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Mode Collapse Happens: Evaluating Critical Interactions in
Joint Trajectory Prediction Models

Maarten Hugenholtz1

Abstract—Autonomous vehicles rely on prediction modules,
in order to plan collision-free trajectories. Vehicle trajectory
prediction models are multimodal, to account for the multiple
route options and the inherent uncertainty in human behavior.
The state-of-the-art prediction models are deep-learning models,
which are susceptible to mode collapse, a phenomenon in which
the model fails to output the full distribution of modes and
only predicts the most likely one. Mode collapsing poses safety
concerns for autonomous driving, as missed predictions could
result in collisions. Most works have focused on addressing
this issue by generating diverse predictions that cover various
route options at the environmental level. However, there are no
metrics for mode-collapse. Furthermore, little attention has been
given to generating diversity in the interaction modes among
agent trajectories. Additionally, the traditional distance-based
metrics are heavily dependent on datasets and do not evaluate
interactions between agents. To this end, we propose a novel
evaluation framework that assesses the interaction modes of
joint trajectory predictions, focusing only on the safety-critical
interactions in a dataset. We introduce a metric for mode-collapse
and time-based metrics for mode correctness and coverage,
shedding light on the temporal dimension of the predictions. We
test four multi-agent trajectory prediction models on the widely
used nuScenes dataset and conclude that mode collapse happens.
While the rate of correctly predicted interaction modes increases
closer to the interaction event, there are still cases where the
models are unable to predict the interaction mode even right
before the interaction happens. With the introduction of our
novel framework, researchers can now benchmark their models’
performance in predicting critical interactions. This provides
new insights and perspectives, helping the holistic evaluation
and interpretation of a model’s performance. Additionally, our
work offers a new developmental direction for prediction mod-
els, aiming for greater consistency and accuracy in predicting
agent interactions, thereby advancing the safety of autonomous
driving systems. Our evaluation framework is available online at:
https://github.com/MaartenHugenholtz/InteractionEval

I. INTRODUCTION

Autonomous vehicles (AVs) have the potential to revolu-
tionize personal transportation, motivated by improved driving
comfort, energy efficiency and road safety [1]. Part of the
autonomous driving challenge involves the planning of safe,
comfortable and efficient trajectories. To achieve this, modular
planning systems rely on a prediction module that predicts the
motion of surrounding vehicles [2]. Because human behavior
is naturally uncertain and multimodal, it is unrealistic to
predict a single trajectory for each agent, based on the limited
clues that can be extracted from the scene, without knowing
the agent’s intent. Therefore, multimodal trajectory prediction
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Fig. 1: We consider an exemplary intersection scenario, with
two interacting vehicles, and one non-interacting vehicle. Both
model (a) and (b) have similar mean final displacement errors,
while only model (b) correctly predicts the interaction between
the green and red vehicle.

(MTP) was introduced by [3], in which multiple trajectories
are predicted for each agent, to cover all possible modalities.

A common problem is the models’ susceptibility to mode
collapse. This machine learning phenomenon occurs when the
model fails to learn the true distribution of modes and only
outputs the most likely mode, or two distant modes collapse
into a single, infeasible mode [4]. In a safety-critical applica-
tion like autonomous driving, it is crucial that such failures are
avoided, as incomplete or inaccurate predictions, that are used
in a downstream planner, could result in collisions. Several
works have addressed the mode collapse issue by using goal-
conditioned prediction and a diverse set of goals [5]–[7] or
by using training objectives that allow for diverse predictions
[8], [9] or promote distributions with high entropy [10]. These
works mitigate mode collapse on the environmental level by
generating diverse predictions that cover various route options,
but little attention has been given to guaranteeing diversity in
the interaction modes among agent trajectories. Furthermore,
there are currently no metrics to evaluate mode collapse.

Vehicle trajectory prediction (VTP) models are evaluated in
open-loop, and their performance is primarily evaluated with
distance-based metrics that assess the models’ accuracy. While
these metrics are an obvious choice and easy to compute,
they are heavily constrained on datasets, making it impossi-
ble to compare models from different datasets, complicating
interpretation. Furthermore, none of the existing evaluation
frameworks explicitly evaluate the model’s ability to correctly
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predict the interaction between agents, which we argue is
the most safety-critical aspect of driving. In Figure 1, we
demonstrate that traditional distance-based metrics fail to eval-
uate interactions between agents effectively and that averaging
distance errors complicates the interpretation of results.

The aim of this study is to evaluate mode collapse on the
interaction level in VTP models in an insightful and more
data-independent way. More specifically, we want to research
when mode collapse occurs and get insight into the temporal
dimension of the predictions. Towards this end, we introduce a
novel evaluation framework to benchmark a model’s interac-
tion prediction performance. Our contributions are fourfold:
First, we evaluate the interaction modes of joint trajectory
predictions by introducing an explicit metric for mode collapse
and utilizing metrics for mode correctness and coverage. This
is a safety-critical aspect that has previously been neglected
in VTP evaluation. Second, we introduce time-based variants
of these metrics, shedding light on the temporal evolution and
consistency of the predictions. Third, we only consider the
relevant parts of path-crossing interactions, thereby making
the evaluation less dependent on datasets, and improving
interpretability of the metrics. Finally, we benchmark two
state-of-the-art trajectory prediction models, along with two
other baseline models, on the nuScenes dataset and evaluate
them using our novel metrics. Our results show that the models
suffer from mode collapse and, in some cases, fail to correctly
predict the interaction mode between agents, even just before
the interaction happens.

The rest of this paper is organized as follows: In Section II
we give a brief literature overview on multimodal trajectory
prediction models and the performance metrics used in popu-
lar benchmarks. In Section III we present our methodology
and formulate our novel metrics. Section IV describes the
models that we tested and in Section V their performance on
the nuScenes dataset is discussed, with both qualitative and
quantitative results. Finally, Section VI concludes this work,
and we discuss limitations as well as exciting directions for
future research in this area.

II. RELATED WORKS

In Section II-A we discuss how multimodal trajectory pre-
diction models mitigate mode collapse, what mode represen-
tations have been used, and the difference between marginal
and joint prediction. Section II-B discusses the current trajec-
tory prediction evaluation frameworks, and how they fail to
effectively evaluate interactions.

A. Multimodal trajectory prediction models

Multimodal trajectory prediction models employ various
techniques to mitigate mode collapse. A common remedy is to
first predict diverse modes and condition the prediction upon
these modes, to guarantee diverse predictions. A mode is an
abstraction of a trajectory referring to a high-level behavior,
and can be represented on the environment level (goal lanes
or points) [5], [11], vehicle level (lane change, accelerating,

(a) Marginal prediction

(b) Joint prediction

Fig. 2: Illustration from [19], demonstrating the difference
between marginal prediction (a) and joint prediction (b).

braking) [12], [13] or interaction level (yielding, going) [14]–
[16]. Using such a mode as an intermediate representation
to condition the prediction upon, improves interpretability
and helps mitigate mode collapse. However, since no unified
definition of a mode exists, there are also no metrics to
quantify the discrete mode prediction performance of the
models.

