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Both crash count and severity are thought to quantify crash risk at defined transport network locations (e.g.
intersections, a particulate section of highway, etc.). Crash count is a measure of the likelihood of occurring a
potential harmful event, whereas crash severity is a measure of the societal impact and harm to the society. As
the majority of safety improvement programs are focused on preventing fatal and serious injury crashes,
identification of high-risk sites—or blackspots—should ideally account for both severity and frequency of cra-
shes. Past research efforts to incorporate crash severity into the identification of high-risk sites include multi-
variate crash count models, equivalent property damage only models and two-stage mixed models. These
models, however, often require suitable distributional assumptions for computational efficiency, neglect the
ordinal nature of crash severity, and are inadequate for capturing unobserved heterogeneity arising from pos-
sible correlations between crash counts of different severity levels. These limitations can ultimately lead to
inefficient allocation of resources and misidentification of sites with high risk of fatal and serious injury crashes.
Moreover, the implication of these models in blackspot identification is an important, unanswered question.

While a joint econometric model of crash count and crash severity has the flexibility to account for the
limitations mentioned previously, its ability to identify high-risk sites also needs to be examined. This study aims
to fill this research gap by employing the joint model for blackspot identification. Using data from state-con-
trolled roads in Queensland, Australia, a new risk score is developed based on predicted crash counts by severity,
weighted by the cost ratio of severity levels. This weighted risk score is then used for identifying road segments
with high risk of fatal and injury crashes. Results show that the joint model of crash count and crash severity has
substantially improved prediction accuracy compared to the traditional count models. The correlation between
crash counts of different severity levels captures the unobserved heterogeneity caused by the extra-variation in
total crash counts and moderates the parameters in the joint model. In comparison with the traditional ap-
proaches, the proposed weighted risk score approach with the joint model of crash count and crash severity leads
to the identification of a higher number of fatal and serious injury crashes in the top ranked sites flagged for
safety improvements.

1. Introduction

Crash count and crash severity have been widely used in transport
safety as two indicators of crash risk along road segments (Washington
et al., 2018). Crash count is a measure of the likelihood of crash oc-
currence, whereas crash severity is a measure of the societal impact of
crashes and their harm to the society. Although federal road agencies
and departments of transport aim to reduce crash counts across their

* This paper has been handled by associate editor Tony Sze.
* Corresponding author.

road networks, safety improvement programs are primarily focused on
preventing fatal and serious injury crashes, as the cost per person of
fatal and serious injury crashes are substantially higher than minor
injury and non-injury crashes (Harmon et al., 2018). In addition, the
collective social cost of crashes in the society is substantially higher
than the individual social costs (Tay, 2002). As a result, considering
crash severity in conjunction with crash count is paramount for iden-
tification of high-risk sites (also referred to as blackspots or hotspots).

E-mail addresses: a.p.afghari-1@tudelft.nl (A.P. Afghari), m1.haque@qut.edu.au (M.M. Haque), s.washington@ugq.edu.au (S. Washington).

https://doi.org/10.1016/j.aap.2020.105615

Received 15 December 2019; Received in revised form 26 February 2020; Accepted 26 May 2020
0001-4575/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/00014575
https://www.elsevier.com/locate/aap
https://doi.org/10.1016/j.aap.2020.105615
https://doi.org/10.1016/j.aap.2020.105615
mailto:a.p.afghari-1@tudelft.nl
mailto:m1.haque@qut.edu.au
mailto:s.washington@uq.edu.au
https://doi.org/10.1016/j.aap.2020.105615
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2020.105615&domain=pdf

A.P. Afghari, et al.

The several studies have incorporated crash severity into the iden-
tification of high-risk sites (which will be comprehensively reviewed in
the next section) can be divided into three groups based on their
methodological approaches: multivariate crash count models, equiva-
lent property damage only (EPDO) models, and two-stage mixed models
of crash count and crash severity (Washington et al., 2018). All of these
approaches, perhaps not surprisingly, have some methodological/em-
pirical limitations. The multivariate modelling of crash counts has been
mostly achieved by assuming a Poisson lognormal distribution for
crashes of different severity levels because the resulting count model
has a hierarchical representation in the Bayesian platform (Shaon et al.,
2019). Other distributions such as Poisson-Gamma (or Negative Bino-
mial) make the multivariate crash count models computationally bur-
densome. More importantly, multivariate crash count models neglect
the ordered nature of crash severity. The EPDO approach requires non-
parametric models (such as quantile regression) because EPDO data are
not distributed according to well-known statistical distributions. As
such, additional complexity in crash severity data, for example un-
observed heterogeneity, is not easily accounted for in this approach.
The two-stage mixed modelling of crash count and crash severity again
fails to account for the possible correlation between crash counts of
different severity levels. These shortcomings render the existing ap-
proaches suitable for certain, ‘well behaved’ conditions only, and per-
haps leave researchers to develop a rigorous methodology that can
capture additional complexity combining crash frequency and injury
severities.

Recently, an alternative approach was proposed by Yasmin and
Eluru (2018) to explicitly incorporate the severity of crashes into crash
count prediction. Unlike the two-stage mixed models, this approach is
based on a joint (one-stage) modelling of crash count and crash se-
verity, whereby a crash count model is jointly estimated with a crash
severity model, and a correlation term is added to the overall model to
account for the common factors between the two model components.
The overall joint model has two important properties: 1) the parameters
of the crash count model are influenced by the parameters of the crash
severity model in a joint estimation process, and 2) the overall model
parameters are moderated by the correlation between the two model
components. Yasmin and Eluru (2018) showed that the joint model of
crash count and crash severity is superior to traditional crash count
models in terms of statistical fit. However, the performance of this
model was not evaluated in identification of high-risk sites mainly be-
cause a blackspot identification criterion for this model does not exist to
date, and thus, its potential for blackspot identification remains un-
explored. This study aims to bridge this gap by investigating the ap-
plicability and the performance of the recently developed joint model of
crash count and crash severity in identifying highway segments with
high risk of fatal and injury crashes.

