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Abstract

Predicting properties, such as toxicity or water solubility of unknown molecules with
Graph Neural Networks has applications in drug research. Because of the ethical con-
cerns associated with using artificial intelligence techniques in the medical field, ex-
plainable artificial intelligence techniques are used to explain how GNNs make their
decisions. To evaluate the performance of those techniques, different metrics are used.
The BAGEL benchmark proposes four such metrics, designed to be useable with any
GNN explainer. Of these, the applicability of faithfulness was investigated in molecular
property prediction, measured by the submetrics of comprehensiveness and sufficiency.
While comprehensiveness and sufficiency were designed to be task agnostic, several
shortcomings were identified that make it unsuitable for molecular property prediction.
Future recommendations are to investigate other pre-established faithfulness metrics
or to develop ones that do not require splitting molecules.

1 Introduction
Predicting properties such as the toxicity or water solubility of a molecule based on its
structure is a vital part of drug research. This process is called molecular property prediction
(MPP), and it is used to identify drug candidates. Achieving high accuracy and efficiency in
MPP is valuable because developing new drugs is both very expensive and time-consuming
[1, 2], not taking into account the risks associated with clinical failure.

MPP generally correlates given structural information of an unknown molecule with the
predicted property. For some properties there is a ground truth, such as if the molecule
has a particular substructure. Some chemical properties, such as what causes liver damage
in humans, are very difficult to predict because there are dozens of chemical fragments
affecting the toxicity of a molecule[3]. There are also structurally near-identical molecules
with drastically different behaviours[3]. Due to these challenges, even highly experienced
medical chemists struggle to estimate the properties of unknown molecules[3].

Deep Learning has been applied to MPP due to its ability to model "complex nonlinear
relationships" [4], and methods like Graph Neural Networks (GNN) have been used on
graph representations of molecules. In experiments conducted in [3], GNNs were able to
achieve higher predictive accuracy in identifying both human hepatotoxicity and related key
substructures than human experts.

However, while GNNs perform well, their decision making is completely opaque[5], which
leads to ethical and safety concerns. To solve the problem of having results from GNNs
without insight into how the decisions were made, many different explainable artificial in-
telligence (XAI) methods have been developed. The current state of the art in this domain
is the Substructure Mask Explanation (SME)[4]. SME can split molecules in ways that
align with how medicinal chemists prefer to investigate them, such as BRICS or Murcko
substructures, and functional groups. The explainer uses this information to identify the
most important substructures responsible for the model’s prediction.

Different metrics have been used to evaluate the quality of GNN explainers. The BAGEL
benchmark[5] proposes four systematic ones of which faithfulness measured by comprehen-
siveness and sufficiency is investigated in this work. The BAGEL metrics have further been
used in research that investigates how the choice of GNN architecture, dataset, and explainer
affect the performance of a prediction[6], where a unique faithfulness measure from compre-
hensiveness and sufficiency was defined. The work did not investigate the what values the
datasets obtained for the individual submetrics.



It is not yet known if the BAGEL metrics are suitable to evaluate GNN explainer perfor-
mance in MPP. The medical research field can benefit from new ways to assess the fitness of
GNN explanations, and it would increase expert trust in the assessed GNN models. It would
also be valuable to know where the BAGEL metrics do not yet succeed. To investigate this,
a research question is proposed:

How applicable are comprehensiveness and sufficiency as a way to measure GNN explainer
faithfulness in molecular property prediction?

To further define the research, the following subquestions are used:

1. How can comprehensiveness and sufficiency from the BAGEL benchmark be adapted
to work with MPP?

2. How large are the differences in comprehensiveness and sufficiency between relevant
explanations from Integrated Gradients and random explanations, using a Commu-
nicative Message Passing Neural Network model trained on a benzene ring dataset?

To answer the research questions, first the background information and methodology are
established in section 2. The proposed modifications to comprehensiveness and sufficiency
are explained in section 3. The results of the experiment are presented and discussed in
section 4, and section 5 reflects on the aspects of responsible research in the context of
this work. A summary of the findings and recommendations for further research on GNN
explainers in MPP can be found in section 6.

2 Background and Experimental Work
This section provides information on graph neural networks, graph neural network explainers
and an overview of the faithfulness metrics defined in BAGEL.

2.1 Graph Neural Networks
Graph Neural Networks (GNN) are a type of artificial neural network that process data
represented as graphs G(V , E), where V is the set of nodes and E is the set of edges. GNNs
use both the feature information and the graph structure to make predictions.