Multimodal trajectory prediction models can be categorized
into node-centric and scene-centric models, which perform the
prediction per-agent and jointly for the whole scene, respec-
tively. Figure 2 demonstrates the difference. Generally, scene-
centric models better capture the interactions among agents,
have higher scene consistency and are more compatible with
downstream planners [17]. On the other hand, node-centric
models are easier to train and better cover the agents’ motion
[18]. In order to evaluate the interaction mode of a trajectory
pair, joint trajectory predictions are required. Therefore, we
will solely focus on the evaluation of scene-centric vehicle
trajectory prediction models.

Categorical Traffic Transformer (CTT) [7] is an example of
such a model. It uses an interpretable set of Scene Modes
(SM) to supervise the latent mode distribution. Uniquely,
these modes consist of two types: agent2lane (a2l) modes and
agent2agent (a2a) modes, thereby capturing both the route and
interaction intention of agents. However, because the number
of modes scales exponentially with the number of agents in
the scene (both in lane options and agent interaction), it is
infeasible to predict all modes in scenes with many agents.
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B. Performance metrics

Vehicle trajectory prediction models are evaluated in open
loop, using various metrics that assess the accuracy, proba-
bility, diversity, and admissibility of the predicted trajectories.
Distance-based metrics like the minimum average displace-
ment error (minADE), minimum final displacement error
(minFDE) and miss rate (MR) have been the primary accuracy
metrics used to compare multimodal trajectory prediction
models. However, the performance of these metrics is heavily
dependent on the used dataset, making comparison between
different datasets impossible and complicating interpretation.

Another aspect that has been neglected in the evaluation is
the interactions among agents. Recent works [7], [8], [20] have
turned to scene-centric models, to better capture interactions
between agents by simultaneously rolling-out their future
trajectories. The Waymo Open Motion Dataset (WOMD)
[21] prediction benchmark introduced joint metrics for the
minADE, minFDE and MR. Their definitions are similar to
their marginal variants, except that the minimum error of K
predictions is taken over the whole scene instead of agent-
wise. This means that we cannot mix-and-match the best
prediction for each agent over different scene samples, which
means the prediction task is inherently more challenging but
also gives a more realistic idea of the performance. While
these joint metrics implicitly evaluate agent interactions, the
lack of an explicit metric makes interpretation challenging, as
demonstrated in Figure 1.

In CTT [7] a2l and a2a modes are defined and used to
condition the prediction task upon the scene mode. Addition-
ally, they introduce corresponding mode metrics: the mode
correct rate and mode cover rate. The mode correct rate is
the percentage of most likely (ML) predictions that match
the ground truth (GT) mode (a2a, a2l or both). The mode
coverage rate is the rate at which one of the K predicted
trajectories matches the GT mode. They compare their per-
formance on these metrics to AgentFormer (AF) [20] on the
nuScenes and WOMD datasets. While this is a promising step
towards formalizing modes and improving intention prediction
(lane and interaction modes), their metrics lack interpretability
and are still heavily dependent on the dataset. The latter is
demonstrated by the fact that for AF there is almost a 50%
performance difference in the a2a cover rate between nuScenes
and the WOMD. In this work, we will extend their mode
metrics for a2a interactions and use them to quantify a model’s
interaction prediction performance in a more insightful and
data-independent manner.

III. METHODOLOGY

We argue that current evaluation frameworks lack inter-
pretability because they are constrained to datasets, which
vary in size, density, number of agents, etc. Therefore, these
frameworks are not able to capture the model’s critical in-
teraction prediction performance, because all interactions are
considered for all time steps. We propose to only evaluate
the safety-critical interactions, and give a formal definition in

Section III-A. To characterize the interactions, we use a two-
class free-end homotopy concept (Section III-B). Furthermore,
we only evaluate the predictions until the point where the
interaction class becomes inevitable. To find this point, we
simulate feasible future roll-outs for the interacting agents
(Section III-C). Finally, in Section III-D we present our novel
metrics for evaluating mode collapse on the interaction level.
Additionally, we introduce time-based metrics to get insight
into the temporal evolution of the predictions.

A. Safety-critical interactions

A unified definition for inter-vehicle interactions was de-
fined by [22]:

“A situation where the behavior of at least two road
users can be interpreted as being influenced by the
possibility that they are both intending to occupy the
same region of space at the same time in the near
future.”

This possibility is very low for a lot of the theoretical
number of interactions, as the traffic flows are constrained
by infrastructure and traffic rules. These interaction pairs are
not interesting because the vehicles are on different lanes or
are already in the same lane, e.g., in car-following scenarios.
The interesting and safety-critical interactions are those where
agents initially occupy different lanes but intend to occupy the
same region of space or lane in the near future. Exemplary
scenarios are merging and crossings at unsignalized intersec-
tions. To identify these interaction pairs, we will first formally
define path-sharing and then outline our criteria for safety-
critical interactions.

Path-sharing definition. We define the trajectories of two
agents as τ1 and τ2:

τ1 = [(x1, y1), . . . , (xn, yn)]1

τ2 = [(x1, y1), . . . , (xn, yn)]2

where (xi, yi) is an agent’s position at time step ti, where
i = 1, 2, . . . , n and is defined for the maximum interval at
which both agents are present in the scene, i.e., recorded in
the data.

To determine whether agents are on the same path, we
compute the pairwise distance from each point of τ1 to all
other points of τ2. Thus, the position difference matrix ∆P is
calculated as:

∆P =

(x1, y1)
...

(xn, yn)


1

−
[
(x1, y1) . . . (xn, yn)

]
2

The resulting matrix is of shape (n×n×2) and the entries
∆pij denote the position difference (∆x,∆y)ij between the
agents. The entries dij of the distance matrix D are calculated
by taking the Euclidean norm of the position differences ∆pij :

dij = ||∆pij ||2
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D =

d11 d12 . . .
...

. . .
dn1 dnn


To determine if a point along the path was or will be

occupied by the other agent, we take the minimum of D
over the columns and rows, respectively. A path point is on
the commonly shared path if the distance is smaller than
a threshold, d < donpath, which is set to 1.5 m. This is a
reasonable threshold, considering that two narrow cars would
be in collision if the distance between their path centerlines is
less than 1.5 m. Thus, we calculate the boolean path-sharing
vectors of the agent-pair as:

onpath1 = min
axis=1

D < donpath

onpath2 = min
axis=0

D < donpath

In Figure 3 we show exemplary scenarios of interacting and
non-interacting agent-pairs, where the True values of the
onpath vectors are visualized with bigger markers. To make
sure the real minimum distance is calculated, the position
vectors are interpolated to increase the resolution for the
distance calculation.