2. literature review

Multivariate modelling of crash counts is one of the most popular
approaches in the literature to consider crash severity while identifying
high-risk sites. Aguero-Valverde and Jovanis (2009) applied a full
Bayesian multivariate Poisson lognormal regression to model crashes in
Pennsylvania, United States and found a high correlation (from 0.47 to
0.97) between crash counts of different severity levels. They used the
costs of different crash severity levels to convert the outcome of the
multivariate model to expected crash cost and compared the expected
crash cost with the observed crash cost to rank highway segments. They
found that high-risk segments identified by the outcome of the multi-
variate model have consistently higher excess costs than those segments
identified by the univariate model. The assumption of a lognormal
distribution for the correlation between the crash counts of different
severity levels in the multivariate setting resulted in crash counts fol-
lowing a Poisson lognormal distribution. This assumption, however,
may not be entirely accurate as crash counts of different severity levels
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(fatal crashes with excess zero counts for example) may not be Poisson-
lognormally distributed (Aguero-Valverde, 2013). In addition, the
multivariate model does not consider the ordinal nature of crash se-
verity levels and thus may lead to incorrect inferences about the effects
of explanatory variables and result in misidentification of blackspots
and inefficient allocation of resources.

EPDO is another popular approach to incorporate crash severity into
the selection of high-risk sites. Washington et al. (2014) converted the
crash counts of different severity levels to an equivalent property da-
mage only count by applying weights based on average cost ratios by
severity. They applied a non-parametric quantile regression on EPDO
data in order to estimate the effects of covariates on various quantiles of
the population, rather than the population mean. Finally, they com-
pared the outcome of the quantile regression model with the observed
EPDO and ranked sites accordingly. They found that the high-risk sites
identified by the EPDO approach places more emphasis on more
harmful crashes than does the conventional count approach. As EPDO
data are not distributed like any well-known distributions, non-para-
metric quantile regression models must be used in this approach. This
requirement is a limitation of this EPDO approach as there is no like-
lihood function to be maximized in this approach and thus the com-
plexity of crash data (e.g. unobserved heterogeneity) cannot be readily
incorporated into the modelling process. Recently, some studies have
used parametric regression models (e.g. lognormal hurdle and Tobit
regression) to model EPDO rate as a function of exogenous covariates
(Ma et al., 2016); however, the appropriateness of these distributional
assumptions has not been tested.

Finally, two-stage mixed modelling of crash count and crash se-
verity is another approach to consider crash severity for identifying
high-risk sites. Miranda-Moreno et al. (2009) first introduced this ap-
proach and defined a total risk index as a multiplicative factor of crash
count at a site and its expected consequences including expected
number of fatal, serious, and minor injuries. They employed Bayesian
framework to estimate a hierarchical Poisson model of crash count and
a multinomial model of crash severity, independently. They constructed
a total risk score per segment and compared it with a standard value
established by decision makers and ranked highway segments accord-
ingly. They found that the two-stage mixed model were able to identify
high-risk highway segments based on crash count and crash severity
and thus improved the effectiveness of allocating resources for safety
improvements. In more recent studies, Wang et al. (2011) and Stipancic
et al. (2019) used a similar two-stage mixed modelling approach to
identify high-risk sites based on crash count and crash severity and
found that this approach is superior to the traditional count based ap-
proaches. However, the two-stage (independent) modelling of crash
count and crash severity in all of these studies crucially ignores the
possible correlation between crash counts of different severity levels.
This ignorance may result in biased parameters and in turn may lead to
incorrect predictions of crash count and crash severity.

Recently, a joint model of crash count and crash severity has been
proposed by Yasmin and Eluru (2018) which is more flexible than the
existing approaches in that it does not require the methodological/
empirical assumptions of the above approaches. In particular, this ap-
proach is not constrained to any distributional assumptions for the
extra-variation in crash counts over and above that accounted for by the
Poisson density. The joint model is estimated using maximum like-
lihood estimation methods and so it can accommodate the complexities
associated with crash data, e.g., unobserved heterogeneities. The crash
count and crash severity model components are jointly estimated (in
one stage) and the parameters of the joint model are moderated by the
correlation between crash count and crash severity. As such, the joint
model of crash count and crash severity represents a promising alter-
native to the existing approaches, but importantly, requires further
exploration regarding its ability for blackspot identification.
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3. Methodology

This section presents the structure of the joint model of crash count
and crash severity which was first introduced by Yasmin and Eluru
(2018). To describe the model structure more elaborately, the crash
count and crash severity model components are presented separately.
The joint model of crash count and crash severity is then presented,
followed by the selection criteria for identifying highway segments with
high risk of fatal and injury crashes. Let Y} represent the total observed
crash count on the ith highway segment (i = 1, 2, 3, ..., N) and in the
tthyear t=1,2, 3, ..., T).

3.1. Crash count model

The transport safety literature has shown that Y; follows a negative
binomial (NB) distribution with mean y; and inverse dispersion para-
meter ¢:

Y ~ NB (> #)

Assuming an exponential function for the mean of the negative bi-
nomial distribution, the total predicted crash count (u;,) on the ith
segment and in the tth year can be expressed as a function of exogenous
explanatory variables (Afghari et al., 2018a):

My = exp( z B Xy + &) (€))

where Xj; are other explanatory variables and f; are estimated regres-
sion parameters (including the intercept) and exp(e;) is a random error
term, which follows a Gamma distribution with mean 1 and variance Y.
To account for unobserved heterogeneity, model parameters () are
allowed to vary across highway segments (Anastasopoulos and
Mannering, 2009). Note that parameters are fixed across time to ac-
count for multiple observations on a segment during different time
periods (i.e. panel data setting). Such a model specification is referred
to as grouped random parameters (Sarwar et al., 2017) in which model
parameters are assumed to follow probabilistic distributions (e.g.
Normal, Uniform, Triangular, etc.) across the observations within each
group (or panel). The probability density function of the RPNB model
is:

P(Y = B ¢>=F<Vn+¢)[ ® T( Hi
! W' \o+u, ) \o+u

Yit

) F®
(2)

where I' (.) is the gamma function and f (g) is the density function of the

model parameters. The log-likelihood function (LL) of the model is

obtained by integrating the probability density function of the model

over the entire set of random parameters, applying the logarithm

transformation and summing it over observations to yield:

N

LL = Z Log( f P(Yi = 316, 9)df) @

To estimate this complex log-likelihood function, Maximum
Simulated Likelihood Estimation is used where quasi random draws
from Halton sequences are employed to simulate the densities of the
random parameters (Bhat, 2001). It has been shown that this simulated
maximum likelihood estimator is unbiased and consistent for a large
number of draws (Munkin and Trivedi, 1999).

3.2. Crash severity model

To incorporate crash severity into the models, lets (s =1, 2, 3, ...,
S) represent crash severity categories (e.g. property damage only cra-
shes, minor injury crashes, serious injury crashes, fatal crashes, etc.) on
highway segments. In ordered models, the actual proportion of total
crashes by severity levels (Yj;) is associated with an underlying latent
variable (Y;}). This latent variable is then mapped to the actual severity
proportions by thresholds () and using the following linear function:
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Yi =1Xy + and Yy, = Sifr, <Y< @

where «x is the vector of parameters, Xj; is the vector of covariates and &;
is the random error term.

