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SUMMARY

A single point mooring (SPM) system is one of the possible mooring systems in the
field of Arctic floating production. It consists of a moored buoy to provide its
anchoring unit with the capacity of mooring and ice sheltering. In the preliminary
design phase, the performance of the mooring buoy must be assessed. This can be
done by numerical modeling. This thesis provides a model for the two-dimensional
numerical simulation of a moored buoy under ice loading, and it optimizes the buoy
design based on the results of the numerical simulation.

The model is constructed based on the discrete element method (DEM), where the
elements consist of the elements describing the level ice, and one element describing
the buoy. The numerical model is capable of simulating several ice-structure
interaction mechanisms, including the ice compressive failure, the ice bending failure,
and friction.

The model consists of three parts. A compliant contact formulation describes the
behavior of contacts between elements. Contact forces are solved implicitly using a
Lagrange multiplier formulation. Lastly, the mooring system is described using the
catenary equation.

The model is validated against a number of analytical solutions, demonstrating that
the model is capable of simulating the buoy-ice interaction. An example of the buoy
design optimization process is demonstrated. The optimization aims to obtain a
concept design of a satisfactorily performing moored buoy with minimized
dimensions under a specific ice condition. Design criteria were determined for the
maximum pitch angle and the maximum horizontal displacement of the buoy. Given
the desired design criteria, one can obtain the most optimized buoy design after
several phases of selection.
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INTRODUCTION

1.1 Background

When designing an offshore floating structure for Arctic regions, the potential
presence of sea ice and the harsh climate are challenging engineering problems.
Under such circumstances, a suitable mooring system is beneficial for stabilizing and
reinforcing the floating structure while developing an Arctic oil field. Generally, there
are several different kinds of mooring system in the field of offshore engineering,
including but not limited to: the catenary mooring system, the taut leg mooring
system, the tension leg (TL) mooring system, and the single point mooring (SPM)
systems. An SPM system refers to a fixed or floating structure anchored offshore,
which serves as a mooring and interconnect point. Figure 1-1 shows a tanker moored
to an SPM system.

Figure 1-1 Tanker moored to an SPM system (SOFEC, 2009)t!

In the scope of Arctic floating production, one of the most efficient mooring strategies
is to employ a single buoy mooring system, which is one of the types of single point
mooring systems. Overall, the single buoy mooring system consists of a permanently
moored buoy, to which the offshore unit is connected. The moored buoy itself is
usually moored with the catenary mooring system, which is currently one of the most
commonly applied mooring systems.

One of the advantages regarding applying the buoy system is that the moored floating
structure is able to weathervane in 360° around the buoy and find a stable position
with the minimum environmental loads. Additionally, in Arctic regions, the buoy is
capable to block a part of the ice floes, which further reduces the impact of ice floes
on the floating structure.



To survive the harsh Arctic environment, the buoy system is necessary to meet the
requirement of strength and stability. This includes the design of the buoy itself, as
well as the flexible configuration of its mooring system.

The most critical issue during Arctic oil production is usually the interaction between
the structures and the sea ice. Under an overwhelming ice load, a floating structure
may have a significant displacement and suffer damages on its structure, which is
harmful for its operation. For smaller structures like a buoy, substantial ice loads may
also cause a large angle of inclination, or may even submerge the buoy, causing
damages to its mechanical components on deck. To avoid such accidents, also due to
the low accessibility in the Arctic environment, a precise load prediction during the
stage of design is imperative. The prediction of ice load and the interaction should be
accurate and timely enough so that the possibility of the accidents and the frequencies
of the maintenance and possible replacement during operation can be reduced.

Compared with the wind, wave, and current load prediction, the ice load prediction
has much higher uncertainty. There are four different methods which are currently
used by the arctic industry for the ice load predictions: design codes, full-scale
measurement, model testing, and numerical simulation.

In the design process, ice-structure interactions to be considered may consist of
managed ice, level ice, rubble fields, and ridged ice. Assessment of ice actions has
always been a challenging topic. However, it is possible to simulate the interactions
between the ice and structure numerically using discrete modeling consisting of both
the ice and structure.

During the stage of concept design, two-dimensional modeling together with the
dynamic simulation is an effective method to predict the ice-structure interaction.
Since in the SPM system, a considerable percentage of ice load acts on the buoy, this
thesis will focus on the numerical simulation of two-dimensional models of the
moored buoy, under a specific ice load. Note that the interaction between the buoy
system and its anchoring floating structure is not discussed in the thesis. An overview
of one possible model is depicted in Figure 1-2.

Buoy

—
Level Ice Q Waterline
— -

Mooring
Chains

Anchor

Touchdown Point

Figure 1-2 A concept model of the level ice and moored buoy



The concept model shows that, in a two-dimensional view, the buoy is anchored by
two mooring chains; on the left side of the buoy, level ice is moving towards the buoy,
and on the right side of the buoy, there is free water surface and no presence of ice.

To focus only on the influence of ice load on the buoy, the model will be assumed
located at a leeward of the Svalbard Archipelago, Norway, where only the first-year
ice is considered. The wind load and other environmental load are considered the
minor influence on the model, which can be ignored during the simulation. The
location of the Svalbard Archipelago is indicated in dark green in Figure 1-3[2\
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Figﬁfé 1-3 The location of the Svalbard Archipelagé

The current study uses MATLAB as the primary tool of the simulation, which is
capable to obtain relatively accurate predictions.

1.2 Thesis Objective

The primary objective of the present study is:
'To investigate the interaction between the level ice and the moored buoy, and
optimize the buoy dimensions based on the numerical simulation’

Discrete modeling and time-domain analysis performed by MATLAB are used to
analyze the interaction between the level ice and the moored structure.

To achieve the primary objective, the following sub-objectives are considered:
1. To determine the theories and methods employed in the numerical model;



2. To construct the numerical model that consists of the level ice model, the moored
buoy model, and the interaction between the above two models;

To perform a series of determination of model parameters;

To verify the numerical model based on the simulation results;

5. To optimize the buoy with further simulations.

nalie

1.3 Thesis Outline

This thesis is structured into seven chapters. The outline of the thesis is given below:

Chapter 2 provides the theoretical basis on the method for model construction in the
current study.

Chapter 3 describes the construction of the numerical model, which includes the
detailed derivation of the model.

Chapter 4 carries out the determination of model parameters, where the preliminary
input parameters of the model will be determined.

Chapter 5 performs a series of verification according to the results from the numerical
simulation.

Chapter 6 presents the results obtained from the model, as well as the optimization of
the designed structure based on the result.

Chapter 7 draws the conclusions of the thesis together with the recommendation for
future research.



THEORY OF MODEL CONSTRUCTION

This chapter provides a brief overview of methods for constructing the model of level
ice, the moored structure (refers specifically to the moored buoy in this thesis), as
well as the contact mechanism between the level ice and moored structure. The first
part of this chapter focuses on the compliant contact algorithm, a variant of the non-
smooth discrete element method (NDEM), which is the main theory of the numerical
model. The second part of this chapter introduces the Lagrange multiplier formulation,
the primary method of the model derivation and numerical calculation. And finally,
the third part of this chapter discusses the modeling theory of mooring lines.

2.1 Introduction

Since the purpose of the numerical model is to simulate the behavior for both the level
ice and moored structure, the result should be able to reflect the real-life situation as
accurately as possible. Therefore, the choices of model construction methods are
supposed to suit the specific physical characteristics and the status of the contact. In
particular, during the contact between the level ice and buoy, the level ice usually
fails both due to crushing and bending, while the buoy usually deviates from its
original position and tilts with a significant angle.

Based on the situation described above, the level ice should be modeled as a non-rigid
body since we focus on its deformation, while the moored structure can be modeled as
a rigid body since we investigate its motions. Moreover, the ice-structure interaction
should be observed micro-mechanically, which is also considered as a non-continuous
problem. Under this circumstance, the discrete element method (DEM) is presented
for modeling the current system, since compared with the finite element method
(FEM), it focuses more on the micro-mechanical interactions of the elements, and it
allows the model to further include the mechanic of broken ice. Furthermore, there are
two different branches for this method, namely the smooth discrete element method
(SDEM) and non-smooth discrete element method (NDEM). The SDEM is
computationally more efficient for soft materials, wide and tall systems, and with
increasing flow rate, while the NDEM is more beneficial for stiff materials, shallow
systems, static or slow flow!*). In the current system, both the level ice and structure
can be considered as stiff materials, and the flow can be considered static or slow.
Therefore, the NDEM is considered more suitable than SDEM in the current study.

The contacts between elements in the current system are compliant, which indicates
the elements are not rigidly connected to each other. For instance, the level ice may
break due to failure, and even when it is not broken, there is still displacement
between adjacent elements because of the elastic deformation of the ice sheet. The



moored structure model is not connected to any ice element, and they will only
interact when contacting with each other. Therefore, in general, any contact in the
system is considered as the compliant contact. To process the compliant contact, it is
necessary to apply the compliant contact algorithm, which is a variant of the NDEM.
We will further discuss this algorithm in detail in Section 2.2.

To apply the above algorithm into the model and to generally make sure that the
numerical simulation is well performed and optimized, an appropriate solution is the
Lagrange multiplier formulation. The Lagrange multiplier formulation is a method for
finding the local maxima and minima of a function subject to equality constraints.
The detailed derivation will be introduced in Section 2.3.

Another essential component of the system is the mooring line, which is connected to
the buoy structure. The current study analytically models mooring lines, which is
based on the catenary mooring system. The description of the related theory is
illustrated in Section 2.4.

2.2 Compliant Contact Algorithm

2.2.1 Contact Overview

When dealing with the compliant contacts between elements, especially the contact
between the ice and structure, there are several problems we will encounter. One of
the problems is the positioning of the contact points (one on each element),
considering that the contact points are not constant due to the elements rolling and
sliding over each other. Generally, the contact points are considered to have the
smallest distance between them. A typical schematic is depicted in Figure 2-1.

|
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Figure 2-1 Two rigid bodies and their generalized contact points p; and p,!!

Noted that in the current study, the positioning of contact points is only necessary
when dealing with ice-structure contact, while the contact points between adjacent ice
elements are considered fixed, which means when dealing with the ice-ice contact,
two adjacent elements can be regarded as merely connected at specific connect points,
therefore its positioning process can be neglected. The detailed positioning process
will be discussed in Chapter 3.

Another critical difficulty is associated with the evaluation of contact parameters,
namely the contact stiffness and damping coefficient. Generally, in a two-dimensional
plane, any adjacent ice elements are assumed connected with constraints in three
degrees of freedom (horizontal, vertical, and rotational). These constraints are defined



by contact stiffnesses and damping coefficients, which can be evaluated analytically
or experimentally. The process of evaluation will be explained in Chapter 4.

2.2.2 Compliance Factor

To describe the extent of compliance between two elements, the compliance factor is
introduced. This is considered the core coefficient of the compliant contact algorithm,
which is applied throughout the process of the numerical model, by substituting into
the Lagrange multiplier formulation.

The compliance factor is derived as below:

The derivation starts from a simplest model: a shapeless mass connected to the fixed
boundary with a spring and a damper. A sketch is depicted in Figure 2-2.

