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Image quality in single-molecule localization microscopy depends largely on the accuracy and precision of the
localizations. While under ideal imaging conditions, the theoretically obtainable precision and accuracy are achieved;
in practice, this changes if (field-dependent) aberrations are present. Currently, there is no simple way to measure and
incorporate these aberrations into the point-spread function (PSF) fitting; therefore, the aberrations are often taken as
constant or neglected altogether. Here we introduce a model-based approach to estimate the field-dependent aberration
directly from single-molecule data without a calibration step. This is made possible by using nodal aberration theory
to incorporate the field dependency of aberrations into our fully vectorial PSF model. This results in a limited set of
aberration fit parameters that can be extracted from the raw frames without a bead calibration measurement, also in
retrospect. The software implementation is computationally efficient, enabling the fitting of a full 2D or 3D dataset
within a few minutes. We demonstrate our method on 2D and 3D localization data of microtubuli, nuclear pore com-
plexes, and nuclear lamina over fields of view of up to 180µm and compare it with Gaussian fitting, spline-based fitting,
and a deep-learning-based approach.
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1. INTRODUCTION

Single-molecule localization microscopy (SMLM) [1–4] enables
routine imaging at the nanoscale. The need for high throughput
and much data implies that a large field of view (FOV) must be
imaged, which is enabled by modern sCMOS sensors that have up
to 10 Mpixels and by advanced illumination schemes [5–12]. A key
problem that arises is that aberrations depend on the position in
the FOV. This is problematic for both the precision and accuracy of
in-plane (x y ) localization, but even more so for 3D (x y z) localiza-
tion. Up to now, aberrations, let alone field-dependent aberrations,
are rarely considered in SMLM, as it is time-consuming and cum-
bersome to (i) measure them and (ii) include them in the fitting.
For that reason, the default method for estimating the positions of
the emitters is to fit a simplified point-spread function (PSF) model

to the recorded data. Typically, this simplified model is a Gaussian
[13], which reduces the computational load to estimate the posi-
tions of millions of emitters to reconstruct a super-resolution
image. Known drawbacks, however, are position biases in the case
of asymmetric aberrations and of emitters with partially fixed
orientation [14] and an underestimation of the photon count [15].
An alternative to the data-driven PSF model is the spline model
[16], which requires calibration of the PSF by beads, potentially
at various field and depth positions. Advantageously, a physically
correct, fully vectorial PSF model could be used, so that high NA
and polarization effects are properly considered. Moreover, field-
dependent aberrations of the microscope can then automatically
be incorporated, and emission dipole orientation as well, if needed.

Up to now such a full vectorial model is not used in practice for
SMLM due to the computational load [17].
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The current practical standard to measure field-dependent
aberrations is a calibration in the form of an axial scan of many fluo-
rescent beads distributed over the whole FOV [16–18]. Nanohole
arrays have been tried as calibration samples as well [19]. An
alternative is provided by the localization data itself, as millions
of localization events are in fact millions of measurements of the
microscope’s PSF across the FOV. The localization data itself thus
provide a wealth of information on the optical system, and the
challenge is to unlock that information. The key obstacle is that
each individual localization event does not allow for the fitting
of aberration parameters next to the position, photon count, and
background, because the data are much too noisy for a robust
estimation of many parameters. Previously, Xu et al . applied pupil
phase retrieval to an averaged set of 3D localization data, but only
so using an approximate scalar PSF model and for global aberra-
tions independent of the position in the FOV [20]. Recently, Liu
et al . proposed a framework for inverse PSF modeling, enabled by
automatic differentiation, and showed its applicability to vecto-
rial PSF fitting of 3D localization datasets with field-dependent
aberrations [21]. Here, we present an alternative method to esti-
mate field-dependent aberrations from 2D or 3D single-molecule
images alone, without any calibration measurement. We make this
possible by fitting the localization data with a global optical aber-
ration model, with a limited number of fit parameters, instead of

fitting the full aberration content of each measured PSF separately.
This global aberration model is derived from the so-called nodal
aberration theory (NAT) [22], which provides explicit relations of
the field dependency of the appearing aberration coefficients via
low-order polynomials of the field coordinates. This eliminates the
need for ad hoc smoothing of field-dependent aberrations as done
in the inverse PSF modeling approach and enables application to
2D localization data.

