

Delft University of Technology

MERACLE
Constructive Layer-Wise Conversion of a Tensor Train into a MERA
Batselier, Kim; Cichocki, Andrzej; Wong, Ngai

DOI
10.1007/s42967-020-00090-6
Publication date
2021
Document Version
Final published version
Published in
Communications on Applied Mathematics and Computation

Citation (APA)
Batselier, K., Cichocki, A., & Wong, N. (2021). MERACLE: Constructive Layer-Wise Conversion of a Tensor
Train into a MERA. Communications on Applied Mathematics and Computation, 3(2), 257-279.
https://doi.org/10.1007/s42967-020-00090-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s42967-020-00090-6
https://doi.org/10.1007/s42967-020-00090-6

Vol.:(0123456789)

Communications on Applied Mathematics and Computation (2021) 3:257–279
https://doi.org/10.1007/s42967-020-00090-6

1 3

ORIGINAL PAPER

MERACLE: Constructive Layer‑Wise Conversion of a Tensor
Train into a MERA

Kim Batselier1 · Andrzej Cichocki2 · Ngai Wong3

Received: 20 December 2019 / Revised: 17 July 2020 / Accepted: 19 July 2020 / Published online: 19 October 2020
© The Author(s) 2020

Abstract
In this article, two new algorithms are presented that convert a given data tensor train into
either a Tucker decomposition with orthogonal matrix factors or a multi-scale entangle-
ment renormalization ansatz (MERA). The Tucker core tensor is never explicitly computed
but stored as a tensor train instead, resulting in both computationally and storage efficient
algorithms. Both the multilinear Tucker-ranks as well as the MERA-ranks are automati-
cally determined by the algorithm for a given upper bound on the relative approximation
error. In addition, an iterative algorithm with low computational complexity based on
solving an orthogonal Procrustes problem is proposed for the first time to retrieve optimal
rank-lowering disentangler tensors, which are a crucial component in the construction of
a low-rank MERA. Numerical experiments demonstrate the effectiveness of the proposed
algorithms together with the potential storage benefit of a low-rank MERA over a tensor
train.

Keywords Tensors · Tensor train · Tucker decomposition · HOSVD · MERA · Disentangler

Mathematics Subject Classification 15A23 · 15A69 · 65F99

1 Introduction

Tensor decompositions have played an important role over the past two decades in lift-
ing the curse of dimensionality in a myriad of applications [3–5, 18, 26]. The key idea in
lifting the curse of dimensionality with tensor decompositions is the usage of a low-rank
approximation. Many kinds of decompositions have consequently been developed and each

This research was partially supported by the Ministry of Education and Science of the Russian
Federation (grant 14.756.31.0001).

 * Kim Batselier
 k.batselier@tudelft.nl

1 Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
2 Skolkovo Institute of Science and Technology (SKOLTECH), 121205 Moscow, Russia
3 The Department of Electrical and Electronic Engineering, The University of Hong Kong,

Hong Kong, China

http://orcid.org/0000-0001-7381-2630
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-020-00090-6&domain=pdf

258 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

has its own rank definition. The canonical polyadic decomposition (CPD) [2, 15, 16] and
the Tucker decomposition [2, 27] both generalize the notion of the matrix singular value
decomposition (SVD) to higher-order tensors and have, therefore, received a lot of atten-
tion. More recent tensor decompositions are the tensor train (TT) [8, 9, 18, 21] and the
hierarchical Tucker decomposition [12, 13]. It turns out that the latter two decompositions
were already known in the quantum mechanics and condensed matter physics communities
as the matrix product state (MPS) [23] and the tensor tree network (TTN) [25], respec-
tively. The multi-scale entanglement renormalization ansatz (MERA) [10, 30] is an exten-
sion of the TTN decomposition, recently proposed in quantum mechanics but has so far not
received enough attention in the numerical linear algebra community. A key component of
the MERA is the so-called disentangler tensor, responsible for limiting the growth of the
TTN-ranks over consecutive levels. Although the computation of a MERA from a given
tensor can be deduced from [10], computations are intensive due to multiple contractions
and do not allow for the discovery of optimal ranks of the decomposition. The contribu-
tions of this article address this area. Specifically, we

i) propose an algorithm that converts a given TT into a Tucker decomposition with guar-
anteed error bounds;

ii) propose an algorithm that converts a given TT into a MERA with guaranteed error
bounds. This algorithm is called MERA constructive layer-wise expansion (MERA-
CLE);

iii) propose an iterative algorithm that computes a rank-lowering disentangler.

The resulting ranks of the computed Tucker and MERA approximations are completely
determined by a given upper bound on the relative approximation error. The conversion of
a TT into a Tucker decomposition was first suggested in [7], where the corresponding algo-
rithm uses an iterative alternating least squares (ALS) approach. It will be shown in this
article that no ALS procedure is necessary. In fact, for a D-th order tensor it is sufficient to
perform D consecutive SVD computations as described in Algorithm 1. It is then shown in
Algorithm 2 that a TT can be converted into an L-layer MERA by applying Algorithm 1
2L times. The obtained MERA ranks are, however, not optimal and this is identified to be
due to the disentangler tensor computation. An iterative orthogonal Procrustes algorithm is
proposed that to our knowledge for the first time ever, is able to compute optimal disentan-
glers that result in a minimal-rank MERA.

In Sect. 2 we introduce the notation and relevant tensor decompositions. The algorithm
that converts a given TT into a Tucker decomposition with a guaranteed relative error
bound is fully described in Sect. 3. The application of Algorithm 1 for the conversion of
a given TT into a MERA with a guaranteed relative error bound is illustrated in Sect. 4.
Section 5 discusses the problem of finding optimal disentangler tensors and the iterative
Procrustes algorithm is proposed. Finally, in Sect. 6 numerical experiments demonstrate
the effectiveness of the proposed algorithms.

2 Tensor Basics

A D-way or D-th order tensor A ∈ ℝI1×I2×⋯×ID is a D-dimensional array where each
entry is completely determined by D indices i1,⋯ , iD . The scalar D is also often called
the order of the tensor. The convention id = 1, 2,⋯ , Id is used, together with MATLAB

259Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

colon notation. Boldface capital calligraphic letters A,B,⋯ are used to denote tensors,
boldface capital letters A,B,⋯ denote matrices, boldface letters a, b,⋯ denote vectors,
and Roman letters a, b,⋯ denote scalars. The identity matrix of order N is denoted IN .
The Frobenius norm ||A||2

F
 of a tensor A is defined as the sum of squares of all ten-

sor entries. The order of a tensor can be altered by grouping several indices together
into a multi-index. The conversion of a multi-index [i1i2 ⋯ iD] into a linear index is per
definition

In what follows, we will introduce three important tensor operations. The first tensor opera-
tion is the “reshape” operation, which changes the order of a given tensor and is commonly
used to flatten tensors into matrices and vice versa.

