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Abstract
In this article, two new algorithms are presented that convert a given data tensor train into 
either a Tucker decomposition with orthogonal matrix factors or a multi-scale entangle-
ment renormalization ansatz (MERA). The Tucker core tensor is never explicitly computed 
but stored as a tensor train instead, resulting in both computationally and storage efficient 
algorithms. Both the multilinear Tucker-ranks as well as the MERA-ranks are automati-
cally determined by the algorithm for a given upper bound on the relative approximation 
error. In addition, an iterative algorithm with low computational complexity based on 
solving an orthogonal Procrustes problem is proposed for the first time to retrieve optimal 
rank-lowering disentangler tensors, which are a crucial component in the construction of 
a low-rank MERA. Numerical experiments demonstrate the effectiveness of the proposed 
algorithms together with the potential storage benefit of a low-rank MERA over a tensor 
train.

Keywords Tensors · Tensor train · Tucker decomposition · HOSVD · MERA · Disentangler

Mathematics Subject Classification 15A23 · 15A69 · 65F99

1 Introduction

Tensor decompositions have played an important role over the past two decades in lift-
ing the curse of dimensionality in a myriad of applications [3–5, 18, 26]. The key idea in 
lifting the curse of dimensionality with tensor decompositions is the usage of a low-rank 
approximation. Many kinds of decompositions have consequently been developed and each 
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has its own rank definition. The canonical polyadic decomposition (CPD) [2, 15, 16] and 
the Tucker decomposition [2, 27] both generalize the notion of the matrix singular value 
decomposition (SVD) to higher-order tensors and have, therefore, received a lot of atten-
tion. More recent tensor decompositions are the tensor train (TT) [8, 9, 18, 21] and the 
hierarchical Tucker decomposition [12, 13]. It turns out that the latter two decompositions 
were already known in the quantum mechanics and condensed matter physics communities 
as the matrix product state (MPS) [23] and the tensor tree network (TTN) [25], respec-
tively. The multi-scale entanglement renormalization ansatz (MERA) [10, 30] is an exten-
sion of the TTN decomposition, recently proposed in quantum mechanics but has so far not 
received enough attention in the numerical linear algebra community. A key component of 
the MERA is the so-called disentangler tensor, responsible for limiting the growth of the 
TTN-ranks over consecutive levels. Although the computation of a MERA from a given 
tensor can be deduced from [10], computations are intensive due to multiple contractions 
and do not allow for the discovery of optimal ranks of the decomposition. The contribu-
tions of this article address this area. Specifically, we 

i) propose an algorithm that converts a given TT into a Tucker decomposition with guar-
anteed error bounds;

ii) propose an algorithm that converts a given TT into a MERA with guaranteed error 
bounds. This algorithm is called MERA constructive layer-wise expansion (MERA-
CLE);

iii) propose an iterative algorithm that computes a rank-lowering disentangler.

The resulting ranks of the computed Tucker and MERA approximations are completely 
determined by a given upper bound on the relative approximation error. The conversion of 
a TT into a Tucker decomposition was first suggested in [7], where the corresponding algo-
rithm uses an iterative alternating least squares (ALS) approach. It will be shown in this 
article that no ALS procedure is necessary. In fact, for a D-th order tensor it is sufficient to 
perform D consecutive SVD computations as described in Algorithm 1. It is then shown in 
Algorithm 2 that a TT can be converted into an L-layer MERA by applying Algorithm 1 
2L times. The obtained MERA ranks are, however, not optimal and this is identified to be 
due to the disentangler tensor computation. An iterative orthogonal Procrustes algorithm is 
proposed that to our knowledge for the first time ever, is able to compute optimal disentan-
glers that result in a minimal-rank MERA.

In Sect. 2 we introduce the notation and relevant tensor decompositions. The algorithm 
that converts a given TT into a Tucker decomposition with a guaranteed relative error 
bound is fully described in Sect. 3. The application of Algorithm 1 for the conversion of 
a given TT into a MERA with a guaranteed relative error bound is illustrated in Sect. 4. 
Section 5 discusses the problem of finding optimal disentangler tensors and the iterative 
Procrustes algorithm is proposed. Finally, in Sect.  6 numerical experiments demonstrate 
the effectiveness of the proposed algorithms.

2  Tensor Basics

A D-way or D-th order tensor A ∈ ℝI1×I2×⋯×ID is a D-dimensional array where each 
entry is completely determined by D indices i1,⋯ , iD . The scalar D is also often called 
the order of the tensor. The convention id = 1, 2,⋯ , Id is used, together with MATLAB 
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colon notation. Boldface capital calligraphic letters A,B,⋯ are used to denote tensors, 
boldface capital letters A,B,⋯ denote matrices, boldface letters a, b,⋯ denote vectors, 
and Roman letters a, b,⋯ denote scalars. The identity matrix of order N is denoted IN . 
The Frobenius norm ||A||2

F
 of a tensor A is defined as the sum of squares of all ten-

sor entries. The order of a tensor can be altered by grouping several indices together 
into a multi-index. The conversion of a multi-index [i1i2 ⋯ iD] into a linear index is per 
definition

In what follows, we will introduce three important tensor operations. The first tensor opera-
tion is the “reshape” operation, which changes the order of a given tensor and is commonly 
used to flatten tensors into matrices and vice versa.

Definition 1 The operator “reshape(A, [J1, J2,⋯ , JK]) ” reshapes the d-way tensor 

A ∈ ℝI1×I2×⋯×ID into a tensor with dimensions J1 × J2 ×⋯ × JK , with 
D∏
d=1

Id =
K∏
k=1

Jk.

Another important operation is the generalization of the matrix transpose to three or 
more indices.