2. SINGLE-MOLECULE LOCALIZATION WITH
FIELD-DEPENDENT ABERRATIONS

Aberrations can be modeled by expressing the phase aberration
function in the pupil plane in terms of Zernike modes. Using NAT,
the Zernike coefficients Anm can be expressed as low-order polyno-
mials of the field coordinates (x , y ) (see Section 2 in Supplement 1
for theory):

Anm(x , y )=
∑
l ,q

γlqnm Qlq(x , y ),

where γlqnm are NAT coefficients, and Qlq(x , y ) are products of
(Legendre) polynomials of order l and q . We adapted NAT to
the square shape of the FOV by using Legendre polynomials to
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Fig. 1. Schematic of fitting field-dependent aberrations from single-molecule data. (a) The raw single-molecule blinking frames are used as input.
(b) After segmentation into ROIs, a subset of ∼103 ROIs across the FOV is selected for field-dependent aberration estimation. (c) The estimation of
field-dependent aberrations uses maximum likelihood estimation and consists of two optimization loops: a local update that updates the locations, photon
count, and background of each ROI while keeping the NAT coefficients constant, and a global update that updates the Legendre NAT coefficients while
keeping the locations, photon count, and background constant. By selecting different ROIs in (b) multiple times and repeating the estimation (c), an esti-
mation precision for the aberrations can be calculated. (d) Finally, in all ROIs, emitters are localized using the vectorial PSF model [24] with the estimated
NAT coefficients as input.
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describe the field dependence. For describing the field dependency
of the first-order aberrations, that is, defocus, primary astigmatism,
coma, and spherical aberration, it turns out that only 13 NAT coef-
ficients are needed. To include second-order aberrations (trefoil
and secondary astigmatism, coma, and spherical aberration), an
additional 43 NAT coefficients are needed. This number of free
parameters, though large, is still orders of magnitude less than the
number of free parameters in data-driven approaches [16,23].

Figure 1 schematically depicts our method. The raw blinking
time series data are segmented into regions of interest (ROIs)
containing fluorescent emitters as usual for SMLM. From these
millions of ROIs, a very small subset of Ms ∼ 103 ROIs across
the FOV is randomly selected to be used as input for the field-
dependent aberration estimation. The estimation process consists
of an alternation of local and global updates. During a global
update, the NAT coefficients are updated while keeping the
locations, photon count, and local background of the emitters
fixed, while during a local update, the locations are updated with
fixed NAT coefficients. Subsequently, all ROIs are fitted with
a vector PSF model, “Vectorfit” for short [24], using the found
field-dependent aberrations as input. We have implemented the
vector PSF fitting on a GPU for speedup and have devised several
algorithmic improvements for additional steps in efficiency. First,
we utilize the phasor method to provide a fast, initial estimate of
the lateral position that is robust against high background [25].
Second, we compute the initial estimate of photon count Nph and
background count bg with linear regression given the data and
the model. Third, precomputing the optical transfer function
(OTF) reduces the number of needed Fourier transformations per
iteration by a factor of 6. These different algorithmic innovations
are outlined in Section 1 in Supplement 1.

3. EXPERIMENTAL RESULTS

We have tested our method on SMLM data of microtubuli
acquired over a large 97× 97 µm FOV (see Section 1 in
Supplement 1 for experimental details). The same sample was
imaged with and without astigmatism to obtain 2D and 3D locali-
zation data, respectively (see Fig. 2). The aberrations found from
the single molecule data via our method give very similar aberration
maps across the FOV [orange in Figs. 2(a) and 2(e)] as the aberra-
tion maps obtained by interpolating between aberrations retrieved
from z-stack bead calibration data [light blue in Figs. 2(a) and
2(e)], with the largest difference in the slope of the coma aberration
maps (see Figure S1 in Supplement 1 for the difference maps). We
performed a chi-square goodness-of-fit test [26] to check whether
the PSF model with single-molecule-derived aberrations gives rise
to a better fit than the PSF model with bead-calibration-derived
aberrations (Figure S2 in Supplement 1). For both the 2D and
3D data, we find on average about 1% smaller chi-square values
for the single-molecule-derived aberrations, up to about 5% and
3% smaller at the edges of the FOV for the 2D and 3D datasets,
respectively, indicating a slightly better fit of the single-molecule-
derived aberrations. The overall chi-square values are about 20%
(2D) and 16% (3D) higher than the theoretical values based on
shot noise statistics [26] (Figure S3 in Supplement 1), indicating a
residual model mismatch, possibly due to higher-order aberrations
and amplitude aberrations. A further validation of our approach is
found by a comparison of the modeled PSF to the measured single-
molecule spots in 4× 4 patches across the FOV, as a function of the

axial position (Visualization 1). This comparison shows that the
modeled PSF matches very well with the measured data.

