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A Unified Framework for Concurrent Pedestrian
and Cyclist Detection

Xiaofei Li, Lingxi Li, Fabian Flohr, Jiangiang Wang, Hui Xiong, Morys Bernhard, Shuyue Pan,
Dariu M. Gavrila, and Keqiang Li

Abstract—Extensive research interest has been focused on
protecting vulnerable road users in recent years, particularly
pedestrians and cyclists, due to their attributes of vulnerability.
However, comparatively little effort has been spent on detecting
pedestrian and cyclist together, particularly when it concerns
quantitative performance analysis on large datasets. In this pa-
per, we present a unified framework for concurrent pedestrian
and cyclist detection, which includes a novel detection proposal
method (termed UB-MPR) to output a set of object candidates, a
discriminative deep model based on Fast R-CNN for classification
and localization, and a specific postprocessing step to further
improve detection performance. Experiments are performed on
a new pedestrian and cyclist dataset containing 30 490 annotated
pedestrian and 26771 cyclist instances in over 50000 images,
recorded from a moving vehicle in the urban traffic of Beijing.
Experimental results indicate that the proposed method outper-
forms other state-of-the-art methods significantly.

Index Terms—Multiple potential regions, pedestrian and cyclist
detection, R-CNN, upper body detection.

I. INTRODUCTION

IGNIFICANT progress has been made over the past decade

on improving driving safety with the development of
Advanced Driver Assistance Systems (ADAS), such as pre-
collision systems, crash imminent braking systems and others.
In the last few years, however, extensive research interest has
been focused on protecting vulnerable road users (VRUs),
including pedestrians, cyclists and motorcyclists. According to
the statistical data of WHO [1], half of the world’s road traffic
deaths occur among vulnerable road users. In some low- and
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middle-income countries, a much higher proportion of road
users are pedestrians and cyclists. Among the vulnerable road
users, pedestrians and cyclists are the weakest because there
is no special protection device for them. Therefore, to make
walking and cycling safer, detecting and protecting pedestrians
and cyclists need to be paid more attention.

Many approaches based on different sensors are employed
in vehicle environment perception systems, such as monocular
camera, stereo camera, lidar and radar. Focusing on pedestrian
and cyclist detection field, vision sensors are preferred, due to
the possibility to capture a high-resolution perspective view of
the scene with useful color and texture information, compared
to active sensors [2]. Furthermore, vision technology is cost-
effective and mature enough to handle many other tasks, such
as lane detection and traffic sign detection.

Vision-based pedestrian detection has been studied for many
years, but it is still a challenging problem due to the large
variability in appearance, body pose, occlusion and cluttered
backgrounds. Similar problems occur in the field of cyclist
detection. In addition to the aforementioned problems, multiple
viewpoints of cyclists bring more challenges to detect them,
which is rarely taken into consideration in pedestrian detection.
Cyclists can be viewed from a variety of possible orientations,
which generates a problem to choose the detection window size
as the aspect ratio of a cyclist differs from each orientation.

It’s noted that traditional pedestrian or cyclist detection meth-
ods always consider pedestrians and cyclists separately [3], [4],
although pedestrians and cyclists often appear in one picture.
This often leads to scanning the input image several times and
causing confused detection results, such as classifying cyclists
as pedestrians, and vice versa, due to their similar appearance.
In general, cyclists move faster than pedestrians, different
attentions with pedestrians should be paid from ADAS or
autonomous vehicles. Therefore, detecting pedestrians and cy-
clists concurrently and differentiating them clearly are urgently
needed for the adaptive decision of ADAS and autonomous
vehicles.

Generic object detection methods [5], [6], which are tradi-
tionally formulated as some detection proposals processed by
a classifier, are good solutions to deal with the above issues.
However, it’s hard to learn a method to output a set of detection
proposals that are likely to contain the objects, considering the
large variability of pedestrian and cyclist instances. Whereas,
the similarity between the two object classes is another chal-
lenging problem for pedestrian and cyclist classification.

To deal with these issues, a unified pedestrian and cyclist
detector is presented in this paper, which can detect pedestrians
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Fig. 1. Upper bodies of pedestrians and cyclists in different views.

and cyclists concurrently and differentiate them clearly. As
the main contribution of this paper, the unified framework for
concurrent pedestrian and cyclist detection involves a novel
detection proposal method to output a set of object candidates,
a discriminative deep model based on Fast R-CNN (FRCN)
[7] for classification and localization, and a specific post-
processing step.

The second contribution is a novel detection proposal method
for pedestrian and cyclist detection, termed UB-MPR. We note
that the upper bodies of pedestrians and cyclists are usually
similar and visible, as shown in Fig. 1. So the upper body
(UB) is utilized to extract object candidates where pedestrians
or cyclists may appear. In order to propose potential object
regions, multiple potential regions (MPR) around an upper
body candidate that may cover the whole object (a pedestrian
or a cyclist) are generated.