Definition 1 The operator “reshape(A, [J1, J2,⋯ , JK]) ” reshapes the d-way tensor

A ∈ ℝI1×I2×⋯×ID into a tensor with dimensions J1 × J2 ×⋯ × JK , with
D∏
d=1

Id =
K∏
k=1

Jk.

Another important operation is the generalization of the matrix transpose to three or
more indices.

Definition 2 The operator “permute(A, p) ” rearranges the indices of A ∈ ℝI1×I2×⋯×ID so
that they are in the order specified by the vector p . The resulting tensor has the same values
of A but the order of the subscripts needed to access any particular element is rearranged
as specified by p . All the elements of p must be unique, real, positive, integer values from
1 to D.

The definition of the “permute” operation allows one to write the transpose of a
matrix A as permute(A, [2, 1]) . By combining both the reshape and permute operations,
we can now introduce the mode-d matricization A<d> of a tensor.

Definition 3 ([19, p. 459]) The mode-d matricization A<d> of a D-way tensor A is the
matrix with elements

The mode-d matricization A<d> is hence obtained from A as

The third and final important tensor operation is the summation over indices, also called
contraction of indices. A particular common operation in this regard is the d-mode product
of a tensor with a matrix.

Definition 4 ([19, p. 460]) The d-mode product, denoted A ×d Ud , of a tensor
A ∈ ℝI1×⋯×ID with a matrix Ud ∈ ℝSd×Id is the tensor B ∈ ℝI1×Id−1×Sd×Id+1×⋯×ID with
elements

(1)[i1i2 ⋯ iD] ∶= i1 +

D∑

k=2

(ik − 1)

k−1∏

l=1

Il.

A<d>(id, [i1 ⋯ id−1id+1 ⋯ iD]) ∶= A(i1, i2,⋯ , iD).

A<d> = reshape(permute(A, [d, 1, 2,⋯ , d − 1, d + 1,⋯ ,D]), [Id, I1 ⋯ ID]).

260 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

A very convenient graphical representation of D-way tensors is shown in Fig. 1a.
Tensors are here represented by nodes and each edge denotes a particular index of the
tensor. The order of the tensor is then easily determined by counting the number of
edges. Since a scalar is a zeroth-order tensor, it is represented by a node without any
edges. The graphical representation of a summation over an index is by connecting the
edge between the two nodes in the diagram. For example, the two index summations of
a 3-way tensor A ∈ ℝI1×I2×I3 with a matrix U1 ∈ ℝJ1×I1 and a vector u3 ∈ ℝI3

is graphically depicted in Fig. 1b by two connected edges between the nodes for A,U1 and
u3 . The result from these two summations is a J1 × I2 matrix, which can also be deduced
from the two “free” edges in Fig. 1b. Three important tensor decompositions in this article
are the Tucker decomposition, the TT and the MERA. Each of these decompositions will
now be briefly discussed.

2.1 Tucker Decomposition

The Tucker decomposition represents a tensor A ∈ ℝI1×⋯×ID as

where S ∈ ℝS1×⋯×Sd is called the Tucker core tensor and Ud ∈ ℝId×Sd (1 ⩽ d ⩽ D) are the
Tucker factor matrices. The total storage complexity of the Tucker decomposition is there-

fore
D∏
d=1

Sd +
D∑
d=1

IdSd . These factor matrices are typically chosen to be orthogonal and can

then be obtained as the left singular vectors of the corresponding unfolded matrices of A .
A special case of the Tucker decomposition is the HOSVD [6], which has orthogonal
matrices and where the Tucker core satisfies two additional properties. The dimensions
S1,⋯ , SD of the Tucker core are called the multilinear rank of A and are defined as

B(i1,⋯ , id−1, sd, id+1,⋯ , iD) ∶=

Id∑

id=1

A(i1,⋯ , id−1, id, id+1,⋯ , iD) Ud(jd, id).

(2)(A ×1 U1 ×3 uT
3
) =

∑

i1,i3

A(i1, ∶, i3) U1(∶, i1) u3(i3)

(3)A = S ×1 U1 ×2 ⋯ ×D UD,

Sd = rank(A<d>) ⩽ Id

(a) (b)

Fig. 1 Basic TN diagrams

261Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

for all values of d. A graphical representation of the Tucker decomposition is shown in
Fig. 2a.

2.2 TT Decomposition

The TT decomposition was introduced into the scientific computing community in [21],
but was known as a matrix product state in the field of condensed matter physics [23,
24] a decade earlier.

Definition 5 The TT decomposition of a given tensor A ∈ ℝI1×I2×⋯×ID is a set of
3-way tensors A(d) ∈ ℝRd×Id×Rd+1 (1 ⩽ d ⩽ D) with R1 = RD+1 = 1 such that each entry
A(i1, i2,⋯ , iD) can be computed from

The 3-way tensors of the TT are also called the TT-cores and the minimal values
of R1,⋯ ,RD for which (4) holds exactly for all tensor entries are called the TT-ranks.
When R1 = RD+1 > 1 the decomposition is called a tensor ring (TR), for which the dia-
gram is shown in Fig. 2b with all dimensions of the TT-cores indicated. We will con-
sider from now on only the TT case and, therefore, the R1-link in Fig. 2b that “closes
the loop” will not be drawn in future diagrams anymore. The total storage complexity

of a TT is
D∑
d=1

R
d
R
d+1

I
d
 . The TT-ranks are upper bounded as described by the following

theorem.

Theorem 1 (Theorem 2.1 of [22]) For any tensor A ∈ ℝI1×⋯×ID there exists a TT-decom-
position with TT-ranks

for d = 2,⋯ ,D − 1.

(4)
R1∑

r1=1

R2∑

r2=1

⋯

RD∑

rD=1

A
(1)(r1, i1, r2)A

(2)(r2, i2, r3) ⋯ A
(D)(rD, iD, r1).