We also found a difference in the estimated bead aberrations
between consecutive days of measurement with different bead
samples. The beads measured on the second day show a uniform
shift in the coma coefficient A3−1 (Figure S4 in Supplement 1).
By estimating the z locations of the beads, we found that the tilt of
the sample was different between the two measurement instances,
most likely caused by remounting of a different bead sample on
the stage. We attribute the difference in the estimated coma to this
sample tilt, as passing a high NA emission beam through a tilted
medium leads to coma that is constant over the FOV. Apparently,
the aberration estimation from bead calibration data can be
affected by small changes in the imaging conditions, like the sam-
ple tilt. Similar differences in imaging conditions can potentially
arise between the bead calibration measurement and the actual
single-molecule data acquisition, implying that estimation of
aberrations from the data itself not only makes the bead calibration
measurement spurious, but is also inherently more reliable.

We also used the chi-square goodness-of-fit test to assess the
added value of taking the field dependency of the aberrations into
account. We applied Vectorfit with all the aberrations set to zero,
except for a constant amount of astigmatism (A2−2 = 87 mλ,
equal to the average amount over the FOV estimated from the
bead calibration) for estimating the axial location for the 3D
data. Figure S3 in Supplement 1 shows that the PSF model with
single-molecule data-derived field-dependent aberrations fits the
data better than the model without aberrations, especially toward
the edges of the FOV. A comparison of the estimated locations
using the two models shows that the location difference increases
with the distance from the center of the FOV (Figure S3d in
Supplement 1). Moreover, for the 3D data, the shift in loca-
tion is different for emitters with z< 0 than for emitters with
z> 0(Figure S3f in Supplement 1), which could lead to a distor-
tion of the imaged structures when field-dependent aberrations are
not considered.

We compared our reconstructions to existing methods, namely
Picasso [27] for the 2D data and SMAP [28] for the 3D data
(Visualization 3). Picasso uses a Gaussian PSF model where the
horizontal and vertical standard deviations σx and σy are estimated
for each ROI [13], whereas SMAP uses a spline PSF model that
is uniform across the FOV, with parameters estimated from the
experimental bead data. Figures 2(c) and 2(d) show that 2D recon-
structions with Picasso are very similar to reconstructions with
Vectorfit. The average localization precision, estimated by linking
localizations in consecutive frames [29], is 10.0 nm for Vectorfit
with a CRLB of 9.3 nm, better than the value of 13.5 nm found
for Picasso with a CRLB of 14.2 nm. Figures 2(g)–2(j) show that
3D reconstructions with SMAP are similar to reconstructions with
Vectorfit, where Vectorfit shows a somewhat smaller axial spread of
the localizations. The linking analysis gives here an average locali-
zation precision of 12.1 nm (x y ) and 29.9 nm (z), with a CRLB of
12.1 nm (x y ) and 31.1 nm (z), compared to a precision of 12.1 nm
(x y ) and 35.7 nm (z) for SMAP. FRC image resolution [30] esti-
mation (Figs. S5 and S6 in Supplement 1) shows a comparable
performance between Vectorfit and the other software used.

