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Abstract
The gesture recognition in the collaborative setting,
like a meeting, is a very unique challenge due to the
complex and dynamic nature of hand movements.
This work identifies, annotates, and classifies the
gesture phases-preparation, stroke, retraction, and
neutral-using a multi-step approach: integrating
Segment Anything Model for accurate hand seg-
mentation, using ELAN software for manual anno-
tation, and the VideoMAE model for classification
of gesture phases. Our approach effectively sepa-
rates the hand motions from the background clutter
and annotates the gesture phases, thus enabling the
VideoMAE model to capture the temporal dynam-
ics in gesture recognition. The results bring out the
variability in phase durations and demonstrate the
model’s accuracy in classifying gestures in meet-
ing environments with different settings. This work
contributes to an increasing trend of developments
in the field of automated gesture recognition, lay-
ing a foundation for futures studies to explore is-
sues such as hand orientation and fusion of gesture
with speech data.

1 Introduction
Effective meetings are crucial for collaboration and decision-
making in workplaces, yet they are often plagued by mis-
understandings among participants. When individuals leave
with differing interpretations of the discussion, this can result
in poor outcomes, including miscommunication and wasted
time. Addressing these challenges requires a deeper under-
standing of both verbal and non-verbal elements of commu-
nication during meetings.

Modern automated systems for meeting analysis predom-
inantly focus on tasks such as speech-to-text conversion and
text summarization, utilizing platforms like IBM Watson or
Google Cloud Speech.

These systems suffer, however, because they are unable
to account for other aspects of communication which are
important in the big picture of collaboration, for example
gestures[2]. Certain innovations, for example the Segment
Anything model [3] of Meta offer possibilities to counter the
issues. The model not only does segmentation of objects but
also tracking of such objects that are part of a video; this
model opens doors to quantitative analysis of movement as
a channel of communication in meeting situations as record-
ings of all video dynamics can now be analyzed in detail.

This paper addresses the important research question: Why
and how are hand movements and gestures characterized for
the purpose of informing meeting participants? In order to
cover such a significant question, the study addresses three
major sub-questions:

How can gestures be recognized in close proximity to other
objects [6]? How can the phases of a gesture be identified, an-
notated, and analyzed? What are effective methods for tran-
sitioning between gesture phases during classification in au-
tomated systems? The significance of these questions in this

research is to measure how new hand-tracking systems are
designed for more challenging tasks, but also how these sys-
tems are adjusted for use in meeting settings.

The contributions of this research are twofold. The contri-
butions of this research are twofold. First, it examines ges-
tures in complex environments, such as crowded meeting set-
tings, and investigates the identification, annotation, and anal-
ysis of their phases—preparation, stroke, retraction, and neu-
tral. By studying the durations and variations of these phases,
the research provides a detailed understanding of the tempo-
ral dynamics of gestures, enabling more precise modeling and
interpretation.

Second, it explores strategies for detecting transitions be-
tween gesture phases in automated systems. This includes
testing different methods and settings to determine how fac-
tors like frame selection and temporal context impact the sys-
tem’s ability to accurately detect and classify these transi-
tions.

These contributions collectively advance the field of auto-
mated meeting analysis by integrating gesture-based insights
into existing frameworks. By focusing on the functional
roles, temporal characteristics, and classification challenges
of gestures, the research aims to enhance the accuracy and
applicability of systems that analyze non-verbal communica-
tion in collaborative settings.

The organization of this paper is as follows. In Section
2, we review the related work on gesture classification and
explain how our approach improves upon them. Section 3
discusses the methodology for identifying, annotating, and
analyzing gesture phases, as well as the study of phase dura-
tions. The tool selection is also explained here. In Section
4, we present the experimental setup and results, followed by
a discussion of hypothesis testing. Section 5 reflects on the
ethical aspects of the research. Finally, Section 6 concludes
the paper and outlines future work in this area.

2 Background and related work
In this section, we will present the works that our research
builds upon, highlighting the sections that are the most rele-
vant for our approach.

Current gesture analysis approaches frequently employ
deep learning models for feature representation of raw RGB
or depth data, as well as for gesture detection and classifica-
tion. A pioneering approach by Molchanov et al.[4] uses a
3DConvolutional Neural Network (CNN) on depth and RGB
data and incorporates Connectionist Temporal Classification
(CTC) to predict an “in progress” gesture from video seg-
ments. Typically, the class content of these segments features
a “silent gesture that depicts an action or an object”.