Figure 2-2 A shapeless mass connected to fixed boundary with a spring and a damper

Force in contact at the beginning of a time step:
F =—ku—cu (2-1)

Force in contact at the end of a time step:
1
F. . = —k(u + AL + EAaAt) — (i + Aat) (2-2)

Using Newmark-Beta method®! with y = 0.5 and B = 0.25, yielding the constant
average acceleration method (2nd order). Average force over a time step:

E, =(1-y)F, +¥F,,

av (2-3)
Substitution gives:
feu + cii + k(u +uAt +;AaAtj +c(i+ Ai)
F, =- 2-4
v > (2-4)
The impulse applied during a time step is:
A=F_ -At (2-5)
Combining this with (2-4), and rewriting gives:
-A= k(uAt +%am2 +iAaAt2) + c(am + %AdAtj (2-6)

Since:



A =mAu (2-7)
substituting (2-7) into (2-6), we obtain:

- (m + %kAtz + %cAtJALZ = k(uAt + %amzj + clilt (2-8)

The equation now solves for the velocity variation of the body. Alternatively, one
could also solve for the contact impulse within the time step. Substituting (2-7) into
(2-8) gives:

[ meLrar + Lear i=k uAt+ AL |+ cie (2-9)
4 2 m 2
which can be rewritten as:
1(1 , 1 1 ) )
—| 1+ —| kAL +=cAt | |4 = (kAtu +| = kAt +cAtju (2-10)
m\ 4 2 2

or the formulation as below:

i+% ﬁ:%u+2u (2—11)
M kA + = cAt “kAt+-c
4 2 4 2

The equation above is the core equation for the compliant contact algorithm, from
here the compliance factor can be determined by specific stiffness and damping
coefficients, as well as the length of time step:

CF :ﬁ (2-12)
— kAt +=cAt
4 2

Thus, the core equation can be also written as:
A-CF +Ai=—k-u-CF-At-2u (2-13)

2.3 Lagrange Multiplier Formulation

Since the compliance factor is obtained, we can apply it to solve a model with
complex contact situations, and the approach implemented here is the Lagrange
multiplier formulation. The advantage of this approach is that it allows the
optimization to be solved without explicit parameterization regarding the constraints.
In this formulation, Lagrange multipliers are computed by solving a matrix equation:

EM 'E'B=c (2-14)

where the vector B contains the multipliers that we wish to solve for, and M is a
block-diagonal matrix. The vector ¢ expresses the forces applied to the elements. E is
the Jacobian matrix, which includes the information on the constraints' connectivity!®.
While the size of block-diagonal matrices depends on the degrees of freedom in the
system.



To specify the formulation into our model, it can be rewritten as below:

M -Efau,] [ 0
E' T | » | |RHS (2-15)

The formulation can also be written as:
(E'M'E+T)- = RHS
Au, =Elom™' (2-16)

where the symbol “o” represents the Hadamard product (also known as the entrywise
product)!’!.

In the following sections, the detailed explanations of each term in the formulation
will be presented.

2.3.1 Contact Matrix E

The contact matrix (noted as E) contains the contact information regarding all degrees
of freedom. To simplify the explanation, we assume a system with three elements in a
two-dimensional plane, where the length of each element is L. The three elements
contact with their adjacent elements in fixed contact points (at the center of ends
along the length), which according to compliant contact theory, are assumed
connected with equivalent springs and dashpot in all three degrees of freedom
(horizontal, vertical, and rotational). A concept map of the connections between
adjacent elements is depicted in Figure 2-3.

OUO‘GO%O—U]H—O

Figure 2-3 Concept map of the connection between adjacent elements

The left end of the first element (M) and the right end of the third element (M3) are
free ends, see Figure 2-4.

M; M, M;

Figure 2-4 A simple contact system with three elements

As we can observe from Figure 2-3 and 2-4, there are in total six contact constraints
in the system. For each degree of freedom of each element, an equation can be
derived regarding the influence of impulses at the contact points:

»X 1,r

. ) ) L
mAx, = -1, mAy, = _ﬂ’l,y ]n,lArl = _Eﬂq,y -

. . . L L
A, =4, = A, mAy, =4 =4, I, ,AF= —E/LJ + A, _Elz’y -4, 2-17)

. . ) L
myAx, = ﬂ“2,;: m;Ay; = _lz,y I, ;A7 = _Elz,y + 2’2,r



where m is the mass of the element, I, the inertia of the element, Ax the velocity
variation in the horizontal direction, Ay the velocity variation in the vertical direction,

AF the velocity variation in the rotational direction, L the length of an element, and 4
is the impulse induced on the contact constraint, while the subscripts indicate the
numbering of the elements.

Generally, on the left-hand side of the equations, for each element, there is its mass
(inertia) multiplied by the velocity change (in a time-step) at a specific degree of
freedom; while on the right-hand side, all relating impulses on its contact points are
summed.

Now we can summarize the contact situation of the system as the table below. Each
row corresponds to each degree of freedom of each element, while each column
corresponds to each contact constraint.

-1

]

-1

-L/2 -1

1 -1

1 -1

-L/2 1 -L/2 -1
1

1

-L/2 1

Table 2-1 The contact situation of the system

From Table 2-1, the contact matrix E can be formulated:

-1
-1
Lo
2
1 -1
1 -1
E= (2-18)
Loy Lo
2 2
1
1
Loy
L 2 i

Similarly, the formulation of the contact matrix can be generalized to any situation,
including the discontinuous ice-structure contact. During the non-contact phase, any
related entry in the contact matrix is replaced by zero. (See Subsection 3.4.1)
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2.3.2 Inertia Matrix M

The inertia matrix is a block-diagonal matrix, which contains the information of
elements’ inertia. In two-dimensional coordinates, the information include the mass
and the moment of inertia.

For the case of the above system, corresponding to each coordinate for each element,
the inertia matrix can be easily formulated:

m,

m,

M = m, (2-19)

2.3.3 Compliance Matrix T

The compliant contact algorithm requires an additional term for the Lagrange
multiplier formulation to solve, namely the compliance matrix, which is also a block-
diagonal matrix. Each element of the matrix corresponds to the compliance factor for
each contact constraint, see Equation (2-12).

For the case of the above system, the compliance matrix can be formulated as:

[CF,., 1
CF,

Ly

CF,,
T= ’ (2-20)
CF, ,

CF.

2,y

CF,, |

2.3.4 Right-Hand-Side Vector RHS

According to the derivation of the compliant contact algorithm, the vector RHS
contains the right-hand-side of the equation of the system, which reads:

o—]
RHS=—Ko(%KAt+%Cj ou-—2u (2-21)
which can also be written as the equation below:

RHS =K oCF-Atou—2u (2-22)

11



where CF is the vector of compliance factors. Note that the displacement and velocity
vectors are obtained from the previous time-loop, which include the influence of both
implicit forces and explicit forces. (See Subsection 3.1.3)

2.3.5 Multiplier Vector B

The vector

B=
A

is the multiplier that we sought for, which includes two different vectors. One is the
velocity variation vector Awu, , which indicates the velocity variation of elements
caused by implicit forces in a time step. The other vector is the impulse vector A,
which implies the impulse on each contact constraint.

When running the time-domain loop, the multiplier vector B is the crucial vector for
iteration.

2.4 Catenary Mooring System

2.4.1 Introduction

The catenary mooring system is currently the most common type of mooring system
employed in shallow water. The “catenary” refers to the shape of a free hanging line
subjected to gravity. The catenary mooring system provides its anchoring structure
with tension forces through the suspended weight and elastic properties of the
mooring lines. In other words, the moored structure tends to lift the mooring lines
under environmental loads, which creates tension forces.

In the catenary mooring system, the mooring lines terminate at the seabed
horizontally, while the anchor points are only subjected to horizontal forces at the
seabed. Thus, the mooring lines are required to be relatively long compared to the
water depth. As the water depth increases, the weight and length of the mooring lines
increase rapidly. A concept map of the catenary mooring system is shown in Figure 2-
5.

Figure 2-5 A concept map of the catenary mooring system
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2.4.2 Catenary Equation

The catenary mooring system is built based on the catenary equation, which describes
curves of strings subjected to gravitational loads. The catenary equation is widely
used in various engineering fields for centuries. It has been developed in the last
decades due to the need for anchoring floating structures. In the preliminary design,
the static catenary method is commonly used to predict the anchoring situation, which
is based on the following assumptions!®!:

1. The seabed is flat and horizontal;
2. Bending stiffness of the mooring line can be neglected;
3. The mooring lines are on a vertical plane comprising x-z coordinates only.

In the current study, the model of the mooring system is constructed analytically
according to the catenary equation.

The equation of a catenary in Cartesian coordinates has the form

a 2

a e;+e7g
x ( ] (2-23)
y=acosh| — |=———%

where a is equivalent to a uniform scaling of the curve. Figure 2-6 illustrated catenary

shapes for different values of all.

4 3 -2 -1 0 1 2 3 4
Figure 2-6 Catenary shapes for different values of a

While in terms of mooring catenary, a can be determined by the situation and the
characteristics of the mooring line:
a= L 2-24
g y) ( - )
where 7) is the horizontal component of tension at each point on the mooring line, g is
the gravity acceleration, and 4 is the linear density.

Based on the catenary equation, the shape of mooring line can be preliminarily

determined. The derivation and determination of parameters of the mooring system
are carried out in Chapter 4.

13



2.5 Conclusion

The basic theories supporting the process of the current model construction have been
briefly presented in the chapter.

In conclusion, the compliant contact algorithm provides the solution for processing
the elements’ compliant contact under the frame of NDEM; the Lagrange multiplier
formulation contributes the method of applying the algorithm to the model and
solving for results; the catenary equation gives the method of preliminary design of
the mooring line shape of the catenary mooring system.

14



NUMERICAL MODEL

This chapter provides a brief overview of the construction process of the numerical
model. Overall, the numerical model is constructed according to the discrete element
method (DEM), where the elements consist of the elements describing the level ice,
and the structure is modeled as one element.

3.1 Model Overview

The numerical model is processed in the time domain. In each time loop, the result is
calculated using the Lagrange multiplier formulation. Essentially, the behavior of the
model is controlled by the velocity variation of elements in each time step. The
velocity variation causes the displacement change, and thus one can observe the
behavior of the model.

The velocity variation consists of two parts: the velocity variation caused by implicit
forces and the velocity variation caused by explicit forces.

3.1.1 Implicit Forces

Implicit forces are the forces complying with the compliance contact algorithm. Thus,
they can be processed by the Lagrange multiplier formulation implicitly. The values
of implicit forces cannot be directly yielded by the formulation, however, its average
value of a time step can be obtained by dividing the impulse by the length of a time
step:

A

= 3-1
m At ( )

The implicit forces act on the contact points and induce the velocity variation of the
elements. The velocity variation caused by implicit forces can be obtained from
Equation (2-15) or (2-16).

3.1.2 Explicit Forces

Explicit forces, on the other hand, are the forces not complying with the compliance
contact algorithm. In the model, the explicit forces mainly include gravity, friction,
and righting moments. Besides, while moving horizontally, the elements are subjected
to the drag forces, which is counted as the explicit force as well.



The numerical model processes explicit forces by applying the acceleration vector.
The equation reads as below:

aex = Fex °© m%l (3_2)

where Fe is the vector of explicit forces, and m is the vector of inertia, which is also
the diagonal vector of the inertia matrix (see Equation (2-19) for an example).

The vector of velocity variation due to explicit forces is formulated as below:
A, =a_ At (3-3)

where At is the length of time step.

3.1.3 Time Loop Control

With both two parts of the velocity variation, the total velocity variation of the system
can be formulated as below:

Al =Au, + Al (3-4)

As it is mentioned above, the velocity variation is the primary variable of the time
loops, which controls the behavior of the model. Therefore, at the end of a time loop,
the iteration of velocity and displacement are performed:

™) =i+ A (3-5)
ul™ =u+ﬁ~At+%A1’1-At (3-6)

The displacement and velocity vectors obtained at the end of a time loop will be
applied into the Lagrange multiplier formulation (as entries of the right-hand-side
vector) at the next time loop. In this way, the explicit forces will be able to influence
the implicit forces, such that the implementation of a time loop is completed.

3.2 Level Ice Model

In the design condition, it is assumed that the sea level ice covers a large percentage
of sea area, and thus, in the two-dimensional plane, the level ice has a considerable
total length. In the numerical model, the level ice is divided into a large number of
elements, where any physical properties of each element are identical. To simplify the
problem, we consider the level ice as a homogeneous material. Thus, the gravitational
load is distributed equally to each element, where the force-bearing point of each
element is located at the center of gravity, which is also the geometric center of the
element.

