
 
 

Delft University of Technology

AlwaysSafe: Reinforcement Learning without Safety Constraint Violations during Training

Simão, T. D.; Jansen, Nils; Spaan, M.T.J.

Publication date
2021
Document Version
Final published version
Published in
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems

Citation (APA)
Simão, T. D., Jansen, N., & Spaan, M. T. J. (2021). AlwaysSafe: Reinforcement Learning without Safety
Constraint Violations during Training. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems (pp. 1226-1235). (AAMAS '21). International Foundation for Autonomous
Agents and Multiagent Systems. http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1226.pdf
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1226.pdf


AlwaysSafe: Reinforcement Learning without Safety Constraint
Violations during Training — Supplementary Material

Thiago D. Simão1, Nils Jansen2, Matthijs T. J. Spaan3

1 Delft University of Technology, The Netherlands
t.diassimao@tudelft.nl

2 Radboud University, Nijmegen
n.jansen@science.ru.nl

3 Delft University of Technology, The Netherlands
m.t.j.spaan@tudelft.nl

This document provides the supplementary material of the following paper:
Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. 2021. AlwaysSafe:Reinforcement Learning without Safety Constraint Violations
during Training. In Proc. of the 20th International Conference on Autonomous Agentsand Multiagent Systems (AAMAS 2021), Online, May 3–7,
2021, IFAAMAS,10 pages.

S-I PROOF OF THEOREM 3.2
We restate the theorem for clarity.

Theorem (3.2). 𝜙𝐶 is cost-model-irrelevant.

Proof. Given 𝑎, 𝑠1, 𝑠2, 𝑠 ∈ A × S × S × S̄. If 𝜙𝐶 (𝑠1) = 𝜙𝐶 (𝑠2) then we have

𝐶 (𝑠1, 𝑎) =
∑
𝑖∈N𝑛

𝐶𝑖 (𝑠1 [Δ𝐶𝑖 ], 𝑎)

=
∑
𝑖∈N𝑛

𝐶𝑖 (𝑠2 [Δ𝐶𝑖 ], 𝑎)

= 𝐶 (𝑠2, 𝑎) .
The first and last derivations come from the definition of the factored cost function. The middle derivation comes from the fact that both
states were mapped together, so from (4) we conclude that 𝑠1 [Δ𝐶𝑖 ] = 𝑠2 [Δ

𝐶
𝑖
] : ∀𝑖 ∈ N𝑛 .

In the following derivation, we use 𝑃 (𝑠 ′[Δ] | 𝑠, 𝑎) = ∏
𝑋𝑖 ∈Δ 𝑃 (𝑠

′[𝑋𝑖 ] | 𝑠, 𝑎) where Δ ⊆ 𝑋 , 𝑠, 𝑎, 𝑠 ′ ∈ S×S×A and NotAnc(𝐶) = 𝑋 \Anc(𝐶).
If 𝜙𝐶 (𝑠1) = 𝜙𝐶 (𝑠2) then we have∑

𝑠′∈𝜙−1 (𝑠)
𝑃 (𝑠 ′ | 𝑠1, 𝑎) =

(𝑎)

∑
𝑠′∈𝜙−1 (𝑠)

𝑃 (𝑠 ′[𝑋 ] | 𝑠1, 𝑎),

=
(𝑏)

∑
𝑠′∈𝜙−1 (𝑠)

𝑃 (𝑠 ′[Anc(𝐶)] | 𝑠1, 𝑎)𝑃 (𝑠 ′[NotAnc(𝐶)] | 𝑠1, 𝑎),

=
(𝑐)

∑
𝑠′∈𝜙−1 (𝑠)

𝑃 (𝑠 [Anc(𝐶)] | 𝑠1, 𝑎)𝑃 (𝑠 ′[NotAnc(𝐶)] | 𝑠1, 𝑎),

=
(𝑑)

