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In this paper we prove convergence rates for time discretization schemes for semilinear stochastic
evolution equations with additive or multiplicative Gaussian noise, where the leading operator A is the
generator of a strongly continuous semigroup S on a Hilbert space X, and the focus is on nonparabolic
problems. The main results are optimal bounds for the uniform strong error

. 1/p
B = (E s U@ -U1) ",

where p € [2,00), U is the mild solution, U is obtained from a time discretization scheme, k is the step
size and N = T/k. The usual schemes such as the exponential Euler (EE), the implicit Euler (IE), the
Crank—Nicolson (CN) method, etc. are included as special cases. Under conditions on the nonlinearity
and the noise, we show

* E < ky/log(T/k) (linear equation, additive noise, general S)
* EXS Vk/1og(T /k) (nonlinear equation, multiplicative noise, contractive )
* E* < ky/log(T/k) (nonlinear wave equation, multiplicative noise),

for a large class of time discretization schemes. The logarithmic factor can be removed if the EE method is
used with a (quasi)-contractive S. The obtained bounds coincide with the optimal bounds for SDEs. Most
of the existing literature is concerned with bounds for the simpler pointwise strong error

N\ P
Ej = ( sup  ElU@) — Ujllp)
JE{0.....Ni}

Applications to Maxwell equations, Schrodinger equations and wave equations are included. For these
equations, our results improve and reprove several existing results with a unified method and provide the
first results known for the IE and the CN method.

Keywords: time discretization schemes; pathwise uniform convergence; SPDEs; optimal convergence
rates; stochastic convolutions; stochastic wave equation.
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1. Introduction

In this paper we consider stochastic PDEs driven by an additive or multiplicative Gaussian noise. The
equations we consider can be written as abstract stochastic evolution equations on a Hilbert space X of
the form

[ dU = AU+ FU))dt+ G(U) dWy on [0,T], (1.1)

U0) =uy e lP(82;X).

Here, A is the generator of a Cjy-semigroup (S(#)),~.q, Wy is a cylindrical Brownian motion, F and G are
globally Lipschitz, uj is the initial data, and p € 2, 00).

Our aim is to obtain strong convergence rates for temporal discretization schemes that cover the
hyperbolic setting. The hyperbolic setting has been extensively studied in recent years (see Kovdcs et al.
(2010, 2012, 2013, 2020); Cohen et al. (2013); Wang et al. (2014); Wang (2015); Anton et al. (2016);
Cohen & Quer-Sardanyons (2016); Anton & Cohen (2018); Cui & Hong (2018); Cox et al. (2019); Harms
& Miiller (2019); Cohen et al. (2020); Banjai et al. (2021); Cui (2021); Jacobe de Naurois et al. (2021);
Cohen & Lang (2022); Hong et al. (2022); Berg et al. (2023); Bréhier & Cohen (2023) and references
therein). In the parabolic setting, (i.e. (S()),-o being an analytic semigroup) regularization phenomena
occur, which make it possible to prove very different convergence results. In the nonparabolic case, new
methods to show convergence rates are needed and related to a way to obtain regularity. Kato’s setting
for the hyperbolic case from his seminal work Kato (1975) creates a way to obtain this regularity, which
has proven to be very useful in the analysis of quasilinear equations as well as their numerical treatment
Hochbruck & Pazur (2017); Hochbruck ef al. (2018); Kovacs & Lubich (2018); Dorich & Hochbruck
(2022); Schnaubelt (2023).

The main idea in Kato’s setting is to consider two spaces X and Y with ¥ < X (or sometimes
even three spaces) on which the operator A and the nonlinearities ' and G can be analysed. In this way,
one can create regularity of U and obtain better mapping properties of the nonlinearities. In numerical
approximations, the obtained regularity can be used to obtain convergence rates, as illustrated for the
deterministic case in the references above.

The above setting often also applies to the parabolic case, in which, however, the required mapping
properties of F on Y can often be avoided due to the regularising effect of the convolution with the
analytic semigroup S. For these equations, it does not seem necessary to work with the Kato setting,
as regularization phenomena can be exploited. For details on the parabolic case, the reader is referred
to Gyongy & Millet (2009); Jentzen & Kloeden (2009, 2011); Barth & Lang (2013); Cox & Neerven
(2013); Kruse (2014); Lord et al. (2014); Jentzen & Rockner (2015); Kovacs et al. (2015, 2018); Kamrani
& Blomker (2017); Bessaih et al. (2018); Becker & Jentzen (2019); Anton et al. (2020); von Hallern &
Rassler (2020); Diening ef al. (2023) and references therein, as well as Remark 6.7. Consequently, our
focus lies on the hyperbolic setting.

1.1 Setting

In the above-mentioned literature on the hyperbolic case (and often in the parabolic case), the error
considered is the pointwise strong error

sup  E|U() — U7, (1.2)
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2062 K. KLIOBA AND M. VERAAR

where U is the mild solution to (1.1), and (UY )j.v:"o is an approximation of the solution given by a temporal

discretization scheme of the form U° = ug,
U =RU™ +kRFU™) +RGUHAW, j=1,....N,. (1.3)

Here, N, = T/k is the number of points, k = =1 is the uniform step size, 1 = Jjk and AWj =
Wy (t;) — Wy (;_1). The operator Ry is an approximation of the semigroup S at time k.

When performing numerical simulations to approximate the solution of a stochastic equation, one
naturally wants the simulation to be close to the solution of (1.1). However, (1.2) being small does not
provide enough information to conclude this, see Example 1.1. Also, from a probabilistic point of view
(1.2) contains no information on the convergence of the path. Instead, it is a more meaningful question
to find convergence rates for the uniform strong error

E sup U@ —U|P, (1.4)

where now the supremum over j is inside the expectation. In the deterministic setting there is no difference
between (1.2) and (1.4). It is a widely known open problem in the field to find optimal estimates for (1.4).
Such estimates where the supremum is inside the expectation are usually called maximal estimates, and
there is an enormous literature on maximal estimates for general stochastic processes Talagrand (2021).
However, for processes that do not have any Gaussian or martingale structure it can be quite complicated
to prove (sharp) maximal estimates. Even maximal estimates for the mild solution U to (1.1) with F = 0
and G(u) replaced by a progressively measurable g € L2(£2 x (0,T);X) are unknown in general (see
the survey (van Neerven & Veraar, 2020, Section 4) for details). The difference between the errors (1.2)
and (1.4) is illustrated in the following simple example.

ExampLE 1.1. Let £2 = [0, 1] and let IP denote the Lebesgue measure. For y € (0, 1], let vy : £2 x
[0, 1] — Rbe given by vy (w, ) = 1if [t — w| < 1/(2N7), and zero otherwise. Then one can check that
the following error estimates hold:

1
sup Elvy()P < — and E sup |vy(H)) = 1.
€[0,1] NY r€[0,1]

One even has sup,¢(g ;; [vy(w, )| = 1 for any w € 2. This shows the discrepancy between having the
supremum inside the expectation or not. Continuity of v, plays no role here. Indeed, one can easily
replace the indicator function by a continuous function without influencing the above error estimates.

In the case where S generates a Cy-group it is known how to estimate the uniform strong error (1.4)
for the exponential Euler (EE) method (i.e. R, = S(k)). In this case, one can use the group structure in
the following way:

t t
/O S(t = 5)g(s) AWy (s) = S(t)/0 S(=9)g(s) dWy (s),

and, similarly, for the discrete approximation. This makes it possible to avoid maximal estimates for
stochastic convolutions and use martingale techniques instead. This technique was first applied in Wang
(2015) to obtain optimal convergence rates for the uniform strong error of the exponential Euler method
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for abstract wave equations. Later, this technique was extended to other settings (see Anton & Cohen
(2018); Cui et al. (2019); Cohen et al. (2020); Berg et al. (2023)) and, in particular, applied to stochastic
Schrodinger and Maxwell equations. However, if S is not a group this technique is no longer applicable.
Equations in which S is not a group include transport equations, equations with dissipation (e.g. damped
wave equations), parabolic equations, etc. Of course, there are also many important systems where groups
are unavailable (e.g. if a parabolic equation is coupled to a wave or transport equation). Even more
importantly, for schemes involving rational approximations (e.g. implicit Euler (IE), Crank—Nicolson
(CN)) it is unclear how to use the C,-group structure to estimate the uniform strong error, since the
group does not appear in the scheme.

On the other hand, for other discretization schemes estimates for the simpler pointwise strong error
(1.2) are available (see e.g. the above-mentioned papers in the hyperbolic case). Moreover, simulations
suggest that optimal rates of convergence for the uniform strong error (1.4) hold as well. The main goal
of our work is to prove such optimal bounds for (1.4) for more general semigroups and more general
schemes. In particular, we prove such bounds under the condition that S and R are contractive. This solves
the open problem on optimal rates for (1.4) for this class of semigroups and numerical schemes up to a
logarithmic factor.

1.2 Some of the main results for multiplicative noise

As in Kato’s setting for the hyperbolic case, let X and Y be Hilbert spaces with ¥ < X. For « € (0, 1]
we say that R approximates S to order « on Y if there is a constant C, > O such that forallx € Y,k > 0
andj € {0,...,Ny}

1(S(t) — Rxlly < Cuk®lixly,

where Ri = (Rk)j denotes the j-th power of the scheme at time step k. Our main result on convergence
rates for (1.4) is as follows.

TueorREM 1.2. Let X and Y be Hilbert spaces such that ¥ < X. Let A be the generator of a C;-contraction
semigroup (S(#)),~.o on X and Y. Suppose that (R, ), ( is a time discretization scheme which is contractive
onboth X and Y, that R approximates S to order o € (0, 1/2] on Y and that Y < D((—A)%). Suppose that
F:X— Xand G : X — £,(H,X) are Lipschitz continuous and that F : ¥ — Yand G : Y — L,(H,Y)
are of linear growth. Let p € [2,00), u € [7($2;Y) and U be the mild solution to (1.1). Letk € (0,7/2]

and let (U/ );V:ko be given by (1.3). Then, there is a constant Cy > 0 not depending on u, and k such that

max [|U(t) — U|x

0<j<N

< Cr(1+ llugll pp ey Tog (T /). (1.5)

LP(82)

In particular, the approximations (U/) ; converge at rate « as k — 0 up to a logarithmic factor.
Theorem 1.2 applies to, among others,

* Exponential Euler (EE): R, = S(k);

+ TImplicit Euler (IE): R, = (1 — kA)~;

*  Crank-Nicolson (CN): R, = (2 + kA)(2 — kA)~ L.
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2064 K. KLIOBA AND M. VERAAR

TaBLE 1  Convergence rates o in case Y = D((—A)ﬁ ) in Theorem 1.2

EE IE CN
2
: prd £nd oy

Higher order implicit Runge—Kutta methods such as Radau methods, BDF(2), Lobatto ITA, IIB and
IIC, and some DIRK schemes are covered as well. The contractivity of the scheme R in the cases of EE
and IE follows from the contractivity of the semigroup S. For other rational schemes, the contractivity
of R, = r(kA) follows from the holomorphy of the corresponding rational function r : C_ — C and
|r(z)| < 1for all z € C_, which, in particular, is satisfied for A-acceptable or A-stable schemes. These
assertions follow from functional calculus (see Proposition 2.5).

In the above, one usually takes Y to be a suitable intermediate space between X and D(A). In the
special and important case that ¥ = D(A) one can take o« = % for all of the aforementioned schemes.
More general convergence rates can be found in Table 1.

Up to the logarithmic factor, the estimate (1.5) is optimal in the sense that the rate is the same as
the rate for the initial value term on its own (i.e. with F = 0 and G = 0). Theorem 1.2 follows from
Theorem 6.4. In the case of EE we show that the logarithmic factor can be omitted, see Corollary 6.6.
In the case of additive noise a similar result is obtained in Theorem 3.1 for the range o € (0, 1] for
semigroups and schemes which are not necessarily contractive.

The error estimate (1.5) can be extended from the grid points to the full time interval [0, 7] assuming
higher integrability of the initial values. Provided that u, € L°(§2;Y) holds for some p, € (2,00) in
addition to the assumptions of Theorem 1.2 the pathwise uniform error on the full time interval can be
estimated as (see Theorem 6.13 below)

sup |U®) — U)lly
1€[0,T]

< Cp(1 + llugllpo ;)K" V10g(T /k) (1.6)

Lr(2)

,,,,,

convergence is known to be optimal already for scalar SDEs. In practice, this implies that the rate of
convergence in the grid points is maintained already for a piecewise constant interpolation to other times.
The error estimate relies on new optimal path regularity estimates of stochastic convolutions in suitable
log-Holder spaces, which will be presented in Proposition 6.12.

Applications to Schrodinger and Maxwell equations are included in the main text (see Sec-
tions 3.3, 6.4, and 6.6). Our results improve several results from the literature to more general schemes
and general rates «. In Section 7, we include a setting for abstract wave equations, which was considered
in Wang (2015) only for the exponential Euler method. We prove similar higher-order convergence rates
for more general schemes and, in particular, recover Wang (2015) as a special case.

Let us emphasize that schemes involving rational approximations, such as the implicit Euler or
the Crank-Nicolson method, are in the focus of our work. While we improve existing results for the
exponential Euler method, the main novelty of our work lies in the possibility to treat other schemes with
a semigroup approach. To the best of the authors’ knowledge, the present work is the first contribution to
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pathwise uniform convergence rates for hyperbolic problems from a theoretical standpoint, both in the
generality and for the concrete examples listed above. The main innovations are as follows:

e first optimal pathwise uniform convergence rates for the implicit Euler method, the Crank-Nicolson
method, and any other contractive time discretization scheme for hyperbolic SPDEs,

» first use of Kato’s framework for SPDEs to systematically treat hyperbolic problems,
* maximal estimates for the convergence rate rather than pointwise estimates,

e path regularity results allowing to consider the error on the full time interval,

* novel pathwise uniform stability estimates,

e convergence up to order 1 for abstract wave equations for any contractive scheme.

To make the above results applicable to implementable numerical schemes for SPDEs, one would
additionally need a space discretization. Since the main novelty of our work lies in the treatment of
temporal discretizations we will only consider the latter. Space discretization is usually performed
by means of spectral Galerkin methods Wang et al. (2014); Jentzen & Rockner (2015); Kamrani &
Blomker (2017); Jacobe de Naurois et al. (2021), finite differences Gyongy & Millet (2009); Cohen
& Quer-Sardanyons (2016); Anton et al. (2020), or finite elements Kovacs et al. (2010, 2012, 2013,
2020); Cohen et al. (2013); Kruse (2014); Anton et al. (2016), sometimes combined with a discontinuous
Galerkin approach Banjai ez al. (2021); Hong et al. (2022), or other methods in space or space-time Barth
& Lang (2013); Cui & Hong (2018); Cui et al. (2019); Harms & Miiller (2019); Diening et al. (2023);
Le & Wichmann (2023).

A detailed understanding of the global Lipschitz setting is a quintessential step towards the treatment
of local Lipschitz nonlinearities, which occur more frequently in practice. Our result should be seen as
a first step, and we plan to continue our work on uniform strong errors in a local Lipschitz setting in the
near future.

It was recently shown in Cox et al. (2020) that one can transfer (1.2) to (1.4) using some of the
Holder continuity in the p-th moment at the price of decreasing the convergence rate via the Kolmogorov—
Chentsov theorem. The strength of this lies in the generality of possible applications. However, to get
practically useful bounds in concrete cases there are limitations. A more detailed comparison is made in
Remark 6.5.

1.3 Method of proof

For the proof of the convergence rate we need several ingredients. First of all, we need to prove that the
mild solution actually is continuous with values in the subspace Y. This can be seen as the replacement
of the usual regularization one has for parabolic equations in spirit of the Kato setting explained before.
Surprisingly, we do not need any Lipschitz assumptions on F and G as mappings from Y to Y, but linear
growth conditions suffice. This is crucial since Lipschitz estimates typically fail for Nemytskij mappings
on Sobolev spaces of higher order (see Dahlberg (1979) and Remark 4.5).

A key estimate in the proof is a new maximal inequality for discrete convolutions. In particular, this
inequality will be used to prove the stability of schemes such as (1.3), i.e.

inP
E swp U} <C,

where C is independent of the step size k. But it also plays a role in further estimates for the convergence.
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2066 K. KLIOBA AND M. VERAAR

A second key ingredient is an improved version of an estimate recently proven in van Neerven &
Veraar (2021), which allows estimating stochastic integral processes that contain a supremum

t
E sup sup H /O dﬁi(s)dWH(s)Hl; (1.7)

ie(l,...,n} =0

by certain square functions with a square-root-logarithmic dependency on n (see Proposition 2.3 below).
Finally, to prove the desired convergence rate of Theorem 1.2 we need to split the error obtained in
(1.3) into

1 (initial value part) + 4 (deterministic terms) + 5 (stochastic terms) = 10 terms.

To estimate these terms we require precise estimates for ||.S (tj) — R§(|| covx) EIU®@) — U(s)|P, stability
estimates, and maximal estimates for continuous and discrete convolutions.

In the end, we derive an estimate for the error in terms of itself, and we apply a standard discrete Gron-
wall argument to deduce the desired error bound. In the case of the exponential Euler method some terms
disappear since S(#;) = R;c, which makes it possible to omit the logarithmic terms originating from terms
such

as (1.7).

1.4 Overview
* Section 2 contains the preliminaries for the rest of the paper.

* Section 3 discusses the case of additive noise and semigroups that are not necessarily contractive.
We prove convergence of rate o up to order one, in case the noise and data are regular enough. This
is proved under the assumption that the numerical scheme R, approximates the semigroup at rate
a. Results are illustrated for the Schrédinger equation in which case the obtained results improve
several bounds from the literature for the EE method and provide the first uniform bounds for a large
class of other numerical methods including the IE and the CN method.

* In Section 4 we introduce the nonlinear evolution equation with multiplicative noise that we consider
in the rest of the paper. After recalling a standard well-posedness result we introduce a special case of
the Kato setting and prove that the solution has regularity in the subspace Y in case of linear growth
in the Y-setting (see Theorem 4.4).

* Section 5 is concerned with the stability of the discretization schemes for the nonlinear evolution
equation introduced in Section 4. The main stability result can be found in Proposition 5.1 and only
requires linear growth. Hence, it is applicable on both X and Y.