Definition 2 The operator “permute(A, p) ” rearranges the indices of A ∈ ℝI1×I2×⋯×ID so 
that they are in the order specified by the vector p . The resulting tensor has the same values 
of A but the order of the subscripts needed to access any particular element is rearranged 
as specified by p . All the elements of p must be unique, real, positive, integer values from 
1 to D.

The definition of the “permute” operation allows one to write the transpose of a 
matrix A as permute(A, [2, 1]) . By combining both the reshape and permute operations, 
we can now introduce the mode-d matricization A<d> of a tensor.

Definition 3 ([19, p.  459]) The mode-d matricization A<d> of a D-way tensor A is the 
matrix with elements

The mode-d matricization A<d> is hence obtained from A as

The third and final important tensor operation is the summation over indices, also called 
contraction of indices. A particular common operation in this regard is the d-mode product 
of a tensor with a matrix.

Definition 4 ([19, p.  460]) The d-mode product, denoted A ×d Ud , of a tensor 
A ∈ ℝI1×⋯×ID with a matrix Ud ∈ ℝSd×Id is the tensor B ∈ ℝI1×Id−1×Sd×Id+1×⋯×ID with 
elements

(1)[i1i2 ⋯ iD] ∶= i1 +

D∑

k=2

(ik − 1)

k−1∏

l=1

Il.

A<d>(id, [i1 ⋯ id−1id+1 ⋯ iD]) ∶= A(i1, i2,⋯ , iD).

A<d> = reshape(permute(A, [d, 1, 2,⋯ , d − 1, d + 1,⋯ ,D]), [Id, I1 ⋯ ID]).
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A very convenient graphical representation of D-way tensors is shown in Fig.  1a. 
Tensors are here represented by nodes and each edge denotes a particular index of the 
tensor. The order of the tensor is then easily determined by counting the number of 
edges. Since a scalar is a zeroth-order tensor, it is represented by a node without any 
edges. The graphical representation of a summation over an index is by connecting the 
edge between the two nodes in the diagram. For example, the two index summations of 
a 3-way tensor A ∈ ℝI1×I2×I3 with a matrix U1 ∈ ℝJ1×I1 and a vector u3 ∈ ℝI3

is graphically depicted in Fig. 1b by two connected edges between the nodes for A,U1 and 
u3 . The result from these two summations is a J1 × I2 matrix, which can also be deduced 
from the two “free” edges in Fig. 1b. Three important tensor decompositions in this article 
are the Tucker decomposition, the TT and the MERA. Each of these decompositions will 
now be briefly discussed.

2.1  Tucker Decomposition

The Tucker decomposition represents a tensor A ∈ ℝI1×⋯×ID as

where S ∈ ℝS1×⋯×Sd is called the Tucker core tensor and Ud ∈ ℝId×Sd (1 ⩽ d ⩽ D) are the 
Tucker factor matrices. The total storage complexity of the Tucker decomposition is there-

fore 
D∏
d=1

Sd +
D∑
d=1

IdSd . These factor matrices are typically chosen to be orthogonal and can 

then be obtained as the left singular vectors of the corresponding unfolded matrices of A . 
A special case of the Tucker decomposition is the HOSVD [6], which has orthogonal 
matrices and where the Tucker core satisfies two additional properties. The dimensions 
S1,⋯ , SD of the Tucker core are called the multilinear rank of A and are defined as

B(i1,⋯ , id−1, sd, id+1,⋯ , iD) ∶=

Id∑

id=1

A(i1,⋯ , id−1, id, id+1,⋯ , iD) Ud(jd, id).

(2)(A ×1 U1 ×3 uT
3
) =

∑

i1,i3

A(i1, ∶, i3) U1(∶, i1) u3(i3)

(3)A = S ×1 U1 ×2 ⋯ ×D UD,

Sd = rank(A<d>) ⩽ Id

(a) (b)

Fig. 1  Basic TN diagrams
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for all values of d. A graphical representation of the Tucker decomposition is shown in 
Fig. 2a.

2.2  TT Decomposition

The TT decomposition was introduced into the scientific computing community in [21], 
but was known as a matrix product state in the field of condensed matter physics [23, 
24] a decade earlier.

Definition 5 The TT decomposition of a given tensor A ∈ ℝI1×I2×⋯×ID is a set of 
3-way tensors A(d) ∈ ℝRd×Id×Rd+1 (1 ⩽ d ⩽ D) with R1 = RD+1 = 1 such that each entry 
A(i1, i2,⋯ , iD) can be computed from

The 3-way tensors of the TT are also called the TT-cores and the minimal values 
of R1,⋯ ,RD for which (4) holds exactly for all tensor entries are called the TT-ranks. 
When R1 = RD+1 > 1 the decomposition is called a tensor ring (TR), for which the dia-
gram is shown in Fig. 2b with all dimensions of the TT-cores indicated. We will con-
sider from now on only the TT case and, therefore, the R1-link in Fig. 2b that “closes 
the loop” will not be drawn in future diagrams anymore. The total storage complexity 

of a TT is 
D∑
d=1

R
d
R
d+1

I
d
 . The TT-ranks are upper bounded as described by the following 

theorem.

Theorem 1 (Theorem 2.1 of [22]) For any tensor A ∈ ℝI1×⋯×ID there exists a TT-decom-
position with TT-ranks

for d = 2,⋯ ,D − 1.

(4)
R1∑

r1=1

R2∑

r2=1

⋯

RD∑

rD=1

A
(1)(r1, i1, r2)A

(2)(r2, i2, r3) ⋯ A
(D)(rD, iD, r1).

