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ABSTRACT: Technological advances in mass spectrometry imaging (MSI) have
contributed to growing interest in 3D MSI. However, the large size of 3D MSI data sets
has made their efficient analysis and visualization and the identification of informative
molecular patterns computationally challenging. Hierarchical stochastic neighbor
embedding (HSNE), a nonlinear dimensionality reduction technique that aims at
finding hierarchical and multiscale representations of large data sets, is a recent
development that enables the analysis of millions of data points, with manageable time
and memory complexities. We demonstrate that HSNE can be used to analyze large 3D
MSI data sets at full mass spectral and spatial resolution. To benchmark the technique as
well as demonstrate its broad applicability, we have analyzed a number of publicly
available 3D MSI data sets, recorded from various biological systems and spanning
different mass-spectrometry ionization techniques. We demonstrate that HSNE is able
to rapidly identify regions of interest within these large high-dimensionality data sets as
well as aid the identification of molecular ions that characterize these regions of interest;
furthermore, through clearly separating measurement artifacts, the HSNE analysis exhibits a degree of robustness to
measurement batch effects, spatially correlated noise, and mass spectral misalignment.

KEYWORDS: 3D MSI, data analysis, segmentation, proteomics, nonlinear dimensionality reduction, t-SNE, HSNE

1. INTRODUCTION

Mass spectrometry imaging (MSI) is a promising technology
for many life science and biomedical applications.1−3 MSI can
provide the spatial distribution of hundreds of biomolecules
directly from tissue. Typically, a thin tissue section is analyzed,
pixel-by-pixel, in a predefined 2D raster. Matrix-assisted laser
desorption ionization (MALDI),4,5 secondary ion mass
spectrometry (SIMS),6 and desorption electrospray ionization
(DESI)7 are among the most common ionization methods.
MALDI can be used to analyze a diverse range of molecular
classes just by changing the tissue preparation method, DESI is
able to provide molecular information about lipids without any
tissue preparation, and SIMS provides very high spatial
resolution capabilities also without any tissue preparation.
MSI may also be performed in three dimensions, most often

by 2D MSI analysis of sequential tissue sections followed by
their coregistration into a 3D volume.8−13 It has been shown
that 3D MSI data can be integrated with in vivo imaging

modalities such as magnetic resonance imaging (MRI),8,14,15

fluorescence microscopy,16 μ-CT,17 and positron emission
tomography (PET).18 This integration is not only useful from
the biological viewpoint19,20 but also important for the
coregistration process that is required to construct the 3D
MSI data sets.21 In vivo imaging modalities preserve the
geometrical entity of the tissue volume and thus provide a
reference that may be used to construct and visualize the 3D
molecular maps.
For MALDI- and DESI-based experiments, 3D MSI is

essentially the merging of the 2D MSI data sets from a stack of
serial tissue sections.11 Recent technological advances allow 3D
MSI to be acquired in a reasonable time frame.22,23 Each voxel’s
mass spectrum is represented by three spatial coordinates
(x,y,z), and the 3D MSI data set can contain millions of voxels
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and mass spectra. This hyper-dimensional 3D MSI data
provides rich molecular information on high chemical
specificity across the entire tissue volume but poses computa-
tional challenges to efficiently analyze, visualize, and identify
informative patterns.24 Currently, there are needs and ongoing
interests of developing computational methods to tackle these
challenges.10,21,25,26

Dimensionality reduction is a well-established component for
handling and analyzing high-dimensional data.27−29 It seeks to
represent the high-dimensional data in a lower dimensional
space, to facilitate efficient visualization, classification, and
clustering.27 Common linear dimensionality reduction algo-
rithms such as principal component analysis (PCA)30 and non-
negative matrix factorization (NNFM)31 have been widely used
for analyzing 2D MSI data sets32,33 and have also been applied
to 3D MSI data sets.16,34,35 Nevertheless, their inherent
linearity constraints mean that the analyses will be dominated
by the major differences in the data sets, for example, between
different cell types within the tissue volume.36