An often used benchmark for SMLM is the nuclear pore com-
plex (NPC) [31]. Specifically, the ability to show the nuclear and
cytoplasmic ring of the NPC, separated only by ∼50 nm, is a
hallmark of axial accuracy. We applied Vectorfit to such a 3D NPC
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Fig. 2. Aberration estimation from 2D and 3D experimental data of microtubili. A sample was imaged in 3D with and in 2D without astigmatism.
(a) Estimated Zernike aberration surfaces from single molecules of the 2D data, compared to interpolated aberrations from bead z-stack calibration. (b) Full
FOV image reconstructed using Vectorfit and fitted aberrations from single molecules. (c) and (d) insets of (b), where (i) shows vector fitting and (ii)
Gaussian fitting by Picasso [27]. (e) Estimated Zernike aberration surfaces from single molecules of 3D data, compared to interpolated aberrations from
bead z-stack calibration. (f ) Full 3D FOV image reconstructed using Vectorfit and fitted aberrations from single molecules. The 3D image is shifted 14µm
to the upper right compared to the 2D image. The false color indicates the axial distance from the nominal focus. In the 3D image, the microtubules that
overlay the nucleus are visible in blue, while in the 2D image, these regions appear black, as the emitters are too much out of focus. (g) and (h) insets of (f ),
where (i) shows the Vectorfit result and (ii) with SMAP [28]. (i) and (j) y z cross sections of the regions indicated in (g) and (h). Scale bars: 10 µm (b), (f ),
500 nm (c), (d), (g), (h), (i), and (j).
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Fig. 3. Reconstructions for experimental 3D astigmatic data of NPCs. (a) (i)–(ii) Full FOV images reconstructed using Vectorfit with fitted aberrations
from the single-molecule data, and SMAP using a spline PSF obtained from 3D bead calibration. (b) (i)–(ii) Zoomed views of the regions indicated by the
boxes (b) (i)–(ii) in (a). (c) (i)–(ii) Zoomed views of the regions indicated by the boxes (c) (i)–(ii) in (a). (d) (i)–(ii) y z cross sections of the regions indicated
by the boxes (d) (i)–(ii) in (b). (e) (i)–(ii) y z cross sections of the regions indicated by the boxes (e) (i)–(ii) in (c). Scale bars: 5µm (a), 500 nm (b)–(e).

dataset, where NUP96 is labeled inside the NPC in U2OS cells
over a 25× 26 µm FOV [32]. In Fig. 3, we show that Vectorfit
achieves comparable image quality as the reference processing via
SMAP. The two NPC rings are clearly separated with Vectorfit,
indicating that our method works for such challenging experi-
mental samples. The linking analysis gives an average localization
precision of 3.6 nm (x y ) and 8.0 nm (z), with a CRLB of 2.9 nm
(x y ) and 7.0 nm (z), improving over the precision of 4.8 nm (x y )
and 9.2 nm (z) for SMAP.

Next, we applied our method to another 3D dataset of NUP96
in the nuclear pore complex (NPC) of U2OS cells (FOV of about
180× 180 µm) of Fu et al . [18], where the axial direction was
encoded using astigmatism, and compared the outcome to that
of their method, FD-DeepLoc, in Fig. 3. The aberration maps
retrieved from the single-molecule data match well with the aberra-
tion maps obtained from the bead calibration used in FD-DeepLoc
[see Fig. 5(a) and Figure S7 in Supplement 1], toward the edges of
the FOV; however, the bead-calibration-derived aberration maps
show large and erratic variations, which is unlikely from the point
of view of NAT, which predicts field dependency by low-order
polynomials. Figure 3(b) shows the experimentally found standard
deviation for the estimation of the different aberrations, obtained
from 30 estimations for different randomly selected subsets of
5000 localizations, as well as their Cramér–Rao lower bound
(CRLB) values (see Section 2.4 in Supplement 1). The experimen-
tal standard deviations are on the small mλ scale across the whole
FOV, but do not reach the CRLB values in the sub-mλ level. We

also tested the dependence of the experimental precision on the
number of localization events Ms and found a scaling inversely
proportional to Ms

1/2, in agreement with expectations (Figs. S8
and S9 in Supplement 1). The comparison of the modeled PSF
to the measured single molecule spots in 4× 4 patches across the
FOV, as a function of the axial position (Visualization 2), shows
a good match between the modeled PSF and the measured data.
These validation tests indicate that our approach enables unbiased
and precise aberration estimation.