The current numerical model of the level ice is based on a two-dimensional plane
which shows the side of the length-thickness of the level ice. However, it should be
noted that the width of the level ice is also taken into account, which indicates that
although the model is simulated two-dimensionally, it reflected the three-dimensional
properties of objects. Subjected to gravity and buoyancy, the level ice has an initial
draft. A typical model of the level ice is shown in Figure 3-1.
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Figure 3-1 A typical level ice model in the two-dimensional plane

3.2.1 Ice-Ice Contact

As is mentioned in Chapter 2, when the level ice is not broken, the contact points
between adjacent ice elements are considered fixed at the geometric center of the
contact side, namely the side of the width-thickness. In the current study, the two ends
of the level ice are set as free ends. Since each element has the same length /, the
distance between centers of gravity of two adjacent elements equals to /i as well.
According to a paper by Yip et al., the contact stiffnesses in 3 degrees of freedom
(normal, sheer and rotational) can be determined as below!!%):

A A ET.
kni — EIAI , kti — GIAI , kri — 17 6,1
’ L ' l ’ L

1 1 1

(3-7)

where E; and Gi are Young’s modulus and the shear modulus of level ice, respectively,
while A4; is the side sectional area of the level ice, and /;; is the second moment of area.

The contact damping coefficients can be set proportional to the corresponding
stiffnesses, according to the paper by Vliet et all'll. However, there is no any
reference found regarding the specific determination of damping values, therefore, the
thesis currently sets the damping values as 10% of the ice element’s corresponding
critical damping values.

3.2.2 Buoyancy

To simulate the buoyancy, we can assume the level ice connected to an elastic
foundation, thus the buoyancy is set as an implicit force, the equivalent stiffness can
be formulated as below:

17



kb,i = p, &b/, (3-8)

where pyw is the density of sea water, g is the gravity acceleration; b; and /; are the
width and the element length of the level ice, respectively.

Similarly, the damping coefficient of buoyancy can also be set proportional to the
stiffness.

3.2.3 Lagrange Multiplier Formulation

To process the implicit forces on the level ice model including the above ice-ice
contact force and the buoyancy, we apply the Lagrange multiplier formulation.

Figure 3-2 depicts a schematic diagram of contacts in the level ice model, where the
dots indicate the contact constraints in the level ice model. The red dots between
adjacent elements indicate the ice-ice contact, each of which includes three contact
constraints; the yellow dots beneath the elements indicate the buoyancy, each counts

for one contact constraint.

Figure 3-2 A schematic diagram of contacts in the level ice model

Therefore, for a level ice model with an element number of »;, the total number of

contact constraints is:
n.,=3-(N,~1)+ N, =4N, -3 (3-9)

c,i

The total number of degrees of freedom in the model, on the other hands, is three
times the element number:

Ryor,i = 3N, (3-10)

1

Similar to the derivation in Section 2.3, we can derive the required matrices according
to the above information.

For the level ice with element length /;, the contact matrix E; has (3n) rows and (4n-3)
columns:

18



1 -1
—1/2 -1
1 -1
e 1 1 -1

The inertia matrix M; has (3n) diagonal elements:

The compliance matrix T; has (4n-3) diagonal elements:

_Clg]
CF

1x

CF

Ly

n-1x

Correspondingly, the vectors RHS; and Bi can be easily formulated.

(3-11)

(3-12)

(3-13)
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3.2.4 Drag Force

When the level ice moves horizontally on the sea water, it is subjected to the drag
force due to the viscosity of sea water. In the model, the drag force due to the
viscosity of air is too small, so it can be neglected. The drag we discuss here refers to
the profile drag, which is the sum of form drag and skin friction drag:

By = Fog + 1 (3-14)

D,s.i

The form drag force exists at the side edge of the level ice, which can be obtained by
the following equation:
1
Fopi = _Epwcd,ﬁibidiui|di| (3-15)
where cqf; is the form drag coefficient of the level ice, b; the width of the level ice,
and d; is the draft of the level ice. As it can be seen from the equation, the value of

form drag force is proportional to the square of the velocity, and its direction is
contrary to the direction of velocity.

The skin friction drag force exists at the bottom of the level ice, the interface between
the level ice and sea water. The skin friction drag force of an ice element can be
obtained by the following equation:

1 e
Foei = _Epwcd,s,ibiliui|ui| (3-16)
where cqs; 1s the skin friction coefficient of the level ice. As it can be seen from the
equation, the value of skin friction drag force is proportional to the square of the

velocity, and its direction is contrary to the direction of velocity.

In the numerical model, the drag force of level ice is considered as an explicit force.
Further, the drag coefficients will be determined in Chapter 4.

3.3 Moored Structure Model

The moored structure model consists of two parts: the buoy structure and the catenary
mooring system. The buoy structure is modeled as a rigid body, while the mooring
lines are modeled analytically according to the catenary equation.

Subjected to gravity and buoyancy, the buoy has an initial draft as well.

3.3.1 Buoyancy & Hydrostatic Stability

Generally, the buoyancy provides the buoy with both the vertical and rotational
equilibrium. To simulate the buoyancy of the buoy structure, we can first assume an
elastic spring connected at the center point of the bottom keel of the buoy; the
equivalent stiffness can be formulated as below:

D 2
ki = Pu gﬂ(—;“ ) (3-17)
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where pw is the density of sea water, g is the gravity acceleration, and Dswi is the
waterline diameter of the buoy.

Similarly, the damping coefficient of buoyancy can also be set proportional to the
stiffness. By this approach, the buoyancy is considered as an implicit force.

However, by the method applied above, the buoyancy only provides the buoy
structure with vertical equilibrium, which is not sufficient to simulate the whole effect
of the buoyancy. Furthermore, the buoyancy should be able to provide the rotational
equilibrium to satisfy the hydrostatic stability, which is implemented by applying
righting moments. Specifically, if one adds an (external) heeling moment My to a
structure, it will heel with an angle. An equilibrium will be achieved when the
righting moments Ms equals the heeling moment My; see Figure 3-4.

emerged wedge

Figure 3-4 Rotation Equilibrium at an angle of heel('?]

The righting moment induced by the hydrostatic stability is written as:
Mg =p,gV-GN,-sing (3-18)

where GN, can be obtained by:

—— —= I, 1., —

GN,=KB+—-|1+—tan’¢ |- KG (3-19)

Y% 2

Here, K is the keel point of the structure, B is the center of buoyancy, and G is the
center of gravity. /7 is the second moment of area of the water plane, and V is the

displacement volume.

Noted that the righting moment here is applied as an explicit force into the model.
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3.3.2 Mooring System

The mooring system in the two-dimensional plane consists of two mooring lines with
their upper ends attached to the structure at the positions of fairleads and their lower
ends anchored at the seabed.

The mooring system provides its anchoring structure with horizontal equilibrium and
a part of rotational equilibrium. To be more specific, the difference of forces applied
to the mooring lines at the fairlead implement the equilibrium. To investigate the
effects in different direction, we can first orthogonally decompose the force. The total
horizontal force is as known as the restoring force:

Fr = Fxl +Fac2 (3-20)

Previous researches have concluded the dynamic behaviors of the mooring system,
and a brief conclusion is demonstrated below. Figure 3-5 shows an example of results
of static catenary line calculations for a moored structure. Figure 3-5.a shows the
structure anchored by two mooring lines of chain at 100 m water depth. Figure 3-5.b
shows the horizontal forces at the suspension points of both mooring lines as a
function of the horizontal displacement of the platform. Finally, figure 3-5.c shows
the relation between the total horizontal force on the structure and its horizontal
displacement. This figure shows clearly the non-linear relation between the horizontal
force on the moored structure and its horizontal displacement.
|
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Figure 3-5 Horizontal forces on a moored structure as a function of its horizontal displacementm]

To process the above non-linear relation, we can divide the restoring force into two
components: the linear component and the non-linear component, see Figure 3-6.
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Figure 3-6 The non-linear relation between the total horizontal force and the displacement

For a specific horizontal displacement x, the corresponding restoring force is F;. From
the tangent slope of the curve, we can obtain the equivalent stiffness of the linear
component kgr, and thus the linear component can be obtained:

Fop =hy - (3-21)

With the equivalent stiffness, the linear component can be considered as an implicit
force, and processed by the Lagrange multiplier formulation.

Correspondingly, the non-linear component is considered as an explicit force, which
is written as:
FR,NL = FR,L - Fy (3-22)

Besides, due to the weight of mooring lines, the moored structure is also subjected to
a vertical downward pull force, which is an explicit force:

F,,=—(F,+F,) (3-23)

Furthermore, the mooring system provides the buoy structure with righting moment in
case of inclination. The righting moment induced by the mooring system is obtained
as:

M, =-Fy—Fuy,+F,x—F,x, (3-24)

where x is the horizontal distance between the fairlead and the center of gravity,

while y is the vertical distance between the fairlead and the center of gravity. The
subscripts indicate the numbering of the fairlead.

Together with the righting moment induced by the hydrostatic stability in Equation
(3-18), the total righting moment of the moored structure can be obtained:

My=M+M, (3-25)
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3.3.3 Drag Force

Similarly to the drag force of level ice, when the moored structure moves horizontally
on the sea water, it is subjected to the drag force as well due to the viscosity of sea
water. The drag we discuss here refers to the profile drag, which is the sum of form
drag and skin friction drag:

F, =F, . +F 3-26
D,s D.f;s D.s,s

The form drag force of the structure can be obtained by the following equation:

(3-27)

FDfs =_lpwcdfsAsus Z’.ts
1, B £

where cqf;s 1S the form drag coefficient of the structure, and 4; is the side sectional

area of the structure under the waterline. As it can be seen from the equation, the

value of form drag force is proportional to the square of the velocity, and its direction

is contrary to the direction of velocity.

The skin friction drag force exists at the bottom of the structure, the interface between
the structure and sea water. The skin friction drag force of the structure can be
obtained by the following equation:

1 Oy
FD,s7s = _Epwcd,s,sAbui|ui| (3_28)

where cqss 18 the skin friction coefficient of the structure, and A4y is the bottom
sectional area of the structure under the waterline. As it can be seen from the equation,
the value of skin friction drag force is proportional to the square of the velocity, and
its direction is contrary to the direction of velocity.

In the numerical model, the drag force on the structure is considered as an explicit
force. Further, the drag coefficients will be determined in Chapter 4.

3.4 Ice-Structure Interaction

With both the level ice and moored structure models accomplished, we can now
investigate the ice-structure interaction.

During the simulation, the right end of the level ice will contact with the moored
structure. Generally, the following processes can happen simultaneously during the
interaction:

1. Ice compressive failure: The level ice fractures at the position of the contact point
due to compression;

2. Ice bending failure: The level ice breaks at a specific length due to bending
moment;

3. Friction: The ice slides along the structure hull, exerting a frictional force.
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3.4.1 Ice Compressive Failure

Due to the relatively low compressive strength of the ice, the level ice fractures at the
position of the contact point under compression during the contact.

Figure 3-7 shows the diagram of the ice-structure contact, where ¢ is the overlapping
distance (also known as the penetration), a the downward-sloping hull angle of the
structure, S the angle between the structure’s downward-sloping hull and the level ice
(also known as the contact angle), and a is the contact area.

The contact points both on the level ice and the structure are shown as solid dots in
Figure 3-7. In reality, the overlapping distance ¢ is always relatively small, therefore,
to simplify the problem, we can assume the relative position of the contact point on
the level ice remains unchanged at the upper-right edge, and the contact point on the
structure is the point where a line perpendicular to the structure hull and through the
ice contact point crosses the hull. During the contact, the relative position of the
contact point on the structure can change over time.