State-of-the-art nonlinear dimensionality reduction is a family
of algorithms inherited from Stochastic Neighbor Embedding
(SNE).37 The hallmark of these algorithms is their ability to
preserve local structures of high-dimensional data in a low map
representation. t-Distributed stochastic neighbor embedding (t-
SNE) enables the visualization of high-dimensional nonlinear
data by alleviating the crowding problem of SNE and thus is
able to visualize high-dimensional data in a single map
representation.36,38−40 Fonville et al.41 and Abdelmoula et
al.42 have highlighted the superiority of t-SNE for analyzing 2D
MSI data sets. Nevertheless, the quadratic computational
complexity of t-SNE has limited its practical applicability to
data sets of up to a few thousand data points.43 The Barnes−
Hut SNE (BH-SNE), an accelerated version of the t-SNE, has
subsequently been shown to handle larger data sets of up to a
few hundred thousand data points with a computational
complexity of O(N log N) where N is the number of data
points.40,43−46

With current increases in data size, in which data sets can
contain up to millions of data points, BH-SNE also becomes
impractical.47,48 On such large data scales BH-SNE becomes
computationally intractable, and the interpretation of the final
crowded embedding is nontrivial as it visualizes millions of data
points in a single 2D or 3D scatter plot.48 Recent progress has
been made by Pezzotti and coworkers, in which the hierarchical
stochastic neighbor embedding (HSNE) is used to create a
hierarchical representation of the nonlinear data, allowing
scalable exploration of the high-dimensional space in a low-
dimensional space by constructing 2D embeddings that contain
a few hundred data points.47

The HSNE algorithm aims at visualizing meaningful
landmarks that represent sets of high-dimensional data points
and has been shown to preserve rare but potentially disease-
related clusters.48 The HSNE technique is based on the
concept “Overview-First, Details-on-Demand”.49 This means
that on the higher, coarser, hierarchical scale the resultant
embedding shows dominant data structures (i.e., an overview).
Then, a more detailed information can be visualized by
computing a new embedding at the subsequent finer
hierarchical scale using a selection of landmarks of dominant
structures from the higher scale and so on. Eventually, this
interactive hierarchical scheme helps the user to iteratively
refine the visualized information and find informative structures
on different scales, while keeping both memory and computa-
tional complexities manageable. This is because the landmarks
used on a finer scale are a subset of the previous, recomputed,
coarser scale. For more detailed information about the HSNE
algorithm, we refer to Pezzotti et al.47

Recently, Oetjen et al. published a set of benchmark 3D MSI
data sets, which were acquired using different ionization
techniques and collected from different biological systems,
namely, murine kidney, murine pancreas, human colorectal
adenocarcinoma, and human oral squamous cell carcinoma.10

This data is publicly available and can be downloaded from the
GigaScience GigaDB repository.10 Patterson and coworkers have
also recently published 3D MSI data set of lipids in human
carotid atherosclerotic plaque.50 3D MSI data sets may easily
consist of millions of voxels, with thousands of spectral features
per voxel. Until now, processing such data sets with t-SNE type
approaches was computationally not feasible.
We investigate whether HSNE can be deployed to analyze

complete 3D MSI data sets, at full resolution, to reveal tissue-
specific spectral signatures at dense spectral and spatial
resolution. To this end, we present a framework that consists
of (a) dimensionality reduction and data visualization using
HSNE, (b) a method to derive 3D maps from selected
structures in the HSNE embeddings, and (c) a method to
identify tissue-specific m/z features using the 3D spatial
correlations between the 3D HSNE maps and the original
3D MSI data. We validate the proposed approach in a variety of
previously published 3D MSI data sets from different biological
systems.