* Section 6 is central in the paper, and here we prove Theorem 1.2 for the nonlinear evolution equation
introduced in Section 4 (see Theorem 6.4 for the extended version). Moreover, we prove the error
bound (1.6) on the full time interval in Theorem 6.13. For this, we first establish a new optimal path
regularity result for the solution in Proposition 6.12, which is of independent interest. In Sections 6.4
and 6.6, we present applications to the Schrodinger equation as well as the Maxwell equation. A
numerical simulation of the Schrédinger equation in Section 6.5 confirms the analytical convergence
rates obtained.
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e In Section 7, we consider abstract stochastic wave equations and obtain convergence rates up to
order one (see Theorem 7.6). Although we are not in the setting of Section 6 an inspection of the
proofs given there shows that certain terms behave better for abstract wave equations due to their
second-order nature. Again, convergence rates are obtained for a large class of numerical schemes,
and versions of (1.6) are obtained. Examples with trace class, space-time white noise, and smooth
noise are included and can be found in Sections 7.4, 7.5, and 7.6, respectively. All these results are
new for schemes different from the EE method. Most notably, for smooth noise we can explain the
numerical convergence rates one sees in (Wang, 2015, Figure 6.1) for the IE and the CN method.

2. Preliminaries

Notation. Throughout the paper we fix a probability space (2, .7, P’) with filtration (:#,) (o 1)- Denote
the progressive o -algebra on (£2, %, P) by P and the progressively measurable subspace of a given space
by the index . Moreover, H, X, and Y denote Hilbert spaces, where H is used to define the (.%,) 1€[0.71"
cylindrical Brownian motion Wy;. The space of Hilbert—Schmidt operators from H to X is denoted by
L,(H,X) and the Borel o -algebra of X by B(X). Subsequently, we consider the final time 7 > 0 to be
fixed and consider a uniform time grid with #; = jk, where k > 0 is the time step and j = 0, ..., N} with
N, = T/k € N, and define [t] := max{tj 1, < tyforr € [0,T]. By (5(1)) >0, we denote a C-semigroup
and by (Ry);-( a numerical scheme that approximates S. For a given evolution equation (U(?)) (o 7} 18
the exact solution and U the numerical solution approximating U at time tiforj=0,...,N;. Forf and
g in the respective spaces let [[f1l,, , 7 := fllzp(2:r900,1:2)) a0 W8N, 4.7 = 181l p(2:1000,7:25k1,2)))- We
use the notation f(x) < g(x) to denote that there is a constant C > 0 such that for all x in the respective

set, f(x) < Cg(x).

2.1 Stochastic integration

The space £,(H,X) of Hilbert—-Schmidt operators from H to X consists of all bounded operators R :
H — X such that

IRIZ, 1x) = D IRR;]13 < oo,

iel

where (h;);c; is an orthonormal basis of H. If R € £,(H,X) the sum contains at most countably many
nonvanishing terms. For R € L,(H,X), (h;);; as before, and y = (y,),> centered i.i.d. normally
distributed random variables we define

Ry = y,Rh, 2.1)

n>1

where the convergence is in L” (§2; X) for p < oo and almost surely (see Hytonen ef al., 2017, Corollary
6.4.12).

In the stochastic integrals appearing in expressions such as (1.7) the integrator is an H-cylindrical
Brownian motion to take £, (H, X)-valued integrands into account. An H-cylindrical Brownian motion
is a mapping Wy, : L*(0, T; H) — L*(£2) such that

(i) Wybis Gaussian forall b € L2(0,T; H),
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2068 K. KLIOBA AND M. VERAAR

(iii) Wyb is F,-measurable for all b € L*(0, T; H) with support in [0, 7],
(iv) Wyb is independent of F forall b € [? (0, T; H) with support in [s, T,

where we include a complex conjugate on Wyb, in case we want to use a complex H-cylindrical
Brownian motion. For h € H and ¢ € [0, T] we use the shorthand notation Wy (1)h := WH(I(OJ) ® h).
Consequently, (W (1)h) 1€[0.7] is a Brownian motion for each fixed 4 € H, which is standard if and only
if [|A]l; = 1. In the special case H = R this notion coincides with real-valued Brownian motions. We
refer to an H-valued stochastic process (W (¢)),- as a Q-Wiener process if W(0) = 0, W has continuous
trajectories and independent increments, and W(f) — W(s) is normally distributed with parameters 0 and
(t—s)Q fort > s > 0. The operator Q is in L(H), positive self-adjoint, and of trace class. One can show
that W is a Q-Wiener process if and only if there exists an H-cylindrical Brownian motion Wy such that
02wy, =3 ., 0'2h, Wy (D)h, = W(#) for an orthonormal basis (4,,),~, of H (cf. (2.1)). To consider
an equation such as (1.1) with a Q-Wiener process W instead of a cylindrical Brownian motion one can
replace G by GQ'/? and reduce to the cylindrical case. For further properties of H-cylindrical Brownian
motions, Q-Wiener processes, and the Itd integral we refer to Da Prato & Zabczyk (2014).

To estimate Itd integrals w.r.t. such H-cylindrical Brownian motions, the Burkholder—Davis—Gundy
inequalities are particularly helpful. They imply that

PN\ 1/p
) < B, 18l @i20.1:.000 %)) 22)

t
(]E sup / g(s) dWy(s)
t€[0,71 110

In particular, one can take B, = 2 (by Doob’s maximal inequality (Hytonen et al., 2016, Thm. 3.2.2) and
the It6 isometry) and B, = 4,/p for p > 2. Indeed, this follows by combining the scalar result of (Carlen
& Krée, 1991, Theorem A) and (Ren, 2008, Theorem 2) with the reduction technique in (Kallenberg &
Sztencel, 1991, Theorem 3.1) and the simple estimate ||(£2 + nz)l/zllp < (||§||12, + ||r]||§)1/2 valid for
real-valued random variables & and 7, and p € [2, 00).

X

DerFiNITION 2.1. A Cy-semigroup (S(7)),s is said to be quasi-contractive with parameter A > 0 if
IS@)|| < e forallt > 0.

The following maximal inequality for stochastic convolutions follows from Hausenblas & Seidler
(2008), where the contractive case is treated. The quasicontractive case follows from a scaling argument.

Treorem 2.2. Let X be a Hilbert space and let (S(1)),>( be a quasi-contractive semigroup on X with
parameter A > 0. Then for p € [2, 00)

E sup

< B|Ig||
te[0,7]

t
/0 St — 5)g(s) dWy(s)

p
p
X LP(2;L2(0,T: Lo (H X))’

where B, is the constant from (2.2). In particular, one can take B, = 2 and B, = 4 /pfor2 <p < oo.

Next, we state a special maximal inequality, which will be needed to estimate stochastic integral
terms without semigroups. A similar result with constant of order log(/NV) can be found in (van Neerven
& Veraar, 2021, Proposition 2.7).
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 2069

ProrposiTioN 2.3. Let X be a Hilbert space and let 0 < p < co. Let @ := (@ V))]I.V: | be a finite sequence
in L4, (2; L*(0,T; £,(H, X))) and set

p) 1/p

. .

13
/ @Y AWy (s)

0

I;{,’ ) = (IE sup

te[0,T]je{l,....N}

Then for some Kp >0

I]% (p) S KP max {\/ lOg(N), ﬁ}||¢ ”U(.Q;ZXIO(LZ(O,T;Lz(H,X)))) lfN 2 2

If 2 < p < oo this estimate holds with K, = K := 4exp(l + 21—6) ~ 13.07, which is p-independent.

The above result was pointed out to the authors by Sonja Cox. The short proof below was pointed
out to us by Emiel Lorist. A more general version can be found in (Cox & van Winden, 2024, Theorem
3.1).

Proof. To prove the result, by approximation, we may assume that each @) is contained in
L®(2;L*0,T: L,(H,X))). First, consider pyy = log(N) with N > 8. Then, using ¢V — (=
contractively and the Burkholder—Davis—Gundy inequalities with Bp <4./pinX (see (2.2)) we find

1/pNn

1/pNn
) <4¢—(ZEH¢>“HLZ(OT,;Z(HX)))

1
< 4PN 1@ pow st @2 0.1 L0030

Iy (py) < (ZE sup

te[0,7T]

/ @D AW, (s)

Since ,/pyN /P = ¢,/log(N) this proves the result for p = py- To deduce the result for arbitrary p €
(0, pyy) note that by Lenglart’s inequality for increasing functions (Geiss & Scheutzow, 2021, Theorem
2.2) and with r = p/py € (0,1)

I = Iy ()™ < 1" (dey IOg(N))pE”q)HZI;V(LZ(O,T;Ez(H,X)))

N /
=r (46 IOg(N)) ”® ”LP(.Q KOO(LZ(O T: ﬁz(H X))))

Taking 1/p-th powers the result follows. Moreover, for p € [2,py) the result with the stated constant
follows after using r—"/7 = (EX)1/Pv < (I’TN)l/PN < exp(z—t).
If p € (py, 00) then using Minkowski’s inequality we obtain

N

PN |P/PN N t p \PN/P\ P/PN
INpy <E Z sup / o dWH(S) S( E sup / @Y AWy (s) )
j=11€l0.1] i etorn il Jo X
t
=N sup E sup / 20 Wy )| < deypy sup EI@ VI :
jetl.ny reorillJo " X jell,.. L2(0,T3L2(H.X))
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2070 K. KLIOBA AND M. VERAAR

where we used (2.2) once more. Taking 1/p-th powers and pulling the supremum over j inside the
expectation the required estimate follows.

It remains to comment on the case 2 < N < 7. Again by Lenglart’s inequality it suffices to consider
p € [2,00). In this case, the triangle inequality and (2.2) give

14 1/p

t
/ @Y AWy (s)

0

t€[0,T]

N
Il‘f,5 < (ZE sup
—1 X

1/p N .
) <B, ( Zl |o? HIL)I’(Q;LZ(O,T;EQ(H,X))))
=
< 4/PNPI @ @@z 0125w
< dexp (1 + %) max{y/log V), VPPl @uze 12073510
where the last estimate follows from N'/? < /7 < exp(1 + 21_6) for2<N <7 O

2.2 Approximation of semigroups and interpolation

An integral part of approximating solutions of a stochastic evolution equation concerns the approxima-
tion of a semigroup by some scheme. The following definition allows us to quantify the approximation
behaviour.

DeriNiTION 2.4. Let X be a Hilbert space. An L£(X)-valued scheme is a function R : [0, 00) — L(X). We
denote R, := R(k) for k > 0. Let Y be a Hilbert space which is continuously and densely embedded in
X. If A generates a Cjy-semigroup (S(#)),~o on X an £(X)-valued scheme R is said to approximate S to
order o > 0 on Y or, equivalently, R converges of order o on Y if for all T > 0 there is a constant c,>0
such that

I(SGk) — Rully < Coklluly

forallu € Y, k > 0 andj € N such that jk € [0, T]. An £(X)-valued scheme R is said to be contractive
if |Rll o xy < 1 forall k> 0.

Subsequently, we will omit the index for norms in the space X. In the absence of nonlinear and noise
terms the following schemes approximate S to different orders:

* Exponential Euler (EE): R, = S(k), any order & > 0 on X;
+ TImplicit Euler (IE): R, = (1 — kA)~!, order & € (0, 1] on D((—A)%¥);

*  Crank-Nicolson (CN): R, = (2 + kA)(2 — kA)~!, order a € (0,2] on D((—A)3*/?) provided that
S (t))zzo is contractive.

Contractivity of the semigroup and the approximating scheme play a central role in our theory. While
the contractivity of EE is immediate from the contractivity of the semigroup we state a useful sufficient
condition to verify the contractivity of rational schemes such as IE and CN below. One of the standard
assumptions in the theory of semigroup approximation is that the scheme R stems from a rational function
r: C_ — Cwith |r(z)| < 1 forall z in the negative open halfplane C_. Under an additional consistency
condition this condition is known as A-acceptability Brenner & Thomée (1979), and it certainly holds
for A-stable schemes Dahlquist (1963).
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ProposiTION 2.5. Let A be the generator of a Cj,-semigroup of contractions on a Hilbert space X. Suppose
that r : C_ — C is holomorphic, |r(z)| < 1 forall z € C_, and let R, = r(kA) for k > 0. Then, R is
contractive.

Proof. This is a consequence of the properties of the bounded H*°-calculus of —A as the negative
generator of a contraction semigroup, since R, = r(kA) = r(—k(—A)) is defined via H*-calculus.
The underlying theorem can be found in (Hytonen ef al., 2017, Thm. 10.2.24). (]

As a consequence of this proposition, contractive schemes include IE, CN, and some higher-order
implicit Runge—Kutta methods such as Radau methods, BDF(2), Lobatto IIA, 1IB and IIC as well as
some DIRK schemes.

A common choice for the spaces Y on which a given scheme approximates S are domains of fractional
powers of A. An important property of these spaces is that they embed into the real interpolation spaces
with parameter oo, i.e. for o > 0

D(A%) < Dy (at, 00). (2.3)

Here, D, (o, 00) denotes the real interpolation space (X, D(A))y - On later occasions, also the real
interpolation spaces (X, D(A)),, will be used. See Lunardi (1995); Triebel (1995) for details on
interpolation spaces.

Embeddings of the form (2.3) and properties of D,(c,00) allow us to obtain decay rates for
semigroup differences as follows. Let (S(#)),~. be a Cy-semigroup such that [|S()| < Me* for some
M > 1land A > Oforall # > 0. Such M and A exist for every Cy-semigroup (Engel & Nagel, 2000, Prop.
5.5). Then [|S(1) — ()l £y < 2Me* for 0 < s <1 < T. Since

t
/ S(r)Ax dr

< MM (1 — 5)|1xll pay

IS@) — S()]xllx = ‘
X

for x € D(A), we have ||S(1) — S()|| £ (pay.x) < 2Me*" (1 — 5). By interpolation,
IS = SOl £(py @) < 21 MM (8 — 5)* < 2MM (1 — 5)°

for o € (0,1). Let Y be another Hilbert space such that ¥ < X. Under the assumption that ¥ —
D, (a, 00) continuously for some o € (0, 1) or ¥ < D(A) continuously, in which case we set @ = 1,
this implies

IS() = )l £y.x) < 2CyMe (1 — 5), (2.4)

where Cy denotes the embedding constant of Y into D, (c, 00) or D(A).

2.3 Gronwall type lemmas

We need the following variants of the classical Gronwall inequality.
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2072 K. KLIOBA AND M. VERAAR

Lemma 2.6. Let ¢ : [0,T] — [0,00) be a continuous function and let o, 8 € [0, 00) be constants.
Suppose that

t
¢(t)§a+,3(/ ¢(s)2ds)l/2, t [0, T].
0
Then
11
24172 1
#(0) < a(l+ 20 exp (5 +58%). 1€(0.TL

Proof. Using (a + b2 <(1+60)da®+1+6"Hp*fora,b>0and b > 0 we can write

p(0? < (1 +60)a + p*(1+671) /Olqb(s)zds, 1€ [0,T1.
Therefore, applying Gronwall’s inequality we see that
p(O? < (1 +0)a? exp(B2(1+ 07 Nn).
Taking 6 = % we obtain
¢ < (1+ 2o exp(B%1 + 1),

which gives the desired estimate. O

In the same way, one can prove the following discrete analogue by using the discrete version of
Gronwall’s lemma instead (see Kruse, 2014, Lemma A.3).

Lemma 2.7. Let o, B > 0 and (¢;);~( be a nonnegative sequence. If
172

j—1
g <at+p|D ¢l| forj=0,
i=0
then

I 1
¢ = a(l+ 57" exp (5 + Eﬂzj) forj > 0.

3. Convergence rates for additive noise

In this section we present several results on convergence rates for linear equations with additive noise. The
reason to start with this case is twofold. Higher convergence rates can be proved in this case. Moreover,
it allows us to explain the new techniques in a simpler setting, which can help understand the more
complicated multiplicative setting of Section 6.
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Consider the stochastic evolution equation with additive noise of the form
dU =AU dt + g(t) dWg(t) on [0, T], U(0) = uy € L’}O(.Q;X), (3.1)

where A generates a Cy-semigroup (S(#)),.o on a Hilbert space X with norm || - ||, Wy is an H-
cylindrical Brownian motion for some Hilbert space H and p € [2, 00). For Hélder continuous noise
g € LI;D(.Q;CO‘([O, T); £,(H,X))), « € (0,1], mapping into a space ¥ < X, we prove rates of
convergence for time discretization schemes. An improvement of the rate is shown for the exponential
Euler method for quasicontractive semigroups. Results are illustrated for the nonlinear Schrodinger
equation in Section 3.3.

The mild solution to (3.1) for ¢ € [0, T] is uniquely given by (Da Prato & Zabczyk, 2014, Chapters
5,6)

t
U = St)uy + / St — 5)g(s) dWy(s). (3.2)
0

To approximate it, we employ a time discretization scheme R : [0, 00) — L(X) with time step kK > 0 on
auniform grid {t; = jk : j = 0,...,N;} € [0,T] with final time 7' = 1y > 0 and N} = % € N being
the number of time steps. The discrete solution is given by U? := ug and

j—1
U =RU™" + Rig(t; VAW, = Ry + D> R g(t)AW, . j=1.....N,. (3.3)
i=0

with Wiener increments AWj = WH(tj) — WH(tj_l), where we used (2.1).

3.1 General semigroups

Our first result concerns general C,-semigroups S. A further improvement under further conditions on §
is discussed in Section 3.2. Below, we denote the Holder seminorm in C* ([0, T']; £, (H, X)) by [-], x for
o € (0,1] and let

|||g|||p,oo,y = ||g||lp(g;c([(),T];Lz(H,y)))7 g € LP(82; C([0, T1;L,(H,Y))). (3.4)

Tueorem 3.1. Let X and Y be Hilbert spaces such that Y < X. Let A be the generator of a Cj;-semigroup
(S(t))tzo on X with ||S(®)|| < Me* for some M > 1 and A > 0. Let (R0 be a time discretization
scheme and assume that R approximates S to order « € (0,1] on Y. Suppose that ¥ < D, (o, 00)
continuously if o € (0,1) or Y < D(A) continuously if « = 1. Let p € [2,00), u, € L’;_-O (£2;Y) and
g € LH(2;C(0,T]; L,(H,Y))) as well as g € L7,(22; C*([0,T]; £5(H, X))). Denote by U the mild

.....

max [[U(5) — U]
0=<j=Nk

< (€, + Cyy/max{log(T/k), p})k”

p
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with constants C; := C, |luyll gy, and

K\/T AT LT
Gy im L (Mgl + (2METCy +C) el )

where C, is as in Definition 2.4, K = 4 exp(1 + zie) and Cy denotes the embedding constant of Y into
D, (o, 00) or D(A). _

In particular, the approximations (U”) ; converge at rate min{c, 1} up to alogarithmic correction factor
ask — 0.