A FRCN-based deep model is deployed for concurrent
pedestrian and cyclist detection task, followed by a specific
post-processing step to further improve the detection perfor-
mance, which is the third contribution of this paper.

Another contribution is the extensive comparative testing
performed in this paper, on the large “Tsinghua-Daimler Cyclist
Benchmark™ [8] and on a sizable annotated pedestrian dataset.

The remainder of the paper is organized as follows. In
Section II, the related work is presented, whereas Section III
is an overview of our proposed system. In Section IV, the
new pedestrian and cyclist detection dataset is introduced. In
Section V, the evaluation protocol and system configurations
are presented, and the performance of our approach is evaluated
on the new dataset. The final conclusion and future work are
given in Section VI.

II. RELATED WORK

As mentioned above, vision-based pedestrian and cyclist
detection is a challenging problem due to its practical use in
the driving environment. Over the last decade, vision-based
pedestrian detection has been extensively investigated, more
than 60 methods are evaluated on the Caltech pedestrian de-
tection benchmark until March 2016 [3]. Since an exhaustive

survey of pedestrian detection is beyond the scope of this
paper, interested readers are referred to some general surveys,
such as [2], [9], [10] and the references therein, for an excel-
lent review of pedestrian detection frameworks and benchmark
datasets. Here five methods are mentioned as the representative
landmarks. In 2003, Viola and Jones applied their V] detector
to the task of pedestrian detection [11]. Then Dalal and Triggs
introduced the classical Histogram of Oriented Gradients
(HOG) detector into the pedestrian detection task in 2005 [12].
Based on HOG detector, Deformable Part Model (DPM)
was designed to weaken the deformation effect of non-rigid
objects by Felzenswalb et al. in 2008 [13]. Another variant
method ChnFtrs was applied to deploy multiple registered
images channels for classification by Dollar et al. in 2009 [14].
In 2013, ConvNet model was introduced to yield compet-
itive results on major pedestrian detection benchmarks by
Sermanet et al. [15].

As opposed to pedestrian detection, very limited work has
been undertaken in the domain of vision-based cyclist detec-
tion, although similar techniques are used for cyclist detection.
Li [16] used HOG-LP features and linear SVM classifier to
detect crossing cyclists, with the purpose of optimizing the
time-consuming steps of HOG feature extraction. Chen [17]
proposed a part-based bicycle and motorcycle detection for
nighttime environments integrating appearance-based features
and edge-based features. Cho [18] defined a mixture model
of multiple viewpoints to detect cyclists, which was based on
part-based representation, HOG feature and Support Vector
Machine. In [19], a two-stage multi-model cyclist detection
scheme was proposed for naturalistic driving video processing.
An integral feature based detector was applied to filter out most
of the negative windows, then the remaining potential windows
were classified into cyclist or non-cyclist windows by three pre-
learned view-specific detectors. In order to handle the multi-
view problem of cyclists, the work proposed in [4] divided the
cyclists into subcategories based on cyclists’ orientation. For
each orientation bin, they built a cascaded detector with HOG
features trained based on the KITTI training dataset [20]. The
work also explored the applications of geometric constraints to
improve the detection performance.

A vision-based pedestrian and cyclist detection method was
proposed by Fu [21], which is capable of recognizing the
features of pedestrians and cyclists appeared in an image. The
method harnessed the symmetry of objects, a two-wheeled
recognition and plus a spatial relationship calculation between
a cyclist and a vehicle, as a strategy to complete the detection
process. Although this method could detect pedestrians and
cyclists together, distributed processing was used to detect
pedestrian and cyclist separately, then a cyclist confirmation
step was processed according to a spatial relationship between
the cyclist and the two-wheeled vehicle.

It’s noted that most of the aforementioned works are capable
of handling roughly rigid objects easily (such as pedestrians),
but they have difficulty in detecting more deformable generic
objects (such as cyclists). In the latter case, several view-
specific detectors are required to deal with different aspect
ratios. Since the resolutions of the object templates are fixed
normally, an exhaustive sliding window search is required to
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Fig. 2. Overview of the proposed pedestrian and cyclist detection method.

find objects at different scales with different aspect ratios,
like DPM [13]. More recent approaches like [5], [22], may
be alternative methods for pedestrian and cyclist detection,
which utilize region proposal methods to generate potential
bounding boxes in an image firstly, then classify these pro-
posed boxes by a classifier, and finally use post-processing
to refine the detection results. These methods can warp the
proposal regions into fixed-size inputs regardless of the regions’
aspect ratios and classify them concurrently, due to superior
capabilities in learning a general object representation from
large amounts of training data. However, it’s hard to learn a
method to output a set of detection proposals for pedestrians
and cyclists, due to the large variability of pedestrian and cyclist
instances.

We also note that most of the aforementioned methods de-
tect pedestrian/cyclist separately, or cannot differentiate them
clearly. For example, in the evaluation protocol of [3], ground-
truth bounding boxes for cyclists were ignored and did not need
to be matched, whereas, matches were not viewed as mistakes
either. As a result, these methods always classified cyclists as
positive pedestrian samples.

