 𝑃 more than 1/4, the second term should be less than 1/4. Since 𝑠𝑖𝑛(4𝛿𝜃) ≤ 1, 𝛿 can
be chosen as,

𝛿 ≥ 1
𝑠𝑖𝑛(2𝜃) = 1

𝑠𝑖𝑛(2𝑠𝑖𝑛− √
𝑡
𝑁) = 1

2
√

𝑡
𝑁

√
1 − 𝑡

𝑁

= 𝑁
2
√(𝑁 − 𝑡)𝑡

Thus, the value to be chosen for 𝛿, and thus the number of iterations to be performed, depends on
the fraction of states that are solution. Now for the algorithm, an arbitrary value of 𝛿 is chosen, and
another increment factor 1 < 𝜆 < 4/3 is chosen. At each iteration, the Grover’s search is performed
with 0 ≤ 𝑗 < 𝛿. If the measurement result after 𝑗 iteration is not the solution, 𝛿 is incremented to
𝑚𝑖𝑛(𝜆𝛿,√𝑁). The value of 𝛿 on the 𝑟th such iteration is 𝜆 − 𝛿. Let 𝛿 = 1/𝑠𝑖𝑛(2𝜃). The critical stage
is reached when 𝑟 = ⌈𝑙𝑜𝑔 𝛿 ⌉. This happens with probability,

∑
=

(1 − 𝑃 − ) =∑
=

(1 − 1
2 +

𝑠𝑖𝑛(4𝛿𝜃)
4𝛿𝑠𝑖𝑛(2𝜃))

The expected number of iteration when the critical state is reached (if at all it reaches, observed 𝑃
for rounds before it is 1), is thus expanded (using geometric series expansion),

𝐸[𝑟 ] = 1
2 ∑

=
𝛿𝜆 − = 1

2

−

∑
=
𝛿𝜆 = 𝛿(𝜆⌈ ⌉ − 1)

2(𝜆 − 1) ≤ 𝛿(𝜆 + − 1)
2(𝜆 − 1) ≤ 𝛿(𝜆𝛿 − 1)

2(𝜆 − 1) < 𝛿𝜆𝛿
2(𝜆 − 1)

After the critical stage, further increase in 𝛿 always succeeds with probability greater than 1/4. Thus,
the limiting case is reached when 𝑃 = 3/4 and is upper bounded by,

𝐸[𝑟 +] = 1
2 ∑

=
(34) 1

4𝜆
+ = 𝜆

8 ∑
=

(3𝜆4 ) = 𝜆
8 ( 1

1 − 3𝜆
4

) = 𝜆⌈ ⌉
8 − 6𝜆 ≤ 𝜆𝛿

8 − 6𝜆

The total expected number of iteration of the Grover algorithm (each time with different number of
Grover iterations in them), when 𝑡 ≤ 3𝑁/4, 𝛿 = 1 and 𝜆 = 6/5 can be derived as

𝐸[𝑟 ] + 𝐸[𝑟 +] < 𝛿𝜆𝛿
2(𝜆 − 1) +

𝜆𝛿
8 − 6𝜆 = (3 + 3

2)𝛿 = 9𝑁
4
√(𝑁 − 𝑡)𝑡 = 𝑂(√𝑁

𝑡 )
This is approximately 4 times the number of iterations had 𝑡 been known in advance. The case for
no solution is handled with a time-out, while the case for 𝑡 > 3𝑁/4 can be solved in constant time by
classical sampling.

Multiple unknown solutions (by counting)
The second method for multiple solutions is more intuitive. It divides the algorithm into two steps.

In the first step, another quantum algorithm counts the number of solutions and then, the algorithm
for known multiple solution is used to maximise the solution probability. Formally, counting is the
cardinality of an inverse Boolean function 𝐵 with input 1.

𝑡 = ∣𝐵− (1)∣
There are different ways to do quantum counting. The first method is by using quantum Fourier

transform (QFT) to find the period 𝜃 as 𝑘 evolves, to find 𝑡. The number of iterations executed is
encoded as part of the state,

∣𝜓(𝑘 , 𝑙 , 𝛾)⟩ = −

∑
=

[ 1√
2

∣𝑗⟩ (∑
∈
𝑘 ∣𝑖⟩ +∑

∉
𝑙 ∣𝑖⟩ )]

Now, if the original qubits in ∣𝑖⟩ is observed, the state collapses to (within normalisation factors),
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∑ −
= 𝑘 ∣𝑗⟩ or ∑ −

= 𝑙 ∣𝑗⟩. Running discreet QFT on this state, on measurement, with high probability
the value 𝑓 can be estimated. The number of solutions can be calculated as, 𝑡 = 𝑁𝑠𝑖𝑛 (𝑓𝜋/2 ). The
value of 𝛾 helps to balance the accuracy with run-time and needs to be typically increased gradually
over multiple runs until 𝑓 becomes large.

Another conceptually simpler way [47] to count is to determine the fraction of state marked by the
Oracle. A state is created such that an extra qubit is ∣1⟩ if it is a solution, ∣0⟩ otherwise,∣𝜓(𝑘 , 𝑙 )⟩ =∑

∈
𝑘 ∣𝑖⟩ ∣1⟩ +∑

∉
𝑙 ∣𝑖⟩ ∣0⟩

Now, measurement by state tomographic trials on this qubit gives the proportion of solution state to
the total number of states with increasing degree of accuracy.

An arbitrary amplitude and multiple solutions without counting is based on finding the number
of time the original Grover algorithm is to be run. However, quantum counting involves states and
procedures that are different from the qubit encoding of Grover. The second method is decomposed to
the required Oracle unitary. Let the Oracle is based on the Boolean function 𝐵, such that it’s elements,
𝑏 ∈ {0, 1} 𝑖 ∈ {0⋯(𝑁 − 1)} is marked when it is a solution state. The unitary matrix is formed such
that the most-significant qubit is the count qubit. In terms of diagonal matrices and element-wise
subtraction it can be written as,

𝑂 = [𝑑𝑖𝑎𝑔(1 − 𝐵) 𝑑𝑖𝑎𝑔(−𝐵)
𝑑𝑖𝑎𝑔(−𝐵) 𝑑𝑖𝑎𝑔(1 − 𝐵)]

3.4. Quantum pattern matching
There are a handful of quantum pattern matching algorithms already proposed. In this thesis,

the focus is on using Grover’s quantum search primitive for pattern matching. There are also other
approaches to pattern matching that does not depend on Grover’s search. For example, a Quantum
Walk based searching [48] [49], Quantum Fourier Transform (Abelian group Hidden Structure Problem
(HSP)) based template matching [50] [51], Dihedral group HSP based pattern matching [52] [53]
and Adiabatic Computation [54]. Also, there are algorithms which propose using the structure of
the problem (for e.g., a sorted database) [55] to speedup the search, or using a mix of classical
and quantum strategies [56]. It is too wide to explore the entire domain of quantum algorithms for
application to pattern matching. The search methods discussed in this section are chosen based on how
intuitive it is to adapt for bioinformatics applications and in some sense closer to classical approaches of
naive searching introduced in Section 3.2.1. Nevertheless, the other approaches remain promising and
it would be interesting to compare and contrast as a future scope keeping this thesis in perspective.

The three approaches discussed here are based on the following articles:
• Quantum pattern matching [57] - it introduces the concept of having a set of Oracles (one for
each alphabet) and conditionally invoking one from the set based on the search pattern.

• Fast quantum search algorithms in protein sequence comparisons: Quantum bioinformatics [58]
- it describes the concept of a quantum phone directory where the database is encoded as a set
of indices and stored patterns and evolves to the Hamming distance from the search pattern.

• Quantum associative memory [59] - introduces the concept of quantum neural network based
pattern storage and recall.

In this section, the core idea (algorithm block diagram) and the calculations for the state evolution
(like the number of iterations and solution probability) are discussed. The notations are tweaked to
maintain consistency with the previous section, on which these algorithms have their foundations.

3.4.1. Approach 1: Conditional Oracle call
The quantum pattern matching algorithm proposed by P. Mateus and Y. Omar [57] is the first algo-

rithm explored here. Grover’s algorithm (or the variants discussed in the previous section) cannot be
directly used for pattern matching. In Grover’s search, the initial input state is an equal superposition of
all the possible strings of the size of the search pattern. Thus, the number of states in the superposition
is 𝐴 . The Oracle then marks the answer state so that the output is the search pattern. However,
if the index of the pattern matching is the requirement, the state needs to be initialised such that it
stores a superposition of indices in 𝑁−𝑀+1. The Oracle marks the index where the pattern matches.
So in a naive Grover’s search implementation, the entire pattern matching comparison is off-loaded
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to the Oracle, and the algorithm is not useful without a description of the Oracle construction. The
Oracle, however, is a unitary matrix with the diagonal elements being −1 for the answer index and 1
otherwise. Thus the answer needs to be known for the Oracle construction, the exact problem that
needs to be avoided to practically program a pattern matching application.

For matching a sub-string, only a sequential set needs to be considered. The input state as described
in the paper is,

∣𝜓 ⟩ = 1√
𝑁 −𝑀 + 1

−

∑
=

∣𝑖, 𝑖 + 1,⋯, 𝑖 +𝑀 − 1⟩
Henceforth, an example case of an input alphabet of Σ = {0, 1} and 𝑇 = 111000000 is considered. Let
the search pattern for which the index is to be found, be 𝑃 = 10. The initial state for this sample case
with 𝑁 = 9 and 𝑀 = 2 thus becomes∣𝜓 ⟩ = 1

3{∣0, 1⟩ + ∣1, 2⟩ +⋯+ ∣7, 8⟩}
The circuit description in the paper however always generates a unique superposition of 𝑁 states. How
are the last states, with the starting index (𝑁 −𝑀 + 1) > 𝑖 > (𝑁 − 1) described? It is noted that, in
the state of the input circuit, the digits of the input state saturates at 𝑁. Thus, the possible matching
index states and the corresponding search pattern strings are,{∣0, 1⟩ , ∣1, 2⟩ , ∣2, 3⟩ , ∣3, 4⟩ , ∣4, 5⟩ , ∣5, 6⟩ , ∣6, 7⟩ , ∣7, 8⟩ , ∣8, 8⟩} ⟼ {11, 11, 10, 00, 00, 00, 00, 00, 00}
Note that the last state has repeats, which cannot be described with the recurrence relation given
in the paper. To encode {0, 1,⋯, 8} in binary strings would require 𝑞 = ⌈𝑙𝑜𝑔 𝑁⌉ = 4 qubits. The
paper provides the argument that only {0, 1,⋯, 7} as the starting index needs to be encoded, so
𝑞 = 𝑙𝑜𝑔 (𝑁 −𝑀 + 1) = 3 will suffice. However, since the circuit encodes the remaining pattern index
as well for comparison, 𝑞 qubits are not sufficient. Rendering the initialisation circuit with 𝑞 = 4 qubits
gives an equal superposition of states with 𝑖 ∈ {0, 1,⋯, 15} resulting in the initial state (qubit encoding
of binary strings) of,∣𝜓 ⟩ = 1

4{∣0000, 0001⟩ , ∣0001, 0010⟩ ,⋯, ∣1110, 1111⟩ , ∣1111, 1111⟩}
Note that this is different from the initial state till

1
3 ∣7, 8⟩ that was actually required to be encoded.

Figure 3.6: Initialisation circuit examples, as given in [57]

The circuit given in the paper shows a gate pattern as an example (Figure 3.6), giving no intuition
of why it is the way it is. This is analysed to figure out that, the first set of Hadamard gates on the
qubits encoding the first character’s of the pattern creates a superposition like,

1
4(∣0000⟩ + ∣0001⟩ +⋯+ ∣1111⟩)

on the first 𝑞 set of qubits. The set of CNOTs then copies this to the next 𝑞 qubits creating the state
1
4(∣0000, 0000⟩ + ∣0001, 0001⟩ +⋯+ ∣1111, 1111⟩)

The Toffoli gates then implements an increment-by-1 circuit creating the state
1
4(∣0000, 0001⟩ + ∣0001, 0010⟩ +⋯+ ∣1110, 1111⟩ + ∣1111, 1111⟩)

Note that the increment saturates at all 1 and is easy to verify with a sum-of-product expression of the
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Toffoli controls.
In Grover’s search, the Oracle function basically stores the relationship between the database and

the search string. This relationship thus needs to change for each search string, making it impractical
for implementation. The key idea in quantum pattern matching is to define a ”compile once, run many”
approach for the Oracle. The algorithm defines multiple Oracles, one for each character of the alphabet.
The Boolean function that the Oracle encodes is −1 for the indices where the reference string matches
the Oracle’s defining character 𝜎 ∈ Σ.

𝑓 ∶ {0, 1} → {−1, 1}
The Boolean function that maps to {0, 1} is converted to {−1, 1} by a phase-kickback process of(−1) ( ) for implementing the gate level circuit for the Oracle function. The Oracle construction is
independent of the search string, giving this algorithm its usefulness. The Oracle circuit assembly,
however, depends on the search pattern as shown in the algorithm anatomy in Figure 3.7.

Figure 3.7: Algorithm anatomy

At every iteration step, all the 𝐴 Oracles exist in the circuit but only one of them is control ac-
tivated by the step’s corresponding character of the search pattern. Since the model of quantum
computer is based on in-memory computation, the exact circuit need not be pre-compiled if the under-
lying micro-architecture and classical control are fast enough to allow real-time circuit interpretation.
The circuit for constructing an arbitrary Boolean function is not provided in the paper. The circuit
is devised that allows generating an Oracle automatically in a high-level programming language in
the kernel. In the implementation, a sequential run through the Boolean function is performed. If
the state of a particular index needs to be marked, the Boolean value of the index is taken and a
CPhase gate is applied on all the qubits to the Oracle, with inverted control on qubits where the
Boolean index encoding is 0. Continuing the example, the Boolean function for 𝜎 acting on 𝑞 = 4
qubits is 𝑓 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Thus, the positions of 0, 1, 2, or the qubit states of∣0000⟩ , ∣0001⟩ , ∣0010⟩ are marked using 3 CPhase Gates over 4 qubits. The first CPhase will have all
the controls inverted, for the second CPhase 𝑞 , 𝑞 , 𝑞 are inverted and for the third CPhase 𝑞 , 𝑞 , 𝑞
are inverted. The inversion is carried out by wrapping Pauli-X gate on those qubits before and after
the CPhase. The multi-qubit CPhase is converted to a multi-qubit CNOT by wrapping a Hadamard on
one of the qubits and then decomposing.

The third part of the circuit is the Grover amplification process over the entire non-ancilla qubit
set. In the initialisation circuit, the Oracle as well as for the Grover gate, the circuit construction uses
n-qubit Controlled-X gates. These need to be decomposed to Toffolis using ancillas for the purpose of
simulating for the thesis. Multi-qubit CNOT decomposition is described further in Section 4.3.3.

The research acknowledges the need for approximate matching for DNA as an application for quan-
tum algorithms. The algorithm incorporates that by checking 𝑂(√𝑁 −𝑀 + 1) uniformly random posi-
tions sampled from 𝑀 (as 𝑁 ≫ 𝑀, it is over-sampled). For a pattern matching 𝑀 positions out of 𝑀,
the state will be amplified with a ratio of 𝑀 /𝑀 times, directly correlating with the measurement prob-
ability of the position index. There can be multiple solutions whose cardinality might not be known a
priori. The algorithm employs the randomising iterations of multiple runs as described in Section 3.3.2.
However, it does not consider that the approach converges to the correct solution only on repeat-
ing the experiment multiple times (for gradually increasing 𝛿). Thus, for a general pattern matching
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case, it might not be suitable. The paper states (without proof) that, the algorithm’s efficiency (with
𝑃 ≥ 1/4) is easy to verify when the symbols in the pattern occur only once and the alphabet is rich.
Neither of these is implied in the case of DNA sequences and the implication of this will be discussed
in more depth in Chapter 4. The compile time is 𝑂(𝐴𝑁𝑙𝑜𝑔 (𝑁)) and the runtime of the algorithm is
𝑂(𝑀𝑙𝑜𝑔 (𝑁) + 𝑁 / 𝑙𝑜𝑔 (𝑁)𝑙𝑜𝑔(𝑀)). These shall be verified in the results for the specific case of the
application for the thesis.

3.4.2. Approach 2: Quantum phone directory and Hamming distance
The next method is based on the quantum algorithm for bioinformatics as proposed by L.C.L.

Hollenberg [58]. It closely resonates with the scope of this thesis as it considers quantum search
algorithms in the context of protein sequence alignment in bioinformatics. The task is to find the
location in the reference database of an exact or closest match to a query pattern; by finding the
minimum Hamming distance between the sample sequence and the database sub-sequences. A block
diagram of the algorithm is shown in Figure 3.8.

The amino-acid alphabet size of 𝐴 = 20 is considered for the encoding into 5-qubits. The initial
state is composed of two-qubit registers, the index and the pattern - similar in architecture to a random
access machine (RAM) or a phone directory with name and number. Essentially, the set of patterns
are sorted into an ordered list due to the second register of the database that tags the data. This is
different from the previous method, as the real data is encoded in the states, while in the previous
approach, the states represented positions in the reference, while the real data was only encoded as
part of the Oracle function. The initial state can be described as,

∣𝜓 ⟩ = 1√
𝑁 −𝑀 + 1

−

∑
=

( ∣𝑇 (𝑖)⟩⊗ ∣𝑖⟩ )
where, 𝑇 (𝑖) represents a sub-sequence of the reference 𝑇 of length 𝑀 starting at the position 𝑖. Thus
the number of qubits in total is given by 𝑞 + 𝑞 = 𝐴𝑀 + ⌈𝑙𝑜𝑔(𝑁 −𝑀 + 1)⌉.

The next step in the algorithm is the most crucial contribution. It evolve the data qubits to their
Hamming distances with respect to the search pattern. This operation can be done on the entire
superposed state highlighting the power of quantum operators. Simply, a CNOT (with the query pattern
as control) is done on the data qubits, which results in the Hamming distances. The black box nature
of the Oracle function is now simplified (at the cost of increasing the qubit complexity with position
information). For a perfect match, the Oracle just needs to mark the states with the value of 0, thus
making it a fixed function with no dependence on either the reference or the search pattern. Once the
state is amplified according to the modified Grover’s algorithm (for an unknown number of solutions),
the location of the sequence in the database can be determined by making a measurement on the
entangled second register.

Figure 3.8: Algorithm anatomy

For approximate matching, the Oracle needs to be modified such that it finds the minimum value,
instead of an exact 0. The article proposed to incrementally employ Oracles that marks incremental
Hamming distances (0, 1, 2,⋯, 𝑑 ). For each distance, the modified Grover’s algorithm is repeated
till either an optimal solution is obtained (and the entire process is aborted), or the algorithm halts with
a failure after maximum iterations 𝑂(√𝑁).
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3.4.3. Approach 3: Quantum associative memory
Finally, the idea of quantum associative memory for pattern recognition is explored. This method,

proposed by D. Ventura and T. Martinez over a series of (in most part redundant) articles [60] [61]
[62] [63] [59], is more well known and improved by further researchers.

Associative memory is a type of memory organisation that works very different from the random
access memory (RAM) that are normally present in computing devices. Associative memories are also
called content-addressable storage (CAS), where, instead of the index of the element to be retrieved
(like in a RAM), a partial description of an element is passed as the input query. The element in the
memory with the nearest match to the query is retrieved by the CAS. CAS is used in routers to find
the destination address of a packet based on MAC addresses of the machines registered on the routing
table. Building a CAS is costly (almost twice that of a DRAM of the same size) in digital electronics as it
requires a parallel comparator. Associative memories are useful for modelling human memory storage
and retrieval and is thus widely studied in the field of Artificial Neural Networks (ANN).

Similarly, the idea of quantum associative memory was developed under the umbrella of quantum
neural networks. Intuitively, the entire parallel search operation is reduced to operations on a superpo-
sition of states (memories), resulting in an exponential increase in the capacity of the memory (or in the
number of comparisons reduced to a constant time). However, this thesis will study the algorithm as a
purely mechanical pattern matching algorithm, without going into the discussion of learning efficiency.

Figure 3.9: Algorithm anatomy

The algorithm consists of two major blocks, a pattern store and a pattern recall as shown in Figure
3.9. The pattern store starts from an all-zero state to encode the reference text string 𝑇. A set 𝑇 of
𝑀 length substring patterns (𝑇 (𝑖) where 𝑖 ∈ {0⋯(𝑁 −𝑀 + 1)}) are made from 𝑇, each starting from
a consecutive index. The number of operations on 1-3 qubits for the initialisation step is polynomial in
the length (𝑀) and number (𝑁−𝑀+ 1) of patterns to be stored. A set of 2𝑀+ 1 qubits is required for
storing the patterns, the first 𝑀 qubits (𝑥 ⋯𝑥 ) is used to actually store the patterns (the neurons in a
quantum associative memory) while the remaining (𝑔,𝑐) are ancillary qubits for bookkeeping and are
restored to the 0 state after every storage iteration for a pattern in 𝑇 . The detailed algorithm requires
custom unitaries, as shown in Figure 3.10. It stores 𝑚 binary pattern of length 𝑛 with the function
𝑓 ∶ 𝑧 → 𝑠, where 𝑧 ∈ {0, 1} and 𝑠 ∈ {−1, 1}. �̂� is the Pauli-X gate on qubit 𝑎, �̂� is CNOT with 𝑁𝑂𝑇(𝑎)
as control and �̂� is CNOT with 𝑎 as control. �̂� is a matrix where the elements from row and column
4𝑎+2𝑏 to 4𝑎+2𝑏+2 is replaced with �̂� in a 8×8 identity matrix. The set of conditional-Hadamard-like
transform operators �̂� , one for each associated pattern is used to store (memorise) the reference,
are given by,

�̂� = 𝐶𝑅 (2𝑠𝑖𝑛− (−𝑠/√𝑝)) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

0 0
√
𝑝 − 1
𝑝

−𝑠√𝑝
0 0 𝑠√𝑝 √

𝑝 − 1
𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
An example of the initialisation process can be found in [62]. The paper provides an in-depth analysis
of why this unitary evolution works and how it can be extended to quantum network based circuits.

𝑀 qubits can store a total of 𝐴 possible patterns, while the number of stored patterns is much
smaller, i.e. 𝑁−𝑀+1 ≪ 𝐴 . Suppose, 𝑀 is the fraction of 𝑀 qubits which are known from the query.
For the recall phase, two different Oracles are constructed. The first Oracle, 𝑂 marks the states in
the memory for which the 𝑀 fraction of qubits matches. The second Oracle, 𝑂 marks all the stored
states in the memory. This is not equivalent to marking (flipping the entire state by a global phase
of 𝜋) the entire state vector, as due to the amplitude amplification operation, all 𝐴 state might have
non-zero amplitudes, but only the stored states are marked. The Oracles are applied on the initialised
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Figure 3.10: Initialising amplitude distribution in a quantum system [62]

state ∣𝜓 ⟩ in the sequence, ∣𝜓 ⟩ = (𝐺𝑂 )
j times

𝐺𝑂 𝐺𝑂 ∣𝜓 ⟩
where, 𝐺 is the Grover gate (inversion about mean) and the optimal iteration, 𝑗 is 𝑂(√2 )

𝑁−𝑀+1 is the number of stored patterns out of 𝐴 possibilities of the qubit basis states. 𝑟 and 𝑟
represents the number of marked states corresponding to stored and non-stored patterns, respectively.
Let,

𝑎 = 2(𝑁 −𝑀 + 1 − 2𝑟 )
𝐴 and 𝑏 = 4(𝑁 −𝑀 + 1 + 𝑟 )

𝐴
The initial amplitude of the marked (𝑘) and unmarked (𝑙) states for stored and non-stored patterns
(based on the subscripts 1 and 0 respectively) are given by,

𝑘 = 4𝑎 − 𝑎𝑏 and 𝑘 = 4𝑎 − 𝑎𝑏 + 1

𝑙 = 2𝑎 − 𝑎𝑏 and 𝑙 = 4𝑎 − 𝑎𝑏 − 1
This gives the mean 𝑘 and 𝑙 as,

𝑘 = 4𝑎 − 𝑎𝑏 +
𝑟

𝑟 + 𝑟 and 𝑙 = −𝑎𝑏 +
2𝑎(𝐴 + 𝑁 +𝑀 − 1 − 𝑟 − 2𝑟 ) − (𝑁 −𝑀 + 1 − 𝑟 )

𝐴 − 𝑟 − 𝑟
The optimal number of iterations and maximum probability can now be calculated as,

𝑗 =
(2𝑚 + 1)𝜋2 − 2𝑡𝑎𝑛− (𝑘

𝑙

√ (𝑟 + 𝑟 )
𝑁 − 𝑟 − 𝑟 )

2𝑐𝑜𝑠− (1 − 2(𝑟 + 𝑟 )
𝐴 )

𝑃 = 1 − (𝐴 − 𝑁 +𝑀 − 1 − 𝑟 )∣𝑙 − 𝑙∣ − (𝑁 −𝑀 + 1 − 𝑟 )∣𝑙 − 𝑙∣
Note that, if we set 𝑟 = 0 and 𝑙 = 𝑙, these equations reduce to the 𝑗 and 𝑃 calculated for the
arbitrary initial distribution case.

