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Abstract⎯We made software to simulate Larmor precession in a setup for SESANS with adiabatic/RF flip-
pers in magnets, existing at PNPI. The final polarisation of a divergent “ribbon beam” of height 2 cm is cal-
culated as a function of λ. For λ = 6 Å, f lippers 56 cm apart and RF frequency 1 MHz we find spin-echo
length δ = 0.9 μm. We show numerically, how λ is converted to δ. Extension to δ = 20 μm is realistic.

Keywords: Larmor precession, SESANS setup, adiabatic/RF flippers
DOI: 10.1134/S1027451017060131

1. INTRODUCTION
The last 10 years have seen SESANS as an upcom-

ing technique for investigation of the structure and
space distribution of inhomogenieties in (soft) con-
densed matter, gel-like materials, etc, at a length scale
from 100 nm–10 μm [1–3]. This technique gives
answers in real space without the need of beam colli-
mation, contrary to traditional SANS giving answers
in reciprocal space, with the need of strong beam col-
limation.

SESANS is a Neutron-Spin-Echo (NSE) experi-
ment in regions with magnetic field, shaped as paral-
lellograms (Fig. 1a). Applying the Satz [3]: for neutrons
of wavelength λ the precession phase  “collected”
along a path of length L through a homogeneous
induction B is

one can see that the precession phases  in NSE-arm
1 before (i = 1) and arm 2 after scattering in sample S
(i = 2) while a neutron traverses the regions, are:

(i = 1, 2), (1)

(the constant c = 4πμnmn/h2 = 4.632 × 1014 T−1 m−2

with mn, μn, h neutron mass, magn. moment and
Planck’s constant, respectively). ψi are the angles
between the x-axis and the f lying directions in the
NSE-arms.  is the angle labeling term. For rect-
angular field shape (θ0 = 90°) it is 0 in first order. 
(= cBLcotθ0) is called “labeling coefficient”.

Suppose a neutron is scattered by ψ2 − ψ1 = θS in
the y-direction (Fig. 1a). Then Eq. (1) gives the offset
from NSE due to this process: .
Because the term cBLλ cancels, this is true for any type
of NSE-arms (for example Fig. 1c, discussed below).
This scattering process has wave vector transfer

≈ 2πsinθs/λ. If we divide  out

(saying sin θS = θS), we get a quantity of dimension
length:

δ = λΓθS/Qy = Γλ2/2π, (2)
called “spin-echo length”. δ depends on the setup
parameters θ0 (Fig.1a), L, B and λ. For fields shaped
as parallellograms we find δ(θ0, L, B, λ) = [1/(2π)]
cLBcotθ0λ2.

The nominator and denominator in (2) don’t
depend on the specific direction ψ1 in region 1, nor on
the position on the y-axis of the neutron on entering.
This means that all neutrons making up a parallel sub-
beam of given ψi in the incident beam and, idem, in the
scattered beam have the same value for δ. This is the
reason why good collimation of the incident and scat-
tered beam is not required to ”focus” the setup on a
specific value of δ.

In the practice of a SESANS measurement, at given
setting of δ, one measures the damped oscillating
polarisation signal P(δ, ) after the analyser as a
function of the precession phase  collected in a so-
called “phasecoil”, mounted in one NSE-arm for the
purpose to make offset from NSE. The polarisation
P(δ) is the maximum amplitude of this signal. Scan-1 The article is published in the original.

φ
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ning δ means: repeat this, varying one of the parame-
ters θ0, L, B, λ over the range which the design of the
setup allows. The polarisation P(δ) measured in this
way contains information of the sample’s properties Σ

and  (total and differential macroscopic cross sec-

tion). It is connected with the so-called “SESANS”
correlation function G(δ) through

(3)

l is the sample thickness; k0 = 2π/λ the neutron wave-
number. In general  is a function decaying from 1
at δ = 0. We will not discuss it: a plethora of literature
exists, see for example [4].