We compared the Vectorfit reconstruction with field-
dependent aberrations retrieved from the single-molecule data
to a reconstruction with Vectorfit without aberrations, where all
the aberrations are set to zero, except for a constant amount of
astigmatism (A22 = 103 mλ, in accordance with the reported
RMS value from the cylindrical lens) for estimating the axial
location, and to the FD-DeepLoc reconstruction. In the center
of the FOV, close to the optical axis, the reconstructions from
the three methods are comparable (Figure S10 in Supplement 1).
Toward the edges of the FOV, however, the aberrations become
larger, leading to sizeable differences in the axial localization [see
Figs. 3(c)–3(f )]. In one corner of the FOV, the FD-DeepLoc
reconstruction shows a large spread of z locations within a single-
cell nucleus [Fig. 4d(iii)]. The y z cross section in Fig. 4f(iii) shows
a large variation of z locations in a single NPC, which seems
unrealistic. In our reconstructions [Figs. 4d(i-ii) and 4f(i-ii)],
the range of z locations matches much better with the expected
thickness of the NPC ring of around 50 nm [31,33]. At the top
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Fig. 4. Aberration estimation and reconstructions for experimental 3D astigmatic data of NPCs. (a) Estimated Zernike aberration surfaces from single
molecules, compared to interpolated aberrations from bead z-stack calibration. (b) Standard deviation and CRLB for the estimated Zernike coefficients.
The standard deviations were calculated by repeating the estimation process 30 times with different randomly selected subsets of 5,000 localizations.
(c) (i)–(iii) Full FOV images reconstructed using fitted aberrations from single molecules, without aberrations (A22 = 103 mλ and other Zernike modes
set to zero) and FD-DeepLoc. (d) (i)–(iii) Zoomed views of the regions indicated by the boxes (d) (i)–(iii) in (c). (e) (i)–(iii) Zoomed views of the regions
indicated by the boxes (e) (i)–(iii) in (d). (f ) (i)–(iii) y z cross sections of the regions indicated by the boxes (f ) (i)–(iii) in (e). Scale bars: 50µm (c), 5µm (d),
500 nm (e), (f ).
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Fig. 5. Aberration estimation and reconstruction for experimental 3D astigmatic data of nuclear lamina. (a) Full cell nucleus reconstructed from multi-
ple partially overlapping stage-shifted acquisitions using Vectorfit with field-dependent aberrations, where the color indicates the z value corresponding to
the colorbar at (d), (e), and (f ). (b) Average measured and modeled PSFs at different z values relative to the focal plane at z= 0. A total number of 51,922
ROIs, 75,767 ROIs, and 65,651 ROIs were averaged in a range of 100 nm centered around z=−250, z= 0, and z= 250 nm, respectively, and upsampled
by a factor 10. (c) Estimated aberration surfaces from single-molecule data compared to interpolated aberrations from z-stack bead data. (d) x z projection
of the nucleus over the full x range for (i) Vectorfit with field-dependent aberrations, (ii) Vectorfit without aberrations (only a constant amount of astigma-
tism A22 = 163 mλ), and (iii) Gaussian fitting with Picasso using a calibration curve obtained from the bead data for z-estimation. (e) The same as (d), but
for a 1 µm thick slice in the x direction with x between 14.7 and 15.7 µm. (f ) Same as (d), but only one y z slice at the position indicated in (d) and locali-
zation histogram as a function of axial position. (g) same as (e), zoom in at an invagination of the nuclear lamin. The localizations of three subsequent axial
acquisitions, stage-shifted 250 nm, color coded. [Scale bars: 500 nm (b), 2µm (d,e), 1µm (f), and 500 nm (g)].

of the FOV, we observe that Vectorfit with field-dependent aber-
rations leads to a better reconstruction than without aberrations
(Figure S11 in Supplement 1). A chi-square goodness-of-fit test

(Figure S12 in Supplement 1) shows that the Vectorfit model with
field-dependent aberrations outperforms Vectorfit with constant
aberrations, with a chi-square ratio reaching 1.5 at the edges of the
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FOV. We also observe a shift in the lateral localizations of up to a
few tens of nanometers (Figure S12b in Supplement 1) and a shift
in the axial localizations of up to 150 nanometers (Figure S12c in
Supplement 1). The distribution of localization precision values,
estimated using the method of linking localizations in consecutive
frames, has a mean of 11.7 nm (x y ) and 23.5 nm (z) for Vectorfit
with field-dependent aberrations, with a CRLB of 10.1 nm (x y )
and 20.6 nm (z). For FD-Deeploc, we find by the same method
a localization precision of 7.9 nm (x y ) and 23.2 nm (z). With
Vectorfit, we achieve the CRLB and therefore attain the optimal
localization precision based on the signal-to-noise ratio of the
data. The axial localization precision of Vectorfit is comparable to
FD-Deeploc, but the lateral localization precision is a bit worse.
We speculate that the learning-based approach of FD-Deeploc
could bias localizations from the same emitter, which would intro-
duce spurious correlations in subsequent time frames, resulting
in a lower measured lateral localization precision than the CRLB.
Analysis of the image resolution in a grid of 4× 4 patches across
the FOV with FRC thus shows slightly better image resolution for
FD-DeepLoc than for VectorFit (Figure S13 in Supplement 1).