Proof. Define Sk(r) := Ri fort € (tj_l, tj] and let |¢] as introduced above. Then the discrete solutions
are given by the integral representation

. i "
U/ = Rlug + /O $4(t; — $)g(Ls)) AWy (5).
Combining this representation with the mild solution formula (3.2) the error can be bounded by

E .= H max || U(1;) — Uj||”p < ‘ max [[[S(z;) _R]];]MOHHP

0<j<Ni 0<j<Ni

+

max /lj St = 9)[g(s) — g(LsH1dWy (s) H H
0 p

0<j=<Ng

+] max / tj[S(tj—LSJ)—S(tj—s)]g(LsJ)dWH(s)HH
0 P

0<j=<N

U
| max | [0, 150 = 5 = 9tectsh awy ||

We proceed to estimate all four terms individually. Since R approximates S to order & on Y
Ey < Collugllppoumk®- (3.6)

For the second term we note that for s € [7,,7,, ;) for some 0 < £ < N, — 1 the definition of the Holder
seminorm [-], implies that IP-almost surely

j-1
| > 100 95 = 91g05) = g(’f)]ng(mo < 118G = )1l 2 18 — 8D 2,13
i=0 ’

< Me'T[gl, x(s — ).
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Proposition 2.3 with @ = 370 1,, . (5)S(; — 5)[g(s) — g(1,)] and Holder continuity of g then yield

max
0<j=<Nk

g1
E, = / Z Loy 9)S(t; — 9)[8(s) — g(t)1dW (s)

p

K log(N, @92 d 2
< Ky/max{logV). ] | / )"l
= maX{ Og( k) p} o lgi)fi/k ” s ”EZ(H,X) \) »

fo41

1/2
(813 x (s — )™ ds)

Ni—1 1/2
( Z [g]ozX)

Ni—1
< KM \/max{log(N,), p} H(

p

1
< KM ———— | /max{log(N,), p}k®*1/?

V2a + 1 »
= KM |l ], \/—\/max{log(Nu DI (3.7)

Analogously, with (D(’) Z t, ,I_H)(s) [S(tj —1) = S(tj — 5)1g(t;) for E5 we obtain

JT
NoEs

using pathwise boundedness of g, i.e. g(w,-) : [0,T] — L,(H,Y) being bounded for P-almost every
€ £2, and noting that by (2.4)

Ey < 2KMeM €y

gl 00,y v/ max{log(N), p}k* (3.8)

[0S = 1) = S = )18 | £, 11xy < 2M Cyls = 1) I8N 2y a1,y
holds P-almost surely. Likewise, with @g ) = z]l;é 1[,’_,,’_+1)(s) (S —1) — R;:i]g(t,-) we obtain

VT
E, <KC,——
4 = o m "Ig”'p,QO,Y

since R approximates S to order « on Y. The error bound follows from inserting (3.6), (3.7), (3.8), and
(3.9) into (3.5). O

ymax{log(N,), p}k“, (3.9)

For the exponential Euler method, less regularity of the initial value suffices for the same convergence
behaviour. The exponential Euler method is obtained by setting R, = S(k) in (3.3), i.e. we would solve
exactly in the absence of noise g.

CoroLLARY 3.2 (Exponential Euler). Let X and Y be Hilbert spaces such that ¥ < X. Let A be the
generator of a Cj-semigroup (S(f))zzo on X with ||S(®)|| < Mée* for some M > 1 and A > 0. Assume
thatg € L’;D (£2;C([0,T]; Ly(H,Y)))and g € LI;D(.Q; C*([0,TT; £,(H, X))) for some o € (0, 1]. Suppose
that Y < D, (c, 00) continuously if o € (0,1) or Y < D(A) continuously if &« = 1. Let p € [2, 00) and
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ug € L’;_- (£2; X). Denote by U the mild solution of (3.1) and by (U¥) i=0,....Ni the temporal approximations
as defined in (3.3) obtained with the exponential Euler method R := S. Then for N}, > 2

max |U(t) — U
0<j<N

< Cy/max{log(T/k), p}k*
p

with constant

C := KM

T
e (18], + 26Ul )

where K = 4 exp(1 + 21—6) and Cy denotes the embedding constant of Y into D, (o, 00) or D(A).
In particular, if ¥ < D(A) and g is Lipschitz continuous as a map to £,(H, X) the approximations
) ; converge at rate 1 up to a logarithmic correction factor as k — 0.

Proof. We split the error as in (3.5). For the exponential Euler method the terms E| and E, in (3.5) vanish
due to S(;) — R = S(jk) — S(ky = S(jk) — S(jk) = 0 and, likewise, S(z; — ;) — R;”" = 0. The error
bound follows from inserting the bounds (3.7) and (3.8) of the remaining terms into (3.5). Il

3.2 Quasi-contractive semigroups

Considering quasi-contractive semigroups, i.e. Cy-semigroups (S(#)),~.o for which [|S(1)| < e for some
A > 0 for all t > 0, allows us to eliminate the logarithmic factor for the exponential Euler method. The
principle that lies at the heart of our proof is the maximal inequality from Theorem 2.2, which is used to
estimate the stochastic convolutions in the error term. Depending on the spatial regularity of the noise g
the convergence rate « € (0, 1] is attained without a logarithmic correction factor.

THeoreM 3.3 (Exponential Euler, quasi-contractive case). Adopt the notation and assumptions of
Corollary 3.2. In addition, assume that ||S(f)|| < ¢* for some A > 0 for all ¢ € [0, T]. Then for N, >2

max [U@) — V|| < Ck*
0<j<Ni »
with constant
B NT
Ci= e (M lglaux ], +2Cye™ ).
= (¢ [8laxl, +2Cve™ gl oy

where Bp is the constant from Theorem 2.2.

Proof. We bound the error as in (3.5), where the first and fourth terms vanish as discussed in the proof
of Corollary 3.2. We proceed to bound the remaining terms using the maximal inequality from Theorem
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2.2 instead of Proposition 2.3 to obtain

Ezf

t
/0 St — 9)g(s) — g(Ls)1dWy(s)

T 1/2
(] 160 = 05Dl gy 05)

Ne=1 o, 12
(Z [tk e ds)
i=0 7

Bpe)‘Tﬁ .
B 1l @10

by Holder continuity of g. Analogously, for E5 we deduce from the semigroup bound (2.4) that

sup

t€[0,7T] P

|
<
Bpe

p

AT
<
Bpe

p

=

t
Ey < || sup /S(I—S)[S(S—LSJ)—I]g(LsJ)dWH(s)
te[0,T] 0 »
T 1/2
< B, ( /0 108G — Lsh) = Ng(Us D% 1.0, ds) )

Ne=1 g 1/2
szB,,eWcYH(Z / (s = )N 2, oy ds)
i=0 Yl p
JT
<2B T C,—— k. 3.11
< 28,61 Cy e el (3.11)
The final error bound follows from adding (3.10) and (3.11). [l

In particular, convergence rate 1 is attained without logarithmic correction factor for spatially
sufficiently regular noise g. General, possibly irregular initial values u,, € LI}O (£2; X) are still admissible
as the following corollary shows.

CoroLLARY 3.4. Let X be a Hilbert space and let A be the generator of a quasi-contractive C,-semigroup
on X with parameter A > 0. Assume that g € LI;D(.Q; C([0,T]; £,(H,D(A)))) and is pathwise Lipschitz
continuous as a map to £,(H,X). Letp € [2,00) and u,, € L?_-O (£2; X). Denote by U the mild solution of
Euler method R :; :S;:.’Then there is a constant C > 0 depending on (g, T, p, @, A, X, D(A)) such that for

=< Ck’

max UGy — U]
0<j<N »

i.e. the approximations (U/) ; converge at rate 1 as k — 0.
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3.3 Application to the linear Schrodinger equation with additive noise

In this section, we study convergence rates of time discretizations of the linear stochastic Schrodinger
equation with a potential and additive noise

H du = —i(A+ V)udr—idW on [0, T], (3.12)
u(0) =u,

in R? for d € N, where {W(8)},~0 1s a square-integrable K-valued Q-Wiener process (see Section 2.1),
K € {R, C}, with respect to a normal filtration (.%,),- , V is a K-valued potential,  is an .%,-measurable
random variable, i is the imaginary unit and A the Laplace operator on R?. Next, we introduce conditions
on the dimension and on the regularity of V. With a slight variation of the methods below, one can also
consider (3.12) on [0, L] with periodic boundary conditions. More general domains with Dirichlet or
Neumann boundary conditions can be treated as well, but for this, suitable adjustments are needed in the
proofs below.

Let 0 > 0 and, for this subsection only, write I[? = [2(RY) and H® = H° (RY). We will also be
using the Bessel potential spaces H?*¢(R?), which coincide with the classical Sobolev spaces W (R%)
if o € Nand g € (1, 00). For details on these spaces the reader is referred to Bergh & Lofstrom (1976);
Triebel (1995).

To ensure the well-posedness of (3.12) we assume one of the following mutually exclusive conditions
holds.

AssumpTIoN 3.5. Leto > 0,d € Nand V € L? such that
() o>%andVeH, or

(i) o =0andV e HP for some 8 > %,or
(ili) o €(0,1),d > 20 and V € HP for some 8 > %, or
(iv) o =1,d>2andV e H? forsome g > 4.

In particular, this assumption implies that Vu € H° for any u € H? and ||Vullgo < Cyllullye for
some constant C;, > 0 depending on V. This follows from the algebra property of H in case (i). Note
that while (i) is taken verbatim from (Anton & Cohen, 2018, Prop. 4.1) cases (ii) and (iv) assume less
regularity in our assumption and case (iii) is new. In the second case (ii) Holder’s inequality and the
Sobolev embedding H? < L> for f > % yield

IVallpz < IVIigso Il 2 S IV s el 22,

in the case (ii) see (Anton & Cohen, 2018, Prop. 4.1). The case (iii) is covered by Lemma 3.6 below.
Lastly, [[Vull;n S llulln in the case (iv) follows from Holder’s inequality, once with p = 28 and

= 2;—82, B > 1, and the embeddings H? < L>®° H' < L9, as well as H? < H'? via

IVull2 S IVatll?, + 1VVull?, + 1(VV)ul?,
< VI (lull2> + IVul2,) + IV VI luliFe

2 2 2 2 2
S (VIR + VI )l S IV llull

Hence, multiplication by V is a bounded operator on H? if Assumption 3.5 holds.
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Lemma 3.6. Let 0 € (0,1),d € Nsuchthatd > 20,and V € Hﬂ(Rd) for some f > %. Then,
Vil go < Cyllullyo for some constant Cy, > 0 for all u € H? (R9).

Proof. Let q; = dz% and g, = g. Then, qlu + q% = % and g; < oo because d > 20. By classical

Sobolev and Bessel potential space embeddings (Bergh & Lofstrom, 1976, Thm. 6.5.1), HY/? — Ho%,
H° < L9 and H? — Cb(Rd) < L. Thus, an application of the product estimate (Taylor, 2007,
Prop. 2.1.1) yields

Villgo SNV llgoas lllgor + 1Vl latllggr S AV lgare + WV ) e S WV gl

Since —iA generates a contractive semigroup (Anton & Cohen, 2018, Lemma 2.1) its bounded
perturbation —i(A + V) generates a quasi-contractive semigroup (Engel & Nagel, 2000, Thm. I1I.1.3).
Thus, we are in the setting of Section 3.2. Global existence and uniqueness of mild solutions U €
LP($2;C([0,T]; H?)) to (3.12) in H® are guaranteed provided that p € [2,00), u, € L?,-O(.Q;H"),
02 ¢ £2(L2,H") and Assumption 3.5 holds.

Therefore, the Schrodinger equation (3.12) can be rewritten in the form of (3.1) on X = H® with an
H-cylindrical Brownian motion Wy, for H = L2

For the exponential Euler method we recover the error bound from (Anton & Cohen, 2018, Thm. 4.3),
showing convergence of rate 1 in the case of sufficiently regular Q'/2 under less regularity assumptions
on V. Moreover, under weaker regularity assumptions on Q'/? and V we additionally provide an error
bound for fractional convergence rates o € (0, 1].

Taeorem 3.7. Leto > 0,d € Nand V € L2 satisfy Assumption 3.5, and let p € [2, 00). Assume that
uy € L[;-O (£2;H°) and Q'/? € LZ(L2,H"+2"‘) for some o € (0, 1]. Denote by U the mild solution of

the linear stochastic Schrodinger equation with additive noise (3.12) and by (I/ )j=0,...n, the temporal
approximations as defined in (3.3) obtained with the exponential Euler method R := S. Then there exists
a constant C > 0 depending on (V,u, T, p, o, 0,d) such that for N} > 2

max ||U(t;) — UV
Lﬁmnm e

1/2
< CIO" Il £y 12 po 2 K"

p
Proof. As discussed above, A = —i(A + V) generates a quasi-contractive semigroup on H?. Further-
more, setting ¢ = —iQ!/? allows us to rewrite (3.12) in the form of a stochastic evolution equation

(3.1). Thus, Theorem 3.3 is applicable with X = H® and H = L2. It remains to check that g €
L’;D(.Q; C([0,T]; £L,(H,Y))) for some Y — D,(a,00) and that g € L’;D(.Q; C*([0,T]; £,(H,X))). The
latter holds for any a € (0, 1] due to g being constant in time. Taking ¥ = H° ™2 = (H° ,H°*?) , =
(H°,D(A)) w2 < (H°,D(A)) a,00° the first condition is satisfied as well. Corollary 3.2 yields the desired
error bound. ([

Furthermore, Theorem 3.1 enables us to extend (Anton & Cohen, 2018, Thm. 4.3) to general
discretization schemes R involving rational approximations, at the price of an additional logarithmic
factor. We state it for the IE and the CN method.

Tueorem 3.8. Leto > 0,d € Nand V € L? satisfy Assumption 3.5, and let p € [2,00). Let (R; ). be
the IE method or the CN method and set £ = 4 or £ = 3, respectively. Assume that u, € L’;-O ($2; H ”+E"‘)

and Q1/? ¢ L',Z(L2, H @) for some o € (0, 1]. Denote by U the mild solution of the linear stochastic
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2080 K. KLIOBA AND M. VERAAR

=0,...,

defined in (3.3). Then there exists a constant C > 0 depending on (V,u,, T,p,«,0,d, £) such that for
N, >2

max ||U(t,) — U/
Jmax 1UG) = Ul

< C(1+ 110"l £, 12 po +eey) v/ max{log (T /k), p}k*.
p

Proof. This follows from Theorem 3.1 noting that IE approximates S to order « on D((—A)%*) and
this fractional domain is given by D((i4)%*) = H°+%  which is chosen as the space Y. Likewise, CN
approximates S to order « on D((—A)3%/2) = o3« O

Comparing this result to Theorem 3.7 for the exponential Euler method, it becomes apparent that
lower order schemes like IE need higher regularity of the noise Q'/? to achieve the same rate of
convergence (£, (L%, H° ) compared with £,(L?, H°+2%)). For instance, for Q'/% € L£,(L?, H°*?),
the rates for EE, CN and IE are 1, % and %, respectively. If Ql/ Ze L, (L2, H "*3), EE and CN have the
same convergence rates up to a logarithmic factor, and if Ql/ 2¢ /.12(L2, H"+4), so does IE, all provided
that V and u,, are sufficiently smooth.

Note that in the absence of a potential, the same convergence rates are obtained without any limitation
on the dimension d € N in terms of the parameter . An analogue of Theorem 3.8 can be obtained
for other implicit Runge—Kutta methods if the space is known on which the scheme approximates the
semigroup to a given order.

4. Well-posedness

We consider the stochastic evolution equation with multiplicative noise

[ dU =AU+ F(t,U))dt + G(t,U) dWy on [0, T], @1

U() =uye L}O(Q;X)

for 1 < p < oo and A generating a C,-semigroup (S(t)),zo of contractions on X. In this section we
present progressive measurability, linear growth, and global Lipschitz conditions on F and G ensuring
the well-posedness of the above equation.

@SSUMPTION 4.1. Let X be a Hilbert space and let p € [2,00). Let F': £2 X [0,T] x X - X,F(w,t,x) =
Flw,t,x) + f(w,t) and G : 2 x [0,T] x X — L,(H,X),G(w,t,x) = G(w,t,x) + g(w, ) be strongly
P ® B(X)-measurable, and such that F(-, -,0) = 0 and G(-, -,0) = 0, and suppose

(@) (global Lipschitz continuity on X) there exist constants Cr. x, CG,X > O such that forall w € £2,¢t €
[0,7] and x,y € X, it holds that

IF(@,1,x) = F(w,,9)|| < Cpxllx =yl

1G(@, t,%) = G(@, . )l £yx) < Coxllx =y,

(b) (integrability) f € L', (2;L1(0,T; X)) and g € L(2; L*(0, T; L,(H,X))).
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Note that Assumption 4.1 implies linear growth of F' and G:
IF (@, )] < Cpx(1+ 11X, 1G(@, .9 £ymx) < Cox(+ IIxDD. (4.2)

where the constant 1 can be left out, but is included for later use in Theorem 4.4.

Well-posedness shall be understood in the sense of existence and uniqueness of mild solutions to
(4.1). Denote by L°(£2; V) the space of all strongly measurable V-valued random variables for Banach
spaces V.

DeriNniTiON 4.2. A U € LOP(.Q; C([0, T]; X)) is called a mild solution to (4.1) if a.s. for all t € [0, T]

t t
U@ = S(t)u0+/ St —s5)F(s,U(s)) ds+/ St —5)G(s, U(s)) dWy(s).
0 0

The following well-posedness result is more or less standard (Da Prato & Zabczyk, 2014, Chapters
6,7).