To estimate the latent propensity of crash severities, it is assumed
that:

s
E (Yt 1Xi) = Hy (), 0 < Hy () <1, ) Hy =1

s=1 (5)
where Hj; () is the probability density function for the severity category
s. Depending on the distributional assumption for the probability of
error terms, Hg,(.) can take standard normal or standard logistic
probability density functions for the ordered probit or ordered logit
models, respectively. The latter functional form is used in this study to
construct an ordered logit model for crash severity. The probability of
each crash severity category is then presented as:

P(Ys: = 5) = ¢ty — (Xin)} — @lre—1 — (kXir)} (6)

where ¢(.) is the standard logistic cumulative probability density
function. The corresponding quasi log-likelihood function is then ex-
pressed as:

N s
LL = Lo, P (Yy, = s)"Wsitdx

l;g(fkgw )it dre) -
where wy;, is the fraction (proportion between 0 and 1) of crashes in
severity category s at road segment i and time period t, and the rest of
notations are as previously stated. These fractions sum to unity over the
categories (Zlewm = 1). This model is referred to as fractional split
(Afghari et al., 2018b). Note that wy;, takes binary values (0 or 1) in
conventional logit models; one for the chosen alternative and zero for
the non-chosen alternative. Maximum simulated likelihood approach is
used to estimate this log-likelihood function.

3.3. Joint model of crash count and crash severity

To generate the correlation between the above mentioned ordered
severity model and the previously described count model, a correlation
term (v;) is now defined as:

Vg = ym; 8)

where y, is the vector of parameters and m; is the vector of covariates
capturing the observed correlation between crash count and crash se-
verity components. This correlation term is then added to the pro-
pensity function of the severity model and the predicted mean of the
count model:

Vi = 1Xi + 6 + U 9

My = exp( Z BiXi + e + i) (10)

The log-likelihood function of the overall joint model of crash count
and severity is then expressed as:

N S
LL = Y Log( [ P(Yi =y, 1B, @, 4, m,7) X [ ] P(e = 5)"ed2)
i=1

s=1

1)

where  represents the vector of random parameters in the joint model
(B and x) the and the rest of the notations are as previously stated.
Maximum simulated likelihood approach is used to estimate the joint
econometric model.

3.4. Weighted risk score to combine crash count and crash severity
The estimated crash count and crash severity models can be used to

derive the crash count predictions of different severity levels on road
segments by multiplying the total crash count and the proportions of
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each severity level:
Mgy = My X P(Yg = 5) 12)

A new weighted risk score (WRS) is now developed based on the
cost ratio of crash severity levels:

S

WRS; = Z Clsfg;y
a 13)

where WRS; is the predicted weighted risk score for segment i and cr is
the ratio of the cost of a crash in severity level s to the cost of a re-
ference crash severity level. This weighted risk score is analogous to the
property damage only equivalency factor in the EPDO approach
(Washington et al., 2014) but the weights are applied to the predicted
crash counts post estimation and thus the distribution of observed crash
counts are intact. This weighted risk score can now be used in ranking
highway segments based on their crash count and crash severity.

3.5. Selection criteria: potential for improvement and excess weighted risk
score

Two selection criteria are used in this study for identifying high-risk
sites: potential for improvement (PFI) following the Empirical Bayesian
(EB) method with the independent crash count model and excess
weighted risk score for the joint model of crash count and crash se-
verity. The EB approach has widely been used in the literature to
identify high-risk sites (Afghari, 2019). The EB approach combines the
predicted and observed number of crashes and accounts for the re-
gression to the mean effect (Cheng and Washington, 2005; Washington
et al., 2018). Many studies have shown that the EB approach is superior
to alternative approaches in identifying high-risk sites (Montella,
2010). The EB estimator is a weighted sum of the predicted and the
observed crash counts such that:

EBj; = w1 Y + wau;, 14
HMit 1
w=—"—andwy, = ———
(:ui[ + 1/k) k(:ui[ + 1/k)

where k is the over-dispersion parameter estimated during the SPF
calibration process, and w; and w, are weights calculated based on the
mean and variance of the SPF estimate (Persaud et al., 2010). Potential
for improvement (PFI) has been used as the selection criteria for
identifying high-risk sites based on their EB estimate (Washington et al.,
2018). PFI is defined as the difference between the EB estimate and the
predicted mean of crash count at a site:

PFI; = EBy — [ (15)

Highway segments are ranked according to decreasing PFI and
segments with higher PFI are identified as high-risk sites.

Despite its appealing properties, the EB approach rests on dis-
tributional assumptions about crash occurrence (Poisson-Gamma or
negative Binomial) which do not hold for the weighted risk score ap-
proach in this study. As such, excess weighted risk score is used as the
selection criteria for ranking highway segments based on crash count
and crash severity. The excess weighted risk score (EWRS) is defined as:

EWRS;; = WRS;, — WRS; (16)

where WRS;, and WRS;, are observed and predicted weighted risk
scores. Segments are ranked according to the decreasing EWRS;, and
segments with higher EWRS;, are identified as high-risk sites.

4. Empirical data

The data used to compare the performance of candidate models
were collected for a random sample of highway segments and major
arterial road sections (rural and urban) along the state-controlled roads
in Queensland, Australia. The extent of the studied network is 1,477 km
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Table 1
Descriptive statistics of crash data used in this study.

Variable Sum  Mean St.D. Minimum Maximum
Fatal crashes 84 0.040  0.202  0.000 2.000
Fatal crashes in 2010 20 0.038 0.192 0.000 1.000
Fatal crashes in 2011 16 0.031 0.173  0.000 1.000
Fatal crashes in 2012 28 0.054 0.234  0.000 2.000
Fatal crashes in 2013 20 0.038  0.202  0.000 2.000
Serious injury crashes 5057 2.427 3.822 0.000 43.000
Serious injury crashes in 2010 1245 2.390 3.713  0.000 35.000
Serious injury crashes in 2011 1210 2.322 3.704  0.000 38.000
Serious injury crashes in 2012 1227 2.355 3.636  0.000 35.000
Serious injury crashes in 2013 1375  2.639  4.209  0.000 43.000
Minor injury crashes 991 0.476  0.996  0.000 12.000
Minor injury crashes in 2010 313 0.601 1.138 0.000 8.000
Minor injury crashes in 2011 277 0.532  1.099  0.000 12.000
Minor injury crashes in 2012 221 0.424  0.909 0.000 9.000
Minor injury crashes in 2013 180 0.345 0.779  0.000 6.000
Total crashes 7252 2942 4.573  0.000 51.000
Total crashes in 2010 1578 3.029 4.619 0.000 42.000
Total crashes in 2011 1503 2.885 4.566 0.000 51.000
Total crashes in 2012 1476  2.833 4.294  0.000 40.000
Total crashes in 2013 1575 3.023 4.810 0.000 48.000

consisting of 521 road segments. The dataset includes crash data as well
as roadway geometric and traffic characteristics data. Four years of
crashes (from 2010 to 2013) were collected in three severity categories:
fatal, serious injury and minor injury. The Queensland Department of
Transport and Main Roads stopped collecting property damage only
crash data in 2010 and so crashes in this category are not included in
this study. Descriptive statistics of the crash data are presented in
Table 1.