Recent advancements in gesture detection have moved be-
yond simple binary classification approaches to capture the
sequential and contextual nature of gestures. Ghaleb et al.
[1] proposed a novel framework that treats gesture detection
as a multi-phase sequence labeling problem, addressing the
dynamic phases of gestures—preparation, stroke, and retrac-
tion. Their method processes skeletal movement sequences
over time, utilizing Transformer encoders to capture con-
textual embeddings and Conditional Random Fields (CRFs)



for sequence labeling. Evaluated on a large dataset of co-
speech gestures in task-oriented dialogues, their framework
demonstrated superior performance compared to traditional
binary classification models, particularly in detecting gesture
strokes. Notably, the integration of Transformer-based con-
textual embeddings improved the detection of gesture units,
highlighting the framework’s ability to model the fine-grained
dynamics of gesture phases effectively. This work under-
scores the importance of modeling gestures as inherently se-
quential phenomena, paving the way for more nuanced anal-
ysis of co-speech gestures in real-world interactions.

3 Methodology
To address the research questions, this study employed a
multi-step approach designed to explore the recognition and
classification of hand gestures and their phases in meeting
scenarios. The methodology was specifically tailored to pro-
vide both theoretical and practical insights into gesture dy-
namics in collaborative contexts.

3.1 Instrumentation and Systematic Tool
Integration

Introduction to Tool Selection
In any computational research project, the selection of ap-

propriate tools forms the backbone of the methodology, di-
rectly influencing the accuracy, reliability, and efficiency of
the outcomes. In this project it was required to have tools ca-
pable of handling tasks such as precise segmentation of hand
movements, accurate annotation of gesture phases, and robust
spatiotemporal modeling of gesture dynamics. Each tool was
evaluated based on its functionality, compatibility with other
components of the research pipeline, and ability to address
the challenges posed by complex multi-person interactions.

The criteria for tool selection extended beyond basic func-
tionality; scalability, ease of integration, and adaptability to
domain-specific challenges were key considerations. For in-
stance, the segmentation tool needed to perform reliably even
in the presence of overlapping objects or occlusions, while the
annotation software had to support detailed temporal and se-
mantic labeling of gestures. These requirements ensured that
the tools not only facilitated individual tasks but also con-
tributed to a cohesive and efficient workflow.

Role of Each Tool in the Workflow
The tools employed in this project were integral to the three

primary phases of the research: data preparation, annotation,
and model training. Each tool was selected to fulfill a distinct
role in addressing specific research challenges:

• Segmentation Tool: Segment Anything Model (SAM)
The Segment Anything Model was employed to gener-
ate pixel-level segmentation masks for hands in video
recordings. Its advanced capabilities in handling object
segmentation across diverse and cluttered environments
ensured precise isolation of hand movements. The abil-
ity of SAM to generalize across different contexts with-
out requiring extensive domain-specific training made it
an optimal choice for this project.

• Annotation Tool: ELAN Software
ELAN software was used for the manual labeling of
gesture phases, including preparation, stroke, retraction,
and neutral states. ELAN’s support for multi-tier anno-
tations and temporal alignment made it ideal for associ-
ating gesture phases with time-sequenced data.

• Model Training and Fine-Tuning: VideoMAE
VideoMAE was selected as the backbone model for spa-
tiotemporal learning. Its design, which excels in cap-
turing motion dynamics across video frames, made it
particularly suitable for recognizing and classifying ges-
tures based on their phases. The model was fine-tuned
using the manually annotated dataset, enabling it to gen-
eralize across new, unseen videos.

3.2 Research Implementation Workflow

Figure 1: Video Processing

The workflow followed to address the research question
consists of three parts. As shown in Figure 1, first, masks
of the hands are generated from a series of videos using the
Segment Anything Model (SAM). Next, selected segments
of these videos are manually annotated according to the M3D
principles, using ELAN software.

Finally, the labeled data, consisting of sequences of frames
paired with their corresponding phase labels, is analyzed and
used to fine-tune and test a pre-trained video processing tool,
VideoMAE. The training data for VideoMAE is provided in
the format of temporal frame sequences with per-frame ges-
ture phase annotations, enabling the model to learn phase-
specific features effectively.

The first research question: How can gestures be recog-
nized in close proximity to other objects? This question re-
quired the use of a robust segmentation method. The Seg-
ment Anything Model (SAM) was chosen for its proven ca-
pability to segment objects with high precision, ensuring that
hand regions could be accurately isolated from visually com-
plex backgrounds typical of meeting environments. This step
was essential to create a clean dataset that focuses on hand
movements, allowing subsequent steps to operate on clearly
defined inputs.