THEOREM 4.3. Suppose that Assumption 4.1 holds for some p € [2,00). Let A be the generator of a
Cy-contraction semigroup (S(7)),>( on X. Let u; € L’;_-O (£2;X). Then (4.1) has a unique mild solution
Uel?(£2;C(0,T];X)). Moreover,

X
1N @:cqornx) = ded(l Hlluolr @ + Wllr@rrorx) +Bp”g||LP<9;L2(0,T;£2(H,X)>>)’

where Cl)o(dd = (1+CT)!/? e1FCD/2 with € = CF’XTI/2 + B,Cg x, and B, is the constant from
Theorem 2.2.

Proof. First, the local existence and uniqueness of solutions are to be proven. Second, local solutions are
concatenated to obtain global existence and uniqueness. We only sketch the steps. Let § € (0, T]. Define
the spaces Z; := L/ (£2; C([0,8]; X)), Z := Zy, ZgD as the subset of all adapted v € Zg, and ZP = Z;).
Forv e ZgD we define the fixed point functional

t t
I'v(t) := S(Ouy + / St — s)F(s,v(s))ds + / S(t — $)G(s,v(s)) dWg(s). 4.3)
0 0

The problem of finding local mild solutions of (4.1) then reduces to finding fixed points v € ng of
I'. The contraction mapping theorem yields such unique fixed points provided that I” is a contraction
which maps Z” and thus Zg) into itself. That is, (i) continuity of paths of I"v and maximal estimates for
S Zf (see Theorem 2.2) as well as (ii) adaptedness of I"v, and that (iii) I is a (strict) contraction on
Zg). Lastly, we consider the evolution equation on [§, 28] with initial value U(§) to extend the solution
to larger time intervals.
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2082 K. KLIOBA AND M. VERAAR

It remains to prove the a priori estimate for the mild solution U. Let r € [0, T]. Let ¥(r) = 1 +
Isupero.g UM ||p. From the triangle inequality, Theorem 2.2, and (4.2) we see that

/ 1+ |U@s)| ds
0

W(r) < 1+ ||u0||UJ(Q;X) + CF,X

r 1/2
( /0 (1+ ||U(s)||)2ds)

- - 1/2
< Cuse T Crx | V() ds+B,Cox W (s)*ds
0 0

r 1/2
= Cuof,g +C (/(; I/f(s)z dS) B

where ¢, 1, = 1+ gl + @i orx) + Bpllglr@zo.r.comxy and € = Cry T2 +
B,C¢ x- Here we used Minkowski’s inequality to pull in the LP(£2) and LP/?(£2) norms. Lastly, the
version of Gronwall’s inequality from Lemma 2.6 yields the desired result

+ Wl p (201 0,:%))
p

+B, [CG,X ds + ”g||LP(.Q;L2(O,r;£2(H,X)))i|

p

2172 (1+C%T))2
Y(T) < Cuo,f,g(l + C°T) e . .

Lastly, we present a well-posedness result on subspaces ¥ < X which does not require Lipschitz
continuity of F, G on Y, but merely linear growth. The reader is referred to Remark 4.5 below for a
discussion where we explain why Lipschitz continuity on Y should be avoided.

THEOREM 4.4. Suppose that Assumption 4.1 holds. Let Y < X be a Hilbert space and A the generator of a
Cy-contraction semigroup (S (t))tZO onboth X and Y. Let p € [2,00) and u; € L’}_-O (£2;Y). Additionally,
suppose that f € L,(2;L'(0,T:Y)), g € L (2;L%(0,T; Ly(H,Y))), F : 2 x [0,T] x ¥ — Y,
G: 2 x[0,T] xY — L,(H,Y) are strongly P ® B(Y)-measurable, and there are Ly y, L; y > 0 such
thatforallw € 2,1 € [0,T]and x € Y,

IF (. 1,9ly < Lpy(1+ lIxlly). 1G(@. .0 £y.y) < Loy + lIxly)-

Under these conditions the mild solution U € L (§2; C([0,T]; X)) to (4.1) isin L (£2; C([0, T]; Y)) and
Y
1l @:caorryy = Coaa (1 t ol @) + Wllr@irory) + By ”g||LP(9;L2<o,T;£2<H,Y)>))’

where CYy, = (1 4+ C*T)1/? 1T D/2 with € = LF’YTI/2 + B,Lgy, and B, is the constant from
Theorem 2.2.

The constant C appears exponentially in the above. In the special case p =2, Lpy = Ly =T =1,
this leads to CLy; < +/10e> < 470.

Proof. Recall that by Banach’s fixed point theorem for § < T,, where T € (0, 1] only depends on p,
Crx> Cgx and X, one has U = lim,_, ., U, in LP(£2;C([0,6]; X)), where Uy = ugand U, | = I'(U,)
with I as defined in (4.3). Since F and G map Y into Y, we can also consider I" as a mapping on
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7% := L,(2;17(0,5;Y)) to eventually show that U is in L', (£2; C([0,4];Y)) < Z*. Note that for U €
72, F(-,U) and G(-, U) are progressively measurable as ¥ and L,(H,Y)-valued mappings by (Hytdnen
et al., 2016, Theorem 1.1.6). Moreover, we claim that for all v € Z2,

IO @:cqosiry = luollr@iyy + @it osmy)
+ Bp”g“L!’(.Q;LZ(O,(S;LZ(H,Y))) + (LF,Y + BpLG,Y)(l + ||V||ZZ)~ (4~4)

Indeed, since S is contractive, the maximal inequality, linear growth of F and G on Y,and § < 1 imply

1) — S(')Mo”lﬁ(g;c([o,a];y)) < IIFC, V)||U(Q;L1 087 T Bp”G('7 V)||U(Q;L2(o,5;£2(y,y)))
< Wllzr@it sy + Lry 6+ V@it 05:)
+B, (”g”LP(.Q;LZ(O,(S;LZ(H,Y))) +Lgy (\/5 + ||V||U(9;L2(0,8;Y))))
= Wl @rosry + Bpllgllr 08001y
+ (Lpy +B,Lgy) (1+Ivl2) -

Therefore, (4.4) follows. Now (4.4) implies

IF Wiz < 8210l @costyy

<01+ ”uO”M(Q;Y) + |V||M(Q;L1(o,3;y)) + ||g||M(Q;L2(o,3;£2(y,y))) + ||V||Z2),

where 6 = §1/2 max{l, Bp, LF’Y + BI,LG’Y}. Choosing § € (0, Tj] such that 6 < %, iteratively we obtain
that forn > 1,
||Un||z2 <0+ ||M0||1y(g;y) + |V||M(Q;L1(0,3;Y)) + ||g||M(Q;L2(o,3;£2(y,y)))) + 9||Un7] ||z2
=0+ lugllpp2.vy + Wl 2. 067 T 18lp(2:020,6:0,H,7)))

2
+ 071+ llugllzp2.v) + W llp 2.0t 08,7 F 18 @:120.6:0,,7))) T 12l 22)

n
e = DU gl ery + Il @it 08y + 18l @2 08:c.000) + 0" 1 0ol 2
j=1

IA

IA

L+ Wl 2t 0.8:7)) + 18 p@:1208:0,.v))) T 2Noll 1 (2:v)-

In conclusion, (U,),,c is bounded in 72, By reflexivity of Y, and thus of 7?2 (see Hytonen et al., 2016,
Corollary 1.3.22), there is a subsequence (U, );cy and V' € 72 such that U,; = V weakly in 7% and

||V||Z2 =< 1+ Hf”[y(Q;Ll(O,a;y)) + ”g||M(Q;L2(0,8;£2(H,Y))) + 2||“0||1y(g;y)~ (45)
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Since U, — U in L7 (£2; C(|0, §]; X)) it follows that V = U. Since U = I"(U), (4.4) and (4.5) give that
U is in LP(£2; C([0,8]; Y)). The same argument can be applied on [j3, (j + 1)&] using the initial value
U(j§) € [P(£2;Y) forj = 1,2,... to obtain the statement on [0, 7.

The final a priori estimate follows as in Theorem 4.3, where we note that the Lipschitz conditions
on F and G were not used in the estimate. O

REMARK 4.5. In applications, one often takes X = [*(0) and Y = H'(0) with O € R4, and F is
a Nemytskij operator for a given nonlinearity ¢ : R — R, ie. F(x)(§) = ¢(x(§)) forx € L*(0) and
& € 0. Lipschitz continuity of such mappings holds for F’ seen as a mapping from X to X if ¢ is Lipschitz.
Also, linear growth holds for F as a mapping from Y into Y if ¢ is Lipschitz. A less trivial fact is that
F is continuous from Y into Y (see Taylor, 2007, Proposition 2.6.4), but nothing more can be expected.
For instance, Lipschitz continuity of ' : ¥ — Y would require the estimate

19" X" — &' My ll12¢0) = Cllx = Yllg1 o)

The latter is true if and only if [|(¢'(x) — ' (W)X [l12(0) < Cllx—yl 11 (0)- This cannot be expected even
ifp € C* (]Rd) with bounded derivatives. Indeed, a product of x — y and x’ needs to be estimated, but
this cannot be done in terms of ||x — y|| 1 ). Similarly, problems would occur for ¥ = H*(0) for other
values of « > 0. For a detailed exposition which estimates can be expected for ¢ (x) — ¢ () the reader
is referred to (Taylor, 2007, Section 2.7).

5. Stability

Before analysing the convergence of temporal approximations to solutions of the stochastic evolution
equation (4.1) with multiplicative noise, the question of stability of time discretization schemes arises.
We aim to prove the stability of contractive time discretization schemes under linear growth assumptions
on F and G, and contractivity conditions on the scheme R. We formulate the result for mappings on X,
but they will also be applied on Y later on.

Let R, : X — X be a contractive time discretization scheme with time step k > 0 on a uniform grid
{tj =jk:j=0,...,NJ} C[0,T]with T = N, > 0and N, = % € N. We consider the temporal
approximations of the mild solution to (4.1) given by U := ug and

U= RU™ + kR F(1;_1, U™ + R,G(;_, U™ 1) AW, (5.1)

with Wiener increments AWJ- = WH(tj) — WH(tjfl) (see (2.1)) for 1 < j < N,. The above definition of
U/ can be reformulated as the discrete variation-of-constants formula

. =t oot ,
U= Ry +k D R F(t, U+ D RG(t, UY AW, (5.2)
i=0 i=0

forj=0,...,N,.

ProposiTION 5.1 (Stability). Let X be a Hilbert space, p € [2,00) and u, € L’}_-O(.Q;X). Suppose that
F:2x[0,T]xX—>X,G: 2 x[0,T] xX - L,(H,X) are strongly P ® B(X)-measurable, where
F=F+fandG=G+g.f € L)(R2:C(0,T]:X)), g € L/,(82; C([0,T]; £,(H,X))), and there are
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Lpy.Lgx = O such that forall w € 2, € [0,T] and x € X,

IF (@, 1,9l < Lpx(1 + [xlx), 1G(@. 1.9l 2, mx) < Lox(1+ Ixlly)-

2085

Let (Ry)~q be a contractive time discretization scheme and N;, > 2. Then the temporal approximations

.....

max ||U7||
0<j<Ni

1+ = Cstabcuo,f,g,T’

p

where Cyyp 1= (1 + C27)/2 0+ D12 with € 1= Ly y TV + B, L .

. 1/2
Cuntor =1+ gl + Wl @icqomxn T + 18l @icqoricswxn BT

and BP is the constant from Theorem 2.2.

Examples for contractive schemes include the exponential Euler, the implicit Euler, and the Crank-
Nicolson method, as well as A-stable higher order implicit Runge—Kutta methods such as Radau methods,

BDF(2), Lobatto IIA, IIB, and IIC (see Proposition 2.5).

The exponential dependence in Proposition 5.1 comes from an application of Gronwall’s inequality.
Therefore, to make the result suitable for numerical applications, some optimization of the constants was
necessary. In the special case that Ly y = Ly = T = 1, and p = 2 one can check that Cy,, = V10e’ <
470, which seems a reasonable constant for error estimates in applications. Later on, we will also apply

Proposition 5.1 in case the space X is replaced by Y in the setting of Section 4.

Proof. Letgy =1+ max,_;_y ltedi ||p and N € {0, ...,N,}. Then the variation-of-constants formula

(5.2) and contractivity of R; allow us to bound

N—-1
<1 3 +k max ||F(t;, U/
on < 1+ lugllppou + ZO max [IF (1, )] ,
i .
+ | max, IZ(;R; G(t, UY AW, )

Invoking linear growth of F and boundedness of f for the third term we obtain the bound

N-l N-1
k2 |max IF @ U <k 2, ‘ mas (Le (1+1071) + 1))
i=0 14 i=0 p
N—-1
<k> (L1 Ui o
- ,;( F’X( +H pax IV p)“lf"wmcqo,n,x»)

(5.3)

N—1 N—1 1/2
1/2
= Cy sty + Lpxk Z ¢ < Cipty + LF,XtN/ (k Z ‘P,z) , (5.4

i=0 i=0
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where we have set Cy ¢ := |Ifllzp(@.c(0,71.x))» @nd used the Cauchy—Schwarz inequality and Nk = y in
the last line. It remains to bound the last term in (5.3).

Since R, is a contraction by the Sz.-Nagy dilation theorem (Sz-Nagy ez al., 2010, Theorem 1.4.2) we
can find a Hilbert space X, a contractive injection Q : X — X, a contractive projection P : X — X, and
a unitary Rk on X such that

Ri = PRLQ foralli > 0.

Let G¥(s) := G(1;, U') and S¥(s) := R} for s € [1;,1;,1),0 < i < N, — 1. Then, it follows from Theorem
2.2 that

J-1 j—1
j—i i _ o g7 :
[max %R’k G(t;, U) AW, = o, ZZ(;R/,( 0G(1;, U AW, )
j—1
_ o—i i
= | max ng 0G(t;, U AW, ,
t
<| sup / Sk()QG (s) AW (s)
te[0,tn] 0 P
ka2 172
<5, ( / 1G04
0 P
N-1 S\
i
B, (k > 166 U 2y Hp)
i=0
N—1 \ /2
1/2
<B,Lgx (k > (pl?) + Gyt (5.5)
i=0
where we have set ng =B ||g||Lp(Q -C0.T1:Lo (H.X)))-
Inserting (5.4) and (5.5) in (5.3) gives the bound
1/2

N—1
on < U+ gl + Cr T+ Co TV + (Lpx T2 + B, Lg y) (k > cp?)
i=0

S'etting c = LF’XTI/2 +B,Lgx and ¢, o =1+ llugllppo.x) + CrfT + Cz’ng/z, we obtain from the
discrete version of Gronwall’s Lemma 2.7 that

2
ON < Cup (14 CPhN) /2 1 TCHENI2,

This implies the desired statement for N = N, noting that fy, = kN, = T. g
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6. Convergence rates for multiplicative noise

Our aim is to prove rates of convergence of contractive time discretization schemes for nonlinear
stochastic evolution equations of the form

dU = (AU + F(1, U)) dt + G(1, U) dWy, (1), U(0) = uy € LP(£2; X) 6.1)

with ¢ € [0, T] on a Hilbert space X with norm || - ||, where Wy is an H-cylindrical Brownian motion
for some Hilbert space H and p € [2,00). The operator A is assumed to generate a contractive C-
semigroup (S(?)),~ on X and F', G are assumed to be progressively measurable, of linear growth and
globally Lipschitz as detailed in Assumption 4.1. Hence, we have the unique mild solution given by a
fixed point of

t

t
U@) =S@)uy + / St —s)F(s,U(s)) ds + / St —5)G(s, U(s)) dWg (), (6.2)
0 0

for t € [0, T], see Section 4.

To obtain convergence rates for temporal discretizations of the mild solution we assume additional
structure of the nonlinearity F and the noise G. Let Y be another Hilbert space such that ¥ < X and
the semigroup (S(1)),~ is also contractive on Y. We will assume F and G map Y into Y and enjoy linear
growth conditions as on X also on Y. Note that Lipschitz continuity is not assumed on Y contrary to X.
This additional structure resembling the famous Kato setting (Kato (1975)), which was briefly mentioned
in the introduction, allows for convergence rates of temporal discretizations for a large class of schemes
introduced in section 6.1. The quantitative error estimate in Theorem 6.4 is the main result of this paper,
stating that the additional structure suffices to obtain the order of the scheme as the convergence rate of the
temporal approximations up to a logarithmic correction factor for sufficiently regular initial data. For the
exponential Euler method the logarithmic correction factor can be omitted, as illustrated in Section 6.2.
The main error estimate of Theorem 6.4 is extended to the full time interval [0, 7] in Section 6.3. As
an application we revisit the Schrédinger equation, now with a multiplicative potential, in Section 6.4,
including its numerical simulation in Section 6.5, and consider the stochastic Maxwell’s equations in
Section 6.6.

6.1 General contractive time discretization schemes

We now detail the assumptions on the structure of F and G on Y. Note that the assumption also implies
that the conditions of Theorems 4.3 and 4.4 hold.

AssumpTION 6.1. Let X, Y be Hilbert~spaces such that ¥ < X continuously, and let p € [2,00). Let
F:2x[0,TIxX - X,F(w,t,x) = F(o,t,x)+f(w,t) and G : 2 x[0,T]xX — L,(H,X),G(w,t,x) =
G(w,1,x) + g(w, 1) be strongly P ® B(X)-measurable, and such that F(-,-,0) = 0 and G(-,-,0) = 0, and
suppose

(@) (global Lipschitz continuity on X) there exist constants C y, C; x > 0 such that forall w € £2,1 €
[0, 7], and x,y € X, it holds that

IF(w.1,%) = Fo,t. )|l < Cpxlx =yl 1G(@. t.x) = G(@. .y £, mx) < Coxlx = yll.
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(b) (Holder continuity with values in X) for some a € (0, 1],

Cori= sup [Flw,-,x)], <00, C,s:= sup [G(w,-,1)], < o0,
’ wef2 xeX ’ wef2 xeX

(¢) (Y-invariance) F : 2 x [0,T] xY — Yand G : 2 x [0,T] x Y — L,(H,Y) are strongly
P ® B(Y)-measurable, f € L’;(Q; C([0,T];Y)),and g € L’;(Q; C([0,T]; L,(H,Y))),

(d) (linear growth on Y) there exist constants LF’Y, LG’Y > 0 such that for all w € £2,¢t € [0,T], and
x € Y, it holds that

IF(@,t,9)ly < Ley(1+ lIxlly), 1G(@, .0 £yz1.y) < Loy (1 + lIxly)-

Condition 2 can be weakened to the existence of some « € (0, 1] such that

F(,t,x) = F(.,5,x)
sup sup

e IP(£2)
xeX 0<s<t<T (t—s)~

and likewise for G, i.e. pathwise Holder continuity uniformly inx € X is sufficient together with existence
of p-th moments of the Holder seminorms. Assumption 6.1 implies that (6.1) has a unique mild solution.