(d) A

Figure 3-7 The ice-structure contact diagram

Generally, the contact can be summarized in 3 phases:

No-contact Phase

In this phase (Figure 3-7.a), the structure does not contact with the level ice.
Therefore, there is no interaction between them. The vector entry of the ice-structure
contact in the overall contact matrix in this phase is a zero vector:

E.=[0 0 0 0 0 0] (3-29)
Contact Phase
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In this phase (Figure 3-7.b), the structure is contacting with the level ice. There is an
interaction between the structure and the level ice. Due to the relatively low
compressive strength of ice, the overlapping part of level ice will crush into crushed
ice. The vector entry of the ice-structure contact in the overall contact matrix in this
phase is:

EC:[—sinﬂ —cosfB 0 sinf cospf O]T (3-30)

Over-contact Phase

Once the contact area a reached the maximum (Figure 3-7.c), even if the penetration o
increases (Figure 3-7.d), the interaction between the structure and the level ice will
remain unchanged.

However in reality, when the ice contacts with the structure’s downward-sloping hull,
due to bending and other mechanisms, the over-contact phase of the ice is rarely
observed. Therefore, we will only focus on the non-contact phase and the contact
phase. The influence of crushed ice is relatively too small to be taken into account as
well, considering that the size of the crushed ice due to compressive failure is tiny.

The contact between the level ice and the structure is considered as the compliant
contact. To accurately identify the phase of the ice-structure interaction, a criterion
regarding two contact points' is applied. If the following inequality is satisfied, the
system is under the contact phase, otherwise it is under the non-contact phase.

u -At>-d +6_ (3-31)

where u_ is the relative velocity of two contact points', d: the relative distance

between two contact points', while dmax is the maximum penetration, taking the size
loss of the level ice into account. To be more specific, the positive directions of the
relative velocity and the relative distance are shown in Figure 3-8.(a) and 3-8.(b),

respectively.

(a) (b)
Figure 3-8 The positive directions of the relative velocity (a) and the relative distance (b)

The above criterion measures the relationship between the relative displacement of
the two contact points in one time-step and the relative distance of the two contact
points.

i One on the level ice and another on the structure’s surface.
' Positive values imply the direction that the penetration has an increasing tendency.
iii Positive values indicate that the two models are overlapping.
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To simulate the contact in the model, we need to first determine the contact stiffness.
The contact force between the level ice and the structure can be obtained as below:

F,=4. -0 (3-32)

where A. is the contact area, and a¢ is the compressive strength of the ice.

The contact area is related to the penetration o:
4-—20 (3-33)
sin f-cos

where b; is the width of the level ice.

In this way, we can calculate the contact stiffness:

F 6-b-o; b, -o.;
L =teo e s (3-34)
0 o-sinff-cosf sinf-cosf
Thus, the contact stiffness is written as:
bi-o 44
k,=—"—"—, 0<fB<— (3-35)
sin f-cos 3 2

With the stiffness coefficient determined, the constraint matrices E for both the
contact phase and the no-contact phase can be set up for the Lagrange multiplier
formulation.

The ice-structure contact is considered associated with several mechanisms, which
include but not limited to the contact stiffness, the normal contact force, and the
contact impulse. Therefore, to ensure the contact model works correctly, the
following necessary conditions are needed to be satisfied:

(1) The contact stiffness should be higher than or equal to zero;

(2) At the beginning of a time-step, the normal contact force should be higher than or
equal to zero;

(3) The contact force exists only when the penetration is larger than or equal to zero;

(4) The contact impulse should not be negative;

(5) The contact impulse should be smaller than or equal to the contact impulse
needed to make the relative contact velocity zero.

The contact stiffness has been determined in Equation (3-35). The value of the contact

stiffness will always be positive given that the contact angle f is smaller than % .

Therefore, the condition (1) is satisfied.

Further, to satisfy the conditions (2)-(5), the output of impulse at the contact area
should be restricted. Therefore, the Gauss-Seidel method is additionally applied here
to solve the Lagrange multiplier formulation here. To apply the Gauss-Seidel method,
we need to first define the dominant matrix A, which is from Equation (2-16):
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A=E"™M'E+T (3-36)

Thus, the basic formula for the Gauss-Seidel iteration is written as below:

A1) = AL{RHS,. —Y AL - ZAM&-’”} ij =1.2,00m (3-37)

ii J<i Jj>i

where A is the impulse vector we sought for, A the dominant matrix, and RHS is the
right-hand-side vector. & here stands for the arbitrary step of iterations.

There are two primary limitations for the output of contact impulse needed to be
embedded into the Gauss-Seidel iteration, namely to satisfy the conditions (4) and (5).

The first limitation is known as the “Non-negativity limitation”, which means the
contact impulse should not be negative:

230 (3-38)

The second limitation is known as the “Maximum impulse limitation”, namely to
limit the contact impulse to be smaller than or equal to the contact impulse needed to
make the relative contact velocity zero:

1< (3-39)

This is calculated with the dominant matrix that is derived without compliance factors,
which is denoted as Aq:

A,=E'M'E (3-40)
The maximum contact impulse is thus calculated within the iteration as below:

1
A = (- A, AW+ A,

c,max

2) (3-41)

c C

0,cc

where ¢ is the numbering represented for the location of ice-structure contact.

The average contact normal force can thus be obtained by dividing the impulse with
time step:

F:/1

Z 3-42
= (3-42)

3.4.2 Ice Bending Failure

The interaction between the level ice and the structure’s downward-sloping hull can
cause ice bending failure due to high bending moment. Specifically, during the
simulation, the level ice moves towards the structure with a certain velocity; at a
particular moment, when the level ice contacts with the structure’s downward-sloping
hull at the position of the contact point, the level ice generates a bending moment
along the direction of length. If the flexural stress of the level ice at some position
exceeds its flexural strength, the bending failure occurs. The level ice will fracture at
this position and produce crushed ice, while the rest of the level ice will continue to
move towards the structure. In reality, the crushed ice interact with the structure as
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well, however, in the current study, we do not focus on the crushed ice, therefore in
this thesis, the influence of the crushed ice will be ignored.

For each time-step, the bending moment of the level ice at each contact point can be
obtained. By summarizing each value along the length, one can plot a curve of the
overall bending moment of the level ice. The derivation of bending moments in the
model are given as below.

Although the ice bending occurs mainly due to the force in the vertical direction,
namely the shear force applied to the level ice, the horizontal forces also induce the
bending moment as a result of deflections along the level ice. Therefore, it will be not
sufficiently accurate to calculate the bending moment only based on the vertical force.
Alternatively, bending moments can be obtained based on the rotation of each ice
element. The bending moment at the location of x equals to the ice-ice rotational
stiffness multiplied by the relative rotation of its adjacent elements:

M, (x)= kni 'V(x) (3-43)

With the bending moment, one can calculate the flexural stress as below:

fb(x)=% (3-44)

t,i

When the flexural stress at a specific length exceeds the ice flexural strength, the
bending failure occurs, where the specific length is known as the breaking length. The
breaking length is primarily related to the relative velocity between the level ice and
the structure. The detailed result of the relation and its verification will be discussed
in Chapter 5.

In the model, the bending failure manifests as the cancellation of the fixed connection
at the failure occurring contact point. Since we do not focus on the crushed ice, the
broken part will no longer appear in the remaining time of the simulation.

3.4.3 Friction

The contact between the level ice and the structure also induces the friction due to the
relative motion of solid surfaces. Although the friction includes both the static friction
and the dynamic friction, in reality, the static friction in the ice-structure interaction is
rarely observed. Therefore, we only focus on the dynamic friction in the model.

The dynamic friction can be obtained with the normal force at the contact point:
Fr=u-F, (3-45)

where  is the friction coefficient. A recommended value for this coefficient is around
0.1, according to a guidance from Bureau Veritas!!4l.

The direction of the friction is perpendicular to the normal force and opposite to the
direction of the relative movement of two surfaces.
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3.5 Conclusion

This chapter provides a thorough description of the model construction process. In
summary, the model consists of the level ice model and the moored structure model.
To process the interactions inside and between these models, including the ice-ice
contact and the ice-structure interaction, the model distinguishes two different types
of forces, namely the implicit forces and the explicit forces. The implicit forces are
processed by the Lagrange multiplier formulation, while the explicit forces are
processed by applying the acceleration vectors in the time-loop control.
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MODEL PARAMETER DETERMINATIONS

This chapter carries out a series of parameter determinations for the primary objects in
the model, including the level ice, the buoy structure, and the mooring system. With
reasonable parameters applied in the model, the results of the simulation will be more
realistic, and more accurate as well.

4.1 Level Ice

Most of the parameters of level ice are significantly associated with the geographic
location of the model. As mentioned in Chapter 1, the model is assumed set up at a
leeward of the Svalbard Archipelago, where only the first-year ice is considered. In
this section, all necessary parameters of the level ice will be determined.

4.1.1 Size Parameters

The size parameters of level ice include: total length, element length, thickness, and
width.

The total length of level ice mainly influences the momentum of the ice sheet in the
ice-structure interaction. To ensure the viability of the numerical simulation, the level
ice is required to have sufficient total length for bending failure to occur. Since in the
Arctic environment, the entire sea area is considered covered by ice, there is no upper
limit for the total length of the level ice. In order to satisfy a sufficient momentum, as
well as to keep the accuracy and processing speed reasonable, only a finite length
segment of the level ice adjacent to the ice-structure contact is discretized, so that the
level ice model is in fact divided into two parts: discretized ice elements, and the un-
discretized ice. The discretized ice elements are the primary objects of the
investigation, while the un-discretized ice is mainly applied to provide the level ice
with sufficient momentum, which can be treated as one element and usually located
far away from the ice-structure contact.

Generally, the number of discretized ice elements is a primary factor influencing the
overall accuracy of the simulation results. Theoretically, the larger the number of
discretized ice elements is, the more accurate the result will be. However, due to the
limitation of processing speed, the number of discretized ice elements is limited as
well.

As far as the width is concerned, one can not determine the width of the level ice
without considering the actual contact area of ice-structure interaction. The level ice



model has a so-called "effective width", which is identical with the width of the ice-
structure contact area, roughly the waterline width of the structure.

Furthermore, in consultation with experts on the ice condition around the Svalbard
Archipelago, the thickness of the level ice is chosen as 0.6 m. Therefore, together
with the effective width, the area of the contact surface between two adjacent ice
element can be determined:

Aﬁ zbi'ti (4-1)

4.1.2 Density

The density of the pure ice at 0 °C is 916.8 kg/m*. However, the density of the sea ice
can be smaller due to salinity and porosity. Here, we choose the average density of the
sea ice as the density applied to our level ice model:

P, =910 kg/m* (4-2)

4.1.3 Rotational Properties

When dealing with the rotational motion, which is around the axis of the width
direction, two essential values are needed to be calculated first. One is the moment of
inertia:
12 +¢2
g, -l (43)
’ 12

The other one is the second moment of area:

3
_ bl (4-4)

I .
12

4.1.4 Young’s Modulus & Shear Modulus

The Young’s modulus and the shear modulus of the sea ice are two parameters
required to process the deformation of the level ice. The values of Young’s modulus
range from approximately 2 GPa at low-frequency loading to a high-frequency value
of 9 GPa, according to Ice Engineering!'®!. Here we can just take a relatively average
value:

E =5.0GPa (4-5)
The Poisson’s ratio for sea ice v; is taken as 0.3, therefore, the shear modulus can be
obtained as below:
G =—i =19GPa (4-6)
2(1+v,)

With these modulus obtained, the ice-ice contact stiffness can be calculated according
to Equation (3-7).
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4.1.5 Compressive Strength

Values of the uniaxial compressive strength for ice range from 0.5 to 20 MPa,
according to Ice Engineering. The strength is a function of strain rate, temperature,
grain size, grain structure, and porosity. According to the guidance from Bureau
Veritas, values range from 1.5 to 5 MPa in most parts of the Arctic region. As for the
sea ice in the region of the Svalbard Archipelago, the compressive strength can be
taken as:

o, =3.0MPa (4-7)

4.1.6 Flexural Strength

The flexural strength is required when dealing with the ice bending failure. The
following are the determination process of the ice flexural strength from ISO19906!19!:

Firstly, the salinity of the sea ice (in %o) is required:

{Si =13.4-17.4¢t, fort, <0.34m

(4-8)
S. =8.0-1.62¢, fort. >034m

where ¢ is the ice thickness. This approach implies that there is no salinity variation
with depth.