Communicative Message Passing Neural Network (CMPNN) is a GNN specifically de-
veloped for MPP, and it can update both edge and node embeddings interactively. The
notation used in its molecular embedding function is listed in Table 1, and the algorithm
itself is shown in Algorithm 1. Lines 3-10 of the algorithm describe the update function for
vertices and edges:

• For each vertex v, an intermediate message vector mk
v is constructed by aggregating the

hidden states of its incoming edges. The updated hidden state hk
v for v is the output

of the communicative function with the message vector and the previous hidden state
of v as its inputs.

• For each directed edge e, construct an intermediate message vector mk
e from the current

hidden state of its starting vertex v subtracted by the previous hidden state of its
inverse edge. The updated hidden state hk

e is the sum of the initial hidden state of the
edge h0(ev,w) and the weight matrix multiplied by the message vector mk

e .
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Table 1: Mathematical notation used in the CMPNN molecular embedding algorithm.

G = (V,E) Input graph.
u, v, . . . Nodes in G.
eu,v An edge from node u to v.
N(v) The set of neighbour nodes of node v.
x Raw feature.

hi(v) The hidden representation of node v in layer i.
hi(ev,w) The hidden representation of edge ev,w in layer i.

W Weight matrix.
σ Activation function; ReLU.

Algorithm 1 CMPNN embedding generation algorithm, as defined in [7].
Input: Graph G(V,E); depth K; input node and edge features {xe,v,∀e, v ∈ E, xv,∀v ∈ V };
aggregate function Aggregate, communicative function Communicate; weight matrix W
Output: Graph-wise vector representation z

1: h0(ev,w)← xe,v,∀ev,w ∈ E;h0(v)← xv,∀v ∈ V
2: for k = 1 to K do
3: for v ∈ V do
4: mk

v ← Aggregate({hk−1(ev,u),∀u ∈ N(v)})
5: hk

v ← Communicate(mk
v , h

k−1
v )

6: end for
7: for e ∈ E do
8: mk

e ← hk(v)− hk−1(ew,v)
9: hk

e ← h0(ev,w) +W ·mk
e

10: end for
11: end for
12: for v ∈ V do
13: m(v)← Aggregate({hK(ev,u),∀u ∈ N(v)})
14: h(v)← Communicate(m(v), hK(v), x(v))
15: end for
16: z← Readout({h(v),∀v ∈ V })

2.2 GNN Explainers
Explainers are an explainable AI technique for explaining how a GNN model came to its
decision. An explanation is the output of an explanation function and an interpretable
description of the model’s behaviour. The exact form of the explanation depends on the
model and data used, and who the intended user of the explanation is (Dr. Khosla, personal
communication, May 28, 2024).

The explanation outputs in this work are two arrays; one with an importance value
for every atom in the molecule, and the other for the importance values of each bond.
Figure 1 shows an explanation for a model trained on benzene ring data, where atoms with
importance values above a given threshold value and the bonds between such atoms are
highlighted.

Experiments conducted in this paper use Integrated Gradients (IG), as defined in [8].
113 SMILES Cn1cncc1CCNC(=O)c1cc(cnc1)F
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Figure 1: Visualisation of the outcome of the integrated gradients method for the prediction
of benzene ring presence of molecule 5-fluoro-N-[2-(3-methylimidazol-4-yl)ethyl]pyridine-3-
carboxamide (131). Atoms and bonds highlighted in green were identified as crucial for the
model’s prediction.

IG calculates the path integral between the input graph G and the baseline counterfactual
Gb[9]. The integrated gradients for an input G can be approximated with a sum as follows:

IntegratedGradsapproxi (G) ::= (Gi −Gb
i )× Σm

k=1

ϑf(G′ + k
m (Gi −G′

i))

ϑGi
× 1

m
(1)

Where m is the number of steps for the Riemann sum approximation, and f is a function
representing GNN output given an input. ϑf(x)

ϑxi
represents the gradient of f(x) along the

ith dimension.
In essence, the function calculates the gradients for a set of inputs, and averages them

out before multiplying the subtraction of the input G and baseline Gb in the ith dimension.
The used implementation sets m to 200. The baseline Gb used for chemistry models in [8]
is a zeroed out feature vector and is assumed to be the same for all chemistry applications.