To bound the error arising from time discretization of the mild solution, moment bounds of
differences of the mild solution at different time points as in the following lemma are required. As a
shorthand notation in accordance with (3.4), let

|lf||p,q,z = Wl @:190.1:2)) |||g|||p,q,z =118l (2:ra00,1:25(H,2))) (6.3)
for Hilbert spaces Z, p € [2,00), and g € [1, co]. We further introduce the constants
Cuofoz =1+ Claa(l + lugllp(a.zy + N1z + Ngll,22) (6.4)

for Z € {X, Y} with Cffdd and Ctl;dd as in Theorems 4.3 and 4.4, respectively. Then the estimate

L+ sup UMz

rel0,T]

< Chpaz < 0 (6.5)
p

holds for Z € {X, Y}.

LeEMMA 6.2. Suppose that Assumption 6.1 holds for some o € (0,1] and p € [2,00). Let A be the
generator of a Cy-contraction semigroup (S(#)),.., on both X and Y. Suppose that ¥ < D, («, 00)
continuously if « € (0,1) or Y < D(A) continuously if « = 1. Let u; € L?_-O (£2;Y). Then, for all
0 < s <t < T the mild solution U of (6.1) satisfies

EINU@) — UIP)P < Lyt = 5) + Lyt — )/ + Ly (1 — 5)°
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with constants Ly := CpxCy o x + Ifll, 00 x> L2 := B,(C;xCyy 1 ox + 8l 5 x) and

. 1/2
L3 = 2CY|:”“O”LP(Q,Y) + TLF,YCuo,f,g,Y + ”f“p,l,)’ + Bp (T / LG,YCuo,f,g,Y + |”g”|p,2,y)]’

where C, ¢, x and C, .,y are as defined in (6.4), Cy denotes the embedding constant of Y into
D, (o, 00) or D(A), and B is the constant from Theorem 2.2.

Proof. Since the conditions of Theorems 4.3 and 4.4 are met, U is pathwise continuous on X. By Theorem
4.4, the pathwise continuity of U follows on Y as well. Moreover, the bound (6.5) holds.
Fix t,s € [0, T] with s < t. From the mild solution formula (6.2), we deduce that

EIU@ — USIP)'? < [150) = SO g ox,
N t
+| [wse—n=se—mre.ven e +| [ise-nrevenra]

n /0 ISU — 1) — S(s — NIG(r, U(r) dWy (1) H

LP(2:X)

t
S(t — NG(r, U(r) dW, H — E, +E,+E; +E, + Es,
+| [ sa=n0even aWyo =B Bt B By E

where E, = E,(t,s) for 1 < £ < 5. We proceed to bound these five expressions individually. By the
semigroup bound (2.4)

E, <|IS(®) — S(S)HE(Y,X)HMQHU(Q;Y) <2Cy(t— S)“””o”[p(g;yy

Using (6.5) and (2.4) as well as linear growth of FonY and f e P(2;L(0,T;Y)) we obtain

E, <26y /Os[(z — ) = (s = NIIFC U(r))llyder

] [ wrenya] )

sup (1 +[[UMIly)

<2Cy(t —95)* (sLF v
"l refo,17

< 2Cy(TLgyCpp oy + 1,1 y) (2 — ) .

Analogously,

E; < (CF,XCuo,f,g,X + Hf”p,oo,x)(f —5)

is obtained by contractivity of the semigroup, linear growth of F on X and boundedness of the solution.
For the terms involving a stochastic integral we apply Theorem 2.2. Additionally making use of the
bound (2.4) for semigroup differences, splitting the integral as in E,, and using linear growth of G, (6.5),
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as well as g € LP(2; L*(0, T; L,(H,Y))) results in

s ) p/2\ Up
E, =B, (E (/0 IS —r) — S(s — N1G(r, U(r))||£2(H’X) dr) )
< 2B,Cy (T 7L yCop oy + gllpy) (1 = 9)°.

For the last term, the contractivity of the semigroup and linear growth of G yield

! 5 pI2\ 1/p
Es<B, (IE ( /s IS¢ = NG, Uz, mx) dr) )
< B,(CoxChpfrox T N8l 00 x)t — 5)1/2.

In conclusion from the five individual bounds, we obtain the statement of the lemma

ENIU@D — UG IP) < (CrxCuysax + Illpoox)t —5)

1/2
+B,(CoxCuppox + 18l oox) t — 9

+2Cy [l i@ + TLry Cungsr + Wlpay

1/2
+ By (T Ly Cup gy + Nellpay) | € = 97
O

REMARK 6.3. Suppose that o € (0, %]. Lemma 6.2 implies o-Holder continuity of U in p-th moment.
The latter remains true if the pathwise continuity of f and g with values in Y from Assumption 6.13 are
relaxed to ||f| ply <00 and || gll b2y < 0. Performing an additional Holder argument for £5 and Es, the
pathwise continuity assumption with values in X can be relaxed to ||f]| prlx <0 and || g|||p’ 2o x <0

where we use the convention % = 00. Although the lemma could be improved for our purposes the above
version is enough since even pathwise continuity with values in Y is required in Theorem 6.4.

For time discretization, we employ a contractive time discretization scheme R : [0, 00) — L£(X) with
time step k > 0 on a uniform grid {tj =jk:j=0,...,N} € [0,T] with final time T = N, > 0 and
N, = % € N being the number of time steps. As in the previous section the discrete solution is given by
U0 := u, and

= Uy

U= RU + kR F(4_, U™ + RG(;_, U™ AW, (6.6)
. =t =t
= Rjug+k > RFt, U+ D R'G(t, U) AW, (6.7)
i=0 i=0

forj=1,..., N, with Wiener increments AW, := Wy (1;) — Wy (1;_,).
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We recall from Definition 2.4 that R approximates S to order « > 0 on Y or, equivalently, R converges
of order a on Y if there is a constant C, > O such that forallu € Y

1(S() — Rull < Couk®|lully.

Under the conditions of Assumption 6.1 we conclude from Proposition 5.1 and the remark thereafter
that R is stable, not only on X, but also on Y provided that u, € LI;_-O (£2;Y) and both S and R are contractive
on both X and Y. Thus,

1 max ||UY <K s 6.8
+omex 101y] = Kupg (6.8)
where K, ¢ oy = CgapCyy f,o,7 With constants Cyp,, ¢, 7 7 a8 in Proposition 5.1 applied on Y instead

of X. Furthermore, we recall the shorthand notation ||f]| p0o.Y and | gll p0o.Y from (6.3).
We can now state and prove the main result of this paper.

THEOREM 6.4. Suppose that Assumption 6.1 holds for some o € (0,1] and p € [2,00). Let A be the
generator of a Cy-contraction semigroup (S(7)),-, on both X and Y. Let (Ry),..( be a time discretization
scheme which is contractive on X and Y. Assume R approximates S to order « on Y. Suppose that ¥ <
D, (a, 00) continuously if & € (0,1) or Y < D(A) continuously if o« = 1. Let u, € L’;_-O(.Q; Y). Denote
by U the mild solution of (6.1) and by (U’) i=0,...,, the temporal approximations as defined in (6.6). Then
for N, > 2

max ||U() — U/)
ogji=he Y

< Ce(Clk + k2 4 (Cy + €y /max{log(T/K), p})ko‘)

p

with constants C, := (1 + C>T)/?exp((1 + C*T)/2), C := CFXﬁ +B,Cox. C =1L, (%T2 +

172
BPCG’X\/T), C, = Lz(%CF’XT + (%) BPCG’X\/T), Cy = Cs 300/ and

Gy = Cyllupllpp @y + Coo T + C3,aﬁ’
CpxLs+ Cyp 26,
Crg = Tla + LryKupsor + Wlpoor) \ 557 T G%)
B
. P
Ca'= ot (ﬁcG,XL3 + Co6 +2Cy (Lo yKyy oy + |||g|||p,oo,y))»

C3,log = KCa (LG,YKuo,f',g,Y + "lg”'p,OO,Y)’

where Ly, L,, Ly are as defined in Lemma 6.2, K, .,y as in (6.8), K = 4exp (1+ 2—16), Cy denotes the
embedding constant of Y into D4 (e, 00) or D(A), and Bp is the constant from Theorem 2.2.

In particular, the approximations (U/) ; converge at rate min{a, %} up to a logarithmic correction factor
ask — 0.

This convergence result applies to schemes such as the exponential Euler, the implicit Euler and
the Crank-Nicolson method, as well as other A-acceptable implicit Runge—Kutta methods such as Radau
methods, BDF(2), Lobatto IIA, IIB and IIC by virtue of Proposition 2.5. If R commutes with the resolvent
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of A, contractivity of R and S extend to fractional domain spaces and complex interpolation spaces.
Hence, contractivity on Y often comes together with contractivity on X.

The constant C, appears exponentially in the above. In the special case that Cpy = Cox =T = 1,
and p = 2, one can check that, similarly to Theorem 4.4, this yields the numerically reasonable value
C, = /10> < 470.

Proof. The assumptions of Theorems 4.3 and 4.4 hold, and thus, the mild solution U exists and the bound
(6.5) holds.

By definition, U@ = v = ug forj = 0.Let N € {1,...,N,}. Using (6.7) the discretization error
can be split into three parts

E(N) := | max |U(,) — U]
I<j<n =/

p
= | max 165 = Ruol )
tj j_l .. .
+ | max / S(tj—s)F(s,U(s))ds—kZR]k_’F(ti,U’)
==N o i=0 P
tj ji] ..
S(t; — $)G(s, U(s)) AWy (s) — > R 'G(t., U)AW,
+ | max | [0 - 966, U6) Wy (o) > 860UV ||

Using convergence of R of order @ on Y and the dominated convergence theorem we obtain

To shorten the notation for the discrete terms we introduce the piecewise constant functions_F k(s) 1=
F(t;,U") and G*(s) := G(t;, U") for s € [t;,t;,1),0 < i < N, — 1 as well as S¥(s) := RI fors €

(t;,_1, 41,1 <1 < N;. This allows us to rewrite

i
M, = 122 /0 S(t; — )F (s, U(s)) — Sk(tj — 5)F*(s) ds
- p
N=1 n)
<12 /, [max HSUJ- — 9)[F(s,U(s)) — F(s, U(t,-))]” ds
- p
N-1 i
+ Z/ max ”S(tj —IF(s, U@)) — F(t, U(ti))]” ds
N-1 i ‘
+2 / max HS(t,» — 9F(t;, U(t) — F(t;, Ut)]H ds
i—o i 1<j<N

P
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IN

+‘ ds

max ” [S(t; — ) — St — 9 1F (5)
1<j<N

0

=My +My, +My3+M,,.

Making use of Minkowski’s inequality in L”(§2), contractivity of (S(t)),zo and Lipschitz continuity of
F we derive the bound

Ut) — U'| ds

N—1 N—1
My3 < Cry D < Cpxk D EG) (6.10)
i=0 p i=0

/li+1
ti

for M, 5. Proceeding likewise for M, ; we obtain from Lemma 6.2 that

N-1 i
My, < Cry S / E|Ues) - U |)7 ds
=0 i

tit1

N—1
< CF,XZ/ Li(s— 1)+ Ly(s — 1) /2 + Ly(s — )% ds
i=0 i

N—1
L 2L L
< CF,XZ(jlkz‘F 2532 4 3 ka+1)

Py 3 a+1
L, 2L L
= Crylty (?lk + T2k‘/2 + ﬁk"‘) . (6.11)

Analogously, uniform Holder continuity yields

NZL et
My, <> / |F(s, U)) = Fti, Ut gy 9
i=0 v

N-1 tiy1
=3 / (s — )" ds | LFC. UL, |,
i=0 Vi

N—-1
kotJrl Ca FtN
< E —C, = ———k*. 6.12
T at 1 “fF ™ a1 (6.12)
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Using the semigroup bound (2.4) together with the assumed convergence rate @ of R on Y, the linear
growth assumption and stability of R, we obtain

N-1 tit1 .
My <> / 15, = ) = S = IF (5, U | ds
i=0 Vi P
N-1 iyl .. .
+1> / (5= 1) = R Pt 9] as
i=0 Vi P
N-1 tiv ) N-1 lit .
<2,y / (s — i) IF (s UDly ds| + Cuk® > / Fa, U’)HY ds
=0 /1 P i=0 1 P

N—1
2C .
< ( L+ co,) Y (LF,Y [y + Ilf(t,-)llmg;m)
i=0

o

2C
= (Ol +Y1 + Cot) (LF,YKMO,f,g,Y + ”f”p,oo,y)t]\]ka- (6.13)

In conclusion from (6.11), (6.12), (6.10) and (6.13), M, is bounded by

CpyL 2C, (L Nl
M, <L ; Livk + Féx 2tk + Cp otk + Cpxk D E(i)
i=0

A

Cr L 2C Nl 12
< F.X™1 F.X ) , (6.14)

L
vkt — 21Nk 2 4 Cy oyt k® + Cpy/ty (k > EG)?
i=0

where we have used the Cauchy—Schwarz inequality in the last line.
Let |s] =max{t; : 0 <i < N, — 1,¢; < s}. The remaining term M5 can be rewritten as

4
M,y = max /O S(t; — $)G(s, U(s)) — S(t; — 5)G*(s) AW (s)
- 14
i
< | max / S(t; — $)[G(s, U(s)) — G(s, U(Ls])] dWy (s)
I<j=N||Jo p
i
+ | max /S(tj—S)[G(s,U(LSJ))—G(LSJ,U(LSJ)]dWH(S)
1<j<N 0 P
U]
+ || max /S(t,-—S)[G(LSJ,U(LSJ))—Gk(S)]dWH(S)
1<j=N || Jo

p
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i
| max | [0, 15D = 56— 916" dwy 0 ,,
.
) max | [0 15D = 55— 91640 W0
1<j=N|[Jo p

= M3’1 +M3’2 +M3’3 +M3’4 +M3’5

We bound each term individually. An application of the maximal inequality Theorem 2.2, the Lipschitz
continuity of G and Lemma 6.2 result in

sup

M;, <
te[0,tn]

1
/0 St =[G, U(s) — G, U(LsHDTdWy(s)

p

N=1 p/2
<B, E(Z / IG (s, U(s)) = G(s, Ut 2, 1% ds)
i=0 i

1/p

e S 1/2
< BPCG’X( > /, (ENUs) — U@ IP)™? ds)
i=0 v

NZL i 172
< ~/§BPCG,X( > /, L3s—1)> +13(s — 1) + L3(s — 1) ds)
i=0 V'

L2 L2 1/2
=3B CGXf( L2 4 2k+2_31k2"‘)

o+

L L L
< V3B,Cox/ty | ==k + 2k‘/2+—3k“). 6.15
X ( V2 V2a + 1 (©.15)

Again invoking the maximal inequality we conclude

N=1 et 2 172
M, < B,,( > / [1GGs. Ut)) = Gt Ul cyan | ds)
i=0 1

N-L or 1/2
B — 1) ds |[G(, U, 2) ByCoc @ 6.16
- p(g‘/r e T \/ﬁf (6.16)
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from the uniform Holder continuity of G. Proceeding analogously for M;; and then applying
Minkowski’s inequality in L”/2(£2) results in

t
M;5 < | sup /S(t—S)[G(LSJ,U(LSJ))—Gk(S)]dWH(S) H
te[0,ty] 0
P
N—1 p/2 I/p
<B,Cx E(kz UG — U"||2)
i=0
N—1 1/2
= B,Caxk!/? | 3 max |U() = U]
=0 " p/2
f N—1 - 1/2
<B,Cox k( ' max [|U(t;) — U] )
i Z(:) ogj=e p/2
N—1 1/2
:BPCG’X«/Z(ZE(Z)Z) . 6.17)
=0

Since R is contractive on Y by assumption, the conditions of Proposition 5.1 are fulfilled, not only on X,
but also on Y. Thus, we can use the estimate (6.8). Together with the maximal inequality, the semigroup
difference bound (2.4), the ideal property of £,(H, X) and linear growth of G, this yields

‘ -1 ‘
/O St —s) ( > 10 OISG — 1) — NG, U‘)) AWy (s)
i=0

M;, < | sup
’ te[0,ty] P
tn 2 p/2\ 1/p
<B(E 1 —t,) — 1G(t;, U d
- 1’( (/O [fi,fi+1)(s)[s(s i) 16, U) Lo (H.X) S) )
N=1 ) NE p/2\1/p
<28.¢,(E s—1)% |Ga,, U ( ds) )
P Y( (;/t@ (s —1) i )Lz(H,Y)
2B C .
<2 k|l max HG t, UV ‘
~ S2a + 1\/; 0<j<N-1 ¢ ) LrHD)
2B,Cy
= o (K + U8l VA 6.18)
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Applying Proposition 2.3 with (Ds(j ) = ZJ,;(I) l[ti»tiJr WIS — 1) — R;:i]G(U") to the remaining term,
we conclude that
P) 1/p

N-1 ) 2\ /2
< K /max{log(N), p} ; k( 1?,?2\/ H [5G — 1) R;( 16@,, U )HLQ(H,X))

M35 == ]E max
” 1<j<N

it i .
| 3 b0 9186 = 19 = 16, U w0
i=0

p

N—1 2\p/2\ 1/p

-K e oHE(S k(. k@ Gt,Ue‘

< Ky/max{log( )p}( (;}: ( o (t )Lz(H,Y)) ) )
Jmax{log ™) pIA® U

< KCyr/tyy/max{log). p}k” | | max HG(t’U))Lz(H,Y) )

< KCy (LG yKyy gy + 18l 00 v)v/Tyv/ max{log(N), p}k* (6.19)

using that R approximates S to order « on Y, the ideal property of £,(H,X), linear growth and stability
of R on Y. Combining the bounds (6.15) to (6.19) we deduce

3
M; < B,CixLy\/iyk + \/;BpCG,xsz/t;kl/z + Cy0/Ink"
N-1I 1/2
+ C3jogy/Iyv/max{log(N), p}k* + B,C x (k Z E(@)Z) ) (6.20)
=0

Having bounded each term individually in (6.9), (6.14) and (6.20) we conclude

N—-1 1/2
E(N) < Cik + Ck'/? + C3k* + Cyy/max{log(N,), p}k® + C(k > E(E)z) ,

£=0

noting that N < N, and t,; < T. Thus, by the discrete version of Gronwall’s Lemma 2.7

E(N) < (1 + CZIN)I/Z e(l-‘rCth)/z (C1k+ C2k1/2 + C3k0l + C4 /maX{log(Nk),p} a)

follows. The desired error estimate is obtained for N = N,. As k — 0, the terms with the lowest
exponents dominate, i.e.