To address the second research question: How can the
phases of a gesture be identified, annotated, and analyzed
in terms of their durations and variations between different
gesture types? Manual annotation was conducted following
the guidelines established in the M3D framework[5]. This
decision was motivated by the need to incorporate domain-
specific expertise in gesture analysis. The annotation process
categorized gestures according to their phases (preparation,
stroke, retraction, and neutral). By integrating these estab-



lished criteria, the dataset ensured a rich representation of
both the structural and semantic aspects of gestures.

Finally, the third research question: What are the most ef-
fective methods for transitioning between gesture phases dur-
ing classification in automated systems? To address this, I
used the videoMAE model. This model was selected for
its capability to capture spatiotemporal relationships in video
data, making it ideal for analyzing gestures as sequences that
unfold over time. By testing and different settings and eval-
uating the results I found what was optimal when classifying
the gestures.

This methodology was chosen for its ability to combine
advanced machine learning techniques with human expertise.
By using SAM for precise segmentation, manual annotation
for capturing nuanced gesture semantics, and videoMAE for
dynamic classification, the approach ensured a comprehen-
sive pipeline capable of addressing the challenges outlined in
the research questions. This careful alignment of methods
to research objectives highlights the study’s commitment to
both accuracy and interpretability in gesture recognition and
analysis.

4 Experimental Setup and Results
In this chapter, I outline the experimental process and present
the results of the proposed methodology for gesture analysis
in meeting scenarios. The section is divided into two parts:
details of the experiment and the corresponding results.

4.1 Experiment Details
To evaluate the effectiveness of the proposed methodology
for gesture recognition in meeting scenarios, a structured ex-
perimental pipeline was designed. The experiment involved
three main stages: segmentation, annotation, and model fine-
tuning, each carefully tailored to ensure the robustness of the
system.

Hand Segmentation
The first step in the pipeline utilized the Segment Anything

Model (SAM) to generate segmentation masks for hand re-
gions in video footage of meetings. The videos consisted of
diverse interactions with varying lighting conditions, partici-
pant and objects configurations, and hand movements. To be
able to perform this step the videos had to be split into frames
at a rate of 30 frames per second (FPS). This frame rate was
chosen based on a careful consideration of multiple factors to
ensure an optimal balance between temporal resolution, com-
putational efficiency, and gesture phase identification.

One critical factor in selecting 30 FPS was the need to
capture the different phases of gestures—preparation, stroke,
retraction, and neutral—accurately. Gestures often involve
quick and dynamic movements, and a lower frame rate could
miss key transitions between these phases, leading to a loss
of important temporal details.

At the same time, computational efficiency was a signif-
icant consideration. While higher frame rates, such as 60
FPS, could offer even finer temporal resolution, they would
result in a considerably higher number of frames to process,
increasing both storage requirements and processing time.

Opting for 30 FPS provided a practical trade-off, allowing
faster processing and reduced computational demands with-
out compromising the ability to capture gesture nuances.

SAM was applied to each video frame to isolate hand
regions from the background, and its segmentation perfor-
mance was evaluated. Deficiencies in the results, such as in-
complete masks or false positives, were addressed to ensure
the quality and accuracy of the outputs.

Figure 2: ELAN Software

Data Labeling
Once the segmentation masks were obtained, the videos

were imported into the ELAN software for manual gesture
annotation. As shown in the example in Figure 2, the phases
are annotated to specific segments of the video. I utilized the
frame-by-frame annotation option, which allows me to ac-
curately determine the start and end frames of each gesture
phase. To ensure the accuracy, consistency, and objectivity
of the labeling process, the M3D framework was employed.
This framework offers well-defined guidelines for identifying
and annotating the different phases of gestures. A gesture typ-
ically unfolds in the following sequence: preparation, stroke,
and retraction. However, in some cases, either the prepara-
tion or retraction phase may be absent. The neutral phase,
representing a pause or inactivity in hand movement, can oc-
cur at any point between or within other phases, providing
flexibility in the gesture’s overall flow. The annotations also
captured the temporal progression of gestures, ensuring that
the sequential nature of gesture phases was preserved.

A key principle used during annotation was that a gesture
is defined by the presence of exactly one stroke phase. The
stroke phase, being the most meaningful and emphasized part
of a gesture, is pivotal in distinguishing one gesture from an-
other. This definition provided a clear method for determin-
ing the number of gestures in a video.