Roadway geometric and traffic operational characteristics include
Annual Average Daily Traffic (AADT), percentage of heavy vehicle
traffic, segment length, number of lanes, lane width, functional classi-
fication of the road (urban\rural), radius of horizontal curves, degree of
horizontal curves, general terrain (vertical alignment), pavement seal
conditions, speed limit, level of service, pavement roughness and rut-
ting conditions. Furthermore, presence of shoulder, shoulder type
(paved\unpaved), shoulder width, presence of shoulder marking, pre-
sence of median, median type (paved\unpaved), median width, and
presence of median marking were extracted manually for these 521
segments and added to the dataset. Dummy values were assigned to the
categorical variables for the functional classification of the road, pre-
sence of shoulder, shoulder type, presence of shoulder marking, pre-
sence of median, median type, presence of median marking, general
terrain, speed limit, level of service and pavement seal conditions of
road segments. The roadway geometric and traffic characteristics data
were merged with crash data based on spatial coordinates of crashes
and road segments. Table 2 presents descriptive statistics of explanatory
variables used in this study.

5. Results and discussion

The crash count model (Eq. 3) and the crash severity model (Eq. 7)
were first estimated to be used as the baseline for comparison purposes.
The joint model of crash count and crash severity (Eq. 11) was then
estimated and compared with the independent crash count and crash
severity models. In all models, explanatory variables were tested for
multicollinearity by computing the Pearson correlation coefficients, and
the variables with unacceptably high (> 0.7) correlation coefficients
were excluded from the models. In addition, AADT and segment length
were used as the measures of exposure for both models. The relation-
ship between these two variables and crash counts has been extensively
studied in the road safety literature. While some research findings in-
dicate that AADT and segment length have linear relationship with
crash counts (Geedipally et al., 2009; Qin et al., 2005) and thus may be



A.P. Afghari, et al.

Accident Analysis and Prevention 144 (2020) 105615

Table 2

Descriptive statistics of explanatory variables used in this study.
Variable Mean St. D. Minimum Maximum
Average annual daily traffic (vehicles per day) 23482.960 28038.900 34.000 146357.000
Fraction of heavy vehicle traffic 0.098 0.086 0.000 0.965
Length (km) 2.834 3.195 0.080 20.903
Number of lanes 3.070 1.710 1.000 8.000
Lane width (m) 3.070 0.420 2.000 5.000
Shoulder width (m) 0.910 1.470 0.000 15.000
Median width (m) 4.000 4.950 0.000 38.000
Radius of horizontal curve (m) 12096.480 5880.050 127.800 41218.000
Degree of horizontal curve 0.817 1.047 0.053 10.517
Roughness (mm/km) 50.490 33.960 0.000 150.000
Rutting 2.810 2.010 0.000 9.600
Categorical Variables Observation Frequency Sample Share
Functional classification of road — rural 172 33 %
Presence of shoulder 318 61%
Shoulder type — paved 500 96%
Presence of shoulder marking 77 15%
Presence of divided median 232 44%
Presence of median marking 97 19%
High speed limit (> 100 km/h) 103 20%
Medium speed limit (> 50 and < 100 km/h) 292 56%
Low speed limit (< 50 km/h) 126 24%
Terrain - rolling and/or mountainous 57 11%
Pavement seal conditions - sealed 396 76%
LOS-EorF 79 15%

NOTE: MJ = megajoules.
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Fig. 1. Scatterplots of Average Annual Daily Traffic (AADT) and segment length
versus crash counts in the dataset used for this study.

included in models as offset variables, other findings indicate that there
is a non-linear relationship between these two variables and crash
counts (Geedipally et al., 2009; Qin et al., 2004; Caliendo et al., 2007)

and that the non-linear relationship is warranted by estimating para-
meters for these two variables. In the dataset used for this study, the
scatterplots of ‘Crash counts versus AADT’ and ‘Crash counts versus
segment length’, as presented in Fig. 1, confirm the possible non-linear
relationships between these two variables and crash counts.

In addition, Anastasopoulos and Mannering (2009) have shown that
estimating a parameter for segment length may reflect the boundary
effect of road segmentation—crash counts may be clustered at the
boundary of road segments because of a sudden change of roadway
geometry. In accordance with the latter rationale, the logarithm of
AADT and segment length are used as explanatory variables with es-
timable parameters (coefficient) in the models in this study to account
for possible non-linear relationship between these two measures of
exposure and crash count, and to account for potential boundary effects
of road segmentation.

5.1. Baseline: independent models of crash count and crash severity

The grouped random parameters negative binomial crash count
model and the fractional split ordered logit crash severity model were
estimated separately using maximum simulated likelihood approach
with 800 Halton draws. The required number of Halton draws was
selected so that further increasing the number of draws does not change
the estimates significantly. The estimated parameters of these models
are presented in Table 3 and Table 4.