The article also proposes an alternative non-unitary matrix evolution for the recall step. Measure-
ment of a quantum system is not a unitary. Since the pattern recall mechanism requires the decoher-
ence and collapse of the system at the end, an explicit use of non-unitaries might be beneficial for faster
retrieval. The introduction of spurious states (non-zero amplitudes for non-memorised patterns) into
the superposition during unitary evolutions can be avoided increasing the measurement probability.
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The element of this non-unitary recall operator 𝑅 (for the search query 𝑃) is given by,

𝑅 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝜙 ≡ 𝜒 and ℎ(𝜙, 𝑃 ) ≥ 1
−1, if ℎ(𝜙, 𝑃 ) > ℎ(𝜒, 𝑃 ) ≥ 1
0, otherwise

where, ℎ(., .) is the Hamming distance function over an alphabet Σ = Σ∪ {?}, the wild-card character ?
matching everything. This would probably come at the cost of added computing energy cost. Though
the principle can be tested on a classical simulator using matrix evolution (like MATLAB), the translation
of the non-unitary operations to a quantum-classical hybrid code is not understood. This approach of
pattern recall is thus not pursued in the thesis. However, the idea of using two Oracles, one for marking
the solution and another for marking all stored states, is used for the development of the final proposed
algorithm in the thesis.





4
Implementations of quantum pattern

matching algorithms

What I cannot create, I do not understand.
- Richard Feynman

In this chapter, the details of the implementation of the quantum algorithms are presented. Firstly,
the choice of development tools and algorithmic utilities are introduced. Then, the major assumptions
and their justifications for the algorithm development is highlighted. The implementations of quantum
algorithms for pattern matching are developed. Finally, a new algorithm is designed for the specific
requirement of genomic sub-sequence alignment.

4.1. Development tools
An introduction to the various development tools for the thesis is presented in this section. In-

house tools developed in the department are preferred for the implementations. For additional support
MATLAB is used.

4.1.1. OpenQL compiler framework
To enable quantum programmers to express complex algorithmic constructs, a high-level program-

ming language is needed. This provides an abstraction for the low-level details of the computer archi-
tecture. Many different quantum programming languages and compiler frameworks are proposed by
various research groups, such as Scaffold [64], LiQui|> [65] (later, Microsoft Quantum Development
Kit using Q# [66]), ProjectQ [67], Quipper [68], Rigetti Forest [69]. The OpenQL framework is under
development at QuTech, which allows hybrid quantum-classical coding in Python or C++. OpenQL
is inspired by OpenCL and is based on heterogeneous programming model with the quantum device
modelled as an accelerator to the general purpose computer (host processor).

The compiler bridges the semantic gap between the quantum algorithm and the quantum hard-
ware. The high-level human-readable quantum algorithms are transformed into quantum operations,
optimising them to produce executable machine code for the target quantum platform. Usually, a
quantum compiler translates the program to some form of Quantum Assembly Language (QASM) that
is a description of the quantum circuit for the particular purpose. The gates used for the decomposition
are based on the supported gate-set of the underlying quantum computing device (simulator or pro-
cessor). Optionally, the compiler optimises the circuit to reduce the length (latency) or width (number
of qubits), and to use scheduling schemes (like As-Soon-As-Possible or As-Late-As-Possible) to pro-
duce a scheduled QASM where multiple consecutive operations can be performed in the same cycle if
they are on different qubits. Additionally, the compiler also maps the quantum circuit to the topology
of the physical quantum processor chip, satisfying its constraints, for example, nearest-neighbour in-
teractions. The QASM based quantum instructions are then translated to executable-QASM (eQASM)
which also includes the timing and physical qubit identifiers. It is then sent to the micro-architecture
for execution on the quantum processor chip.

41
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The OpenQL framework provides a compiler for compiling and optimising quantum code to pro-
duce the intermediate Common QASM [70] and the compiled eQASM for various target platforms
(superconducting qubits, spin-qubits, NV-centers, etc.) The architecture of the compiler is shown in
Figure 4.1. While the eQASM and microcode are platform-specific, the QASM is a hardware-agnostic
circuit description. OpenQL compiler back-end envisions various features like decomposition (like Tof-
foli using H, T and CNOT), optimisation (under development), scheduling, mapping and interfacing
with the QASM compiler. For this thesis, OpenQL is used mainly as a translator of high-level pro-
gramming constructs to QASM. The back-end can be a simulator instead of a real platform. In this
project, the Python wrappers on OpenQL is used for development. OpenQL is under active develop-
ment. The programs in this thesis is compatible for the Release Version 0.4.0 of OpenQL (commit
9𝑓0𝑒266𝑏𝑒𝑐6𝑐66𝑑93𝑓95𝑑850337𝑓9𝑑𝑓𝑏𝑏864𝑑379 dated 19 May 2018).

Figure 4.1: OpenQL high-level programming interface

The Qxelarator library allows execution of the compiled QASM on the QX binary and receives the
measurement outcomes in the high-level OpenQL code. This encapsulates the quantum architecture (in
this case, the simulator) and allows interleaving classical and quantum code blocks in a single program.

There are two main reasons for using OpenQL for the project, instead of directly coding in QASM.
• Firstly, the high-level constructs offer code compression. For example, to create the uniform
superposition state at the start of Grover’s algorithm, the Hadamard gate needs to be applied on
all the data qubits. While the QASM lines of code are proportional to the number of gates (and thus
the instance size of the problem), the OpenQL code can employ iteration to perform Hadamard
operations on subsequent qubits, keeping the code size constant. This greatly increases the
readability of the code, as OpenQL allows breaking down the code into logical blocks called
kernels.

• Secondly, for an end-user application, beside the quantum accelerated part, there are other
mathematical calculations that need to be performed. For example, in the previous chapter it
was shown, an estimation of the number of iterations to reach the optimal solution probability
for search algorithms can be pre-calculated. Theoretically, quantum computers being universal
computing machines, it should be possible to do all computation on the quantum device itself.
However, given the current state of technological advancement, it is not feasible to use quantum
computers as stand-alone general purpose computing devices. These auxiliary classical pre/post-
processing of the algorithm can be done in the native code running on the host processor.
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4.1.2. QX quantum computer simulator
In order to experiment with algorithms in the absence of a large physical quantum computer,

quantum computer simulators are used to verify their feasibility, correctness, scaling and predict their
behaviour on a real quantum system. This is different from the term, quantum simulation, where one
quantum system is simulated in another more accessible quantum system to study its properties. There
are many available quantum simulators [71] - developed either as a teaching tool, for development of
algorithms or using as an interface to quantum hardware. QX [72] is a universal quantum computer
simulator that takes as input a specially designed quantum assembly language (QASM) and provides
through aggressive optimisation, high simulation speeds for qubit state evolution.

The feasibility of quantum simulation is dependent on the number of qubits required for the circuit.
The efficiency of simulators reduces exponentially with respect to the number of qubits because the
number of states increases as 2 . There are however other factors that also have an effect. For
example, it is quite trivial to initialise a million qubits and only perform Pauli-X/Y/Z operations on them
or simulate reversible versions of classical circuits. Basically, it is dependent on how sparse the state
vector (or the density matrix) is. If the state is in a highly superposed/entangled state, manipulating
qubits in the order of 50 starts to become quite challenging even in super-computing clusters. The
currently available qsim servers in the department (with 28 HT cores, @ 2.00 GHz and 384GB memory)
can simulate ≈35 qubits if the states and operations are non-sparse. There are fields of research that
are trying to make a more efficient simulation with tensor networks. Alternatively, it is argued that the
quantum speedup advantage can be reasoned in terms of how much of the quantum phenomena of
superposition and entanglement is harnessed [73]. Thus, 50 qubits is widely regarded as the supremacy
limit for quantum computation i.e. quantum computation will be able to calculate something that is
classically intractable.

It needs to be noted that, the 50 qubit limit is not needed to exhibit useful quantum phenomena. A
simple example for this is, putting a qubit to a ∣+⟩ state and measuring it on the {∣0⟩ , ∣1⟩} computational
Z-basis which would simulate an exact unbiased coin, a perfect random number generator, which no
classical algorithm can. Such strategies are the basis of research in quantum communications, whose
application can typically be realised with fewer qubits.

An important distinction is to be made here regarding physical and logical qubits. Many quantum
computing ventures are on the verge of reaching the 50 limit, however, 50 physical qubits are highly
error-prone and cannot be addressed individually to perform useful computation. Thus, multiple qubits
are encoded using error-correcting codes (ECC) to represent a single logical qubit. This process is a
bit different from classical redundancy due to the no-cloning principle. Discussion on QEC is outside
the scope of this thesis. However, it needs to be stressed that, simulators might still be very useful
to study quantum algorithms as long as 50 or more logical qubits with high fidelity do not become a
reality.

In simulators, the internal state vector can be obtained in its totality. Thus, for simulating the
algorithm, there is no need to repeat the execution multiple times and average the measurement
probability. It is impossible to reconstruct the exact state vector from measurements in a real quantum
processor. Only the probabilities (squared amplitudes) can be estimated with increasing degrees of
resolution with multiple measurements. The exact complex amplitude remains hidden, which is useful
in the algorithm design stage to understand how the quantum system evolves. QX allows this feature
with the display directive, that prints out the state vector in verbose at the point in the circuit where the
directive is placed. This is extremely handy for debugging scaled down versions of quantum algorithms
and might outlive the supremacy limits.

Using a simulator also implies a few fine-prints. Firstly, for an arbitrary algorithm, it limits the
problem size what can be simulated on the available computer resource. This is not a major problem
from the algorithm design aspect as it is easy to reason out the extension of the algorithm for larger
program size once it is tested for a smaller size. However, it might not be directly emulated for the
real World problem size leaving room for speculation about the practical efficiency on a real quantum
processor. Many quantum simulators allow introducing noise-models. The QX simulator has an option
to set a symmetric depolarising channel with parameterised error probability. These models are con-
stantly being updated to more realistic error models as more data from practical experiments are being
available. Thus, an algorithm on the simulator might not execute exactly the same on a real processor
if the exact environmental model is not considered.
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4.1.3. Integrated development environment

In order to merge OpenQL and QX Simulator into an integrated development environment (IDE)
for quantum algorithm research, the Quantum Innovation Environment (QuInE) is developed as part
of the thesis. It integrates algorithm specification using OpenQL (Python), QASM based coding and
Circuit drawing tools for aiding various phases of an algorithm development cycle. These methods
are integrated for inter-conversion and can be executed to generate result plots. QuInE is envisioned
to be an introductory learning tool for intuition development, at the same time, featuring capabilities
to support large-scale quantum programming. It is still in pre-alpha release and this thesis has been
instrumental in the understanding of the requirements for a quantum programming tool for high-level
algorithms. It is coded in PyQt, and is influenced by Quirk [74], QMechanic [75] and Cadence OrCAD
Capture [76]. A screenshot of QuInE is shown in Figure 4.2.

Figure 4.2: Quantum Innovation Environment

4.1.4. Verification and testing

The circuit model of quantum computation is used for the algorithm design as it can directly be
translated to executable instructions for the underlying quantum processor. However, some of the
work on which the thesis builds further is based on unitary evolution. Unitary evolution is easy to
implement as matrix operations in platforms like MATLAB (or its open source alternative, Octave).

The testing philosophy followed is thus based on testing the correctness of the QASM execution
of the algorithm in QX, by comparing the results with the MATLAB code’s final state vector by unitary
evolution. To obtain the result from QX, either the superposed internal state vector can be directly
obtained from the execution before measurement (using the display directive) or multiple runs are
accumulated for a state tomographic estimation.

MATLAB is also used in the thesis to develop additional support libraries as discussed further in
Section 4.3 for arbitrary unitary decomposition. Overall, dependence on external tools is reduced over
the developmental period so that the entire tool-chain can be coded in Python. External tools are
used where specific available packages (e.g. singular value decomposition in MATLAB) endorses easy
implementation.
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4.2. Assumptions
In this section, the different assumptions are explicitly stated for different parts of the system. It is

hard to justify all results of quantum algorithms given so many speculations [77]. Though a hardware
agnostic approach is taken for the implementations, the results attempt to quantify the metrics of:

• Scaling of number qubits with respect to problem instance size
• Scaling of number of gate operations with respect to problem instance size

It is useful to compare these algorithms to assess the feasibility and the requirement of the underlying
quantum computing stack layers.

4.2.1. Number of qubits
The QX simulator allows declaration of an arbitrarily large number of qubits. The bound is set by

the underlying hardware, its processing and memory capabilities for the type of state transitions that
need to be performed for the algorithm. Practically, simulating Grover’s algorithm with >∼ 25 qubits
starts to get taxing on a laptop (Core i7 with 8 GB RAM on Ubuntu 16.04). Only one of the algorithms
in the thesis required more than 25 qubits for the proof-of-concept simulation. Testing on higher
qubit version would not reveal anything more from the algorithm design point of view. In a quantum
hardware, the simulation is expected to undergo exponential speedup. However, unless there is some
drastic breakthrough in hardware technology (similar to vacuum tube to transistors), qubit number
will remain one of the most expensive parameter that needs to be optimised. Keeping this in mind,
constructs that use lesser number of (ancilla) qubits are implemented.

4.2.2. Noise models
The other very important parameters that are currently restraining the quantum revolution are

environmental noise and gate fidelity. Qubits decohere, losing their pristine state to entangle with
the environment, causing errors. The QX supports the depolarising model, where random Pauli errors
can occur at any part of the circuit. Errors can be mitigated via various means, e.g. Pauli frames,
Quantum Error Correction (QEC), randomised compiling, etc. This is a separate field of research which
allows the algorithm design to be agnostic to the errors. QEC is mostly implemented by distributing the
information among a set of qubits. Popular codes are Shor code (using 9 qubits), Steane code (using
7 qubits), Surface-7 code, Surface-17 code and Surface-49.

Simulating noise models without QEC is not useful as realistic error rates would not allow more than
a handful of gates [78] before the state completely decoheres. On the other hand, using the simplest
of the correcting codes (distance 3 or more), will multiply the physical qubit number by a large fraction,
preventing simulation of even the proof-of-concept problem size. Thus all algorithms simulated for the
thesis assumes no noise scenario.

4.2.3. Number and type of gates
The noise of the system directly influences [79] the number of gates that can be executed. In a

no noise scenario, there is no limit on the number of gates (the QASM program size). However, the
time complexity of the quantum algorithm is also based on the number of gates executed. Thus to
show a speedup of quantum algorithms, the number of elementary quantum operations should be
asymptotically less than the number of classical primitives for the algorithm.

Such a comparison, however, assumes equal clock speeds for classical and quantum. Currently,
there is a huge gap between the operation throughput of the classical and quantum processors. Also,
not all quantum gates take equal time. The time taken by a logical gate also depends on the encoding
scheme. For example, some gates are transversal in a particular coding scheme, which makes them
easier to parallelise. However, some non-Clifford gates (like T gates) require a non-deterministic pro-
cedure in topological codes, called state distillation. Since there are no fixed numbers on the duration
of various gates in a system with 1000s of physical qubits, the weights are left as variables.

The primitive gate-set is dictated by the quantum processor. As long as a universal gate-set is
used, the compiler can translate an algorithm to the specifically supported gate-set. For the thesis,
the allowed gate-set of QX is chosen. This includes the quantum gates for Hadamard, Pauli-X/Y/Z,
arbitrary rotation in X/Y/Z, Phase gate, T, T dagger, CNOT, Toffoli, SWAP, controlled rotation, binary
controlled Pauli-X/Z and PrepZ. Gate complexity is assessed individually in terms of how each of these
gates scales with the problem size.
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4.2.4. Qubit topology
In the thesis and in QX simulator, all qubits are connected to each other. This is not always feasible

while designing the quantum chip (typically on a plane). This limited connectivity restricts the allowed
sets and directivity of multi-qubit gates (3 or more qubit gates are always broken down to 1 and 2
qubit gates) e.g. the IBM Quantum Experience has very limited connectivity, and some qubits allow
only CNOTs in one direction (so it is inverted by dressing it with H gates). For the future many-qubit
regime, a topological surface of connected ninja-star surface coded logical qubits is being considered.
Such 2-D graphs will be restricted to nearest neighbour connectivity. Thus extra operations (like SWAP
gates) needs to be added to bring two logical qubits beside each other before an operation can be
performed. The initial placement of the program’s qubits has an influence on the efficiency of the
routing for small circuits. This is the research domain of qubit placement, mapping and routing. In
future, these features will be available in the OpenQL compiler but for the most part will be abstracted
from the algorithm designer’s point of view.

In summary, the assumptions and the justifications for the thesis are tabulated in Figure 4.3.

Figure 4.3: Assumptions and justifications for the thesis

4.3. Algorithmic utilities
The quantum pattern matching algorithms require a library of common functionality. These utilities

are discussed in this section.

4.3.1. Reference patterns
In order to test the algorithms implemented for the thesis, test patterns need to be generated. The

tests are carried out for either of the 3 types of reference patterns: real data segment, random data
segment and minimal super-string.

• For real data segment, a segment of the HBB (hemoglobin subunit beta) is chosen from Chro-
mosome 11 (region p15.4) of Homo sapiens from the NCBI database [80] (Annotation Release
109). The start codon of the 147+1 length amino-acid sequence is at location 51 of the 626 base
pair sequence Genetic mutations of HBB are responsible for diseases like sickle cell anaemia and
beta thalassemia. In sickle cell anaemia, hemoglobin S replaces both beta-globin sub-units in
hemoglobin. This can be seen in the range 51 to 71, where the DNA sequence varies at 2 places:
HBB Gene sub-sequence : 𝐴𝑇𝐺.𝐺𝑇𝐺.𝐶𝐴𝑇.𝐶𝑇𝐺.𝐴𝐶𝑇.𝐶𝐶𝑇.𝐺𝐴𝐺
HBS Gene sub-sequence : 𝐴𝑇𝐺.𝐺𝑇𝐺.𝐶𝐴𝐶.𝐶𝑇𝐺.𝐴𝐶𝑇.𝐶𝐶𝑇.𝐺𝑇𝐺
This results in a single amino-acid change between these due to the available redundancy in the
codon.
HBB Amino acid sub-sequence : 𝑆𝑡𝑎𝑟𝑡.𝑉𝑎𝑙.𝐻𝑖𝑠.𝐿𝑒𝑢.𝑇ℎ𝑟.𝑃𝑟𝑜.𝐺𝑙𝑢
HBS Amino acid sub-sequence : 𝑆𝑡𝑎𝑟𝑡.𝑉𝑎𝑙.𝐻𝑖𝑠.𝐿𝑒𝑢.𝑇ℎ𝑟.𝑃𝑟𝑜.𝑉𝑎𝑙
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This sequence emphasises the criticality and the correctness demands on the algorithm, as a 1bp
change in 3 × 10 bp can be erroneously diagnosed as a fatal disease.

• The second method is generating random data sequence of required size. The distribution of
Chargaff’s Rules discussed in Section 2.4.1 is followed for generating the random sequence. Since
all the 4 nucleotide bases occur in almost equal proportion, a simple random selection preserves
this property of real DNA. Only DNA sequence is generated and its implication on amino-acid
coding is ignored.

• The final method is for testing exhaustively the algorithm’s performance on all combination of
the pattern string. This is an algorithm developed for the thesis. An ordered set of an alphabet
is considered, e.g. Σ = {𝐴, 𝐶, 𝐺, 𝑇} of size ∣Σ∣ = 4. Then the length of the search pattern is
chosen. For the example here, let it be 𝑀 = 3. Thus, the number of possible permutations for
all 3-character strings from the alphabet set is 4 .

Figure 4.4: Minimal length super-string algorithm example for ∣ ∣ = and =

The algorithm finds the shortest string that contains all these permutations as sub-strings (and
occurs only once). The length of this super-string is ∣Σ∣ +𝑀 − 1 = 66 for our case. The super-
string starts with the first character repeated through the entire pattern length, i.e. 𝐴𝐴𝐴. For
the next consecutive shifted pattern the first (𝑀− 1) characters are fixed, i.e. it has to be of the
form, 𝐴𝐴∗. For choosing the ∗, characters are tried in the inverse ordering of the alphabet, i.e.
𝐴𝐴𝑇 or else 𝐴𝐴𝐺 or else 𝐴𝐴𝐶, as shown in Figure 4.4. Since 𝑇 has not been considered before
as prefix of 𝐴𝐴, 𝑇 is added to the partial super-string; making it 𝐴𝐴𝐴𝑇. Continuing through this
algorithm, the final super-string for the above case becomes,

𝐴𝐴𝐴𝑇𝑇𝑇𝐺𝑇𝑇𝐶𝑇𝑇𝐴𝑇𝐺𝐺𝑇𝐺𝐶𝑇𝐺𝐴𝑇𝐶𝐺𝑇𝐶𝐶𝑇𝐶𝐴𝑇𝐴𝐺𝑇𝐴𝐶𝑇𝐴𝐴𝐺𝐺𝐺𝐶𝐺𝐺𝐴𝐺𝐶𝐶𝐺𝐶𝐴𝐺𝐴𝐶𝐺𝐴𝐴𝐶𝐶𝐶𝐴𝐶𝐴𝐴
Formally, the algorithm can be reasoned as a concatenation of Gray code extended for larger
alphabet set.

4.3.2. Unitary decomposition
For the most general algorithms, arbitrary unitary evolution is required. Some of these might have

special forms, but it is highly advantageous if a decomposition for an arbitrary unitary is available that
translates an input matrix to a sequence of gates which can be directly used as a module in OpenQL.
This is in the development roadmap of OpenQL compiler, however, to cater to the immediate need of
this thesis, a MATLAB script is developed with generates the OpenQL kernel code for the decomposition
of any arbitrary unitary matrix to a sequence of quantum gate operations.

The Quantum Shannon Decomposition (QSD) method [81] is chosen for this purpose. The gate
set of CNOT and arbitrary Rotations are used in this algorithm, which is possible to simulate in QX.
The QSD method is chosen as it offers a decomposition in terms of less gate cost if the underlying
architecture allows composition of arbitrary analog wave-forming for controlling microwave pulses to
the quantum chip. The QSD algorithm is explained here.

The first step is a Cosine-Sine Decomposition (CSD) which splits an even-dimensional unitary matrix
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𝑈 ∈ Cn×n in smaller C(n/2)×(n/2) sized unitaries 𝑀 , 𝑀 , 𝑀 , 𝑀 , and real diagonal matrices 𝐶,
𝑆. 𝑀 sets form quantum multiplexers, while 𝐶 and 𝑆 form a multi-controlled 𝑅 gate satisfying,
𝐶 +𝑆 = 𝐼⊗ / . The CSD decomposition, in turn, involves Singular Value Decomposition (SVD) routines.
Detailed discussion on CSD can be found in [82]. For this thesis, it is used as a MATLAB library from
the Qubiter toolset available online at http://www.ar-tiste.com/m-fun/csd_qc.m.

𝑈 ∣𝜓⟩ = [𝑎 𝑏
𝑐 𝑑] ∣𝜓⟩ = [𝑀 0

0 𝑀 ] [ 𝐶 𝑆
−𝑆 𝐶] [𝑀 0

0 𝑀 ] ∣𝜓⟩
𝑈

● 𝑅 ●∣𝜓⟩ ⟼ ∣𝜓⟩/ / / 𝑀 ● 𝑀 /
The next step is decomposing the multiplexors 𝑀 , where, when the control bit is 0, 𝑀 is applied,

and for 1, 𝑀 is applied. For superposed control qubit states, a proportional mixture of both operations
are applied. It is decomposed using the relation 𝑀 = (𝐼⊗ / ⊗𝑉)(𝐷 ⊗𝐷 )(𝐼⊗ / ⊗𝑊), where 𝑉 and
𝑊 are unitaries and 𝐷 is a unitary diagonal matrix (index 𝑖 is omitted for readability). To obtain 𝐷 and
𝑉, the equation, 𝑀 𝑀 = 𝑉𝐷𝑊𝑊 𝐷 𝑉 = 𝑉𝐷 𝑉 is diagonalised using MATLAB’s eigenvalue function.
Then, 𝑊 is obtained as 𝐷𝑉 𝑀 .

[𝑀 0
0 𝑀 ] = [𝑉 0

0 𝑉] [𝐷 0
0 𝐷 ] [𝑊 0

0 𝑊]
● 𝑅

⟼/ 𝑀 / / 𝑊 ● 𝑉 /
The final step is decomposing the multi-control rotation gates (𝑅 and 𝑅 ) introduced in the previous

two steps. Let the set of rotation angles be 𝛼 , where, 𝑗 ∈ [0⋯(𝑛/2−1)]. For 𝑅 , these angles can be
obtained from the sine and cosine inverses of the diagonal elements in 𝑆 and 𝐶, respectively, multiplied
by 2 (due to the 𝜃/2 in the terms in 𝑅 (𝜃) operator). For 𝑅 , the angles are obtained by taking
natural logarithm of the diagonals in 𝐷, multiplied by −2𝑖 (inverting the 𝑒− / in 𝑅 (𝜃). The angles
are transformed as [83]:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝛽
⋮

𝛽( / − )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 𝐴 / ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼
⋮

𝛼( / − )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The elements of the inverse of the transformation matrix, i.e. 𝐴−/ is given by 𝐴− = −1 − . − ,
where, 𝑏 and 𝑔 are the binary and Gray codes of 𝑖 respectively. The rotation matrices 𝑅 / (𝛽 ) are
followed by CNOT gates, with a target on the same qubit, and the control defined by the Gray code
transition bit from 𝑔 to 𝑔 + . An example of the 3-bit case is shown below.

⦿ ● ●
⦿ ⟼ ● ●
⦿ ● ● ● ●

𝑅 𝑅 𝑅 𝑅 𝑅 𝑅 𝑅 𝑅 𝑅
With these equivalence relations applied recursively, an arbitrary unitary is decomposed to arbitrary

single-qubit rotations and CNOTs.

4.3.3.Multi-controlled NOT
In many parts of the circuit, a multi-qubit controlled NOT is used. It generalises X, CNOT and Toffoli

gates to more qubits. Since the QX simulator only supports till Toffoli gates, controls more than 2 qubits

http://www.ar-tiste.com/m-fun/csd_qc.m
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needs to be broken down to simpler NOT gates. Note, for real quantum hardware, the Toffoli gate is
normally decomposed with CNOT, H and T gates. Of course, this decomposition itself can be handled
by the arbitrary unitary decomposition presented in the previous section without any extra ancilla bits.
However, such a decomposition is costly in the number of gates as the number of CNOTs are worst
case bounded by 𝑂(4 ) where n is the number of control qubits. A simpler decomposition is possible
for this special case.