To distinguish the preparation phase from retraction, a



guiding principle was applied: preparation is defined as the
movement of the hand from a rest position to the location
where the stroke begins, while retraction occurs after the
stroke and represents the movement of the hand back toward
the rest position. This distinction ensures that the transitions
between gesture phases are clearly marked and temporally
accurate.

Additionally, the video segments were carefully selected
to minimize inactive periods, ensuring that gestures (ranging
between 5 and 10 per segment) occurred in rapid succession,
one after another. This selection criterion helped to focus the
annotation on continuous, dynamic gestures without interrup-
tions, preserving the natural flow of movements.

In the output from the ELAN software, each gesture is an-
notated with its respective phases and corresponding start and
end times. The file containing the annotated data follows the
structure:

• Each distinct gesture phase is represented in three lines.

• The gesture phase is indicated in the first line.

• After it the begin and end times for each phase are pro-
vided in seconds, marking the temporal boundaries of
the gesture phase within the video.

This structure allowed me to easily transform the times into
frames of the video. By knowing the frame rate of the video,
which was constant throughout the recording, I was able to
compute the corresponding frame numbers for each begin
and end time. Specifically, for a given time t, the correspond-
ing frame number f can be calculated as:

f = t× frame rate

Where frame rate is the number of frames per second
(FPS) of the video. This process allowed me to represent the
gesture phases in terms of discrete frames, facilitating the in-
tegration of the data with the frame-level analysis performed
by the gesture recognition model.

Model Training and Testing

• Fine-Tuning the videoMAE Model: After generating
the annotated dataset, the videoMAE model was fine-
tuned using the labeled videos. The input to the model
consisted of the segmented hand regions and their cor-
responding phase annotations. The fine-tuning process
was designed to enable the model to learn spatiotem-
poral features of gestures, improving its ability to clas-
sify gestures dynamically over time. To fine-tune the
model, the data needed to adhere to a specific format.
The videos were resized to 224x224 pixels resolution
and segmented, ensuring each segment contained frames
consistently labeled with the same gesture phase. Two
segment length configurations were tested: one with a
maximum of 12 frames per segment and the other with
16 frames. Each sequence of frames was paired with
its corresponding label, ensuring that the temporal con-
tinuity of the gesture phase was preserved. All segments
were then grouped into a list, which was subsequently

fed into the model for fine-tuning. This approach en-
abled the model to learn the temporal patterns of each
gesture phase, as it was not limited to processing a sin-
gle frame at a time. Instead, it received a sequence of
frames, allowing the model to capture the dynamics and
transitions within each phase, leading to a more robust
understanding of the gesture’s progression.

• Testing Scenarios: To evaluate the system, addi-
tional videos containing unseen gestures were processed
through the pipeline. The videos were split in the same
manner as the training data, with each segment consist-
ing of a sequence of frames corresponding to a single
gesture phase. The same approach was applied, where
each list of frames was passed through the model to pre-
dict a single label for the entire segment. This process
allowed the evaluation of the model’s performance on
previously unseen gestures, providing insights into its
generalization capability.

• Evaluation Metrics: The performance of the system
was evaluated using several metrics, including accuracy,
precision, recall, and F1-score, which are essential for
measuring the effectiveness of gesture recognition and
classification:

– Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy measures the overall proportion of cor-
rect predictions (both true positives and true nega-
tives) to the total number of predictions. It provides
a general indication of the model’s performance but
may not be reliable in imbalanced datasets.

– Precision:

Precision =
TP

TP + FP

Precision calculates the proportion of positive pre-
dictions that were actually correct. It is particularly
useful when false positives have a high cost, as it re-
flects how many of the predicted positive gestures
were correct.

– Recall:
Recall =

TP

TP + FN
Recall measures how many actual positive in-
stances were correctly identified by the model. It
is important when false negatives are costly, as it
reflects the model’s ability to identify all relevant
gestures.

– F1-Score:

F1-Score = 2 · Precision · Recall
Precision + Recall

The F1-score is the harmonic mean of precision and
recall, providing a balanced measure of both met-
rics. It is useful when the data is imbalanced or
when both false positives and false negatives are
important to minimize.



4.2 Results
This section presents the outcomes of the experiments
conducted during the study. The results are presented
using tables and figures to ensure clarity and accessi-
bility, with observations and conclusions drawn directly
from the data.