With the salinity obtained, the brine volume fraction (in %o) can be determined by:

49.18
Voi = Si (W-’_ 053j (4-9)

where T is the average ice temperature, in °C.

Finally, the flexural strength (in MPa) can be determined by:
oy = 1.76¢ """ (4-10)

The average temperature of the sea ice at the Svalbard Archipelago can be assumed as
-10 °C according to related experts, therefore, the flexural strength of the sea ice in
this region can be calculated, the result is:

o =0.56 MPa (4-11)

4.1.7 Drag Coefficient

As mentioned in Chapter 3, the drag we discuss here is known as the profile drag,
which includes the form drag and the skin friction drag, where they both have a drag
coefficient, respectively.

The form drag coefficient for the level ice can be assumed according to Horner!!l:
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Con =1.0 (4-12)

The skin friction drag coefficient for the level ice, on the other hand, is related to the
Reynolds number of the flow. Since the speed of flow in the Arctic region is
considered relatively low, thus the flow can be assumed as a Laminar flow. In the
Laminar flow, the skin friction drag coefficient is obtained according to Blasius
solutionH?!:

S 0.664 (4-13)
d,s,i \/R_el
where
Re, = Lutix (4-14)
Hy,

which is the Reynolds number, and x is the distance from the reference point at which
a boundary layer starts to form (the edge of the level ice), while u is the dynamic
viscosity of the sea water.

4.1.8 Summary

The values of the main parameters about the level ice elements are concluded in Table
4-1.

Effective width bi 8.48 m
Thickness ti 0.6 m
Contact surface area Ai 5.09 m’
Density of sea ice pi 910 kg/m?
Density of sea water Pw 1025 kg/m?
Moment of inertia Inj 524.74 kg-m?
Second moment of area Lij 0.15 m*
Poisson’s ratio Vi 03 -
Young’s modulus E; 5.0 GPa
Shear modulus Gi 1.9 GPa
Compressive strength Ocii 3.0 MPa
Salinity Si 7.03 %0
Temperature Ti -10 °C
Brine volume fraction WVb,i 38.29 %0
Flexural strength oti 0.56 MPa
Form drag coefficient Cdfi 1.0 -
Dynamic viscosity of sea water Uw 1.88x103 Pa-s
Skin friction coefficient! Cdsi - -

Table 4-1 Parameters summary of the level ice model

4.2 Buoy Structure

The buoy structure model is constructed based on the concept design of meso-scale
floater by van den Berg et al.['l, a concept map is depicted on Figure 4-1. In this

i Depends on the Reynolds number of a specific location.
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section, all necessary parameters of the buoy model in a stationary state will be
determined in detail.
‘ 4500 |

T

) / : \
! R
Draft in unloaded | COG
condition N ¢
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/

Figure 4-1 A concept buoy design, a=45° (units in mm)
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4.2.1 Dimensions

The pre-designed buoy is a hollowed class truncated cone structure. The detailed
dimensions in the two-dimensional plane have been depicted in Figure 4-1. To
summarize, the following values are the main dimensions (maximum diameter,
waterline diameter, minimum diameter (bottom), and height) we use in the buoy
model:

Ds,max =9m
D, ., =848m
’ (4-15)
Ds,min =5m
H,=3m

4.2.2 Weight

To obtain the weight, one first needs to calculate the displaced water volume of the
buoy, which is determined by dimensions (with stationary draft ds=2.24 m):

2 2 2
D D . D D . D
Vds — s,min ) Hs n z s,min + s,wl + s,min__ s,wl . ds _ Hs (4_16)
’ 2 6 3 2 2 2 2 6

With the displacement, one can calculate the weight using the buoyancy formula:

m :pw'l/d,s (4_17)

4.2.3 Hull Angle

When research into the ice-structure interaction, the most decisive part of the structure
is the hull angle. In the case of a buoy performing in the Arctic region, a downward-
sloping hull angle can keep the ice bending downwards. The pre-designed buoy
model has a downward-sloping hull angle of & and an upward-sloping hull angle of 6,
see the summary.
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4.2.4 Rotational Properties

In the model, the rotational motion of the structure is around the axis of the ice’s
width direction. To simulate the rotational motion, the moment of inertia and the
second moment of area are needed to be determined first. To avoid complicated
calculation, the shape of the hull can be approximated as a hollowed cone with the
diameter Dsmax here. Thus the moment of inertia is written as (Parallel axis theorem

applied here, with the center of gravity 1 m above of the bottom (K_G =1m)):

1 Dsmax ’ 2 2
ImszzmS T +2H; |-m -KG (4-18)

To calculate the second moment of area, one needs to determine the thickness of the
buoy surface first, which further needs the material density and the surface area.

The material of buoy is assumed as steel, the density is taken as:
p. = 7850 kg/m’ (4-19)

The surface area of the buoy is obtained as below:

2 2 -
Ds max Dsmax Ds min H ’ Ds max Ds min (4 20)
Ss=7[ 2 > er + e ST + S ) "4 >
2 2 2 6 2 2
2

Dsmax Dsmin 2H ’ Dsmax Dsmin H

+ ——— + > |t |+ D,

2 2 3 2 2 ’ 6

The equivalent thickness of the buoy hull is thus approximated as:

f o= (4-21)

TS,

The second moment of area is used in the calculations regarding the hydrostatic
stability, which is obtained as below:

D, inH: 1 (5H,Y H, 15H, H, (HY
I, =—"— 42— . +—- .
’ 12 36 6 ) 6-tan6 2 6 6-tanf\ 6
~21 \H, -21,)
12 (4-22)

3 2
A ) | P ) PR LR R T v
360 6 6-tané 20 6 6-tan@ 6

Further, the radius of gyration can be obtained by:

b

s, min

I (4-23)
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4.2.5 Drag Coefficient

Similar to the level force, the profile drag on the structure also includes the form drag
and the skin friction drag.

The form drag coefficient mainly depends on the shape of the structure in the flow.
The shape of the buoy under the waterline can be simplified as a circular cylinder. In
a Laminar flow, the form drag coefficient for a circular cylinder is given as!?):

Caps =1.17 (4-24)

The skin friction drag coefficient for the structure, on the other hand, is related to the
Reynolds number of the flow. In the Laminar flow, the skin friction drag coefficient is
obtained according to Blasius solution:

0.664 (4-25)
Cd S, =T
” Re,
where
ulL . _
Res - pseau c,s (4 26)
lLlSea

which is the Reynolds number, and L. is the characteristic linear dimension of the
structure, while usea is the dynamic viscosity of the sea water.

4.2.6 Summary

The values of the main parameters about the pre-designed buoy structure at a
stationary state are concluded in Table 4-2.

Maximum diameter Dy max 9 m
Minimum diameter Ds min 5 m
Waterline diameter Ds wii 8.48 m
Height H; 3 m
Draft ds 2.24 m
Displaced water volume Vas 73.28 m?
Weight ms 7.51x10% kg
Downward-sloping hull angle a 45 ©
Upward-sloping hull angle % 14.04 ©
Moment of inertia Ing 6.43x10° kg m?
Material density Ds 7850 kg/m3
Surface area Ss 154.66 m?
Equivalent hull thickness ts 0.0619 m
Second moment of area Iis 2.05 m*
Radius of gyration Rgs 2.93 m
Form drag coefficient Cd.fs 1.17 -
Skin friction coefficient' Cdss - -

Table 4-2 Parameters summary of the buoy structure model

i Depends on the Reynolds number.

37



4.3 Mooring System

The theory supporting the preliminary design of the mooring lines has been
introduced in Section 2.4. In this section, the detailed derivation of the designing
process and parameter determinations are carried out.

4.3.1 Equation Derivation

A catenary mooring line configuration is illustrated in Figure 4-2, the angle between
the mooring line at the fairlead and the horizontal shown is as angle j. The force
applied to the mooring line at the fairlead is given as Fi, in [N]. The water depth plus
the distance between sea level and the fairlead in [m] is dn in this equation, while wn
is the unit weight of the mooring line in the water in [kg/m].

dn

X

[ L
Figure 4-2 Catenary mooring line configuration

A catenary mooring line will have a part which is laying on the seafloor and a part of
the mooring line suspended in the seawater. The part that is suspended in the seawater
will take on a catenary shape. Depending on the water depth, the weight of the
mooring line and the force applied to the mooring line at the fairlead, the length of the
suspended mooring line Sy in [m] can be calculated with:

S, = \/dm -(2F m —dm] (4-27)
Vg

The horizontal distance X in [m] between the fairlead and the touchdown point of the
mooring line on the seabed can be calculated with:

P S+ £y

sz( n —dm]-ln g (4-28)
ng Fm _d
-

The weight of the suspended chain V in [t] is given by:
V. o=w_-S_ (4-29)

The shape of a catenary mooring line is given by the function:

y= _bi . ln(cos(bm x)) (4-30)

m

The shape of the catenary line is uniquely ascertained by parameter by, given by:
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b = Lo 8 A
F,

m,x

(4-31)

where pm is the submerged density of the line material, and Am is the cross section
area of the thread, while Finx is the normalized horizontal tension component.

Concluded from the derivation above, for a common mooring line, the catenary shape
can be determined by four input parameters:

1. The distance between the seabed and the fairlead dn

2. The initial tension of the mooring line at the fairlead Fin

3. Normalized thread diameter D,

4. The submerged density of the line material pm

4.3.2 Input Parameters

Regarding the catenary mooring system anchoring an offshore buoy, mooring chains
are considered the cheapest and most durable solution. Therefore in the current study,
the mooring chains are applied in the model as the entity of the mooring lines.

The parameter determinations of the mooring system start mainly from the 4 input
values mentioned above. Since mooring chains are employed, the input values are
correspondingly adjusted. With the input values determined, the catenary shape of the
mooring chains can be determined. The following are the determination of these input
values.

Distance between the seabed and the fairlead

The water depth at which the buoy is operating is designed as 30 m. The distance
between the seabed and the fairlead can be calculated by subtracting the hull draft
from the water depth:

d =d._—d (4-32)
The result is thus:

d_ =27.76m (4-33)

Submerged unit weight of the mooring chain

The diameter of mooring lines is primarily determined by the load of its anchoring
structure. Since we employ the mooring chain, the relation between the diameter and
sectional area is different from that of a common mooring line. In fact, the
dimensional relation regarding the mooring chain is complicated. Figure 4-3 shows
the dimensions of typical buoy mooring chains according to a handbook (1969) by
Myers et al.?!l. The dimensions of a suitable mooring chain can be picked according
to the load.
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Figure 4-3 Dimensions of buoy chains by Myers et al. (1969)

The selection of the buoy chain dimension is mainly based on its proof load, while the
requirement on the horizontal displacement limit of the buoy also influences the
selection. In order to minimize the horizontal displacement of the buoy, during the
pre-design phase, according to the handbook, the wire diameter (A) can be picked as
1.75 inches (0.0445 m), which corresponds to the weight per 15 fathoms as 2640 Ibs.
With the units converted, as well as the submerging factor'® considered, the
submerged unit weight of the mooring chain is obtained as below:

w_=37.98kg/m (4-34)

On the other hand, one of the disadvantages of heavier chains is that the buoy will be
pulled downwards due to the weight of the chain. Chains with 1.75-inch wire
diameter can pull the buoy down with approximately 6-8 cm, based on their
suspended length. Dimensions of the mooring chains can be adjusted afterward
according to the practical situation and requirements.