Interaction criteria. We define an interaction pair to be
safety-critical if the trajectories are not path-sharing at first,
but are path-sharing at a later stage. We define the time at
which an agent starts to be on the commonly shared path as:

tpath−sharing = min{t | onpath = 1}

Thus, we are looking for the interactions where:

tpath−sharing,1 > t1

tpath−sharing,2 > t1

If the sequence is long, two trajectories can be path-sharing
at the end, even if the cars are very far apart. Therefore, we
impose an additional time-based constraint on the interaction:
the time difference between the instances at which the vehicles
begin to occupy the shared region should be no more than
a prediction horizon, which is 6 seconds in the case of the
nuScenes benchmark:

∆tpath−sharing = |tpath−sharing,2 − tpath−sharing,1| ≤ 6 s

An interaction is defined to be safety-critical, if the tra-
jectory pair satisfies all three conditions. With this definition,
we can separate the safety-critical interesting interactions, like
merging and crossing, from basic car-following and traffic
light scenarios. This reduces the dependency on the dataset,
as we only evaluate similar, and safety-critical, interactions.
In the traditional trajectory prediction evaluation, all cars and
scenes are considered, which complicates interpretation, be-
cause the distance errors are averaged, making it unclear what
kind of scenarios were evaluated and how the model performed
in critical cases. Thus, by applying our methodology, the
metrics become more interpretable and insightful. Statistics
on the interactions in the nuScenes dataset will be discussed
in the results Section V-A.

(a) Merging (b) Crossing

(c) Car-following (d) Passing vehicles

Fig. 3: Exemplary traffic scenarios of safety critical interaction
agent-pairs (a, b) and non-interacting agent-pairs (c, d) from
the nuScenes dataset. The time steps where the agents are on
the commonly shared path are visualized with big markers
(True values of the onpath vectors).

B. Homotopy classes and convergence

To categorize the interaction between agent-pairs, we use
homotopy classes. A group of trajectories with common start-
and endpoints belong to the same homotopy class if they can
be continuously deformed into each other without intersecting
any obstacle [23]. We will follow [24] and build upon their
concept of free-end homotopy, which has more flexible classes
because the end-point of the trajectories does not have to
be shared. The agents’ interaction class is determined by
the winding angle, which is the integrated angular difference
between the agent-pair. Let τ be the trajectory of the ego
and τ0 be the trajectory of an obstacle, with the sequence
of waypoints discretized as {(xi, yi)}Ni=1 and {(xo

i , y
o
i )}

N
i=1.

The angular distance ∆θ is computed as:

∆θ (τ, τo) :=

N−1∑
i=1

arctan
yi+1 − yoi+1

xi+1 − xo
i+1

− arctan
yi − yoi
xi − xo

i

The angle describes the relative rotation of the agents with
respect to each other, as illustrated by Figure 4. The angle
is used to categorize the agent-to-agent (a2a) interaction into
three modes: [S, CW,CCW ] (static, clockwise, counterclock-
wise):

h :=


CW, ∆θ (τ, τo) < −θ̂

S, −θ̂ ≤ ∆θ (τ, τo) < θ̂

CCW, ∆θ (τ, τo) > θ̂
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Fig. 4: Visualization of the winding number (angular distance)
calculation and convergence of two agents traversing an inter-
section, from [25]. The darkness of the colors increases with
time, showing the temporal dimension of the calculation.

Fig. 5: Illustration from [24] of the three homotopy classes:
CW, S, CCW.

Where θ̂ is a fixed threshold, large enough to differentiate be-
tween the classes. In Figure 5 the three classes are visualized.

In contrast to [7], [24], we set the threshold θ̂ to zero, effec-
tively eliminating the static class. A fixed non-zero threshold
can lead to ambiguities, as the angular distance ∆θ not only
depends on the speed and intention of the agents, but also on
the road topology and the used prediction horizon. By elim-
inating the static class, we always have a distinct interaction
class for a trajectory pair. This is especially important for the
predictions, as they might not be close to the ground truth, but
still contain the model’s implicit homotopy class prediction,
i.e., the intuition for how the agents will interact (CW or CCW
rotation with respect to each other).

Furthermore, as described in Section III-A, we will only
evaluate the safety-critical path-crossing interactions. There-
fore, most static interactions like car-following and distant
agent-pairs will be already filtered out, making the static class
redundant anyway.

Besides filtering which interactions to evaluate, we also
want to filter the temporal aspect of the interactions, i.e.,
once an interaction has happened, there is no point in further
evaluating it. Figure 4 depicts the calculation process of the
winding number (angular distance) over time of two agents
traversing an intersection. From this figure, it becomes clear
that the angular distance is only significant if the agents are
close. Furthermore, once either of the agents has entered the
common ground (the middle of the intersection in this case),
the homotopy class of the interaction becomes inevitable and
the winding number converges afterward. Geometrically, this
happens once onpath = 1 for either of the agents. It would
however be too conservative to define this as the inevitable
homotopy state, as vehicles cannot instantly accelerate and

decelerate. Thus, to find the true instance at which the ho-
motopy class becomes inevitable, dynamic simulations are
needed, which will be discussed in the next subsection.

C. Simulating future roll-outs

In this subsection, we describe our methodology for sim-
ulating feasible future trajectories for agent-pairs. Our goal
is to find the set of feasible homotopy classes and the true
inevitable homotopy state. These are important concepts for
the novel metrics we propose in Section III-D. For each
time step in the scene, and all agent-pairs that will cross
paths in the near future, we want to find the set of feasible
homotopy classes. To find this set, we simply accelerate one
agent and decelerate the other, and vice versa. Thus, the
set of future roll-outs for agent-pair (i, j) at time step t is:
yroll−outs,t = [(τi,decel, τj,accel), (τi,accel, τj,decel)]. We keep the
ground truth paths of the agents, and only the velocity profile
of the agents is altered (either accelerated or decelerated),
whilst keeping both longitudinal and lateral accelerations
within realistic limits for comfortable driving. The absolute
longitudinal acceleration limit is set to |alon| = 1.47m/s2

and the lateral to |alat| = 1.18m/s2, which is based on
the numbers in [26]. For the accelerations, we also set the
maximum velocity equal to the maximum velocity of the
scene, thereby implicitly respecting any speed limits or traffic
that influences the maximum velocity in the scene.

Finally, we check whether a roll-out pair is feasible
by using a binary collision detection function, denoted by
IsCollision(τi, τj). To take into account the vehicle dimen-
sions and headings, we take inspiration from [27], and fit
three disks with radii ri = 1

2width of to each vehicle: at the
vehicle center and at both bumpers. A collision is detected by
computing the minimum distances between all disks of both
vehicles, for all time steps. The vehicles are in collision if the
minimum distance is smaller than the sum of the disk radii
fitted to the vehicles: dmin < ri + rj . Whilst there can still be
hypothetical cases where a collision is missed, this approach
works in most practical cases and is computationally efficient.