Given an ancilla (extra, work qubit), it is possible to break down a multi-controlled CNOT with
just lower dimensional NOTs. The reason why such a decomposition is not possible without ancilla
is attributed to the controlled-NOT operation having odd parity (just one single state causes flipping
target bit) when all the rest of the qubits are in the control qubit set. A lower dimensional NOT (with
fewer controls) will be of even parity as states in the order of 2 will flip the target (where 𝑦 is the
number of qubits in the circuit that are not in the control state). Chaining even operations cannot create
an odd operation [84] making it impossible to reduce an all-wires-touched controlled-NOT operation
into smaller operations.

Figure 4.5: Ancilla types [84]

Ancilla qubits can be used in 4 different ways:
• Burnable: Initially in the ∣0⟩ state but with no restrictions on state after the calculation. They
can be thought of as a small amount of negative entropy that can be consumed to perform some
irreversible computation.

• Zeroed: Initially in the ∣0⟩ state and must also be returned to the ∣0⟩ state after the computation.
Circuits are a constant factor larger than those with burnable bits because of the taxing uncompute
operation.

• Garbage: Could be in any state initially and more garbage can be added to the state (no need to
restore the initial value). The logic is based around toggle detection.

• Borrowed: Could be in any state initially but must be restored to that same state afterwards.
They have the downsides of both zeroed and garbage ancilla. The major advantage of borrowed
qubits is that they are much easier to find because one part of the circuit can borrow qubit from
another part, as long as all the qubits are not in use. Thus for this case, one single ancilla qubit
will suffice for breaking down a controlled operation of any dimensionality.

The most common in literature is the zeroed ancilla. It takes 𝑛− 2 number of ancilla qubits for im-
plementing an n-qubit controlled NOT. The ladder structure for computing and uncomputing (returning
the ancilla back to the zero state) is shown in Figure 4.6.

The borrowed qubit compresses the qubit complexity of the circuit by a large amount. For most
of the algorithms in the thesis, the Grover Gate requires an inversion about the mean of all the qubit
state. Thus, an extra ancilla is required. Also, since a no-noise environment is used, the approximately
4× increase in gate complexity is not a big concern (constant factor). This is coded as a function in
OpenQL, that takes a kernel object 𝑘, a set of control qubit identifiers 𝑐, a target qubit identifier 𝑡 and
a borrowed ancilla qubit identifier 𝑏. It recursively breaks down the multi-controlled-CNOT into simpler
operations (finally to CNOT and Tofolli).
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Figure 4.6: Multi-controlled CNOT decomposition using zeroed ancilla

1 # Mul t i−con t r o l CNOT with borrowed qub i t s ( r e cu r s i v e implementat ion )
2 def nCXb(k , c , t , b ) :
3 nc = len ( c )
4 i f nc == 1:
5 k . gate ( ” cnot ” , c [0 ] , t )
6 e l i f nc == 2:
7 k . t o f f o l i ( c [0 ] , c [1 ] , t )
8 e l se :
9 nch = c e i l ( nc /2)
10 c1 = c [ : nch ]
11 c2 = c [ nch : ]
12 c2 . append (b)
13 nCXb(k , c1 , b , nch+1)
14 nCXb(k , c2 , t , nch−1)
15 nCXb(k , c1 , b , nch+1)
16 nCXb(k , c2 , t , nch−1)
17 re tu rn

4.3.4. Oracle for Boolean functions
The ancilla-free Oracle encoding uses multi-control Phase gates for each true index of the Boolean

function. Let the Boolean function be 𝐵 = {𝑏 , 𝑏 ,⋯, 𝑏 − }, where 𝐷 = 2 and 𝑏 ∈ {0, 1}, 𝑑 being
the number of qubits to the Oracle function (the dimension of the basis state). The elements of the
Unitary matrix for the Oracle 𝑂 is given by,

𝑂 = {0, if 𝑗 ≠ 𝑘
𝑒 , if 𝑗 = 𝑘 where 𝑖 =

√
−1

Thus, it is a diagonal matrix with −1 for marked elements, 1 otherwise. The method to encode this
general Oracle is to take the set of indices where 𝑏 = 1. Let this set be 𝐽. For each 𝑗 ∈ 𝐽, encode 𝑗 in
𝑑 binary digits, to form the set 𝐽 with elements 𝑗 . A controlled Phase gate is added for each 𝑗 , over
all 𝑑 qubits, with inverted control at positions where the encoding of 𝑗 equals 0. For example, for the
Boolean function 𝐵 = {0, 0, 0, 1, 0, 1, 0, 1} over 𝑑 = 3 qubits, the unitary is,

𝑂 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 +1 0
0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus 𝐽 = {3, 5, 7}, which when encoded in 𝑑 = 3 bits gives 𝐽 = {011, 101, 111}. The circuit thus
becomes,

𝑑 ● ● ●

𝑑 ● ●

𝑑 ● ●
The gate complexity of this algorithm can be reduced for some cases by constructing the Min-
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imal Sum-of-Product (MSOP) expression of the Boolean function. Techniques to minimise Boolean
functions like Karnaugh map, Quine–McCluskey algorithm or other heuristics can be used to find the
prime implicants. For example, the Boolean function on 4 variables 𝐵(𝑑, 𝑐, 𝑏, 𝑎) = {4, 6, 12, 14} ={0100, 0110, 1100, 1110} = 𝑑𝑐𝑏𝑎 + 𝑑𝑐𝑏𝑎 + 𝑑𝑐𝑏𝑎 + 𝑑𝑐𝑏𝑎 can be reduced to the MSOP expression,
𝐵(𝑑, 𝑐, 𝑏, 𝑎) = 𝑐𝑎. Thus the equivalent circuit can now be used,

∣𝑎⟩∣𝑏⟩ ● ● ⟼∣𝑐⟩ ● ● ● ● ●∣𝑑⟩ ● ●
The problem of general Boolean function minimisation itself is NP-hard thus the run time of these rou-
tines grow exponentially with the number of variables. However, if the Oracle function is a constant
this minimisation can be optimised at compile time (or even as a pre-processing step), for the appli-
cation. For example, if the function depends only on the reference human genome, which is a given
constant for the application, the Boolean function can be decomposed once and then hard-coded in
the quantum circuit.

4.4. Quantum pattern matching
In this section, the OpenQL Python implementations of the algorithms described in Section 3.4 and

their modifications are presented. Every algorithm is first implemented for a binary alphabet and then
extended to an alphabet size of 4 for encoding DNA sequence. Here, the DNA pattern matching is
explained directly.

OpenQL divides the program into multiple kernels. The kernels can be added multiple times to a
program. Finally, the program is executed. The general flow of an OpenQL quantum algorithm for this
thesis is given in Figure 4.7.

Figure 4.7: OpenQL program flow

4.4.1. Approach 1: Conditional Oracle call
The code for the quantum pattern matching algorithm is listed in Appendix-1. The OpenQL and

Qxelarator libraries import the necessary functionality required for programming and simulating over
the Python3 language platform. The ’randStr’ function generates a random decimal coded string over a
given alphabet size and is used to generate the reference text of a given size. The alphabet, reference
string and the search pattern is then defined. For testing the algorithm, the search pattern is chosen
to be a sub-string from the random reference string at a predefined index.

The program is initialised on the simulator platform with the estimated number of qubits. It is
divided into four kernels - initialisation, Oracle, Grover gate and measurement. If the internal state
vector is accessed, the measurement kernel should not be called as it will collapse the state to the
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measurement basis. Then, based on the algorithm outlined in Section 3.4.1, the kernels are assembled
into the program. A total of 𝑂(√𝑁 −𝑀 + 1) iterations are performed, each being a random index in
the search pattern (𝑁 is the length of the reference text, 𝑀 is the length of the search pattern). The
final measurement probabilities are plotted.

Kernel 1 is essentially the initialisation method as described in the original article. Kernel 2 im-
plements ancilla-free Boolean Oracle as described in Section 4.3.4. Kernel 3 is the Grover gate over
multiple qubits. It is simplified to a multi-controlled CNOT before being further decomposed.

𝐻 𝐻 𝐻 𝑋 ● 𝑋 𝐻

𝐻 𝐻 ⟼ 𝐻 𝑋 ● 𝑋 𝐻
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐻 𝐻 𝐻 𝑋 𝐻 𝐻 𝑋 𝐻

Kernel 4 measures the first set of indices. The nCX function implements a recursive multi-controlled
CNOT using borrowed ancilla as described in Section 4.3.3.

The qubit complexity of the implementation is,

𝑀 ⌈𝑙𝑜𝑔 (𝑁)⌉ + 1
Thus for the typical numbers of the human genome and Illumina reads, 𝑁 = 3 × 10 and 𝑀 = 50, the
number of qubits required is 1451 (which is obviously not a near-term application number).

The gate complexity is non-trivial to calculate exactly as it depends on the universal gate set. Here,
the gate set used for this algorithm consists of {𝐻, 𝐶 𝑋}, where 𝑐 = 0 is the X-gate, 𝑐 = 1 is the CNOT
gate, 𝑐 = 2 is the Toffoli gate, and so on.

Let 𝑠 = ⌈𝑙𝑜𝑔 (𝑁)⌉. The initialisation kernel is first decomposed. Firstly, 𝑠 Hadamard gates are
used on the first set of 𝑠 qubits. Then, the next set of gates is repeated for each set of 2 consecutive
qubits, thus (𝑀 − 1) times. In this set, first, there is a train of 𝑠 𝐶 𝑋 gates. Then, 𝑠(𝑠 + 1)/2 multi-
controlled-NOT gates, of which, there are 1𝐶 𝑋, 2𝐶 𝑋, 3𝐶 𝑋⋯𝑠𝐶 𝑋. One control of these is inverted,
which requires dressing with X-gates. The total X-gate for each set is thus 2 ∗ 𝑠(𝑠 + 1)/2. Thus the
total initialisation circuit is 𝑠𝐻 + (𝑀 − 1){𝑠(𝑠 + 1)𝐶 𝑋 + 𝑠𝐶 𝑋 + 1𝐶 𝑋 + 2𝐶 𝑋 + 3𝐶 𝑋 +⋯+ 𝑠𝐶 𝑋}.

The Chargaff’s rules are used to estimate the ratio of elements that are marked by the Oracle as
1/𝐴 = 0.25 for the DNA alphabet. The Oracle is applied ⌊√𝑁 −𝑀 + 1⌋ times. The Oracle is applied
over 𝑠 qubits, thus over 2 basis states of which 1/4 are marked. Thus, there are 2 − CPhase gates
(each over 𝑠 qubits), with half of their controls as inverted. The total number of inverted controls are
thus 𝑠2 − /2. The X-gates for dressing on both sides sum to 𝑠2 − . Each CPhase can be converted
to a CNOT with 2 additional Hadamards. Thus the total gates for the algorithm used in the Oracle is(⌊√𝑁 −𝑀 + 1⌋){2 − 𝐻 + 𝑠2 − 𝐶 𝑋 + 2 − 𝐶 𝑋}.

Finally the Grover gate on 𝑠𝑀 qubits is decomposed to CNOTs as (⌊√𝑁 −𝑀 + 1⌋){(2𝑠𝑀 + 2)𝐻 +
2𝑠𝑀𝐶 𝑋 + 𝐶 𝑋}. The total gate complexity is,

𝑠𝐻 + (𝑀 − 1){𝑠(𝑠 + 1)𝐶 𝑋 + 𝑠𝐶 𝑋 + 1𝐶 𝑋 + 2𝐶 𝑋 +⋯+ 𝑠𝐶 𝑋}+(⌊√𝑁 −𝑀 + 1⌋){(2 − + 2𝑠𝑀 + 2)𝐻 + (2 − 𝑠 + 2𝑠𝑀)𝐶 𝑋 + 2 − 𝐶 𝑋 + 𝐶 𝑋}
Note, all 𝐶 𝑋, when 𝑐 > 2 needs to be decomposed further using Θ(𝑐) Toffoli gates by the construction
given in Section 4.3.3.

An important observation for this algorithm is that both the number of qubits and the number of
gates does not depend on the size of the alphabet. However, since Chargaff’s rule is applied, the
complexity of the Oracle is inversely proportional to the alphabet size. The intuition behind a rich
alphabet is, the Oracle will typically mark only a few states per call, making its circuit construction
simpler. Thus, the algorithm implementation is smaller for the DNA alphabet set compared to binary
strings.

4.4.2. Approach 2: Quantum phone directory and Hamming distance
The code for the quantum pattern matching algorithm is given in Appendix-2. The OpenQL and

Qxelarator libraries and the ’randStr’ function are identical to the previous code. The search pattern is
chosen to be a sub-string from the reference string at a predefined index. For this algorithm, since a full
space of tags (of the form 2 )needs to be initialised, a spurious data for tags not in the range of valid
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positions (𝑁−𝑀+1) is required. This dummy data is chosen to be all-zeros. The program is initialised on
the simulator platform with the estimated number of qubits. It is divided into five kernels - initialisation,
Hamming evolution, Oracle, Grover gate and measurement. The Qxelarator method to access the
internal state vector is useD to aggregate the resultant solution state probabilities. The measurement-
based technique is also an alternative, which is more realistic for a quantum algorithm simulation, but
requires more time and gives less accuracy for assessing the effectiveness of the algorithm. Based on
the algorithm outlined in Section 3.4.2, the kernels are assembled into the program. The final stave
vector is plotted.

Kernel 1 initialises the quantum phone directory. An equal superposition of tag states is generated.
For each tag state, the corresponding substring of the reference at that tag position of length 𝑀 is
encoded in the data qubits using CNOT gates. For example, to encode the reference DNA string of
𝐴𝐶𝐶𝐺𝑇 where the search pattern is of length 𝑀 = 3, the reference is split into 3 sub-strings with
corresponding tags {0 − 𝐴𝐶𝐶, 1 − 𝐶𝐶𝐺, 2 − 𝐶𝐺𝑇, 3 − 𝐴𝐴𝐴}. Note, since the total number of tags must
be a power of 2, the dummy data is the all-zero string (or in DNA string, all 𝐴 pattern), but since there
is no control qubits, no gate is required. The tag and data is then converted to binary encoding as{00 − 000101, 01 − 010110, 10 − 011011, 11 − 000000}. This is encoded using the following gates,

𝑡 𝑃𝑟𝑒𝑝𝑍 𝑋 ● ● 𝑋 𝑋 ● ● ● 𝑋 ● ● ● ●

𝑡 𝑃𝑟𝑒𝑝𝑍 𝑋 ● ● 𝑋 ● ● ● 𝑋 ● ● ● ● 𝑋
𝑑 𝑃𝑟𝑒𝑝𝑍
𝑑 𝑃𝑟𝑒𝑝𝑍
𝑑 𝑃𝑟𝑒𝑝𝑍
𝑑 𝑃𝑟𝑒𝑝𝑍
𝑑 𝑃𝑟𝑒𝑝𝑍
𝑑 𝑃𝑟𝑒𝑝𝑍
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It is observed that this can be optimised if the data encoding follows a gray code, but is not implemented
here. Such optimisation will be part of the compiler in the future.

Kernel 2 transforms the initialised data state to their Hamming distance. This is done by inverting the
bits of the pattern with 1 as its encoding. E.g. for the pattern 𝐶𝐺𝑇 = 011011, the qubits 𝑑 , 𝑑 , 𝑑 , 𝑑
are inverted.

Kernel 3 implements ancilla-free Boolean Oracle as described in Section 4.3.4 that marks the all
zero Hamming distance in the data qubits.

Kernel 4 is the Grover gate over the entire tag and data qubits space. It is simplified to a multi-
controlled-CNOT before being further decomposed. Kernel 5measures the tag qubits. The nCX function
implements a recursive multi-controlled CNOT using borrowed ancilla as described in Section 4.3.3.

The qubit complexity of the implementation from data, tag and ancilla qubits is,⌈𝑙𝑜𝑔 (𝐴)⌉𝑀 + ⌈𝑙𝑜𝑔 (𝑁 −𝑀)⌉ + 1
Typical estimates for the DNA alphabet, the human genome and Illumina reads 𝐴 = 4, 𝑁 = 3×10 and
𝑀 = 50, yield the number of qubits required is 130 qubits, which is an order of magnitude lesser than
the previous approach.

The gate set {𝐻, 𝐶 𝑋} is also used for this algorithm. Let 𝑞 = ⌈𝑙𝑜𝑔 (𝐴)⌉𝑀 and 𝑞 = ⌈𝑙𝑜𝑔 (𝑁 −𝑀)⌉.
The initialisation kernel is first decomposed. First, 𝑞 Hadamard gates are used on the tag qubits to
create a superposition of solution states. Then, conditioned on each tag, the corresponding shifted
sub-string of the reference is encoded. The binary encoding of the tag requires half the controls as
inverted, requiring X-gate dressing totalling to 𝑞 2 . Again using Chargaff’s rule, the DNA nucleotides
are distributed approximately 1/4 in each sub-string, requiring 𝑞 /2 targets for each tag encoded
sub-string. Thus the total initialisation requires 𝑞 𝐻 + 𝑞 2 𝐶 𝑋 + 𝑞 𝑞 /2𝐶 𝑋.

The search pattern is also a DNA string following Chargaff’s rule, requiring the Hamming Oracle to
flip half the data bits using 𝑞 /2𝐶 𝑋.

The Oracle and the amplification are repeated just once. The Oracle needs to mark the all-zero
state and is thus the phase gate on all the data qubits with inverted controls. This requires 2𝐻 +
2𝑞 𝐶 𝑋 + 𝐶 − 𝑋.
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Finally, the amplification is applied to the data and tag qubits together. It requires, {2(𝑞 + 𝑞 ) +
2}𝐻 + 2(𝑞 + 𝑞 )𝐶 𝑋 + 𝐶 + − 𝑋. The total number of gates for the algorithm is thus,

𝑞 𝐻 + (𝑞 2 + 𝑞 /2)𝐶 𝑋 + 𝑞 𝑞 /2𝐶 𝑋+{2(𝑞 + 𝑞 ) + 4}𝐻 + 2(2𝑞 + 𝑞 )𝐶 𝑋 + 𝐶 − 𝑋 + 𝐶 + − 𝑋
This is much more benign as the exponentiation term is only in the initialisation part and only on a
single qubit X-gate.

4.4.3. Approach 3: Quantum associative memory
Quantum associative memory (QuAM) as described in Section 3.4.3 can be used for pattern com-

pletion i.e. when some parts of the character is known, the rest of the pattern can be reconstructed
from the stored states. However, the application of this thesis is to find the index of one pattern in
another. In this case, the algorithm needs modification. Before the modifications are introduced, the
original algorithm is simulated using unitary evolution in MATLAB.

The code for binary strings is given in Appendix-3. A random string over the binary alphabet of
a predefined size is initialised. The search pattern is chosen to be a sub-string from the reference
string at a known index. However, this is a pattern completion algorithm, so the final result is not an
index, but the completed pattern from the quantum database. Since it completes the given pattern,
if the pattern has no wildcard characters, the answer is same as the input pattern. Thus, a wildcard
character is inserted in the search pattern to test the approximate matching. The classical database is
prepared by slicing the reference string in sizes of the search string from each index. The duplicates are
removed. These steps form part of the classical pre-processing required before the quantum algorithm
is invoked. The quantum database is then initialised as given in Section 3.4.3 Figure 3.10. Note, these
steps require an entire quantum gate set simulator since in MATLAB the access to the QX simulator
is not present. These are coded in the auxiliary functions for general single qubit gate, controlled
NOT, Toffoli and S matrix (special unitary for this algorithm). Finally, the uncomputed ancilla qubits
are removed from the state space to reduce the redundant dimensionality. Once the quantum state is
initialised, the search function is executed and the results are plotted. The search function creates the
non-unitary matrix based on Hamming distances and collapses the stored database to a solution state.

It is not trivial to assess the number of qubits and gates required for this algorithm as it uses a non-
unitary matrix which cannot be translated to a sequence of quantum gate evolution. The 𝑆 matrix
can be presented as a controlled-Y rotation about an arbitrary angle of 𝐶𝑅 (−2𝑠𝑖𝑛− (−1/√𝑝)). The
number of qubits required for the initialisation step is 2𝑀 + 1, of which, 𝑀 + 1 are ancilla. Assuming
the remainder of the circuit can be implemented with no more than these 𝑀 + 1 uncomputed ancilla,
on the 𝑀 data qubits, the typical numbers for Illumina reads is calculated. The DNA alphabet encoding
adds a factor of 2, resulting in required qubits to be 202. This number lies in between the two previous
approach. However, this algorithm needs to be modified before it can be used for pattern index
searching.

4.4.4. Quantum associative memory with distributed queries
A major improvement for the quantum associate memory is the use of distributed queries [85]. In a

quantum associative memory, the number of entries is fewer than the total possible combinations (like
the initialisation in Grover’s search) and they form the memory set. The associative memory network
solves the pattern completion problem; that is, it can restore the full pattern when initially presented
with a partial pattern such that the known parts exactly coincide with some part of a valid full pattern.
The creation of such a selected quantum superposition is non-trivial. The recall phase reconstructs only
the remainder of the pattern while the initially presented partial pattern remains intact. The special
transformation that allows a higher solution probability is performed by the inversion of the amplitudes
around the average of only the amplitudes of memorised patterns. However, it is assumed that Oracle
knows a part of one of the memorised patterns and no other pattern has the same part. Then Grover’s
amplitude amplification process is used to find the pattern having this part and entanglement permits
the restoration of the remainder of this pattern.

General associative memory should also retrieve valid memory items when presented with noisy
versions of a partial pattern. This improvement solves the problem of associative search for which no
part of the input stimulus is guaranteed to be noise free. It is desirable to retrieve the memory state
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which is most similar to the given stimulus. In the binary case, this corresponds to finding the minimum
Hamming distance between the query and the memory states. This kind of memory is called a pattern
correcting associative memory. The introduction of distributed query requires the initialised memory
to store every possible basis state, despite most being spurious memory states (not corresponding
to sub-strings from the reference pattern). Amplitudes are distributed in the fuzzy distributed query
such that the maximal value occurs for some definite state 𝑝 (the provided search query pattern) and
the amplitudes of the other basis states 𝑥 decrease monotonically with Hamming distance ℎ(𝑝, 𝑥).
𝑝 is called the query centre. The binomial distribution matches the required query model. For all
𝑥 ∈ {0⋯(2 − 1)}, let ∣𝑏 ⟩ = √

𝛾 ( , )(1 − 𝛾) − ( , )
where, 𝛾 incorporates a metric into the model which tunes the width of the distribution permitting
comparison of the similarity of the stimulus and the retrieved memory at a variable scale. The value 𝛾
is chosen as 0.25 for this project. It needs to be determined by the performance requirement for real
dataset. The unitary Oracle transformation can be formed as,

𝑂 = 𝐼 × − 2 ∣𝑏 ⟩ ⟨𝑏 ∣
The algorithm is given as in Figure 4.8. 𝐷 in Step 5 refers to the Grover’s gate implementing the

inversion about mean. Λ refers to the optimal number of iterations.

Figure 4.8: Quantum associative memory with distributed query [86]

4.4.5. Quantum associative memory with improved distributed queries
Further modification to the model of a distributed query is carried out by merging the concept of

the memory state Oracle with the binomial function based Oracle [86]. This algorithm is presented
in Figure 4.9. Here, the quantum operators 𝑂 and 𝐷 are same as described in the last section. The

Figure 4.9: Quantum associative memory with improved distributed query [86]

second Oracle, 𝐼 , marks all the stored states in the memory, analogous to the idea presented in Section
3.4.3. This method shows considerable improvement over the simple distributed query, though is it
more costly in terms of operations.
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4.4.6. Quantum associative memory with closed match
One of the latest improvements in this field is to extend the algorithm to closed pattern matching

[87]. It considers the case when the wildcard positions are not known in advance. A partial search
pattern is known, say 𝑠 bits, whereas, each entry in the associative memory consists of 𝑀 bits. The
proposed algorithm creates an Oracle such that, all possible combination of matching the partial search
pattern as a sub-string of each memory pattern is taken care. This is shown in Figure 4.10. It is
important to note that, the partially known characters form a substring, and not a sub-sequence (thus,
wildcard characters in between, is not considered). This is a scope of further improvement for this
algorithm if it needs to be adopted for genomic sequences (as gaps are quite common in reads).

Figure 4.10: Closed pattern search

For the design of the algorithm of this thesis, the closed pattern search is not of much use. This is
due to the structure that exists in the memory patterns. The general proposed algorithm considers the
memories are independent of each other. In the pattern matching algorithm that is developed here, the
memory patterns are consecutive shifted sub-strings of the reference pattern. This means, between
two consecutive memory patterns, 𝑀 − 1 characters will match. All by one of the closed query of the
partial search pattern are thus shared by these memories, leading to redundant association triggers.

Figure 4.11: Closed pattern match for sequential memory

4.4.7. Quantum non-linear search algorithms
Further improvements to the previous algorithm have been proposed [88]. These, however, use

Non-Linear Search Algorithm (NLSA), which is based on the fact that, under some circumstances, the
superposition principle of quantum theory might be violated. A nonlinear quantum computer could
solve NP-complete and even #P problems in polynomial time using the Weinberg’s prescription This
nonlinear evolution is the non-conservation of scalar products between non-linearly evolving solutions
of a non-linear Schrodinger equation. This effect is called mobility phenomenon.

However, the formalism to encode these NLSA algorithms in the gate model of quantum computation
is not yet clear and requires further investigation. These algorithms depend on a noise-free environment
where small variations can be zoomed in and exploded to determine the result. Noise in the system
would also get amplified thus making the calculation invalid [89].
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4.5. Proposed algorithm for sub-sequence index search
The proposed algorithm inherits some of the features from the approaches highlighted in the previ-

ous section. It is essentially a novel quantum pattern matching algorithm specifically designed keeping
in mind genomic sequences.