III. PROPOSED METHODS
A. Overview

The proposed pedestrian and cyclist detector can be divided
into three parts: 1) UB-MPR based detection proposal method,
2) Discriminative networks for object detection, and 3) Post-
processing. The flowchart is shown in Fig. 2.

Firstly, an upper body detector is designed based on
ACF framework [23] to extract upper body candidates where
pedestrians or cyclists may appear. Around each upper body

\i
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E o |E [
' ro ] |
g1 Beem 13
T |4
= |4

‘ Post-processing ]

candidate, multiple potential regions that may cover the whole
pedestrian or cyclist instance are generated. Then all the po-
tential regions serve as inputs to a deep convolutional neural
network to get classification probabilities and object localiza-
tions. Finally, a post-processing procedure specialized for the
UB-MPR method is deployed to further enhance the detection
performance.

B. UB-MPR Based Detection Proposal Method

1) Definition of Upper Body: The upper bodies of pedes-
trians and cyclists have similar appearance and pose, and can
be visible in most cases, as shown in Fig. 1. A pedestrian or
a cyclist may appear around the place where an upper body
is detected, which is the basis of the unified framework for
pedestrian and cyclist detection.

With respect to the division method of a body, several works
can be referred to. For instance, Mogelmose et al. [23] and
Liu et al. [25] divided the full body into two parts evenly, the
upper half part was the upper body and the lower part was the
lower body. Prioletti et al. [26] used two different compositions
of body parts, two parts containing an upper body and a lower
body, and three parts containing a head, a torso and legs.
Zhang et al. [27] tested a three parts model and showed the
head-shoulder area is more discriminative for pedestrian detec-
tion than other body parts.

Referring to the aforementioned works, the upper body con-
taining the head and part of the torso is adopted in this work.
The uppermost square of the person is chosen as the upper
body of an object, whose side length is equal to half of the
person’s height exactly, shown by the green bounding boxes
in Fig. 3. Here, person indicates the pedestrian when the object
is a pedestrian, and the rider when the object is a cyclist.
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Fig. 3. The pedestrian or cyclist instance’s upper body is defined as the
uppermost square of the person, whose side length is equal to half of the
person’s height exactly. Green dashed and solid bounding boxes indicate the
ground-truth bounding boxes of the person and the upper body, respectively.

2) Upper Body Detector: The channel features detectors
(firstly proposed by Dollar et al. [14], [23]) is utilized to
detect the upper body in this work because the methods are
conceptually straightforward and efficient. Specifically, for our
work in this paper, Locally Decorrelated Channel Features
(LDCF) variant [28] is employed due to the better performance.

Given an input image, LDCF computes several feature
channels and removes correlations in local neighborhoods of
feature channels, where each channel is a per-pixel feature
map such that output pixels are computed from corresponding
patches of input pixels. The same channel features as [28] are
used: normalized gradient magnitude (1 channel), histogram
of oriented gradients (6 channels), and LUV color channels
(3 channels), 10 channels in total. We apply RealBoost with
4 rounds of bootstrapping to train upper body detector with
4096 depth-5 decision trees over the h/2 - w/2 - 10 aggregated
features, where h x w is the input window and 2 is the down
sample scale. To adapt to the size of upper body, the modelDs
(model height and width without padding) is set to [20, 20]
and modelDsPad (model height and width with padding) is set
to [32, 32]. The upper body detector is trained using the new
pedestrian and cyclist training dataset.

In order to generate a more competitive upper body detector,
two variant detectors (ACF+ and LDCF [28]) were trained and
evaluated in the new pedestrian and cyclist dataset (with moder-
ate setting). Fig. 4 shows the upper body detection performance
(the relationship between precision and recall rate) using the
evaluation protocol developed by Dollar [3]. From the figure,
we can see LDCF-based upper body detector outperforms
ACF+-based method by 3.5% average precision. Therefore,
LDCEF is employed in the subsequent development.

3) Optimization of Upper Body Detections: Since MPR
that may cover the whole pedestrian and cyclist are generated
based on the upper body candidates, the localization accuracy
of the upper body has a great influence on the performance
of following procedures. In order to improve the localization
accuracy of upper body candidates, a linear regression model
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Fig. 4. Upper body detection performance in the new pedestrian and cyclist
test dataset.

is trained to predict an optimal window based on the channel
features, inspired by the work in DPM [13] and R-CNN [5].

The target of this step is to map an upper body candi-
date U(z{,yf, wu, hy) into the ground-truth of the upper
body Uc(2f ¢, Yira» Wua, hue) using a transformation, where
(xf,y5) and (24, yf ) indicate the x, y coordinates of
the central point of the upper body candidate and ground-
truth, respectively, (wy, hy) and (wyg, hug) indicate their
widths and heights. The following transformation is deployed
to transform an input bounding box U into a predicted bounding
box Uc(2¢a, UGg> Wua, hua):

2o = 2 +wydy
it = v + hud,

Wye = wy exp(dy)
}ALUG = hU exp(dh).