E(N,) < kY2 4 k4 /max{log(Ny), p}k® < /max{log(N,), pIminGel (ks ).

O

RemMaRrk 6.5. The result (Cox et al., 2020, Theorem 1.1) combines Holder regularity in the p-th moment
and bounds on the pointwise strong error to obtain a uniform strong error. Their effective method
is based on a sophisticated application of the Kolmogorov—Chentsov continuity theorem, as well as
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approximation arguments. Let us refer to this method for obtaining uniform strong error estimates as the
Kolmogorov—Chentsov method. At first sight, one might think that the result can be used to obtain the
convergence rate of Theorem 6.4 up to an arbitrary ¢ > 0. Below, we point out what can precisely be
achieved via their method.

Suppose that R approximates S to order 1/2, a pointwise strong error estimate of rate 1/2 has already
been established and Assumption 6.1 holds for fixed p € [2,00) and @« = 1/2. This means that the
fixed data (u,f, g) are assumed to have certain L7 (£2)-integrability. We will check what type of rate the
Kolmogorov—Chentsov method yields for

i

Ep® = | max |[U®) - U]
0<j<Ni »

and compare it to the rate Ei’oo < Cpkl/z,/log(T/k) we obtained in Theorem 6.4. We distinguish
between three cases.

(a) Integrability of data in L*(§2): In this case, the Kolmogorov—Chentsov method does not apply, so
no convergence rate is obtained.

(b) Integrability of data in LP($2) for a fixed p € (2,00): the Kolmogorov—Chentsov method gives
E;> < C, k'~VP forany y € (1/p,1/2).

(c) Integrability of data in L7 (£2) for all p € (2, 00): the Kolmogorov—Chentsov method gives Ei’oo <
C, k¥ forany y € (0,1/2).

In the last case, there is an arbitrarily small difference in the error rate. We can obtain this error rate
under the assumption that the data are L7 (£2)-integrable for a fixed p € [2, 00). In the case one has this
for all p < oo one needs to choose a very large p in the Kolmogorov—Chentsov method to get close to
the desired rate, which in turn produces large constants in the rate estimate.

6.2 The exponential Euler method

We analyse the time discretization error for the special case R, := S(k) known as the exponential Euler
(EE) method. Obviously, the EE method is contractive for contractive semigroups. Furthermore, several
terms in the error analysis vanish for the EE method, since S(t;) — R, = S@) — S(ky = 0 by the
semigroup property. In particular, the logarithmic correction factor is not needed for this scheme.

CoroLLARY 6.6 (Exponential Euler). Suppose that Assumption 6.1 holds for some « € (0,1] and p €
[2,00). Let A be the generator of a Cy-contraction semigroup (S(#)),~ on both X and Y. Suppose that
Y < D, (a,00) continuously if @ € (0,1) or Y < D(A) continuously if o« = 1. Let u; € LI;_-O (£2;7).
Consider the EE method R := S for time discretization. Denote by U the mild solution of (6.1) and by
(U%) i=0,... N the temporal approximations as defined in (6.6). Then, for N} > 2

max [[U(5) - U]
i

0<j<N

< Cs (s k+ Cs ok + Cg 35%)
p
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with constants Cg . := C, Cg; := C|, Cg, := G, as in Theorem 6.4, Cg 3 := Cg,,T + CS’S,aTl/Z,
CS,3,D! = C3,Ol and

1
Csna ™= 7 1 (CF,XL3 + Cor + 20y (Lp y Ky gy + ”fHU’(Q;C([O,T];Y)))) ;

where C3!a is as defined in Theorem 6.4, L3 as in Lemma 6.2, Kuo,f,g,Y as in (6.8), Cy denotes the
embedding constant of Y into D4 (e, 00) or D(A), and B, is the constant from Theorem 2.2.

. . . i . 1
In particular, the approximations (U”) ; converge at rate min{c, 5} as k — 0.

Proof. Adopt the notation from the proof of Theorem 6.4. Contractivity of R on X and Y is immediate

from contractivity of S on these spaces. Since S (tj) — R;( = O0foranyj € {0,...,N.}, the terms M, and
Mj 5 vanish. Moreover, the second term in M, 4 vanishes so that

M,, = 1 (LF,YKu(),f,g,Y + Ul o0y ) ENKS

o+

Combining the individual bounds for the remaining terms, the estimate follows from a discrete

Gronwall argument as in the proof of Theorem 6.4. The logarithmic correction factor vanishes due to

M;5=0. O
3,5

ReMARK 6.7. Adding a term that is quadratic in the Wiener increment to the EE method yields the
Milstein scheme, which has been found to give good convergence properties Jentzen & Rockner (2015).
In the parabolic case (i.e. A self-adjoint and with compact resolvent) (Jentzen & Rockner, 2015, Thm.
1) yields convergence of rate arbitrarily close to 1 in the cases of additive noise or multiplicative noise
satisfying a commutativity condition, which has been removed in subsequent work von Hallern & Rossler
(2020). An extension of these results for the Milstein scheme to the hyperbolic case has been raised
as a direction for future research in Jentzen & Rockner (2015), which, to the best of our knowledge,
remains open. Moreover, in Jentzen & Rockner (2015); von Hallern & Rossler (2020), the pointwise
strong error is analysed, from which a pathwise uniform convergence rate can only be obtained at the
price of deteriorating the convergence rate, as discussed Remark 6.5.

6.3 Error estimates on the full time interval

In this subsection, we will extend the error estimates of Theorem 6.4 and Corollary 6.6 to the full time
interval by using a suitable Holder regularity of the paths of the mild solution.

ExampLE 6.8. Fix N > 1. Below, we construct a process vy : [0,1] x £ — R such that
sup;cpo.1) Elvy @17 < 1/N, but vy (r) = 1 for all 7 in a neighborhood of {i/N : i € {I,...,N}}. This
shows that information on the pointwise strong error does not provide much insight on the path of vy in
general.

Indeed, let 2 = {a)m’i :iefl,...,N},m e N}.Foreveryi € {1,...,N} supposethat]P)(wm’l-) = %
Let Iy = Upot UL {0} x (& — 2. & + 5), and set vy(w,7) = 1if (w,7) € I. Then one can
check that vy satisfies the required estimates.
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The undesired behavior in the above example shows the need for having maximal estimates on the
full time interval, i.e. estimates for || sup,co 7 IU(?) — oI p where U is the process obtained from
the discrete approximation using piecewise linear interpolation.

The following simple deterministic result provides a way to connect the uniform error to the error
on the grid. Given a nondecreasing function @ : [0, 7] — [0, co) such that @ # 0 on (0, T] we say that
ueC?® ([0, T]; X) if u : [0,T] — X is continuous and

il I VOO
o OIED 0<s<t<T P —5)

Moreover, we set ||lullce o 11.x) = llullog + [Ulce (o.71.x)- We shall be particularly interested in the
function @ (r) = r¢ (1 + log (%))1/2 for r € (0, T] for some & > 0 and @ (0) = 0 in the following.
LemMMA 6.9 (Decomposition of the error on the full time interval). Let u € C?®([0,T];X) for a
nondecreasing function @ : [0,T] — [0, 00) such that @ # 0 on (0,7]. Let IT < [0,T] be a finite
time grid, and denote by & : IT — X an approximation of u, which is extended to [0, T'] by setting
u(t) == u([t]g) for t ¢ I1, where |t] ; := max{s € IT : s < t}. Then, it holds that

sup lu(r) —u@|l < @(h) - lullco (o.17:x) + sup lu(®) — u@)|l
t€[0,T] tell

for the maximal time step h := sup,¢[q 7 dist(z, IT).

Proof. Fort € [0,T] we can write

lu(@®) —a@l < llu@®) — u(le] I + Nult) ) — u@l

< ”””C‘P([O,T];X) - D(t— LtJn) + SuIIY) lu(s) — u(s)|l,
se

which implies the required result. g

From the above, we see that to estimate the uniform error on [0, 7], we need an (optimal) Holder
regularity result for the mild solution U to (6.1). To obtain such a result, the main difficulty lies in
estimating the stochastic convolution.

LemMma 6.10 (Path regularity of stochastic convolutions). Let X, ¥ be Hilbert spaces such that ¥ — X
continuously. Let A be the generator of a Cy-contraction semigroup (S(7)),-( on both X and Y. Suppose

that ¥ < D, (,00) holds for some « € (0,1/2]. Let ¢ € (2, 00] be such that % — %1 = «a and let
2 < p < py < oo. Suppose that

g€ LP($2;L2(0, T; L,(H,Y)) NLP(§2;L9(0,T; L,(H,X)))

and define ]g : 2 x [0,T] — X as the stochastic convolution

t
Jg(t) = / St — 5)g(s) dWy(s).
0
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Then one has Jg e [P(£2;C¥ ([0, T]; X)) for ¥ : (0,T] — (0,00), ¥ (r) := (1~|—10g (%)) 172 and there

exist constants Cp, Cappo 7 = 0 such that

el c2:cv qo.mxy < Collglr ez 0.r.cotv0) T Cappo.r I8l @:i90.1:05.%))-

By a simple rescaling, the result extends to quasi-contraction semigroups. Moreover, from the proof
below one can see that a certain Orlicz integrability in §2 is sufficient for g. Note that the above path
regularity is optimal for ¢ = oo. Indeed, Lévy’s modulus of continuity theorem for a scalar Brownian
motion states that a.s.

. B(t+ h) — B(t)
limsup sup ——————mrr =
hi0  te[0,1—h] +/2hlog(1/h)

which shows that ¥ cannot be replaced by a ‘better’ function.

Proof of Lemma 6.10. For 0 <s <t < T we can write

A

10 =g < [ sa—9 =1 [ st = ngyawy o]+ | [ 'St () w0

1 Ti(t,s) +Th(t,s).

For T, we can write

10,9 < 186 =9 = g | [ 56— e Wy 0], = o= 9715,0ly

for some ¢ > 0. Therefore, by Theorem 2.2 we obtain

gy

< u
Vossrer (1 4108 (L) |y

T,(,5)
sup ————
0<s<t<T ¥ ([ — S)

e < B, lgllr(@:20.1:L, 1.1y

For T, we use the dilation result of (Sz-Nagy ez al., 2010, Theorem 1.7.1) (cf. Hausenblas & Seidler
(2008)). We can find a Hilbert space X, a contractive injection Q : X — X, a contractive projection
P:X — Xanda unitary Cy-group (G(?)),cg on X such that S() = PG()Q for t > 0. Thus, we can
write

ns = | [ rou-nosnaw,ol, <| [ éenosnawm] = 1o - o1

where I(t) := fot G(—r)Qg(r) dWy (7). Then by (Ondrejat & Veraar, 2020, (2.12) and Theorem 3.2(vi))

we have I € LP(§2; CIlogC I ([0, T); X)) and thus by boundedness of | log(- )|1/2(1 +10g( )) 2 on
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(0, T] also I € LP(£2; C¥ ([0, T];f()). Moreover, there are constants Co.Ts Ca’p’pO’T > 0 such that

”I”U’(Q;C"’([O,T];f()) = Co:,T||I||U(9;B‘;>2,OO(O,T;J?))
= Ca,p,pO,T”G(—')Qg(')||Lpo(Q;LtJ((),T;£2(H5()))

< Copporl8llro 21001000 5)))

where Bgm(o, T;X) denotes the Besov—Orlicz space corresponding to @,(x) := exp(xz) — 1, cf.
(Ondrejat & Veraar, 2020, Section 2.3) for the definition. It follows that

T,(,s)
sup  ————\ = Ml a.cvqoriy = € g1l o (2 : .
0csmicr Pt —5) |, 17 (£2;CY¥ ([0,T1:X)) a.p.po, T8I 1P0 (£2;L9(0,T;L5(H X))
Now the required estimate follows by combining the estimates for 7 and T5. 0

REMARK 6.11. For analytic semigroups on X, the result of Lemma 6.10 even holds if merely g €
LP0(82;L90,T; L,(H, X)), and even J, € LP(82;Bg, ,,(0,T;X)) (see Ondrejat & Veraar, 2020,
Theorem 5.1). In particular, the space Y and contractivity of S are not needed. We do not know if one
can take p, = p in Lemma 6.10, even in the analytic case. Also, we do not know if the above Besov
regularity of J, holds in the nonanalytic case.

Sharp path regularity results such as the one of Lemma 6.10 play an important role in obtaining
convergence rates for numerical schemes for SPDEs. In particular, recent other applications of Ondrejat
& Veraar (2020) to numerics include Diening et al. (2023); Le & Wichmann (2023); Wichmann (2023,
2024). Below, we apply Lemma 6.10 to obtain additional information on the numerical approximation
in the Kato setting, and it seems to be the first of its kind for hyperbolic equations.

After these preparations we can now prove the required path regularity of the mild solution.

ProposiTion 6.12 (Path regularity of the mild solution). Suppose that Assumption 6.1 holds for some
a € (0,1/2] and p € [2,00). Let py € (p,00) and g € (2, oo] be such that % — é = o, and suppose that
f. g, and u, additionally satisfy

fe(2;L10,T;X)), g€ P (2;L90,T; Ly(H, X)), and ug € L2 (2;X) N L5 (2;7).

Let A be the generator of a Cy-contraction semigroup (S(#)),~ on both X and Y. Suppose that ¥ <>
D, (e, 00) continuously. Let ¥ : (0,T] — (0,00) be given by ¥ (r) := r*(1 + log(£))!/2. Then the
mild solutiozl to (6.1) satisfies U € LP(£2; C¥ ([0,T]; X)) and there exists a constant C depending on
(T,p,py,o, F,G, X,Y) such that

”U”U'(Q;CW([O,T];X)) = C(l + ”uO”LP(Q;Y) + |lf||p,oo,y + |||g|||p,oo,y

+ llugllzro (2.x) + Wfllp,1 x + |||g|||p0,q,x)-

Proof. The mild solution formula (6.2) yields an initial value term, a difference of deterministic
convolutions and a stochastic version of the latter. The first two can be estimated as in the proof of
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Lemma 6.2, resulting in an upper bound of the form

(14 lltglpceyy + I lpsory + Ngll,zy)

for some ¢ > 0 depending on 7. To the remaining term we apply Lemma 6.10 and note that

NGC U pay < LeyCupray + Mgl 00y
IGC Uy gx < TG Uy cox + 18l gx < TV9CoxCrp rox + 8l g x

f, 1+ ”u0”U’O(Q;X) + ”f”p(),l,X + |||g|||p0,q,x,

where C

wof.g.x 18 defined as C

wof.g.x 1N (6.4) with p replaced by p,. g
Consequently, we can now ‘upgrade’ Theorem 6.4 and Corollary 6.6 to estimates on the full time

interval.

THEOREM 6.13 (Uniform error on the full interval). Suppose that Assumption 6.1 holds for some o €
(0,1/2] and p € [2,00). Let A be the generator of a Cy-contraction semigroup (S(#)),~ on both X and
Y. Let (R;);- be a time discretization scheme which is contractive on X and ¥ and R approximates S to
order o on Y or suppose that R, = S(k) is the exponential Euler method. Suppose that Y < D, («, 00)
continuously. Let p, € (p, o0) and g € (2, oo] be such that % - (1; = o, and suppose that f, g, and 1, have

additional integrability as X-valued processes

fe(@2;LN0,T;X)), g € I°(2;L90,T; L,(H, X)), and uy € L2 (2:X) N Ly (2;7).

=0U,...,

(6.6). Define the piecewise linear extension U : [0,T] — LP(£2;X) by l~](t) = U fort € [tj,tj+1),
0 <j=<N,—1and U(T) := UMk, Then for all N, > 2 there is a constant C > 0 depending on
(uy, T,p,pg- o, F,G,X,Y) such that

sup U@ — U@)||
1e[0,T]

< C(1 + /max{log(T/k), p})k”.

p

Proof. The error bound follows from applying Lemma 6.9 with @ = (-)* (l +log (Z)) /2 in combination
with Theorem 6.4 and Proposition 6.12 to bound the first and second term obtained from the proposition,
respectively. [

Thus we can conclude that Theorem 6.4 and Corollary 6.6 can be improved to a uniform error estimate
on [0, T] at the price of a slightly more restrictive integrability condition on g and u,. Moreover, in the
exponential Euler method an additional logarithmic factor appears. Recall from (Miiller-Gronbach, 2002,
Theorem 3) that already for SDEs the error has to grow at least as log(7'/k)'/?k'/? for k — 0. Therefore,
for « = 1/2, Theorem 6.13 gives the optimal convergence rate for any scheme.