The denominator P0(δ) is the polarisation of the
empty setup when it is “focused” on spin-echo length
δ. The purpose of this article is to find the value of
P0(δ) (which characterizes the quality of the setup) by
simulation, in a variant with “adiabatic RF/gradient-
flippers” [5], shown in Fig. 1b, c. We made MATLAB
software [6] to simulate the Larmor precession in a
NSE-arm made up of 2 such flippers and to calculate
the coefficient Γ. We use the 4 identical electro-magnets
existing at PNPI. We examine, if a SESANS setup with
these f lippers is a realistic option for PIK.

d
d

Σ
Ω

( )
( )

( )[ ]( )

( ) ( )
0

2
0

exp 1

1wi co ,th s y y z

P
l G

P
dG Q dQ dQ
dk

δ = −Σ − δ
δ

Σδ = δ
ΩΣ ∫∫

( )G δ

2. MAGNETIC FIELDS IN AN ADIABATIC 
RF/GRADIENT FLIPPER

The z-component  of the field of one DC
magnet was measured along its axis out to x = ±28 cm
(Fig. 2). (We made no attempt to calculate the field
from geometry). It has poles shaped as 45° parallelo-
grams (θ0 = 45°). Outside the horizontal symmetry
plane (z ≡ 0) there are x- and y-components. Follow-
ing Ref [8], the x-component is calculated as follows:
around the beam where no currents f low (current den-
sity ), the static Maxwell Equation 
reduces to . This implies among other:

  

Then the component  at “height” z, expanded as:

,

becomes, at any position x:

Since in the horizontal symmetry plane (z ≡ 0) of the
magnet the  component is zero, we can drop the
first term. The derivative [dBDC(x)/dx]z = 0 is found by
numerically differentiating the measured BDC(x).
Then, the x-component of the DC field along a trajec-

( )DC
zB x

=J 0 0rot = μB J
rot =B 0

( ) ( ) 0z xdB x dB z
dx dz

− = → ( ) ( ) .z xdB x dB z
dx dz

=
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xB

( ) ( ) ( )
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0
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x x

z

dB z
B z B z z
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= = + +…
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B z B z z

dx =
= = + +…
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Fig. 1. (a) principle of SESANS [P = polariser, A = analyzer], (b) lay-out of the f lipper for simulation, (c) illustrating how to
model angle labeling. Notice: the coord.system for (b) is 90° rotated from (a) and (c).
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tory in the vertical symmetry plane (y ≡ 0) starting

from (x = −28, z0) at an angle  with the x-axis, is

given by:

(4)

The DC gradient field Hgr(x, z) is calculated (Biot

and Savart) exactly from the lay-out of the windings in
Fig. 1b. They are supposed to have infinite length in
the y-direction. For the RF field HRF(x) along the axis

we use the textbook formula for the field of a finite

solenoid. To find HRF(x, z) with , an expansion

simular to Eq. (4) is used.

The input used to calculate the fields for the simu-
lation in Sec. 3 is listed in the caption of Fig. 3.

ζ

( ) ( ) ( )
0

0

, [ 28 ] .

DC
DC z
x

z

dB x
B x z z x

dx =
= + ζ +

0z ≠

3. SIMULATION OF PRECESSION

We identify the expectation values of the spin compo-
nents along x, y, z with the so-called “polarisation vec-
tor” P(t). In terms of this vector the Larmor Equation
takes the familiar shape

with  For the simple case: homogeneous

magnetic field B along z, this equation can be written

as the (3 × 3) standard matrix :

(5)

where α(t) is the precession phase collected in the time
that the field was acting on the vector P. For an arbi-
trary field B (defined by polar angle θ and azimuthal
angle ) Eq.(5) takes the form:

using the standard matrix  for rotation around y.

For the simulation we follow the Ansatz taken for
the first time in [7] (in a different context): we use a
coordinate system, ROTATING about the field direc-
tion z of the DC magnet at the frequency ωRF of the RF

field. Seen in this system, a constant virtual field:

( ) ( ) ( )γ
d t

t t
dt

= ×P
P B

γ 2 .n= μ �

zℜ

( ) ( )( )
( ) ( )
( ) ( )

in

in

cos sin 0

sin cos 0 ,

0 0 1

zt t

t t

t t

= ℜ α ×
α α⎛ ⎞

⎜ ⎟≡ − α α
⎜ ⎟⎜ ⎟
⎝ ⎠

P P

P

ϕ

( ) ( ) ( ) ( )( ) ( ) ( )1 1

in,z y z y zt t
− −= ℜ ϕ ℜ θ ℜ α ℜ θ ℜ ϕP P

yℜ

* ,RFB = γ ω

Fig. 2. Profile  of the DC magnet measured along

its axis at 5 A, variant after inverting in x and ‘symmetrized’

average. For the simulations  is reduced such that

the plateau is at 34.3 mT.
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Fig. 3. Evolution of vectors [(100), (010), (001)] in the f lipper Fig. 1b with first guess parameters: N = 2000, λ = 6 Å, ωRF = 2π ×
1 MHz (→ B* = 34.3 mT); DC field: B-measd in Fig. 2; grad.wind: number = ng, a (Fig. 1b) = 46, b = 80 mm, curr = 4A; RFcoil:
R = 18, L = 60 mm, wnd.dens.5/cm, curr = 4A.
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in the z-direction is “transformed away” (= subtracted
from the actual field) over the full length Lsim in Fig. 2.

Field components z – remain (diminished by ), but

stationary components x- and y (the x- and y- compo-
nents of the DC magnet- and the gradient field) rotate
at ‒ωRF. It can be shown that these are ineffective on

the vector P. The RF field is written as the sum of 2
fields (of half amplitude each) counter-rotating
around z: one rotates at −2ωRF (therefore also ineffec-

tive, making the RF field half effective); the other is
stationary. We choose the phase of the ROT system

such that close to the beam axis ( ,  < 1 cm) the azi-

muthal angle  of this latter field = 0 at any time, so

the matrices  and  in Eq. (6) reduce to

the indentity matrix.

From the profile in Fig. 2 and the calculated gradi-
ent- and RF field (with “first guess” parameters in the
caption Fig. 3) we can exactly calculate the field pro-
files of the f lipper in the ROT system:

 (7)

 (8)

(  vanishes because  0). They span a field A(x,

z) with absolute value (x, z), making a polar angle

θ(x, z) with the z-axis. Ideally, this angle gradually
increases as a function of x from 0 to π. The polarisa-
tion vector P will (roughly) “follow” the vector A(x, z)
and “flip”.

The length Lsim (see Fig. 2) of the measurement

BDC(x) is divided into N steps of length dxS. At the end

of each step xi (−28 + dxS < xi < +28 cm, I = 1…N),

following Eq. (6), we calculate:

*B

y z

ϕ
( )zℜ ϕ ( )1

z

−ℜ ϕ

( ) ( ) ( )0

sum o

,

f the transverse components

, , *

( ),

gr DC

z z zA x y H x z B x y BΣ = μ + −

( ) ( )
( )

0

sum of the longitudinal components ,

, ,
RF

x zA x y H x zΣ = μ

yAΣ ϕ =
A

(so i is the upper boundary of the product ), with
inputs obtained from Eqs. (7, 8):

(10)

(11)

N must be so high that  < π for all j. In the first step

we take for  the vectors [(100), (010), (001)].

Figure 3 gives the result. To understand what hap-
pens, start with column 3. It shows the evolution for
input polarisation (001). It is f lipped at efficiency
0.95, but components along x and y appear. When the
flipper is part of a SESANS setup, one prepares the
vector (010) as input (by means of a π/2-flipper) at x =
−28: column 2 gives the evolution. Installing also a
π/2-flipper at x = +28 means: “measuring” Pyy. This

element is set in a SESANS measurement in the setup
of Fig. 1c.

Precession phase:
When the f lipper is used in SESANS we must keep

track of the precession phase. At the end of each step
i, following the practice of 3D polarisation analysis,

the collected phase  of the vector P precessing
around z is found by installing there (in your mind: it is
practically impossible and we work in the ROT sys-
tem) the equipment {π/2-flipper + anal + detec} and

“measure” the elements  and .

(Here, these elements have been calculated rather than
measured).

Then, Eq. (5) suggests that the phase  can be
found, modulo 2π, by calculating

(12)

The result, from the data Pyx and Pyy in Fig. 3, is plot-

ted (for visibility multiplied by 40) in Fig. 4 as a shaky
line. We made a MATLAB module to recover the mul-
tiples of 2π. Its output is plotted as the – line. It is

, seen in the ROT system. The phase ΦLAB(x) in the

LAB system (thick full line) is found by adding the

phase  (dotted line) of the

ROT system.