1)

Here, each d, is the transformation parameter modeled as a
linear function of the vectorized aggregated channel features
f(U) of the input upper body candidate: d, = w! f(U), where
w, is the model parameter to be learned. The model parameters
can be learned as a standard regularized least squares problem
by minimizing the loss function

LS~ (7 i\2 A 2
loss:EZ(UG—UG> +§||w*|| . 2)

(3

Here, NV is the number of training samples, A is the regular-
ization factor, which is set as 1000 in this paper. Only upper
body candidates close to ground-truth samples are employed
as training samples. The threshold of Intersection-over-Union
(IoU) overlap threshold between upper body candidates and
upper body ground-truths is chosen as 0.5 in this work.

The detection performance of LDCF-based upper body de-
tector optimized by localization regression (LDCF-REG) is
shown in Fig. 4, which shows that the introduced LDCF-REG
outperforms LDCF by 2.6% improvement in average precision
for upper body detection. It is worth mentioning that LDCF-
REG can achieve 92.5% recall rate in the test dataset (with
moderate setting) with an IoU overlap threshold as 0.5.
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Fig. 5. Relationship among an upper body candidate, the corresponding object
ground-truth, and MPR. Five potential regions are shown for example. Green,
yellow, and blue bounding boxes indicate ground-truth bounding box of the
cyclist, detected upper body candidate, and corresponding potential regions,
respectively.

4) Definition of MPR: As we assumed before, each pedes-
trian or cyclist instance has a visible upper body. If we get the
position of an upper body, we can estimate the rough location of
the object bounding box. In this section, we introduce a novel
idea to generate pedestrian and cyclist proposals, which can
generate Multiple Potential Regions (MPR) around an upper
body candidate, with the purpose of overlapping ground-truth
bounding boxes as much as possible. The process of designing
MPR is to select a group of representative transformation
parameters, which can transform an input upper body candidate
into M potential regions. Fig. 5 shows the relationship among
an upper body candidate, the corresponding object ground-truth
and MPR.

Firstly, we formulize the relationship between an upper body
candidate U and the corresponding object ground-truth G

TG = xf + Kpwy

Yo = yu + kyhu

3
waGg = RpyWy
hG = Hth.
Because z¢, = 2¢ + we /2 and zf; = xpy + wy /2, so
xg =2y + (Ko — kw/2+1/2)wy
ya = yu + kyhy
Y 4

WG = kwWu

hG = Hth.

Here, k. indicates the factor; (zy,yy) indicate the x, y
coordinates of the left-top point of the upper body, wy and
hy indicate its width and height; (z¢,ys) indicate the x, y
coordinates of the left-top point of the object ground-truth, wg
and h¢ indicate its width and height; z{; and z¢, indicate the
x coordinates of the central point of the upper body and object
ground-truth, respectively.

Probability Density

Probability Density
S - bW s w o o w

in

Probability Density
Probability Density

o
o

o
IS
~

Fig. 6. Histograms of k.

Based on the above equations, we can calculate «, by the
following formula:

= (zg +wg/2 —xy —wy/2)
_ (ye —yu) e
LM 5)
K = —
he
Rp = E

In order to observe the distribution of k., directly, the his-
tograms of «, calculated by coupled upper body candidates and
object ground-truths {U?, G*} are shown in Fig. 6. From the
histograms, it can be seen that the distributions of . match
with normal distributions approximately, which illustrates the
relationship between upper body candidates and the object
ground-truths is formulized properly. It is worth noting that
only upper body candidates close to ground-truth samples are
employed to calculate ., and optimize MPR parameters. The
threshold of IoU overlap between upper body candidates and
upper body ground-truths is chosen as 0.5 in this work.

If a group of representative transformation parameters X
(k},...k™ ..., kM) are chosen, we can get MPR to esti-
mate the position of the object ground-truth by the following
formula:

oh =zu+ (K — Ky /2+1/2)wy

Yg =yu + kythy ©)
mo__ m

W = Kjwy

m o ,.m
R—Iith.

Here, (27}, y}) indicates the x, y coordinates of the left-top
point of the m-th potential region, w% and h’% indicate its width
and height, respectively.

5) Optimizing MPR Parameters: Intuitively, we can sample
MPR parameters based on some importance sampling methods
based on the joint probability distribution of x.. However, the
diversity of MPR parameters is hard to be guaranteed because
most of the parameters may concentrate in the central region. In
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Fig. 7. Evolution of the fitness function.

order to choose MPR parameters optimally, Genetic Algorithm
(GA) [29] is deployed to search an ideal solution.

Genetic Algorithm (GA) is an adaptive heuristic search al-
gorithm based on the evolutionary ideas of natural selection
and genetics. The algorithm usually iterates many generations,
starting from a population of randomly generated individuals.
In each generation, the fitness of each individual in the popula-
tion is calculated, which will be the clue to select fit individuals
using a fitness proportionate selection method. Selected indi-
viduals generate a new generation population after being modi-
fied by crossover and mutation operators. The algorithm usually
terminates when either a maximum number of generations has
been produced or other conditions have been reached.