Here the idea of indexed bidirectional associative memory (iBAM) is introduced. Bidirectional asso-
ciative memory (BAM) is a type of recurrent neural network [90]. It is hetero-associative, meaning,
given a pattern, it can return another pattern which is potentially of a different size (auto-associative
memories on the other hand, like the Hopfield network, return similar patterns of the same size). From
a neural structure view, a BAM contains two layers of neurons, fully connected to each other as shown
in Figure 4.12. Input into any of the layer presents the pattern in the other layer. BAM is uncondition-
ally stable, i.e. any set of associations can be learned without risk of instability; and capable of error
correction. Associative memories are costly to build in classical logic (2 times large cells as DRAM) as
each input query requires a comparison with each single stored memory in parallel. This is the type
of parallelism which is inherent in quantum superposition. Thus a quantum bidirectional associative
memory (QBAM) is basically two registers entangled with each other. Each of the registers can have a
superposition of corresponding memories.

Figure 4.12: Bidirectional associative memory as a recurrent neural network

An interesting case for pattern index search is when one of the registers store the index and the
second register stores the pattern, creating a QiBAM (quantum index-bidirectional associative memory).
Thus, QiBAM can act both as an associative memory (if the query is a noisy pattern) as well as a RAM
(if the query is an index), making it an ideal data-structure for this application.

The block diagram for the proposed algorithm is depicted in Figure 4.13. The initialisation of the
QiBAM follows the design as described in Section 3.4.2 and Section 4.4.2. The tag qubits encode the
pattern index, while the data qubits form the associative memory. Spurious memories need not be
taken into account due to the exclusive nature of the initialisation where the full dimensionality of the
tag is encoded. If the tag suffers for round-up approximations, a predefined junk memory is encoded
for these extra tags. Thus, the arbitrary unitary of pattern store in associative memory algorithm is
modelled as a quantum phone directory encoding - the major algorithmic contribution in this thesis,
which would allow the recall of the tagged index instead of pattern completion/correction. Once the
data is encoded, the Hamming distance evolution is carried out. This solves the problem of the black
box Grover’s marking Oracle. Now a predefined distributed query can be defined over the associative
memory with the query centre at a zero Hamming distance. After following the iteration model of
improved queries as described in Section 4.4.5, the tag qubits are measured to yield the index of the
approximate match for the search pattern in the reference.

The code for the QiBAM algorithm is given in Appendix-6. For this example, the maximal super-string
𝐴𝐴𝑇𝑇𝐺𝑇𝐶𝑇𝐴𝐺𝐺𝐶𝐺𝐴𝐶𝐶𝐴 is used over the genomic alphabet of pattern length 2. To test the distributed
query, the last memory, 𝐶𝐴 is not encoded, making the reference genome as 𝐴𝐴𝑇𝑇𝐺𝑇𝐶𝑇𝐴𝐺𝐺𝐶𝐺𝐴𝐶𝐶.
This is encoded as the database shown in Figure 4.14(a). Now the search query is chosen as 𝐶𝐴. The
search pattern conditionally toggles the database to evolve it to the Hamming distance. Since 𝐶𝐴 is not
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Figure 4.13: Block diagram of proposed QiBAM algorithm

present in memory, we expect the nearest patterns (approximate matches) to have a higher probability
of detection, which are {𝐴𝐴, 𝑇𝐴, 𝐶𝐺, 𝐶𝐶} (with Hamming distance of 1 in the encoding). The estimated
trend for a higher solution probability should be in line with decreasing Hamming distance, as plotted
in Figure 4.14(b).

(a) Database evolution (b) Estimate of the solution probability trend

Figure 4.14: Result estimate of a sample run

The OpenQL algorithm is executed with the Qxelator library returning the internal state vector. This
is plotted in Figure 4.15. The left vertical axis shows the staircase state curve for the tag qubits, while
the right vertical axis shows the measurement probability of each individual state. There are 4 tag
qubits and 4 data qubits (2 Radix-4 numbers for a DNA search pattern of length 2). Thus, the total
state space is 2 = 256. It is observed that there are some spurious memories that are recalled (as
expected in associative memories). The states with prominent probabilities are the memory states.
The envelope of these states (ignoring the spurious memories) gives the same trend as our estimate
in Figure 4.14(b).

The qubit complexity of the implementation from data, tag and ancilla qubits is the same as Section
4.4.2, ⌈𝑙𝑜𝑔 (𝐴)⌉𝑀 + ⌈𝑙𝑜𝑔 (𝑁 −𝑀)⌉ + 1
yielding a typical estimate for the DNA alphabet, the human genome and Illumina reads 𝐴 = 4, 𝑁 =
3 × 10 and 𝑀 = 50, as 130 qubits. Following the arguments of Chargaff’s rules as stated before, the
gate complexity for initialisation and Hamming evolution is the same as Section 4.4.2,

𝑞 𝐻 + (𝑞 2 + 𝑞 /2)𝐶 𝑋 + 𝑞 𝑞 /2𝐶 𝑋
The Oracle is complex here and depends entirely on the chosen decomposition method for the unitary
and the native gate set. The unitary decomposition method using Quantum Shannon Decomposition
has a complexity of 3(4 − − 2 − ) where 𝑛 is the dimension of the unitary. The memory Oracle
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Figure 4.15: Execution example of Quantum Indexed Bidirectional Associative Memory

would mark the states in the initial quantum database. This requires a CPhase over the tag and data
qubits for each of the 2 memories of which 𝑁−𝑀+ 1 are real memories from the reference genome
(the rest are dummy). The data qubits, following Chargaff’s rule, would have half the bits as 1, thus
using a total of 𝑀 qubits in average for the compute and uncompute. The tag qubits would follow the
same behaviour as the initialisation phase, with average X-dressing of 𝑞 2 𝐶 𝑋 gates. Thus, the total
for the memory Oracle is (2 ){2𝐻 + (𝑀 + 𝑞 )𝐶 𝑋 + 𝐶 + − 𝑋}. The Grover gate is decomposed to{2(𝑞 + 𝑞 ) + 2}𝐻 + 2(𝑞 + 𝑞 )𝐶 𝑋 + 𝐶 + − 𝑋 gates.

4.5.1. Complexity in quantum processors
It is realised through the course of the thesis that an isolated discussion of a specific quantum

algorithm is not sufficient for near-term implementation. The quantum algorithm would have interfaces
with other software modules running in parallel as shown in Figure 4.16.

Figure 4.16: Quantum kernel and interfacing software architecture

There are 3 factors that contribute to the overall time complexity of a general quantum algorithm:

• Algorithm: This pertains to the core algorithm running on a simulator, where the internal state
vector can be accessed. It refers to the inherent gate complexity of the algorithm and other
classical pre/post-processing involved.
In the accelerator model for quantum computing, the computation intensive kernel is offloaded
to the quantum processor. This means the more mundane pre/post-processing is still carried out
in the host CPU (or a classical processor co-located with the quantum processor in the quantum
accelerator). The choice of where to perform these auxiliary calculations would depend on the
tolerance of feedback delays between the classical and quantum parts of the code. The complexity
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of these auxiliary calculations would add to the complexity of the quantum algorithm if it cannot
be performed in parallel. The Qxelarator library allows hybrid programming by allowing the use of
Python library functions alongside the quantum kernels in a single code file. The development of
the next version of CommonQASM is expected to allow interleaving classical low-level instruction
in the kernel, allowing the quantum accelerator to execute classical logic for fast feedback without
consulting the host CPU.

• No-cloning: If the internal state vector cannot be accessed (like in real quantum processors),
the experiment needs to be repeated multiple times if the algorithm demands an estimate of the
state’s probability distribution.

Using the internal state vector is a very handy tool for developing quantum algorithms. However,
it is also a clever trick which will never be possible on an actual hardware. A basic Grover search
with optimal iteration evolves the result with just one run of the algorithm. However, for multiple
solutions, this is no longer true. Inferring the result requires reconstructing the probabilistic state
vector up to a degree of precision. Thus, to implement the algorithms discussed in the thesis,
in an ideal quantum computer, multiple runs are required. With each measurement result, the
waveform converges to the actual quantum state - referred to as quantum state tomography. The
convergence rate depends entirely on the final state, the measurement basis and the tolerable
error bound for the practical application. Quantum state tomography is an area of active research
and is beyond the scope of this thesis. Advanced methods based on linear inversion, linear
regression, maximum likelihood, Bayesian, compressed-sensing and neural networks [91] exists
for estimating the state with fewer tomographic trials.

• Experimental: It takes into account the complexity overhead for topological mapping and quan-
tum error correction cycles.

In real quantum computers, two experimental considerations add to the complexity: error correc-
tion and mapping. The topological implications of mapping would increase the total gate count
due to physical constraints of the quantum processor chip, for example, nearest neighbour map-
ping. The field of QEC strives towards a fault-tolerant quantum computer, by error correction
cycles. This includes multiple physical operations to perform a single fault-tolerant logical opera-
tion. These factors are intertwined. With the increase of gate counts in mapping, circuit duration
becomes longer, needing more error correction gate. Some gates are not trivial requiring state
distillation, which might add to the decoherence as well as gate complexity.

Thus, every quantum algorithm that depends on a probabilistic result in a noisy environment needs
to be repeated, adding a multiplicative factor to the inherent time complexity.

𝑂(𝑓(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) × 𝑔(𝑛𝑜 − 𝑐𝑙𝑜𝑛𝑖𝑛𝑔) × ℎ(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚))
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4.6. A summary of considered algorithms
In this thesis, search based quantum pattern matching is explored. The studied algorithms are

listed in Table 4.1.

Table 4.1: List of studied algorithms

A fast quantum mechanical algorithm for database search [42]
Quantum mechanics helps in searching for a needle in a haystack [43]
Tight bounds on quantum searching [45]
Generalized Grover search algorithm for arbitrary initial amplitude distribution [46]
Quantum pattern matching [57]
Fast quantum search algorithms in protein sequence comparisons: Quantum bioinformatics [58]
Artificial associative memory using quantum processes [61]
Initializing the amplitude distribution of a quantum state [62]
Quantum associative memory with exponential capacity [60]
A quantum associative memory based on Grover’s algorithm [63]
Quantum associative memory [59]
Quantum associative memory with distributed queries [85]
Quantum associative memory with improved distributed queries [86]
PROPOSED: Quantum indexed-bidirectional associative memory for DNA sequence reconstruction

In summary, the features of these algorithms are tabulated in Figure 4.17. Most of the features
of the basic Grover’s quantum search has been modified to construct the proposed QiBAM algorithm.
The major contribution of the proposed algorithm is to merge the idea of Hamming distance based
search with a distributed query to construct a fixed Oracle capable of approximate matching. Also,
considering the requirements of the reconstruction process, the algorithm is designed to produce the
index (of a noisy query’s nearest match) as the result instead of correcting the noisy query as in
quantum associative memory.

Figure 4.17: Summary of algorithms considered for the thesis





5
Conclusions and future work

We can only see a short distance ahead, but we can see plenty there that needs to be done.
- Alan Turing

5.1. Conclusion
This thesis is motivated by the big data problem in genomics. The sequencing pipeline is studied to

infer that, DNA sequence reconstruction from the multitude of short reads is a computation intensive
process - taking in order of days to execute on a super-computing cluster. Different existing classical
algorithms for DNA sequence reconstruction are explored - from the naive search to the current state-
of-the-art. The pattern matching on genomic sequences required for the reconstruction process is
formulated as the sub-sequence alignment problem.

The possibilities of harnessing quantum computation to accelerate sub-sequence alignment are ex-
plored in this thesis. The basic quantum search algorithm of Grover is presented, which allows searching
one solution in a full superposition state with quadratic query complexity. However, for construction
of the circuit, the solution needs to be known in advance for the Oracle marking step. Modifications
of Grover algorithm extend it for multiple solutions and arbitrary amplitude. These improvements are
found to be crucial for the development of practical quantum search algorithms.

Three different existing methods to use quantum search for pattern matching are discussed. These
approaches are implemented using the QX quantum simulator encapsulated in the OpenQL program-
ming framework. The first approach compiles multiple Oracles, one for each character of the pattern’s
alphabet. These Oracles are conditionally invoked based on the search pattern. It alleviates the black
box nature of the Oracle. However, as a disadvantage, this algorithm requires a large number of qubits
and does not produce satisfying results when there are multiple solutions.

The second approach uses a quantum phone directory. Instead of storing the index of the states (as
in the previous approach), the starting index and the pattern states itself are initialised as the quantum
database. Thereafter, the data patterns are evolved to their Hamming distances with the search query
pattern. The data entry with an exact match would have a distance of zero. Thus, the Oracle amplifies
this known state and measuring the tag qubits reveal the answer. This method is useful for index
searching using exact pattern matching.

The third approach explores the possibility to achieve higher solution probability. This proposition
employs quantum associative memory, where two different Oracles are used - one to mark the solution
state, the other to mark all stored memory states. By this method, better results are obtained by using
the memory Oracle. However, it is a general approach and needs modification for solving the problem
of pattern index searching.

The developmental tools used for the implementation include the OpenQL compiler framework, the
QX simulator and the developed Quantum Innovation Environment. Few assumptions were required
for the thesis to bridge the gap between currently available hardware and the high-level algorithm
development approach in the thesis. These include bounds on the number of qubits, number and type
of quantum operations, environmental noise and qubit topology. In order to generate test patterns for
the quantum algorithms, three different methods are used - a realistic dataset, randomly generated data

63
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and a minimal super-string approach. In addition, this thesis requires some special gate decomposition
techniques that are not currently available in OpenQL. This includes unitary decomposition, multi-
controlled NOT gates and Boolean function Oracles. These are developed as utility modules for the
pattern matching algorithms.

The three existing approaches for pattern matching are modified for genomic patterns with an
alphabet size of 4. The detailed design of each kernel is discussed to bridge the gap between the
algorithmic descriptions given in the original research with the quantum circuit implementation for the
simulator. The qubit and gate complexity are derived whenever possible.

A new algorithm is designed inspired by the best features of existing strategies. This algorithm
allows approximate matching (minimal Hamming distance) of a sub-sequence to a reference pattern
and returns the index of the approximate match location in the reference. It is based on the concept of
Bidirectional Associative Memory. Two quantum registers are entangled as a quantum phone directory,
with one storing the index (tag), while the other storing the pattern (data) in the reference at the
corresponding index. Then, the data register is evolved to the Hamming distance between each pattern
and the search query. A distributed query is constructed using Hamming distance and a binomial
function, that amplifies the minimum Hamming distance available among the states in the memory.
The mode value of the matching index can be assessed by measuring the aggregate of the collapsed
state over multiple runs of the algorithm. Sample execution results in OpenQL is shown to match
the design predictions. Finally, the complexity of a generic quantum algorithm in realistic hardware is
discussed taking into account environmental and no-cloning factors.

Summarising, the core contributions of the thesis are:

• Sub-sequence alignment is justified as a candidate for acceleration using quantum search-based
approaches.

• Implementation and simulation of 3 existing quantum pattern matching strategies in OpenQL and
QX simulator.

• Development of an algorithm to generate a minimal length super-string to extensively test the
algorithms.

• Implementation of a unitary gate decomposer in MATLAB to allow implementation of more ad-
vanced algorithms in a circuit model simulator.

• Development of a PyQt based Integrated Development Environment for a more intuitive under-
standing of the circuit based quantum state evolution using OpenQL, QX, quantum circuits and
state vector plots.

• Development of a new approach to address the problem of approximate matching in genomic
sequences, combining the ideas of associative memory, indexed directory and distributed query.
This algorithm is called Quantum indexed-Bidirectional Associative Memory (QiBAM).

5.2. Future work
This thesis forms a first exploration towards the feasibility of quantum acceleration for genomic

data. It is hard to do justice to the vast field of quantum algorithms in its entirety. Likewise, some
application domains are closely related to DNA sequence alignment and can benefit from the developed
algorithms. Some promising yet nascent avenues are suggested for future explorations.

5.2.1. Other quantum computing models
In this thesis, the circuit model of computation is explored. This is driven by the ongoing de-

velopment of superconductor and semiconductor based quantum processors at QuTech. The central
problem in the thesis: finding maximum similarity between patterns, can be modelled as a minimi-
sation of Hamming distance problem. Adiabatic quantum computers (like D-WAVE 2000) has shown
promises in such global optimisation problems. Since larger scale adiabatic quantum computers are
already available, it might be worth implementing genomic applications in such devices before universal
gate based quantum computers reach similar readiness levels.

Measurement-based quantum computing and Topological quantum computing are two other models
which are under development in various research groups. These different models will require different
paradigms of quantum programming which might not be entirely translatable by a universal compiler.
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5.2.2. Other quantum algorithms
The algorithms explored and extended in this thesis are based on unstructured Grover’s search. Due

to the wide applicability and intuitive nature of searching, this has been the focus of most quantum
search algorithms developed so far. Also, the proven optimality of Grover search is promising from a
computational complexity perspective. However, the problem of pattern matching can also be solved
by other techniques. Quantum walk based algorithms are a promising alternative as bioinformatics
local string matching can be modelled as a graph based algorithm. Quantum algorithms for Abelian
and Dihedral hidden structure can also be used for template matching problems. Existing structural
information of genome sequences can also be harnessed to design faster search algorithms.

The various algorithms explored have increasingly transitioned from simple search to applicability
in pattern matching and finally to more sophisticated techniques based on learning theory. The wider
class of quantum neural network and quantum machine learning needs to be studied for suitability in
the application of pattern recognition.

5.2.3. Other bioinformatics applications
From the bioinformatics perspective, this thesis solves the problem of finding the index of nearest

match of a search pattern in a database of patterns. This is a primitive for both reference-based
alignment as well as, the pairwise alignment pre-processing step for de novo assembly. A useful
extension of this algorithm is to solve the problem of many-to-many pattern matching, where multiple
search patterns can be evaluated in parallel. The quality value of the reads can also be used to improve
the Boolean Oracle with the Hamming distance weighted by the belief factor of each of the matches.

Other problems in bioinformatics requiring similar primitives can be explored. An immediate aug-
mentation is to extend the developed algorithm for an alphabet size of 20 (the amino-acid codon).
This will enable research in protein sequence analysis. The identification of DNA binding sites and
the specificity of target proteins in binding to these regions are two important steps in understanding
the mechanisms of biological activities like transcriptional regulation, repair, recombination, splicing,
and DNA modification. This is achieved by motif finding in the DNA sequence. Since performing state
tomography on the associative memory would reconstruct the most probable pattern, it is very similar
to finding a motif. DNA fingerprinting and comparative genomics are other promising avenues where
similar large datasets are involved and can be efficiently parallelised by quantum algorithms.

5.2.4. Other application domains
Other areas where similar algorithms are applicable can be explored. The problem of pattern

matching can be easily mapped to application like image recognition, pattern-based stock trading
and speech recognition. In fact, since associative memory can be generalised to the Hebbian learning
model, a wide range of pattern matching that are carried out by humans and classical machine learning
algorithms can be mapped to quantum associative memory. Many quantum research groups (e.g.
Google, Microsoft) consider quantum machine learning of images as a big data problem for exascale
computing using quantum technologies. In this project, a preliminary exploration for image recognition
is carried out with promising results.

5.2.5. System design
Finally, this thesis forms the initial study towards a hardware implementation for a genome se-

quence analysis pipeline. A system design of quantum accelerator for this application will be in the
timeline of this project. It requires careful design of not only the quantum algorithm but other layers
of the computing stack tailored for this purpose. Auxiliary algorithms for quantum state tomography,
state cloning, mapping, error correction and aggressive compiler optimisation needs to be considered.
Architectural considerations of pipelining algorithm stages, security and micro-architecture need to be
considered for the specifically targeted hardware. The algorithm developed needs to be encapsulated
in a domain-specific hardware platform (instead of a universal general-purpose quantum computer) for
near-term implementation.

Studying the developed algorithm from quantum information theory perspective would help to de-
velop edge test cases and provide insights into the complexity bounds. Rigorous theoretical proofs
based on the properties of the input DNA data would help establish the applicability of quantum com-
puting in search based pattern matching in bioinformatics. Such inferences would lead towards research
into the prospect of inherent quantum-biological computation processes.





Appendix-1

1 ## Reference : Quantum Pat te rn Matching − P . Mateus , Y . Omar ( a rX i v p r ep r i n t quant−ph/0508237)
2 ## \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
3 ## \ p ro j e c t : Quantum−acce le ra ted Genome−sequencing
4 ## \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
5

6 #############################################################################################
7

8 from openql import openql as q l
9 import qxe l a r a to r
10

11 import random
12 from math import *
13 import os
14 import re
15 import math
16 import ma tp l o t l i b . pyp lo t as p l t
17 import numpy as np
18

19 #############################################################################################
20

21 def randStr ( szA , sz ) :
22 # Generates a random s t r i n g of length ’ sz ’ over the alphabet of s i z e ’ szA ’ i n decimal
23 b ias = 1/ szA # IMPROVE: add b ias here
24 rbs = ” ”
25 f o r i i n range (0 , sz ) :
26 rn = random . random ( )
27 f o r j i n range (0 , szA ) :
28 i f rn < ( j +1)*b ias :
29 rbs = rbs + s t r ( j ) # IMPROVE: BCD vers ion
30 break
31 re tu rn rbs
32

33 #############################################################################################
34

35 AS = { ’ 00 ’ , ’ 01 ’ , ’ 10 ’ , ’ 11 ’ } # Alphabet se t {0 ,1 ,2 ,3} := {A ,C ,G, T} f o r DNA Nuc leo t ide bases
36 A = len (AS) # Alphabet s i z e
37 N = 11 # Reference Genome s i z e
38 w = randStr (4 ,N) # Reference Genome (e . g . w = ”22013213”)
39 M = 3 # Short Read s i z e
40 ans = 2 # Known answer f o r t e s t i n g
41 p = w[ ans : ans+M] # Short Read
42

43 s = c e i l ( log2 (N−M) )
44 Q_D = s * M # Number of data qub i t s
45 Q_anc = 1 # Number of a n c i l l a qub i t s
46 anc = Q_D # An c i l l a qub i t i d
47 t o t a l _ qub i t s = Q_D + Q_anc
48

49 #############################################################################################
50

51 def QPM( ) :
52 p r i n t (w, p )
53 con f i g_ fn = os . path . j o i n ( ’ gateConf ig . json ’ )
54 p la t fo rm = q l . P la t fo rm ( ’ platform_none ’ , con f i g_ fn )
55 prog = q l . Program ( ’qpm_a4 ’ , t o t a l _qub i t s , p la t fo rm )
56

57 # Kerne l 1: I n i t i a l i z a t i o n
58 qk1 = q l . Kerne l ( ’ QCirc1 ’ , p la t fo rm )
59 C i r c1 ( qk1 )
60

61 # Kerne l 2: Orac les to mark s p e c i f i c charac te r
62 qk2 = q l . Kerne l ( ’ QCirc2 ’ , p la t fo rm )
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63 bfa = ’ ’ . j o i n ( ’ 1 ’ i f w[ i ] == ’ 0 ’ e l se ’ 0 ’ f o r i i n range ( len (w) ) )
64 bfc = ’ ’ . j o i n ( ’ 1 ’ i f w[ i ] == ’ 1 ’ e l se ’ 0 ’ f o r i i n range ( len (w) ) )
65 bfg = ’ ’ . j o i n ( ’ 1 ’ i f w[ i ] == ’ 2 ’ e l se ’ 0 ’ f o r i i n range ( len (w) ) )
66 b f t = ’ ’ . j o i n ( ’ 1 ’ i f w[ i ] == ’ 3 ’ e l se ’ 0 ’ f o r i i n range ( len (w) ) )
67

68 # Kerne l 3: Grover Ampl itude Amp l i f i c a t i o n
69 qk3 = q l . Kerne l ( ’ QCirc3 ’ , p la t fo rm )
70 C i r c3 ( qk3 , s ,M)
71

72 # Kerne l 4: Measurement
73 qk4 = q l . Kerne l ( ’ QCirc4 ’ , p la t fo rm )
74 C i r c4 ( qk4 )
75

76 # Const ruc t Program from Kerne ls
77 prog . add_kernel ( qk1 ) # I n i t i a l i s e
78 #fo r p i i n range (0 ,M) : # A l t e rna te i t e r a t i o n method
79 f o r r i n range (0 , i n t ( sq r t (N−M+1) ) ) :
80 p i = random . rand in t (0 ,M−1)
81 i f p [ p i ] == ’ 0 ’ :
82 C i r c2 ( qk2 , bfa , p i )
83 e l i f p [ p i ] == ’ 1 ’ :
84 C i r c2 ( qk2 , bfc , p i )
85 e l i f p [ p i ] == ’ 2 ’ :
86 C i r c2 ( qk2 , bfg , p i )
87 e l se :
88 C i r c2 ( qk2 , bf t , p i )
89 prog . add_kernel ( qk2 ) # Cond i t i ona l ke rne l c a l l
90 de l qk2 # IMPROVE: Kerne l to qub i t loose b ind ing being d iscussed
91 qk2 = q l . Kerne l ( ’ QCirc2 ’ , p la t fo rm )
92 prog . add_kernel ( qk3 ) # Invers ion about mean
93 # prog . add_kernel ( qk4 ) # Uncomment i f us ing measurement based ana l y t i c s
94 prog . compi le ( )
95 # showQasm( )
96 qx = qxe l a r a to r .QX( )
97 qx . se t ( ’ t es t_output /qpm_a4 . qasm ’ )
98