Precession phase through 2 flippers:
Next, we enter the vectors [(Pxx, Pxy, Pxz), (Pyx, Pyy,

Pyz),(Pzx, Pzy, Pzz)] at x = 28 as input for a second f lip-

per, located 56 cm downstream. This means: we sim-
ulate a full NSE-arm made up of two flippers with
centers 56 cm apart, over the beam length 2Lsim. The

precession phase ΦLAB (x) through f lipper II is added

to the phase collected at the end x = 28 of f lipper I.

( ) ( ) ( )1

out, in in

1

,

j i

i

i y j z j y j

j

P

=
−

=

= ℜ θ ℜ α ℜ θ ≡∏P P P

Π

( ) ( )( )
( )

1
tan ,

field orientat on

,

i ,

j x j z jA x z A x z
−θ = Σ Σ

( ) ( )
( )precession pha

,

se ,

j n j Sm h A x z dxα = γ λ

jα
inP

iφ

cos
i

yy iP ≈ φ sin
i

yx iP ≈ φ

iφ

( )1
tan .

i i

i yx yyP P
−φ ≈

( )xφ

( ) ( )RF RF nx m xφ = ω λ�

Fig. 4. Prec. phases through the f lipper, with RF- and
grad. current 4.0 A (ON). Parameters as in Fig. 3.
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It is plotted in Fig. 5 with f lippers ON
(RF&grad.curr = 4.0 A) and OFF (0.02 A). On
approaching x = 84 the collected phase becomes con-
stant, so it can be measured in the LAB system with the
equipment {π/2-flipper + anal + detec}.

Between the f lippers (x = 12–44 cm) with f lippers
ON, the slope is nearly twice the slope inside the f lip-
pers: this is “Zero Field Precession” (ZFP) [8] at fre-

queny . So, the phase ΦLAB collected in the NSE-

arm can be made arbitrarily high, simply by putting flipper
II farther behind flipper I. This will not happen with flip-

pers OFF (dotted lines), because then this slope is .

A divergent 2 cm heigh “ribbon beam”:
We define a “ribbon beam” (in the vertical symme-

try plane y ≡ 0) with a divergence such that all neutrons
starting at x = −28, with z0 between −1 and +1, remain

until x = 84 inside the beam definition |z| < 1, sketched
in Fig. 1b. Starting from (x = −28, z0 = 0) this require-

ment means for the slope ζ in Eq. (4): |ζ| < 1/112, so 
must be in the interval [−9…+9 mr].

Starting from (x = −28, z0 = +1) the interval is [−18

mr…0]; from (x = −28, z0 = −1) it is [0…+18 mr].

This beam definition is mapped in Fig. 6: it is the
area between the black lines. We introduce the weight
factor F(z0, ζ): F = 1 inside the beam definition and 0

elsewhere. By the step widths chosen, the full map is a
grid of 21 × 41 = 861 paths {z0, ζ}; the area with F = 1

includes 441 paths. A simulation was done for all paths
with F = 1. The phases Φ(x = 84, z0, ζ) using Eq. (12)

and applying our module for the multiples of 2π are
mapped as the shaded pattern in Fig. 6, after subtract-
ing the phase found for the path {z0 = 0, ζ = 0}.

The polarisation of this beam, measured if { -

flipper + anal + det} were placed at x = 84, is the aver-

age of the yy-elements  of the matrices

 from Eq.(9) after f lipper II:

where the θj ’s and αj ’s depend on the path {z0, }.

Then, the beam polarisation Pyy becomes:

(13)

To include the phasecoil (whose dimensions need not
to be specified: at given λ it produces an extra preces-

sion  around z for any neutron path) we must, for each
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path, multiply the matrix  by  and do

the summation Eq.(13) for the yy-element of the product
matrix. To simulate a sweep of the phasecoil through 2π,

we repeat this for  (i = 0…12).

The dotted line in Fig. 7 is the signal Pyy( ) thus

found, when the averaging is limited to  = 0. The
amplitude is 1, so flipper II cancels the phase spread
after flipper I. This is no longer true after averaging
over the full area with F = 1: then the amplitude drops
to 0.2 (– – line).