Now, we can define the set of feasible roll-outs as:

yfeasible,t = {y ∈ yroll−outs,t | ¬ IsCollision(τi, τj)}

And consequently, the unique set of feasible homotopy classes
is:

hfeasible,t = {h(y) | y ∈ yfeasible,t}

Where h ∈ {CW,CCW}. Thus, we define the inevitable
homotopy collapse state, as the point in time at which only
one unique homotopy class is feasible (non-colliding):

th,collapse = min{ t
∣∣ |hfeasible,t| = 1 }

D. Interaction prediction metrics

Vehicle trajectory prediction models are multimodal, mean-
ing they predict a set of K trajectories, with correspond-
ing probabilities. Since we want to evaluate the interaction
between trajectories of agent-pairs, we require joint multi-
agent predictions. Let us denote the predicted modalities of
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agent-pair (i, j) as ypred,i,j = [(τi, τj)1, . . . , (τi, τj)K ], with
the predictions ordered in decreasing likelihood, so (τi, τj)1
corresponds to the most likely (ML) prediction. The set of
homotopy classes of the model’s predictions is:

hpred = {h(yk) | yk ∈ ypred}

Furthermore, we denote hml the homotopy class of the ML
prediction, and hgt the ground truth homotopy class. To
evaluate the model’s ability to correctly predict the interaction
mode, we follow [7] in defining mode correctness and cov-
erage. The a2a mode is correct if the ML prediction’s mode
corresponds to the ground truth mode, i.e., hml = hgt. The
a2a mode is covered if one of the K predictions covers the
ground truth mode, i.e., hgt ∈ hpred.

In contrast to the default setting in VTP evaluation, we will
not evaluate these metrics for the whole scene. Instead, we
only consider the safety-critical interactions, and only till the
inevitable homotopy state. Thus, we evaluate till the last point
at which both classes are still feasible, i.e.:

th,final = max{ t
∣∣ |hfeasible,t| = 2 }

The evaluation starts once the homotopy class starts to
converge towards the inevitable homotopy state, but at most a
whole prediction horizon Tp before then:

th,start = min{ t
∣∣ hgt(t) = hgt(th,final) }

for t ∈ [th,final − Tp, th,final]

Thus the evaluation interval is [th,start, th,final]. Note that the
duration of this interval varies, and in many cases is shorter
than the 6-second prediction horizon, because the interval for
which both agents are recorded in the data is shorter or the
ground truth homotopy class starts to converge later. To get in-
sight into the temporal evolution of the interaction prediction,
we propose a time-based metric: the time-to-correct-mode-
prediction (∆Tcorrect), which is the time the model needs to
recognize the intention of the cars before the interaction has
happened, i.e., before the inevitable homotopy state is reached.

tincorrect = max{t | hgt,t ̸= hml,t)}
∆Tcorrect = th,final − tincorrect

Similarly, we compute the time-to-covered-mode-prediction
(∆Tcovered). The difference is that we consider all K pre-
dictions of the model, instead of just the most likely one.

tuncovered = max{t | hgt,t ̸∈ hpred,t}
∆Tcovered = th,final − tuncovered

If the predictions are correct or covered from the beginning
of the prediction interval, we cannot calculate the respective
times, because we cannot make any assumptions about the
model’s predictions before then. In these cases, we consider
the predictions a discrete correct class rather than a time.
Therefore, we report two metrics, aggregated over all interac-
tions: the percentage of predictions that are correct or covered
from the beginning of the interaction interval (@Tpred) and
the mean times for the predictions that are not.

Mode collapse. We define a2a mode collapse as an inter-
action mode being feasible, but not predicted by any of the
model’s predictions, i.e., hfeas ̸⊆ hpred. So, mode collapse
does not necessarily consider the ground truth, but the feasibil-
ity of hypothetical future roll-outs. Finally, we define the mode
collapse rate as the percentage of time steps in the relevant
interval t ∈ [th,start, th,final], where mode collapse occurs. It
is worth noting that in many cases (i.e., scenes with many
agents) it is impossible for the model to cover all feasible
modes with a finite number of joint predictions, due to the
cardinality of the mode space growing exponentially with the
number of agents.

Temporal consistency predictions. In [17] the temporal
consistency of the predictions was found to be an important
factor for the planner’s performance in closed-loop simulation.
In order to plan a safe path, the model’s predictions should
stay somewhat consistent throughout the scene, i.e., small
variations in motions in a consecutive time step should not
constitute a new mode. Therefore, we propose to evaluate
the consistency of the ML prediction’s interaction mode. The
prediction consistency is a hit-or-miss metric, evaluated for
each pair within the aforementioned relevant time horizon.
The predictions for an agent-pair are said to be consistent if
the model’s ML mode prediction changes at most one time.
So, given the mode predictions of consecutive time steps are
[CW,CCW,CCW ], the predictions are said to be consistent,
as it is acceptable for the model to correct itself. On the other
hand, consecutive mode predictions of [CCW,CW,CCW ]
are considered to be inconsistent.

Implementation example. Let us look at an example from
AgentFormer’s (AF) [20] predictions on one of the validation
scenes of the nuScenes dataset. In this scene, only the relevant
interacting agent-pairs are considered. At each frame, we
simulate future roll-outs and check their feasibility with the
collision checker. Furthermore, we calculate the homotopy
classes of the ground truth, the predictions and the roll-outs. In
Figure 6, we visualize this process for a single frame. Table I
shows an overview of the interaction modes of predictions and
roll-outs for all relevant frames of this interaction-pair.

For this specific interaction, the inevitable homotopy state
is at frame 16, as only the CW mode is still feasible, and
the CCW mode would yield a collision. We wish to evaluate
the mode predictions a whole prediction horizon Tp before
then. However, in many cases (such as this example), this
is not possible, simply because the interval for which both
agents are recorded in the dataset is not long enough. Thus,
we will evaluate the mode predictions from the first point at
which there are predictions for both agents, until the inevitable
homotopy state. In this case: from frame 5 until frame 15.
Since nuScenes is recorded at 2Hz, we find that it takes the
model ∆Tcorrect = 1.5s to correctly predict the interaction
class. For ∆Tcovered we see that the predictions cover the
ground truth class from the start of the interaction interval.
Since there are no prior time steps available, we consider such
cases a correct/covered class, rather than a time. Furthermore,
from the table, it becomes clear that the predictions are

6



Fig. 6: Visualization of the interaction mode evaluation for AgentFormer on agent-pair (99,2) at frame 11 in scene-0103 of the
nuScenes dataset. For the predictions, only the ML prediction is shown with full opacity. The corresponding homotopy classes
(h class) are shown in the legend, and displayed in the plot using ◦ and ⋄ markers for the CW and CCW class, respectively.
Additionally, the collision boolean is shown in the legend for both roll-outs. For this specific frame, both interaction modes
are still feasible. The mode is not predicted correctly (ML prediction), but it is covered by one of the other predictions.