99 # Resu l t a n a l y t i c s us ing In t e r na l S ta te Vector
100 qx . execute ( )
101 qxopt = qx . ge t_s ta te ( )
102 i s v = [0]*(2** t o t a l _ qub i t s )
103 ptrn = re . compi le ( ’ \(([+−]\d+.\d*) ,([+−]\d+[ . \ d*]?) \ ) \ s [|]([0 −1]*)> ’ )
104 f o r l i n e i n qxopt . s p l i t l i n e s ( ) :
105 mtch = ptrn . search ( l i n e )
106 i f mtch != None :
107 ar = f l o a t (mtch . group (1) )
108 ac = f l o a t (mtch . group (2) )
109 s t a t e = i n t (mtch . group (3) ,2)
110 i s v [ s t a t e ] = ar**2 + ac**2
111 p l o t y = [0]*(2** s )
112 f o r i i n range (0 , len ( i s v ) ) :
113 s t o t = format ( i , ’ 0 ’+s t r ( t o t a l _ qub i t s )+ ’ b ’ ) [: :−1]
114 sopt = i n t ( s t o t [0 : s ] ,2 )
115 p l o t y [ sopt ] = p l o t y [ sopt ] + i s v [ i ]
116 p r i n t ( ”PMax : ” , np . amax( p l o t y ) )
117 p r i n t ( ” Index : ” , np . argmax ( p l o t y ) )
118 p l t . p l o t ( p l o t y )
119 p l t . y l a be l ( ’ P r o b a b i l i t y ’ )
120 p l t . x l a be l ( ’ So l u t i on space ’ )
121 p l t . y l im ( [0 ,1 ] )
122 p l t . show ( )
123

124 # Resu l t a n a l y t i c s us ing Measurement
125 ’ ’ ’
126 res = [0]* s
127 STT = 1000 # Number of quantum s ta te tomography t r i a l s
128 t rue_counter = 0
129 f o r i i n range (STT) :
130 qx . execute ( )
131 res [0] = res [0] + qx . get_measurement_outcome (0)
132 res [1] = res [1] + qx . get_measurement_outcome (1)
133 res [2] = res [2] + qx . get_measurement_outcome (2)
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134 index = ’ ’ . j o i n ( ’ 1 ’ i f res [ i ] > STT/2 e l se ’ 0 ’ f o r i i n range ( s ) )
135 p r i n t ( ” Index : ” , i n t ( index ,2 ) )
136 ’ ’ ’
137

138 re tu rn
139

140 #############################################################################################
141

142 def C i r c1 ( k ) :
143 f o r Qi i n range (0 , t o t a l _ qub i t s ) :# I n i t i a l i s e a l l qub i t s to |0> s ta te
144 k . prepz ( Qi )
145 f o r s i i n range (0 , s ) : # Uniform supe rpos i t i on of pos s i b l e s t a r t i n g po s i t i o n s (

answers )
146 k . gate ( ”h” , [ s i ] )
147 f o r Mi i n range (0 ,M−1) :
148 f o r s i i n range (0 , s ) : # Copy po s i t i o n encoding to next se t of s
149 k . gate ( ” cnot ” , [ Mi*s+s i , ( Mi+1)*s+s i ] )
150 f o r s i i n range (0 , s ) : # Increment po s i t i o n encoding
151 i c = (Mi+1)*s−( s i +1)
152 k . gate ( ” x ” , [ i c ] ) # Inver ted con t r o l
153 nc = [ ]
154 f o r s j i n range ( i c , ( Mi+1)*s ) :
155 nc . append ( s j )
156 f o r s j i n range ( ( Mi+2)*s−1,s+ic −1,−1) :
157 nCX(k , nc , s j , anc ) # Decompose mul t i−c on t r o l l e d CNOT
158 k . gate ( ” x ” , [ i c ] ) # Uncompute inve r ted con t r o l
159 re tu rn
160

161 #############################################################################################
162

163 def C i r c2 ( k , bf , q ) :
164 f o r f i i n range (0 , len ( bf ) ) : # Encode o rac l e func t i on
165 i f bf [ f i ] == ’ 1 ’ :
166 f i s = format ( f i , ’ 0 ’+s t r ( s )+ ’ b ’ )
167 f o r f i s i i n range (0 , s ) : # Encode b inary va lue of func t i on input
168 i f f i s [ f i s i ] == ’ 0 ’ :
169 k . gate ( ” x ” , [ q*s+ f i s i ] )
170 k . gate ( ”h” , [ ( q+1)*s−1]) # CPhase to CNOT convers ion
171 nc = [ ]
172 f o r q s i i n range (q*s , ( q+1)*s−1) :
173 nc . append ( qs i )
174 nCX(k , nc , ( q+1)*s−1,anc ) # Decompose mul t i−c on t r o l l e d CNOT
175 k . gate ( ”h” , [ ( q+1)*s−1]) # Uncompute CPhase to CNOT convers ion
176 f o r f i s i i n range (0 , s ) : # Uncompute b inary va lue of func t i on input
177 i f f i s [ f i s i ] == ’ 0 ’ :
178 k . gate ( ” x ” , [ q*s+ f i s i ] )
179 re tu rn
180

181 #############################################################################################
182

183 def C i r c3 ( k , s ,M) :
184 f o r s i i n range (0 , s*M) :
185 k . gate ( ”h” , [ s i ] )
186 k . gate ( ” x ” , [ s i ] )
187 k . gate ( ”h” , [ s*M−1]) # CPhase to CNOT convers ion
188 nc = [ ]
189 f o r s j i n range (0 , s*M−1) :
190 nc . append ( s j )
191 nCX(k , nc , s*M−1,s*M) # Decompose mul t i−c on t r o l l e d CNOT
192 k . gate ( ”h” , [ s*M−1]) # Uncompute CPhase to CNOT convers ion
193 f o r s i i n range (0 , s*M) :
194 k . gate ( ” x ” , [ s i ] )
195 k . gate ( ”h” , [ s i ] )
196 re tu rn
197

198 #############################################################################################
199

200 def C i r c4 ( k ) :
201 f o r s i i n range (0 , s ) : # Measure f i r s t se t of po s i t i o n s
202 k . gate ( ”measure ” , [ s i ] )
203 re tu rn
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204

205 #############################################################################################
206

207 def nCX(k , c , t , b ) :
208 nc = len ( c )
209 i f nc == 1:
210 k . gate ( ” cnot ” , [ c [0 ] , t ] )
211 e l i f nc == 2:
212 k . t o f f o l i ( c [0 ] , c [1 ] , t )
213 e l se :
214 nch = c e i l ( nc /2)
215 c1 = c [ : nch ]
216 c2 = c [ nch : ]
217 c2 . append (b)
218 nCX(k , c1 , b , nch+1)
219 nCX(k , c2 , t , nch−1)
220 nCX(k , c1 , b , nch+1)
221 nCX(k , c2 , t , nch−1)
222 re tu rn
223

224 #############################################################################################
225

226 def showQasm( ) :
227 f i l e = open ( ” tes t_output /qpm_a4 . qasm” , ” r ” )
228 p r i n t ( ” \n~~~~~ CODE FILE ~~~~~\n” )
229 f o r l i n e i n f i l e :
230 p r i n t ( l i n e , end= ’ ’ )
231 p r i n t ( )
232 f i l e . c l o se ( )
233

234 #############################################################################################
235

236 i f __name__ == ’ __main__ ’ :
237 QPM( )



Appendix-2

1 ## Reference : Fast quantum search a lgor i thms in p ro te i n sequence comparison : Quantum
b i o i n f o rma t i c s − L . Hol lenberg ( a rX i v p r ep r i n t quant−ph/0002076)

2 ## \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
3 ## \ p ro j e c t : Quantum−acce le ra ted Genome−sequencing
4 ## \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
5

6 #############################################################################################
7

8 from openql import openql as q l
9 import qxe l a r a to r
10

11 import random
12 from math import *
13 import os
14 import re
15 import math
16 import ma tp l o t l i b . pyp lo t as p l t
17 import numpy as np
18

19 #############################################################################################
20

21 def randStr ( szA , sz ) :
22 # Generates a random s t r i n g of length ’ sz ’ over the alphabet of s i z e ’ szA ’ i n decimal
23 b ias = 1/ szA # IMPROVE: add b ias here
24 rbs = ” ”
25 f o r i i n range (0 , sz ) :
26 rn = random . random ( )
27 f o r j i n range (0 , szA ) :
28 i f rn < ( j +1)*b ias :
29 rbs = rbs + s t r ( j ) # IMPROVE: BCD vers ion
30 break
31 re tu rn rbs
32

33 #############################################################################################
34

35 AS = { ’ 00 ’ , ’ 01 ’ , ’ 10 ’ , ’ 11 ’ } # Alphabet se t {0 ,1 ,2 ,3} := {A ,C ,G, T} f o r DNA Nuc leo t ide bases
36 A = len (AS) # Alphabet s i z e
37 N = 10 # Reference Genome s i z e
38 #w = randStr (4 ,N) # Reference Genome (e . g . w = ”2302031020”)
39 w = ”2302031020 ”
40 M = 3 # Short Read s i z e
41 ans = 1 # Known answer f o r t e s t i n g
42 dummyp = ”000”
43 p = w[ ans : ans+M] # Short Read
44

45 Q_A = c e i l ( log2 (A) ) # Number of qub i t s to encode one charac te r
46 Q_D = Q_A * M # Number of data qub i t s
47 Q_T = c e i l ( log2 (N−M) ) # Tag Qubits
48 Q_anc = 1 # Number of a n c i l l a qub i t s
49 anc = Q_D + Q_T # An c i l l a qub i t i d
50 t o t a l _ qub i t s = Q_D + Q_T + Q_anc
51

52 #############################################################################################
53

54 def QPD( ) :
55 p r i n t (w, p )
56 con f i g_ fn = os . path . j o i n ( ’ gateConf ig . json ’ )
57 p la t fo rm = q l . P la t fo rm ( ’ platform_none ’ , con f i g_ fn )
58 prog = q l . Program ( ’ qpd_a4 ’ , t o t a l _qub i t s , p la t fo rm )
59

60 # Kerne l 1: I n i t i a l i z a t i o n of Quantum Phone D i r e c t o r y
61 qk1 = q l . Kerne l ( ’ QCirc1 ’ , p la t fo rm )
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62 C i r c1 ( qk1 )
63

64 # Kerne l 2: Ca l cu l a t e Hamming Dis tance
65 qk2 = q l . Kerne l ( ’ QCirc2 ’ , p la t fo rm )
66 C i r c2 ( qk2 )
67

68 # Kerne l 3: Orac le to Mark Hamming Dis tance of 0
69 qk3 = q l . Kerne l ( ’ QCirc3 ’ , p la t fo rm )
70 C i r c3 ( qk3 )
71

72 # Kerne l 4: Grover Ampl itude Amp l i f i c a t i o n
73 qk4 = q l . Kerne l ( ’ QCirc4 ’ , p la t fo rm )
74 C i r c4 ( qk4 )
75

76 # Kerne l 5: Measurement
77 qk5 = q l . Kerne l ( ’ QCirc5 ’ , p la t fo rm )
78 C i r c5 ( qk5 )
79

80 # Find ing opt ima l i t e r a t i o n s f o r known a r b i t r a r y i n i t i a l ampl i tude d i s t r i b u t i o n
81 t = 1 # Expected number of s o l u t i o n s
82 iMx = 2**Q_T
83 sMx = 2**(Q_D+Q_T)
84 kavg0 = 1/ sq r t ( iMx )
85 lavg0 = ( iMx − t ) / ( ( sMx − iMx )*sq r t ( iMx ) )
86 Pmax = 1 − ( sMx−iMx )* lavg0**2 − ( iMx−t )*(1/ sq r t ( iMx ) − lavg0 )**2
87 p r i n t ( ” Theo re t i c a l PMax : ” , Pmax)
88 T = [0]*5
89 f o r j i n range (0 ,5) :
90 T[ j ] = ( ( j /2+0.5)*p i − atan ( kavg0*sq r t ( t / ( sMx−t ) ) / lavg0 ) ) / acos(1−2* t / sMx)
91 p r i n t ( ” Suggested I t e r a t i o n s : ” ,T)
92 # IMPROVE: Use suggested i t e r a t i o n s
93

94 # Const ruc t Program from Kerne ls
95 prog . add_kernel ( qk1 ) # I n i t i a l i s e
96 prog . add_kernel ( qk2 ) # Transform to Hamming d i s tance
97 f o r r i n range (0 ,1) :
98 prog . add_kernel ( qk3 ) # Orac le c a l l
99 prog . add_kernel ( qk4 ) # Invers ion about mean
100 # prog . add_kernel ( qk5 ) # Uncomment i f us ing measurement based ana l y t i c s
101 prog . compi le ( )
102 # showQasm( )
103 qx = qxe l a r a to r .QX( )
104 qx . se t ( ’ t es t_output / qpd_a4 . qasm ’ )
105

106 # Resu l t a n a l y t i c s us ing In t e r na l S ta te Vector
107 qx . execute ( )
108 qxopt = qx . ge t_s ta te ( )
109 i s v = [0]*(2** t o t a l _ qub i t s )
110 ptrn = re . compi le ( ’ \(([+−]\d+.\d*) ,([+−]\d+[ . \ d*]?) \ ) \ s [|]([0 −1]*)> ’ )
111 f o r l i n e i n qxopt . s p l i t l i n e s ( ) :
112 mtch = ptrn . search ( l i n e )
113 i f mtch != None :
114 ar = f l o a t (mtch . group (1) )
115 ac = f l o a t (mtch . group (2) )
116 s t a t e = i n t (mtch . group (3) ,2)
117 i s v [ s t a t e ] = ar**2 + ac**2
118 p l o t y = i s v
119 p r i n t ( ”PMax : ” , np . amax( p l o t y ) )
120 tag = format (np . argmax ( p l o t y ) , ’ 0 ’+s t r ( t o t a l _qub i t s −1)+ ’ b ’ ) [: :−1]
121 p r i n t ( ” Index : ” , i n t ( tag [0 :3 ] ,2 ) )
122 p l t . p l o t ( p l o t y )
123 p l t . y l a be l ( ’ P r o b a b i l i t y ’ )
124 p l t . x l a be l ( ’ S ta te space ’ )
125 p l t . y l im ( [0 ,1 ] )
126 p l t . show ( )
127 re tu rn
128

129 #############################################################################################
130

131 def C i r c1 ( k ) :
132 f o r Qi i n range (0 , t o t a l _ qub i t s ) :# I n i t i a l i s e a l l qub i t s to |0> s ta te
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133 k . prepz ( Qi )
134 f o r Qi i n range (0 ,Q_T) : # Uniform supe rpos i t i on of pos s i b l e s t a r t i n g po s i t i o n s (

answers )
135 k . gate ( ”h” , [ Qi ] )
136 nc = [ ]
137 f o r c i i n range (0 ,Q_T) :
138 nc . append ( c i )
139 f o r Qi i n range (0 ,N−M+1) :
140 Qis = format ( Qi , ’ 0 ’+s t r (Q_T)+ ’ b ’ )
141 f o r Q i s i i n range (0 ,Q_T) :
142 i f Qis [ Q i s i ] == ’ 0 ’ :
143 k . gate ( ” x ” , [ Q i s i ] )
144 wMi = w[ Qi : Qi+M]
145 p r i n t ( [ Qis ,wMi ] )
146 f o r w i s i i n range (0 ,M) :
147 wis i a = format ( i n t (wMi[ w i s i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
148 f o r w i s i a i i n range (0 ,Q_A) :
149 i f w i s i a [ w i s i a i ] == ’ 1 ’ :
150 nCX(k , nc ,Q_T+w i s i*Q_A+w i s i a i , anc )
151 f o r Q i s i i n range (0 ,Q_T) :
152 i f Qis [ Q i s i ] == ’ 0 ’ :
153 k . gate ( ” x ” , [ Q i s i ] )
154 re tu rn
155

156 #############################################################################################
157

158 def C i r c2 ( k ) :
159 f o r p i i n range (0 ,M) :
160 ppi = format ( i n t (p [ p i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
161 f o r p p i i i n range (0 ,Q_A) :
162 i f pp i [ p p i i ] == ’ 1 ’ :
163 k . gate ( ” x ” , [Q_T+p i*Q_A+pp i i ] )
164 re tu rn
165

166 #############################################################################################
167

168 def C i r c3 ( k ) :
169 f o r Qi i n range (0 ,Q_D) : # Encode b inary va lue 0 of func t i on input
170 k . gate ( ” x ” , [Q_T+Qi ] )
171 k . gate ( ”h” , [Q_D+Q_T−1]) # CPhase to CNOT convers ion
172 nc = [ ]
173 f o r q s i i n range (Q_T ,Q_T+Q_D−1) :
174 nc . append ( qs i )
175 nCX(k , nc ,Q_D+Q_T−1,anc ) # Decompose mul t i−c on t r o l l e d CNOT
176 k . gate ( ”h” , [Q_D+Q_T−1]) # Uncompute CPhase to CNOT convers ion
177 f o r Qi i n range (0 ,Q_D) : # Uncompute b inary va lue of func t i on input
178 k . gate ( ” x ” , [Q_T+Qi ] )
179

180 #############################################################################################
181

182 def C i r c4 ( k ) :
183 f o r s i i n range (0 ,Q_D+Q_T) :
184 k . gate ( ”h” , [ s i ] )
185 k . gate ( ” x ” , [ s i ] )
186 k . gate ( ”h” , [Q_D+Q_T−1]) # CPhase to CNOT convers ion
187 nc = [ ]
188 f o r s j i n range (0 ,Q_D+Q_T−1) :
189 nc . append ( s j )
190 p r i n t ( nc )
191 nCX(k , nc ,Q_D+Q_T−1,anc ) # Decompose mul t i−c on t r o l l e d CNOT
192 k . gate ( ”h” , [Q_D+Q_T−1]) # Uncompute CPhase to CNOT convers ion
193 f o r s i i n range (0 ,Q_D+Q_T) :
194 k . gate ( ” x ” , [ s i ] )
195 k . gate ( ”h” , [ s i ] )
196 re tu rn
197

198 #############################################################################################
199

200 def C i r c5 ( k ) :
201 #k . d i s p l a y ( )
202 ’ ’ ’
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203 f o r s i i n range (0 , s ) : # Measure f i r s t se t of po s i t i o n s
204 k . gate ( ” measure ” , [ s i ] )
205 ’ ’ ’
206 re tu rn
207

208 #############################################################################################
209

210 def nCX(k , c , t , b ) :
211 nc = len ( c )
212 i f nc == 1:
213 k . gate ( ” cnot ” , [ c [0 ] , t ] )
214 e l i f nc == 2:
215 k . t o f f o l i ( c [0 ] , c [1 ] , t )
216 e l se :
217 nch = c e i l ( nc /2)
218 c1 = c [ : nch ]
219 c2 = c [ nch : ]
220 c2 . append (b)
221 nCX(k , c1 , b , nch+1)
222 nCX(k , c2 , t , nch−1)
223 nCX(k , c1 , b , nch+1)
224 nCX(k , c2 , t , nch−1)
225 re tu rn
226

227 #############################################################################################
228

229 def showQasm( ) :
230 f i l e = open ( ” tes t_output / qpd_a4 . qasm” , ” r ” )
231 p r i n t ( ” \n~~~~~ CODE FILE ~~~~~\n” )
232 f o r l i n e i n f i l e :
233 p r i n t ( l i n e , end= ’ ’ )
234 p r i n t ( )
235 f i l e . c l o se ( )
236

237 #############################################################################################
238

239 i f __name__ == ’ __main__ ’ :
240 QPD( )
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1 % Reference : Quantum Asso c i a t i v e Memory − D. Ventura , T . Mart inez ( a rX i v p r ep r i n t quant−ph
/9807053)

2 % \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
3 % \ pro j e c t : Quantum−acce le ra ted Genome−sequencing
4 % \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 f unc t i on mtlb_qam_a4 ( )
9 c lose a l l
10 c l e a r a l l
11 c l c
12

13 AS = { ’ 0 ’ , ’ 1 ’ } ; % Binary a lphabet se t
14 A = s i z e (AS ,2 ) ; % Alphabet s i z e
15 N = 10; % Reference Pat te rn s i z e
16 [w,~] = randStr (A ,N) ; % Reference Pat te rn ( e . g . w = ”0001110100”)
17 w = ’ 0001110100 ’
18 M = 3; % Search Pat te rn s i z e
19 t s t _ i d x = 2; % Known answer f o r t e s t i n g ( s o l u t i o n index s t a r t s at 0)
20 p = w( t s t _ i d x +1: t s t _ i d x+M) ; % Search Pat te rn
21 % p = s t r r ep (p , ’ 2 ’ , ’ ? ’ ) % Inse r t w i ldca rd f o r approximate matching
22

23 % I n i t i a l i s e the database
24 cdb = prepCdb (w,M) ; % Prepare c l a s s i c a l database
25 ucdb = unique ( cdb , ’ rows ’ ) ; % Remove dup l i c a t e memories
26 v = ones (1 , s i z e ( ucdb ,1 ) ) ; % values to encode ( op t i ona l )
27 qdb = prepQdb (ucdb , v ) ; % Prepare quantum database
28 s t a t e = rednDimn (qdb ,M) ; % Remove uncomputed a n c i l l a s
29 % dispS ta te ( s ta te , 0 )
30

31 p l o t ( s ta te , ’−g ’ )
32 hold on
33 s t a t e = runSrch (p , s t a t e ) ; % Run Quantum search opera t ion
34 % dispS ta te ( s ta te , 0 )
35 p l o t ( s ta te , ’−b ’ )
36 ax i s ( [1 2^M −1 1])
37 psr = remWC(p) ;
38 p l o t ( [ psr ’+1; psr ’+1] , [−1; 1 ] ’ , ’−r ’ )
39 [maxV,maxP] = max( s t a t e ) ;
40 p l o t ( [ 1 ; 2^M] , [maxV; maxV] ’ , ’−m’ )
41 set ( gca , ’ XT ickLabe ls ’ ,0:2^M−1)
42 end
43

44 %% Generates a random s t r i n g of length ’ sz ’ over the alphabet of s i z e ’ szA ’ i n decimal and
b inary

45

46 f unc t i on [ rs , rb ] = randStr ( szA , sz )
47 ranges = l i n space (0 ,1 , szA+1) ; % assumes equal p r o b a b l i l i t y ( add b ias here )
48 r s = ’ ’ ;
49 rb = ’ ’ ;
50 f o r i = 1: sz
51 rn = rand ( ) ;
52 f o r j = 2: szA+1
53 i f rn < ranges ( j )
54 rb = s t r c a t ( rb , dec2bin ( j −2, log2 ( szA ) ) ) ;
55 r s = s t r c a t ( rs , num2str ( j −2) ) ;
56 break
57 end
58 end
59 end
60 end
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61

62 %% Generates a c l a s s i c a l database from the re fe rence genome rg with en t r i e s of s i z e szss
63

64 f unc t i on cdb = prepCdb ( rg , szss )
65 cdb = [ ] ;
66 f o r i = 1: s i z e ( rg , 2 )−szss+1
67 cdb = [ num2str ( cdb ) ; num2str ( rg ( i : i+szss −1) ) ] ;
68 end
69 end
70

71 %% I n i t i a l i s e s the quantum database
72

73 f unc t i on s ta t e = prepQdb (db , v )
74 n = s i z e (db ,2 ) ; % S ize of search pat te rns
75 m = s i z e (db ,1 ) ; % Number of database en t r i e s
76 numq = n*2+1; % Number of qub i t s requ i red f o r s t a t e prepara t ion
77 s t a t e = [1; zeros (2^numq−1 ,1) ] ;
78 X = [0 1; 1 0] ;
79 f o r p = m:−1:1 % For each pat te rn to be stored
80 zp = db(m−p+1 ,:) ;
81 % FLIP ==========================================
82 f o r j = 1:n
83 zp1 = ’ ’ ;
84 i f p == m
85 zp1 = num2str ( dec2bin (0 ,n ) ) ;
86 e l se
87 zp1 = db(m−p , : ) ;
88 end
89 i f zp ( j ) ~= zp1 ( j )
90 s t a t e = U1(X ,0 , s t a t e ) ;
91 s t a t e = U_CX(0 ,numq−j , s t a t e ) ;
92 s t a t e = U1(X ,0 , s t a t e ) ;
93 end
94 end
95 s t a t e = U1(X ,0 , s t a t e ) ;
96 s t a t e = U_CX(0 ,1 , s t a t e ) ;
97 s t a t e = U1(X ,0 , s t a t e ) ;
98 % end FLIP ======================================
99 s t a t e = U_Ssp ( v (m−p+1) ,p ,1 ,0 , s t a t e ) ;
100 % AND ===========================================
101 i f ( zp (2) == ’ 0 ’ && zp (1) == ’ 0 ’ )
102 s t a t e = U1(X ,numq−1, s t a t e ) ;
103 s t a t e = U1(X ,numq−2, s t a t e ) ;
104 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
105 s t a t e = U1(X ,numq−2, s t a t e ) ;
106 s t a t e = U1(X ,numq−1, s t a t e ) ;
107 e l s e i f ( zp (2) == ’ 0 ’ && zp (1) == ’ 1 ’ )
108 s t a t e = U1(X ,numq−2, s t a t e ) ;
109 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
110 s t a t e = U1(X ,numq−2, s t a t e ) ;
111 e l s e i f ( zp (2) == ’ 1 ’ && zp (1) == ’ 0 ’ )
112 s t a t e = U1(X ,numq−1, s t a t e ) ;
113 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
114 s t a t e = U1(X ,numq−1, s t a t e ) ;
115 e l se
116 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
117 end
118 f o r k = 3:n
119 i f ( zp ( k ) == ’ 0 ’ )
120 s t a t e = U1(X ,numq−k , s t a t e ) ;
121 s t a t e = U_Tf (numq−k ,numq−1−n−(k−3) ,numq−1−n−(k−3)−1, s t a t e ) ;
122 s t a t e = U1(X ,numq−k , s t a t e ) ;
123 e l se
124 s t a t e = U_Tf (numq−k ,numq−1−n−(k−3) ,numq−1−n−(k−3)−1, s t a t e ) ;
125 end
126 end
127 % end AND =======================================
128 s t a t e = U_CX(2 ,1 , s t a t e ) ;
129 % AND+ ==========================================
130 f o r k = n:−1:3
131 i f ( zp ( k ) == ’ 0 ’ )
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132 s t a t e = U1(X ,numq−k , s t a t e ) ;
133 s t a t e = U_Tf (numq−k ,numq−1−n−(k−3) ,numq−1−n−(k−3)−1, s t a t e ) ;
134 s t a t e = U1(X ,numq−k , s t a t e ) ;
135 e l se
136 s t a t e = U_Tf (numq−k ,numq−1−n−(k−3) ,numq−1−n−(k−3)−1, s t a t e ) ;
137 end
138 end
139 i f ( zp (2) == ’ 0 ’ && zp (1) == ’ 0 ’ )
140 s t a t e = U1(X ,numq−1, s t a t e ) ;
141 s t a t e = U1(X ,numq−2, s t a t e ) ;
142 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
143 s t a t e = U1(X ,numq−2, s t a t e ) ;
144 s t a t e = U1(X ,numq−1, s t a t e ) ;
145 e l s e i f ( zp (2) == ’ 0 ’ && zp (1) == ’ 1 ’ )
146 s t a t e = U1(X ,numq−2, s t a t e ) ;
147 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
148 s t a t e = U1(X ,numq−2, s t a t e ) ;
149 e l s e i f ( zp (2) == ’ 1 ’ && zp (1) == ’ 0 ’ )
150 s t a t e = U1(X ,numq−1, s t a t e ) ;
151 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
152 s t a t e = U1(X ,numq−1, s t a t e ) ;
153 e l se
154 s t a t e = U_Tf (numq−1,numq−2,numq−n−1, s t a t e ) ;
155 end
156 % end AND+ ======================================
157 end
158 s t a t e = U1(X ,0 , s t a t e ) ; % Uncompute a n c i l l a s t a t e s
159 end
160