In the applications given below we restrict ourselves to the uniform error estimate on the grid points.
By the above result these statements can be extended to the full interval [0, 7] with additionally the
square root of a logarithmic factor by imposing extra integrability conditions on the data.
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6.4 Application to the Schrodinger equation

In this subsection we reconsider the stochastic Schrodinger equation with a potential from Section 3.3,
now with linear multiplicative noise

du = —i(A+ V)udt —iu dW on [0, T],
[ u(©) = g (6.21)
and its nonlinear variant with ¢ : C - Cand ¥ : C — C,
du = —i(Au+ Vu + ¢(u)) dt — iy (u) dW on [0, T,
(6.22)
u(0) =u,

in R for d € N, with Q-Wiener process {W(9)},~0, potential V and initial value u as introduced in
Section 3.3. -

Let 0 > 0 and, for this subsection only, write R (Rd; C) and H° = H° (]Rd;(C). We recall
that the well-posedness of (3.12) required Assumption 3.5 on ¢ and d € N to hold so that multiplication
by V is a bounded operator on X = H?. For multiplicative noise this assumption is also required to
hold on ¥ = H° T where the choice of £ depends on the scheme employed. To facilitate checking the
assumptions on Y we use the following equivalent reformulation of Assumption 3.5:

AssumpTION 6.14. Leto >0,d e Nand V € L? such that
() o>%andVeH,

(i) o =0andV € HP for some g > %l,
(i) d=1,0 € (O,%) and V € HP for some B > 1

2
(iv) d>2,0 €(0,1]and V € H? for some g > 4.

Based on the combination of the cases of Assumption 6.14 for X = H® and Y = H° % the following
assumption emerges.

ASSUMPTION 6.15. Leto > 0,de N, a € (0, %], e 0,00),Ve HP for some B > 0 such that
@) o>%andﬁ=o+£a,or

(i) 0=0,1<d<¢a>% andp="la,or

(iii) o:O,d:l,a<ﬁ,andﬂ> %,or

(iv) 0=0,d>2,a<7t,andp >4 or

v) d=1,0€(0,1), 0> 152 andV e HH or

(vi) d=1,0€(0,9),a <152, and B > 3, or

(vii) 2<d<20+¢,0¢€(0,1],a > %522, and B = 0 + La, or

(vii) d>2,0€(0,1],0 <15% andp > 4.
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For the exponential Euler method, we recover the error bound from (Anton & Cohen, 2018, Thm.

5.5) showing convergence rate % for linear noise in the case of sufficiently regular Q'/> and V and o > ‘71.

Assuming less regularity of Q'/% and V we extend their result to fractional convergence rates o € (0, %]
as well as the cases (ii)—(viii) of Assumption 6.15.

THEOREM 6.16. Leto > 0,d € Nand V € L2. Suppose that Assumption 6.15 is satisfied for some £ > 2
and some o € (0, %], B > 0andp € [2,00), and that u € LI}_-O (2; Ho M) aswellas Q12 € £2(L2,Hﬁ).
Denote by U the mild solution of the linear stochastic Schrodinger equation with multiplicative noise
(6.21) and by (U) i=0,...Ni the temporal approximations as defined in (6.6) obtained with the exponential

Euler method R := S. Then there exists a constant C > 0 depending on (V, ugy, T,p,a,0,d,£) such that
for N} > 2

max [|U(t) — U o

< 1/2 o
Jmax, = C(1+ 10"l gy pm K™

p

In particular, the approximations (U/); converge at rate Lask— 0if QV2 € £,(L* HO*Y), V e HOH!,
o > %1 and u, € LI}O(Q;H"“).

Proof. By (Anton & Cohen, 2018, Lemma 2.1), A = —iA generates a contractive semigroup on both
Hilbert spaces X = H and Y = H° @ Furthermore, setting F (1) = —iV-u and G(u) = —iMqu/2 for
u € H? with the multiplication operator M, allows us to rewrite (6.21) in the form of a stochastic
evolution equation (6.1). It remains to verify the mapping, linear growth and Lipschitz continuity
conditions from Assumption 6.1.

Note that Assumption 6.15 implies that Assumption 3.5 is satisfied for both o and o + fo. In
particular, this means that Vu € ¥ = H°H for any u € H+ and ||Vl gosta < Cyllutllyo+ta for
some constant Cy, > 0. More specifically, it can be shown that Cy, < ||V||ys, cf. Section 3.3. Hence, F
maps both X and Y into themselves and it is of linear growth on Y because of

IF@)lly = | =iV - ullgo+ta < Cyllullgota = Cyllully. u € Y.

Likewise, Lipschitz continuity on X is obtained.
Set H = L?. Due to

G £y a1.y) = Il = iM,, - Q1| £, 12 ro-+tar

1/2
< WM £ pro+er 19N 2y 2.8

1/2 1/2
SN2 2,2 )t o = 1QY

lz,2,meyllully, uey, (6.23)
G is of linear growth on Y. To see this we estimate the operator norm of M, from HP to H° T using
either the Banach algebra property of H?, a combination of Holder’s inequality and Sobolev embeddings
or an argument analogously to Lemma 3.6 as discussed in Section 3.3. Likewise, we check Lipschitz
continuity of G on X with a multiple of ||Q'/?| £,(2.1#) as Lipschitz constant. Measurability and Holder
continuity in time are trivially fulfilled due to F and G depending only on u € X. Thus, Corollary 6.6 is
applicable with X = H°, H = L? and Y = Ht% < H°T2* < (H? ,D(A)), . yielding the desired
error bound. (]
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Furthermore, Theorem 6.4 enables us to extend (Anton & Cohen, 2018, Thm. 5.5) to general
discretization schemes R involving rational approximations at the price of an additional logarithmic
factor. We focus on the IE method and the CN method, which approximate the Schrédinger semigroup
torate w on Y = H° 4 and ¥ = H° T3¢ respectively (see Theorem 3.8).

TheOREM 6.17. Leto > 0,d € Nand V € L2 Let (R0 be the IE method or the CN method and
set £, := 4 or £, := 3, respectively. Suppose that Assumption 6.15 is satisfied for some £ > £ and for
some a € (0, %], B > 0,and p € [2,00). Furthermore, suppose that u, € Ll;_-o (.Q;H‘H‘ZO‘) as well as
02 e L, (L*,HP). Denote by U the mild solution of the linear stochastic Schrodinger equation with
multiplicative noise (6.21) and by (Uj)jzo,...,Nk the temporal approximations as defined in (6.6). Then,
there exists a constant C > 0 depending on (V,u,, T, p, o, 0,d, £) such that for N, > 2

max ||U(t;) — UV
HOS,SNk UG — Cllgo

< C(1+ 10"l £, 12.1#) ) v/ max{log(T k), p}k©.
P

In particular, IE and CN converge at rate % up to logarithmic correction as k — 0if V e HO+@,
0'2 e L,(L?, H°H), 0 > 4 and u, € L’:)%(Q;H"””‘) with £ = 4 and ¢ = 3, respectively.

An analogous statement holds for all time discretization schemes (R;),. o which are contractive on
H® and H° % and approximate S to order @ on H° 7% The reader is referred to Proposition 2.5 for
a tool to check contractivity. As in the additive case, the conditions on the dimension d € N are not
required in the absence of a potential. In most cases, choosing £ = £, is sufficient. However, in the
situation of Assumption 6.15(ii) or (vii), choosing a larger ¢ can yield the additional regularity required
to solve Schrodinger’s equation in higher dimensions.

Proof. We want to apply Theorem 6.4 with Y = Hot for ¢ > Ly € {3,4}and X, H, F, G as in Theorem
6.16 for the exponential Euler method. The proof works analogously, replacing £ > 2 by £ > £,. It
remains to check that IE and CN are contractive on H° and H° Tt But since IE and CN are defined via
A and a scaled version of its resolvent, R, commutes with resolvents of A in both cases. Thus, Proposition
2.5 yields the assertion. O

When passing to a nonlinear situation as in (6.22), showing Lipschitz continuity of G requires
estimates of the form

I @) =y llige < llu—vlgs, u,v e H

and similar for ¢. However, the best estimate known for o € (0,1) and ¢ € C? with bounded first and
second derivatives is (Taylor, 2007, Prop. 2.7.2),

1Y @) =y Wlige S lu—viige + @+ lullge + IVIge) e = Vil

Since this estimate is nonlinear in « and v, showing Lipschitz continuity of G is currently out of reach for
o > 0. Another reason to restrict our considerations to ¢ = 0 in the following is the negative result from

Dahlberg Dahlberg (1979), see also the survey Bourdaud (2023). It states that for o + 2« € (%, 1+ ‘2—1),

the only mappings ¥ such that ¥ o u € H°+2® for all u € H°">* are the affine-linear ones. Hence, in
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dimension d > 1, the optimal rate o« = % cannot be expected for all o > % for genuinely nonlinear .

For 0 = 0, however, a convergence rate can be obtained.

THEOREM 6.18. Leto = 0,d € N, and V € L2. Suppose that one of the cases (ii)—(iv) of Assumption
6.15 is satisfied for £ = 2 and for some o € (0, %], B > 0and p € [2,00). Furthermore, suppose that
uy € LI;_-O(Q;H"’LZ"‘) as well as Q'/2 € £,(L?,HP). Let ¢,v : C — C be Lipschitz continuous and
such that ¢(0) = ¥(0) = 0. Denote by U the mild solution of the nonlinear stochastic Schrédinger
(6.6) obtained with the exponential Euler method R := S. Then, there exists a constant C > 0 depending
on (V,uy, ¢, ¥, T,p,a,d, ) such that for N, > 2

< C(1+ 12"l 2y g2,y )R
p

max ||U(t) — U],z
omax, 1U(;) Il

In particular, the approximations (Uj)j converge at rate % ask — 0if Q% € £,(L*,H"),V € H' and
uy € L’;_-O(.Q;Hl) for d = 1. In dimension d > 2 this is attained for '/ € £, (L*, H?) and V € HP for
some 8 > %, and u, € LI}_-O(Q;HI).

Proof. From the linear case it is already clear that
1G@) = GWlgyq2.02) S N 0w = oVl 1@ £y02 -

Lipschitz continuity of v with Lipschitz constant C;, > 0 implies Lipschitz continuity of G on
X =17 via

1 ou—v ovll 21021 2y2.m8) < Cyll Q2 2y 2.y lu = Vii 2-

Since from (6.23) we know that

1G) £,12 p2ey S N 0 ttll g2 |Q N £, 12,108 (6.24)

it remains to estimate the norm of the composition || o u|| 2. by a multiple of ||u|| z2« to show linear
growth of G on H?* Incase a < %, 2a € (0, 1) and thus, by (Taylor, 2007, Prop. 2.4.1), | o ull g2 S
|l4]| g2 . In the remaining cases 2o = 1 holds, so that

1 oull7pe = 1Y oullls + IV ow72 < Il o ull}> + Cj I Vull;> < max{1, Cj}ull3,.

where in the first inequality we have invoked (Taylor, 2007, Prop. 2.6.1). Hence, G is of linear growth
on Y = H* . 1In the same way one can see that F'(u) = —i(Vu + ¢ (u)) is Lipschitz on X and of linear
growth on Y. The statement of this theorem follows by an application of Corollary 6.6. ([

To estimate the composition in (6.24) we required 2« € (0, 1] to apply the composition estimates. It
is an open problem whether such estimates also hold in H® for s > 1. For real-valued functions, results
have been obtained for s < % in (Bourdaud & Sickel, 2011, Thm. 18). These estimates being unknown
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for s > 1 limit us to suboptimal convergence rates for schemes involving rational approximations, at
least for nonlinear Schrédinger equations.

TreorEM 6.19. Leto = 0,d € Nand V € L%, Let (Ry),.( be the IE method or the CN method and set
£y =4 or £, := 3, respectively. Suppose that one of the cases (ii)—(iv) of Assumption 6.15 is satisfied
for £ = £, and some « € (0, %], B > 0and p € [2, 00). Furthermore, suppose that 1, € L’;_-O(.Q; H') as
well as Q172 e L,y (L?,HP). Let ¢,y : C — C be Lipschitz continuous and such that ¢ (0) = ¥ (0) = 0.
Denote by U the mild solution of the nonlinear stochastic Schrodinger equation with multiplicative noise

=V,...,

C = 0 depending on (V,ug, ¢, ¥, T,p,c,d, ) such that for N > 2

‘0_/

max ||U(t) — U)o
max V() = Ul

< C(1+ 10"l £, 12.1#) ) v/ max{log(T k), p}k©.

p

In particular, in dimension d = 1, the IE method converges at rate % up to logarithmic correction as
k— 0if V e H, Q]/2 € £2(L2,H1) and u, € LI:%(Q;H‘). For the same regularity of V, Q]/2 and u,

the CN method converges at rate % up to logarithmic correction as k — 0 in dimension d = 1.

This theorem can be generalised to time discretization schemes (R,),. that are contractive on L?
and H and that approximate S to order « € (0, §] on H®.
6.5 Numerical experiments for the Schrodinger equation

In this subsection we illustrate that convergence rates observed in numerical simulations correspond well
to the analytic convergence rates obtained in Sections 3.3 and 6.4 for the Schrodinger equation. The code
for the numerical simulations is available at Klioba & Veraar (2024).

We consider the linear stochastic Schrodinger equation without potential (V = 0) and with periodic
boundary conditions on [0, 2] in the case of multiplicative noise (6.21) and additive noise (3.12),
respectively. For spatial discretization we employ a spectral Galerkin method with M = 2!° Fourier
modes and calculate L2-errors, i.e. ¢ = 0. The initial values uy are taken with Fourier coefficients
(1+)¢ |6)_1 ,—M/2+1 < £ < M/2,resulting in sufficiently smooth initial values. We take the covariance
operator Q to have eigenvalues A, = (1 + 1€1#)~1 to the eigenfunctions e, = Qm)~1/? exp(il-), £ € Z.
We choose the exponent as 8 = 5.1 for additive noise and = 3.1 for multiplicative noise, which leads
to Q1% € EZ(LZ, H?>*¢)and Q'/% € Ly (L2, H'*®) for any ¢ € (0,0.05), respectively. In the simulation,
both the noise and the approximate solutions are truncated at wave numbers —M/2 + 1 < £ < M/2.
For time discretization we consider the exponential Euler method (EE), the implicit Euler (IE) method
and the Crank-Nicolson (CN) method. For additive noise, case (ii) of Assumption 3.5 is satisfied, so that
according to Theorem 3.7, for any p € [2, 00), EE shall converge with the optimal rate 1. Analogously,
by Theorem 3.8, IE shall converge with rate % ~ 0.5125 and CN with rate 2% ~ 0.68. The truncation
error of the spectral Galerkin method can be computed to be of order (M/2)~* ~ 1072, which is
negligible. For multiplicative noise case (ii) of Assumption 6.15 is satisfied, resulting in analytical rates of
convergence 0.5, 13i ~ (.35, and 14& ~ 0.26 for EE, CN, and IE, respectively, based on Theorems 6.16
and 6.17, respectively.

The numerical rates of convergence of the pathwise uniform error with p = 2 of the three different
schemes are illustrated in Fig. | and stated in Table 2 for additive and multiplicative noise as described
above. The expected analytical rates of convergence can be confirmed. Small deviations of the numerical
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TABLE 2 Numerical rates of convergence for the stochastic Schrodinger equation

EE IE CN
H?*¢_valued additive noise 0.9650 0.5510 0.7071
H'*¢_valued multiplicative noise 0.5321 0.3025 0.3675

107"

— -2 —
510 5
L L
= = Slope 1/2 S R Slope 1/4
==== Slope 1 10°¢ = = Slopei/2 | ]
—B—EXP —B—EXP
IE —5—E
CN CN
1073 ' '
102 102
k k

Fic. 1. Numerical rates of convergence for the stochastic Schrodinger equation with additive noise (left) and multiplicative noise
(right) for exponential Euler (squares), implicit Euler (diamonds), and Crank-Nicolson (asterisks).

from the analytical rate of convergence can be explained by the fact that the analytical solution is
approximated by the EE method with a small time step k = 2~'2 and 100 samples are used for the

approximation of the expected values. For the approximations time steps k = 27>,...,27 are used.
6.6 Application to Maxwell’s equations
As a second example we consider the stochastic Maxwell’s equations
dU =[AU+ FU)] dt + G(U) dW on [0, T], (6.25)
U©) = (Ej.H))' ‘

with boundary conditions of a perfect conductor as in Cohen et al. (2020). It describes the behaviour of
the electric and magnetic field E and H, respectively, on a bounded, simply connected domain O C R?
with smooth boundary with unit outward normal vector n. Here, A : D(A) — X := L*(O)° is the
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Maxwell operator defined by

A(E) — 0 e 'Vx\ (E\ (¢ 'VxH
H/ — \—u'vx 0 H/ -4 'VxE

on D(A) := Hy(curl,0) x H(curl,0) with H(curl,0) := {H € (L*(0))* : V x H € L*(0)%} and
its subspace Hj,(curl, O) of those H with vanishing tangential trace n x H|,». The permittivity and
permeability ¢, u € L>(0O) are assumed to be uniformly positive, i.e. &, 4 > k > 0 for some constant
«. We equip the Hilbert space X = L*(0)® = L?(0)3 x L*(0)? with the weighted scalar product

E E
<(H11) ’ (H§)> = /(’) (w(H|,H,) + ¢(E|,E,)) dx,

where (-, -) denotes the standard scalar product in L2(©)3. Furthermore, W is a Q-Wiener process for a
symmetric, nonnegative operator Q with finite trace such that Q'/2 ¢ L,(H,X), where H = L2(0)% is
equipped with the standard norm.