Initial tension of the mooring chain at the fairlead

The initial tension of the mooring chain mainly determines the restoring capability of
the mooring system. A higher tension results in a higher restoring coefficient, as well
as a higher suspended length, and thus a larger pull-down displacement of the buoy.
Figure 4-4 and 4-5 show the initial restoring coefficient and the initial horizontal
suspended length as a function of the initial tension, respectively.

it Steel retains about 87% of its mass submerged in seawater.
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Figure 4-5 Initial horizontal suspended length as a function of the initial tension

To provide the buoy with sufficient restoring capability, and a relatively smaller pull-
down displacement, the initial horizontal suspended length can be chosen as 45 m.
The corresponding mooring tension at fairlead is thus:

F_=254x10*N (4-35)
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Distance between the anchor and the initial touchdown point & Total chain
length

With the horizontal displacement of the buoy, the touchdown point moves as well. To
avoid that the touchdown point coincides with the anchor point (the mooring chain
fully suspended), the distance between the anchor and the initial touchdown point
should be sufficiently large, which also indicates that the total chain length should be
sufficiently long. The relation of these two parameters are shown below:

Lm :Dm,a +Sm (4_36)

where Ln is the total length of the mooring chain, while Dn is the distance between
the anchor and the initial touchdown point.

The determination of these two parameters is mainly related to the horizontal
displacement limit of the buoy. For a small-scale structure like the buoy, a scope™ of
5:1 is recommended!??). Therefore, the total length is 138.80 m, and thus the distance
between the anchor and the initial touchdown point is 83.90 m. These two parameters
can also be adjusted afterward according to the practical situation and economic
requirement.

4.3.3 Summary

The values of the main parameters of a pre-designed mooring chain at a stationary
state are concluded in Table 4-3.

Distance between the seabed and fairlead dm 27.76 m
Initial tension of the mooring chain at the fairlead  Fn 2.54x10* N
Wire diameter (A) - 0.0445 m
Submerged unit weight of the mooring chain W 37.98 kg/m
Initial horizontal suspended length X 45 m
Weight of the suspended chain Vn 2.09x103 kg
Length of the suspended mooring chain Sin 54.90 m
Distance between the anchor and the initial
s Drna 83.90 m
touchdown point
Total chain length Lm 138.80 m
Catenary shape parameter bm 0.0231 -
Distance between a fairlead and its nearby bottom
edge dm.f 0.5 m

Table 4-3 Parameters summary of the mooring system

4.4 Conclusion

This chapter gives comprehensive parameter determinations for the whole model. The
parameters determined in this Chapter provides the numerical model with most of the
input values. At the same time, the parametric study also further illustrates the idea of
model construction.

¥ Total chain length / Distance between the seabed and fairlead
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On the other hand, it must be pointed out that some parameters are determined as not
sufficiently optimized due to the limit of the simulating duration. Besides, some
parameters are not fixed as well, for instance, the parameters for the mooring system
are determined preliminarily, which can be further modified for a more optimized
result.

Further, the result and its verification of the simulation are shown in Chapter 5, and
the optimization will be carried out in Chapter 6.
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MODEL VERIFICATION

So far, the construction of the numerical model has been mostly completed, and the
input values have been preliminarily determined as well. In this chapter, the results
from the current model simulation will be demonstrated, while the verification for the
model will be performed based on the results, to ensure the numerical model is
correctly constructed.

The method of verification in the current study generally includes the analytical
solution and the ordinary differential equation - medium order method (ode45 solver),
which can both be performed by MATLAB. In the meantime, some results will be
verified by comparing with previous simulation results.

Besides, it should be noted that only the mechanism of implicit forces, which involves
the Lagrange multiplier formulation, is necessary to be verified; while since the
explicit force is processed by applying the acceleration vector in the time-loop control,
it is, in fact, solved analytically, and thus not necessary to be verified additionally.

5.1 Level Ice Model

The aim for this verification is to ensure the steady state of the level ice model under a
certain load is sufficiently accurate. In this way, any damping coefficients can be
neglected. Therefore, an analytical solution of the steady state is applied as a method
of verification.

The following verification is based on a level ice model floating on the sea water. The
level ice has both sides free, and no interaction with structure, but instead with a point
load on one of the free side.

5.1.1 Analytical Solution

The level ice model is verified by the analytical solution. The following are the
detailed derivation of the analytical solution.

We assume a semi-infinite beam, subjected to a point load on a free edge. The
derivation of the analytical solution is implemented as below:

The governing equation of a semi-infinite beam on an elastic foundation is formed as:
d*w

EI~ -+ low=0 (5-1)




The general solution of a semi-infinite beam on an elastic foundation is sought as:

w(x) = e ™(C cos fx + Dsin fx) (5-2)
where
PRy
S 5-3
P (4E[j e

while C and D are integration constants. Then the bending moment and shear force
are:

2 3
dw T=E1dw

2 dx3

M =EI

(5-4)

At x=0, the beam is subjected to a concentrated load P. The constants C and D can be
ascertained by applying the following boundary conditions at the left end of the beam:

M(x=0)=0, T(x=0)=P (5-5)
The results are
P 2P
c-—L 2P poy (5-6)
2B°El k

The deflection is now found by substituting C and D into the general solution (5-2) as
—fx
2Bl

w(x) (cos fx) (5-7)

The bending moment and shear force can also be calculated:
.

M(x)= Peﬂ (sin Sx)

T(x)=—Pe " (sin fx—cos fx)

(5-8)

Substituting known values into the formula (5-8), one can plot a figure of the beam
shape.

5.1.2 Result Verification

For verification, corresponding results of the numerical simulation for the level ice
model subjected to a point load are presented. To verify thoroughly, 4 different input
conditions varying from total lengths and numbers of elements are tested. The
following figures are comparisons about the ice beam deformation between the
analytical solution and the numerical simulation.
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Figure 5-3 Beam deformation verification (n = 1000, L = 100 m)
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Figure 5-4 Beam deformation verification (» = 1000, L = 1000 m)

As is shown in the figures, the number of elements influences the accuracy of the

simulation results. The larger the number of elements is, the closer the simulation
results to the analytical solution.
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The result of the verification shows tiny errors, within the scope of 10> m. Therefore,
it can be confirmed that the result of numerical simulation for the beam deformation
1s correct.

For the bending moment and the shear force, we take the case of [L=100 m, n=100]
for verification. The following figures are the results of the verification for the
bending moment and the shear force:
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Figure 5-5 Bending moment verification (n=100, L=100 m)
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Figure 5-6 Shear force verification (n=100, L=100 m)

The figures above show that the two curves almost completely overlap with each
other, which indicates only tiny errors exist between two methods. Therefore, it can
be confirmed that the results of the numerical simulation for the beam bending
moment and shear force are correct.

With all the above verification correct, one can confirm that the level ice model has
been constructed correctly.

5.2 Moored Structure Model

In general, the mechanism of the moored structure model includes the righting
moments induced by both the structure’s buoyancy and the mooring system, and the
restoring force induced by the mooring system.

The only implicit force mechanism applied in the model above is the restoring force.
Therefore, the verification of the moored structure model only focuses on the
performance of the mooring system.

5.2.1 Ordinary Differential Equation - Medium Order Method (ode45)

Since the restoring force is divided into two components: the linear component and
the non-linear component, we want to investigate the behavior of the moored structure
in time during the simulation, to confirm that the treatment of linear and nonlinear
components is sufficiently accurate. The ode45 solver in MATLAB is capable of
calculating the displacement, velocity of an element at any time point with a precision
of medium order. Therefore, in the current study, we choose the ode45 solver as a
method of verification.

Different from the Lagrange multiplier formulation, the ode45 solver doesn’t split the
restoring force into two components, but rather treat the whole restoring force as one

external force. Noted that any other external forces are neglected here.

The governing equation for the ode45 solver is written as:
q‘n = {u-n} = FR (5_9)
X
where m; is the weight of the structure, and Fr is the restoring force.

5.2.2 Result Verification

The input values are identical with those parameters determined in Chapter 4, except
for the weight. We choose a smaller value of the weight, to observe the full trail of
oscillation in a shorter duration. The result of displacement verification is shown in
Figure 5-7.
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Figure 5-7 Displacement verification of the moored structure

The figure above shows that the two curves almost completely overlap with each
other, which indicates only tiny errors exist between two methods. Therefore, it can
be confirmed that the restoring force is modeled correctly using the Lagrange
multiplier formulation.

5.3 Ice-Structure Contact

With the numerical simulation, we can obtain a series of outputs as a function of time.
The verification can be performed in two parts: to verify the model construction
mechanisms, namely the conditions listed in Section 3.4.1; to verify by performing
the analytical solution.

5.3.1 Verification of Contact Mechanisms

The initial profile of the verifying model is shown in Figure 5-8.
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Figure 5-8 Initial profile of the ice-structure contact verification model

Initial conditions and necessary inputs regarding the model are listed in Table 5-1.

Initial horizontal displacement of the structure! 0 m
Initial horizontal velocity of the structure 0 m/s
Initial horizontal displacement of the level ice' -0.1 m
Initial horizontal velocity of the level ice 0.1 m/s
Time-step length 0.001
Simulation duration 8

Table 5-1 Inputs for the ice-structure contact verification

The results of the simulation can be observed from the following aspects as a function
of time, which will prove the conditions are satisfied:

Normal contact force
The resulting figure of the (average) normal force at the contact area is shown below.

i Zero value indicates the center of gravity of the structure is at x = 0.

ii Zero value indicates given that the center of gravity of the structure is at x = 0, the relative displacement between
two contact points is 0.
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Figure 5-9 Simulation result for the normal force at the contact area

As it is shown in Figure 5-9, in the first time step of the contact, there is a single peak
on the curve, the reason of this peak is the impact effect due to the significant change
of relative velocity at the moment of the first contact. Then the figure shows a series
of oscillation with a decreasing tendency, as the result of relative sliding of the
contact surface and consequently the contact points changing over time. From the
figure, one can observe that the buoy is being pushed away by the ice during the first
contact phase (from t = 1 s to t = 2.1 s), and the ice contacts with the buoy again at t =
6.3s. Fromt~ 2.1 stot= 6.3 s, the contact force remains as zero, which indicates
that the system is under the no-contact phase. In addition, the figure concludes that at
the beginning of any time-step, the normal contact force is higher than or equal to
zero. Therefore, the condition (2) is met.

Relative displacement (Penetration)

Figure 5-9 can be further compared with the penetration figure to check if the
condition (3) is met.
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Figure 5-10 Simulation result for the relative displacement (penetration) of contact points

Figure 5-10 shows the positive range of the penetration coincides with the positive
range of the contact force in Figure 5-8, which concludes that the contact force exists
only when the penetration is larger than or equal to zero. Therefore, one can confirm
that the condition (3) is satisfied.

Contact impulse

The values of the contact impulse are limited by the Gauss-Seidel method, the
resulting figure is shown as below.
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Figure 5-11 Simulation result for the contact impulse

As it is shown in Figure 5-11, the contact impulse retains non-negative during the
whole time. Therefore, the condition (4) is proved to be satisfied.

Relative velocity

The condition (5) is verified by contact impulse with the contact force needed to make
the relative velocity zero. This condition will keep the relative velocity positive and
stable during the contact phase. Figure 5-12 shows the result of the relative velocity.
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Figure 5-12 Simulation result for the relative velocity of contact points

The condition (5) is satisfied by applying the Gauss-Seidel method. From Figure 5-12,
one can conclude that during the contact phase, the relative velocity is positive and
relatively stable.

5.3.2 Verification by the Analytical Solution

The verification of the ice-structure contact can be performed by applying an
analytical solution for the normal force at the first time-step of the contact phase.