Rd ⩽ min

(
d−1∏

k=1

Ik,

D∏

k=d

Ik

)

(a) (b) TT

Fig. 2 Diagram representation of the Tucker and TT decompositions

262 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

Suppose now that we have a Tucker core in the TT form. The mode-products of the
Tucker factor matrices with this Tucker core in the TT form do not alter its TT-ranks.
Theorem 1, therefore, reveals the connection between the upper bounds on the TT-ranks
of a given tensor and its multilinear rank.

Corollary 1 Let A be a D-way tensor with multilinear rank S1,⋯ , SD . Then, its TT-ranks
R2,⋯ ,RD satisfy

for d = 2,⋯ ,D − 1.

The TT approximation of a given tensor with a prescribed relative error can be com-
puted with either the TT-SVD algorithm [21, p. 2301] or the TT-cross algorithm [22].
Furthermore, through the TT-rounding procedure [21, p. 2305] the TT-ranks of a given
TT can be truncated such that the computed approximation satisfies a prescribed relative
error. The notion of a TT in the site-d-mixed-canonical form will be very important in the
development of the algorithms in this article and relies on both left-orthogonal and right-
orthogonal TT-cores.

Definition 6 ([17, p. A689]) A TT-core A(d) is left-orthogonal if it can be reshaped into an
RdId × Rd+1 matrix Ad such that

Similarly, a TT-core A(d) is right-orthogonal if it can be reshaped into an Rd × IdRd+1
matrix Ãd such that

A TT is in the site-d-mixed-canonical form when all TT-cores A(1) up to A(d−1) are left-
orthogonal and all TT-cores A(d+1) up to A(D) are right-orthogonal.

Once a TT is in the site-d-mixed-canonical form, then it can be readily verified that its
Frobenius norm is easily obtained from the d-th core tensor

2.3 MERA

The MERA decomposition is a generalization of the hierarchical Tucker decomposition
and consists of three different building blocks. A common implementation of the hierar-
chical Tucker decomposition is the binary tree form, as shown in Fig. 3a. Reading such a
diagram from the bottom to the top, one can interpret each row/layer in such a tree struc-
ture as a coarse-graining transformation where each tensor in a row/layer transforms two
indices into one index. Such tensors W of size I1 ×⋯ × IK × S that reduce K > 1 indices

Rd ⩽ min

(
d−1∏

k=1

Sk,

D∏

k=d

Sk

)

AT
d
Ad = IRd+1

.

Ãd Ã
T

d
= IRd

.

||A||2
F
= ||A(d)||2

F
.

263Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

to a single index are called isometries. An isometry can always be reshaped into a size
I1I2 ⋯ IK × S matrix W with orthonormal columns

where S is the dimension of the “output” index. The minimal outgoing dimensions of all
isometries such that the MERA represents a given tensor exactly are called the MERA-
ranks. The diagram representation of an isometry is shown in Fig. 4a. The bottom layer
of isometries with K = 2 in Fig. 3a reduces the eight indices of a given tensor into four
indices, as illustrated in Fig. 5. Each application of a layer in the tree halves the result-
ing total number of indices. The coarse-graining with a hierarchical Tucker decomposition
pairs two consecutive indices and sums over them, thereby ignoring possible correlations
over neighbouring indices resulting in higher ranks during coarse-graining. This issue is
resolved in the MERA through the introduction of additional disentangler tensors in the

WT W = IS,

(a) (b)h

Fig. 3 Diagram representation of two hierarchical tensor decompositions

Fig. 4 Diagram representation
of two MERA building block
tensors

(a) (b)

Fig. 5 A TT of an 8-way tensor (bottom row) is coarse-grained into a 4-way tensor through one layer of an
HT/TTN

264 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

coarse-graining layers. Disentanglers, shown as shaded nodes in Fig. 3b, “bridge” neigh-
bouring pairs before being coarse-grained. A disentangler tensor is per definition a 4-way
tensor V of size I1 × I2 × I1 × I2 that can be reshaped into an orthogonal I1I2 × I1I2 matrix
V . The reduction of an 8-way TT into a 4-way TT through a MERA layer is shown as a
diagram in Fig. 6. The third and final MERA building block is the top tensor. This ten-
sor T is located at the top of the MERA structure and connects to all outgoing isometry
indices of the highest layer. Since all disentanglers and isometries have their respective
notion of orthogonality, it follows that the Frobenius norm of a tensor A that is repre-
sented by a MERA is given by ||A||2

F
= ||T||2

F
 . This easy computation of the norm due to

orthogonality is very similar to the case of a TT in the site-d-mixed canonical form. The
storage complexity of a MERA is simply the sum of storage complexities of all disentan-
glers, isometries and the top tensor. In this respect, it is only meaningful from a data tensor
compression perspective to have MERA-ranks that do not increase over consecutive layers.
In the next section, we develop the main algorithm to convert a given TT into a Tucker
decomposition and this algorithm will serve as the main computational building block to
eventually convert a TT into a MERA.

3 TT to Tucker Decomposition

In this section, an algorithm is developed that converts a given TT into either an HOSVD
or a truncated HOSVD with a guaranteed upper bound on the relative approximation error.
The Tucker core S will be directly obtained in the TT format, avoiding its exponential stor-
age complexity. The starting point of the algorithm is a TT in the site-1-mixed-canonical
form. Before stating the algorithm, we first introduce some additional notation together
with an important lemma.

3.1 Tucker Factor Matrix from TT‑Core

To know how a given TT can be converted into a Tucker decomposition we need to know
how the Tucker factor matrices can be computed from each TT-core. To describe this com-
putation, we first introduce the following convenient notation.

Definition 7 Let A(1),⋯ ,A(D) be TT-cores of a D-way tensor A . We define A<d
as the Rd × (I1 ⋯ Id−1) matrix obtained from summing over the auxiliary indices of

Fig. 6 A TT of an 8-way tensor (bottom row) is coarse-grained into a 4-way tensor through one layer of a
MERA

265Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

A
(1) up to A(d−1) and permuting and reshaping the result into the desired matrix. The

Rd+1 × (Id+1 ⋯ ID) matrix A>d is defined similarly from the TT-cores A(d+1) up to A(D) .
The Id × (RdRd+1) matrix Ad is defined from permuting and reshaping A(d) . Finally, both
A<1 and A>D are defined to be unit scalars.

Note that if the TT of A is in the site-d-mixed-canonical form, then the left- and right-
orthogonality of the TT-cores implies that both A<d and A>d have orthonormal rows

The following lemma tells us how the unfolding matrix A<d> can be written in terms of the
matrices from Definition 7.