The results of the crash count model (Table 3) show that among all
of the contributing factors to crash occurrence, ten factors are sig-
nificant with at least 95 % confidence. The positive parameters of
logarithm of AADT (0.286) and segment length (0.556) indicate that
the likelihood of crash occurrence increases with increased exposure to
crashes. However, the effect of AADT varies significantly across road
segments with mean 0.286 and standard deviation 0.054. The positive
parameters of number of lanes (0.283), presence of shoulder (0.063),
level of service (0.087) and medium speed limit (0.598) indicate that
these factors have increasing effects on total crash counts. The in-
creasing effect of number of lanes might be due to aggregation of cra-
shes by crash type in our study. Previous research has shown that the
number of lanes have increasing effect on lane-changing related crashes
along road segments (Venkataraman et al., 2014). In addition, the
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Table 3

Model results of the crash count model.
Variable Estimate Standard Error t-stat p-value
Constant 0.780 0.033 23.812 0.000

Log(average annual daily traffic)
Percentage of heavy vehicle traffic

0.286 (0.054)
—0.222 (0.395)

Segment length 0.556
Number of lanes 0.283
Rural road —0.243
Presence of shoulder 0.063
Median width —0.095
Level of service - E or F 0.087
Medium speed limit (> 50 and < 100 km/h) 0.598
High speed limit (> 100 km/h)

Sealed pavement —0.200
Degree of horizontal curve —0.041

Inverse dispersion parameter (¢) 3.110
Measures of fit

Log-Likelihood —3911.462
Mean Squared Predictive Error (MSPE) 43.230
Mean Absolute Deviance (MAD) 1.990

0.031 (0.021)
0.036 (0.055)

9.311 (2.536)
—6.088(7.237)

0.000 (0.011)
0.000 (0.000)

0.025 21.813 0.000
0.034 8.305 0.000
0.029 —8.347 0.000
0.024 2.654 0.008
0.025 —3.748 0.000
0.023 3.844 0.000
0.039 15.173 0.000
0.051 —3.912 0.000
0.024 -1.719 0.086
0.290 10.725 0.000

*Numbers inside brackets are the estimates for the standard deviations of random parameters.

Table 4
Model results of the crash severity model.
Variable Estimate  Standard t-stat p-value
Error
Threshold Parameters:
Threshold: minor injury and -1.722  0.076 —22.728 0.000
serious injury
Threshold: serious injury and 4.013 0.200 19.996 0.000
fatal
Rural road 0.202 0.077 2.622 0.009
High speed limit (> 100 km/h) 0.165 0.082 2.025 0.043
Measure of fit
Log-Likelihood —736.446

increasing effect of presence of shoulder might be related to unsealed
surface of the shoulder and other shoulder characteristics (e.g. edge
drop). Past research has shown that unsealed shoulder is associated
with increased crash counts (Cairney and McGann, 2000; Meuleners
et al., 2011).

On the contrary, percentage of heavy vehicle traffic (-0.222), rural
functional classification (-0.243), median width (-0.095) and sealed
pavement (-0.200) have decreasing effects on total crash counts. The
varying parameter for percentage of heavy vehicle traffic (mean=
-0.222 and standard deviation = 0.395) shows that this factor has
heterogeneous effect across road segments. Finally, the inverse disper-
sion parameter indicates that total number of crashes are over dispersed
and are correctly modelled by negative binomial specification.

The results of the crash severity model (Table 4) show that among
all factors, only functional classification as the rural road and posted
speed limit more than 100 km/h are significantly associated with crash
severities. The positive parameters of these two variables are intuitive,
indicating that these variables have increasing effect on the severity of
crashes along road segments.

5.2. Joint model of crash count and crash severity

The joint model of crash count and crash severity was also estimated
using 800 Halton draws in the maximum simulated likelihood estima-
tion. Again, the number of Halton draws was selected to guarantee
stability of the estimates. The estimated parameters of this joint model
are presented in Table 5.

Results show that the joint model of crash count and crash severity
consists of a different combination of explanatory variables compared
to the crash count and crash severity models. Among the statistically

significant explanatory variables, some are unique to each model
component and some are common between the two model components
(capturing their correlation).

Segment length, number of lanes, rural roads, presence of shoulder,
median width and level of service are the statistically significant vari-
ables within the crash count model component with their parameter
estimates slightly moderated than their counterparts in the independent
count model. In addition, the terrain of the road is statistically sig-
nificant with a negative parameter (-0.063) indicating that rolling and
mountainous terrain is associated with less number of crashes and
implying that drivers are more cautious in such circumstances. Sealed
pavement, radius of horizontal curves and rural roads are the statisti-
cally significant variables within the crash severity model component.
The negative parameter of sealed pavement indicates that sealed pa-
vement is associated with decreased severity of crashes whereas the
positive parameter of rural roads indicates that these roads are asso-
ciated with increased severity of crashes. The positive parameter of
radius of horizontal curves indicates that larger radius of curves (i.e.
sharper curves) is associated with more injuries. This finding might
suggest that drivers are more cautious along sharper curves. Numerous
studies (e.g., Schneider et al., 2009; Anastasopoulos et al., 2012; Fitch
and Hanowski, 2015; Oviedo-Trespalacios et al., 2018, 2019) have re-
ported that that the complexity of the road geometry triggers risk-
compensating behaviour among drivers and reduces crash risk.

AADT, percentage of heavy vehicle traffic, medium speed limit and
pavement roughness are the statistically significant explanatory vari-
ables that are common between the two model components and have
plausible parameter estimates. The positive parameters of the logarithm
of AADT (0.237), medium speed limit (0.393) and roughness (0.149)
imply that these variables have increasing effects on crash count and
crash severity. The negative parameter of the percentage of heavy ve-
hicle traffic indicates that higher heavy vehicle traffic is associated with
less number of crashes and lower severity of crashes.

An interesting finding from the joint model is that the dispersion
parameter (%,) of the count model component within the joint model is
extremely small—albeit it is statistically significant—indicating that the
over dispersion is very small. This finding implies that the unobserved
heterogeneity resulted from the extra-variation in total number of
crashes across sites mostly arises from ignoring the correlation between
crash counts of different injury severity levels.

5.3. Comparison of goodness-of-Fit

The goodness-of-fit measures associated with the count model and
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Model results of the joint model of crash count and crash severity.
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Crash Count Model Component

Crash Severity Model Component

Variable Estimate Standard Error t-stat p-value Estimate  Standard Error  t-stat p-value
Unique Parameters
Constant 0.588 0.034 17.474 0.000 - - - -
Threshold Parameters:
Threshold: minor injury and serious injury - - - - —-1.925 0.084 —22.946 0.000
Threshold: serious injury and fatal - - - - 4.210 0.200 21.007 0.000
Segment length 0.535 0.025 21.468 0.000 - - - -
Number of lanes 0.230 0.030 7.566 0.000 - - - -
Rural road —0.354 0.030 —11.990 0.000 - - - -
Presence of shoulder 0.073 0.024 3.012 0.003 - - - -
Median width —0.076 0.026 —2.891 0.004 - - - -
Level of service — E or F 0.048 0.023 2.131 0.033 - - - -
Terrain: mountainous and rolling —0.063 0.022 —2.861 0.004 - - - -
Sealed pavement - - - - —0.418  0.094 —4.436 0.000
Radius of horizontal curve - - - - 0.324 0.084 3.870 0.000
Inverse dispersion parameter (¢) 4491.761 104.043 43.172 0.000 - - - -
Common Parameters

Estimate Standard Error t-stat p-value

0.237 (0.054)
—0.186 (0.248)
0.393 (0.650)
0.149

Log(average annual daily traffic)

Percent of heavy vehicle traffic

Medium speed limit (> 60 km/hr and < 100 km/h)
Roughness

Measures of Fit

Log-Likelihood

Mean Squared Predictive Error (MSPE)

Mean Absolute Deviance (MAD)

0.029 (0.020)
0.032 (0.070)
0.036 (0.028)
0.041

8.126 (2.705)
—5.870 (3.565)
10.835 (-23.209)
3.641

0.000 (0.007)
0.000 (0.000)
0.000 (0.000)
0.000

—4686.048 [-3898.283**]
8.287
1.825

*Numbers inside brackets are the estimates for the standard deviations of random parameters.