161 %% Sing le qub i t a r b i t r a r y un i t a r y U app l i ed on qub i t pos of s t a t e vec to r
162

163 f unc t i on s ta t e = U1(U, pos , s t a t e )
164 spc = c e i l ( log2 ( s i z e ( s ta te , 1 ) ) ) ;
165 U = kron ( eye (2^(spc−1−pos ) ) , kron (U, eye (2^(pos ) ) ) ) ;
166 s t a t e = U*s t a t e ;
167 end
168

169 %% CNOT gate with posc as the con t r o l qub i t and post as the ta rge t qub i t of s t a t e vec tor
170

171 f unc t i on s ta t e = U_CX( posc , post , s t a t e )
172 spc = c e i l ( log2 ( s i z e ( s ta te , 1 ) ) ) ;
173 prec = 10^5;
174 X = [0 1; 1 0] ;
175 H = 1/ sq r t (2)*[1 1;1 −1];
176 i f ( posc > post )
177 I = eye (2^(posc−post ) ) ;
178 O = zeros (2^(posc−post ) ) ;
179 br = kron ( eye (2^(posc−post−1) ) ,X) ;
180 CX = [ I O;O br ] ;
181 U = kron ( eye (2^(spc−posc−1) ) , kron (CX , eye(2^post ) ) ) ;
182 s t a t e = U*s t a t e ;
183 e l se
184 s t a t e = U1(H, posc , s t a t e ) ; % Dress with H to f l i p con t r o l
185 s t a t e = U1(H, post , s t a t e ) ;
186 I = eye (2^( post−posc ) ) ;
187 O = zeros (2^( post−posc ) ) ;
188 br = kron ( eye (2^( post−posc−1) ) ,X) ;
189 CX = [ I O;O br ] ;
190 U = kron ( eye (2^(spc−post−1) ) , kron (CX , eye(2^posc ) ) ) ;
191 s t a t e = U*s t a t e ;
192 s t a t e = U1(H, post , s t a t e ) ;
193 s t a t e = U1(H, posc , s t a t e ) ;
194 end
195 s t a t e = round ( prec*s t a t e ) / prec ;
196 end
197

198 %% To f f o l i gate with posc1 , posc2 as the con t r o l qub i t s and post as the ta rge t qub i t of s t a t e
vec tor

199

200 f unc t i on s ta t e = U_Tf ( posc1 , posc2 , post , s t a t e )
201 i f ( posc1 > posc2 )
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202 poscm = posc1 ;
203 posc l = posc2 ;
204 e l se
205 poscm = posc2 ;
206 posc l = posc1 ;
207 end
208 spc = c e i l ( log2 ( s i z e ( s ta te , 1 ) ) ) ;
209 prec = 10^5;
210 X = [0 1; 1 0] ;
211 Tf = [ eye (6) zeros (6 ,2) ; zeros (2 ,6) X ] ;
212 sv = [0 0 0 0] ; % Make posc l , poscm , post consequet ive by SWAP
213 i f post > poscm
214 s t a t e = U_CX(poscm , post , s t a t e ) ;
215 s t a t e = U_CX( post , poscm , s t a t e ) ;
216 s t a t e = U_CX(poscm , post , s t a t e ) ;
217 tmp = post ;
218 post = poscm;
219 poscm = tmp;
220 sv (1) = 1;
221 end
222 i f post > posc l
223 s t a t e = U_CX( posc l , post , s t a t e ) ;
224 s t a t e = U_CX( post , posc l , s t a t e ) ;
225 s t a t e = U_CX( posc l , post , s t a t e ) ;
226 tmp = post ;
227 post = posc l ;
228 posc l = tmp;
229 sv (2) = 1;
230 end
231 i f posc l−post > 1
232 s t a t e = U_CX( posc l −1,post , s t a t e ) ;
233 s t a t e = U_CX( post , posc l −1, s t a t e ) ;
234 s t a t e = U_CX( posc l −1,post , s t a t e ) ;
235 swpidx3 = post ;
236 post = posc l −1;
237 sv (3) = 1;
238 end
239 i f poscm−posc l > 1
240 s t a t e = U_CX( posc l +1,poscm , s t a t e ) ;
241 s t a t e = U_CX(poscm , posc l +1, s t a t e ) ;
242 s t a t e = U_CX( posc l +1,poscm , s t a t e ) ;
243 swpidx4 = poscm;
244 poscm = posc l +1;
245 sv (4) = 1;
246 end
247 U = kron ( eye (2^(spc−( posc l +1)−1) ) , kron ( Tf , eye (2^( posc l −1) ) ) ) ;
248 s t a t e = U*s t a t e ;
249 i f sv (4) == 1
250 s t a t e = U_CX( posc l +1,swpidx4 , s t a t e ) ;
251 s t a t e = U_CX( swpidx4 , posc l +1, s t a t e ) ;
252 s t a t e = U_CX( posc l +1,swpidx4 , s t a t e ) ;
253 poscm = swpidx4 ;
254 end
255 i f sv (3) == 1
256 s t a t e = U_CX( posc l −1,swpidx3 , s t a t e ) ;
257 s t a t e = U_CX( swpidx3 , posc l −1, s t a t e ) ;
258 s t a t e = U_CX( posc l −1,swpidx3 , s t a t e ) ;
259 post = swpidx3 ;
260 end
261 i f sv (2) == 1
262 s t a t e = U_CX( posc l , post , s t a t e ) ;
263 s t a t e = U_CX( post , posc l , s t a t e ) ;
264 s t a t e = U_CX( posc l , post , s t a t e ) ;
265 tmp = post ;
266 post = posc l ;
267 posc l = tmp;
268 end
269 i f sv (1) == 1
270 s t a t e = U_CX(poscm , post , s t a t e ) ;
271 s t a t e = U_CX( post , poscm , s t a t e ) ;
272 s t a t e = U_CX(poscm , post , s t a t e ) ;
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273 tmp = post ;
274 post = poscm;
275 poscm = tmp;
276 end
277 s t a t e = round ( prec*s t a t e ) / prec ;
278 end
279

280 %% Custom Un i ta ry f o r storage of pat te rn
281

282 f unc t i on s ta t e = U_Ssp ( s , p , posc , post , s t a t e )
283 spc = c e i l ( log2 ( s i z e ( s ta te , 1 ) ) ) ;
284 prec = 10^5;
285 c = 1/ sq r t (p ) ;
286 p1 = sq r t (p−1) ;
287 p2 = −s ;
288 Ryt = c*[p1 p2 ; −p2 p1 ] ;
289 % Ryt = [ cos ( as in (−1/ sq r t (p ) ) ) s i n ( as in (−1/ sq r t (p ) ) ) ; −s i n ( as in (−1/ sq r t (p ) ) ) cos ( as in (−1/

sq r t (p ) ) ) ]
290 CRyt = [ eye (2) zeros (2) ; zeros (2) Ryt ] ;
291 i f ( posc > post )
292 U = kron ( eye (2^(spc−posc−1) ) , kron ( CRyt , eye(2^post ) ) ) ;
293 s t a t e = U*s t a t e ;
294 e l se
295 U = kron ( eye (2^(spc−post−1) ) , kron ( CRyt , eye(2^posc ) ) ) ;
296 s t a t e = U_CX( posc , post , s t a t e ) ; % Swap con t r o l and ta rge t
297 s t a t e = U_CX( post , posc , s t a t e ) ;
298 s t a t e = U_CX( posc , post , s t a t e ) ;
299 s t a t e = U*s t a t e ;
300 s t a t e = U_CX( posc , post , s t a t e ) ;
301 s t a t e = U_CX( post , posc , s t a t e ) ;
302 s t a t e = U_CX( posc , post , s t a t e ) ;
303 end
304 s t a t e = round ( prec*s t a t e ) / prec ;
305 end
306

307 %% Remove uncomputed a n c i l l a from s ta te space to reduce dimension
308

309 f unc t i on newstate = rednDimn ( state , nd )
310 newstate = zeros (2^nd ,1 ) ;
311 j = s i z e ( s ta te , 1 ) /(2^nd) ;
312 f o r i = 1:2^nd
313 newstate ( i ) = sum( s ta te ( ( i −1)* j +1: i* j ) ) ;
314 end
315 end
316

317 %% Use non−un i t a r y search operator f o r search ing the pat te rn
318

319 f unc t i on s ta t e = runSrch ( ss , s t a t e )
320 s t a t e = f l i p l r ( s ta te ’ ) ’ ;
321 prec = 10^5;
322 dim = 2^s i z e ( ss , 2 ) ;
323 Rs = zeros ( dim ) ; % Create Non−Un i ta ry Search Operator
324 f o r i = 1:dim
325 f o r j = 1:dim
326 i f i == j & distHmngWC( j −1, ss ) >= 1
327 Rs (dim− i +1,dim− j +1) = 1;
328 e l s e i f distHmngWC( j −1, ss ) > distHmngWC( i −1, ss ) & distHmngWC( i −1, ss ) >= 1
329 Rs (dim− i +1,dim− j +1) = −1;
330 end
331 end
332 end
333 s t a t e = Rs*s t a t e ;
334 s t a t e = s ta te / sq r t (sum( s ta t e .^2) ) ; % Re−normal i ze a f t e r non−un i t a r y opra t ion
335 s t a t e = round ( prec*s t a t e ) / prec ;
336 end
337

338 %% Ca l cu l a t e Hamming d i s tance ( with w i ldca rds )
339

340 f unc t i on hdw = distHmngWC( s1 , y )
341 s = ’ ’ ;
342 hdw = 0;
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343 x = dec2bin ( s1 , s i z e ( y , 2 ) ) ;
344 f o r i = 1: s i z e ( x , 2 )
345 i f x ( i ) == ’ ? ’ | y ( i ) == ’ ? ’ % Wi ldcard charac te r
346 s = s t r c a t ( s , ’ 0 ’ ) ; % Don ’ t care matches every th ing
347 e l se
348 n1 = uint64 ( x ( i ) ) ;
349 n2 = uint64 ( y ( i ) ) ;
350 z = b i t x o r (n1 , n2 ) ;
351 hd = 0;
352 f o r j = 1:64
353 hd = hd + b i t g e t ( z , j ) ;
354 end
355 hdw = hdw+hd ;
356 s = s t r c a t ( s , num2str (hd ) ) ;
357 end
358 end
359

360 end
361

362 %% Create supe rpos i t i on of s o l u t i o n cons ide r ing w i ldca rds
363

364 f unc t i on srn = remWC(srWC)
365 locWC = s t r f i n d (srWC , ’ ? ’ ) ;
366 nWC = s i z e ( locWC ,2 ) ;
367 i f nWC == 0
368 srn = bin2dec (srWC) ;
369 re tu rn
370 end
371 s r = [ ] ;
372 f o r i = 1:2^nWC
373 s r = [ num2str ( s r ) ; srWC ] ;
374 WC = dec2bin ( i −1,nWC) ;
375 f o r j = 1:nWC
376 s r ( i , locWC( j ) ) = WC( j ) ;
377 end
378 end
379 srn = bin2dec ( s r ) ;
380 end
381

382 %% Disp lays the quantum s ta te
383

384 f unc t i on d i spS ta te ( s ta te , format )
385 i = s i z e ( s ta te , 1 ) ;
386 spc = c e i l ( log2 ( i ) ) ;
387 f o r a = 0: i −1
388 i f format == 0
389 f p r i n t f ( s t r c a t ( num2str ( s t a t e ( a+1) , ’%+f ’ ) , ’ \ t | ’ , dec2bin (a , spc ) , ’ >\n ’ ) )
390 e l s e i f format == 1
391 f p r i n t f ( s t r c a t ( num2str ( s t a t e ( a+1) ) , ’ _ ’ ) )
392 end
393 end
394 f p r i n t f ( ’ \n ’ )
395 end



Appendix-4

1 % Reference : Quantum a lgor i thms fo r pat te rn matching in genomic sequences − A . Sarkar
2 % \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
3 % \ pro j e c t : Quantum−acce le ra ted Genome−sequencing
4 % \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 % Quantum Shannon Decomposit ion to OpenQL code
8

9 f unc t i on Ud = QSD_opql (U, prnt , qbsp )
10

11 %% Decompose U to AB1 , CS , AB2
12

13 dim = log2 ( s i z e (U,1 ) ) ;
14 s p l i t p t = 2^(dim−1) ;
15 OU = zeros ( s p l i t p t , s p l i t p t ) ;
16 I = eye (2) ;
17 % X = AP(−p i /2)*Rx( p i ) ; % Decomposes to [0 1; 1 0]
18 % H = AP(−p i /2)*Ry( p i /2)*Rx( p i ) ; % Decomposes to 1/ sq r t (2)*[1 1;1 −1]
19 [ L0 , L1 , cc , ss , R0 , R1] = fatCSD (U) ;
20

21 %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ STEP 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22 % Decompose AB2 to V , D, W ( lower dimension )
23 AB2 = [R0 zeros ( s i z e (R0 ,1 ) , s i z e (R1 ,2 ) ) ; zeros ( s i z e (R1 ,1 ) , s i z e (R0 ,2 ) ) R1 ] ;
24

25 U1 = AB2 (1: s p l i t p t , 1 : s p l i t p t ) ;
26 U2 = AB2( s p l i t p t +1:end , s p l i t p t +1:end ) ;
27

28 i f (max(max( abs (U1+U2) ) ) < 1e−10 | | max(max( abs (U1−U2) ) ) < 1e−10)
29 i f ( dim > 2)
30 ’ Not supported ’ % TBD: How t h i s sec t i on behaves f o r dim > 2
31 end
32 [ de l ta , alpha , theta , beta ] = zyz (U1) ;
33 decomposedU1 = Rz ( alpha )*Ry( theta )*Rz ( beta ) ;
34 i f ( prnt > 1)
35 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−beta ) ;
36 f p r i n t f ( ’ k . ry(%d,%f ) \n ’ , qbsp (1) ,− theta ) ;
37 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−alpha ) ;
38 end
39 i f ( prnt == 2)
40 decomposedU1 = AP( de l t a )*decomposedU1 ;
41 f p r i n t f ( ’ ap q%d,%f \n ’ , qbsp (1) ,− de l t a ) ;
42 end
43 decomposedAB2 = kron ( I , decomposedU1 ) ;
44 i f (max(max(U1+U2) ) < 1e−10)
45 decomposedAB2 = kron (Rz ( p i ) , I )*decomposedAB2 ;
46 i f ( prnt > 1)
47 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (2) ,− p i ) ;
48 end
49 i f ( prnt == 2)
50 decomposedAB2 = kron (AP(−p i /2) , I )*decomposedAB2 ;
51 f p r i n t f ( ’ ap q%d,%f \n ’ , qbsp (2) , p i /2) ;
52 end
53 end
54 e l se
55 [ v , d ,~] = e ig (U1*U2 ’ ) ;
56 V = v ;
57 i f dim == 4
58 % 1 & 2 Eigenva lues i n d are repeated , thus V*V ’ i s not I . Adjustment needed
59 % https : / / n l . mathworks . com/ mat labcent ra l / answers/214557− e igenvectors−are−not−

orthogonal−for−some−skew−symmetric−matr ices−why
60 V ( : , [ 1 , 2 ] ) = or th (V ( : , [ 1 , 2 ] ) ) ; % TBD: Automate t h i s
61 end

81
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62 D = sqrtm (d) ;
63 W = D*V’*U2;
64 decomposedAB2 = [V OU; OU V]*[D OU; OU D’ ]* [W OU; OU W] ;
65

66 i f ( s i z e (W,1 ) == 2)
67 decomposedW = QSD_opql2 (W, prnt , qbsp ) ;
68 e l se
69 decomposedW = QSD_opql (W, prnt , qbsp (1 : end−1) ) ;
70 end
71

72 ar = genMk(dim−1)\(2* l og ( d iag (D) ) /1 i ) ;
73 dd = eye ( s i z e (AB2 ,1 ) ) ;
74 f o r i = 1: s i z e (D,1 )
75 i f ( i == s i z e (D,1 ) )
76 posc = dim−2;
77 e l se
78 [~ , idx ] = f i nd ( s p r i n t f ( dec2bin ( b in2gray ( i −1) ,dim−1) ) ~= s p r i n t f ( dec2bin (

b in2gray ( i ) , dim−1) ) ,1) ;
79 posc = dim−2 − ( i dx − 1) ;
80 end
81 dd = U_CX( posc , dim−1,dim ) * kron (Rz ( ar ( i ) ) , eye (2^(dim−1) ) ) * dd ;
82 i f ( prnt > 1)
83 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp ( end ) ,−ar ( i ) ) ;
84 f p r i n t f ( ’ k . gate ( ” cnot ” ,[%d,%d ] ) \n ’ , posc , dim−1) ;
85 end
86 end
87 decomposedD = dd ;
88

89 i f ( s i z e (V ,1 ) == 2)
90 decomposedV = QSD_opql2 (V , prnt , qbsp ) ;
91 e l se
92 decomposedV = QSD_opql (V , prnt , qbsp (1 : end−1) ) ;
93 end
94

95 decomposedAB2 = kron ( I , decomposedV )*decomposedD*kron ( I , decomposedW) ;
96 end
97

98 %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ STEP 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
99 % Decompose CS to Ry , CX
100 CS = [ cc ss ; −ss cc ] ; % Proper ty Test : cc^2 + ss^2 = eye ( s i z e ( cc , 1 ) )
101

102 t r = genMk(dim−1)\(2* as in ( d iag ( ss ) ) ) ;
103 decomposedCS = eye ( s i z e (CS ,1 ) ) ;
104 f o r i = 1: s i z e ( ss , 1 )
105 i f ( i == s i z e ( ss , 1 ) )
106 posc = dim−2;
107 e l se
108 [~ , idx ] = f i nd ( s p r i n t f ( dec2bin ( b in2gray ( i −1) ,dim−1) ) ~= s p r i n t f ( dec2bin ( b in2gray (

i ) , dim−1) ) ,1) ;
109 posc = dim−2 − ( i dx − 1) ;
110 end
111 decomposedCS = kron (Ry ( t r ( i ) ) , eye (2^(dim−1) ) ) * decomposedCS ;
112 decomposedCS = U_CX( posc , dim−1,dim ) * decomposedCS ;
113 i f ( prnt > 1)
114 f p r i n t f ( ’ k . ry(%d,%f ) \n ’ , qbsp ( end ) ,− t r ( i ) ) ;
115 f p r i n t f ( ’ k . gate ( ” cnot ” ,[%d,%d ] ) \n ’ , posc , dim−1) ;
116 end
117 end
118

119 %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ STEP 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
120 % Decompose AB1 to V , D, W ( lower dimension )
121 AB1 = [ L0 zeros ( s i z e ( L0 ,1 ) , s i z e ( L1 ,2 ) ) ; zeros ( s i z e ( L1 ,1 ) , s i z e ( L0 ,2 ) ) L1 ] ;
122

123 U1 = AB1 (1: s p l i t p t , 1 : s p l i t p t ) ;
124 U2 = AB1( s p l i t p t +1:end , s p l i t p t +1:end ) ;
125

126 i f (max(max( abs (U1+U2) ) ) < 1e−10 | | max(max( abs (U1−U2) ) ) < 1e−10)
127 i f ( dim > 2)
128 ’ Not supported ’ % TBD: How t h i s sec t i on behaves f o r dim > 2
129 end
130 [ de l ta , alpha , theta , beta ] = zyz (U1) ;
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131 decomposedU1 = Rz ( alpha )*Ry( theta )*Rz ( beta ) ;
132 i f ( prnt > 1)
133 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−beta ) ;
134 f p r i n t f ( ’ k . ry(%d,%f ) \n ’ , qbsp (1) ,− theta ) ;
135 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−alpha ) ;
136 end
137 i f ( prnt == 2)
138 decomposedU1 = AP( de l t a )*decomposedU1 ;
139 f p r i n t f ( ’ ap q%d,%f \n ’ , qbsp (1) ,− de l t a ) ;
140 end
141 decomposedAB1 = kron ( I , decomposedU1 ) ;
142 i f (max(max(U1+U2) ) < 1e−10)
143 decomposedAB1 = kron (Rz ( p i ) , I )*decomposedAB1 ;
144 i f ( prnt > 1)
145 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (2) ,− p i ) ;
146 end
147 i f ( prnt == 2)
148 decomposedAB1 = kron (AP(−p i /2) , I )*decomposedAB1 ;
149 f p r i n t f ( ’ ap q%d,%f \n ’ , qbsp (2) , p i /2) ;
150 end
151 end
152 e l se
153 [ v , d ,~] = e ig (U1*U2 ’ ) ;
154 V = v ;
155 i f dim == 4
156 % 7 & 8 Eigenva lues i n d are repeated , thus V*V ’ i s not I . Adjustment needed
157 % https : / / n l . mathworks . com/ mat labcent ra l / answers/214557− e igenvectors−are−not−

orthogonal−for−some−skew−symmetric−matr ices−why
158 V ( : , [ 7 , 8 ] ) = or th (V ( : , [ 7 , 8 ] ) ) ; % TBD: Automate t h i s
159 end
160 D = sqrtm (d) ;
161 W = D*V’*U2;
162 decomposedAB1 = [V OU; OU V]*[D OU; OU D’ ]* [W OU; OU W] ;
163

164 i f ( s i z e (W,1 ) == 2)
165 decomposedW = QSD_opql2 (W, prnt , qbsp ) ;
166 e l se
167 decomposedW = QSD_opql (W, prnt , qbsp (1 : end−1) ) ;
168 end
169

170 ar = genMk(dim−1)\(2* l og ( d iag (D) ) /1 i ) ;
171 dd = eye ( s i z e (AB1 ,1 ) ) ;
172 f o r i = 1: s i z e (D,1 )
173 i f ( i == s i z e (D,1 ) )
174 posc = dim−2;
175 e l se
176 [~ , idx ] = f i nd ( s p r i n t f ( dec2bin ( b in2gray ( i −1) ,dim−1) ) ~= s p r i n t f ( dec2bin (

b in2gray ( i ) , dim−1) ) ,1) ;
177 posc = dim−2 − ( i dx − 1) ;
178 end
179 dd = U_CX( posc , dim−1,dim ) * kron (Rz ( ar ( i ) ) , eye (2^(dim−1) ) ) * dd ;
180 i f ( prnt > 1)
181 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp ( end ) ,−ar ( i ) ) ;
182 f p r i n t f ( ’ k . gate ( ” cnot ” ,[%d,%d ] ) \n ’ , posc , dim−1) ;
183 end
184 end
185 decomposedD = dd ;
186

187 i f ( s i z e (V ,1 ) == 2)
188 decomposedV = QSD_opql2 (V , prnt , qbsp ) ;
189 e l se
190 decomposedV = QSD_opql (V , prnt , qbsp (1 : end−1) ) ;
191 end
192

193 decomposedAB1 = kron ( I , decomposedV )*decomposedD*kron ( I , decomposedW) ;
194 end
195

196 %% F ina l Decomposit ion Test ing
197 % Ud = AB1*CS*AB2 ;
198 % Ud = decomposedAB1 * decomposedCS * decomposedAB2 ;
199 end
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200

201 %% Decompose 2x2 un i t a r i e s us ing ZYZ
202

203 f unc t i on decomposedU2 = QSD_opql2 (U2 , prnt , qbsp )
204 i f ( i s equa l (U2 , eye (2) ) )
205 decomposedU2 = eye (2) ;
206 e l se
207 [ de l ta , alpha , theta , beta ] = zyz (U2) ;
208 decomposedU2 = Rz ( alpha )*Ry( theta )*Rz ( beta ) ;
209 i f ( prnt > 1)
210 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−beta ) ;
211 f p r i n t f ( ’ k . ry(%d,%f ) \n ’ , qbsp (1) ,− theta ) ;
212 f p r i n t f ( ’ k . r z(%d,%f ) \n ’ , qbsp (1) ,−alpha ) ;
213 end
214 i f ( prnt == 2)
215 decomposedU2 = AP( de l t a )*decomposedU2 ;
216 f p r i n t f ( ’ ap q%d,%f \n ’ , qbsp (1) ,− de l t a ) ;
217 end
218 end
219 end
220