2. MATERIALS AND METHODS

2.1. Experimental Data Sets

The 3D MSI data sets used in this study are from a previous
study of Oetjen and publicly available for download from the
GigaScience GigaDB repository.10 These data sets were acquired
by different MSI ionization methods and were collected from
five different biological systems, namely, mouse kidney, mouse

Table 1. Summary of the 3D MSI Data Sets And Their Computational Processing Time Using HSNE

data set preservation
mass range
(kDa)

no. tissue sections; (tissue
thickness μm)

spatial
resolution (μm)

data set size (no. voxels × no.
m/z features)

HSNE running
time (min)

3D DESI-MSI colorectal
carcinoma

fresh frozen 0.2−1.05 26; (10) 100 148 044 × 8073 ∼10

3D MALDI-MSI mouse
kidney

PAXgene 2−20 73; (3.5) 50 1 362 830 × 7680 ∼43

3D MALDI-MSI mouse
pancreas

PAXgene 1.6−15 29; (5) 60 497 255 × 13 312 >25

3D MALDI-MSI OSCC fresh frozen 2−20 58; (10) 60 825 558 × 7680 ∼30
3D MALDI-MSI
atherosclerotic plaques

fresh frozen <1 5; (10) 100 10 185 × 20 ∼5
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pancreas, human colorectal adenocarcinoma, cultured interact-
ing microbial colonies, and human oral squamous cell
carcinoma. A brief description of each data set is given in
Table 1.

2.2. HSNE on 3D MSI Data

Each 3D MSI data set was organized in a matrix format Mn×f in
which n is the number of spectra (i.e., number of voxels) and f
is the number of m/z features in each spectrum. The HSNE
algorithm was applied to Mn×f to find a hierarchical and
multiscale representation, L. The term Ls refers to the set of
low-dimensional landmarks that represent the data set on scale
s. The first scale L1 represents the original data points ofM, and
landmarks of higher scales are subsets of previous scales (Ls ⊂
Ls−1), in which the landmarks are automatically selected to
represent a set of data points.
The HSNE algorithm starts at L1 by defining a Finite Markov

Chain (FMC) that works as similarity matrix P1 for the data
points with linear memory complexity and computational
complexity O(n log(n)). Landmarks are selected by computing
the stationary distribution of the FMC and selecting the data
points whose stationary value is higher than a given threshold,
and this step has a computational complexity of O(|Ls|). The
“area of influence” of landmarks in L2 on landmarks in L1 is also

computed, which is a probability function that encodes the
relatedness of the landmarks in L2 with the data in L1. The
calculation of the area of influence has a computational
complexity of O(|Ls−1|) and a memory complexity that grows
linearly with the size L2. Finally, the similarity matrix P2
between the landmarks in L2 is computed as the pairwise
overlap of the corresponding areas of influence.
To construct a lower dimensional representation (2D) of the

landmarks in L2, the t-SNE algorithm is applied using P2 as
input instead of the Euclidean distances between the original
data points in L1. The power of the HSNE algorithm is to
further iterate this process, in which the process above is
repeated using P2 as FMC for landmarks in L2 and computing
the next hierarchical scale L3 and so on.
The application of t-SNE to the landmarks at level Ls, using

the similarity matrix PS as input, reveals clusters of landmarks;
the hierarchical nature of the landmarks mean that these
clusters represent larger structures in the high-dimensional data
(and in which the hierarchical level determines the scale of the
data structures revealed by the t-SNE analysis).
The steps described above result in a hierarchical

representation of the data, in which landmarks have been
automatically detected as data points that are representative for
a group of neighbors in the data space. The t-SNE maps of the