𝑃 (𝑠 [Anc(𝐶)] | 𝑠1, 𝑎)
∑

𝑠′∈𝜙−1 (𝑠)
𝑃 (𝑠 ′[NotAnc(𝐶)] | 𝑠1, 𝑎)︸                                       ︷︷                                       ︸

=1 sum over all values of NotAnc(𝐶)

,

=
(𝑒)

𝑃 (𝑠 [Anc(𝐶)] | 𝑠1, 𝑎)

=
(𝑓 )

∏
𝑋𝑖 ∈Anc(𝐶)

𝑃 (𝑠 [𝑋𝑖 ] | 𝑠1 [Pa𝑎 (𝑋𝑖 )], 𝑎)

=
(𝑔)

∏
𝑋𝑖 ∈Anc(𝐶)

𝑃 (𝑠 [𝑋𝑖 ] | 𝑠2 [Pa𝑎 (𝑋𝑖 )], 𝑎)

=
(ℎ)

∑
𝑠′∈𝜙−1 (𝑠)

𝑃 (𝑠 ′ | 𝑠2, 𝑎) .

In this derivation,
(a) shows we are considering the values of each variable in state 𝑠 ′;



(b) decouples ancestors from non ancestors;
(c) removes the dependence on the state 𝑠 ′, since ∀𝑠 ′ ∈ 𝜙−1

𝐶
(𝑠), the values of variables in Anc(𝐶) are the same, by the definition of 𝜙𝐶 ;

(d) factors out the probability term, since it is now independent of 𝑠 ′;
(e) removes the summation that results in 1;
(f) uses the conditional independence from the factored CMDP;
(g) swaps 𝑠1 and 𝑠2, since they were mapped to the same abstract state, the values of their parents are the same;
(h) uses the same reasoning from (f) to (a).

□

S-II PROOF OF THEOREM 4.4
We restate the theorem for clarity.

Theorem (4.4). Given an abstract CMDP built according to a cost-model irrelevance abstraction and a fixed 𝛿 ∈ (0, 1), the algorithm
AlwaysSafe equipped with policies 𝜋𝐴 , 𝜋𝑇 or 𝜋𝛼 has no constraint violation regret with probability 1 − 𝛿 .

Proof. We split the proof in three parts related to the three policies considered.
AlwaysSafe 𝝅𝑨 From Theorem 4.1 we know that

𝑉
𝜋𝐴
𝐶
(𝜇) ≤ 𝑐.

This is enough to conclude that AlwaysSafe with 𝜋𝐴 does not violate the safety constraints.
AlwaysSafe 𝝅𝑻 First let us define the maximum expected cost of executing the policy 𝜋𝐺 in an CMDP of the uncertainty set:

𝑚𝑎𝑥𝐶 = max
𝑃 ′∈Ξ

𝑉
𝜋𝐺
𝐶
(𝜇, 𝑃 ′) .

From (7) we must show that 𝜋𝑇 is safe in both cases.
• Case 1 (𝑚𝑎𝑥𝐶 ≤ 𝑐): in this case the policy executed is 𝜋𝐺 . This way, we have that the expected cost for executing 𝜋𝐺 in any of the

CMDP of the uncertainty set is smaller than𝑚𝑎𝑥𝐶 :
𝑉
𝜋𝐺
𝐶
(𝜇, 𝑃 ′) ≤ 𝑚𝑎𝑥𝐶 : ∀𝑃 ′ ∈ Ξ.

Therefore, if the true CMDP is in the uncertainty set, then the expected cost of the policy 𝜋𝐺 is less or equal to the cost bound:
𝑃 ∈ Ξ =⇒ 𝑉

𝜋𝐺
𝐶
(𝜇) ≤ 𝑚𝑎𝑥𝐶 ≤ 𝑐, (8)

where the last inequality comes from the condition of this case. By construction, the transition function of the true CMDP belongs
to the uncertainty set Ξ with high probability 1 − 𝛿 :

𝑃𝑟

(
𝑃 ∈ Ξ

)
≥ 1 − 𝛿. (9)

Therefore, we have from (8) and (9) that:

𝑃𝑟

(
𝑉
𝜋𝐺
𝐶
(𝜇) ≤ 𝑐

)
≥ 𝑃𝑟

(
𝑃 ∈ Ξ

)
≥ 1 − 𝛿.