Since the average normal force at the contact point during the contact phase has been
numerically simulated, it is necessary to check its correctness by performing the
analytical solution. However, due to the condition (5) mentioned in Section 3.4.1, the
impulse during the contact phase is changed due to the maximum impulse limit.
Therefore, we can only perform the analytical check for the first force peak. The
analytical solution for the average normal force is given as:

21;lr av (5- 1 0)

F:: :_kc'ur_
CF, - At

where u; is the relative displacement (penetration) at the contact point, and #_,, is the

average relative velocity at the contact point within two time-steps, while CF; is the
compliance factor of the contact.

The derivation is illustrated as below:

uk, +iic, + (ur +i AL+ ;AurAthc + (o, + A, )e, (5-11)
F:’l av ==
’ 2
1, . 1 . .1 :
=—| ku, +—ku At +—kAu At +cu, +—c.Au,
2 4 2
. 1 1
=—ku, —(2u, + A, )(— k At + —CCJ
4 2
Since
CF=7 : 1
—k A +—c At
4 2 (5-12)
iy = i+ 8
2
Substitution gives:
2 (5-13)

F:: = _kc 'ur - =
CF,-At

with the contact stiffness k. and the contact damping c..
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The relative displacements and relative velocities of contact points before and after

the first time-step from the numerical simulation are read as:
d-=-3.78x10"m, d'=7.03x10"m
B (5-14)
v, =0.0946 m/s, v =0.0941m/s

From the numerical result, the value of the normal contact force at the first time-step
of the first and the second contact phases are read respectively as:

F,, =23768x10°N F ,=1.6910x10° N (5-15)

And the results from the analytical solution gives:

F,=23818x10°N F,,=1.6962x10° N (5-16)
There are only minor errors in the two sets of results. Considered the complexity of
the impact effect, the errors are acceptable. Therefore, we can confirm that the result
of the numerical simulation of the normal force is sufficiently accurate.

5.4 Ice Bending Failure

The verification on the mechanism of the ice bending failure mainly focuses on the
breaking length.

5.4.1 Verifying Model

To achieve the verification, a verifying model is employed, which is depicted in
Figure 5-13. The level ice, located at x < 0, has parameters identical to that
determined in Table 4-1. It is assumed that the level ice moves with a constant
horizontal velocity vie towards a structure. The structure is assumed rigid and
immovable, and its geometry is ignored except for the hull angle a.

Structure

Vice

Level ice

Figure 5-13 Verifying model of the ice breaking length

To perform the verification, a series of horizontal velocities vice is applied. When the
level ice breaks due to bending failure for the first time during the simulation, the
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simulation is stopped. Besides, in the other case, if the level ice never breaks due to
weak impact in a low velocity, the breaking length will not be recorded. After the
whole series of simulations, the observed breaking lengths are recorded. To compare
the results with results from a similar numerical simulation performed by C.
Keijdener et al.[>’], input values of ice properties are kept consistent, see Table 5-2.

Minimum velocity 0.01 m/s
Velocity step between each simulation 0.01 m/s
Maximum velocity 0.5 m/s
Time-step length 0.005 S
Structure’s hull angle 45 °
Thickness 1 m
Density 925 kg/m?
Young’s modulus 5x10° Pa
Poisson’s ratio 0.3 -
Compressive strength 6x103 Pa
Flexural strength 5x10° Pa
Total length 500 m
Number of element 1000 -
Element length 0.5 m

Table 5-2 Inputs for the ice bending failure verification

5.4.2 Static Breaking Length

To study the features of breaking length, we need first to obtain the static breaking
length, which is the length where the highest flexural stress occurred in a static state.
The level ice model reaches the static state whenever the failure limit is not reached
by the ice’s flexural stress. The length where the highest flexural stress occurred in a
static state is thus observed:

X, =16.5m (5-17)

The result of the static breaking length can be verified by the analytical solution
derived by Keijdener:

Xy = NGO arctan{ 21 ] (5-18)

V21 - t tana
where
1=4/5 (5-19)
where
3
S (5-20)

(12p,8)1-v?)
The result is thus:
x, =16.74m (5-21)

The result from the simulation is 16.5 m, which is close to the analytical solution.
Therefore, we can confirm the static breaking length simulated is correct. Noted that
the ice element length used in the simulation is 0.5 m, which means the minimum
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variation of the breaking length is 0.5 m. Decreasing the value of ice element length
will produce a more accurate result in the simulation.

5.4.3 Breaking Length as a Function of Ice Velocity

Figures 5-14 show the results of breaking length as a function of ice velocity.
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Figure 5-14 The breaking length as a function of ice velocity'i

The result above can be compared with the simulation result by C. Keijdener, see the
dotted curve shown in Figure 5-15.
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Figure 5-15 The breaking length as a function of ice velocity compared with the result by C. Keijdener

il Increasing the number of ice elements (decreasing the value of ice element length) will produce a smoother and
more accurate curve, however, it costs more time to perform the simulation.
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According to Keijdener, in the regime of the quasi-static failure mode (v < vs—q4), the
ice will fail with a breaking length approximately equal to the static breaking length.
While in the regime of the dynamic failure mode (v > vs—4), the magnitude of the peak
contact force continues to grow as vic. increases, which causes the ice to fail earlier
and closer to the contact point.

In Keijdener’s curve (C.), the breaking length reaches a peak when the velocity
reaches the transition velocity vs.4, while my curve (R.) shows a relative
monotonically decreasing tendency. This difference is mainly due to the different
damping values applied, where higher damping values are applied in my model. Both
curves start approximately from the static breaking length and come to an
approximate coincide after the transition velocity.

The simulation result confirms the statement above, together with the verification in
Section 5.4.2, the results indicate that the mechanism of the ice bending failure in the
model is correctly constructed.

5.5 Conclusion

The verification has been performed in order to gain the confidence of correctness in
the constructed numerical model. In summary, there are generally four core aspects in
the numerical model verified:

1. The level ice model is verified in aspects of the deformation, the shear force, and
the bending moment, given the condition that it is subjected to a point load on
one of the free edge. The results are compared with the analytical solution, which
gives a positive verification.

2. The moored structure model is mainly verified in the aspect of its mooring
restoring force. The simulation result is verified by the ode45 method, while the
result shows the sufficient correctness.

3. The ice-structure contact is verified by examining if the simulation results satisfy
5 conditions of the contact mechanism. Besides, the normal force at the first time-
step of the contact phase is verified by the analytical solution. The results of the
verification sufficiently show the correctness of the contact mechanism in the
numerical model.

4. The ice bending failure is verified in two aspects: the static breaking length and
the breaking length as a function of ice velocity. The former is verified by the
analytical solution, while the latter is verified by comparing the result with the
corresponding result obtained by Keijdener et al. Both processes of the
verification have indicated the correctness of the bending failure mechanism.
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Buoy DESIGN OPTIMIZATION

Now that the numerical model has been constructed and verified, it is possible to
optimize the buoy design for a specific ice condition. In this chapter, an example of
the optimization of the moored buoy model is demonstrated.

6.1 Optimization Overview

The optimization will focus on the moored buoy in the current Arctic region, based on
the pre-designed buoy presented in Section 4.2. The basic idea of the optimization
plan is:

‘To obtain a concept design of a satisfactorily performed moored buoy with
minimized dimensions under a specific ice condition’

The above ‘a specific ice condition’ refers to the level ice determined in Section 4.1.
The level ice has a constant velocity of 0.1 m/s towards the buoy in a normal
condition, and that of 0.2 m/s in an extreme condition.

To achieve the objective of the optimization, the buoy design is needed to satisfy the
following criteria:

(1) The buoy is not allowed to overturn into water under both ice conditions;

(2) The buoy has a constant hull thickness and total height, see Table 4-2;

(3) The stationary draft has a range of [0.5,2.5] m to make sure the level ice contacts
with the downward-sloping hull (taking 5% as the safety factor, the range is
limited to [0.6,2.4] m);

(4) The upward-sloping hull of the buoy is not allowed to be submerged into water
under the normal ice condition;

(5) The maximum horizontal displacement of the buoy is not allowed to exceed 15%
of water depth under the normal ice condition;

(6) The maximum pitch angle is not allowed to exceed 15° under the extreme ice
condition;

(7) The maximum horizontal displacement of the buoy is not allowed to exceed 25%
of water depth under the extreme ice condition.

With the above criteria, the buoy design with minimized total weight (including the
weight of the buoy and the mooring chain) is the most optimized design.

Under this circumstance, the following are the main variables for the optimization of
the buoy design to investigate:
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1. The downward-sloping hull angle of the buoy;
2. The maximum diameter of the buoy;

Generally, size parameters like the maximum diameter influence the buoy’s
hydrostatic stability. With the change of the hull angle, the minimum diameter also
changes. Overall, the size parameters determine the buoy’s weight given that the hull
thickness is constant. Moreover, the hull angle influences the interaction between the
level ice and the buoy, which indirectly affects the stability of the buoy.

The optimization is performed with a series of numerical simulations, based on the
results including the maximum pitch angle and maximum horizontal displacement of
the buoy, the best solution is chosen and further adjusted.

6.2 Optimization Process

To investigate the optimization, preliminary setting ranges for the two size-related

variables are listed in Table 6-1, which are based on the pre-designed dimensions in
Table 4-2.

Item Minimum Variation  Maximum Unit
Maximum diameter 7 0.5 10.5 m
Hull angle of the buoy 30 5 70 °

Table 6-1 Ranges of the size-related variables

The ranges of two variables generate in total 72 buoy designs with these combinations
of size-related variables. To select the most optimized buoy, there will be several
phases to test these combinations. In the following subsections, the optimization will
be performed with the order of these phases.

6.2.1 Stationary Draft

The combinations of size parameters determine the stationary draft of the buoy.
According to the limitation of the criterion (3), some of the combinations should be
excluded. Table 6-2 shows the results of the stationary draft for each combination.

Stationary Maximum diameter [m]

draft [m] 7 7.5 8 8.5 9 9.5 10 10.5

30 | 2.81 | 278 | 274 | 270 | 2.66 | 261 | 257 | 252
35 | 273 | 268 | 263 | 257 | 252 | 246 | 241 | 236
40 | 2.63 | 256 | 250 | 244 | 238 | 232 | 226 | 221
illgi 45 | 251 | 244 | 237 | 230 | 224 | 218 | 213 | 2.07
e[] | 50 | 239 | 232 | 225 | 218 | 212 | 2.06 | 201 | 196
55 | 228 | 220 | 213 | 206 | 200 | 1.95 | 1.90 | 1.85
60 | 2.17 | 2.09 | 202 | 196 | 191 | 1.86 | 1.81 | 1.77

65 2.07 2.00 1.93 1.87 1.82 1.77 1.73 1.69
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70 1.98 1.91 1.85 1.80 1.75 1.70 1.66 1.63

Table 6-2 Results of the stationary draft for each combination (Phase 1)

Results from Table 6-2 show that in total 51 combinations (shaded with green color,
same as below) satisfy the limitation of the criterion (3). Therefore, from the
remaining combinations, we can further search for the most optimized combination
by performing the numerical simulation, where the related inputs are given in Table
6-3.

Time-step length 0.01
Simulation duration 100
Total length of the level ice 5050

Table 6-3 Related inputs of the simulation

The simulation duration is ensured to be sufficiently long for the level ice to fail at
least two cycles due to bending, while the buoy can reach its maximum pitch angle
and maximum horizontal displacement. The level ice is sufficiently long to ensure
that the level ice has sufficient momentum to keep its velocity relatively constant after
the bending failure.

6.2.2 Normal Ice Condition

To satisty the criterion (4), critical pitch angles that the upward-sloping hull is not
submerged into water for each combination are needed to be discovered. The
corresponding results are shown in Table 6-4.