Rd ⩽ min

(
d−1∏

k=1

Ik,

D∏

k=d

Ik

)

(a) (b) TT

Fig. 2  Diagram representation of the Tucker and TT decompositions
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Suppose now that we have a Tucker core in the TT form. The mode-products of the 
Tucker factor matrices with this Tucker core in the TT form do not alter its TT-ranks. 
Theorem 1, therefore, reveals the connection between the upper bounds on the TT-ranks 
of a given tensor and its multilinear rank.

Corollary 1 Let A be a D-way tensor with multilinear rank S1,⋯ , SD . Then, its TT-ranks 
R2,⋯ ,RD satisfy

for d = 2,⋯ ,D − 1.

The TT approximation of a given tensor with a prescribed relative error can be com-
puted with either the TT-SVD algorithm [21, p.  2301] or the TT-cross algorithm [22]. 
Furthermore, through the TT-rounding procedure [21, p.  2305] the TT-ranks of a given 
TT can be truncated such that the computed approximation satisfies a prescribed relative 
error. The notion of a TT in the site-d-mixed-canonical form will be very important in the 
development of the algorithms in this article and relies on both left-orthogonal and right-
orthogonal TT-cores.

Definition 6 ([17, p. A689]) A TT-core A(d) is left-orthogonal if it can be reshaped into an 
RdId × Rd+1 matrix Ad such that

Similarly, a TT-core A(d) is right-orthogonal if it can be reshaped into an Rd × IdRd+1 
matrix Ãd such that

A TT is in the site-d-mixed-canonical form when all TT-cores A(1) up to A(d−1) are left-
orthogonal and all TT-cores A(d+1) up to A(D) are right-orthogonal.

Once a TT is in the site-d-mixed-canonical form, then it can be readily verified that its 
Frobenius norm is easily obtained from the d-th core tensor

2.3  MERA

The MERA decomposition is a generalization of the hierarchical Tucker decomposition 
and consists of three different building blocks. A common implementation of the hierar-
chical Tucker decomposition is the binary tree form, as shown in Fig. 3a. Reading such a 
diagram from the bottom to the top, one can interpret each row/layer in such a tree struc-
ture as a coarse-graining transformation where each tensor in a row/layer transforms two 
indices into one index. Such tensors W of size I1 ×⋯ × IK × S that reduce K > 1 indices 

Rd ⩽ min

(
d−1∏

k=1

Sk,

D∏

k=d

Sk

)

AT
d
Ad = IRd+1

.

Ãd Ã
T

d
= IRd

.

||A||2
F
= ||A(d)||2

F
.
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to a single index are called isometries. An isometry can always be reshaped into a size 
I1I2 ⋯ IK × S matrix W with orthonormal columns

where S is the dimension of the “output” index. The minimal outgoing dimensions of all 
isometries such that the MERA represents a given tensor exactly are called the MERA-
ranks. The diagram representation of an isometry is shown in Fig. 4a. The bottom layer 
of isometries with K = 2 in Fig. 3a reduces the eight indices of a given tensor into four 
indices, as illustrated in Fig.  5. Each application of a layer in the tree halves the result-
ing total number of indices. The coarse-graining with a hierarchical Tucker decomposition 
pairs two consecutive indices and sums over them, thereby ignoring possible correlations 
over neighbouring indices resulting in higher ranks during coarse-graining. This issue is 
resolved in the MERA through the introduction of additional disentangler tensors in the 

WT W = IS,

(a) (b)h

Fig. 3  Diagram representation of two hierarchical tensor decompositions

Fig. 4  Diagram representation 
of two MERA building block 
tensors

(a) (b)

Fig. 5  A TT of an 8-way tensor (bottom row) is coarse-grained into a 4-way tensor through one layer of an 
HT/TTN
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coarse-graining layers. Disentanglers, shown as shaded nodes in Fig. 3b, “bridge” neigh-
bouring pairs before being coarse-grained. A disentangler tensor is per definition a 4-way 
tensor V of size I1 × I2 × I1 × I2 that can be reshaped into an orthogonal I1I2 × I1I2 matrix 
V . The reduction of an 8-way TT into a 4-way TT through a MERA layer is shown as a 
diagram in Fig. 6. The third and final MERA building block is the top tensor. This ten-
sor T  is located at the top of the MERA structure and connects to all outgoing isometry 
indices of the highest layer. Since all disentanglers and isometries have their respective 
notion of orthogonality, it follows that the Frobenius norm of a tensor A that is repre-
sented by a MERA is given by ||A||2

F
= ||T||2

F
 . This easy computation of the norm due to 

orthogonality is very similar to the case of a TT in the site-d-mixed canonical form. The 
storage complexity of a MERA is simply the sum of storage complexities of all disentan-
glers, isometries and the top tensor. In this respect, it is only meaningful from a data tensor 
compression perspective to have MERA-ranks that do not increase over consecutive layers. 
In the next section, we develop the main algorithm to convert a given TT into a Tucker 
decomposition and this algorithm will serve as the main computational building block to 
eventually convert a TT into a MERA.

3  TT to Tucker Decomposition

In this section, an algorithm is developed that converts a given TT into either an HOSVD 
or a truncated HOSVD with a guaranteed upper bound on the relative approximation error. 
The Tucker core S will be directly obtained in the TT format, avoiding its exponential stor-
age complexity. The starting point of the algorithm is a TT in the site-1-mixed-canonical 
form. Before stating the algorithm, we first introduce some additional notation together 
with an important lemma.

3.1  Tucker Factor Matrix from TT‑Core

To know how a given TT can be converted into a Tucker decomposition we need to know 
how the Tucker factor matrices can be computed from each TT-core. To describe this com-
putation, we first introduce the following convenient notation.