Lemma 1 For a D-way tensor A in the TT-form we have the following relationship:

The Kronecker product in Lemma 1 is due to the rank-1 link of the TT. Also note that
the rows of

(
A>d ⊗ A<d

)
 are orthonormal when the TT is in the site-d-mixed-canonical

form, due to the preservation of orthonormality with the Kronecker product. Lemma 1 tells
us that any unfolding matrix A<d> can be written as a product of Ad with

(
A>d ⊗ A<d

)
 ,

which leads to the following two corollaries.

Corollary 2 For a D-way tensor A with multilinear ranks S1,⋯ , SD we have that

Corollary 3 For a tensor A in the site-d-mixed-canonical TT-form, let the compact SVD of
Ad be given by Ud SV

T . Then, the compact SVD of the unfolding matrix A<d> is

In Corollary 2 we have tacitly assumed that R
d
R
d+1

<

∏
k≠d

I
k
 is always satisfied. Corol-

lary 3 follows directly from the fact that the product of matrices with orthonormal rows
also has orthonormal rows. The matrix

(
AT
>d

⊗ AT
<d

)
V therefore contains the right singular

vectors of A<d> corresponding with the Sd largest singular values. Corollary 3 also implies
that the HOSVD factor matrix Ud can be directly computed from the SVD of Ad . The d-th
component Sd of the multilinear rank can be determined by inspecting the singular values
on the diagonal S matrix. If there is no need to know the exact multilinear rank, then a
square orthogonal Ud can also be obtained through a QR decomposition of Ad.

3.2 The TT to Tucker Conversion Algorithm

Lemma 1 forms the basis of the proposed algorithm to convert a given TT into either
an HOSVD or a truncated HOSVD. The algorithm to compute a truncated HOSVD is
presented in pseudo-code as Algorithm 1. The algorithm assumes the TT is in the site-
1-mixed-canonical form but can be easily adjusted to work for any other starting site. The
main idea of Algorithm 1 is to compute the orthogonal factor matrix Ud using Corollary 3
and then to bring the TT into the site-(d + 1)-mixed-canonical form. The conversion of the

A<d A
T
<d

= IRd
and A>d A

T
>d

= IRd+1
.

A<d> = Ad

(
A>d ⊗ A<d

)
, d = 1,⋯ ,D.

Sd = rank(A<d>) = rank(Ad) ⩽ min(Id,RdRd+1) ⩽ Id, d = 1,⋯ ,D.

A<d> = Ud S VT
(
A>d ⊗ A<d

)
.

266 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

TT into the site-(d + 1-)mixed-canonical form is computed through a QR decomposition of
the SVT factor. The orthogonal Q matrix is then retained as the d-th TT-core of the Tucker
core S , while the norm of A is moved to the next TT-core A(d+1) through the absorption of
the R factor. The final TT of S will, therefore, be in the site-D-mixed-canonical form. Both
the SVD step and the QR decomposition step are graphically represented in Fig. 7. During
each run of the for-loop in Algorithm 1 we are working with a partially truncated core ten-
sor, which is very reminiscent of the ST-HOSVD algorithm [28]. In fact, the approxima-
tion error induced by truncating the SVD in Algorithm 1 can also be expressed exactly in
terms of the singular values.

Theorem 2 Let �d(id) be the id-th singular value of �d and Â be the tensor computed by
Algorithm 1 with truncated SVDs. Then,

||A − Â||2
F
=

D∑

d=1

Id∑

id=Sd+1

�d(id)
2.

T

Fig. 7 The complete first execution of the for-loop in Algorithm 1 in diagram form

267Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

Given that the TT for the all-orthogonal Tucker core is in the site-d-mixed-canonical
form and the similarity of Algorithm 1 concerning the use of a sequentially truncated
Tucker core, it follows that the proof of Theorem 2 is completely identical with the one
found in [28, p. A1039]. Theorem 2 allows us to compute the absolute approximation
error for a truncated HOSVD during the execution of Algorithm 1 by simply adding
the squares of the discarded singular values. In addition, Theorem 2 also allows us to
compute a truncated HOSVD for a given upper bound � on the relative approximation
error. Since Algorithm 1 consists of D truncated SVDs, setting the tolerance � for each
of these SVDs to ���A��F∕

√
D then effectively guarantees that the computed approxima-

tion B satisfies ||A −B||F ⩽ �||A||F . Alternatively, if one is interested in the computa-
tion of an HOSVD without any truncation, then it suffices to replace the SVD in line 3)
of Algorithm 1 with a QR decomposition.

3.3 Computational Complexity

In this subsection we briefly analyze the computational complexity of Algorithm 1.
For notational convenience, we will assume that a D-way tensor A ∈ ℝI×⋯×I is repre-
sented by a TT with uniform TT-rank R. An additional assumption is that I < R2 . The
computation of D thin SVDs of Ad ∈ ℝI×R2 in line 3) takes then D(14R2I2 + 8I3) flops
[11, p.493]. The QR decompositions in line 10) required for the computation of the
site-(d + 1)-mixed-canonical form require (D − 1)

(
2I2(R2 − I∕3) + 4(R4I − R2I2 + I3∕3)

)

flops [11, p.249] when performed with Householder transformations. In practical cases,
we have that I ⩽ R2 and this implies that the total computational complexity for Algo-
rithm 1 is dominated by the O(R4I) term of the QR decompositions. If instead of a guar-
anteed relative approximation error a Tucker decomposition with given multilinear-rank
is desired, then one can replace the SVD in line 3) of Algorithm 1 by a randomized
SVD [14] or an implicitly restarted Arnoldi method [20]. Also note that the actual com-
plexity will depend heavily on the order of the indices, which is also the case with the
sequentially truncated HOSVD. In practice, a heuristic that reduces the computational
complexity is to permute the dimensions of the tensor A in an ascending manner prior

268 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

to computing its Tucker decomposition [28, p. A1041] as this permutation typically
reduces the maximal value of R.

A Tucker decomposition where the Tucker core tensor is stored as a TT was first
introduced in [7]. Algorithm 5 [7, p. 611] describes how such a decomposition can be
obtained by means of an iterative ALS method. One disadvantage of an ALS approach,
however, is that the desired TT-ranks need to be chosen a priori. An alternative DMRG
approach that is able to retrieve the TT-ranks has been proposed but this comes at the
cost of a computational complexity of O(R3I3) [7, p. 612].