Phase Distribution Analysis
Figure 3 summarizes the average percentage of time
each phase—preparation, stroke, retraction, and neu-
tral—occupies within a gesture. These percentages were
calculated across the annotated dataset to provide in-
sights into the temporal dynamics of gesture phases. The
dataset was curated to include only portions with active
gestures and hand movements, while segments without
gestures or hand activity were excluded. This prepro-
cessing approach ensured a focus on dynamic hand mo-
tion, but it also directly influenced the time allocation
of the neutral phase, as periods of inactivity were mini-
mized.

Figure 3: Average Gesture Duration by Phase

0.32s
0.51s

0.40s

0.67s

Preparation(16.8%)
Stroke(26.8%)
Retraction(21.1%)
Neutral(35.3%)

Observations:
– The stroke phase consistently occupies the largest

portion of a gesture, aligning with its role as the
most meaningful segment.

– The preparation and retraction phases exhibit no-
table variability, reflecting differences in gesture
initiation and conclusion among participants.

– The neutral phase appears intermittently and oc-
cupies varying durations, depending on pauses in
hand movements.

Model Accuracy with different settings
We evaluated the model’s accuracy using segments of
12 frames and 16 frames to analyze their impact on rec-
ognizing gesture phases. Segments of length 12 per-
formed better in recognizing preparation and retraction
phases, as these phases typically occur more quickly
and benefit from the finer temporal resolution. Con-
versely, segments of 16 frames provided a broader con-
text, which was more suited for recognizing longer
phases like strokes and neutral gestures. This highlights
the importance of segment length in balancing tempo-
ral granularity and contextual understanding for gesture
phase recognition.

5 Discussion and Ethical Considerations
Data Gathering and Ethical Considerations

As gesture recognition technologies are applied in real-
world scenarios, it is crucial to consider their ethical impli-
cations. While this research aims to improve gesture recog-
nition models in complex environments, such as meetings, it
is important to acknowledge that such technology may not
always be entirely reliable. Errors or inaccuracies in recog-
nizing gesture phases can lead to misinterpretations or unin-
tended outcomes in automated systems, potentially mislead-
ing users or decision-makers. We stress the importance of
using this research responsibly and advocate for transparency
in the development and deployment of AI systems.

The data used for this study was collected with the full con-
sent of the participants involved, and the anonymity and con-
fidentiality of their information were prioritized.
Reproducibility of the Research

We aimed to ensure that our findings could be indepen-
dently verified and built upon. We have provided a de-
tailed description of our experimental setup, including the
datasets (gesture phase annotated dataset), the architecture of
the model (VideoMAE), and the metrics for evaluation (ac-
curacy, precision, recall, F1-score). We have documented
the key hyperparameters, such as clip length (16 frames) and
frame size (224x224). Our methodology and evaluation pro-
cedures are designed for reproducibility, with clear documen-
tation on the tools and models used.

6 Conclusions and Future Work
This paper addresses the challenges of gesture recognition
in meetings, focusing on the identification, annotation, and
analysis of hand gestures within complex environments. Our
main research question was how to effectively recognize ges-
tures in close proximity to objects and how to identify, anno-
tate, and analyze the phases of these gestures in a way that is
applicable to automated systems.

To answer these questions, we employed a multi-step
methodology that integrated the Segment Anything Model
(SAM) for segmentation, ELAN software for manual anno-
tation, and VideoMAE for model training. The segmenta-
tion process effectively isolated hand movements from back-
ground clutter, while the annotation process provided detailed
labeling of gesture phases: preparation, stroke, retraction, and
neutral. These phases were then used to fine-tune the Video-
MAE model, enabling it to recognize and classify gestures
based on temporal dynamics.

A key direction that this research can lead to is the explo-
ration of additional factors that influence the interpretation
of gestures, such as hand orientation. While our current ap-
proach focuses on gesture phase identification and temporal
dynamics, hand orientation plays a crucial role in understand-
ing the intent behind certain gestures. For instance, the direc-
tion in which a hand is held or the specific orientation of the
palm could provide important context, especially in distin-
guishing between gestures with similar movements but dif-
ferent meanings.

Another promising area for future research is the inte-
gration of gesture recognition with audio processing. Ges-



ture analysis alone provides valuable information about non-
verbal communication, but combining it with speech data
could enhance the interpretation of the gestures. For exam-
ple, the meaning of a hand gesture could be better understood
when contextualized with the verbal content of the conversa-
tion.

In conclusion, while the current work advances the field of
automated gesture recognition in meetings, more research is
needed to tackle the limitations identified, improve system ro-
bustness, and address ethical concerns. This paper provides
a foundation for future studies aiming to enhance the accu-
racy and applicability of gesture recognition technologies in
collaborative settings.
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