Definition 7 Let A(1),⋯ ,A(D) be TT-cores of a D-way tensor A . We define A<d 
as the Rd × (I1 ⋯ Id−1) matrix obtained from summing over the auxiliary indices of 

Fig. 6  A TT of an 8-way tensor (bottom row) is coarse-grained into a 4-way tensor through one layer of a 
MERA
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A
(1) up to A(d−1) and permuting and reshaping the result into the desired matrix. The 

Rd+1 × (Id+1 ⋯ ID) matrix A>d is defined similarly from the TT-cores A(d+1) up to A(D) . 
The Id × (RdRd+1) matrix Ad is defined from permuting and reshaping A(d) . Finally, both 
A<1 and A>D are defined to be unit scalars.

Note that if the TT of A is in the site-d-mixed-canonical form, then the left- and right-
orthogonality of the TT-cores implies that both A<d and A>d have orthonormal rows

The following lemma tells us how the unfolding matrix A<d> can be written in terms of the 
matrices from Definition 7.

Lemma 1 For a D-way tensor A in the TT-form we have the following relationship:

The Kronecker product in Lemma 1 is due to the rank-1 link of the TT. Also note that 
the rows of 

(
A>d ⊗ A<d

)
 are orthonormal when the TT is in the site-d-mixed-canonical 

form, due to the preservation of orthonormality with the Kronecker product. Lemma 1 tells 
us that any unfolding matrix A<d> can be written as a product of Ad with 

(
A>d ⊗ A<d

)
 , 

which leads to the following two corollaries.

Corollary 2 For a D-way tensor A with multilinear ranks S1,⋯ , SD we have that

Corollary 3 For a tensor A in the site-d-mixed-canonical TT-form, let the compact SVD of 
Ad be given by Ud SV

T . Then, the compact SVD of the unfolding matrix A<d> is

In Corollary 2 we have tacitly assumed that R
d
R
d+1

<

∏
k≠d

I
k
 is always satisfied. Corol-

lary 3 follows directly from the fact that the product of matrices with orthonormal rows 
also has orthonormal rows. The matrix 

(
AT
>d

⊗ AT
<d

)
V therefore contains the right singular 

vectors of A<d> corresponding with the Sd largest singular values. Corollary 3 also implies 
that the HOSVD factor matrix Ud can be directly computed from the SVD of Ad . The d-th 
component Sd of the multilinear rank can be determined by inspecting the singular values 
on the diagonal S matrix. If there is no need to know the exact multilinear rank, then a 
square orthogonal Ud can also be obtained through a QR decomposition of Ad.

3.2  The TT to Tucker Conversion Algorithm

Lemma  1 forms the basis of the proposed algorithm to convert a given TT into either 
an HOSVD or a truncated HOSVD. The algorithm to compute a truncated HOSVD is 
presented in pseudo-code as Algorithm  1. The algorithm assumes the TT is in the site-
1-mixed-canonical form but can be easily adjusted to work for any other starting site. The 
main idea of Algorithm 1 is to compute the orthogonal factor matrix Ud using Corollary 3 
and then to bring the TT into the site-(d + 1)-mixed-canonical form. The conversion of the 

A<d A
T
<d

= IRd
and A>d A

T
>d

= IRd+1
.

A<d> = Ad

(
A>d ⊗ A<d

)
, d = 1,⋯ ,D.

Sd = rank(A<d>) = rank(Ad) ⩽ min(Id,RdRd+1) ⩽ Id, d = 1,⋯ ,D.

A<d> = Ud S VT
(
A>d ⊗ A<d

)
.
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TT into the site-(d + 1-)mixed-canonical form is computed through a QR decomposition of 
the SVT factor. The orthogonal Q matrix is then retained as the d-th TT-core of the Tucker 
core S , while the norm of A is moved to the next TT-core A(d+1) through the absorption of 
the R factor. The final TT of S will, therefore, be in the site-D-mixed-canonical form. Both 
the SVD step and the QR decomposition step are graphically represented in Fig. 7. During 
each run of the for-loop in Algorithm 1 we are working with a partially truncated core ten-
sor, which is very reminiscent of the ST-HOSVD algorithm [28]. In fact, the approxima-
tion error induced by truncating the SVD in Algorithm 1 can also be expressed exactly in 
terms of the singular values.

Theorem 2 Let �d(id) be the id-th singular value of �d and Â be the tensor computed by 
Algorithm 1 with truncated SVDs. Then,

||A − Â||2
F
=

D∑

d=1

Id∑

id=Sd+1

�d(id)
2.

T

Fig. 7  The complete first execution of the for-loop in Algorithm 1 in diagram form
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Given that the TT for the all-orthogonal Tucker core is in the site-d-mixed-canonical 
form and the similarity of Algorithm 1 concerning the use of a sequentially truncated 
Tucker core, it follows that the proof of Theorem 2 is completely identical with the one 
found in [28, p. A1039]. Theorem 2 allows us to compute the absolute approximation 
error for a truncated HOSVD during the execution of Algorithm  1 by simply adding 
the squares of the discarded singular values. In addition, Theorem 2 also allows us to 
compute a truncated HOSVD for a given upper bound � on the relative approximation 
error. Since Algorithm 1 consists of D truncated SVDs, setting the tolerance � for each 
of these SVDs to ���A��F∕

√
D then effectively guarantees that the computed approxima-

tion B satisfies ||A −B||F ⩽ �||A||F . Alternatively, if one is interested in the computa-
tion of an HOSVD without any truncation, then it suffices to replace the SVD in line 3) 
of Algorithm 1 with a QR decomposition.