**Log-Likelihood of the count component within the joint model.
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Fig. 2. Cumulative residual plots against Average Annual Daily Traffic (AADT)
for the independent count model vs count component of the joint model.

the count component of the joint model shows that the latter model has
lower MSPE and MAD (8.287 and 1.825, reduced from 43.230 and
1.990 respectively) and thus has improved statistical fit. In addition to
MSPE and MAD, the cumulative residual plots are also plotted against
increasing order to AADT to shed more light on the statistical fit of the
two models. Cumulative residual plots are helpful tools in demon-
strating a model fit with respect to its covariates and identifying po-
tential and systematic bias e.g. over/under prediction (Hauer, 2015). A
superior fit occurs when the plots oscillate close to zero. Excess oscil-
lations above/under the zero axis, on the other hand, are a sign of
under/over prediction. In addition, a less biased model has an ap-
proximately equal amount of positive and negative residuals. Fig. 2
presents the cumulative residual plots (adjusted to terminate at zero)
for the two models and shows that the crash count component of the
joint model oscillates substantially closer to zero, maintaining more
balance between the positive and negative sides and staying closer
within the 95 % boundaries of cumulative residuals.

The substantially improved goodness-of-fit and cumulative residuals
plot of the count component of the joint model suggests that for this
sample of data, at least, the joint model is preferred for predicting crash
counts for the identification of high-risk sites.

5.4. Identification of high-risk sites

To identify high-risk sites across the network, the estimated models
were used by three blackspot identification methods: (i) potential for
improvement approach with a crash count model, (ii) excess weighted
risk score approach with a two-stage mixed model of crash count and
crash severity, and (iii) excess weighted risk score approach with a joint
model of crash count and severity (Fig. 3).

More specifically, the crash count model was first used to determine
the total predicted crash counts at individual road segments. These

Blackspot Identification

Potential for Improvement Excess Weighted Risk Score

Approach Approach
v
Two-stage Mixed .
Crash Count Model of Crash Joglt MOdeldOé CrESh
Model Count and Crash ount an  -Tas
. Severity
Severity

Fig. 3. Blackspot identification methods used for identifying high-risk sites in
this study.
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Table 6
Human capital cost of crashes by injury severity level for the state of Queensland in Australia (Australian dollars).
Rural Urban Weighted average cost (33 % rural and 67 % urban) Weights
Fatal crash $2,728,617 $2,456,691 $2,546,427 104.189
Serious injury crash $642,034 $595,802 $611,057 25.002
Minor injury crash $25,822 $23,760 $24,440 1.000

predicted crash counts were then used with the PFI approach to identify
high-risk sites. The crash severity model was then used to determine the
predicted probabilities of each severity level. The product of these
probabilities and the previously mentioned predicted crash counts were
then calculated to determine the predicted crash counts by severity (in
a two-stage mixed model) and were used with the excess weighted risk
score approach to identify high-risk sites. Finally, the joint model of
crash count and crash severity were used to determine the predicted
crash counts by severity while taking into account the correlation be-
tween different severity levels, and were used with the excess weighted
risk score approach to identify high-risk sites. The weighted risk score
for predicted crash counts of different severity levels (either from the
two-stage mixed model or from the joint model) were calculated using
the human capital costs (i.e. social costs) associated with Queensland
crashes collected from Austroads Guide to Road Safety Part 8
(Austroads, 2015). These costs vary depending on the functional clas-
sification of the road and thus their weighted averages were used for
the road network in this study. Table 6 shows the original crash costs
and their weighted average across the network.

Road segments were ranked by total decreasing potential for im-
provement (based on the crash count model) and total decreasing ex-
cess weighted risk score (based on the two-stage mixed model and the
joint model of crash count and crash severity) for the period of 2010-
2013.

5.4.1. Potential for improvement vs excess weighted risk score

To illuminate the importance of incorporating crash severity into
blackspot identification, the PFI approach is first compared with the
EWRS approach. Table 7 shows the top 20 road segments (out of 521
road segments) identified as high-risk sites by the two approaches. The
results show that 7 out of 20 road segments (shaded cells in Table 7) are

Table 7

unique to the blackspot identification approach and are not commonly
identified by the two approaches. The sites that are unique to the risk
score approach have higher number of fatal crashes compared to the
sites that are unique to the potential for improvement approach. As
reported in Table 7, the ranking of sites by two approaches is different.
As expected, the risk score approach puts more emphasis on fatal cra-
shes in ranking sites, whereas the potential for improvement approach
puts more emphasis on the total crashes. To obtain a more tangible
understanding of the performance of these two approaches in identi-
fying high-risk sites, the total number of crashes identified across the
top 20 sites were also used for the comparison between the two ap-
proaches (Afghari et al., 2016).

The PFI approach identified 1356 crashes whereas the excess
weighted risk score approach identified 1178 crashes along the top 20
sites. However, the risk score approach identified 19 fatal crashes
whereas the potential for improvement approach identified 14 fatal
crashes along those sites. In addition, the potential for improvement
approach identified higher number of minor and serious injury crashes
compared to the excess weighted risk score approach. These findings
show that, in general, the independent crash count model together with
the Empirical Bayesian approach leads to the identification of higher
number of crashes in the top ranked sites. However, if the rationale is to
identify high-risk sites with high fatal crashes, then the joint model of
crash count and severity together with the risk score approach re-
presents a better alternative. Another important consideration in
blackspot identification is that excess crashes are most treatable (Cheng
and Washington, 2008). To shed more light on this finding, excess
crashes are calculated by subtracting predicted crashes from observed
crashes along the top 20 sites (Table 8)—suggesting that installing
improvements to reduce crashes in excess of ‘typical’ have much higher
chance of success than expecting crash improvements beyond ‘typical’

Observed crashes along top 20 high-risk sites identified by the Potential for Improvement (PFI) versus Excess Weighted Risk Score (EWRS) approach.