221 %% Arb i t r a r y phase un i t a r y opera t ion f o r comparing exact matr ix va lues
222

223 f unc t i on U = AP( t )
224 U = [ exp (1 i* t ) 0; 0 exp (1 i* t ) ] ;
225 end
226

227 %% Rotat ion about Y−ax i s
228

229 f unc t i on U = Ry( t )
230 U = [ cos ( t /2) s i n ( t /2) ; −s i n ( t /2) cos ( t /2) ] ;
231 end
232

233 %% Rotat ion about Z−ax i s
234

235 f unc t i on U = Rz ( t )
236 U = [ exp (1 i* t /2) 0; 0 exp(−1 i* t /2) ] ; % TBD: Check s ign of matr ix f o r convent ion
237 end
238

239 %% Convert b inary number to gray code
240

241 f unc t i on num = bin2gray (num)
242 num = b i t x o r (num, b i t s h i f t (num,−1) ) ;
243 end
244

245 %% ZYZ decomposit ion of a un i t a r y matr ix
246

247 f unc t i on [ de l ta , alpha , theta , beta ] = zyz (U)
248 de l t a = atan2 ( imag ( det (U) ) , r e a l ( det (U) ) ) / s i z e (U,1 ) ;
249 SU = U/ exp (1 i*de l t a ) ;
250 A = SU(1 ,1) ;
251 B = SU(1 ,2) ;
252 cw = rea l (A) ;
253 wx = imag (B) ;
254 wy = rea l (B) ;
255 wz = imag (A) ;
256 sw = sq r t (wx^2 + wy^2 + wz^2) ;
257 wx = wx/sw;
258 wy = wy/sw;
259 wz = wz/sw;
260 t1 = atan2 (wz*sw , cw) ;
261 t2 = atan2 (wx ,wy) ;
262 alpha = t1 + t2 ;
263 beta = t1 − t2 ;
264 theta = 2*atan2 (sw*sq r t (wx^2 + wy^2) , sq r t (cw^2 + (wz*sw)^2) ) ;
265 end
266

267 %% Cosine−Sine decomposit ion
268 % Source : h t tp : / /www. ar− t i s t e . com/m−fun / csd_qc .m
269

270 f unc t i on [ L0 , L1 , cc , ss , R0 , R1] = fatCSD (U)
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271

272 % This func t i on performs a spe c i a l case of f a t CSD;
273 % namely , the case tha t has been found use fu l i n quantum computing ,
274 % wherein the matr ix U being decomposed
275 % i s a 2^n dimens iona l un i t a r y matr ix ,
276 % and we p a r t i t i o n U i n t o four square matr i ces of the same s i z e .
277 % This func t i on c a l l s csd ( ) and i s a t r i v i a l extens ion of i t .
278 % csd ( ) performs th i n CSD .
279

280 % U = [U00 , U01] = [ L0 ] [ cc ss ] [ R0 ]
281 % [U10 , U11] [ L1][− ss cc ] [ R1]
282 %
283 % Thin vers ion of CSD ( performed by csd ( ) ) g ives
284 % cc , ss , LO , L1 and R0 , but
285 % i t doesn ’ t g ive R1 .
286 % This subrout ine c a l l s csd ( ) and then c a l c u l a t e s R1
287

288 %ns = number of s t a t e s
289 %nb = number of b i t s
290 ns = s i z e (U,1 ) ;
291 nb = 0;
292 k = 1;
293 whi le ( k<ns )
294 nb = nb+1;
295 k = k*2;
296 end
297 i f ( k~=ns )
298 e r ro r ( ’ dimension of input matr ix f o r csd_qc i s not power of 2 ’ ) ;
299 end
300 i f ( k==1)
301 e r ro r ( ’ dimension of input matr ix f o r csd_qc i s 1 ’ ) ;
302 end
303

304 nsh = ns /2 ; %ns ha l f
305 U00 = U(1: nsh , 1: nsh ) ;
306 U10 = U( nsh+1:ns , 1: nsh ) ;
307

308 [ L0 , L1 , R0 , cc , ss ] = thinCSD (U00 ,U10) ;
309 R0 = R0 ’ ;
310 ss = −ss ;
311

312 R1 = zeros ( nsh , nsh ) ;
313 f o r j =1:nsh
314 i f abs ( ss ( j , j ) )>abs ( cc ( j , j ) )
315 U01 = U(1: nsh , nsh+1:ns ) ;
316 tmp = (L0 ’*U01) ;
317 R1( j , : ) = tmp( j , : ) / ss ( j , j ) ;
318 e l se
319 U11 = U( nsh+1:ns , nsh+1:ns ) ;
320 tmp = (L1 ’*U11) ;
321 R1( j , : ) = tmp( j , : ) / cc ( j , j ) ;
322 end
323 end
324 end
325

326 f unc t i on [u1 , u2 , v , c , s]=thinCSD (q1 , q2 )
327

328 % Given Q1 and Q2 such tha t Q1’* Q1 + Q2’* Q2 = I , the
329 % C−S Decomposit ion i s a j o i n t f a c t o r i z a t i o n of the form
330 % Q1 = U1*C*V ’ and Q2=U2*S*V ’
331 % where U1 ,U2 ,V are orthogonal matr i ces and C and S are d iagona l
332 % matr ices ( not ne ce s s a r i l y square ) s a t i s f y i n g
333 % C’* C + S ’* S = I
334 % The diagona l e n t r i e s of C and S are nonnegat ive and the
335 % diagona l elements of C are i n nondecreasing order .
336 % The matr ix Q1 cannot have more columns than rows .
337 % ( Submitted by S . J . Leon )
338

339 [m, n]= s i z e (q1 ) ;
340 [p , n]= s i z e (q2 ) ;
341 [u1 , c , v]=svd (q1 ) ;
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342 z=eye (n) ; z=hankel ( z ( : , n ) ) ;
343 c (1 :n , : )=z*c (1 :n , : )*z ; u1 ( : , 1 : n )=u1 ( : , 1 : n)*z ; v=v*z ;
344 q2=q2*v ;
345 k=1;
346 f o r j =2:n
347 i f c ( j , j )<=1/ sq r t (2)
348 k=j ;
349 end
350 end
351 b=q2 ( : , 1 : k ) ;
352 [u2 , r ]=qr (b ) ;
353 s=u2 ’*q2 ;
354 t=min (p , n) ; t t=min (m, p) ;
355 i f k<t
356 r2=s ( k+1:p , k+1: t ) ;
357 [ ut , ss , v t ]=svd ( r2 ) ;
358 s ( k+1:p , k+1: t )=ss ;
359 c ( : , k+1: t )=c ( : , k+1: t )*vt ;
360 u2 ( : , k+1:p)=u2 ( : , k+1:p)*ut ;
361 v ( : , k+1: t )=v ( : , k+1: t )*vt ;
362 w=c ( k+1: t t , k+1: t ) ;
363 [ z , r ]=qr (w) ;
364 c ( k+1: t t , k+1: t )=r ;
365 u1 ( : , k+1: t t )=u1 ( : , k+1: t t )*z ;
366 end
367 f o r j =1:n
368 i f c ( j , j )<0
369 c ( j , j )=−c ( j , j ) ;
370 u1 ( : , j )=−u1 ( : , j ) ;
371 end
372 end
373 f o r j =1: t
374 i f s ( j , j )<0
375 s ( j , j )=−s ( j , j ) ;
376 u2 ( : , j )=−u2 ( : , j ) ;
377 end
378 end
379 end



Appendix-5

1 % Reference : Quantum as so c i a t i v e memory with improved d i s t r i b u t e d quer ies − J . P . T . Njafa , S .G
.N. Engo , P . Woafo

2 % Reference : Quantum a lgor i thms fo r pat te rn matching in genomic sequences − A . Sarkar
3 % \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
4 % \ pro j e c t : Quantum−acce le ra ted Genome−sequencing
5 % \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 f unc t i on mtlb_qam_a4_idq ( )
10 c lose a l l
11 c l e a r a l l
12 c l c
13

14 AS = { ’A ’ , ’C ’ , ’G ’ , ’ T ’ } ; % Alphabet se t {0 ,1 ,2 ,3} := {A ,C ,G, T} f o r DNA Nuc leo t ide
bases

15 A = s i z e (AS ,2 ) ; % Alphabet s i z e
16 Qa = c e i l ( log2 (A) ) ; % Number of qub i t s to encode a charac te r of the alphabet
17

18 R = ’TTGTCTAGGCGACCA ’ ;
19 N = s i z e (R ,2 ) ; % Reference genome s i z e
20 M = 2; % Short read s i z e
21 P = ’AA ’ ; % Search pat te rn ( always a s e r i e s of A , due to minimal

Hamming d i s tance as the query center )
22 Pb = ’ 0000 ’ ; % Binary encoding f o r P
23 Qd = Qa*M; % Number of qub i t s to encode the quantum genomic database
24 SS = 2^Qd; % State space
25

26 qbodq = 0.25; % q fo r the B inomia l d i s t r i b u t i o n f o r d i s t r i b u t e d query
27 bp = ones (1 ,SS ) ;
28 f o r i = 1:SS
29 hd = sum( s p r i n t f ( ’%s ’ , dec2bin ( i −1,Qd) ) ~= Pb) ;
30 bp( i ) = sq r t ( ( qbodq^(hd) )*((1−qbodq )^(Qd−hd) ) ) ;
31 end
32 p l o t ( [ 0 : SS−1] ,bp , ’ v−.b ’ )
33 hold on
34 BO = eye (SS ) − 2*bp ’*bp ;
35 %maxerrabs = max(max( abs (BO*BO ’ )−abs ( eye (SS ) ) ) ) % Check i f Un i ta ry
36

37 BOD = QSD_opql (BO,3 , [ 0 :Qd−1]) ; % Arg2 : 1 − no qasm , no AP ; 2 − qasm , AP ; 3+ − qasm , no
AP

38 maxerrabs = max(max( abs (BOD)−abs (BO) ) ) % Check decomposit ion e r r o r
39

40 %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TEST ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41

42 s = ones (1 ,16) ;
43 s (1) = 0; % AA
44 s (4) = 0; % AT
45 s (16) = 3; % TT
46 s = sq r t ( s /SS ) ; % Prepare i n i t i a l s t a t e
47 p l o t ( [ 0 : SS−1] , abs ( s ) .^2 , ’^−. r ’ )
48

49 s = (BOD*s ’ ) ’ ; % D i s t r i b u t ed Query
50 s = −s + 2*mean( s ) ; % D i f f u se
51 s = −s ; % Memorised Orac le
52 s (1) = −s (1) ;
53 s (4) = −s (4) ;
54 s = −s + 2*mean( s ) ; % D i f f u se
55 p l o t ( [ 0 : SS−1] , abs ( s ) .^2 , ’ s−m’ )
56 ax i s ( [0 SS−1 0 1])
57 legend ( ’ D i s t r i b u t ed Query ’ , ’Quantum Memory ’ , ’ F i n a l S ta te ’ )
58 x l abe l ( ’ S ta te ’ )
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59 y l abe l ( ’ P r o b a b i l i t y ’ )
60 end
61

62 %% Generates a c l a s s i c a l database from the re fe rence genome rg with en t r i e s of s i z e szss
63

64 f unc t i on cdb = prepCdb ( rg , szss )
65 cdb = [ ] ;
66 f o r i = 1: s i z e ( rg , 2 )−szss+1
67 cdb = [ num2str ( cdb ) ; num2str ( rg ( i : i+szss −1) ) ] ;
68 end
69 end



Appendix-6

1 ## Reference : Quantum as so c i a t i v e memory with improved d i s t r i b u t e d quer ies − J . P . T . Njafa , S .
G.N. Engo , P . Woafo

2 ## Reference : Quantum a lgor i thms fo r pat te rn matching in genomic sequences − A . Sarkar
3 ## \ author : A r i t r a Sarkar ( pr ince−ph0en1x )
4 ## \ p ro j e c t : Quantum−acce le ra ted Genome−sequencing
5 ## \ repo : h t tps : / / g i t l a b . com/ pr ince−ph0en1x /QaGs
6

7 #############################################################################################
8

9 from openql import openql as q l
10 import qxe l a r a to r
11

12 import random
13 from math import *
14 import os
15 import re
16 import math
17 import ma tp l o t l i b . pyp lo t as p l t
18 import numpy as np
19

20 #############################################################################################
21

22 def randStr ( szA , sz ) :
23 # Generates a random s t r i n g of length ’ sz ’ over the alphabet of s i z e ’ szA ’ i n decimal
24 b ias = 1/ szA # IMPROVE: add b ias here
25 rbs = ” ”
26 f o r i i n range (0 , sz ) :
27 rn = random . random ( )
28 f o r j i n range (0 , szA ) :
29 i f rn < ( j +1)*b ias :
30 rbs = rbs + s t r ( j ) # IMPROVE: BCD vers ion
31 break
32 re tu rn rbs
33

34 #############################################################################################
35

36 AS = { ’ 00 ’ , ’ 01 ’ , ’ 10 ’ , ’ 11 ’ } # Alphabet se t {0 ,1 ,2 ,3} := {A ,C ,G, T} f o r DNA Nuc leo t ide bases
37 A = len (AS) # Alphabet s i z e
38 N = 16 # Reference Genome s i z e
39 w = ”0033231302212011 ” # Reference Genome: ”ATTGTCTAGGCGACCA”
40 M = 2 # Short Read s i z e
41 p = ”10” # Short Read : ”AA”
42

43 Q_A = c e i l ( log2 (A) ) # Number of qub i t s to encode one charac te r
44 Q_D = Q_A * M # Number of data qub i t s
45 Q_T = c e i l ( log2 (N−M) ) # Tag Qubits
46 Q_anc = 1 # Number of a n c i l l a qub i t s
47 anc = Q_D + Q_T # An c i l l a qub i t i d
48 t o t a l _ qub i t s = Q_D + Q_T + Q_anc
49

50 #############################################################################################
51

52 def QAM( ) :
53 p r i n t (w, p )
54 con f i g_ fn = os . path . j o i n ( ’ gateConf ig . json ’ )
55 p la t fo rm = q l . P la t fo rm ( ’ platform_none ’ , con f i g_ fn )
56 prog = q l . Program ( ’ qam_a4 ’ , t o t a l _qub i t s , p la t fo rm )
57

58 # Kerne l 1: I n i t i a l i z a t i o n of Quantum Phone D i r e c t o r y
59 qk1 = q l . Kerne l ( ’ QCirc1 ’ , p la t fo rm )
60 C i r c1 ( qk1 )
61
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62 # Kerne l 2: Ca l cu l a t e Hamming Dis tance
63 qk2 = q l . Kerne l ( ’ QCirc2 ’ , p la t fo rm )
64 C i r c2 ( qk2 )
65

66 # Kerne l 3: Orac le to Mark Hamming Dis tance of 0
67 qk3 = q l . Kerne l ( ’ QCirc3 ’ , p la t fo rm )
68 C i r c3 ( qk3 )
69

70 # Kerne l 4: Grover Ampl itude Amp l i f i c a t i o n
71 qk4 = q l . Kerne l ( ’ QCirc4 ’ , p la t fo rm )
72 C i r c4 ( qk4 )
73

74 # Kerne l 5: Orac le to Mark Memory Sta tes
75 qk5 = q l . Kerne l ( ’ QCirc5 ’ , p la t fo rm )
76 C i r c5 ( qk5 )
77

78 # Kerne l 6: Measurement
79 qk6 = q l . Kerne l ( ’ QCirc6 ’ , p la t fo rm )
80 C i r c6 ( qk6 )
81

82 # Const ruc t Program from Kerne ls
83 prog . add_kernel ( qk1 ) # I n i t i a l i s e
84 prog . add_kernel ( qk2 ) # Transform to Hamming d i s tance
85 prog . add_kernel ( qk3 ) # Orac le c a l l
86 prog . add_kernel ( qk4 ) # Invers ion about mean
87 prog . add_kernel ( qk5 ) # Memory Orac le
88 prog . add_kernel ( qk4 ) # Invers ion about mean
89 f o r r i n range (0 ,3) :
90 prog . add_kernel ( qk3 ) # Orac le c a l l
91 prog . add_kernel ( qk4 ) # Invers ion about mean
92 # prog . add_kernel ( qk6 ) # Uncomment i f us ing measurement based ana l y t i c s
93 prog . compi le ( )
94 qx = qxe l a r a to r .QX( )
95 qx . se t ( ’ t es t_output /qam_a4 . qasm ’ )
96

97 # Resu l t a n a l y t i c s us ing In t e r na l S ta te Vector
98 qx . execute ( )
99 qxopt = qx . ge t_s ta te ( )
100 i s v = [0]*(2** t o t a l _ qub i t s )
101 ptrn = re . compi le ( ’ \(([+−]\d+.?\d*)e?(−\d*) ? ,([+−]\d+.?\d*)e?(−\d*) ? \ ) \ s [|]([0 −1]*)> ’ )
102 f o r l i n e i n qxopt . s p l i t l i n e s ( ) :
103 mtch = ptrn . search ( l i n e )
104 i f mtch != None :
105 ar = f l o a t (mtch . group (1) )
106 i f mtch . group (2) != None :
107 are = f l o a t (mtch . group (2) )
108 ar = ar * 10**are
109 ac = f l o a t (mtch . group (3) )
110 i f mtch . group (4) != None :
111 ace = f l o a t (mtch . group (4) )
112 ac = ac * 10**ace
113 s t a t e = i n t (mtch . group (5) ,2)
114 i s v [ s t a t e ] = ar**2 + ac**2
115 p l o t y = i s v
116 i s v t = [0]*(2**4)
117 f o r t a g i i n range (0 ,2** t o t a l _ qub i t s ) :
118 i f i s v [ t a g i ] > 0.03:
119 t i = format ( tag i , ’ 0 ’+s t r ( t o t a l _ qub i t s )+ ’ b ’ )
120 i s v t [ i n t ( t i [ :4: −1] ,2) ] = i s v [ t a g i ]
121 f o r t a g i i n range (0 ,16) :
122 p r i n t ( ”Tag : ” , tag i , ” \ t p r o b a b i l i t y ” , round ( i s v t [ t a g i ] ,5 ) )
123 p l t . p l o t ( i s v )
124 p l t . y l a be l ( ’ P r o b a b i l i t y ’ )
125 p l t . x l a be l ( ’ Index ’ )
126 p l t . y l im ( [0 ,1 ] )
127 p l t . show ( )
128 re tu rn
129

130 #############################################################################################
131

132 def C i r c1 ( k ) :
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133 f o r Qi i n range (0 , t o t a l _ qub i t s ) :# I n i t i a l i s e a l l qub i t s to |0> s ta te
134 k . prepz ( Qi )
135 # MSQ : ~~~~ m1a0 m1a1 m0a0 m0a1 t0 t1 t2 t3 ~~~~ : LSQ
136 f o r Qi i n range (0 ,Q_T) : # Uniform supe rpos i t i on of pos s i b l e s t a r t i n g po s i t i o n s (

answers )
137 k . gate ( ”h” , [ Qi ] )
138 nc = [ ]
139 f o r c i i n range (0 ,Q_T) :
140 nc . append ( c i )
141 f o r Qi i n range (0 ,N−M+1) :
142 Qis = format ( Qi , ’ 0 ’+s t r (Q_T)+ ’ b ’ )
143 f o r Q i s i i n range (0 ,Q_T) :
144 i f Qis [ Q i s i ] == ’ 0 ’ :
145 k . gate ( ” x ” , [ Q i s i ] )
146 wMi = w[ Qi : Qi+M]
147 p r i n t ( [ Qis ,wMi ] )
148 f o r w i s i i n range (0 ,M) :
149 wis i a = format ( i n t (wMi[ w i s i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
150 f o r w i s i a i i n range (0 ,Q_A) :
151 i f w i s i a [ w i s i a i ] == ’ 1 ’ :
152 nCX(k , nc ,Q_T+w i s i*Q_A+w i s i a i , anc )
153 f o r Q i s i i n range (0 ,Q_T) :
154 i f Qis [ Q i s i ] == ’ 0 ’ :
155 k . gate ( ” x ” , [ Q i s i ] )
156 wMi = p
157 f o r Qi i n range (N−M+1,2**Q_T) :
158 Qis = format ( Qi , ’ 0 ’+s t r (Q_T)+ ’ b ’ )
159 f o r Q i s i i n range (0 ,Q_T) :
160 i f Qis [ Q i s i ] == ’ 0 ’ :
161 k . gate ( ” x ” , [ Q i s i ] )
162 f o r w i s i i n range (0 ,M) :
163 wis i a = format ( i n t (wMi[ w i s i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
164 f o r w i s i a i i n range (0 ,Q_A) :
165 i f w i s i a [ w i s i a i ] == ’ 0 ’ :
166 nCX(k , nc ,Q_T+w i s i*Q_A+w i s i a i , anc )
167 f o r Q i s i i n range (0 ,Q_T) :
168 i f Qis [ Q i s i ] == ’ 0 ’ :
169 k . gate ( ” x ” , [ Q i s i ] )
170 re tu rn
171

172 #############################################################################################
173

174 def C i r c2 ( k ) :
175 f o r p i i n range (0 ,M) :
176 ppi = format ( i n t (p [ p i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
177 f o r p p i i i n range (0 ,Q_A) :
178 i f pp i [ p p i i ] == ’ 1 ’ :
179 k . gate ( ” x ” , [Q_T+p i*Q_A+pp i i ] )
180 re tu rn
181

182 #############################################################################################
183