3.3  Computational Complexity

In this subsection we briefly analyze the computational complexity of Algorithm  1. 
For notational convenience, we will assume that a D-way tensor A ∈ ℝI×⋯×I is repre-
sented by a TT with uniform TT-rank R. An additional assumption is that I < R2 . The 
computation of D thin SVDs of Ad ∈ ℝI×R2 in line 3) takes then D(14R2I2 + 8I3) flops 
[11, p.493]. The QR decompositions in line 10) required for the computation of the 
site-(d + 1)-mixed-canonical form require (D − 1)

(
2I2(R2 − I∕3) + 4(R4I − R2I2 + I3∕3)

)
 

flops [11, p.249] when performed with Householder transformations. In practical cases, 
we have that I ⩽ R2 and this implies that the total computational complexity for Algo-
rithm 1 is dominated by the O(R4I) term of the QR decompositions. If instead of a guar-
anteed relative approximation error a Tucker decomposition with given multilinear-rank 
is desired, then one can replace the SVD in line 3) of Algorithm  1 by a randomized 
SVD [14] or an implicitly restarted Arnoldi method [20]. Also note that the actual com-
plexity will depend heavily on the order of the indices, which is also the case with the 
sequentially truncated HOSVD. In practice, a heuristic that reduces the computational 
complexity is to permute the dimensions of the tensor A in an ascending manner prior 
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to computing its Tucker decomposition [28, p.  A1041] as this permutation typically 
reduces the maximal value of R.

A Tucker decomposition where the Tucker core tensor is stored as a TT was first 
introduced in [7]. Algorithm 5 [7, p. 611] describes how such a decomposition can be 
obtained by means of an iterative ALS method. One disadvantage of an ALS approach, 
however, is that the desired TT-ranks need to be chosen a priori. An alternative DMRG 
approach that is able to retrieve the TT-ranks has been proposed but this comes at the 
cost of a computational complexity of O(R3I3) [7, p. 612].

4  TT to MERA

The conversion of a TT into a MERA can be done via a sequence of HOSVD and truncated 
HOSVD computations. The disentanglers are computed through an HOSVD while the iso-
metries are obtained through a truncated HOSVD. The conversion algorithm will be demon-
strated through an illustrative example that consists of a TT with eight TT-cores with dimen-
sions Rd × I × Rd+1 for d = 1,⋯ , 8 . The goal is to compute a MERA for which the isometries 
convert K = 2 indices into one. As demonstrated in Fig. 6, the “action” of the first MERA 
layer is the application of three disentanglers. The diagram representation of the required oper-
ations to find these disentanglers is shown in Fig. 8. The required disentanglers are orthogonal 
transformations on three index pairs. The relevant TT-cores are contracted over their auxiliary 
indices R3,R5,R7 to obtain so-called “supercores”. For example, TT-cores A(2) and A(3) are 
combined into a supercore A(2,3) ∈ ℝR2×I

2×R4 , where the two free indices of size I are com-
bined into one multi-index of size I2 . Algorithm 1 is then applied to these supercores with 
a full SVD to obtain the desired disentanglers. The bottom row of Fig. 8 shows the obtained 
partial Tucker core with the orthogonal factor matrices, which will serve as the transposes of 
the disentanglers. For example, Algorithm 1 allows us to write

A
(2,3) = S

(2,3) ×2 U2,3,

Fig. 8  Diagram of disentangler computation through an HOSVD step in the TT format as described in 
Algorithm 2
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where S(2,3) ∈ ℝR2×I
2×R4 is represented by the leftmost oval of the bottom row in Fig. 8 and 

U2,3 ∈ ℝI2×I2 is an orthogonal matrix. The desired disentangler is then obtained by reshap-
ing UT

2,3
 into a cubical 4-way tensor of dimension I. The partial Tucker core is now used 

as the starting point for obtaining the isometries, as shown in the top row of Fig. 9. The 
supercores, represented by the ovals in the top row of Fig. 9, first need to be split back into 
separate TT-cores through an SVD, e.g., the supercore S(2,3) is reshaped into the R2I × IR4 
matrix S2,3,

with S2 ∶= U and S3 ∶= SVT . The rank R3 is determined as the number of nonzero sin-
gular values such that S2 ∈ ℝR2I×R3 and S3 ∈ ℝR3×IR4 . The desired TT-cores are obtained 
by reshaping S2 , S3 into the desired 3-way tensors. In this way we arrive at the second 
row from the top of Fig. 9. In a MERA with K = 2 , there are the isometries orthogonal 
transformations that convert two consecutive TT indices into one index. The next step is 
therefore to form new supercores by summing over auxiliary indices R2 , R4 , R6 and R8 . 
Applying Algorithm 1 with a truncated SVD then results in the desired isometries. Indeed, 
the first supercore Â

(1,2)
 can then be written as

with Â
(1,2)

∈ ℝ1×S2×R3 and U1,2 ∈ ℝI2×S . The bottom row of Fig. 9 shows the diagram of 
the truncated HOSVD in the TT form. The desired isometry is obtained by reshaping U1,2 
into an I × I × S matrix, where S is the truncated index. Theorem 2 allows us to quantify 

S2,3 = U S VT

= S2 S3

Â
(1,2)

= Â
(1,2)

×2 U1,2

Fig. 9  Diagram of isometry computation through a truncated HOSVD step in the TT format as described in 
Algorithm 2
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the absolute approximation error due to truncation at each isometry step in the formation 
of the MERA and compute a MERA that approximates a given tensor with a guaranteed 
relative error. If sufficient MERA layers have been computed through this procedure, then 
the remaining Tucker core can be retained as the top tensor. This final step also ensures that 
the norm of the MERA is completely determined by the top tensor. The pseudocode for the 
whole algorithm is presented in Algorithm 2.

c

5  Iterative Algorithm for Finding a Rank‑Lowering Disentangler

Assuming that an exact low-rank MERA exists for a given TT, Algorithm 2 will typically 
fail to find it. In practice, the output dimensions S of the isometries will simply be the 
product of the input dimensions I1I2 ⋯ IK and no truncation is ever performed. This leads 
to an exponential growth of the isometry output dimensions as a function of the number of 
MERA layers. The problem with Algorithm 2 is that it fails to find the correct disentan-
glers. To explain the issue at hand, we first need to explain the workings of a disentangler 
in a bit more detail.