Critical Maximum diameter [m]
submerging
pitchangle | 7 7.5 8 8.5 9 9.5 10 | 105
[°]

30 ] - ] - - ] - ]
35 ] - ] - - ] - 1.53
40 ] - ] - 157 | 218 | 271 | 3.16

Hull 45 - - 1.85 2.63 3.28 3.81 4.25 4.61

angl | 50 1.74 2.78 3.62 4.30 4.84 5.27 5.62 5.89

1| 55 | 361 | 453 | s25 | ss81 | 624 | 656 | 681 | 6.98

60 5.36 6.14 6.72 7.15 7.47 7.68 7.83 7.92

65 6.96 7.59 8.03 8.34 8.54 8.66 8.71 8.72

70 8.38 8.86 9.16 9.35 9.45 9.47 9.45 9.39

Table 6-4 Critical submerging pitch angle (Phase 2)

The results of the maximum pitch angle under the normal ice condition (0.1 m/s)
during the simulation are listed in Table 6-5.

Mai;limurln Maximum diameter [m]
pitch angle

°] 7 7.5 8 8.5 9 9.5 10 10.5
Hull | 30 - - - - - - - -
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angl | 35 - - - - - - - 5.38

e [’]
40 - - - - 729 | 6.03 | 542 | 4.94

45 - - 8.69 7.49 6.79 5.90 4.71 3.92

50 8.89 8.22 7.34 7.98 6.23 5.74 5.13 16.91

55 8.58 7.62 6.32 6.63 5.24 4.98 8.38 5.30

60 7.34 6.98 6.07 6.97 5.20 5.15 5.95 9.96

65 6.82 6.02 7.45 5.57 4.68 7.21 * *

70 7.28 7.24 * 6.63 7.67 | 10.09 * *

Table 6-5 Results of the maximum pitch angle (Phase 2)

The results from Table 6-5 can be compared with those in Table 6-4. According to the
criteria (1) and (4), there are 20 combinations qualified in this test. (“*” indicates that
the buoy overturned during the simulation, same as below.)

To check if the results satisfy the criterion (5), the maximum horizontal displacements
from qualified combinations are recorded in Table 6-6.

Maximum Maximum diameter [m]

horizontal

displacemen | 7 75 8 8.5 9 9.5 10 10.5

t [m]
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -

Hall |45 - - - - - - - 4.53

angl | 50 - - - - - - 4.82 -

el’l ] 55 - - - - 470 | 4.83 - 4.29
60 - - 428 | 459 | 448 | 417 | 435 -
65 | 420 | 385 | 458 | 4.62 | 4.00 | 3.42 - -
70 | 446 | 436 - 471 | 423 | 3.53 - -

Table 6-6 Results of the maximum horizontal displacement (Phase 2)

From the results above, one can notice that the maximum horizontal displacements
from only 13 combinations are lower than the limit that specified in the criterion (5),
which is 4.5 m. Therefore, there are 13 qualified combinations in this phase.

6.2.3 Extreme Ice Condition

To further examine the performance of the buoys with qualified combinations, one of
the solutions is to increase the ice velocity, for instance, 0.2 m/s, to simulate an
extreme ice condition. To satisfy the criterion (6), a series of numerical simulation is
performed. The results of the maximum pitch angle for each combination under the
extreme ice condition (0.2 m/s) are listed in Table 6-7.
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Maximum Maximum diameter [m]
pitch angle
[°] 7 7.5 8 8.5 9 9.5 10 10.5
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -
Hull 45 - _ - _ - - _ _
angl | 50 - - - - - - - -
el ss - - - - - - -1 920
60 - - 11.77 - 11.04 | 797 | 11.66 -
65 | 17.04 | 11.67 - - * * - -
70 18.16 | 20.67 - - 20.17 * - -

Table 6-7 Results of the maximum pitch angle (Phase 3)

The results from Table 6-7 can be compared with those in Table 6-7. According to the
criteria (1) and (6), there are 6 combinations qualified in this test.

To check if the results satisfy the criterion (7), the maximum horizontal displacements
from qualified combinations are recorded in Table 6-8.

Maximum Maximum diameter [m]
horizontal
displacemen | 7 7.5 8 8.5 9 9.5 10 10.5
t [m]
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -
Hul | | - - - - - - - :
angl 50 - - - - - - - -
e[?1] 55 ] ] ; _ - - - 531
60 - - 6.59 - 6.59 9.74 6.01 -
65 - 6.42 - - - - - -
70 - - - - - - - -

Table 6-8 Results of the maximum horizontal displacement (Phase 3)

From the results above, one can notice that the maximum horizontal displacements
from only 5 combinations are lower than the limit that specified in the criterion (7),
which is 7.5 m. Therefore, there are only 5 buoy designs satisfy the design criteria
listed in Section 6.1. The result so far indicates that the 5 qualified buoy designs can
perform well both under the normal and extreme ice conditions.
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6.2.4 Buoy Weight

Since the aim of the optimization is to find the moored buoy with minimized
dimensions, with all the design criteria satisfied, one can check the weights of
qualified buoy designs. The buoy design with the lowest weight will be the most
optimized design. The buoy weights of all the qualified designs are listed in Table 6-9.

Buoy Maximum diameter [m]

weight [t] 7 75 8 8.5 9 9.5 10 10.5
30 - - - - - - - -
35 - - - - - - - -
40 - - - - - - - -

Full | * - - - - - - - -

angl | 50 - - - - - - - -

el 55 - ; - ; - - - | 105.69
60 - - 66.34 - 82.00 - 99.19 -
65 - 61.27 - - - - - -
70 - - - - - - - -

Table 6-9 Buoy weights of qualified designs (Phase 4)

From Table 6-9, one can discover that the buoy design with the hull angle of 65°, and
the maximum diameter of 7.5 m has the lowest weight among 5 qualified buoy
designs, and thus, we can conclude that this design is the most optimized buoy design
based on the design criteria and the size ranges of our research.

6.3 Conclusion

Based on the current criteria, the most optimized buoy design has been chosen, and its
parameters are summarized in Table 6-10.

Maximum diameter Dy max 7.5 m
Minimum diameter Ds min 5.63 m
Waterline diameter Dy wii 7.03 m
Height H, 3 m
Draft ds 2.00 m
Displaced water volume Vs 59.77 m?
Weight ms 6.13x10* kg
Downward-sloping hull angle o 65 °
Upward-sloping hull angle % 28.20 ©
Moment of inertia Ing 4.30%x10° kg-m?
Material density Ps 7850 kg/m?
Surface area Ss 126.09 m?
Equivalent hull thickness ts 0.0619 m
Second moment of area Iis 2.06 m*
Radius of gyration Rgs 2.65 m

Table 6-10 Parameters summary of the optimized buoy design
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This thesis only provides one of the examples of the method of optimizing a moored
buoy. However, the optimization process and results can be different based on
different practical situations and requirements.
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CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The current study focuses on the investigation of the interaction between the level ice
and the moored buoy, which is a conventional research area involving the Arctic
environment. The interaction between the level ice and the moored buoy is
investigated based on two-dimensional numerical modeling and simulation. In fact,
the modeling and simulating methods employed in this thesis can be generalized to
any other types of floating structures. This thesis, in particular, chose the moored
buoy as the research object.

During the study, several research methods and concepts are introduced, which
includes:

e Compliant contact algorithm
e Lagrange multiplier formulation
e (Catenary mooring system

The compliant contact algorithm, as a variant of the non-smooth discrete element
method (NDEM), is capable of describing any compliant contacts in the system,
including ice-ice contact and ice-structure contact.

The Lagrange multiplier formulation is applied in order to solve the model, during the
simulation, the formulation is solved by Gauss-Seidel method for each time-step. The
formulation has the advantage to be able to solve the implicit forces of the system.

The catenary mooring system is the most common type of mooring system employed
to the buoy in shallow water, which provides the buoy with significant stationary
stability.

Based on the above methods, the numerical model is constructed, which consists of
the level ice model, and the moored buoy model. The level ice model is built as a
beam with multiple elements, while the moored buoy model is constructed as a rigid
body. Besides, several mechanisms are employed to handle the interaction between
the level ice and buoy, which includes:

e Ice compressive failure

e Ice bending failure
e Friction
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The ice compressive failure happens directly due to the ice-structure contact, which is
the essential failure type during the ice-structure interaction. However, since the buoy
itself moves significantly after the contact, the extent of the ice compressive failure
(penetration) is usually small in the current research.

The ice bending failure happens for the reason that the ice contacts with the
downward-sloping hull of the buoy. Since that the buoy is a small-scale structure in
terms of dimension, for low ice velocity, the ice does not usually break due to bending
during the first ice-structure contact phase. Instead, the level ice pushes the buoy
horizontally, which changes the tensions in mooring lines. When the opposite two
mooring lines have sufficiently large tension difference, the restoring force will be
large enough to make the ice bending stress exceed its failure limit, and thus the
bending failure occurs.

The friction generally exists during the ice-structure contact, which affects both the
level ice and the buoy. The friction is the result of relative motions at the contact
surface, which based on the current research, is modeled as the continuous variation
of contact points during the contact phase.

Following that, the thesis carries out a series of determinations of model parameters
regarding the numerical model, which includes:

e The level ice
e The (pre-designed) buoy
e The mooring system

The above parametric studies are all based on the Arctic environmental situation of
the Svalbard archipelago. After the parametric studies accomplished, the model has a
certain degree of capability to simulate the practical situation.

To ensure the correctness and accuracy of the numerical model, for each mechanism
that relies on the Lagrange multiplier formulation, a corresponding verification is
carried out. The referring objects of verification generally include:

e Analytical solutions
e Solutions obtained by the ode45 solver
e Previous results of numerical simulations

With the verification process correctly accomplished, the numerical model is proved
sufficiently effective and accurate, and can be used to perform further optimization
for the buoy design.

The thesis provides one of the examples of the process of optimization, in order to
design a buoy with smaller weight but with sufficient stability under certain ice
conditions. Furthermore, with similar design criteria and optimization process, one
can design and optimize a different type of offshore structure in the Arctic
environment based on the provided numerical model.
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7.2 Recommendations

The following aspects are recommended to improve or complement the current
numerical model:

Modeling of broken ice:

The current numerical model does not present the broken ice and its influence due to
the time limit. Generally, the broken ice continuously contacts with the buoy after the
level ice fails either due to compression or bending. Besides, the current modeling
method allows the straightforward implementation of broken ice. Although the
influence of the broken ice is relatively smaller considering that the ice-buoy
interaction produces a relatively small amount of broken ice, it is recommended to be
taken into account and added to the model, in order to further improve the capability
to simulate the practical situation in the Arctic environment.

Wind and current loads:

The current research only considers the ice load as the only load type subject on the
buoy. However, in the Arctic environment, the wind load influences the buoy
especially on the superstructure of the buoy; the current load influences the
underwater part of the buoy and the mooring chains. Therefore, it is recommended to
further research the influences of the Arctic wind and current loads.

Different types of structure:

The current study chose the buoy as the object of research. The buoy is generally
considered as a small-scale or medium-scale floating structure, which usually has
significant motions under environmental loads. It has certain advantages in terms of
design optimization, which, however, weakens the extent of failures of the level ice.
Therefore, if the further research intends to focus more on ice failures, it is
recommended to employ a larger-scale of floating structure.

Interaction between the buoy and its anchoring floating structure:

Since the buoy is one component of the single point mooring (SPM) system, it is in
fact connected to its anchoring floating structure, such as an FPSO unit. The current
research does not focus on the interaction between the buoy and its anchoring
structure. Therefore, it would be interesting to consider this interaction into the
numerical model, to further research the feasibility and advantages in terms of the
SPM solution.

Three-dimensional expansion:

The current numerical model is constructed mainly based on a two-dimensional plane,
which limits the simulation in terms of degrees of freedom. To further improve the
model and yield results with better accuracy, it is recommended to expand the model
to the three-dimensional space.
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