184 def C i r c3 ( k ) :
185 k . r z (4 ,−2.495565)
186 k . ry (4 ,−1.046381)
187 k . r z (4 ,−0.634842)
188 k . r z (5 ,−1.095612)
189 k . gate ( ” cnot ” , [4 ,5 ] )
190 k . r z (5 ,−1.574113)
191 k . gate ( ” cnot ” , [4 ,5 ] )
192 k . r z (4 ,−0.663604)
193 k . ry (4 ,−1.337541)
194 k . r z (4 ,0.663604)
195 k . ry (5 ,2.180982)
196 k . gate ( ” cnot ” , [4 ,5 ] )
197 k . ry (5 ,0.270123)
198 k . gate ( ” cnot ” , [4 ,5 ] )
199 k . r z (4 ,−4.560313)
200 k . ry (4 ,−2.345810)
201 k . r z (4 ,0.217847)
202 k . r z (5 ,2.141438)
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203 k . gate ( ” cnot ” , [4 ,5 ] )
204 k . r z (5 ,−0.835336)
205 k . gate ( ” cnot ” , [4 ,5 ] )
206 k . r z (4 ,0.573939)
207 k . ry (4 ,−1.161760)
208 k . r z (4 ,−0.573939)
209 k . r z (6 ,0.265150)
210 k . gate ( ” cnot ” , [4 ,6 ] )
211 k . r z (6 ,0.792581)
212 k . gate ( ” cnot ” , [5 ,6 ] )
213 k . r z (6 ,−1.778400)
214 k . gate ( ” cnot ” , [4 ,6 ] )
215 k . r z (6 ,0.309606)
216 k . gate ( ” cnot ” , [5 ,6 ] )
217 k . r z (4 ,0.867198)
218 k . ry (4 ,−1.020460)
219 k . r z (4 ,−0.892549)
220 k . r z (5 ,−0.978970)
221 k . gate ( ” cnot ” , [4 ,5 ] )
222 k . r z (5 ,−2.042658)
223 k . gate ( ” cnot ” , [4 ,5 ] )
224 k . r z (4 ,−0.771181)
225 k . ry (4 ,−0.386977)
226 k . r z (4 ,0.771181)
227 k . ry (5 ,1.644840)
228 k . gate ( ” cnot ” , [4 ,5 ] )
229 k . ry (5 ,0.504899)
230 k . gate ( ” cnot ” , [4 ,5 ] )
231 k . r z (4 ,0.662837)
232 k . ry (4 ,−1.694500)
233 k . r z (4 ,−3.616169)
234 k . r z (5 ,0.160840)
235 k . gate ( ” cnot ” , [4 ,5 ] )
236 k . r z (5 ,−0.807003)
237 k . gate ( ” cnot ” , [4 ,5 ] )
238 k . r z (4 ,−0.523538)
239 k . ry (4 ,−1.195233)
240 k . r z (4 ,0.523538)
241 k . ry (6 ,1.486933)
242 k . gate ( ” cnot ” , [4 ,6 ] )
243 k . ry (6 ,0.346126)
244 k . gate ( ” cnot ” , [5 ,6 ] )
245 k . ry (6 ,−0.150052)
246 k . gate ( ” cnot ” , [4 ,6 ] )
247 k . ry (6 ,0.589344)
248 k . gate ( ” cnot ” , [5 ,6 ] )
249 k . r z (4 ,−4.033427)
250 k . ry (4 ,−2.661051)
251 k . r z (4 ,−0.217231)
252 k . r z (5 ,−0.679055)
253 k . gate ( ” cnot ” , [4 ,5 ] )
254 k . r z (5 ,1.623385)
255 k . gate ( ” cnot ” , [4 ,5 ] )
256 k . r z (4 ,−1.573731)
257 k . ry (4 ,−0.475009)
258 k . r z (4 ,1.573731)
259 k . ry (5 ,2.071674)
260 k . gate ( ” cnot ” , [4 ,5 ] )
261 k . ry (5 ,0.764902)
262 k . gate ( ” cnot ” , [4 ,5 ] )
263 k . r z (4 ,1.904202)
264 k . ry (4 ,−1.576334)
265 k . r z (4 ,3.300418)
266 k . r z (5 ,0.246450)
267 k . gate ( ” cnot ” , [4 ,5 ] )
268 k . r z (5 ,1.446510)
269 k . gate ( ” cnot ” , [4 ,5 ] )
270 k . r z (4 ,−3.121304)
271 k . ry (4 ,−1.150659)
272 k . r z (4 ,3.121304)
273 k . r z (6 ,−0.568080)
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274 k . gate ( ” cnot ” , [4 ,6 ] )
275 k . r z (6 ,−0.678844)
276 k . gate ( ” cnot ” , [5 ,6 ] )
277 k . r z (6 ,−0.184890)
278 k . gate ( ” cnot ” , [4 ,6 ] )
279 k . r z (6 ,1.600579)
280 k . gate ( ” cnot ” , [5 ,6 ] )
281 k . r z (4 ,2.234130)
282 k . ry (4 ,−2.090960)
283 k . r z (4 ,1.062383)
284 k . r z (5 ,0.164323)
285 k . gate ( ” cnot ” , [4 ,5 ] )
286 k . r z (5 ,1.743454)
287 k . gate ( ” cnot ” , [4 ,5 ] )
288 k . r z (4 ,−1.629366)
289 k . ry (4 ,−0.512242)
290 k . r z (4 ,1.629366)
291 k . ry (5 ,1.152369)
292 k . gate ( ” cnot ” , [4 ,5 ] )
293 k . ry (5 ,0.797232)
294 k . gate ( ” cnot ” , [4 ,5 ] )
295 k . r z (4 ,−0.651534)
296 k . ry (4 ,−2.240981)
297 k . r z (4 ,2.205052)
298 k . r z (5 ,1.091160)
299 k . gate ( ” cnot ” , [4 ,5 ] )
300 k . r z (5 ,0.777808)
301 k . gate ( ” cnot ” , [4 ,5 ] )
302 k . r z (4 ,2.741933)
303 k . ry (4 ,−1.561898)
304 k . r z (4 ,−2.741933)
305 k . r z (7 ,−0.392699)
306 k . gate ( ” cnot ” , [4 ,7 ] )
307 k . r z (7 ,0.857984)
308 k . gate ( ” cnot ” , [5 ,7 ] )
309 k . r z (7 ,−0.392699)
310 k . gate ( ” cnot ” , [4 ,7 ] )
311 k . r z (7 ,−0.730732)
312 k . gate ( ” cnot ” , [6 ,7 ] )
313 k . r z (7 ,−1.070810)
314 k . gate ( ” cnot ” , [4 ,7 ] )
315 k . r z (7 ,−0.849024)
316 k . gate ( ” cnot ” , [5 ,7 ] )
317 k . r z (7 ,0.285412)
318 k . gate ( ” cnot ” , [4 ,7 ] )
319 k . r z (7 ,−0.849024)
320 k . gate ( ” cnot ” , [6 ,7 ] )
321 k . r z (4 ,2.422630)
322 k . ry (4 ,−1.054241)
323 k . r z (4 ,−0.670996)
324 k . r z (5 ,−0.346171)
325 k . gate ( ” cnot ” , [4 ,5 ] )
326 k . r z (5 ,−2.395018)
327 k . gate ( ” cnot ” , [4 ,5 ] )
328 k . r z (4 ,−2.330937)
329 k . ry (4 ,−1.254475)
330 k . r z (4 ,2.330937)
331 k . ry (5 ,1.739765)
332 k . gate ( ” cnot ” , [4 ,5 ] )
333 k . ry (5 ,0.618025)
334 k . gate ( ” cnot ” , [4 ,5 ] )
335 k . r z (4 ,−2.169652)
336 k . ry (4 ,−2.868867)
337 k . r z (4 ,2.683293)
338 k . r z (5 ,0.126237)
339 k . gate ( ” cnot ” , [4 ,5 ] )
340 k . r z (5 ,−1.920065)
341 k . gate ( ” cnot ” , [4 ,5 ] )
342 k . r z (4 ,−1.083853)
343 k . ry (4 ,−1.399634)
344 k . r z (4 ,1.083853)
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345 k . r z (6 ,0.040519)
346 k . gate ( ” cnot ” , [4 ,6 ] )
347 k . r z (6 ,0.810583)
348 k . gate ( ” cnot ” , [5 ,6 ] )
349 k . r z (6 ,1.374535)
350 k . gate ( ” cnot ” , [4 ,6 ] )
351 k . r z (6 ,0.527623)
352 k . gate ( ” cnot ” , [5 ,6 ] )
353 k . r z (4 ,−5.305886)
354 k . ry (4 ,−0.764960)
355 k . r z (4 ,0.785715)
356 k . r z (5 ,−0.264883)
357 k . gate ( ” cnot ” , [4 ,5 ] )
358 k . r z (5 ,1.987388)
359 k . gate ( ” cnot ” , [4 ,5 ] )
360 k . r z (4 ,1.990355)
361 k . ry (4 ,−0.392324)
362 k . r z (4 ,−1.990355)
363 k . ry (5 ,1.862818)
364 k . gate ( ” cnot ” , [4 ,5 ] )
365 k . ry (5 ,0.827526)
366 k . gate ( ” cnot ” , [4 ,5 ] )
367 k . r z (4 ,−1.779818)
368 k . ry (4 ,−1.301020)
369 k . r z (4 ,−1.688079)
370 k . r z (5 ,0.417135)
371 k . gate ( ” cnot ” , [4 ,5 ] )
372 k . r z (5 ,−1.817636)
373 k . gate ( ” cnot ” , [4 ,5 ] )
374 k . r z (4 ,−0.537353)
375 k . ry (4 ,−0.105530)
376 k . r z (4 ,0.537353)
377 k . ry (6 ,1.025571)
378 k . gate ( ” cnot ” , [4 ,6 ] )
379 k . ry (6 ,0.386772)
380 k . gate ( ” cnot ” , [5 ,6 ] )
381 k . ry (6 ,0.325953)
382 k . gate ( ” cnot ” , [4 ,6 ] )
383 k . ry (6 ,0.964752)
384 k . gate ( ” cnot ” , [5 ,6 ] )
385 k . r z (4 ,0.589048)
386 k . ry (4 ,−2.364848)
387 k . r z (4 ,4.476448)
388 k . r z (5 ,−0.862498)
389 k . gate ( ” cnot ” , [4 ,5 ] )
390 k . r z (5 ,−1.949294)
391 k . gate ( ” cnot ” , [4 ,5 ] )
392 k . r z (4 ,−0.830300)
393 k . ry (4 ,−0.962399)
394 k . r z (4 ,0.830300)
395 k . ry (5 ,1.652079)
396 k . gate ( ” cnot ” , [4 ,5 ] )
397 k . ry (5 ,0.567936)
398 k . gate ( ” cnot ” , [4 ,5 ] )
399 k . r z (4 ,−3.400688)
400 k . ry (4 ,−0.392400)
401 k . r z (4 ,2.556896)
402 k . r z (5 ,−1.608724)
403 k . gate ( ” cnot ” , [4 ,5 ] )
404 k . r z (5 ,0.535112)
405 k . gate ( ” cnot ” , [4 ,5 ] )
406 k . r z (4 ,−2.631783)
407 k . ry (4 ,−1.010089)
408 k . r z (4 ,2.631783)
409 k . r z (6 ,−0.749385)
410 k . gate ( ” cnot ” , [4 ,6 ] )
411 k . r z (6 ,−0.995045)
412 k . gate ( ” cnot ” , [5 ,6 ] )
413 k . r z (6 ,−0.425068)
414 k . gate ( ” cnot ” , [4 ,6 ] )
415 k . r z (6 ,1.656585)
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416 k . gate ( ” cnot ” , [5 ,6 ] )
417 k . r z (4 ,−1.259555)
418 k . ry (4 ,−1.413129)
419 k . r z (4 ,−0.376948)
420 k . r z (5 ,−0.023320)
421 k . gate ( ” cnot ” , [4 ,5 ] )
422 k . r z (5 ,0.375551)
423 k . gate ( ” cnot ” , [4 ,5 ] )
424 k . r z (4 ,−0.124097)
425 k . ry (4 ,−0.211290)
426 k . r z (4 ,0.124097)
427 k . ry (5 ,1.630461)
428 k . gate ( ” cnot ” , [4 ,5 ] )
429 k . ry (5 ,0.680158)
430 k . gate ( ” cnot ” , [4 ,5 ] )
431 k . r z (4 ,−5.829541)
432 k . ry (4 ,−2.443439)
433 k . r z (4 ,0.018165)
434 k . r z (5 ,0.242793)
435 k . gate ( ” cnot ” , [4 ,5 ] )
436 k . r z (5 ,−1.876220)
437 k . gate ( ” cnot ” , [4 ,5 ] )
438 k . r z (4 ,1.413556)
439 k . ry (4 ,−0.974064)
440 k . r z (4 ,−1.413556)
441 k . ry (7 ,0.261799)
442 k . gate ( ” cnot ” , [4 ,7 ] )
443 k . ry (7 ,0.261799)
444 k . gate ( ” cnot ” , [5 ,7 ] )
445 k . ry (7 ,0.261799)
446 k . gate ( ” cnot ” , [4 ,7 ] )
447 k . ry (7 ,0.261799)
448 k . gate ( ” cnot ” , [6 ,7 ] )
449 k . ry (7 ,0.261799)
450 k . gate ( ” cnot ” , [4 ,7 ] )
451 k . ry (7 ,0.261799)
452 k . gate ( ” cnot ” , [5 ,7 ] )
453 k . ry (7 ,0.261799)
454 k . gate ( ” cnot ” , [4 ,7 ] )
455 k . ry (7 ,0.261799)
456 k . gate ( ” cnot ” , [6 ,7 ] )
457 k . r z (4 ,3.477399)
458 k . ry (4 ,−1.335230)
459 k . r z (4 ,1.300499)
460 k . r z (5 ,1.438258)
461 k . gate ( ” cnot ” , [4 ,5 ] )
462 k . r z (5 ,−0.801232)
463 k . gate ( ” cnot ” , [4 ,5 ] )
464 k . r z (4 ,−1.104663)
465 k . ry (4 ,−1.513998)
466 k . r z (4 ,1.104663)
467 k . ry (5 ,1.300200)
468 k . gate ( ” cnot ” , [4 ,5 ] )
469 k . ry (5 ,0.817306)
470 k . gate ( ” cnot ” , [4 ,5 ] )
471 k . r z (4 ,−0.537000)
472 k . ry (4 ,−2.102438)
473 k . r z (4 ,−1.622373)
474 k . r z (5 ,−0.525194)
475 k . gate ( ” cnot ” , [4 ,5 ] )
476 k . r z (5 ,0.334422)
477 k . gate ( ” cnot ” , [4 ,5 ] )
478 k . r z (4 ,0.438354)
479 k . ry (4 ,−1.454119)
480 k . r z (4 ,−0.438354)
481 k . r z (6 ,−0.785398)
482 k . gate ( ” cnot ” , [4 ,6 ] )
483 k . r z (6 ,−0.085948)
484 k . gate ( ” cnot ” , [5 ,6 ] )
485 k . r z (6 ,−0.785398)
486 k . gate ( ” cnot ” , [4 ,6 ] )
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487 k . r z (6 ,−1.484849)
488 k . gate ( ” cnot ” , [5 ,6 ] )
489 k . r z (4 ,3.350364)
490 k . ry (4 ,−2.676777)
491 k . r z (4 ,2.930095)
492 k . r z (5 ,0.954045)
493 k . gate ( ” cnot ” , [4 ,5 ] )
494 k . r z (5 ,0.745842)
495 k . gate ( ” cnot ” , [4 ,5 ] )
496 k . r z (4 ,2.944517)
497 k . ry (4 ,−1.291884)
498 k . r z (4 ,−2.944517)
499 k . ry (5 ,1.438536)
500 k . gate ( ” cnot ” , [4 ,5 ] )
501 k . ry (5 ,0.852927)
502 k . gate ( ” cnot ” , [4 ,5 ] )
503 k . r z (4 ,1.249836)
504 k . ry (4 ,−2.002135)
505 k . r z (4 ,−2.140359)
506 k . r z (5 ,−0.086264)
507 k . gate ( ” cnot ” , [4 ,5 ] )
508 k . r z (5 ,−0.840127)
509 k . gate ( ” cnot ” , [4 ,5 ] )
510 k . r z (4 ,−2.964859)
511 k . ry (4 ,−1.544692)
512 k . r z (4 ,2.964859)
513 k . ry (6 ,1.614267)
514 k . gate ( ” cnot ” , [4 ,6 ] )
515 k . ry (6 ,0.309438)
516 k . gate ( ” cnot ” , [5 ,6 ] )
517 k . ry (6 ,−0.036398)
518 k . gate ( ” cnot ” , [4 ,6 ] )
519 k . ry (6 ,1.254285)
520 k . gate ( ” cnot ” , [5 ,6 ] )
521 k . r z (4 ,4.735940)
522 k . ry (4 ,−1.080950)
523 k . r z (4 ,−1.398253)
524 k . r z (5 ,0.141644)
525 k . gate ( ” cnot ” , [4 ,5 ] )
526 k . r z (5 ,1.581510)
527 k . gate ( ” cnot ” , [4 ,5 ] )
528 k . r z (4 ,3.000507)
529 k . ry (4 ,−1.345787)
530 k . r z (4 ,−3.000507)
531 k . ry (5 ,2.303325)
532 k . gate ( ” cnot ” , [4 ,5 ] )
533 k . ry (5 ,0.768309)
534 k . gate ( ” cnot ” , [4 ,5 ] )
535 k . r z (4 ,−4.022805)
536 k . ry (4 ,−2.559101)
537 k . r z (4 ,1.595668)
538 k . r z (5 ,−1.365775)
539 k . gate ( ” cnot ” , [4 ,5 ] )
540 k . r z (5 ,−1.372495)
541 k . gate ( ” cnot ” , [4 ,5 ] )
542 k . r z (4 ,−1.209858)
543 k . ry (4 ,−0.713527)
544 k . r z (4 ,1.209858)
545 k . r z (6 ,−0.392699)
546 k . gate ( ” cnot ” , [4 ,6 ] )
547 k . r z (6 ,1.718203)
548 k . gate ( ” cnot ” , [5 ,6 ] )
549 k . r z (6 ,−0.159657)
550 k . gate ( ” cnot ” , [4 ,6 ] )
551 k . r z (6 ,−1.151992)
552 k . gate ( ” cnot ” , [5 ,6 ] )
553 k . r z (4 ,−2.103083)
554 k . ry (4 ,−1.642351)
555 k . r z (4 ,−1.494416)
556 k . r z (5 ,−0.071267)
557 k . gate ( ” cnot ” , [4 ,5 ] )
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558 k . r z (5 ,1.653073)
559 k . gate ( ” cnot ” , [4 ,5 ] )
560 k . r z (4 ,−0.387850)
561 k . ry (4 ,−0.891440)
562 k . r z (4 ,0.387850)
563 k . ry (5 ,0.437715)
564 k . gate ( ” cnot ” , [4 ,5 ] )
565 k . ry (5 ,0.234582)
566 k . gate ( ” cnot ” , [4 ,5 ] )
567 k . r z (4 ,−4.048179)
568 k . ry (4 ,−2.212950)
569 k . r z (4 ,−0.379861)
570 k . r z (5 ,1.259357)
571 k . gate ( ” cnot ” , [4 ,5 ] )
572 k . r z (5 ,−0.726894)
573 k . gate ( ” cnot ” , [4 ,5 ] )
574 k . r z (4 ,−0.204942)
575 k . ry (4 ,−1.154988)
576 k . r z (4 ,0.204942)
577 k . r z (7 ,−0.000000)
578 k . gate ( ” cnot ” , [4 ,7 ] )
579 k . r z (7 ,−1.250684)
580 k . gate ( ” cnot ” , [5 ,7 ] )
581 k . r z (7 ,−0.338033)
582 k . gate ( ” cnot ” , [4 ,7 ] )
583 k . r z (7 ,0.000000)
584 k . gate ( ” cnot ” , [6 ,7 ] )
585 k . r z (7 ,0.000000)
586 k . gate ( ” cnot ” , [4 ,7 ] )
587 k . r z (7 ,−0.221786)
588 k . gate ( ” cnot ” , [5 ,7 ] )
589 k . r z (7 ,−1.134436)
590 k . gate ( ” cnot ” , [4 ,7 ] )
591 k . r z (7 ,0.000000)
592 k . gate ( ” cnot ” , [6 ,7 ] )
593 k . r z (4 ,0.311756)
594 k . ry (4 ,−0.913364)
595 k . r z (4 ,5.950218)
596 k . r z (5 ,1.175158)
597 k . gate ( ” cnot ” , [4 ,5 ] )
598 k . r z (5 ,0.505238)
599 k . gate ( ” cnot ” , [4 ,5 ] )
600 k . r z (4 ,0.562177)
601 k . ry (4 ,−0.920386)
602 k . r z (4 ,−0.562177)
603 k . ry (5 ,1.229257)
604 k . gate ( ” cnot ” , [4 ,5 ] )
605 k . ry (5 ,0.351218)
606 k . gate ( ” cnot ” , [4 ,5 ] )
607 k . r z (4 ,−0.714317)
608 k . ry (4 ,−1.273729)
609 k . r z (4 ,2.687247)
610 k . r z (5 ,−0.815124)
611 k . gate ( ” cnot ” , [4 ,5 ] )
612 k . r z (5 ,1.756678)
613 k . gate ( ” cnot ” , [4 ,5 ] )
614 k . r z (4 ,−1.191286)
615 k . ry (4 ,−1.322072)
616 k . r z (4 ,1.191286)
617 k . r z (6 ,−0.392699)
618 k . gate ( ” cnot ” , [4 ,6 ] )
619 k . r z (6 ,0.560325)
620 k . gate ( ” cnot ” , [5 ,6 ] )
621 k . r z (6 ,0.367070)
622 k . gate ( ” cnot ” , [4 ,6 ] )
623 k . r z (6 ,−1.604025)
624 k . gate ( ” cnot ” , [5 ,6 ] )
625 k . r z (4 ,3.443813)
626 k . ry (4 ,−0.528964)
627 k . r z (4 ,−2.730648)
628 k . r z (5 ,0.333271)
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629 k . gate ( ” cnot ” , [4 ,5 ] )
630 k . r z (5 ,2.086082)
631 k . gate ( ” cnot ” , [4 ,5 ] )
632 k . r z (4 ,−0.945221)
633 k . ry (4 ,−0.446899)
634 k . r z (4 ,0.945221)
635 k . ry (5 ,1.423641)
636 k . gate ( ” cnot ” , [4 ,5 ] )
637 k . ry (5 ,0.452590)
638 k . gate ( ” cnot ” , [4 ,5 ] )
639 k . r z (4 ,−3.227600)
640 k . ry (4 ,−0.800360)
641 k . r z (4 ,0.895195)
642 k . r z (5 ,0.879420)
643 k . gate ( ” cnot ” , [4 ,5 ] )
644 k . r z (5 ,−1.175390)
645 k . gate ( ” cnot ” , [4 ,5 ] )
646 k . r z (4 ,−2.704350)
647 k . ry (4 ,−1.291475)
648 k . r z (4 ,2.704350)
649 k . ry (6 ,1.783616)
650 k . gate ( ” cnot ” , [4 ,6 ] )
651 k . ry (6 ,0.493806)
652 k . gate ( ” cnot ” , [5 ,6 ] )
653 k . ry (6 ,0.142692)
654 k . gate ( ” cnot ” , [4 ,6 ] )
655 k . ry (6 ,0.538500)
656 k . gate ( ” cnot ” , [5 ,6 ] )
657 k . r z (4 ,0.074716)
658 k . ry (4 ,−1.215538)
659 k . r z (4 ,2.366195)
660 k . r z (5 ,−0.634980)
661 k . gate ( ” cnot ” , [4 ,5 ] )
662 k . r z (5 ,−2.304112)
663 k . gate ( ” cnot ” , [4 ,5 ] )
664 k . r z (4 ,−0.827265)
665 k . ry (4 ,−1.142645)
666 k . r z (4 ,0.827265)
667 k . ry (5 ,1.674571)
668 k . gate ( ” cnot ” , [4 ,5 ] )
669 k . ry (5 ,0.564013)
670 k . gate ( ” cnot ” , [4 ,5 ] )
671 k . r z (4 ,0.557684)
672 k . ry (4 ,−0.316529)
673 k . r z (4 ,4.037339)
674 k . r z (5 ,−1.658384)
675 k . gate ( ” cnot ” , [4 ,5 ] )
676 k . r z (5 ,0.946438)
677 k . gate ( ” cnot ” , [4 ,5 ] )
678 k . r z (4 ,−1.615404)
679 k . ry (4 ,−1.423146)
680 k . r z (4 ,1.615404)
681 k . r z (6 ,0.785398)
682 k . gate ( ” cnot ” , [4 ,6 ] )
683 k . r z (6 ,−1.895989)
684 k . gate ( ” cnot ” , [5 ,6 ] )
685 k . r z (6 ,0.785398)
686 k . gate ( ” cnot ” , [4 ,6 ] )
687 k . r z (6 ,0.325193)
688 k . gate ( ” cnot ” , [5 ,6 ] )
689 k . r z (4 ,3.212053)
690 k . ry (4 ,−1.388574)
691 k . r z (4 ,−1.391053)
692 k . r z (5 ,1.520843)
693 k . gate ( ” cnot ” , [4 ,5 ] )
694 k . r z (5 ,0.942892)
695 k . gate ( ” cnot ” , [4 ,5 ] )
696 k . r z (4 ,1.229895)
697 k . ry (4 ,−1.476998)
698 k . r z (4 ,−1.229895)
699 k . ry (5 ,1.477189)
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700 k . gate ( ” cnot ” , [4 ,5 ] )
701 k . ry (5 ,0.636033)
702 k . gate ( ” cnot ” , [4 ,5 ] )
703 k . r z (4 ,−1.659093)
704 k . ry (4 ,−2.163702)
705 k . r z (4 ,−2.151962)
706 k . r z (5 ,−0.872758)
707 k . gate ( ” cnot ” , [4 ,5 ] )
708 k . r z (5 ,−1.456869)
709 k . gate ( ” cnot ” , [4 ,5 ] )
710 k . r z (4 ,−0.779867)
711 k . ry (4 ,−1.548794)
712 k . r z (4 ,0.779867)
713 re tu rn
714

715 #############################################################################################
716

717 def C i r c4 ( k ) :
718 f o r s i i n range (0 ,Q_D+Q_T) :
719 k . gate ( ”h” , [ s i ] )
720 k . gate ( ” x ” , [ s i ] )
721 k . gate ( ”h” , [Q_D+Q_T−1]) # CPhase to CNOT convers ion
722 nc = [ ]
723 f o r s j i n range (0 ,Q_D+Q_T−1) :
724 nc . append ( s j )
725 nCX(k , nc ,Q_D+Q_T−1,anc ) # Decompose mul t i−c on t r o l l e d CNOT
726 k . gate ( ”h” , [Q_D+Q_T−1]) # Uncompute CPhase to CNOT convers ion
727 f o r s i i n range (0 ,Q_D+Q_T) :
728 k . gate ( ” x ” , [ s i ] )
729 k . gate ( ”h” , [ s i ] )
730 re tu rn
731

732 #############################################################################################
733

734 def C i r c5 ( k ) :
735 nc = [ ]
736 f o r q s i i n range (0 ,Q_T+Q_D−1) :
737 nc . append ( qs i )
738 f o r Qi i n range (0 ,N−M+1) :
739 Qis = format ( Qi , ’ 0 ’+s t r (Q_T)+ ’ b ’ )
740 wMi = w[ Qi : Qi+M]
741 wt = Qis
742 f o r w i s i i n range (0 ,M) :
743 hd = i n t ( format ( i n t (wMi[ w i s i ] ) , ’ 0 ’+s t r (Q_A)+ ’ b ’ ) ,2) ^ i n t ( format ( i n t (p [ w i s i ] ) , ’ 0 ’

+s t r (Q_A)+ ’ b ’ ) ,2)
744 wis i a = format (hd , ’ 0 ’+s t r (Q_A)+ ’ b ’ )
745 wt = wt+w i s i a
746 f o r Q i s i i n range (0 ,Q_T+Q_D) :
747 i f wt [ Q i s i ] == ’ 0 ’ :
748 k . gate ( ” x ” , [ Q i s i ] )
749 k . gate ( ”h” , [Q_D+Q_T−1]) # CPhase to CNOT convers ion
750 nCX(k , nc ,Q_D+Q_T−1,anc ) # Decompose mul t i−c on t r o l l e d CNOT
751 k . gate ( ”h” , [Q_D+Q_T−1]) # Uncompute CPhase to CNOT convers ion
752 i f wt [ Q i s i ] == ’ 0 ’ :
753 k . gate ( ” x ” , [ Q i s i ] )
754

755 #############################################################################################
756

757 def C i r c6 ( k ) :
758 #k . d i s p l a y ( )
759 f o r s i i n range (0 ,Q_T) : # Measure tag po s i t i o n s
760 k . gate ( ”measure ” , [ s i ] )
761 re tu rn
762

763 #############################################################################################
764

765 def nCX(k , c , t , b ) :
766 nc = len ( c )
767 i f nc == 1:
768 k . gate ( ” cnot ” , [ c [0 ] , t ] )
769 e l i f nc == 2:
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770 k . t o f f o l i ( c [0 ] , c [1 ] , t )
771 e l se :
772 nch = c e i l ( nc /2)
773 c1 = c [ : nch ]
774 c2 = c [ nch : ]
775 c2 . append (b)
776 nCX(k , c1 , b , nch+1)
777 nCX(k , c2 , t , nch−1)
778 nCX(k , c1 , b , nch+1)
779 nCX(k , c2 , t , nch−1)
780 re tu rn
781

782 #############################################################################################
783

784 i f __name__ == ’ __main__ ’ :
785 QAM( )
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