2.3 GNN Explainer Evaluation
The BAGEL benchmark was developed as a general framework for GNN explainer evaluation[5].
It proposes the following metrics: 1) faithfulness, 2) sparsity, 3) correctness, and 4) plausi-
bility, the first of which is described below.

Faithfulness is a measure of how well an explanation can describe model behaviour. It
has two submeasures, the choice of which depends on what type of data or explanations are
used.

1. Rate Distortion Based (RDT) Fidelity is used with explanations with node and
edge feature attributions but not necessarily attributions related to the graph structure. An
explaining subgraph and its features are relevant to the predicted property, if the model
prediction stays nearly the same when the rest of the node and edge features have been
randomised.

2. Comprehensiveness and Sufficiency are used to measure faithfulness in expla-
nations that have only structural information available. Comprehensiveness measures if the
explanation has captured every node/edge that led to the model’s prediction, and sufficiency
if the nodes and edges in the explanation alone are enough to come up with the original
prediction[5]. The submetrics are defined as follows:

comprehensiveness = f(G)j − f(G/GE)j (2)

sufficiency = f(G)j − f(GE)j (3)
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Where GE is the explaining graph of G with GE ⊆ G; G/GE is the non-explaining graph,
expressed as the difference between G and GE , and which will be referred to as GN in this
work; f is the trained GNN model; and f(G)j the GNN prediction for G, for the jth class.

For comprehensiveness, a value near the original prediction f(G)j is preferred to indicate
that non-explaining nodes and edges in G have low predictive power. For sufficiency, a value
near zero shows that most of f(G)j is because the explanation graph GE is part of G.

2.4 Molecular Representation
Simplified Molecular-Input Line-Entry System (SMILES) is a specification to create ASCII
string representations of molecules, where a period (.) is used as a separator between disjoint
molecules. For example, the string ”O.C1CCCCC1” represents a water molecule and a ring
of 6 carbon atoms separate from it. In this report, a "valid" SMILES refers to a string that
can be converted into a molecule graph.

The International Union of Pure and Applied Chemistry (IUPAC) names for molecules
used in this work were obtained through the Python library PubChemPy.

2.5 Experimental Pipeline
This work adapts comprehensiveness and sufficiency for the purpose of molecular property
prediction on two distinct explainers. In the following, the choice of dataset, GNN and GNN
explainers for the experimental pipeline are motivated.

Dataset The synthetic benzene ring dataset used in this work is from MolRep, a Python
package that provides datasets, deep learning models and explainers for MPP[9]. The dataset
was used because it has a ground truth and the model can be trained to recognise if benzene
rings are present. These features make it a suitable baseline to test how comprehensiveness
and sufficiency perform in MPP. The numbers used for the molecules in this work refer to
their indices in the dataset, which had 12 000 entries in total.

GNN CMPNN was chosen as the GNN model to use the evaluated GNN explainers on.
The choice was based on the benchmarking done in [3], where CMPNN[7] performed the
best overall and was able to achieve perfect accuracy with the benzene dataset. Accuracy
metrics for the used model are shown in Table 2.

Table 2: Accuracy, Area-Under-Curve, F1, Precision and Recall for the CMPNN model
trained for a single epoch on the benzene dataset, with claimed Area-Under-Curve value
from [3] in parentheses, and the target values in brackets.

ACC [1] AUC [1] F1 [1] Precision [1] Recall [1]
0.748 0.845 (1.000) 0.773 0.708 0.851

Despite the lower performance compared to the claimed Area-Under-Curve value of 1.000
in [3], the trained model had a decent value for it. The precision score indicates that from
all the positive samples the model identified, most were true positives. Recall shows that
the model could identify more true positives than false negatives.
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GNN Explainers The explainers chosen were Integrated Gradients (IG) and a MolRep
provided baseline that outputs random values for each feature of the input molecule. The
choice of IG was because it was able to achieve a high explanation accuracy with CMPNN
and the Benzene dataset in [3]. The random baseline was chosen so IG could be compared
against an explainer that should not be able to give a benzene ring as an explanation. The
parameters were chosen so that the average random explanation had approximately 50%
of the atoms in the input molecule. The accuracy metrics for the explainers used for the
experiment are shown in Table 3.

Table 3: Explainer accuracy, Area-Under-Receiving-Operating-Curve, F1, Precision and
Recall for IG and a random explainer for a CMPNN model trained on the benzene dataset,
with estimated AUROC from Figure 2B in [3] in parentheses, and the target values in
brackets.