TABLE I: Example mode metrics evolution for AF’s predictions on agent-pair (99,2) in scene-0103 of the nuScenes dataset.

frame GT mode ML mode all K modes feasible modes mode correct mode covered mode collapse

5 CW CW CW CCW, CW ✓ ✓ ✓
6 CW CW CW CCW, CW ✓ ✓ ✓
7 CW CW CW CCW, CW ✓ ✓ ✓
8 CW CW CW CCW, CW ✓ ✓ ✓
9 CW CW CW CCW, CW ✓ ✓ ✓

10 CW CW CW CCW, CW ✓ ✓ ✓
11 CW CCW CCW CW CCW, CW ✓
12 CW CCW CCW CW CCW, CW ✓
13 CW CW CW CCW, CW ✓ ✓ ✓
14 CW CW CW CCW, CW ✓ ✓ ✓
15 CW CW CW CCW, CW ✓ ✓ ✓
16 CW CW CW CW ✓ ✓

inconsistent because the ML prediction’s mode changes more
than once. Finally, in 9 out of the 11 frames not all feasible
modes were predicted, so the mode collapse rate for this scene
is 81.8%.

IV. TRAJECTORY PREDICTION MODELS

We test our novel evaluation methodology on the nuScenes
dataset [28] and report results for four models: Agent-
Former (Section IV-A), Categorical Traffic Transformer (Sec-
tion IV-B), an oracle model (Section IV-C) and a constant
velocity model (Section IV-D). In the following subsections,
we briefly discuss the characteristics and implementation of
these models.

A. AgentFormer

AgentFormer (AF) [20] is a multi-agent trajectory predic-
tion model. They utilize a transformer-based architecture, that

simultaneously models the social and temporal dimension of
agents. Their prediction framework jointly models the agents’
intentions, to predict diverse and socially-aware future trajec-
tories. They test their model on the ETH/UCY and nuScenes
datasets and publish their code including pre-trained models
[29]. We will utilize their pre-trained model for nuScenes, and
use the version which outputs K = 5 multi-agent trajectories.

B. Categorical Traffic Transformer

Categorical Traffic Transformer (CTT) [7] is a multi-agent
trajectory prediction model, with an interpretable latent space
consisting of agent-to-agent and agent-to-lane modes. CTT
generates diverse behaviors by conditioning the trajectory
prediction on different modes. The authors published their
code including pre-trained weights for the nuScenes dataset
[30]. Unfortunately, we did not succeed in reproducing the
numbers reported in their paper and uncovered various issues,
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making direct comparison with the other models difficult.
Firstly, their pre-trained model is trained for a prediction
horizon of 3 seconds, whereas AF is trained for 6 seconds,
as dictated by the nuScenes benchmark. To match the varying
prediction horizons, the 6-second predictions from AF are cut
to 3 seconds. Secondly, all predicted modes and trajectories
are identical, making the model effectively unimodal. Finally,
whereas AF predicts for all vehicles in the scenes, CTT
predicts only for the road users within a certain attention radius
of the ego-vehicle, but it does include pedestrians whereas AF
does not. We use AF’s data preprocessing backbone and match
CTT’s predictions to the corresponding agents. However, due
to the aforementioned attention radius used in CTT, many
predictions are missing for certain agents. In these cases, the
current ground truth position is kept static and used as a
prediction instead. Due to these issues, we are not able to
report the real performance of CTT on interaction prediction.
However, we still report the metrics and compare them to the
other models, to set a baseline and show that our methodology
generalizes to other models.

C. Oracle model

The cardinality of the space of interaction modes grows
exponentially with the number of agents in the scene. Because
trajectory prediction models usually predict a fixed set of
K modes, covering all feasible modes becomes infeasible in
scenes with many agents. To test this limitation, we propose
a multimodal oracle model. The oracle’s goal is to predict
a set of K multimodal trajectories that cover all feasible
modes of the interacting agents. The oracle will be given
access to the agents’ ground truth paths, so it knows which
agents will be interacting, i.e., crossing the same path, in
the near future. However, the trajectories are unknown, i.e.,
it does not know the velocity profiles along the path, so
the interaction class is still to be determined by the model.
The oracle’s goal is to cover all feasible interaction modes
between the path-crossing agent-pairs. Analogously to the
methodology described in Section III-C, we keep the agents’
ground truth paths and simulate future roll-outs with a constant
velocity, deceleration, or acceleration profile. Firstly, all agents
are initialized with their constant velocity profile. Next, we
calculate all combinations of constant velocity, acceleration,
and deceleration profiles between the interacting agents and
reject the combinations with collisions. Finally, we must assign
each joint prediction a likelihood. We argue that the likelihood
of a joint scene prediction is proportional to the overall utility
in the scene, where the average speed of a roll-out combination
can be used as a utility measure. Therefore, to get a finite set
of K joint predictions, we calculate the average speed of the
roll-outs and output the top-K trajectory combinations with
the highest average speed.

D. Constant velocity model

The constant velocity (CV) model is a simplistic unimodal
model that assumes the vehicle will remain in its current
heading and velocity [31]. Because it produces a single mode,

it inherently suffers from mode collapse. However, it is an
interesting baseline for comparison, because it tells us in
how many scenarios we can correctly assess the vehicle
pair’s interaction class by simply extrapolating their current
trajectories.

V. RESULTS

Our aim is to evaluate the interaction mode prediction per-
formance of VTP models in an insightful and data-independent
way. More specifically, we want to research when mode
collapse happens and get insight into the temporal dimension
of the predictions. First, we employ our methodology for
finding path-crossing safety-critical interactions on the widely
used nuScenes traffic dataset, and report interaction statistics
in Section V-A. Next, we test four baseline models (described
in Section IV) and evaluate their performance using our novel
evaluation framework in Section V-B. We show that mode
collapse happens and shed light on the temporal evolution
of the predictions. Finally, we compare qualitative results
in Section V-C and compare our metrics to the traditional
distance-based metrics in Section V-D.

A. Interaction statistics nuScenes

We analyzed interactions across the entire train and valida-
tion splits of the nuScenes dataset, and applied our method-
ology to identify safety-critical interactions. In total, we
identified 18,299 theoretical interactions across the entire
dataset. The theoretical upper limit per scene is calculated as
N(N − 1)/2, considering the symmetry of interactions and
the absence of self-pairs. However, in reality, only 16,756
theoretical interaction pairs exist, as not all agents are recorded
for the full scene duration. After applying our first two
interaction criteria, i.e., the agents are not path-sharing at
first but are later on, only 730 interaction pairs are left. We
characterize the closeness of these interactions in both distance
and time in a density heatmap, see Figure 7. From the figure
it becomes clear that the majority of interactions are close,
i.e., the time difference is smaller than 5 seconds and the
real-time closest distance is smaller than 20m. However, there
is also a substantial part of path-sharing interactions, where
there is a big time difference between the agents starting to
occupy the same path or the distance between them is quite
large. Since we are interested in safety-critical interactions,
the time difference between the agents should be relatively
small. Therefore, we apply our third interaction criterion, i.e.,
∆tpath−sharing ≤ 6 s, after which only 351 interaction pairs
are left in the full train and validation split. That means only
2.1% of the possible interactions are considered safety-critical.