It is meaningless to show results obtained by
Eq.(13) with f lippers OFF, because in this case the
amplitude of the phasecoil signal Pyy(∆ϕ) does not

exceed 0.1.
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Fig. 5. Prec. phase ΦLAB (x) through a NSE-arm of 2 f lip-
pers. The vertical lines mark the ends – projected on the
symmetry axis (y = 0, z = 0) – of the parallellogram shaped
DC magnet poles of f lipper I and II.
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Improving the flippers:

For input polarisation (001) after f lipper I consid-
erable elements Pxz and Pyz appear (Fig. 3-col.3). In

simulations with 2 f lippers in general they grow in f lip-
per II. By varying input parameters we tried to reduce
these elements and to improve other properties of the
flippers. This has lead to the so-called “favorite-sym-
metric” flipper, obtained from the first-guess f lipper
(caption Fig. 3) by:

(1) extending and increasing the gradient field [set
numb.windings ng 24 → 28, a (Fig. 1b) 46 → 54, b

80 → 96 mm; current 4 → 5 A] to reduce x and y com-
ponents;

(2) “constructing” an idealized DC magnet [take

the symmetrized profile for  (see Fig. 2)

instead of the profile as measured] to reduce the spread
in precession phase after the f lipper;

( )DC

zB x

(3) reducing RF current from 4 → 1.5 A to mini-
mize the required RF power.

The phasecoil signal  according to Eq.(13)

for the NSE-arm made up of such improved flippers is
shown in Fig. 7 as a full line. The amplitude of the sig-
nal grows from 0.2 to 0.4.

4. FiNDiNG THE LABELING COEFFICIENT

The field profiles  and  in f lip-

pers I and II along a path  the plane z ≡ 0 at an angle

 with the x-axis can be found from the profile in

Fig. 2. Profile  is a transition from

 along path (0) to 

along path (1). Given that the magnet poles are 180
mm wide in the y-direction, we suppose that

; the shift dx is

(14)

Profile  is a transition from  =

 along path (1) to 

 along path (2). Describing these

transitions with the parameter  running linearly

from 0 to 1 over Lsim, we get – with  given by Eq.

(14):

(15)

(16)

These expressions remain valid for paths with .

We calculated the precession phase through a
NSE-arm with 2 favorite-symmetric f lippers for  =

1 mrad and  = 0, for an arbitrary set {z0, }. The dif-

ference is plotted in Fig. 8. At right the term 

( ) in Eq. (1) is indicated. This implies for a

SESANS experiment at  with the setup in Fig.

1c this implies: 1 mrad deviation in a scattering process
in a sample behind the NSE-arm will give ∆Φ = 9.4
[5.1] rad more precession for the scattered beam through
a second similar NSE-arm.

Hence, the labeling coefficient  with f lippers

ON[OFF] is 1.57[0.85] × 103 .

Dependence empty beam polarisation on spin-echo
length δ:

For  we constructed the phasecoil sig-

nals  according to Eq. (13) and determined

( )yyP Δφ
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0,zB x z ( )II

0,zB x z

�

0ψ ≠
I

zB
( ) ( ) ( )0
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z zB x z B x dx z= +
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( ): see Fig.1c; : see Fig.
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z z
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B x z B x dx z

B x dx z

= − ε + ψ
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λ Γ
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Γ
1

Å
−

2 10 Åλ = −
( )yyP Δφ

Fig. 7. Phasecoil signal Pyy ( ) for a NSE-arm composed

of “first-guess” and favorite-symm flippers. Contrary to
practice, these signals are undamped, because the simula-

tion has no wavelength spread ( ).
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their amplitudes A. In the introduction we identified

 with the empty beam polarisation .

Using Eq.( 2) and the result for Γ of the previous

subsection, the wavelength  [in Å] can be converted
to spin-echo length δ [in μm] according to:

(f lippers ON[OFF]),

to get P0 as a function of δ. The result (f lippers ON) is
shown in Fig. 9.