A group of MPR parameters K (kl,---&™ .- kM) is
represented as an individual. M indicates M potential regions
are chosen around one upper body candidate, we set M =
40 in this paper. So the variable number of an individual is
4 x M. The objective of optimizing the population is to find
the best individual which can overlap ground-truth bounding
boxes from the training dataset as much as possible. For each
object ground-truth, it just requires one potential region which
can match it well. Therefore, the Intersection-over-Union (IoU)
overlap rate of R™ and G is calculated as the objective function

I

fitness = max _(overlap (R.,,G")). 7

| me[l,M]

where, overlap(-) is a function to compute the IoU overlap
rate, I is the number of all the coupled upper body candidates
and object ground-truths. Besides, the roulette wheel selection
method is deployed to select individuals, the size of population
is 100, the generation is 1000, the crossover probability is 0.8
and the mutation probability is 0.2. After 1000 generations,
the evolution of the fitness function can be found in Fig. 7.
It is worth mentioning that MPR with optimized parameters
can achieve 96.5% recall rate in the test dataset (with moderate
setting) with an IoU overlap threshold 0.5 if maximal 50 upper
body candidates per image are considered, which means the
UB-MPR proposal method is very effective.

Algorithm 1 provides the detailed training procedure of the
UB-MPR proposal method, which mainly consists of training
the upper body detector, optimizing upper body detections and
optimizing MPR parameters.

Algorithm 1: Training the UB-MPR detection proposal
method

Input: The new pedestrian and cyclist dataset
Output: Upper body detector D, upper body localization
regression R, MPR parameter vector K

1 Initialize upper body samples: positive samples P < train-
ing set 1 and 3, negative samples N <+ ¢

2 for n = 1 to num-rounds do

3 Mine (hard) negatives N, from training set 2 and non-

VRU set

4 Append N,, to N

5 D = train—detector(P,N)

6 end

7 for i = 1 to num-images do

8 dt; < detect upper body in i-th image

9 m—dt;, m—gt; < match dt; with ¢-th ground-truth

upper—gt;

10 Append m—dt; to m—dt, m—gt; to m—gt

11 end

12 R = train—regressor (m—dt, m—gt)

13 for ¢ = 1 to num-images do

14 r — dt; < optimize dt; by R

15 mr—dt;, mr—gt; + match r—dt; with i-th ground-

truth upper—gt;

16 Append mr—dt; to mr—dt, mr—gt; to mr—gt

17 end

18 Initialize population Ky for genetic algorithm

19 X = genetic—algorithm (KXo, mr—dt, mr—gt)

20 return D, R and X

C. Discriminative Networks for Object Detection

It has been proved that deep network models are poten-
tially powerful in handling complex tasks, such as pedestrian
detection [15], [30]. Recent advances in object detection are
driven by the success of R-CNN, which involves a category-
independent region proposal method to extract a set of candi-
date detections, a large convolutional neural network to extract
object feature vectors and a linear SVM to classify object
classes.

As an upgraded version of R-CNN [5], FRCN [7] is deployed
to detect pedestrians and cyclists in this paper. Unlike original
R-CNN, FRCN trains a single-stage multi-task loss network.
The inputs of the network are the whole image and a set of
proposals. After several convolutional and max pooling layers,
a region of interest pooling layer extracts a fixed-length feature
vector from the feature map. Finally, two sibling output layers,
which produce classification probability and bounding box
regression, are connected after a sequence of fully connected
layers.

Unlike the original method, which either uses Selective
Search [31] or a Region Proposal Network (Faster R-CNN [32])
for extracting relevant proposals, we utilize UB-MPR method
for proposal generation that is described in the previous section.
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Fig. 8. Overview of the new pedestrian and cyclist detection dataset. (a) Pedestrian samples. (b) Cyclist samples. (c) Test images with annotations: Blue, green,
and yellow bounding boxes indicate pedestrians, cyclists, and other riders, respectively.

D. Post-Processing

After the aforementioned procedure, classification probabil-
ities and bounding boxes of M x N proposals are produced,
where N is the number of considered upper body candidates
per image. Intuitively, the bounding box with the highest clas-
sification probability may be the object that we want to find.
However, this will lead to ambiguous situations sometimes.
Take a cyclist instance for example, the region covering the
cyclist may get a high classification score, but another region
covering the rider may get a high score too. As a result, the
object may be recognized as a pedestrian, which represents a
confused case. Since the object category corresponding to an
upper body candidate can be indicated by its MPR, we aggre-
gate all the classification probabilities of the MPR and classify
them using linear Support Vector Machine (SVM) [33]. The ag-
gregated classification probability feature can be represented as

1 M 1 M 1 M
f:(sl,...,sl,52,...,52,53,...,53). (8)

Here s1, s2, and s3 indicate the classification probabilities
of pedestrian, cyclist and background, respectively. Once all
upper body candidates are classified correctly, we can ignore
the influence of interference from other categories easily. Here,
only upper body candidates close to ground-truth samples
(IoU overlap higher than 0.5) in the training dataset are em-
ployed to train the classifier.