For testing the models on nuScenes, we evaluate them
only on the validation split, which contains just 41 safety-
critical interaction pairs. After identifying which interac-
tions to evaluate, we now determine when to evaluate them.
Employing our methodology for determining the inevitable
homotopy state, we analyze the duration of the interaction
interval [th,start, th,final] before the homotopy class collapses.
In Figure 8, we present a histogram showing the distribution

8



Fig. 7: Density heatmap of the path-sharing interactions in
the full train-validation split of nuScenes. The interactions are
characterized in closeness, with the real-time closest distance
on the y-axis and the time difference between the agents
occupying the shared-path on the x-axis.

Fig. 8: Histogram of data samples before the inevitable homo-
topy state. The samples are prediction frames of safety-critical
interaction pairs in the nuScenes validation split.

of samples over their time to the inevitable homotopy state,
∆th,collapse. Naturally, this histogram shows a decreasing
trend, as the interval during which both agents are recorded in
the dataset is relatively short for many interactions. In total, we
have just 41 usable interaction pairs, however, for the majority
there are just a few samples available before the homotopy
class becomes inevitable. There are just 6 pairs for which we
can evaluate the predictions a full 6-second prediction horizon
before th,collapse. Next, we will evaluate the models’ mode
prediction performance on these interaction pairs.

B. Model intention prediction performance

Predicting the driver’s intentions 6 seconds before the
interaction happens is far less important than predicting them
1 second before it happens. On the other hand, correctly pre-
dicting the intentions 1 second before the interaction happens,
is also a lot easier, as the drivers in the scene likely have al-
ready implicitly communicated who takes priority and crosses
first, resulting in increased margins and speed differences.
To shed light on the temporal evolution of a model’s mode
prediction performance, we analyze the mode correct, covered
and collapse rates against the time to inevitable homotopy
state ∆th,collapse, see Figure 9. Indeed, we see that, as the
interaction comes closer (smaller ∆th,collapse), all models are
naturally better able to correctly predict the interaction class.
That the alternative roll-outs are less likely to happen, is also
reflected by the higher mode collapse rate of AF for samples
closer to the inevitable homotopy state. Failing to cover a
feasible mode when it is unlikely is not problematic. However,
in some cases, the models are not even able to correctly predict
the interaction class right before the homotopy class becomes
inevitable, indicating that mode collapse also occurs in critical
situations.

In Table II the mode correctness, coverage and collapse
rates of all models are summarized, as well as the time-based
metrics and consistency. First, we will compare the intention
prediction performance of AF, the oracle and the CV model
on a prediction horizon of 6 seconds, and focus on the time-
based metrics. AF correctly predicts the interaction mode at
the beginning of the prediction horizon (@Tpred) in 56% of
the cases, and if not, it takes up to 1.9 seconds on average
to correctly predict the correct mode. Interestingly, the CV
model outperforms the other models and in 78% of the cases it
can correctly predict the interaction mode from the beginning,
by simply extrapolating the vehicle’s current trajectory. This
shows that in the majority of the cases, the interaction class is
a natural evolution of the vehicle’s current heading and speed.

Naturally, in the covered category, the multimodal models
perform better, as all predictions are considered. AF manages
to directly cover ground truth mode in 80% of the cases,
whereas the oracle model achieves a perfect score. The oracle
model inherently tries to cover all feasible modes of the in-
teracting agents, but since the models can only predict K = 5
futures, it cannot completely mitigate mode collapse in scenes
with many agents. The oracle scores a mode collapse rate of
19%, versus the 70% of AF. The CV model inherently suffers
from 100% mode collapse due to its unimodal predictions.

Finally, we compare the models, including CTT, on a 3-
second prediction horizon, with the results reported in the
bottom half of Table II. As explained earlier, CTT’s pre-
dictions are unimodal and sometimes even missing, resulting
in the model’s disastrous performance. Only for 40% of the
interaction-pairs the mode is predicted correctly right away,
and in 53% of the cases, the mode is not predicted at all,
resulting in a mean ∆Tcorrect of 0.1 seconds. Because of
the model’s unimodal predictions, it inherently suffers from
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Fig. 9: Relative mode prediction performance plotted against the time to inevitable homotopy state. From left to right, we
consider the correct, covered and collapsed modes. We evaluate AF, the oracle, and CV model on a prediction horizon of 6
seconds.

TABLE II: Interaction mode prediction metrics for AF, CTT, the oracle and the CV model. The rates are evaluated over all
interaction-pair samples, whereas the time-based metrics and consistency are calculated per interaction-pair sequence and later
averaged. We compare the mean time-to-correct/covered mode prediction, as well as the percentage of predictions at 0 seconds
and the percentage of predictions that are correct from the beginning of the prediction interval (@Tpred). The best metrics in
each category are printed bold and the second-best italic.

Method
Tpred

(s)
Mode correct

rate ↑ (%)
Mode covered

rate ↑ (%)
Mode collapse

rate ↓ (%)

∆Tcorrect / ∆Tcovered
Prediction

Consistency
↑ (%)mean ↑ (s) @0s ↓ (%) @Tpred ↑ (%)

AF
6

74.0 89.3 69.8 1.9 / 1.8 9.8 / 4.9 56.1 / 80.5 92.7
Oracle 86.0 100.0 18.6 2.4 / - 0.0 / 0.0 73.2 / 100.0 97.6
CV model 80.6 80.6 100.0 2.3 / 2.3 2.4 / 2.4 78.0 / 78.0 100.0

AF

3

83.4 92.9 76.9 1.0 / 0.8 12.2 / 4.9 70.7 / 87.8 95.1
CTT* 49.3 49.3 100.0 0.1 / 0.1 53.3 / 53.3 40.0 / 40.0 100.0
Oracle 86.4 100.0 13.0 1.6 / - 2.4 / 0.0 70.7 / 100.0 100.0
CV model 87.0 87.0 100.0 0.9 / 0.9 7.3 / 7.3 80.5 / 80.5 100.0

* Note that we were not able to reproduce the numbers reported in CTT’s paper, and that some predictions are missing due to the issues
discussed in Section IV-B.

mode collapse for all scenarios. As we could not reproduce
CTT’s results, this is not representative of its real performance.
However, by testing our methodology on multiple models, we
show that it generalizes to other models.

Comparing the other models on the 6-second prediction
horizon, we see that the results are slightly different because a
shorter prediction horizon changes the number of samples and
some predictions may fall in a different homotopy class for the
shorter horizon. However, the relative performance differences
between the models remain unchanged. Although we cannot
compare results from different prediction horizons directly, we
demonstrated that our methodology is not limited to a single
prediction horizon.

In terms of prediction consistency, all models score high:
only in some cases the interaction mode changes inconsis-
tently. The CV model and CTT score 100%, which is more
trivial, as they only output a single mode, so inconsistent mode
predictions are less likely.