4 TT to MERA

The conversion of a TT into a MERA can be done via a sequence of HOSVD and truncated
HOSVD computations. The disentanglers are computed through an HOSVD while the iso-
metries are obtained through a truncated HOSVD. The conversion algorithm will be demon-
strated through an illustrative example that consists of a TT with eight TT-cores with dimen-
sions Rd × I × Rd+1 for d = 1,⋯ , 8 . The goal is to compute a MERA for which the isometries
convert K = 2 indices into one. As demonstrated in Fig. 6, the “action” of the first MERA
layer is the application of three disentanglers. The diagram representation of the required oper-
ations to find these disentanglers is shown in Fig. 8. The required disentanglers are orthogonal
transformations on three index pairs. The relevant TT-cores are contracted over their auxiliary
indices R3,R5,R7 to obtain so-called “supercores”. For example, TT-cores A(2) and A(3) are
combined into a supercore A(2,3) ∈ ℝR2×I

2×R4 , where the two free indices of size I are com-
bined into one multi-index of size I2 . Algorithm 1 is then applied to these supercores with
a full SVD to obtain the desired disentanglers. The bottom row of Fig. 8 shows the obtained
partial Tucker core with the orthogonal factor matrices, which will serve as the transposes of
the disentanglers. For example, Algorithm 1 allows us to write

A
(2,3) = S

(2,3) ×2 U2,3,

Fig. 8 Diagram of disentangler computation through an HOSVD step in the TT format as described in
Algorithm 2

269Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

where S(2,3) ∈ ℝR2×I
2×R4 is represented by the leftmost oval of the bottom row in Fig. 8 and

U2,3 ∈ ℝI2×I2 is an orthogonal matrix. The desired disentangler is then obtained by reshap-
ing UT

2,3
 into a cubical 4-way tensor of dimension I. The partial Tucker core is now used

as the starting point for obtaining the isometries, as shown in the top row of Fig. 9. The
supercores, represented by the ovals in the top row of Fig. 9, first need to be split back into
separate TT-cores through an SVD, e.g., the supercore S(2,3) is reshaped into the R2I × IR4
matrix S2,3,

with S2 ∶= U and S3 ∶= SVT . The rank R3 is determined as the number of nonzero sin-
gular values such that S2 ∈ ℝR2I×R3 and S3 ∈ ℝR3×IR4 . The desired TT-cores are obtained
by reshaping S2 , S3 into the desired 3-way tensors. In this way we arrive at the second
row from the top of Fig. 9. In a MERA with K = 2 , there are the isometries orthogonal
transformations that convert two consecutive TT indices into one index. The next step is
therefore to form new supercores by summing over auxiliary indices R2 , R4 , R6 and R8 .
Applying Algorithm 1 with a truncated SVD then results in the desired isometries. Indeed,
the first supercore Â

(1,2)
 can then be written as

with Â
(1,2)

∈ ℝ1×S2×R3 and U1,2 ∈ ℝI2×S . The bottom row of Fig. 9 shows the diagram of
the truncated HOSVD in the TT form. The desired isometry is obtained by reshaping U1,2
into an I × I × S matrix, where S is the truncated index. Theorem 2 allows us to quantify

S2,3 = U S VT

= S2 S3

Â
(1,2)

= Â
(1,2)

×2 U1,2

Fig. 9 Diagram of isometry computation through a truncated HOSVD step in the TT format as described in
Algorithm 2

270 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

the absolute approximation error due to truncation at each isometry step in the formation
of the MERA and compute a MERA that approximates a given tensor with a guaranteed
relative error. If sufficient MERA layers have been computed through this procedure, then
the remaining Tucker core can be retained as the top tensor. This final step also ensures that
the norm of the MERA is completely determined by the top tensor. The pseudocode for the
whole algorithm is presented in Algorithm 2.

c

5 Iterative Algorithm for Finding a Rank‑Lowering Disentangler

Assuming that an exact low-rank MERA exists for a given TT, Algorithm 2 will typically
fail to find it. In practice, the output dimensions S of the isometries will simply be the
product of the input dimensions I1I2 ⋯ IK and no truncation is ever performed. This leads
to an exponential growth of the isometry output dimensions as a function of the number of
MERA layers. The problem with Algorithm 2 is that it fails to find the correct disentan-
glers. To explain the issue at hand, we first need to explain the workings of a disentangler
in a bit more detail.

5.1 Disentangler

As mentioned earlier in Sect. 2.3, disentanglers were originally introduced to remove pos-
sible correlations between neighbouring indices to avoid high TT-ranks after coarse-grain-
ing [30]. Figure 10 illustrates the key effect of a disentangler on a simple example of four
TT-cores with dimensions I1 = I2 = I3 = I4 = I . Note that the maximal TT-rank R between
the second and third TT-cores is I2 . Suppose that R = I2 . It is straightforward to see that
having no disentangler implies that the output dimensions of the two isometries needs to

271Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

be R = I2 , as two indices with dimension I are simply combined into one multi-index. Now
suppose that prior to the isometries, a disentangler can be applied to the second and third
TT-cores such that the TT-rank R is reduced to R′ < R . In this case, the two isometries
can truncate the dimensions I2 down to R′ without the loss of any accuracy. Unfortunately,
the disentanglers obtained from an HOSVD in Algorithm 2 do not reduce the TT-ranks,
which implies that none of the isometries can effectively truncate the dimensions. If we are
able to develop an algorithm that can find a rank-lowering disentangler, then Corollary 2
automatically guarantees that the truncated HOSVD in line 9) of Algorithm 2 will find an
optimal isometry. In the next subsection, we propose an iterative algorithm that attempts to
recover rank-lowering disentanglers.

5.2 Iterative Orthogonal Procrustes Algorithm

Before stating the problem of finding the optimal disentangler in a formal way, we first
introduce some convenient notation.

Definition 8 For a supercore A
(d,d+1) ∈ ℝRd×IdId+1×Rd+2 we define the following

matricizations:

These matrices are per definition related to one another via the shuffling operator shuf and
its inverse

With these definitions the optimal disentangler problem can now be formulated.

Problem 1 Given a supercore A(d,d+1) for which rank
(
A(d,d+1)

)
= R , find an orthogonal

matrix V ∈ ℝIdId+1×IdId+1 such that

with rank
(
shuf−1

(
A�
))

= R� < R.