We usually get multiple overlapping detections for each
object. Thus, a greedy procedure via non-maximum suppres-
sion (NMS) is used to eliminate repeated detections. Since an
upper body candidate can generate a proposal group with M
proposals, among which only one proposal is valid. After NMS
procedure, several proposals from one group may be retained.
Thus we only reserve the proposal with the highest score from
one group.

TABLE 1
STATISTICS OF THE NEW PEDESTRIAN AND CYCLIST DATASET
Training Test
Setl Set2 Non-VRU Set3  Set 1ol
Total Frames 9741 5095 1000 22780 14570 53186
Labeled 9741 1019 1000 4556 2914 19230
Frames
Total BBs 16202 3016 0 28732 13143 61093
Cyclist BBs 16202 1301 0 4610 4658 26771
Pedestrian 0 1539 0 21571 7380 30490
BBs
Other rider 0 176 0 2551 1105 3832
BBs

IV. A NEW PEDESTRIAN AND CYCLIST DATASET

Challenging datasets have promoted technological progress
in computer vision. There are already some publicly available
pedestrian datasets, such as the INRIA [12], Caltech [3] and
Daimler [9], [34] pedestrian detection datasets, which promote
the development of pedestrian detection. Although cyclists are
often encountered in traffic accidents, there is no challenging
cyclist dataset publicly available yet, except the KITTI object
detection benchmark [20]. However, there are very limited
cyclist instances (no more than 2000) in the training set, which
might not be sufficient for cyclist detection and evaluation.
Therefore, our group introduced a public “Tsinghua-Daimler
Cyclist Benchmark™ recently [8], which contained plenty of
annotated cyclists. In order to train and evaluate the proposed
method in this work, we present a new pedestrian and cyclist
detection dataset, which supplements the public cyclist dataset
with a richly annotated pedestrian dataset.

An excerpt from the new pedestrian and cyclist detection
dataset is shown in Fig. 8. We add a fully labeled dataset, termed
Training Set 3, into the cyclist dataset to supplement plenty of
pedestrian instances. Detailed labeling rules are the same as the
description in the previous work [8]. Statistics about the new
dataset can be found in Table L.
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(a) Easy. (b) Moderate. (c) Hard.

V. EXPERIMENTS

In this section, evaluation parameters and detailed settings of
different methods are described. The performance evaluation of
different proposal methods and detectors on the new pedestrian
and cyclist test dataset is compared and discussed.

A. Evaluation Protocol

As we used in [8], the well-established methodology used
in the PASCAL object detection challenges [35] is utilized
to show the relationship between precision and recall rate.
Meanwhile, the average precision (AP) is used to summarize
the performance of precision/recall curve. To assign the output
detections to ground-truth objects, the PASCAL measure is
employed, which states that the area of IoU overlap must exceed
the threshold of 0.5.

In order to evaluate performance in various subsets of the
new pedestrian and cyclist dataset, we define three difficulty
levels as follows:

— Easy: pedestrians and cyclists with bounding boxes higher
than 60 pixels and fully visible.

— Moderate: pedestrians and cyclists with bounding boxes
higher than 45 pixels and less than 40% occlusion.

— Hard: pedestrians and cyclists with bounding boxes
higher than 30 pixels and less than 80% occlusion.

During evaluation in a subset, the objects not included in the
subset are ignored instead of discarded directly, which need
not to be matched with detections. Besides, we also want to
evaluate the capacity of the detectors to differentiate pedestrians
and cyclists. Therefore we also compare the detection perfor-
mance between ignoring and discarding the other objects in the
following experimental sections.

B. Parameter Configuration

The latest version of Dollar’s Computer Vision MATLAB
Toolbox [23] was applied in this work to train the upper body
detector. The pedestrian and cyclist instances were extracted

from training set 1 and set 3 with moderate setting, and the
negative samples were sampled from training set 2 and non-
VRU set. Only upper body candidates close to ground-truth
samples (IoU overlap higher than 0.5) are employed to calculate
and optimize MPR parameters. The number of considered
upper body candidates per image is limited to 50 in this paper.

For training the deep networks with UB-MPR proposal meth-
ods, the open source of FRCN [7] with pre-trained ZF-nets was
applied in this work. During the fine-tuning procedure, the final
sibling layers were adapted to this task. Each SGD mini-batch
was constructed by 2 images. The input image size was set
to 2048 x 1024. The first image of a batch was chosen from
training set 1 or set 3, and the second image was chosen from
training set 2 or non-VRU set. Both of the images were chosen
uniformly at random from corresponding dataset. We used
mini-batches of size 128, sampling positive samples (max 25%
of batch size) from the first image with a minimum IoU overlap
of 0.5 to a ground-truth bounding box. The left negative sam-
ples were sampled from all the images of the training dataset
with a maximum IoU overlap of 0.5: negatives around positive
samples could be extracted from the first image; hard negatives
and additional normal negatives might be extracted from the
second image. We did bootstrapping every 10000 iterations to
mine hard negative samples. We used a learning rate of 0.001
for 40 000 iterations, and 0.0001 for the next 20 000 iterations.
Other network’s configurations and parameters were the same
as the original paper [7].