Top sites identified by the PFI approach

Top sites identified by the EWRS approach

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 62 130 23 106 1
2 482 90 16 73 1
3 333 181 29 151 1
4 214 129 20 106 3
5 191 72 8 64 0
6 155 76 15 58 3
7 21 49 14 34 1
8 218 49 8 41 0
9 250 64 12 52 0
10 455 58 10 48 0
11 227 46 8 38 0
12 460 48 5 43 0
13 167 45 7 38 0
14 36 44 10 34 0
15 422 54 10 43 1
16 400 47 6 41 0
17 375 40 5 35 0
18 35 58 6 51 1
19 147 34 6 27 1
20 15 42 10 31 1
Sum of observed crashes across top 20 sites identified by the PFI approach
1356 228 1114 14

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 333 181 29 151 1
2 214 129 20 106 3
3 62 130 23 106 1
4 482 90 16 73 1
5 400 47 6 41 0
6 191 72 8 64 0
7 155 76 15 58 3
8 21 49 14 34 1
9 218 49 8 41 0
10 147 34 6 27 1
11 401 31 7 24 0
12 271 25 1 23 1
13 253 22 1 21 0
14 35 58 6 51 1
15 22 33 9 23 1
16 437 26 3 23 0
17 153 19 3 13 3
18 460 48 5 43 0
19 167 45 7 38 0
20 61 14 1 11 2
Sum of observed crashes across top 20 sites identified by the EWRS approach
1178 188 971 19

Shaded: sites that are uniquely identified by each approach.
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Excess crashes along top 20 high-risk sites identified by the Potential for Improvement (PFI) versus Excess Weighted Risk Score (EWRS) approach.

Top sites identified by the PFI approach

Top sites identified by the EWRS approach

Rank Site ID Total excess Minor injury Serious injury Fatal excess
crashes excess crashes excess crashes crashes
1 62 53.654 - - -
2 482 49.628 - - -
3 333 40.947 - - -
4 214 42.306 - - -
5 191 39.781 - - -
6 155 33.418 - - -
7 21 35.831 - - -
8 218 27.986 - - -
9 250 21.067 - - -
10 455 20.575 - - -
11 227 22.887 - - -
12 460 21.180 - - -
13 167 21.216 - - -
14 36 20.781 - - -
15 422 18.022 - - -
16 400 41.609 - - -
17 375 18.561 - - -
18 35 14.813 - - -
19 147 21.500 - - -
20 15 14.944 - - -
Sum of observed crashes across top 20 sites identified by the PFI approach
408 - - -

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 333 73.111 17.489 55.622 0.000
2 214 49.795 8.377 39.707 1.712
3 62 56.909 14.550 42.358 0.000
4 482 50.604 11.390 39.073 0.140
5 400 42.286 5.095 37.190 0.000
6 191 38.597 3.380 35.217 0.000
7 155 33.580 10.753 20.925 1.902
8 21 37.627 12.706 24.177 0.744
9 218 28.986 4.749 24.237 0.000
10 147 23.059 4.599 17.675 0.785
11 401 26.358 6.352 20.006 0.000
12 271 16.834 0.049 16.002 0.782
13 253 17.898 0.204 17.694 0.000
14 35 18.405 1.622 16.703 0.080
15 22 21.569 7.607 13.199 0.763
16 437 18.957 2.055 16.902 0.000
17 153 7.776 0.593 4.315 2.867
18 460 23.834 3.340 20.494 0.000
19 167 22.285 4.608 17.678 0.000
20 61 9.078 0.000 7.129 1.950
Sum of observed crashes across top 20 sites identified by the EWRS approach
618 120 486 12

Shaded: sites that are uniquely identified by each approach.

at a site.

The results show that out of 1356 crashes identified by the potential
for improvement approach, only 408 crashes are excess (30.0 %)
whereas out of 1178 crashes identified by the excess weighted risk score
approach, 618 are excess (52.4 %). This finding shows that the excess
weighted risk score approach leads to the identification of more trea-
table crashes along the top ranked sites. The ranking of sites also paints
a similar picture of model performance. The top ranked sites identified
by the risk score approach have substantially higher excess crashes than
the top ranked sites identified by the potential for improvement ap-
proach (for example, see sites of rank 1, rank 3, rank 4 and rank 5 in
Table 8). Moreover, the excess weighted risk score approach provides
additional information about excess crashes by severity levels which
cannot be obtained by the other approach. This additional information
indicate that the majority of the excess crashes (498 out of 618) are
fatal and serious injury crashes.

5.4.2. Two-stage mixed model vs joint model

As illustrated previously, the PFI approach identifies higher total
crashes in high rank sites while the EWRS approach identifies crashes
with higher severities. However, this comparison may not provide a
thorough understanding of the blackspot identification performance of
the joint model within the EWRS approach because an approach that
only looks into total crashes is not going to identify as many fatal and
severe injury crashes compared to an approach that emphasizes severe
crashes, regardless of model specification. As a result, the EWRS ap-
proach is selected as the blackspot identification approach and the
performance of the joint model is now compared with that of a two-
stage (independent) mixed model of crash count and crash severity.
Table 9 and Table 10 show the top 20 road segments identified by the
EWRS approach using these two model specifications.

The results show that 4 out of 20 road segments (shaded cells in
Table 9 and Table 10) are unique to the model specification and are not
commonly identified by the two models. The sites that are unique to the
joint model have higher number of fatal crashes compared to the sites
that are unique to the two-stage mixed model. In addition, the ranking
of sites by these two models is different. The two-stage mixed model
identified 1257 crashes whereas the joint model identified 1178 crashes
along the top 20 sites. The joint model identified 19 fatal crashes

whereas the two-stage mixed model identified 14 fatal crashes along
those sites. Similar to the PFI approach with the crash count model, the
EWRS approach with the two-stage mixed model identified higher
number of minor and serious injury crashes compared to the EWRS
approach with the joint model. However, a closer look at ‘excess cra-
shes’ revealed the true benefit of the joint model (Table 10). Out of
1257 crashes identified by the two-stage mixed model, only 586 crashes
are excess (46.6 %), whereas out of 1178 crashes identified by the joint
model, 618 are excess (52.4 %). This finding shows that the joint model
leads to the identification of more treatable crashes along the top
ranked sites. The ranking of sites also paints a similar picture of model
performance.