A(d,d+1) ∈ ℝ
RdId×Id+1Rd+2 ,

A ∈ ℝ
IdId+1×RdRd+2 .

A = shuf
(
A(d,d+1)

)
,

A(d,d+1) = shuf−1(A).

A� ∶= V shuf
(
A(d,d+1)

)
= VA

Fig. 10 The disentangler reduces the TT-rank from R to R′ with R < R
′ , allowing the two isometries to

truncate to R′ without any loss of accuracy

272 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

Problem 1 is essentially an orthogonal Procrustes problem in A with the additional con-
straint that the orthogonal transformation V lowers the rank of A(d,d+1) . The difficulty is that
both A′ and shuf−1

(
A�
)
 are unknown. We therefore propose to solve the orthogonal Procrustes

problem in an iterative manner, where we fix A(k,k+1)� in every iteration to a low-rank approxi-
mation of A(d,d+1) . The computational complexity of solving the orthogonal Procrustes prob-
lem every iteration is O((IdId+1)3) , as this amounts to computing the SVD of A′ AT . The pro-
posed iterative algorithm is presented in pseudocode as Algorithm 3. The stopping criterion
can be set to a fixed maximum number of iterations or one can inspect the rank-gap �R� ∕�R�+1
of A(d,d+1) and stop the iterations as soon as this gap has reached a certain order of magnitude.
A low-rank approximation of A(d,d+1) can be computed via its SVD. At this moment, there
is no formal proof of convergence for Algorithm 3, nor is it known what the conditions for
convergence are. The best that we are currently able to do is to empirically show the success-
ful application of this algorithm and to explore its properties based on extensive numerical
experiments.

6 Experiments

In this section, we demonstrate the computational efficiency of Algorithms 1, 2 and 3 through
numerical experiments. All algorithms were implemented in MATLAB and the experiments
were performed on a desktop computer with a 4-core processor running at 3.6 GHz with
16 GB RAM. The data files required to reproduce these experiments are available at [1] and
an open source Matlab implementation of the algorithms is available at https ://githu b.com/
kbats eli/MERAC LE.

6.1 Converting a TT into Tucker—Compression of Simulation Results

In this experiment, we demonstrate Algorithm 1 and how a representation of a Tucker decom-
position can benefit compression without loss of accuracy. Inspired by the example discussed
in [28, p. A1047], a tensor decomposition is used for the compression of the solution u(x, y, t)
of

https://github.com/kbatseli/MERACLE
https://github.com/kbatseli/MERACLE

273Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

on the unit square [0, 1]2 with the boundary condition 0.25 − |0.5 − x| ⋅ |0.5 − y| , which
also describes the initial temperature distribution over the entire square. The PDE was dis-
cretized with a uniform mesh with the cell size (Δs,Δs,Δt) and solved with the explicit
Euler method, using a time step 0.25Δs2 to ensure numerical stability. We set Δs = 10−2
and Δt = 0.25 ⋅ 10−4 and simulate for about 0.25 seconds, resulting in a tensor of size
100 × 100 × 10 000 . The upper bound on the relative approximation error when comput-
ing tensor decompositions is set to 10−3 . We compare the sequentially truncated HOSVD
(STHOSVD) with both the TT and Tucker decomposition in the TT form. The STHOSVD
is computed with the MLSVD command of the Tensorlab toolbox [29], while the conver-
sion of the original data tensor into a TT is done via the TT-SVD algorithm [21, p. 2301].
The TT is converted into a Tucker decomposition via Algorithm 1. We consider two cases.
In the first case, we compute the three tensor decompositions on the original solution ten-
sor, while in the second case we first reshape the original data into a 16-way tensor by fac-
torization of all dimensions into their prime components. All results are shown in Table 1.
The compression column contains the ratio between how many numbers are required to
store the original tensor and how many numbers are required to store the decomposi-
tion. Not much difference in neither the total runtime, relative error or compression can
be observed when the simulation solution is kept as a 3-way tensor. The computation of
an STHOSVD of the 16-way tensor takes about 3 times longer than computing the corre-
sponding TT. The resulting decomposition is also not able to compress the data very much
as each of the dimensions of the 16-way tensor consist of (small) prime factors. The TT
and Tucker decomposition in the TT form, however, result in a saving of around 12 000,
which is an improvement of more than 10 times compared to the 3-way case. The time
required for Algorithm 1 to compute the Tucker decomposition was in both cases negligi-
ble compared to the runtime of the TT-SVD algorithm.

6.2 Comparison of HOSVD with Algorithm 3

In this experiment, we compare Algorithm 1 with Algorithm 3 to retrieve a rank-lowering
disentangler. For this we consider the MERA consisting of a single layer as depicted in
Fig. 11. The top tensor is taken to be an R� × R� grayscale image1. In this particular case,

�u

�t
=

�2u

�x2
+

�2u

�y2

Table 1 Comparison of different
tensor decompositions in
compressing the results from a
numerical simulation of the 2D
heat equation

Time/s Relative error Compression

STHOSVD (3-way) 3.279 4.74 E−4 1 055
TT (3-way) 3.579 8.54 E−4 1 101
TT-Tucker (3-way) 0.019 8.54 E−4 1 116
STHOSVD (16-way) 26.710 6.68 E−4 3.255
TT (16-way) 8.325 6.11 E−4 12 572
TT-Tucker (16-way) 0.005 6.11 E−4 12 229

1 The image was taken from http://absfr eepic .com/free-photo s/downl oad/lands cape-with-lake-4412x
2941_12692 .html, cropped and scaled to appropriate dimensions.

http://absfreepic.com/free-photos/download/landscape-with-lake-4412x2941_12692.html
http://absfreepic.com/free-photos/download/landscape-with-lake-4412x2941_12692.html

274 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

we set R� = 128 . Both the I × I × R� isometry tensors W and I × I × I × I disentangler ten-
sor V are found from the orthogonalization of random matrices with appropriate sizes. For
this experiment, we set I = 19 and choose the isometries to be identical. Given the R� × R�
grayscale image top tensor A shown in Fig. 12a, we can now apply the MERA “back-
wards”. The application of the two isometries on A is

resulting in an I2 × I2 image B , shown in Fig. 12b. The corresponding TT of the image B
has TT-ranks 19 and 128 = R� . The application of the disentangler is then performed from
the following steps:

B = WAWT,

B ∶= reshape(B, [I, I, I, I]),

Bp ∶= permute(B, [2, 3, 4, 1]),

B̃ ∶= reshape(Bp, [I
2, I2]),

Cp ∶= V B̃,

Cp ∶= reshape(Cp, [I, I, I, I]),

C ∶= permute(Cp, [4, 1, 2, 3]),

C ∶= reshape(C, [I2, I2]),

Fig. 11 The disentangler reduces
the TT-rank from R to R′ with
R > R

′ , allowing the two iso-
metries to truncate to R′ without
any loss of accuracy

Fig. 12 Image after consecutive application of isometries and a disentangler

275Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

resulting in the I2 × I2 image C shown in Fig. 12c. The corresponding TT of the image
C has TT-ranks 19 and 361 = I2 . This increase of the TT-rank is reflected in the image
as being much more “noisy” while the low-rank image of Fig. 12b has a particular block
structure pattern. We now compare the use of Algorithm 1 with Algorithm 3 for retrieving
a disentangler that is able to reduce the maximal TT-rank from 361 down to 128. Algo-
rithm 3 is run on the TT of C in site-4-mixed-canonical form and a rank-128 approximation
of C(2,3) is used. Each iteration of Algorithm 3 took 0.03 seconds and, as shown in Fig. 13a,
about 16 000 iterations were required for the 233 smallest singular values to converge to
values of about 10−15 . The computed disentanglers are then applied to the supercore C(2,3) .
The singular value decay of each corresponding C(2,3) is shown in Fig. 13b, where it can be
clearly seen that Algorithm 3 is able to retrieve a disentangler that lowers the rank to the
minimal value of 128.

6.3 Limitations of Algorithm 3

We revisit the example from Sect. 6.2 and explore the validity of Algorithm 3 for dif-
ferent values of R′ and I, as it is yet unclear under which conditions we are able to
retrieve an exact rank-lowering disentangler. If I is fixed, then the rank of C is I2 for
the particular MERA of Sect. 6.2 and it appears that there exists a minimal value R′

min

such that Algorithm 3 does not converge for values R′ < R′
min

 . There is, however, an
exception to this observation in that Algorithm 3 always converges if R� = 1 . Table 2
lists all values of R′

min
 for values of I going from 2 up to 14, where the convergence of

Algorithm 3 was determined from inspecting the singular value decay as in Fig. 13a. A
first observation is that R′

min
 grows slowly compared to R = I2 , which implies that the

range of values of R′ for which Algorithm 3 converges gets larger as I grows. The rea-
son for the existence of this R′

min
 is yet to be fully understood.

Fig. 13 Singular value graphs

Table 2 Minimal value of R′ for
which Algorithm 3 converges as
a function of I

I 2 3 4 5 6 7 8 9 10 11 12 13 14

R
′
min

2 4 6 9 12 16 20 25 30 37 44 51 59

276 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

A second observation relates to the rate of convergence. It turns out that Algo-
rithm 3 converges faster as the difference between R and R′ becomes smaller. This is
illustrated in Fig. 14 where the number of iterations required for Algorithm 3 to reach
a rank-gap of �R� ∕�R�+1 = 1012 is shown for varying R′ when I = 8 . An approximately
exponential growth in the number of required iterations can be seen as the difference
of R′ with R = 82 = 64 grows larger. This exponential growth might explain the exist-
ence of R′

min
 as a value of R′ for which convergence becomes “infinitely slow”. These

observations will serve as a starting point to investigate the exact nature of why and
when Algorithm 3 works, apart from the empirical study herein.

6.4 Comparison of Compression Capability Between a TT and a MERA
on a Large‑Scale Example

In this experiment, we compare the compression capability between a TT and a
MERA. We also apply Algorithm 2 on a large-scale example for which a 12-way cubi-
cal tensor A of dimension 10 is generated that is exactly represented by a 2-layer
MERA, where each of the isometries reduces K = 2 indices into 1 index S = 5 . The
first layer of the MERA coarse-grains 12 indices into 6 indices and each of the iso-
metries in this layer is a 10 × 10 × 5 tensor. The second layer of the MERA coarse-
grains the remaining 6 indices of the first layer into 3 indices and therefore consists
of 5 × 5 × 5 isometries. The top tensor of the MERA is a 3-way cubical tensor with
dimension 5. All isometries and disentanglers are initialized as random matri-
ces, drawn from an standard normal distribution, which are then made orthogo-
nal or orthonormal through a QR decomposition. The top tensor is also initialized

Fig. 14 The number of iterations required for Algorithm 3 to reach a rank-gap of �
R� ∕�R�+1 = 10

12 as a
function of R′ when I = 8

Table 3 Comparison of storage
requirement and compression
capability between a TT and a
MERA for a 12th-order cubical
tensor

Storage requirement Compression

Original tensor 10
12 1

TT 15 620 200 6.40 × 10
4

MERA 54 750 1.82 × 10
7

277Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

as a random matrix. A comparison of the TT and MERA in terms of how well they
compress the original 1012 is given in Table 3. The corresponding TT has TT-ranks
R
2
= 10,R

3
= 100,R

4
= 50,R

5
= 500,R

6
= 250,R

7
= 2 500,R

8
= 250,R

9
= 500,R

10
= 50,

R
11

= 100,R
12

= 10 and needs 15 620 200 elements. This constitutes a saving in storage
space of 1012∕15 620 200 = 6.40 × 104 . The MERA on the other hand consists of 54 750
elements and this results in a saving of storage space of 1012∕54 750 = 1.82 × 107 . The
MERA is therefore about 285 times smaller as the TT.

Using Algorithm 2 to convert the TT back into a MERA with an identical structure
as the “true” MERA (K = 2 and S = 5) takes 32.74 seconds and results in a relative
approximation error of 1.00. This large approximation error is explained by the trun-
cated HOSVD (line 9) in Algorithm 2 step not being able to truncate the ranks without
losing accuracy. Using Algorithm 2 to convert the TT back into a MERA and using
Algorithm 3 for the disentangler computation takes 63.81 seconds. Setting the stopping
criterion for Algorithm 3 to 𝜎R� ∕𝜎R�+1 > 1013 guarantees that a tolerance of 10−12 can
be used for the truncated HOSVD, thus obtaining a K = 2, S = 5 MERA with a relative
approximation error of 1.16 × 10−13 . The low-rank approximation used in Algorithm 3
contained 5, 25, 25, 25, 5 terms for the five disentanglers in the first layer, respectively,
and 5 terms for the three disentanglers in the second layer. The 63.81 seconds run-
time was dominated by Algorithm 3 reducing R7 = 2 500 down to a rank of 25, which
took 53.88 seconds. The remaining 10 seconds were spent in the reduction of the ranks
R6 = R8 = 250 whereas the computation of all remaining tensors in the MERA took
fractions of seconds.