Explainer ACC [1] AUROC [1] F1 [1] Precision [1] Recall [1]
IG 0.826 0.948 (0.903) 0.271 0.410 0.202

Random 0.815 0.502 (0.513) 0.000 0.000 N/A

2.6 Extracting Subgraphs From Molecule Explanation
Both comprehensiveness and sufficiency require extracting subgraphs from the input. To
obtain the subgraphs, the threshold value that the explanation visualisation method in
MolRep uses, was used to divide atoms and bonds into explaining and nonexplaining ones.
The explaining graph GE was extracted from the molecule graph G by removing atoms with
an importance value strictly lower than the threshold, as well as every bond between those
atoms. Two methods to extract the non-explaining graph GN were used, called "soft" and
"hard" splitting. Soft splits preserve bonds between explaining and non-explaining atoms,
while hard splits do not.

An example of splitting a molecule into its explaining and nonexplaining parts is shown
in Figure 2. Molecule 1682 had two molecules3 in GE . With the soft split, GN was a single
molecule4, while the hard split produced three disjoint molecules5.

Because of the implementation of the splitting method, invalid molecules were often
generated for both GE and GN . Because the GNN requires chemically valid input, the
molecules were sanitised by splitting their SMILES into a list using a period (.) as the
delimiter, and constructing a new period-delimited SMILES of the valid fragments. If no
valid parts remained, the explanation could not be evaluated. These cases were considered
separately from the ones where the (non)explaining graph consisted of the entire input
molecule.

2.7 Code Repositories
MolRep MolRep provides datasets, deep learning models and explainers for MPP[9]. It
can train GNN models on MPP datasets, generate explanations, and visualisations of those

2168 SMILES C[C@H]1C[C@H](CCO1)C(=O)OC[C@@H]1CCCN(C1)C(=O)c1ccccc1
3Explaining SMILES C.NC(=O)c1ccccc1
4Non-explaining (soft) SMILES C[C@H]1C[C@@H](C(=O)OC[C@@H]2CCCNC2)CCO1
5Non-explaining (hard) SMILES CCC[C@H](C)CO.C[C@H]1CCCCO1.O
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(a) (b)

(c) (d)

Figure 2: Demonstration of splitting molecule [(3R)-1-benzoylpiperidin-3-yl]methyl (2S,4S)-
2-methyloxane-4-carboxylate (1682) into explaining and nonexplaining parts: (a) IG ex-
planation for prediction of benzene ring presence for molecule 168, with atoms and bonds
crucial to model prediction highlighted in green, (b) Explaining fragments: benzamide and
methane3, (c) Soft split into one non-explaining molecule [(3R)-piperidin-3-yl]methyl oxane-
4-carboxylate4, (d) Hard split into three non-explaining molecules: (2S)-2-methylpentan-1-
ol, (2S)-2-methyloxane, and oxidane5. Colours in (b), (c) and (d) represent non-carbon
atoms and molecules.

explanations. It is available at https://github.com/biomed-AI/MolRep.

This work The metrics and experiment for this project were implemented in Python.
Pre-existing MolRep code was used to train a model and generate explanations. The imple-
mentation is publicly available at https://github.com/helipajari/mpp-comp-suff.

3 Applying Comprehensiveness and Sufficiency to MPP
Explainers

3.1 Proposed Modifications to Formulae
Splitting the molecule often results in disjoint fragments in both GE and GN . To investigate
how predicting the fragments separately affects comprehensiveness and sufficiency in binary
prediction tasks, changes were made to both Equation 2 and Equation 3, presented below:

comprehensiveness′ = f(G)−
∑

g∈GN

f(g) (4)

sufficiency′ = f(G)−
∑

g′∈GE
f(g′)

|GE |
(5)

Where g is a non-explaining fragment in GN , g′ is an explaining fragment in GE and
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f(x) is the GNN prediction of the given input x.

The optimal value for unmodified comprehensiveness is as close to f(G) as possible. As-
suming that f(GN ) is the sum of all nonexplaining fragments, predicting non-explaining
fragments separately should yield low values for each of them. Values for modified compre-
hensiveness are expected to be similar to those produced by the original one.

The changes to sufficiency were made because the set of explaining fragments can contain
multiple target structures. For binary classification such as benzene ring detection, any one
of them should be sufficient to come up with the original prediction. Because the target value
for unmodified sufficiency is close to 0, the predictions for explaining fragments for modified
sufficiency are averaged before subtracting from the prediction of the original molecule.