Besides, in order to compare different proposal methods, two
state-of-the-art proposal methods, Selective Search (SS) [31]
and Edge Boxes (EB) [36] were also considered for training
pedestrian and cyclist detectors. For Selective Search, we fol-
lowed the same settings that were used in R-CNN [5], and we
got about 6000 proposals per image in the training dataset. For
Edge Boxes, we used the default parameters the same as the
original paper, and got 4000 proposals per image in the training
dataset.

In addition, ACF-based and LDCF-based pedestrian and
cyclist detectors were also considered for comparisons. During
training ACF and LDCF detectors, we extracted pedestrian and
cyclist instances from training set 1 and set 3, and extracted
negative samples from training set 2 and non-VRU set. We
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Fig. 10. Precision versus recall curves of various detectors shown for the new pedestrian and cyclist test dataset with different settings. The AP is listed before the
name of each method. “Ignore” indicates ignoring cyclist (pedestrian) instances when evaluating the performance of pedestrian (cyclist) detection, and “Discard”
indicates discarding cyclist (pedestrian) instances directly, which are plotted in solid and dashed lines, respectively. UB-MPR-FRCN-PP and UB-MPR-FRCN are
shorted for UB-MPR-PP and UB-MPR, respectively. (a) Pedestrian, easy. (b) Cyclist, easy, (c) Pedestrian, moderate. (d) Cyclist, moderate. (e) Pedestrian, hard.

(f) Cyclist, hard.

divided the positive cyclist instances into three classes to train
three cyclist detectors, just like we did in [8]. Meanwhile,
another detector for pedestrian detection was also trained in the
same way. The same parameters used in the original application
[23] were utilized to train the pedestrian and cyclist detector.

During the test phase, all the detectors mentioned above
deployed a greedy fashion of non-maximum suppression to
suppress bounding boxes with lower scores, just like the meth-
ods used in ACF [23].

C. Comparisons With Other Proposal Methods

In order to validate the performance of the presented proposal
method, we compute the recall rate of different proposals at
different IoU ratios with ground-truth bounding boxes, shown
in Fig. 9. SS and EB methods are utilized with default param-
eters. The N proposals are the top-N ranked ones based on their
confidences. We consider different numbers (2000 and 4000)

for SS and EB.
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TABLE 11
PEDESTRIAN DETECTION AVERAGE PRECISION IN THE TEST DATASET
AP (%)
method easy moderate hard
ignore discard ignore discard ignore discard
UB-MPR-PP 81.7 81.3 73.1 72.2 62.3 61.0
UB-MPR 81.2 80.8 72.5 71.6 61.8 60.6
EB-FRCN 73.9 73.4 62.2 61.6 50.6 49.8
SS-FRCN 71.6 71.0 58.6 57.8 47.4 46.7
LDCF 74.1 59.9 68.3 55.2 54.7 44.1
ACF 60.8 52.1 54.3 46.4 423 36.3
TABLE III
CYCLIST DETECTION AVERAGE PRECISION IN THE TEST DATASET
AP (%)
method easy moderate hard
ignore discard ignore discard ignore discard
UB-MPR-PP 89.9 88.9 83.0 80.7 73.4 70.7
UB-MPR 89.7 88.7 83.0 80.7 73.2 70.5
EB-FRCN 84.5 83.1 72.1 70.4 61.8 60.2
SS-FRCN 81.4 79.0 69.7 67.1 59.0 56.8
LDCF 89.4 74.1 80.2 66.1 70.6 57.5
ACF 85.9 71.1 77.7 63.9 67.9 55.4

The results show that the UB-MPR proposal method outper-
forms the other compared methods significantly, even with less
proposed bounding boxes. Take the moderate subset as an ex-
ample, when IoU overlap is 0.5, our UB-MPR method achieves
96.5% recall rate, which outperforms SS and EB (with average
2000 proposals per image) by 41.1% and 33.2%, respectively.
Even when SS and EB use 4000 proposals, the UB-MPR
method outperforms them by 30.5% and 20.2%, respectively.
When IoU overlap is 0.75, the UB-MPR method achieves
84.8% recall rate, which outperforms SS (2000), EB (2000),
SS (4000), and EB (4000) by 66.6%, 52.2%, 61.3%, and 43.3%,
respectively.

Besides, we also found two trends from the comparative
figures: with the test subsets becoming harder, the advantage
of the UB-MPR method is increasingly obvious; when the IoU
overlap is less than 0.9, the higher the IoU overlap is, the more
obvious improvement of our method compared to the other
methods.