Figure 1. Hierarchical analysis of 3D DESI-MSI of colorectal carcinoma data set using the HSNE reveals structural patterns at different hierarchical
scales. The overview embedding represents the coarsest level in which generic dominant structures are revealed, namely: background and foreground
tissue. Detailed embedding on the tissue foreground reveals two major structures that represent colorectal cancer and connective tissues. At the finest
embedding level, more structures are uncovered within each of the colorectal cancer and muscle tissues. The Pearson correlation distribution
between HSNE segmentation maps at Level 2 and all of the spectra is presented for cancer and muscle tissue, showing the most localized m/z feature
in both tissue classes.
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landmarks at any level of the data hierarchy can be explored
interactively by manually annotating a cluster in the t-SNE
maps and drilling into the data underlying the landmarks.
Heterogeneity within the larger scale structures can be

revealed by first selecting the data within the cluster (given by
the area of influence of each landmark contained in the cluster)
and creating embeddings at a lower hierarchical level. In this
manner HSNE enables a hierarchical exploration of very high-
dimensionality data. It should therefore be noted that during
generation of the hierarchy, landmarks are selected automati-
cally from the data; during the exploration, subsets of
landmarks are selected in this case by manual drawing of
clusters of landmarks and subsequently drilling into the data in
the level below. For more details of HSNE and t-SNE, we refer
the interested reader to the original papers.38,47 In addition, the
source code of the HSNE algorithm has recently been released
and is publicly available.48

2.3. HSNE Spatial Segmentation Maps

Every landmark in the HSNE embedding holds probability
values representing the likelihood, for each of the original high-
dimensional data points, of belonging to that landmark. The
landmarks are located in the HSNE embedding based on their
mass spectral similarities. This means that mass spectrometri-
cally similar landmarks cluster together, whereas dissimilar
landmarks are located further apart, frequently with clear
boundaries between clusters. Here we manually selected
clusters that could also be automated using a density-based
portioning.36

Once a cluster of landmarks has been selected, a spatially
resolved HSNE segmentation map can be constructed. The
HSNE segmentation map is a 3D gray-scale image with
intensity values ranging between [0,1]; these reflect the
probability of the voxel belonging to the selected landmarks.
Voxels of high probability values have a similar mass spectrum
to one of the selected landmarks, whereas voxels of low
probability values are not represented by that particular
selection of landmarks; their similarities are encoded by other
landmarks in the HSNE scatter space.
The HSNE spatial segmentation maps reveal multiscale

spatial structures, and the spatial scale depends on the
hierarchical level of the HSNE embedding from which the
spatial structures were originally reconstructed. Therefore, finer
HSNE spatial structures are typically constructed from
landmarks in the HSNE embedding on a finer hierarchical
scale and so on.
Eventually, an HSNE spatial segmentation map depicts a

region of interest that shares similar mass spectral character-
istics. Unlike hard clustering techniques such as k-means,51 the
HSNE spatial segmentation map can be considered as a fuzzy-
like cluster52 in which each data point in the entire data set
holds a probability of belonging to the cluster.

2.4. Spatial Correlations and Corresponding m/z
Colocalization

The HSNE segmentation map reflects a specific structure in the
3D MSI data, which can be used to identify the molecular ions
that exhibit similar spatial distributions. A colocalized m/z
feature is highly expressed in the structure highlighted by the

Figure 2. Analysis of 3D MALDI-MSI data of a mouse kidney using the HSNE: (a) HSNE scatter plot showing the spectral similarities as landmarks
in a low-dimensional representation and (b) HSNE spatial structures based on the landmarks selection in panel a. The identified four anatomical
structures with distinct spectral signatures were merged into a single 3D image (c,d) representing: renal cortex (red), renal medulla (green), renal
pelvis (blue), and surrounding of renal pelvis (yellow). The multiorthoslice view in panel d allows in-depth visualization of the identified features.
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HSNE segmentation map and lowly expressed elsewhere.
Colocalized m/z features can be identified by first calculating
the Pearson correlation between m/z images and the HSNE
segmentation map and then determining those that achieve
significant correlation score (p value <0.05). It is possible to
identify more than one colocalized m/z feature; however, in
this manuscript and for presentation simplicity we opted to
visualize only the highest colocalized features.