5.1  Disentangler

As mentioned earlier in Sect. 2.3, disentanglers were originally introduced to remove pos-
sible correlations between neighbouring indices to avoid high TT-ranks after coarse-grain-
ing [30]. Figure 10 illustrates the key effect of a disentangler on a simple example of four 
TT-cores with dimensions I1 = I2 = I3 = I4 = I . Note that the maximal TT-rank R between 
the second and third TT-cores is I2 . Suppose that R = I2 . It is straightforward to see that 
having no disentangler implies that the output dimensions of the two isometries needs to 
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be R = I2 , as two indices with dimension I are simply combined into one multi-index. Now 
suppose that prior to the isometries, a disentangler can be applied to the second and third 
TT-cores such that the TT-rank R is reduced to R′ < R . In this case, the two isometries 
can truncate the dimensions I2 down to R′ without the loss of any accuracy. Unfortunately, 
the disentanglers obtained from an HOSVD in Algorithm 2 do not reduce the TT-ranks, 
which implies that none of the isometries can effectively truncate the dimensions. If we are 
able to develop an algorithm that can find a rank-lowering disentangler, then Corollary 2 
automatically guarantees that the truncated HOSVD in line 9) of Algorithm 2 will find an 
optimal isometry. In the next subsection, we propose an iterative algorithm that attempts to 
recover rank-lowering disentanglers.

5.2  Iterative Orthogonal Procrustes Algorithm

Before stating the problem of finding the optimal disentangler in a formal way, we first 
introduce some convenient notation.

Definition 8 For a supercore A
(d,d+1) ∈ ℝRd×IdId+1×Rd+2 we define the following 

matricizations:

These matrices are per definition related to one another via the shuffling operator shuf and 
its inverse

With these definitions the optimal disentangler problem can now be formulated.

Problem  1 Given a supercore A(d,d+1) for which rank
(
A(d,d+1)

)
= R , find an orthogonal 

matrix V ∈ ℝIdId+1×IdId+1 such that

with rank
(
shuf−1

(
A�
))

= R� < R.

A(d,d+1) ∈ ℝ
RdId×Id+1Rd+2 ,

A ∈ ℝ
IdId+1×RdRd+2 .

A = shuf
(
A(d,d+1)

)
,

A(d,d+1) = shuf−1(A).

A� ∶= V shuf
(
A(d,d+1)

)
= VA

Fig. 10  The disentangler reduces the TT-rank from R to R′ with R < R
′ , allowing the two isometries to 

truncate to R′ without any loss of accuracy
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Problem 1 is essentially an orthogonal Procrustes problem in A with the additional con-
straint that the orthogonal transformation V lowers the rank of A(d,d+1) . The difficulty is that 
both A′ and shuf−1

(
A�
)
 are unknown. We therefore propose to solve the orthogonal Procrustes 

problem in an iterative manner, where we fix A(k,k+1)� in every iteration to a low-rank approxi-
mation of A(d,d+1) . The computational complexity of solving the orthogonal Procrustes prob-
lem every iteration is O((IdId+1)3) , as this amounts to computing the SVD of A′ AT . The pro-
posed iterative algorithm is presented in pseudocode as Algorithm 3. The stopping criterion 
can be set to a fixed maximum number of iterations or one can inspect the rank-gap �R� ∕�R�+1 
of A(d,d+1) and stop the iterations as soon as this gap has reached a certain order of magnitude. 
A low-rank approximation of A(d,d+1) can be computed via its SVD. At this moment, there 
is no formal proof of convergence for Algorithm 3, nor is it known what the conditions for 
convergence are. The best that we are currently able to do is to empirically show the success-
ful application of this algorithm and to explore its properties based on extensive numerical 
experiments.

6  Experiments

In this section, we demonstrate the computational efficiency of Algorithms 1, 2 and 3 through 
numerical experiments. All algorithms were implemented in MATLAB and the experiments 
were performed on a desktop computer with a 4-core processor running at 3.6  GHz with 
16 GB RAM. The data files required to reproduce these experiments are available at [1] and 
an open source Matlab implementation of the algorithms is available at https ://githu b.com/
kbats eli/MERAC LE.

6.1  Converting a TT into Tucker—Compression of Simulation Results

In this experiment, we demonstrate Algorithm 1 and how a representation of a Tucker decom-
position can benefit compression without loss of accuracy. Inspired by the example discussed 
in [28, p. A1047], a tensor decomposition is used for the compression of the solution u(x, y, t) 
of