• Case 2 (𝑚𝑎𝑥𝐶 > 𝑐): in this case the policy executed is 𝜋𝐴 , which is safe (Theorem 4.1).
AlwaysSafe 𝝅𝜶 This proof is similar to the proof for AlwaysSafe 𝜋𝑇 . In this case, the only difference is that 𝜋𝐺 might be computed with a

bound 𝛽𝑐 that is lower than the original bound 𝑐 .
□



S-III ENVIRONMENTS FROM THE EMPIRICAL ANALYSIS
S-III.1 Cliff environment

c=2

S G

r=-100

c=2 c=2 c=2

c=1 c=1 c=1 c=1

c=2

S G

r=-100

c=2 c=2 c=2

c=1 c=1 c=1 c=1

Figure 4: Cliff world.

In the cliff environment (Figure 4 left) the agent starts in position 𝑆 and must reach position𝐺 (an absorbing state with no cost or reward).
The agent also gets a reward of -1 for each movement. If the agent falls from the cliff (stepping in one of the grey areas), it is sent back to
state 𝑆 and gets a reward of -100.

The agent gets a cost of 2 for walking in cells adjacent to the cliff (second row) and a cost of 1 for walking 2 cells away from the cliff (third
row).

Figure 4 (right) shows the optimal paths (dashed lines) for a cost bound 𝑐 = 2. The agent needs to randomize between two paths, taking
each path 50% of the time, which gives an expected cost of 2 and expected value of 10.

S-III.2 Simple CMDP

𝑠1

𝑠2 𝑠3

r=1
c=1

c=1
r=2

r=3
c=1

r=0
c=0

r=0
c=0

r=0
c=0

𝑠

c=0

c=1

Figure 5: A CMDP with 3 states (left) and the correponding abstract CMDP built with a model-cost-irrelevant abstraction
(right).

The simple CMDP (Figure 5) was adapted from a problem proposed by Zheng and Ratliff [55]. It has 3 states and 2 actions. The agent can
move from on state to the other, which give a cost of 1 and a reward equals to the index of the current state. Therefore, the agent has to
balance between the actions move and stay to get the maximum reward without violating the cost constraints. Finally, since the reward for
moving changes from one state to the other, the optimal policy is not equal in all the ground states.



S-IV CONFIDENCE INTERVALS FROM EXPERIMENTS
We use the following confidence intervals in the experiments:

𝑒𝑃 (𝑠, 𝑎, 𝑠 ′) = 1
max{𝑛(𝑠, 𝑎), 1} +

√
Var(𝑃 (𝑠 ′ | 𝑠, 𝑎))
max{𝑛(𝑠, 𝑎), 1} and

𝑒𝑅 (𝑠, 𝑎) = 𝑅max − 𝑅min
max{𝑛(𝑠, 𝑎), 1} ,

𝑒𝐶 (𝑠, 𝑎) = 𝐶max −𝐶min
max{𝑛(𝑠, 𝑎), 1} ,

where
• 𝑛(𝑠, 𝑎) is the number of times action 𝑎 ∈ A has been executed in the state 𝑠 ∈ S,
• 𝑅min and 𝑅max (𝐶min and 𝐶max) are the minimum and maximum value of the reward (cost) function,
• Var(𝑥) = 𝑥 ∗ (1 − 𝑥).

We removed the subscript 𝛿 since these bounds are tighter than the theoretical bounds and do not depend on 𝛿 .

S-V CODE
The code to reproduce the experiments is available at https://github.com/AlgTUDelft/AlwaysSafe. The interested reader can follow the
instructions in the README.md file to install and run the scripts for each experiment.

https://github.com/AlgTUDelft/AlwaysSafe