3. RESULTS

3.1. 3D DESI-MSI of Colorectal Carcinoma

The low-dimensional representation generated by HSNE of the
3D DESI-MSI data set of colorectal carcinoma is shown in
Figure 1. The HSNE scatter plots show patterns of landmarks
that were projected, at different hierarchical levels, based on
their similarities in the high-dimensional space. Figure 1
visualizes the hierarchical representation at three embedding
levels, ranging from overview to detailed visualization. Level 3
represents the overview embedding, which visualizes the more
global patterns in the data set and separates the tissue
foreground from the background. Two clusters representing
the background were detected, which is presumed to reflect the
heterogeneous nature of the background noise in the original
high-dimensionality data. To drill-in to more detailed structures
the tissue foreground cluster was selected and a new
embedding was constructed at the next level. The level 2
embedding of the tissue foreground revealed two new
structures, representing colorectal cancer and connective tissue.
This is in agreement with Oetjen et al., who reported two main
tissue types (tumor and connective tissue) based on
histopathological examination of the tissues.10 Supplementary
Figure S1 demonstrates the close similarity of demarcating
tumor from connective tissue in the histological images and the
HSNE segmentation maps of level 2. When the cancer and
connective tissues were separately subjected to HSNE at the
finest hierarchical level, level 1, new structural features were
revealed in the HSNE space and associated 3D data volume
(Figure 1). Figure 1 also shows the Pearson correlation
distributions between the HSNE segmentation maps at
embedding Level 2 and all of the voxel associated mass spectra
as well as the distributions of the ions with highest correlation
for cancer and connective tissues, respectively.

The HSNE algorithm automatically constructed the three
hierarchical levels in 10 min on a PC workstation with a 3.5
GHz Intel Xeon processor and 128 GB memory, resulting in
the overview embedding. The subsequent, more detailed
embeddings required 2 min or less to be visualized based on
landmark selection at the previous embedding level.

3.2. 3D MALDI-MSI of Mouse Kidney

The 40 GB 3D MALDI-MSI data set of the mouse kidney was
analyzed using the HSNE pipeline, and the resulting structural
patterns are shown in Figure 2. The HSNE algorithm
automatically constructed four hierarchical levels from this
large data set, which were computed in ∼43 min on the same
PC referred to above. For ease of visualization the structures at
hierarchical embedding level 2 were selected and are presented
in Figure 2a in the HSNE space; Figure 2b shows the associated
3D HSNE segmentation images (which displays each voxel’s
probability of belonging to the selected cluster of landmarks).
In agreement with Trede et al.9 who previously processed this
mouse kidney data set at reduced size, four main anatomical
structures in the mouse kidney were identified, but in this
instance the calculation was performed on the full data set and
revealed finer spatial detail. Figure 2c,d shows the four regions
as false-color 3D volumes, specifically the renal cortex (red),
renal medulla (green), renal pelvis (blue), and the surrounding
of the renal pelvis (yellow). Of note, the landmarks not selected
in the level 2 embedding represent noise-related structures; see
Supplementary Figure S2.
The 3D structures corresponding to the tissue clusters

identified by the HSNE were then used to identify which
molecular ions exhibited highly correlated colocalization. The
Pearson correlation between the 3D HSNE spatial clusters and
the spectral images were calculated (see Supplementary Figure
S3), and the colocalized m/z features with the highest
correlations were identified and are shown in Figure 3.
Supplementary Figure S4 shows the 3D projections of these
colocalized ion features.

3.3. 3D MALDI-MSI of Mouse Pancreas

The 3D MALDI-MSI data set of the mouse pancreas was
analyzed using the HSNE pipeline, and the resulting structural
patterns are shown in Figure 4. Three hierarchical embedding
levels were automatically constructed, and the HSNE running
time is reported in Table 1. The coarser embedding at level 3