3.2 Comparing Explainers Under Comprehensiveness and Suffi-
ciency

To compare explainer performance, average comprehensiveness and sufficiency scores were
calculated for each explainer. Average comprehensiveness for an explainer was defined as
the mean of (comprehensiveness(G)/f(G)) for every molecule G in the dataset where com-
prehensiveness was defined. Values near 1 indicated good performance. Average sufficiency
was calculated as the mean of the absolute value for sufficiency, for every molecule where
sufficiency was defined. Values near 0 indicated good performance.

4 Results and Discussion

4.1 RQ1: Adapting Comprehensiveness and Sufficiency for MPP
To demonstrate the effects of the different formulae and splitting methods on comprehen-
siveness and sufficiency, IG explanations for molecules 1682, 2386, 8477, 10188, and 16379

were used, shown in Figure 3.
Comparisons for comprehensiveness between soft and hard splits, and differences between

the original and modified formulae are demonstrated with molecules 168, 238, 847, 1018 and
1637 in Table 4.

Table 4: Comparisons between soft and hard split methods and formulae for comprehen-
siveness on IG benzene explanations for molecules 168, 238, 847, 1018 and 1637, with the
target value in brackets.

mol f(G) original
soft / hard [f(G)]

modified
soft / hard [f(G)]

fragments
soft / hard

168 0.482 0.050 / 0.052 0.050 / -0.856 1 / 3
238 0.448 0.001 / 0.009 0.001 / -1.402 1 / 4
847 0.513 0.045 / 0.058 -0.905 / -2.778 3 / 7
1018 0.537 0.105 / 0.103 0.105 / -0.368 1 / 2
1637 0.427 -0.001 -0.001 1 / 1

6238 SMILES C[C@H]([C@H]([C@@H]([C@@H](C=O)O)O)O[C@H](C)C(=O)[O-])O
7847 SMILES CCOC(=O)c1c(oc(c1CNC(=O)N)C)C
81018 SMILES c1ccc(cc1)C(c1ccccc1)NC(=O)NCC[C@H](C1CC1)O
91637 SMILES c1cc(nc(c1)OCC(F)F)C(=O)Nc1ccncc1O
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(a) (b) (c)

(d) (e)

Figure 3: Visualisation of the outcome of the integrated gradients methods for the
prediction of benzene ring presence with atoms and bonds crucial to model predic-
tion highlighted in green. Representations for molecules (a) [(3R)-1-benzoylpiperidin-
3-yl]methyl (2S,4S)-2-methyloxane-4-carboxylate (1682), (b) no IUPAC name, SMILES:
C[C@H]([C@H]([C@@H]([C@@H](C=O)O)O)O[C@H](C)C(=O)[O-])O (2386), (c) ethyl
4-[(carbamoylamino)methyl]-2,5-dimethylfuran-3-carboxylate (8477), (d) 1-benzhydryl-3-
[(3R)-3-cyclopropyl-3-hydroxypropyl]urea (10188), and (e) cyclooctyl-[(2S)-2-hydroxy-3-[(2-
methylpropan-2-yl)oxy]propyl]azanium (16379).

Comprehensiveness scores for the original formula in Table 4 are positive values close
to zero for every molecule except for 1637, for which GN was equal to G. For the rest,
the values show that GN had a lower prediction that G for both split types. f(G) and
comprehensiveness appear to be positively correlated, except for molecules 168 and 847
when using the soft split. The meaning of this is unclear.

For the modified formula, the soft split has the same values to the hard one when GN

has one fragment, else the values are more negative the more fragments there are. It can
be reasoned that evaluating GN fragments separately results in similar values to G for
each of them, leading to a low overall value. The formula modification does not improve
explanation comprehensiveness values, and the assumption the modification was based on
appears to have been incorrect.

Overall, comprehensiveness does not perform as expected. Using the target value f(G),
high values for f(GN ) indicate that the explanations did not capture every node and edge
relevant to the model decision. If the target value for comprehensiveness is changed to a
positive value to simply indicate GN has lower prediction than G, it could be argued that
the explanations are comprehensive.

To investigate the effect of different sufficiency formulae on molecules with multiple ex-
plaining benzene rings, molecule 1018 was used. Its explanation was manipulated to only
include benzene rings. The results in Table 5 show that the formula modification has a 0.008
improvement over the original one when compared to the target value.