This result was obtained in the ROT system. To

transform it to the LAB system, for each , for all

paths, the matrix  in Eq. (13) must be

“rotated forward” around z, over an angle equal to the

phase  attained by the ROT

system at xN = 84 (equal for all paths). This is done by

inserting the matrix  under the -signs. The

phase of the signals  will shift compared with

their appearance in Fig. 7, but their amplitude is prac-
tically unchanged. So, Fig. 9 is also valid in the LAB
system.

In similar way one can compensate the phase col-

lected along the path (0,0): insert under the -signs in

Eq.(13) the inverse of the matrix .

This will give another shift of the phasecoil signals

 but not change their amplitude. Then, Fig. 9

can be interpreted as the result of an empty-beam
NSE-experiment in which NSE-arm 2 compensates
the phase collected along path (0,0) through arm 1, for
any path. In this interpretation arm 2 is an “infinite”

coil with homogeneous field  z over the full beam
cross section, without angle labeling term.

The way presented in Fig. 9 refers to a SESANS
setup in a “white” neutron beam, with TOF data col-
lection. However, this calculation can also be done at

fixed  and varying 

5. DISCUSSION AND CONCLUSION

The first order approach Eq. (4) for the field of the

DC magnet gives errors, increasing with . To esti-

mate them, we exactly calculated the field components
Bz and Bx and the precession in a model magnet, con-

sisting of “line poles” above and below the plane z ≡ 0,
with parameters chosen such that the profile Bz(x, z = 0)

is very similar to Fig. 2. The calculation was repeated

using the approach Eq. (4). For  < 1 cm the differ-

ences are so small that we can ignore the errors due to the

first order approach; for  > 1 they increase rapidly.

Subtracting the precession phase for the path {z0 =

0,  = 0} means physically that NSE-arm 1 is put in
echo with a second arm without the property of angle
labeling. To make the simulation more realistic, it is

( )A λ ( )0P λ

λ

( ) [ ] 21.57 0.85
0.1

2
δ λ = λ

π

λ
( )0,

N
P z ζ

( ) ( )N

RF RF n Nx m h xφ = ω λ

( )N

z RFR φ Σ
( )yyP Δφ

Σ
( )0 0, 0

N
P z = ζ =

( )yyP Δφ

�

λ .RFω

z

z

z

ζ

needed to replace it with an arm equal to arm 1. Then,
the spread in precession phase mapped in Fig. 6 will be
partially, not fully corrected by arm 2. Hence, the
amplitudes of the phasecoil signals in Fig. 9 are pessi-
mistic.

The routines developed for this simulation are a
way to simulate Larmor precession in a non- trivial
magnetic field configuration for neutron paths at

angles ,  from the beam axis. By the first order

approach for the field, no full map of the magnetic
field is required.

Comparing the results (Figs. 7 and 9) for the DC
magnet without/with symmetrized field (Fig. 2)
makes clear that the symmetry of this magnet is deci-
sive for the amplitude of the phasecoil signal of the
SESANS setup. This can be easily achieved by mount-
ing them carefully.

The values for  in Fig. 9 are below our wishes.
Remember: the final phase in each NSE-arm can be
increased by putting the f lippers (for example) a factor
5 further apart (at the cost of intensity); also: on basis

of the experience reported in [5], RF frequency  of
2–3 MHz looks possible. Both options are the subject

of our present simulations. They give an outlook to 
20 μm.

The routines developed for this simulation are a
way to simulate Larmor precession in a non-trivial
magnetic field configuration for neutron paths at

angles  0 from the beam axis. By the first order
approach for the field, no full map of the magnetic
field is required. This work could be of value in the
design of similar installations elsewhere, for example
OFFSPEC at ISIS [11].

We conclude: the results are sufficiently realistic to
claim that a SESANS setup at PIK based on the avail-
able magnets is a realistic option.

ζ 0ψ ≠

δ

RFω

δ �

,ζ ψ ≠

Fig. 9. Empty beam polarisation P0(δ) for a SESANS
setup, traversed by the ribbon beam of Fig. 6: NSE-arm 1 is
composed of 2 adiab RF/gradient f lippers [operated at
RF = 1 MHz] with centers 56 cm apart; NSE-arm 2 is a
hypothetical infinite coil giving equal precession phase for
all neutron paths.
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