Figure 3. Visualization of the most colocalized 3D m/z features with respect to the associated HSNE spatial segmentation maps of the 3D MALDI-
MSI mouse kidney data set.
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differentiated between noise and two tissue structures, termed
structure 1 and structure 2 (Figure 4a). No additional structural
information was revealed within structure 1 at subsequent
embedding levels, and so correlation analysis was computed at
this level and revealed spatially correlated mass spectral noise;
see Supplementary Figure S5. For tissue structure 2 (h-SNE
level 3) a more detailed embedding at the next level revealed a
highly structured data space (Figure 4b). Close examination of
the HSNE map revealed the data structures distinguished
highly localized regions characterized by distinct molecular
profiles (red cluster), outlier tissue sections (purple cluster),
and spatially correlated mass spectral noise (blue and green
clusters). Each of these structures is defined by distinct mass
spectral profiles and 3D spatial distributions (Figure 4c,d,
respectively). The protein ion that displayed the greatest

colocalization with the red cluster, m/z 5805.54, was reported

by Oetjen et al.10 in the original benchmark 3D MSI data sets

paper as insulin. Insulin is produced by the beta cells in islets of

Langerhans, highly localized endocrine tissue in the pancreas,

which are known to exhibit very distinct spatial and molecular

profiles. HSNE enabled highly localized features to be rapidly

identified in a large 3D MSI data set, even when that data set

contained outlier tissue sections and significant spatially

correlated noise.
Drilling-in to the subsequent finer hierarchical level (level 1),

no new structures were identified and therefore we based our

results on the two embedding levels presented in Figure 4a,b.

Figure 4. Analysis of 3D MALDI-MSI of mouse pancreas data set using the HSNE reveals structural patterns at different hierarchical scales. The
detailed embedding at level 2 reveals three spectrally distinct clusters given in panel b and colored red, green, and blue. The spatial correlation
between each of the clusters identified in panel b and the spectral information was computed (c), and the highest localized m/z features were
identified (d). The m/z value of 5805.54, which is colocalized with the red cluster given in panel b, was previously identified as insulin.
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3.4. 3D MALDI-MSI of Human Oral Squamous Cell
Carcinoma (OSCC)

The 3D MALDI-MSI data set of OSCC was analyzed using the
HSNE pipeline, and the resulting structural patterns are shown
in Figure 5. Three hierarchical embedding levels were
automatically constructed, which were computed in less than
half an hour on the same PC referred to above (Table 1). The
coarser embedding at level 3 distinguished two dominant
patterns, namely, noise and tissue structure (Figure 5a). A more
detailed embedding of the tissue foreground was constructed at
hierarchical level 2 (Figure 5b) and revealed three structures.
The correlation distribution between the 3D HSNE cluster
maps and the 3D MSI data is shown in Figure 5c. The
molecular ions with the highest colocalization metrics were
identified, and their 3D distributions are shown in Figure 5d.
The peptide ions at m/z 3486, 3443, and 3372 were strongly
colocalized with the yellow HSNE cluster and were previously
reported by Oetjen et al.10 as defensins HNP1−3, peptides

produced by neutrophils (HNP refers to Human Neutrophil
Peptide). The mass spectra associated with the red and blue
clusters were similar, consisting of the same peptide and protein
ions but with different relative intensities. Close examination of
the 3D distributions revealed that the red cluster was
characterized by a batch effect, in which a number of tissue
sections (tissue section numbers 31, 32, and 33) were
characterized by very intense thymosin β4 signals, which can
be observed as white banding in Figure 4d. Supplementary
Figure S6a shows a comparison of the average mass spectra
from tissue section number 1 and tissue section number 31, one
of those exhibiting a strong batch effect, for the thymosin β4
signals. Close examination of the spectra also indicated small
mass shifts between the spectra; the HSNE algorithm does not
include a mass spectral alignment step, and so such
misalignment of spectra would be interpreted as different
molecular signatures and their separation into separate clusters.
Supplementary Figure S6b shows the batch-affected tissue

Figure 5. Analysis of 3D MALDI-MSI of human oral squamous cell carcinoma data set using the HSNE reveals structural patterns on different
hierarchical scales. The correlation analysis (c) allows us to identify the most colocalized m/z features (d) with the HSNE spatial structures (b).
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sections are localized to specific regions of the 3D MSI data set.
Nevertheless, as with the 3D MSI data set of pancreas, HSNE
enabled meaningful conclusions to be rapidly extracted from a
large 3D MSI data set, even if it contained batch effects (intense
mass spectral peaks and mass spectral misalignment).