The above findings together illustrate the true benefit of the joint
model of crash count and crash severity when using within the excess
weighted risk score approach in that it ultimately leads to the identi-
fication of higher number of treatable fatal and serious injury crashes.
This benefit is the direct consequence of applying weights to the pre-
dicted crash counts by severity, and accounting for the correlation be-
tween the predicted crash counts of different severity which is in turn
the consequence of employing the joint model of crash count and crash
severity.

6. Conclusions

Total crash counts at transport locations have widely been used to
identify high-risk sites across the network. However, the societal impact
of crashes and their harm to the society is not accounted for in the
existing approaches because crash severity has not been well in-
corporated into the traditional blackspot identification method. This
study aimed to fill this gap by using the joint modelling approach to
incorporate crash severity into crash count prediction and identify road
segments with high risk of fatal and serious injury crashes.

Findings indicate that the incorporation of crash severity into the
crash count model and capturing the correlation between crash counts
of different severity levels improve the accuracy (i.e. statistical fit) of
crash count predictions. In addition, accounting for such correlations
influences the over dispersion of crash data and the statistical sig-
nificance of explanatory variables. The joint model of crash count and
crash severity provides unique information about the probability of
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Observed crashes along top 20 high-risk sites identified by the Excess Weighted Risk Score (EWRS) approach using two-stage mixed vs joint models of crash count and

crash severity.

Top sites identified by the two-stage mixed model

Top sites identified by the joint model

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 62 130 23 106 1
2 214 129 20 106 3
3 482 90 16 73 1
4 400 47 6 41 0
5 191 72 8 64 0
6 155 76 15 58 3
7 333 181 29 151 1
8 21 49 14 34 1
9 218 49 8 41 0
10 460 48 5 43 0
11 401 31 7 24 0
12 147 34 6 27 1
13 227 46 8 38 0
14 271 25 1 23 1
15 35 58 6 51 1
16 167 45 7 38 0
17 253 22 1 21 0
18 340 31 4 27 0
19 375 40 5 35 0
20 422 54 10 43 1
Sum of observed crashes across top 20 sites identified by the two-stage mixed model
1257 199 1044 14

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 333 181 29 151 1
2 214 129 20 106 3
3 62 130 23 106 1
4 482 90 16 73 1
5 400 47 6 41 0
6 191 72 8 64 0
7 155 76 15 58 3
8 21 49 14 34 1
9 218 49 8 41 0
10 147 34 6 27 1
11 401 31 7 24 0
12 271 25 1 23 1
13 253 22 1 21 0
14 35 58 6 51 1
15 22 33 9 23 1
16 437 26 3 23 0
17 153 19 3 13 3
18 460 48 5 43 0
19 167 45 7 38 0
20 61 14 1 11 2
Sum of observed crashes across top 20 sites identified by the joint model
1178 188 971 19

Shaded: sites that are uniquely identified by each approach.

each severity level on road segments.

From the pragmatic point of view and in terms of identifying high-
risk sites, the joint model of crash count and crash severity enables the
analyst to predict crash counts of different severity levels and provides
more information about crashes compared to the traditional count
model. Such information can be readily used to rank transport locations
not only based on the total crashes but also based on the severe crashes
such as fatal and serious injury crashes. However, it is important to note
that determining which blackspot identification approach is more
"useful" in practice may require additional considerations. For example,
economic analysis (determining overall benefit and overall return on

Table 10

investment given a fixed budget) of the final selection of high-risk sites
and the required countermeasures may change the superiority of one
approach over another (Gross et al., 2016). Nonetheless, the weighted
risk score approach presented in this study is not a replacement but may
serve as a complement to the existing approaches because it provides
additional information for identifying high-risk sites.

This study is not without limitations. An implicit assumption in the
specification of the joint model of crash count and crash severity is that
crash counts of different severity levels have the same amount of over
dispersion. Future research should test whether this assumption is valid.
In addition, the performance of the joint model of crash count and crash

Excess crashes along top 20 high-risk sites identified by the Excess Weighted Risk Score (EWRS) approach using two-stage mixed vs joint models of crash count and

crash severity.

Top sites identified by the two-stage mixed model

Top sites identified by the joint model

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 62 53.741 9.052 44.689 0.000
2 214 42.306 4.162 36.379 1.765
3 482 49.628 8.624 40.579 0.425
4 400 41.686 5.015 36.671 0.000
5 191 40.240 2.114 38.126 0.000
6 155 33.418 7.221 23.803 2.393
7 333 41.942 3.414 38.529 0.000
8 21 35.831 12.329 22.789 0.714
9 218 28.286 4.161 24.125 0.000
10 460 21.562 0.100 21.462 0.000
11 401 25.802 6.037 19.766 0.000
12 147 21.500 4.413 16.358 0.728
13 227 23.217 3.778 19.439 0.000
14 271 14.161 0.000 14.296 0.846
15 35 16.703 0.000 16.318 0.385
16 167 21.555 2.655 18.900 0.000
17 253 17.431 0.153 17.278 0.000
18 340 19.170 1.808 17.363 0.000
19 375 18.866 1.083 17.783 0.000
20 422 18.022 3.427 14.107 0.488
Sum of excess crashes across top 20 sites identified by the two-stage mixed model
586 80 499 8

Rank Site ID Total excess Minor injury Serious injury Fatal excess

crashes excess crashes excess crashes crashes
1 333 73.111 17.489 55.622 0.000
2 214 49.795 8.377 39.707 1.712
3 62 56.909 14.550 42.358 0.000
4 482 50.604 11.390 39.073 0.140
5 400 42.286 5.095 37.190 0.000
6 191 38.597 3.380 35.217 0.000
7 155 33.580 10.753 20.925 1.902
8 21 37.627 12.706 24.177 0.744
9 218 28.986 4.749 24.237 0.000
10 147 23.059 4.599 17.675 0.785
11 401 26.358 6.352 20.006 0.000
12 271 16.834 0.049 16.002 0.782
13 253 17.898 0.204 17.694 0.000
14 35 18.405 1.622 16.703 0.080
15 22 21.569 7.607 13.199 0.763
16 437 18.957 2.055 16.902 0.000
17 153 7.776 0.593 4.315 2.867
18 460 23.834 3.340 20.494 0.000
19 167 22.285 4.608 17.678 0.000
20 61 9.078 0.000 7.129 1.950
Sum of excess crashes across top 20 sites identified by the joint model
618 120 486 12

Shaded: sites that are uniquely identified by each approach.
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severity has not been compared with the other state-of-the-practice
models including multivariate count models and equivalent property
damage only models. Testing the performance of these models against
each other is a worthy research direction.
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