The table also shows that the model prediction for a single benzene ring is 0.581, and
multiple benzene rings have a higher prediction when evaluated together. This is a useful
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Table 5: Model predictions and different sufficiency formulae of molecule 1018 when the
explaining graph GE contains only two benzene rings, with the target value in brackets.

f(G) original
f(GE)

modified
f(GE)

original
sufficiency [0]

modified
sufficiency [0]

0.537 0.589 0.581 -0.052 -0.044

feature for MPP tasks like toxicity prediction, where the overall toxicity of a molecule is
due to the presence of multiple less toxic substructures, such as shown in the hepatotoxicity
study in [3]. By finding a suitable threshold value for splitting molecules, sufficiency could
be used as implemented in this work.

Comparisons for using the original and modified sufficiency formulae on unmanipulated
explanations for molecules 168, 238, 847, 1018 and 1637 are in Table 6.

Table 6: Comparisons between formulae for sufficiency on IG benzene explanations for
molecules 168, 238, 847, 1018 and 1637, with the target value in brackets.

mol f(G) original
f(GE)

modified
f(GE)

original vs.
modified [0] fragments

168 0.482 0.565 0.521 -0.083 / -0.039 2
238 0.448 0.466 0.472 -0.018 / - 0.024 2
847 0.513 0.462 0.051 1
1018 0.537 0.576 0.551 -0.039 / -0.014 3
1637 0.427 0 0.427 0

Sufficiency scores are near zero for every molecule other than 1637. 1637 has an empty
explanation, so its sufficiency is equal to f(G). For the other molecules, f(GE) was slightly
higher than f(G). The exception to this is molecule 847, for which f(GE) was lower. Both
original and modified f(GE) are on the same side of 0.5 as f(G), except for molecules 168 and
847. This appears to indicate that the explanations are not faithful to the model prediction.
This is supported by the molecule graphs Figure 3a and Figure 3c: 168 has a benzene ring
while 847 does not.

The modified sufficiency score is closer to 0 for molecules 168 and 1018 which have both
benzene rings and other molecules in GE . This shows that either 0 should not be used as
the target value, or the formula modification should be reconsidered, as irrelevant molecules
in the explanations bring the average value closer to 0. It does not seem to be a good target
for the original formula either, because the more benzene rings a molecule has, the higher
f(GE) becomes, leading to lower sufficiency. This suggests that sufficiency should be as low
as possible, but the nuance of contradicting explanation and model predictions is lost, as
the explanation for molecule 168 would be more sufficient than 238, even if the f(GE) is
closer to f(G) for 238.

Based on these results, sufficiency can show if the model and explanation are in agree-
ment, which is derived of the definition in [5]: is the explanation alone enough to come up
with the model prediction. This can be useful for MPP, if the target values are reconsidered.
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4.2 RQ2: Comparing Explainers
To compare how different explainers perform under comprehensiveness and sufficiency, the
average scores were obtained from IG and a random explainer, using 600 random samples
without replacement, both splitting methods and the original formulae. The results are
shown in Table 7 and Table 8.

Table 7: Comparing average comprehensiveness of IG and a random explainer for (a) soft
and (b) hard split, using original formulae on 600 samples, with the target values in brackets.

(a) Soft split

average % of
explainer comp % [1] samples [1]

IG 0.095 0.603
Random 0.049 0.695

(b) Hard split

average % of
explainer comp % [1] samples [1]

IG 0.125 0.995
Random 0.088 0.957

Average comprehensiveness scores with the soft split are 0.095 for IG and 0.048 for ran-
dom, and for the hard split 0.125 and 0.88, respectively. IG has scores closer to the target
in both cases. Like in Table 4, using the hard split resulted in higher values for both ex-
plainers. The hard split also resulted in almost every molecule having at least one valid
nonexplaining fragment for both explainer, compared to the soft split averaging at about
65% valid samples. The higher number of samples is not a clear improvement, because at
its extreme a single atom of the molecule was used to calculate the comprehensiveness of an
explanation. A metric that might only use such a small fraction of a molecule can hardly be
considered useful, but one that can not be used for 30-40% of all data is not very useful either.

Average sufficiency scores in Table 8 are about 0.05 for both explainers, which shows
that their explanations were close to the molecule predictions.