3.5. 3D MALDI-MSI of Human Atherosclerotic Plaques

The 3D MALDI-MSI data set of human atherosclerotic plaques
was analyzed by the HSNE pipeline, and the resulting structural
patterns are shown in Supplementary Figure S7. On the basis of
the data distribution, two hierarchical embedding levels were
automatically constructed. The coarser embedding at level 2
distinguished two dominant mass spectral patterns that
distinguished the inner plaque (yellow cluster) from the rest
of the tissue (orange cluster), as depicted in Supplementary
Figure S7. A more detailed embedding was constructed at
hierarchical level 1, and it not only revealed informative
structures for plaque core and outer plaque (red and green
clusters, respectively) but also revealed another structure within
the inner plaque (blue cluster).
The results are in concordance with those previously

reported by Patterson et al.;50 that is, we identified distinct
molecular patterns in three main regions, namely: (1) fibrous
cap (inner plaque), (2) plaque core, and (3) outer plaque
(connective tissue). However, our results depict more
heterogeneity within the inner and middle plaque regions.
This might reflect the power of HSNE in preserving local
structures of the high-dimensional spectra and thus preserves
the original nonlinear manifold in the lower dimensional space.

4. DISCUSSION

The proposed methodology is the first of its kind, to the best of
our knowledge, to handle the computational challenges of 3D
MSI data analysis at full spatial and mass spectral resolution and
in a reasonable time frame while maintaining high accuracy. We
have shown the efficiency of this pipeline in analyzing 3D MSI
data sets collected from four different biological systems and
acquired by different mass spectrometers. The backbone of this
methodology is HSNE, which first constructs a hierarchical
representation of the high-dimensional data using the land-
marks and then interactive construction of a hierarchy of t-SNE
embeddings. The former assures high speed as it uses only a
representative subset (i.e., landmarks) of the full data.47 This
reduces computational overhead while maintaining the non-
linear structure of the data, thus enabling the analysis of the
millions of high-dimensional voxels encountered in 3D MSI.
Interactively selecting clusters throughout the HSNE hierarchy
allows the spatial structure of the 3D MSI data to be readily
investigated. We demonstrate that by correlating these 3D
HSNE segmentation maps with the original 3D MSI m/z
features (full spatial and mass spectral resolution) the individual
tissue specific features can be identified.
The presented computational pipeline has proven to be

highly efficient for the spatio-chemical segmentation of 3D MSI
data and the identification of associated colocalized molecular
features. The segmentation maps obtained using HSNE
represent regions of interest that capture and summarize
molecular patterns in the high-dimensionality, spatially resolved
molecular data. For the 3D MSI mouse kidney data, we have
achieved much finer spatial segmentation compared with the
coarser results previously reported,9 which thus allowed better
colocalization of ion features. In the previous analysis, the 3D
data set was reduced to the molecular features retained by peak-

picking the MALDI MSI data. The linear MALDI-TOF mass
spectrometer used for these measurements is characterized by
its low mass resolution, often leading to broad peaks that may
not be reliably peak-picked.53 McDonnell et al. have reported
mass spectral representations, to which peak-picking algorithms
designed for linear MALDI-TOF measurements have been
applied, to increase peak-picking efficiency.54 Nevertheless,
peak picking of linear MALDI-TOF data often leads to
information loss due to inefficient peak detection. Here HSNE
enabled the analysis of the complete data matrix of full spectra
from all voxels, without peak picking.
For the 3D MSI data set of colorectal carcinoma, the HSNE