So far, we have applied first-order NAT, i.e., taking only pri-
mary astigmatism, coma, and spherical aberration into account,
where the field dependence of the Zernike coefficients is described
with low-order polynomials compatible with the aberration
order. We have also made a fit of the NPC dataset using second-
order NAT, which takes into account second-order astigmatism,
coma, and spherical aberration, and primary trefoil, as well as
higher-order polynomials for the dependence of Zernike coef-
ficients on field coordinates (see Section 2 in Supplement 1).
Figure S14 shows the result of the second-order NAT fit. It turns
out that the 43 extra NAT coefficients can be fitted quite well.
The fit converges within a few minutes, as the computational
time scales linearly with the number of NAT coefficients. The
values found for the 13 original first-order NAT coefficients
were not very different from the values found in the first-order
fit, resulting in Zernike coefficient maps across the FOV that
are quite consistent with the first-order NAT maps (Figure
S14a in Supplement 1) and with the aberrations estimated
from bead z-stack calibration (Figure S14b in Supplement 1).
Differences between the first- and second-order aberration sur-
faces do occur near the edge of the FOV, leading to small changes
in the estimated locations (Fig. S15a-g in Supplement 1). The
overall localization precision, derived from linking localizations in
consecutive frames, improved a bit to 10.7 nm (x y ) and 21.3 nm
(z), with a CRLB of 10.2 nm (x y ) and 21.0 nm (z). The average
ratio of the chi-square values relative to the shot noise reference
value decreased from 1.09 to 1.07 (Fig. S15h in Supplement 1),
indicating an improvement in fit quality.

Finally, we applied our method to 3D astigmatic data of nuclear
lamin A/C in a HeLa cell, imaging an entire nucleus [Fig. 5(a)] over
a z-range of approximately 6 µm. This was achieved by measuring
22 z-stacks where the sample stage was moved 250 nm between
each measurement (see Section 1 in Supplement 1 for experimen-
tal details). The aberrations estimated from the single-molecule
data closely match the aberration maps obtained by interpola-
tion between aberrations estimated from z-stack bead data [see
Figs. 5(c) and Fig. S16 in Supplement 1], showing that the aberra-
tions are dominated by constant amounts of vertical astigmatism
and vertical coma. Additionally, averaging the measured single-
molecule spots at different positions through focus [Fig. 5(b)] also

shows a PSF dominated by these two aberrations. The measured
and modeled PSFs are very similar, confirming that our model
accurately fits the data.

We compared the reconstruction using Vectorfit with field-
dependent aberrations to a reconstruction using Vectorfit without
aberrations, where all Zernike coefficients were set to zero, except
for a constant amount of astigmatism (A22 = 163 mλ, equal to
the average amount estimated from the bead data). Additionally,
we compared the Vectorfit results to a reconstruction using
Gaussian PSF fitting in Picasso [27] using a calibration curve for
z-estimation obtained from the bead data. Figure 5(d) shows an x z
projection of the fully reconstructed nucleus, while Fig. 5(e) shows
an x z projection of a 1µm thick slice in the y direction for all three
methods. The reconstructions using Picasso exhibit a horizontal
striping artifact and a serrated membrane edge that are significantly
reduced when using Vectorfit and even more suppressed when
taking into account field-dependent aberrations. Figure 5(e) shows
a nuclear lamin invagination extending through the nucleus,
which is narrower when using Vectorfit with field-dependent
aberrations. In Fig. 5(f ), we compare the reconstructions of one
z-stack with the three reconstruction methods and investigated
the axial localization histogram. By comparing the Vectorfit results
of Fig. 5f(i,ii) to the Gaussian fit result of Fig. 5f(iii), we observe
that in the latter case, the localizations are grouped into two axi-
ally separated batches. This gives rise to the striping observed in
Figs. 5(e) and 5(d). The reason for this lies in the small amount of
vertical coma that biases the Gaussian estimate, which relies on
the ratio of the two fitted widths of a bivariate Gaussian [13]. This
ratio is then compared against a modeled bead calibration curve
obtained earlier to find the axial position. In Fig. 5(g), we compare
the localizations of three subsequent stage-shifted acquisitions of
the nuclear lamin invagination. In case the field-dependent aberra-
tions are not included, the localizations [Fig. 5g(ii, iii)] are laterally
displaced depending on the axial position, up to several hundred
nanometers, giving rise to a bending artifact of the largely vertical
line feature. In contrast, Vectorfit, including aberrations, does not
give rise to such a shape distortion [Fig. 5f(i)]. The root cause of the
bending artifact lies in the coma aberration, which we also see in a
simulation study (see Fig. S17 in Supplement 1).