Table 8: Comparing average sufficiency of IG and a random explainer, using original formu-
lae on 600 samples, with the target values in brackets.

average % of
explainer suff % [0] samples [1]

IG 0.045 0.802
Random 0.050 0.957

Sufficiency is 0.005 lower for IG, indicating it performs better. Sufficiency could be cal-
culated for about 80% of samples for IG and 96% for the random explanations, meaning
that most explanations had at least one chemically meaningful fragment. As with compre-
hensiveness, a higher number does not indicate a better explainer. Random atom and bond
explanations being only 5/1000th worse on average than explanations that could contain
benzene rings seems to indicate that any explanation would be highly sufficient. This is
consistent with comprehensiveness scores in subsection 4.1, showing that non-target struc-
tures attain high prediction values. The score for random explanations is also very close
to 0.052, the average sufficiency which the perfect explanation for molecule 1018 in Table 5
would get. This shows that the GNN model does not create large differences between ran-
dom fragments and the target structures, which makes it difficult to compare explainers
with sufficiency.
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4.3 Reflection
The initially assessed suitability of comprehensiveness was based on the assumption that the
non-explaining graph of a molecule would be a valid molecule in isolation. With a better
understanding of chemistry, comprehensiveness could have been dismissed altogether.

The usefulness of comprehensiveness and sufficiency for MPP is also severely limited
by GE and GN having to be chemically valid, so that both subgraphs can be evaluated
by the GNN model. Assuming a well performing explainer and model, sufficiency is more
applicable of the two, because the target structures in GE should be chemically valid to
have the predicted molecular properties.

Without modifications to the metrics, assigning the entire molecule to be the explanation
is a trivial way to define the absolute most comprehensive and sufficient explanations.

4.4 Limitations
GNN Model and Explainers

The trained CMPNN model could not reproduce the cited AUROC scores of [3]. It could
get a value of 0.845, but it was still lower than 1.000 reported in the literature. Training
the model for more epochs made it worse: model AUC was 0.5 with ten epochs, and ex-
plainer precision fell to zero when two or more epochs were used. The tables for model and
explainer accuracies are included in Appendix A. Additionally, the MolRep CMPNN model
ignored generating bond importances for explanations by default, raising questions about
the reliability of the produced models and explanations. Further concerns were raised by
the bizarrely high accuracy score (0.815) of the random explanations.

Despite the peculiarities, the explanations could show that the model predictions were
very similar regardless of input. It is possible that a more accurate model could have led
to IG predicting fewer false positives and negatives, but it would not have created larger
differences between molecules with benzene rings and those without them.

An explainer with high precision and recall would have been interesting to compare
against the high accuracy but low F1 IG. This could have given more insight into how
comprehensiveness and sufficiency worked with the achieved implementation.

Implementation

The molecule splitting method could have been made to be more faithful to the model
prediction. This could have been achieved by assigning atoms with importance values under
the threshold to the explaining graph GE when the model prediction was less than 0.5. For
molecules with empty explanations such as 1637 in Figure 3e, this would result in perfect
sufficiency and comprehensiveness scores because the whole molecule would have been used
as the explaining fragment. This idea was not implemented due to a lack of time.

The splitting was not rigorously tested or appraised by a domain expert, so it is possible
that extracted subgraphs did not exactly correspond with the input molecules. An example
of this is in Figure 2d, where it can be seen that the thicker bond does not connect to the
OH-group like it does in Figure 2a. It is thus clear that some molecules used for calculating
comprehensiveness and sufficiency were incorrect. For the conclusions this does not matter,
but the exact results may be wrong. The molecules used for the results in subsection 4.1
were verified to be correct except for molecule 168, but checking the molecules for results in
subsection 4.2 was infeasible.
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5 Responsible Research

5.1 Repeatability and Reproducibility
The methods used to obtain comprehensiveness and sufficiency for a molecule are both re-
peatable and reproducible when using the same model and explanations between repetitions.
The trained CMPNN model, explanations for each used explainer, the random split for com-
prehensiveness and sufficiency, and code implemented for the project have been uploaded
to a public repository, so the same results for comprehensiveness and sufficiency can be
obtained by using the provided files.

Additionally, the MolRep repository and the BAGEL benchmark are open access. With
the description of the implementation in section 3, it is possible to reproduce the entire
experiment. However, the results will vary, unless the same model and explanations are
used.

5.2 Benefit to Drug Research
The goal of this project was to establish if comprehensiveness and sufficiency are applicable
to MPP as a measure of faithfulness. If so, they could be used to evaluate the goodness
of GNN explanations and be indirectly beneficial to society by potentially reducing the
time and money costs associated with drug research. Even if the metrics performed well
with MPP, it is important for experts to remain sceptical and not to trust them blindly.
New GNN explanation evaluation methods can be used as a tool, but the responsibility of
assessing if the model predictions are trustworthy lies on the humans.