spatial segmentation maps distinguished between the tumor
and connective tissues and were found to be in close agreement
with the histological images; see Supplementary Figure S1. For
the 3D MSI data set of mouse pancreas the HSNE analysis
revealed structures consistent with the known anatomy of the
pancreas; for example, that characterized by insulin (m/z
5805.54) and other peptides demarcated the islets of
Langerhans.10 Similarly, for the 3D MSI OSCC data set, the
HSNE analysis identified several molecularly distinct 3D
structures, one of which was characterized by colocalized
defensins, small proteins produced by neutrophil infiltration
into the tumor, and was reported previously.10,55 Furthermore,
HSNE enables these insights to be readily attained even in data
sets compromised by batch affects, spatially correlated noise,
and mass spectral misalignment.
The HSNE analysis has the ability to process 3D MSI data at

full spectral and full spatial resolution. The HSNE constructs
scatter plots showing the distribution of the landmarks based
on the similarity of their mass spectral profiles, in the full high-
dimensional space. However, to construct spatially mapped
HSNE structures, first a set of landmarks is selected. Here
clusters of closely spaced landmarks were manually selected but
could be automated by using, for example, density partitioning
algorithms such as ACCENSE.36

By default, HSNE does not consider the spatial origin of each
voxel’s mass spectrum when analyzing the 3D MSI data.
Therefore, it is not strictly required to register the sequential
tissue sections into a 3D volume for the HSNE analysis.
However, the image registration is highly valuable for the
visualization and assessment of the 3D HSNE segmentation
maps. Recent technical developments could allow the
registration to be automatically performed using, for example,
the t-SNE based registration pipeline presented by Abdelmoula
et al.42 In this previous work t-SNE was used to create a
segmentation map that summarized the spatial correspond-
ences in a tissue section’s MSI data set. This segmentation map
was then used to register the MSI data to a histological image of
the tissue section. For 3D MSI, a similar approach can be used
to coregister the MSI data sets from sequential tissue sections;
namely, the global registration parameters (e.g., rotation and
translation) are corrected using each tissue section’s individual
t-SNE segmentation map. Supplementary Figure S8 shows a
3D image of the protein ion at m/z 6257.9 in the mouse kidney
3D MALDI MSI data set, which is localized to the renal cortex.
It can be seen that the 3D volume from the original
publication10 (Figure S8a) contains several discontinuities,
which are due to errors during registration of the sequential
tissue sections. These discontinuities could be removed after
automatic t-SNE-based registration using only an Euler
transform (rotation and translation)56 (Figure S8b). One of
the challenges facing the automated creation of 3D MSI
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volumes concerns the deformations that may arise during tissue
processing: The nonlinear registrations needed to correct such
deformations will require geometrical constraints to preserve
the original tissue shape and that could be provided by a
reference such as a block-face image or an in vivo image (such
as MRI) of the tissue volume before sectioning.
Other recent algorithms have also focused on alleviating the

scalability issue of t-SNE, such as Largevis57 and approximated-
tSNE58 (A-tSNE). Both algorithms focus primarily on
accelerating the KNN-graph creation, a computationally very
intensive step of the original t-SNE algorithm, but lack the
multiscale representation of HSNE. This is an important
distinction because it means HSNE is implicitly more scalable
in terms of computational and memory complexity and avoids
the crowded maps that result from analyzing millions of data
points and that would otherwise hinder the identification of
clusters.48

The ability of the HSNE to handle large volumes of high-
dimensional data with reasonable computational and memory
complexity makes it promising for other biological application
areas that face similar computational challenges, particularly
areas of neurology and cancer research. For example, HSNE
holds potential for the analysis of spatially resolved omics,59

especially with subcellular spatial resolution, such as those
produced by array tomography,60 spatial transcriptomics,61 and
imaging mass cytometry.62,63

5. CONCLUDING REMARKS

We presented a computational pipeline to analyze the volumes
of 3D MSI with reasonable computational and memory
complexities while maintaining accuracy at full spatial and
spectral resolution. This would impact the application areas of
3D MSI as it can reveal, relatively fast and in an interactive data
driven manner, multiscale molecular structures that might hold
biological interest. These structures are otherwise very
computationally difficult to identify using alternative pipelines.
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