https://github.com/kbatseli/MERACLE
https://github.com/kbatseli/MERACLE
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on the unit square [0, 1]2 with the boundary condition 0.25 − |0.5 − x| ⋅ |0.5 − y| , which 
also describes the initial temperature distribution over the entire square. The PDE was dis-
cretized with a uniform mesh with the cell size (Δs,Δs,Δt) and solved with the explicit 
Euler method, using a time step 0.25Δs2 to ensure numerical stability. We set Δs = 10−2 
and Δt = 0.25 ⋅ 10−4 and simulate for about 0.25 seconds, resulting in a tensor of size 
100 × 100 × 10 000 . The upper bound on the relative approximation error when comput-
ing tensor decompositions is set to 10−3 . We compare the sequentially truncated HOSVD 
(STHOSVD) with both the TT and Tucker decomposition in the TT form. The STHOSVD 
is computed with the MLSVD command of the Tensorlab toolbox [29], while the conver-
sion of the original data tensor into a TT is done via the TT-SVD algorithm [21, p. 2301]. 
The TT is converted into a Tucker decomposition via Algorithm 1. We consider two cases. 
In the first case, we compute the three tensor decompositions on the original solution ten-
sor, while in the second case we first reshape the original data into a 16-way tensor by fac-
torization of all dimensions into their prime components. All results are shown in Table 1. 
The compression column contains the ratio between how many numbers are required to 
store the original tensor and how many numbers are required to store the decomposi-
tion. Not much difference in neither the total runtime, relative error or compression can 
be observed when the simulation solution is kept as a 3-way tensor. The computation of 
an STHOSVD of the 16-way tensor takes about 3 times longer than computing the corre-
sponding TT. The resulting decomposition is also not able to compress the data very much 
as each of the dimensions of the 16-way tensor consist of (small) prime factors. The TT 
and Tucker decomposition in the TT form, however, result in a saving of around 12 000, 
which is an improvement of more than 10 times compared to the 3-way case. The time 
required for Algorithm 1 to compute the Tucker decomposition was in both cases negligi-
ble compared to the runtime of the TT-SVD algorithm.

6.2  Comparison of HOSVD with Algorithm 3

In this experiment, we compare Algorithm 1 with Algorithm 3 to retrieve a rank-lowering 
disentangler. For this we consider the MERA consisting of a single layer as depicted in 
Fig. 11. The top tensor is taken to be an R� × R� grayscale image1. In this particular case, 

�u

�t
=

�2u

�x2
+

�2u

�y2

Table 1  Comparison of different 
tensor decompositions in 
compressing the results from a 
numerical simulation of the 2D 
heat equation

Time/s Relative error Compression

STHOSVD (3-way) 3.279 4.74 E−4 1 055
TT (3-way) 3.579 8.54 E−4 1 101
TT-Tucker (3-way) 0.019 8.54 E−4 1 116
STHOSVD (16-way) 26.710 6.68 E−4 3.255
TT (16-way) 8.325 6.11 E−4 12 572
TT-Tucker (16-way) 0.005 6.11 E−4 12 229

1 The image was taken from http://absfr eepic .com/free-photo s/downl oad/lands cape-with-lake-4412x 
2941_12692 .html, cropped and scaled to appropriate dimensions.

http://absfreepic.com/free-photos/download/landscape-with-lake-4412x2941_12692.html
http://absfreepic.com/free-photos/download/landscape-with-lake-4412x2941_12692.html
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we set R� = 128 . Both the I × I × R� isometry tensors W and I × I × I × I disentangler ten-
sor V are found from the orthogonalization of random matrices with appropriate sizes. For 
this experiment, we set I = 19 and choose the isometries to be identical. Given the R� × R� 
grayscale image top tensor A shown in Fig.  12a, we can now apply the MERA “back-
wards”. The application of the two isometries on A is

resulting in an I2 × I2 image B , shown in Fig. 12b. The corresponding TT of the image B 
has TT-ranks 19 and 128 = R� . The application of the disentangler is then performed from 
the following steps:

B = WAWT,

B ∶= reshape(B, [I, I, I, I]),

Bp ∶= permute(B, [2, 3, 4, 1]),

B̃ ∶= reshape(Bp, [I
2, I2]),

Cp ∶= V B̃,

Cp ∶= reshape(Cp, [I, I, I, I]),

C ∶= permute(Cp, [4, 1, 2, 3]),

C ∶= reshape(C, [I2, I2]),

Fig. 11  The disentangler reduces 
the TT-rank from R to R′ with 
R > R

′ , allowing the two iso-
metries to truncate to R′ without 
any loss of accuracy

Fig. 12  Image after consecutive application of isometries and a disentangler
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resulting in the I2 × I2 image C shown in Fig.  12c. The corresponding TT of the image 
C has TT-ranks 19 and 361 = I2 . This increase of the TT-rank is reflected in the image 
as being much more “noisy” while the low-rank image of Fig. 12b has a particular block 
structure pattern. We now compare the use of Algorithm 1 with Algorithm 3 for retrieving 
a disentangler that is able to reduce the maximal TT-rank from 361 down to 128. Algo-
rithm 3 is run on the TT of C in site-4-mixed-canonical form and a rank-128 approximation 
of C(2,3) is used. Each iteration of Algorithm 3 took 0.03 seconds and, as shown in Fig. 13a, 
about 16 000 iterations were required for the 233 smallest singular values to converge to 
values of about 10−15 . The computed disentanglers are then applied to the supercore C(2,3) . 
The singular value decay of each corresponding C(2,3) is shown in Fig. 13b, where it can be 
clearly seen that Algorithm 3 is able to retrieve a disentangler that lowers the rank to the 
minimal value of 128.

6.3  Limitations of Algorithm 3

We revisit the example from Sect. 6.2 and explore the validity of Algorithm 3 for dif-
ferent values of R′ and I, as it is yet unclear under which conditions we are able to 
retrieve an exact rank-lowering disentangler. If I is fixed, then the rank of C is I2 for 
the particular MERA of Sect. 6.2 and it appears that there exists a minimal value R′

min
 

such that Algorithm  3 does not converge for values R′ < R′
min

 . There is, however, an 
exception to this observation in that Algorithm 3 always converges if R� = 1 . Table 2 
lists all values of R′

min
 for values of I going from 2 up to 14, where the convergence of 

Algorithm 3 was determined from inspecting the singular value decay as in Fig. 13a. A 
first observation is that R′

min
 grows slowly compared to R = I2 , which implies that the 

range of values of R′ for which Algorithm 3 converges gets larger as I grows. The rea-
son for the existence of this R′

min
 is yet to be fully understood.