C. Qualitative results

We compare the qualitative results of AF and the CV model.
These are the most interesting models to compare, since we
use the ground truth paths for the Oracle and were not able
to reproduce the results for CTT, resulting in unimodal and
missing predictions. As the visualizations take up a lot of
space, we analyze them in the appendix and only present the
conclusions here.

The homotopy class is determined based on the sign of
the angular distance between the vehicles, which is influenced
by two factors: the relative speed difference between the
agents and their paths. Since we only evaluate interaction-
pairs that by definition have a commonly shared path, we
see that the speed difference between the vehicles is the most
important factor for the evolution of the homotopy class. This
is especially true for frames closer to the interaction event,
which is also reflected by the superior performance of the CV
model.

We also encountered cases where there is a 100% mode
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collapse for a feasible interaction mode, i.e., it is not covered
by any of the predictions. In the analyzed cases, however,
this mode collapse does not seem problematic as the class
might be feasible, but also very unlikely, based on the speed
differences of the cars. This uncovers a weakness of our mode
collapse definition: we only evaluate the feasibility and not the
likelihood of the roll-outs, which is important to realize when
interpreting the results.

We also find that the interaction metrics do not assess the
severity of the consequences of incorrect predictions. In some
cases, the interaction mode is not predicted at all before we
reach the inevitable homotopy state, while the vehicles are still
quite far apart. This is because the time before the inevitable
homotopy state does not reflect how close the agents are, but
only how close one of the agents is to entering the shared
future path.

Furthermore, we see that sometimes the predictions of AF
are not admissible, e.g., not kinematically feasible, going off-
road, colliding or going into the wrong traffic direction. This
shows the importance of holistic VTP evaluation: besides
measuring the accuracy of predictions, we should evaluate
their diversity and admissibility.

D. Distance-based metrics results

In Table III we compare the models on the traditional
distance-based metrics. We report the average and final dis-
placement errors (ADE/FDE) for the most likely (ML) pre-
dictions, as well as the joint lower-bound metrics calculated
for K = 5 modes. In contrast to our novel interaction metrics,
these are calculated over all scenes and time steps of the
nuScenes validation split.

TABLE III: Distance-based metrics for AF, CTT, the oracle
and the CV model, for 3-second and 6-second prediction
horizons. The best metrics in each category are printed bold
and the second-best italic.

Method
Tpred

(s)

ML
ADE
(m) ↓

ML
FDE
(m) ↓

Joint
minADE

(m) ↓

Joint
minFDE

(m) ↓
AF

6
3.88 9.10 2.86 6.48

Oracle 3.84 9.12 3.56 8.41
CV model 3.64 9.04 3.64 9.04

AF

3

1.48 3.00 1.11 2.17
CTT* 5.93 10.59 5.93 10.59
Oracle 1.45 2.85 1.36 2.63
CV model 1.22 2.68 1.22 2.68

* Note that we were not able to reproduce the numbers reported
in CTT’s paper, and that some predictions are missing due to the
issues discussed in Section IV-B.

Comparing the ML ADE metrics to the ML interaction
metrics, we see that the relative performance order remains
similar, with the oracle and the CV model performing the best.
Interestingly, we see that on the joint metrics, AF performs
best, which contradicts with our findings from the interaction
metrics. This is partially caused by the fact that the oracle was
designed specifically to cover modes of path-crossing vehicles,
and not to get the lowest minimum distance errors. But it also

shows that in some cases, the joint lower-bound distance-based
metrics are not able to capture the model’s ability to cover
interaction modes amongst agent trajectories.

VI. CONCLUSION AND DISCUSSION

We introduced a novel evaluation framework to benchmark
a model’s interaction prediction performance. Our framework
simulates alternative interaction modes, and we use this to
define a metric for mode collapse on the interaction level.
We also use metrics for mode correctness and coverage, and
propose time-based variants, that provide insight into the
temporal evolution of mode predictions. Uniquely, our method
does not evaluate all scenes and frames of a dataset, but
only the relevant frames for closely interacting agent-pairs.
This reduces the dataset dependency and makes our metrics
more insightful and interpretable. We tested four models on
the nuScenes dataset and showed that mode collapse happens.
Interestingly, a simple constant velocity model outperformed
the other models in correctly predicting the interaction mode,
showing that in many cases the interaction mode is dictated by
the vehicles’ current heading and speed. While AgentFormer
(AF) manages to produce diverse predictions for each agent,
it did not cover all feasible interaction modes between the
interacting agents, averaging a mode collapse rate of 70% for
the safety-critical interaction pairs. The oracle model, designed
to cover all feasible interaction modes, had a mode collapse
rate of 20%. Thus, completely alleviating mode collapse (i.e.,
covering all feasible interaction modes) is not possible with
a finite number of K = 5 joint predictions due to the
exponentially growing cardinality of the mode space. Although
the oracle was superior in covering the interaction modes, it
was outperformed by AF on the joint distance-based metrics,
indicating that these metrics do not necessarily capture the
model’s performance in predicting interaction modes. Finally,
we analyzed the temporal evolution of the predictions, and
found that both the mode correct and collapse rate increase as
the inevitable homotopy state comes closer. In the majority of
the scenarios, these collapsed interaction modes do not seem
problematic, as they are not likely to happen. However, in
a few cases, the models are not able to correctly predict the
real interaction class right before it happens. These incorrectly
predicted driver intentions could pose safety concerns for
autonomous driving.

While we demonstrate that mode collapse occurs, our
metrics do not evaluate the severity of consequences, nor
the likelihood, of the collapsed modes. In our framework,
we simulate feasible futures for interacting agents at every
time step, but the model inputs remain the ground truth
history of the agents as we replay the scene. Assessing the
safety implications of collapsed modes requires a closed-
loop simulation setup, in which the predictions are used in a
downstream planner. Estimating the likelihood of a collapsed
mode could involve comparing the scenario to a distribution
learned from traffic data. However, rare but feasible scenarios
might be underrepresented and deemed unlikely. Alternatively,
planning-like costs could be used to evaluate the safety, com-
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fort, and utility of future roll-outs as a measure of probability.
Extending our framework to assess the associated risks of false
predictions presents an exciting opportunity for future research
in this area.

In our framework, we only perform roll-outs and collision
checks for pairs of interacting agents. However, in reality, the
scenes can be more complex, with multiple agents interacting
and influencing each other. While this is a conceptual limita-
tion of our method, the feasibility of our simulations remains
valid, as the feasibility is primarily determined by the yielding
vehicle’s ability to brake before entering the common path,
which is not affected by other vehicles.

By applying our methodology to identify safety-critical
interactions, we aimed to make the evaluation less dependent
on the dataset while focusing on the most crucial aspect of
driving: the interactions. In the nuScenes dataset, we found
that only 2% of the theoretical interactions are considered
safety-critical according to our criteria. This finding highlights
the need for more interactive datasets and the importance of
metrics that are less constrained on the scenarios in a dataset.
However, it also reveals a limitation of our approach: we
evaluate only real interactions, not hypothetical ones. We opted
for this simplistic approach to ensure that the interactions we
assess are realistic. Furthermore, simulating all hypothetical
interactions would be extremely complex and computationally
demanding.