D. Comparisons With Other Detectors

In this section, we compare the performance of our proposed
method to other representative methods using the experimental
protocol explained above. Fig. 10 illustrates the overall de-
tection performance of all the detectors in the new pedestrian
and cyclist test dataset with different settings. In order to com-
pare different detectors directly, we also provide two summary
tables in Tables II and III. From the figure and two summary
tables, we can find that all the selected methods can get rea-
sonable performances in different subsets. Among them, the
proposed methods (UB-MPR-FRCN-PP and UB-MPR-FRCN)
outperform the others under any conditions, which illustrates
the effectiveness of our unified framework for pedestrian and
cyclist detection.

When compared to other FRCN-based methods in the
moderate subsets, UB-MPR-FRCN based pedestrian detector
outperforms SS-FRCN and EB-FRCN by 13.9% and 10.3% AP,
respectively, meanwhile UB-MPR-FRCN based cyclist detector

outperforms SS-FRCN and EB-FRCN by 13.3% and 10.9% AP,
respectively. The improvement of the performance is brought
by the UB-MPR proposal method, which demonstrates the
benefit of the new proposal method.

We also find LDCF and ACF based pedestrian detectors
and cyclist detectors can get competitive results when ignor-
ing cyclist and pedestrian instances, respectively. But with
“discard” settings (discarding cyclists when evaluating pedes-
trian detectors, or discarding pedestrians when evaluat-
ing cyclist detectors), their performances drop significantly.
Meanwhile, the performance of FRCN-based methods do not
change a lot. This is because LDCF and ACF based detec-
tors train pedestrian and cyclist detectors separately, thus they
cannot differentiate them clearly. Therefore, from this point,
FRCN-based framework for pedestrian and cyclist detection
has obvious advantages.

When the specific post-processing (PP) for UB-MPR-FRCN
method is deployed, the performance in almost all subsets can
be slightly improved, which shows the post-processing step
described in Section V-D can further enhance the detection
performance.

E. Discussion

The above experimental results show that our proposed
method UB-MPR-FRCN-PP outperforms other state-of-the-art
detectors significantly. Some qualitative detection results of
the proposed method under different scenarios from the new
pedestrian and cyclist dataset can be found in Fig. 11. However,
several important issues about the experiments need to be
discussed and explained.

It is noted that the performance of all pedestrian detectors are
not as good as cyclist detectors. This is because the unbalanced
training samples are applied during the training procedure. Al-
though plenty of pedestrian instances have been supplemented
into the training set 3, quite a number of them are over occluded
or too small, which are ignored during training.

We also find that, with the test subset setting becoming
harder, average precisions of all detectors decrease gradually,
because many pedestrian and cyclist instances are with lower
resolution and under partial occlusion. Thus, there is still a big
room to improve in the moderate and hard subsets, more work
needs to be followed up in the new dataset.

We only evaluate the proposed detector in our new pedestrian
and cyclist dataset, because no relevant pedestrian and cyclist
dataset is available for training and evaluating the detector. The
KITTI object detection dataset [20] is considered as a difficult
dataset including annotated cars, pedestrians and cyclists. But
very limited pedestrian and cyclist instances are involved in this
dataset. Moreover the rider of cyclist instances is not annotated.
Thus the proposed method cannot be validated in this dataset.

In this paper, we focuses on detection performance rather
than processing speed. Our proposed method, running on a
3.3-GHz i7 Central Processing Unit (CPU) processor and a
TITTAN X Graphics Processing Unit (GPU) processor, needs
about 1.9s per image (2048 x 1024), which is almost equal to
EB-FRCN (~1.8 s), but more efficient than SS-FRCN (~23 s).
However, with the development of computer hardware and
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O

Fig. 11. Detection examples of our detector under different scenarios from the pedestrian and cyclist dataset. Blue and green bounding boxes indicate detected

pedestrians and cyclists, respectively.

GPU optimization, processing speed in object detection has
seen great progress recently, and the complex models like
convolutional neural networks will be released real-time.

VI. CONCLUSION AND FUTURE WORK

In this paper, a unified framework for concurrent pedes-
trian and cyclist detection is presented, which consists of an
UB-MPR based detection proposal method, a FRCN-based
model for classification and localization, and a specific post-
processing step. The proposed method can detect pedestrians
and cyclists concurrently and differentiate them clearly, both of
which are needed for the decision of intelligent vehicles.

Experimental results demonstrate that our UB-MPR proposal
method outperforms the other compared methods significantly,
even with less proposed bounding boxes. And our proposed
method UB-MPR-FRCN-PP outperforms the others almost un-
der any conditions. The proposed method achieves more than
10% AP improvements in the moderate subset compared to
FRCN-based methods, due to the use of UB-MPR proposal.

It also outperforms ACF and LDCF based detectors, especially
when using the “Discard” setting, which demonstrates the
benefit of the discriminative networks.

In order to make walking and cycling safer, the temporal and
orientation information [37] of pedestrians and cyclists could
help to improve risk assessment. Therefore, we are planning
to extend our work to explore multiple object tracking and
orientation estimation for pedestrians and cyclists.
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