Fig. 13  Singular value graphs

Table 2  Minimal value of R′ for 
which Algorithm 3 converges as 
a function of I 

I 2 3 4 5 6 7 8 9 10 11 12 13 14

R
′
min

2 4 6 9 12 16 20 25 30 37 44 51 59
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A second observation relates to the rate of convergence. It turns out that Algo-
rithm 3 converges faster as the difference between R and R′ becomes smaller. This is 
illustrated in Fig. 14 where the number of iterations required for Algorithm 3 to reach 
a rank-gap of �R� ∕�R�+1 = 1012 is shown for varying R′ when I = 8 . An approximately 
exponential growth in the number of required iterations can be seen as the difference 
of R′ with R = 82 = 64 grows larger. This exponential growth might explain the exist-
ence of R′

min
 as a value of R′ for which convergence becomes “infinitely slow”. These 

observations will serve as a starting point to investigate the exact nature of why and 
when Algorithm 3 works, apart from the empirical study herein.

6.4  Comparison of Compression Capability Between a TT and a MERA 
on a Large‑Scale Example

In this experiment, we compare the compression capability between a TT and a 
MERA. We also apply Algorithm 2 on a large-scale example for which a 12-way cubi-
cal tensor A of dimension 10 is generated that is exactly represented by a 2-layer 
MERA, where each of the isometries reduces K = 2 indices into 1 index S = 5 . The 
first layer of the MERA coarse-grains 12 indices into 6 indices and each of the iso-
metries in this layer is a 10 × 10 × 5 tensor. The second layer of the MERA coarse-
grains the remaining 6 indices of the first layer into 3 indices and therefore consists 
of 5 × 5 × 5 isometries. The top tensor of the MERA is a 3-way cubical tensor with 
dimension 5. All isometries and disentanglers are initialized as random matri-
ces, drawn from an standard normal distribution, which are then made orthogo-
nal or orthonormal through a QR decomposition. The top tensor is also initialized 

Fig. 14  The number of iterations required for Algorithm  3 to reach a rank-gap of �
R� ∕�R�+1 = 10

12 as a 
function of R′ when I = 8

Table 3  Comparison of storage 
requirement and compression 
capability between a TT and a 
MERA for a 12th-order cubical 
tensor

Storage requirement Compression

Original tensor 10
12 1

TT 15 620 200 6.40 × 10
4

MERA 54 750 1.82 × 10
7
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as a random matrix. A comparison of the TT and MERA in terms of how well they 
compress the original 1012 is given in Table  3. The corresponding TT has TT-ranks 
R
2
= 10,R

3
= 100,R

4
= 50,R

5
= 500,R

6
= 250,R

7
= 2 500,R

8
= 250,R

9
= 500,R

10
= 50,

R
11

= 100,R
12

= 10 and needs 15 620 200 elements. This constitutes a saving in storage 
space of 1012∕15 620 200 = 6.40 × 104 . The MERA on the other hand consists of 54 750 
elements and this results in a saving of storage space of 1012∕54 750 = 1.82 × 107 . The 
MERA is therefore about 285 times smaller as the TT.

Using Algorithm 2 to convert the TT back into a MERA with an identical structure 
as the “true” MERA ( K = 2 and S = 5 ) takes 32.74 seconds and results in a relative 
approximation error of 1.00. This large approximation error is explained by the trun-
cated HOSVD (line 9) in Algorithm 2 step not being able to truncate the ranks without 
losing accuracy. Using Algorithm  2 to convert the TT back into a MERA and using 
Algorithm 3 for the disentangler computation takes 63.81 seconds. Setting the stopping 
criterion for Algorithm  3 to 𝜎R� ∕𝜎R�+1 > 1013 guarantees that a tolerance of 10−12 can 
be used for the truncated HOSVD, thus obtaining a K = 2, S = 5 MERA with a relative 
approximation error of 1.16 × 10−13 . The low-rank approximation used in Algorithm 3 
contained 5, 25, 25, 25, 5 terms for the five disentanglers in the first layer, respectively, 
and 5 terms for the three disentanglers in the second layer. The 63.81 seconds run-
time was dominated by Algorithm 3 reducing R7 = 2 500 down to a rank of 25, which 
took 53.88 seconds. The remaining 10 seconds were spent in the reduction of the ranks 
R6 = R8 = 250 whereas the computation of all remaining tensors in the MERA took 
fractions of seconds.

7  Conclusions

This article has introduced two new algorithms for the conversion of a TT into a Tucker 
decomposition and a MERA. The computation of a MERA-layer was shown to consist of 
one HOSVD-step for the computation of the disentanglers and one truncated HOSVD-step 
for the computation of the isometries. Using HOSVD to compute disentanglers was shown 
to be sub-optimal in terms of reducing the rank and an iterative orthogonal Procrustes algo-
rithm was proposed that is able to find rank-lowering disentanglers. Numerical experiments 
have demonstrated the efficacy of the proposed algorithms. The TT to Tucker decomposi-
tion algorithm was demonstrated to be fast compared to the conventional HOSVD algo-
rithm and resulted in an improvement of storage complexity that was one order of mag-
nitude smaller. The MERA was shown to have even more potential in storage complexity 
in an experiment involving a tensor that consisted of 1012 elements where a compression 
improvement of a factor 285 compared to a TT was observed. The effectiveness and limita-
tions of the orthogonal Procrustes algorithm were also explored in numerical experiments. 
The exact conditions under which this orthogonal Procrustes converges to a disentangler 
that retrieves an exact minimal-rank solution are still a topic for future research.
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