Finally, we analyzed the temporal evolution of the inter-
actions between the critical agent-pairs. For the majority of
the pairs, however, there were only a few samples available
prior to the interaction, limiting the interpretability of our
time-based metrics. This limitation arises because nuScenes
is recorded from an on-road viewpoint, constraining the anno-
tations to the range of the ego vehicle. To address this issue,
future research could apply our methodology to traffic datasets
recorded from a top-down perspective, such as those captured
by drones monitoring traffic at intersections [32]–[34].

Our novel interaction metrics provide new ways to measure
the intention prediction of models in safety-critical inter-
actions. These metrics only take into account the relevant
interactions, thereby reducing the dependency on datasets
and improving interpretability. Furthermore, our time-based
metrics shed light on the temporal evolution of predictions,
an aspect that was previously neglected in VTP evaluation.
Our new evaluation methodology thus offers new insights and
perspectives, helping the holistic evaluation and interpretation
of a model’s performance. Finally, our evaluation methodology
can aid the development of VTP models towards more accurate
and consistent interaction predictions. Future work should fo-
cus on alleviating the aforementioned weaknesses and further
generalizing our framework to other datasets and models to
establish a benchmark for prediction models.
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APPENDIX

We analyze qualitative results of AgentFormer (AF) and
the constant velocity (CV) model for a number of scenes,
see Figure 10, Figure 11, Figure 12, Figure 13, Figure 14,
Figure 15, Figure 16, Figure 17, Figure 18. The top of the
figures show the predictions of AF, and the bottom those of the
CV model. The visualizations are made one frame before the
inevitable homotopy state. The time-based interaction metrics,
which are calculated over the preceding frames, are shown
in the title of the plots. The total duration of the evaluated
interaction frames is denoted by pred_time. We only show
the interacting agent-pairs, and the ego-agent is denoted by
agent_99. The legend shows the interaction classes for all
trajectories, as well as the collision states of the roll-outs. The
interaction class is also visualized in the plots by using ◦ and ⋄
markers for the CW and CCW class, respectively. We analyze
the results for each scenario in the figure’s caption.
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(a) AgentFormer

(b) CV Model

Fig. 10: Interaction prediction performance comparison on nuScenes, scene-0035, agent-pair (99,2). Both models correctly
predict the mode at the beginning of the interaction interval (1.5s in this case). AF even correctly predicts the route intention
of agent 2. However, AF does suffer 100% mode collapse, as roll-out 2 was feasible, but not predicted in any of the preceding
frames. That being said, the CCW class seems highly unlikely, based on the observed speed differences of the vehicles
(visualized as the distance between the markers).
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(a) AgentFormer

(b) CV Model

Fig. 11: Interaction prediction performance comparison on nuScenes, scene-0103, agent-pair (99,2). AF outperforms the CV
model here, and correctly assesses the interaction mode at 1.5s before it happens instead of 1s. At the start of this scenario, agent
99 was travelling at a higher speed, whereas agent 2 was static, so at the start the CCW class was actually more likely. This
explains why the CV model only correctly predicts the interaction once the speeds of the vehicles have changed accordingly.
We also note that the ML prediction is really poor in terms of route intention: even though the vehicle is already heading
towards making a left turn, the ML prediction is a right turn in the wrong traffic direction. However, as this prediction does
encapsulate a CW prediction, the interaction class is correct. This showcases the need for holistic evaluation, i.e., evaluating
predictions with a range of metrics assessing accuracy, diversity, admissibility, etc.

15



(a) AgentFormer

(b) CV Model

Fig. 12: Interaction prediction performance comparison on nuScenes, scene-0108, agent-pair (99,0). In this example, the CV
model outperforms AF, by simply extrapolating the current paths. As agent 99 is static, this yields the correct class: CW. AF
covers this class from the beginning of the prediction time, but only correctly predicts the class 1.5s before the interaction
happens.
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(a) AgentFormer

(b) CV Model

Fig. 13: Interaction prediction performance comparison on nuScenes, scene-0522, agent-pair (6,3). Again, we see that the CV
model outperforms AF from the beginning of the horizon. AF tends to predict more dynamic trajectories where the vehicles
move a lot. Even here, at the visualized frame, we see that the margins between trajectories of the ML predictions are very
small.
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(a) AgentFormer

(b) CV Model

Fig. 14: Interaction prediction performance comparison on nuScenes, scene-0522, agent-pair (99,6). We look at the same scene
as in the previous figure, only this time the interaction between agent 6 and agent 99. Again, AF overshoots the trajectory of
agent 6 (blue vehicle), and the CV model is able to correctly predict the interaction class 0.5s earlier. However, AF does cover
both interaction classes in most of the preceding frames, resulting in the low mode collapse ratio.
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(a) AgentFormer

(b) CV Model

Fig. 15: Interaction prediction performance comparison on nuScenes, scene-0556, agent-pair (99,2). Both models perfectly
predict and cover the ground truth mode. While feasible, the CW (roll-out 1) mode is not predicted at all. We also note, that
AF’s ML prediction is clearly agent-aware, as it seems to avoid a collision between the agent-pair. However, the turning radius
of agent 99’s trajectory (blue vehicle), is clearly not dynamically feasible.
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(a) AgentFormer

(b) CV Model

Fig. 16: Interaction prediction performance comparison on nuScenes, scene-0629, agent-pair (99,2). The CV model correctly
predicts the interaction class from the beginning. Interestingly, AF fails to do so, not even right before the interaction class
becomes inevitable. AF does predict higher speeds for agent 2 than for agent 99, however, because of the predicted route
intentions, this still results in a CW class. This prediction still implies that agent 99 will go first, as can be seen from the
prediction’s subplot. However, this example also shows that it is not possible to assess the consequences of incorrect mode
predictions; even though the time-to-correct-mode-prediction is 0s, the vehicles are relatively far apart in this scenario.
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(a) AgentFormer

(b) CV Model

Fig. 17: Interaction prediction performance comparison on nuScenes, scene-0795, agent-pair (99,9). Both models correctly
assess the interaction class from the beginning of the prediction horizon, which is just a single frame in this example (agent 9
is not annotated earlier in the data). While feasible, roll-out 2 seems highly unlikely in this scenario, given the speed differences
between the vehicles and the tight collision margins for roll-out 2. Therefore, it is not surprising nor a problem, that the CCW
class is not covered in this case.
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(a) AgentFormer

(b) CV Model

Fig. 18: Interaction prediction performance comparison on nuScenes, scene-0795, agent-pair (99,13). In this merging scenario,
AF outperforms the CV model and already covers the ground truth class 5s before it happens, and correctly predicts it 4.5
seconds before, versus the CV model’s 3.5s. This shows that in some scenarios, when the inevitable homotopy state is relatively
far away, the CV model cannot predict the correct interaction class as quick as AF.
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