7 Conclusions

This article has introduced two new algorithms for the conversion of a TT into a Tucker
decomposition and a MERA. The computation of a MERA-layer was shown to consist of
one HOSVD-step for the computation of the disentanglers and one truncated HOSVD-step
for the computation of the isometries. Using HOSVD to compute disentanglers was shown
to be sub-optimal in terms of reducing the rank and an iterative orthogonal Procrustes algo-
rithm was proposed that is able to find rank-lowering disentanglers. Numerical experiments
have demonstrated the efficacy of the proposed algorithms. The TT to Tucker decomposi-
tion algorithm was demonstrated to be fast compared to the conventional HOSVD algo-
rithm and resulted in an improvement of storage complexity that was one order of mag-
nitude smaller. The MERA was shown to have even more potential in storage complexity
in an experiment involving a tensor that consisted of 1012 elements where a compression
improvement of a factor 285 compared to a TT was observed. The effectiveness and limita-
tions of the orthogonal Procrustes algorithm were also explored in numerical experiments.
The exact conditions under which this orthogonal Procrustes converges to a disentangler
that retrieves an exact minimal-rank solution are still a topic for future research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

278 Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Batselier, K. (Kim): Data to reproduce experiments in research article “meracle: constructive layer-wise
conversion of a tensor train into a MERA” (2020). https ://doi.org/10.4121/UUID:CB37D 1B8-A505-
46EB-8C42-FE819 42962 4B. https ://data.4tu.nl/repos itory /uuid:cb37d 1b8-a505-46eb-8c42-fe819 42962
4b

 2. Carroll, J., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way
generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

 3. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensor networks for dimen-
sionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. Foundations
and TrendsⓇ in Machine Learning 9(4/5), 249–429 (2016)

 4. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor
decompositions for signal processing applications: from two-way to multiway component analysis.
IEEE Sig. Process. Mag. 32(2), 145–163 (2015)

 5. Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.P.: Tensor net-
works for dimensionality reduction and large-scale optimization: part 2 applications and future per-
spectives. Foundations and TrendsⓇ in Machine Learning 9(6), 431–673 (2017)

 6. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21(4), 1253–1278 (2000)

 7. Dolgov, S., Khoromskij, B.: Two-level QTT-Tucker format for optimized tensor calculus. SIAM J.
Matrix Anal. Appl. 34(2), 593–623 (2013)

 8. Espig, M., Hackbusch, W., Handschuh, S., Schneider, R.: Optimization problems in contracted tensor
networks. Comput. Visualization Sci. 14(6), 271–285 (2011)

 9. Espig, M., Naraparaju, K.K., Schneider, J.: A note on tensor chain approximation. Comput. Visualiza-
tion Sci. 15(6), 331–344 (2012)

 10. Evenbly, G., Vidal, G.: Algorithms for entanglement renormalization. Phys. Rev. B 79, 144108 (2009)
 11. Golub, G.H., van Loan, C.F.: Matrix Computations, fourth edn. Johns Hopkins University Press (2013)
 12. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.

31(4), 2029–2054 (2010)
 13. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5),

706–722 (2009)
 14. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms

for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)
 15. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explana-

tory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1), 84 (1970)
 16. Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189

(1927)
 17. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the

tensor train format. SIAM J. Sci. Comput. 34(2), A683–A713 (2012)
 18. Khoromskij, B.N.: O(dlog N)-quantics approximation of N-d tensors in high-dimensional numerical

modeling. Constructive Approx. 34(2), 257–280 (2011)
 19. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
 20. Lehoucq, R.B., Sorensen, D.C.: Deflation techniques for an implicitly restarted Arnoldi iteration.

SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996)
 21. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
 22. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra

Appl. 422(1), 70–88 (2010)
 23. Rommer, S., Östlund, S.: Class of ansatz wave functions for one-dimensional spin systems and their

relation to the density matrix renormalization group. Phys. Rev. B 55, 2164–2181 (1997)
 24. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Annals

of Physics 326(1), 96–192 (2011)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4121/UUID:CB37D1B8-A505-46EB-8C42-FE819429624B
https://doi.org/10.4121/UUID:CB37D1B8-A505-46EB-8C42-FE819429624B
https://data.4tu.nl/repository/uuid:cb37d1b8-a505-46eb-8c42-fe819429624b
https://data.4tu.nl/repository/uuid:cb37d1b8-a505-46eb-8c42-fe819429624b

279Communications on Applied Mathematics and Computation (2021) 3:257–279

1 3

 25. Shi, Y.Y., Duan, L.M., Vidal, G.: Classical simulation of quantum many-body systems with a tree ten-
sor network. Phys. Rev. A 74(2), 022320 (2006)

 26. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor
decomposition for signal processing and machine learning. IEEE Trans. Sig. Process. 65(13), 3551–
3582 (2017)

 27. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311
(1966)

 28. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order
singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027–A1052 (2012)

 29. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0 (2016). https ://
www.tenso rlab.net.

 30. Vidal, G.: A class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101,
110501 (2008)

https://www.tensorlab.net
https://www.tensorlab.net

	MERACLE: Constructive Layer-Wise Conversion of a Tensor Train into a MERA
	Abstract
	1 Introduction
	2 Tensor Basics
	2.1 Tucker Decomposition
	2.2 TT Decomposition
	2.3 MERA

	3 TT to Tucker Decomposition
	3.1 Tucker Factor Matrix from TT-Core
	3.2 The TT to Tucker Conversion Algorithm
	3.3 Computational Complexity

	4 TT to MERA
	5 Iterative Algorithm for Finding a Rank-Lowering Disentangler
	5.1 Disentangler
	5.2 Iterative Orthogonal Procrustes Algorithm

	6 Experiments
	6.1 Converting a TT into Tucker—Compression of Simulation Results
	6.2 Comparison of HOSVD with Algorithm 3
	6.3 Limitations of Algorithm 3
	6.4 Comparison of Compression Capability Between a TT and a MERA on a Large-Scale Example

	7 Conclusions
	References