4. DISCUSSION

Fully vectorial PSF fitting in a maximum likelihood estimation
(MLE) framework has not found its way into the practice of the
SMLM field up to now. Software fitting is mostly dominated by
the fitting of Gaussians or spline-based models. The reason is
solely that the fitting speed was too slow for the typical number of
localizations (∼106) in a super-resolution acquisition. CPU imple-
mentations of 2D Gaussian MLE fitting achieve currently about
104 fits/s and GPU implementations even more than 106 fits/s
(7× 7 pixel ROI). Only the phasor-based approach is equally
quick on the CPU [25]. Our OTF-based algorithmic improve-
ments for the fitting together with a high-end GPU (Nvidia
A100) now allow 105 fits/s (see Table S1 in Supplement 1), while
a good desktop GPU (Nvidia RTX A4000) has 6 · 104 fits/s,
and a multi-core CPU still achieves 9 · 103 fits/s. This brings
vectorial PSF fitting times for a typical dataset to less than a
minute on a GPU in 2D. In 3D, our algorithmic improvements
are less effective (for details, see Section 1 in Supplement 1),
which results in 6.8 · 103 fits/s for a 17× 17 pixel ROI on our
desktop GPU which is about 30× slower than 3D spline-based
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fitting that achieves 2 · 105 fits/s on a desktop GPU for a 17× 17
pixel ROI [34], but better than the less than 1 fit/s reported for a
17× 17× 41 pixel bead stack [18].

Our approach of estimating aberrations directly from single-
molecule data makes taking the inclusion of field-dependent
aberrations to the localization much more feasible because it saves
doing an additional bead calibration experiment, which can also
be prone to errors as shown above. The recently proposed method
from Liu et al . to estimate aberrations from single-molecule
data can take more than half an hour on a GPU [21], while our
model-based approach takes less than a minute on a CPU to
estimate aberrations. In addition, our work is applicable to 2D
localization data, while theirs is not. In 2D, however, the effect of
field-dependent aberrations on the localizations is less impactful
than in 3D.

The current practice in the field for 3D SMLM is astigmatic
imaging followed by analysis via a bivariate Gaussian model
[13,27]. We have shown in Fig. 5 that this analysis is prone to
localization biases of several hundred nanometers even if rela-
tively small amounts of coma are present of about half-Marechal’s
tolerance criterion (72 mλ). In practice, this limits the trusted
axial range of imaging to about ±200 nm around the focal plane
instead of±500 nm, which should be possible theoretically. Using
Vectorfit, including aberrations, we come close to this range,
thereby allowing faithful structural 3D imaging. Rejecting all
localization far from the focal plane could solve the structural
deformation, but at the cost of a required finer axial sample.
Vectorfit thus allows for twice as fast volumetric imaging com-
pared to the current practice. Moreover, since coma can depend on
position in the FOV, taking into account the field dependence of
aberrations makes this possible for laterally extended FOVs.

In future work, a user interface should be developed to make
vectorial PSF fitting accessible to a broader audience. Furthermore,
the NAT-driven approach of estimating field-dependent aberra-
tions directly from single-molecule data could be applied to other
imaging modalities, such as 4Pi SMLM or localization microscopy
with fixed dipole emitters, and also for scanning but camera-based
localization microscopy [35].
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