5.3 FAIR Principle
Efforts to follow the FAIR principles for scientific data management[10] have been made: the
code and datasets are publicly available and open access; the code is written in a platform
independent programming language; the code has been documented to allow others to use
it, and the data used for the experiments has been provided.

6 Conclusions and Future Work
Drug research can benefit from new ways to evaluate the performance of explainability tech-
niques for black-box Graph Neural Network (GNN) predictions. The BAGEL benchmark
has proposed four task agnostic metrics, of which faithfulness measured as comprehensive-
ness and sufficiency of a molecule was adapted for molecular property prediction (MPP) in
this work. The following research question was posed:

How applicable are comprehensiveness and sufficiency as a way to measure ex-
plainer faithfulness in molecular property prediction?

This question was answered by two subquestions:

1. How can comprehensiveness and sufficiency from the BAGEL benchmark be adapted
to work with MPP?

2. How large are the differences in comprehensiveness and sufficiency between relevant
explanations from Integrated Gradients and random explanations, using a Commu-
nicative Message Passing Neural Network model trained on a benzene ring dataset?
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To adapt comprehensiveness and sufficiency for MPP, an algorithm was introduced to
extract chemically valid explaining and non-explaining subgraphs of a given molecule if they
exist, and provided a method to calculate the comprehensiveness and sufficiency of a GNN
explanation. It was shown that the model predictions of subgraphs were similar to one
another, regardless of if they contained a benzene ring or not.

To compare explainers, the average comprehensiveness and sufficiency scores were ob-
tained for explanations produced by an Integrated Gradient (IG) explainer, and random
guesses. The comparison established that comprehensiveness or sufficiency are not useful
metrics for MPP, because 1) the attained scores between IG and guessing were very similar
to each other, meaning that the quality of explainers is difficult to establish, 2) comprehen-
siveness ignores much of the input data due to the GNN requiring chemically meaningful
input, and 3) the average sufficiency of random guesses is closer to a perfect explanation
than that of IG.

As they have been implemented in this work, neither comprehensiveness nor sufficiency
can be recommended for evaluating GNN explainer faithfulness. Comprehensiveness is lim-
ited because both split methods ignore much of the data, and both metrics are unable to
create meaningful differences between the evaluated explainers.

Future Work
The usefulness of sufficiency seems to require having a ground truth of the predicted property
on which to base a target value. This excludes all prediction tasks which don’t have a ground
truth. It is recommended to investigate the applicability of faithfulness metrics that do not
require one, such as RDT-Fidelity from the BAGEL benchmark.

Generally, it appears that explainer evaluation metrics for molecular property prediction
should not split molecules, as the fragments can not be guaranteed to be chemically valid.
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A CMPNN Model Training and IG Explanation Metrics

Table 9: Training accuracy of MolRep CMPNN implementation

(a) Without bond importances generated

Epochs ACC AUC F1 Precision Recall
1 0.756 0.843 0.765 0.743 0.789
2 0.752 0.848 0.759 0.746 0.772
3 0.495 0.820 0.000 0.000 0.000
4 0.505 0.885 0.671 0.505 1.000
5 0.495 0.821 0.000 0.000 0.000
10 0.495 0.500 0.000 0.000 0.000

(b) With bond importances generated

Epochs ACC AUC F1 Precision Recall
1 0.739 0.823 0.753 0.721 0.788
5 0.495 0.773 0.000 0.000 0.000

Table 10: Accuracy of MolRep IG implementation, corresponding to Table 6a and 6b

(a) Without bond importances

Epochs AUROC F1 ACC Precision AUROC Mean ACC Mean
1 0.952 0.370 0.825 0.416 0.892 0.825
2 0.954 0.000 0.815 0.000 0.893 0.805
3 0.907 0.000 0.815 0.000 0.854 0.805
4 0.851 0.000 0.815 0.000 0.809 0.805
5 0.672 0.000 0.815 0.000 0.654 0.805
10 0.526 0.000 0.815 0.000 0.514 0.805

(b) With bond importances

Epochs AUROC F1 ACC Precision AUROC Mean ACC Mean
1 0.768 0.000 0.815 0.000 0.764 0.805
5 0.501 0.000 0.815 0.000 0.520 0.805
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