For F : £2 x [0,T] x X — X we consider the linear drift term given by

_fo1¢DE I e

((,(), ta U) = F(C(), t’ U) - (02(', t)H) > U - (E ’H ) B (626)
for sufficiently smooth 0,0, : O x [0,T] — R. We assume boundedness of o, 0, and their partial
derivatives w.r.t. the spatial variables. In particular, let o; be uniformly Lipschitz continuous in time and
let 0, o; o; € L*®(O x [0,T]) fori = 1,2,3 and j = 1, 2. Then, F is Lipschitz on X due to

Xi~J’

IF( V)3 = /O (R lloy DBy 220 + £ 0 (. DEy 2 ) d
< max{[|o} [ . |02l I VIIK = CEIVIE. V= (Ey.H)T,

and linearity of F. A straightforward explicit calculation of the curl operator shows that

2

-1
IAF (V)3 = ”( £V x (o5(,)Hy) )

—u~ IV x (0,(¢,DEy)

X
<k’ /O KUV x 01 COEN 720y + €IV X (03¢ 0HY) 1] )3 dx
<3k72 (C§||AV||§ + 2 max max ||axiaj||§o||vn§) .
j=12i=123
We conclude linear growth of F on Y := D(A) by
IF V) pay = IFE VI + IAFE V) k

—2y,2 -2 2 2
< (max{l,sx }C + 6« max max, ||ax,.oj||oo) V1D
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As noise G(V), where V = (ET,HJ)T e L*(0)° we consider the Nemytskij map associated to
diag((—e’]Eg, —/L’]H—‘;))Ql/z, i.e. for h € L2(0)% and x € O, we have

—&~ ! (x) diag(Ey (x)) 0

GV (x) = ( 0 — 1~ () diag(Hy (x))

) (021 (x) € R. (6.27)

Since for V,V, € L2(0)°

IGVy = V)l 2oy < €O 2y IV = Vallxs

G : X — L,(H,X) is Lipschitz continuous on X. As discussed in (Cohen et al., 2020, p.5) G
is of linear growth on D(A) under higher regularity assumptions on Q'/2. To be precise, if Q'/? €
£2(L2(C’))6,H‘+ﬁ((’))6) for some 8 > % then, for some C > 0,

IGW) I £,.0y = CIO 1 2, 20.m1+80y0 (1 + 1V Ipw))-

This directly follows from the estimate (Cohen ez al., 2020, formula (7)) for G defined by G = GQ'/?
taking into account that for an orthonormal basis (e, ), of H we have

IGW) 2oy = D NGWIelpuy = D IGVIQ eyl puy = IGWV) £,00121.0))-
LeN LeN

The choice of the coefficient 8 > % stems from the fact that the Sobolev embedding H? (0) — L>(0)
holds for 8 > %l = % since © C R3 (Hytonen et al., 2017, Ex. 9.3.4). Thus, for the embedding into
D(A) to hold Ql/2 is required to map into H'*P ((9)6.

THEOREM 6.20. Let p € [2,00) and F, G as introduced in (6.26) and (6.27), respectively. Suppose that
Uy € L’}O(Q;D(A)) and Q'/2 € £,(L*(0)°, H'*#(0)°) for some > 3. Denote by U the mild solution

to the stochastic Maxwell’s equations (6.25) with multiplicative noise (6.21) and by (Uj)j:() n, the

.....

temporal approximations as defined in (6.6) obtained with the exponential Euler method R := S. Then,
there exists a constant C > 0 depending on (0, 05, U, T, p, a, &, |4, ) such that for N, > 2

max [|U(t) — U

172 1/2
05j<N < C(LH 12 Il g2 m+8 0K s

p

i.e. the approximations (U”); converge at rate 5 as k — 0.

Proof. The theorem follows from Corollary 6.6 with ¢ = % and ¥ = D(A). From the above

considerations it follows that the conditions on F' and G are met. It remains to verify that Y is Hilbert
and (S(7)),~ 1s a contraction semigroup on both X and Y. Since ¥ = D(A) is a Banach space (Monk,
2003, p. 410) and A — A defines an isomorphism between D(A) and X for A € p(A) it is also a Hilbert
space. By (Cohen et al., 2020, Formula (3)), (5(1)),~( is a contraction semigroup on X. By definition of
the graph norm this implies contractivity on D(A). O

We can extend (Cohen et al., 2020, Thm. 3.3) to schemes involving rational approximations.
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THEOREM 6.21. Let p € [2,00) and F, G as introduced in (6.26) and (6.27), respectively. Suppose that
uy € L’}O(Q;D(A)) and Q2 e L,(L*(0)®, H'*#(0)®) for some B > 3. Let (R, be a time
discretization scheme which is contractive on L>(0)® and D(A). Assume R approximates S to order %
on D(A). Denote by U the mild solution to the stochastic Maxwell’s equations (6.25) with multiplicative

=V,...,

constant C > 0 depending on (0,05, uy, T, p, o, &, |1, k) such that for N, > 2

< C(l + ”Q]/2||£2(L2((9)6,H1+/3(O)6))\/ max{log(T/k),p}k]/z,

max ||U(t,) — U/ || 0
B V) = Ul |

0<j

i.e. the approximations (U) ; converge at rate 1/2 up to a logarithmic correction factor as k — 0. In

particular, rate % is attained for the IE method and the CN method.

7. Convergence rates for abstract wave equations

In this section we shall be concerned with rates of convergence for abstract stochastic wave equations of
the form

dU = (AU + F(1, U)) di + G(t, U) AWy, (1), U(0) = Uy = (g, v) € I (£2;X) (7.1)

on a phase space X = V x V_; of product structure to be specified later, which takes different
regularities of the first and second components of the mild solution into account. We achieve the
following convergence rates for sufficiently regular noise:

*  EP < k¥/log(T/k) with a close to one (general contractive schemes, multiplicative noise);
* E° < k (exponential Euler, multiplicative noise).

Up to a logarithmic factor these rates are optimal for the given problem. They provide an alternative
proof of (Wang, 2015, Thm. 3.1) for the exponential Euler method under less regularity assumptions on
F and G and without making use of the group structure of the semigroup. The latter is crucial in order to
extend the convergence result beyond the exponential Euler method. We extend the convergence result
to general contractive schemes, which, to the best of our knowledge, is novel.

At the heart of our proof lies the higher Holder continuity of the first component of the mild solution
in V compared with the mild solution vector in X, which emerges from the product structure of the
phase space on which the abstract wave equation is considered. This allows for better estimates of those
error terms depending on the Holder continuity of the mild solution. Incorporating this into the setting of
Section 6 leads to the main Theorem 7.6 in Section 7.1. Section 7.2 covers the exponential Euler method.
An extension of the error estimates to the full time interval is presented in Section7.3. The results are illus-
trated for the stochastic wave equation with trace class noise, space—time white noise and smooth noise in
Sections 7.4-7.6.

Let V be a separable Hilbert space equipped with the norm || -||,,. Consider a densely defined, positive
self-adjoint invertible operator A : D(A) € V — V. For 8 € R, define the norm ||”||Vﬁ = IIAﬂ/ZuHV

. B e . .
for u € Vg and, for g > 0, denote the domain of A2 by Vg and equip it with this norm. For negative
B, we denote by V4 the completion of V with respect to || - [y, 5 We can thus interpret A as an operator
mapping from V; to V_; and it holds that V = V,,. In this section we consider stochastic evolution
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equations on the phase space X := V; x V_; = V x V_,. More generally, we introduce the product
spaces

B B-1
Xp:=Vgx Vs | =D(A2)xDAT) (7.2)

for B € R, equipped with the norm ||U||Xﬂ = (IIMII%/ﬂ + ||v||%/ﬁil)1/2 for U = (u,v) € Xg. Clearly, it
then holds that X = X,.

The stochastic evolution equation (7.1) depends on the nonlinearity F : 2 x [0,7] x X — X and
the multiplicative noise G : £2 x [0,T] x X — L,(H, X) on the phase space X. However, the product
structure of X considered in this section motivates an interpretation of (7.1) as a system of two evolution
equations. Setting

0 1 0 0 u
A= (—A 0), F@,U) = (F(t, u)), Gt U) = (G(t, u)) forU = (v) eX (7.3)

gives rise to the system of evolution equations

du =vds,
dv = (—Au+ F(t,u)) dt + G(t,u) dWy(2).

This precisely captures the setting of stochastic wave equations when thinking of v(¢) as the derivative
of u(t), thus yielding a stochastic evolution equation for the derivative () with left-hand side diz. The
invertibility of A does not lead to restrictions, because we can always reduce to this case by writing
—Au+ F(t,u) = —(A + &)u + eu + F(t,u) without changing the properties of F.

The operator A from (7.3) generates a C,-semigroup (S(#))~.q given by

S = ( cos(tAY/?) A-1/2 sin(tAl/z)), a4

—AYZ5in(t AV cos(tA/?)

where we use the spectral theorem for self-adjoint operators to define the matrix entries. Indeed,
t
lim [ cos(rA'/2)x x| = lim H / sin(sA/2) A1/2x dsH < lim 1) 4'2x] = 0
t— t— 0 —

and, analogously, lim,_ 4 || £ AFY25in(1 AV x — x| = 0 for x € D(A'/?). Strong continuity of the
semigroup follows by the density of D(A'/?), and the spectral theorem. It is straightforward to see that S
satisfies the semigroup property and that A is its infinitesimal generator. Due to —Au € V_; if and only
if u € V| we find that the domain of A is given by

DA ={UeX:AUeX}={uv)eX:(v,—Au) e Vo x V_;} =X,.
Let 8 € R. Combining the respective one-dimensional statements with the spectral theorem we obtain

that sin(zA1/2) and cos(tA'/?) are contractive on Vg, sin(0 - A'/2) = 0, and that A and powers thereof
commute with both sin(zA'/2) and cos(rA'/2). The trigonometric identity satisfied by sin(tAY/?) and
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cos(tA!'/?) implies contractivity of the semigroup, that is

IS@OUllx, = [IUllx,- (1.5

Our aim is to derive conditions on F and G rather than F and G under which the temporal
approximations

j—1 j—1
U= RUy+k D F(t, U+ D AW, RTG(, U), 0<j<N, (7.6)
i—0 i=0

converge to the mild solution U(#) = (u(#), v(¢)) € X at a certain rate. As will become apparent, rates of
convergence > 1/2 can be attained up to a logarithmic correction factor even for general contractive
schemes. The key aspect of our main theorem, Theorem 6.4, enabling this optimal rate consists of
higherorder Holder continuity of the first component of the mild solution.

7.1 General contractive time discretization schemes

As will be shown, the following assumptions on F and G imply that F and G fall within the scope of
Section 6.

AssumpTioN 7.1. Let V be a Hilbert space, A : D(A) € V — V adensely defined, po§itive, self-adjoint
and invertible operator, and p € [2,00). Let F : 2 x [0,T] xV — V_, F(w,t,x) = F(w,t,x) + f(w,1)
and G : 2x[0,TIxV = L,(H,V_)),G(w,t,x) = G(a), t,x)+g(w, t) be strongly PR B(V)-measurable,
and such that I:“(~, -,0) = 0 and G(~, -,0) = 0, and suppose that for some § > 0 and @ € (0, 1],

(a) (Lipschitz continuity from V to V_,) there exist constants Cr, C; > 0 such that forall w € £2,1 €
[0,7] and x,y € V it holds that

IF(w,t,5) = Fw,t. )y, < Cpllx=ylly.

1G(@,1.x) — G(@,t.9) | gy 1v_,) < Collx = ylly

(b) (Holder continuity with values in V_, ) there are constants C, ., C, 5 > 0 such that

sup [A2F(@, 0]y < Cypr Sup [A"2G(w,0)], < Cy

wesf2 xeV wes2 xeV

(¢) (continuity with values in Vs_y) f € L5(2;C(0,T);Vs 1)), and g € L5(£2;C([0,T];
LZ(H5 V(S_l)))7

(d) (invariance) F : 2 x [0,T] x Vs — Vs_;and G : 2 x [0,T] x Vs — L,(H, Vs_,) are strongly
P ® B(Vy)-measurable,
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(e) (linear growth from Vs to Vs_ ) there exist constants L, L; > O such that forall € £2,¢ € [0, T]
and x € Vit holds that

IF (. t,9)ly, | < Lp(1 + [xlly,).

1G(@. .0 £yvs ) < Lo+ Ixlly,)-

It is important to note that both § € (0, 1] and § € (1,2] will be considered. As for § = 2 optimal
rates are obtained for the usual schemes, larger values of § are not considered.

Next, we first show that we satisfy the required conditions for the well-posedness and thus (7.1) has
a unique mild solution. Adopt the notation of the proof of Theorem 6.4, replacing F, F, 1, G, G and gby
F, F, f,G, G and g, respectively.

Setting Y := X; for some § > « it is clear from X = X, invertibility of A and D(A") = X, that
Y — Xand Y — D,(B,00) for any B € (0,8). Since V; are separable Hilbert spaces for 6 € R so are
X and Y. Contractivity of the semigroup follows from (7.5). Note that strong P ® B(X)-measurability
of F and G, and that F, G vanish in 0 immediately follow from the respective assumptions on F,G
due to the structure (7.3). We are left to prove Lipschitz continuity, linear growth, Y-invariance, and
Holder continuity of F, G and continuity of f and g. Deducing Y-invariance from Assumption 7.1 is
straightforward noting that

Iy oy = | sup IE@Iy| = | sup Oy, | = lpoos (7.7)
t€[0,T] p t€[0,T] p
and, likewise, [Igll,, o,y = 18Il o, v;_, - The mapping properties on ¥ and strong P ® B(Y)-measurability

of F and G follow from Assumption 7.14 because ¥ = V; x V;_,. Linear growth of F from ¥ to ¥ follows
from linear growth of F from Vs to Vy_; as stated in Assumption 7.1 taking the structure (7.3) of F into

account via

IF@, D)y = IFGwlly, | < Le( + lully,) < Lp(1 + |Ully)

fort € [0,T], U = (u,v) € Y = Vg x Vs5_,. Analogously, linear growth of G from Y to £,(H,Y) is
obtained, since

IG D)lly = Gt wlly, , < Le(l + llully,) < Le1 + |Ully).
Lipschitz continuity of F from X to X holds due to

IF(, U —F@, Upllx = 1F(tuy) — Ftup)lly_, = A2 [F () — F(tupllly

= Crlluy —wolly = CpllUy = Uslix

fort € [0,T] and U| = (uy,vy), Uy = (u,,v,) € X. Analogously,

1~ ~
1G@ Uy = G, Ul gy = 1A 21GE up) = G u)]ll gym,y) < CollUy = Uiy
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Hence, G : X — £,(H,X) is Lipschitz continuous. Via the same argument,

i
Fit, U) —F(s,U AT2[F(t,u) — F(s,
[F(w, U)l, = sup ¥z, U) (s, DIy — sup l [F (2, u) (s M)]”v’
0<s<t<T (t—s)” 0<s<t<T (t—s)

from which we conclude «-Holder continuity of F.
The above leads to following:

Lemma 7.2 (Well-posedness). Suppose that Assumption 7.1 holds for some o € (0,1], § > «, and
p € [2,00). Let Y := Xj as defined in (7.2) and U, € L’;_-O(.Q; Y). Under these conditions there exists a
unique mild solution U € L (£2; C([0, T]; X)) to (7.1). Furthermore, it is in L (§2; C([0,T]; Y)) and

Y
1Ulp2:cqo,m:vy) = ded(l + 1Uollr(2:vy + WFllzr@irto.1:v5- 1))

+ Byl8lar0rcan v, )-

where Cll)/dd = (1 + C*1)1/2 IHCD/2 with € = LFTI/2 + B,Lg, and B, is the constant from
Theorem 2.2.

As established in (6.5) the well-posedness on Z € {X, Y} implies

L+ sup UMz

S CU(),f,g,Z < X
rel0,T]

p

with Cyy; ¢, 7 as defined in (6.4). In the abstract wave equation setting the constant simplifies to

Cuptgz =1 + Coaa(L + 1Ugllpazy + Iz, + Nl 22,)s (7.8)

where CZ,. denotes the constant from Lemma 7.2, Z, :=V_, ifZ=X,and Z, := V,_,ifZ=Y.
bdd 2 1 2 §—1

LemMma 7.3 (Stability). Suppose that Assumption 7.1 holds for some @ € (0,1],8 > «, and p € [2, 00).
Let Y := X; as defined in (7.2) and U, € LI;_-O (£2;Y). Let (R);~ o be a time discretization scheme which

is contractive on X and Y, and let N, > 2. Then, the temporal approximations (I/ )j=0,...n, Obtained via
(7.6) are stable on both X and Y. That is, for Z € {X, Y}

Ni

il Z
1+ Hoffnjﬂx 1712 , < CoabCuy f.0.7.2°

where CZ, = (1 + C3T)'/2 1+C/D/2 with Cy := C,pTV/% + B,Cg, Cy :=LgT'* + B L,

. 1/2
Uoterz = 1 H 10l pz) + W lp@cqonznyT + 18l @comcmzmn BT

Z,:=V_ifZ=X,Z,:=Vs_if Z=Y, and B, is the constant from Theorem 2.2.
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‘We denote

. Y Y 1/2
Kyorer = ChanCvorery = Chan + 10l + lpoovs , T + gl ooy, B, TS (7.9

so that Ky ¢ .y = Ky 1oy With Ky ¢ 5 y as defined in (6.8).
For future estimates it is useful to know the decay of differences of the sine and cosine operators
sin(zAY 2) and cos(tAY 2). We include a short proof for the convenience of the reader.

Lemma 7.4. Lett € [0, T]. Then, for all « € [0, 1] we have

1A~ 2 [sin(rA"/?) — sin(sAYD)]ll £y < 2 — 9)%,

1A~ 2 [cos(tA"/?) — cos(sA' )l oy) < 20t — 5)°
forall0 <s<r<T.
Proof. The statement is trivially fulfilled for r = 5. Let 0 < s < t < T. We claim that

£ (t,s) = | sin(#) — sin(s)|
|t — s]*

Indeed, if |t — s| < 1, then by the mean value theorem ¢, (¢,5) < ¢;(t,s) < 1.If |t —s| > 1, then
g, (t,5) < 2. Now let A > 0. Applying the claim with A1/ and sA1/? gives

A2 sin(ea1/?) — sin(sa/?)| < 2| — 5|*.
Thus, by the spectral theorem for self-adjoint operators and positivity of A we get the desired statement.

The statement for the cosine is proven analogously. (]

While the mild solution U has at most 1/2-Holder continuous paths as follows from Lemma 6.2,
the product structure of the stochastic evolution equation results in higher Holder continuity of the first
component u of U, as the following lemma illustrates. In particular, u has Lipschitz continuous paths for
sufficiently regular F and G.

Lemma 7.5. Suppose that Assumption 7.1 holds for some o € (0,1],8 > o and p € [2,00). Let X := X,
and Y := Xj as defined in (7.2) and U, € L?_-O(.Q; Y). Then for all 0 < s < ¢ < T the first component u
of the mild solution U of (7.1) satisfies

lu(@) = )l ey, < L — 9)°

with constant

oa+2 1
L:=2C,|v2|U, A L TE S4B L T1/2(1+—):|,
Y|: ” 0||LP(.Q,Y) 1,F o+ 1 p—2,G m

where Ly := LpCy¢oy + fllp@io0.r:vs ) Lo = LeCuytgy T 18l c2i0.1:0.v5_1)))
with Cyy ¢4y as in (7.8), Cy denotes the embedding constant of X into X, and B, is the constant from

Theorem 2.2.
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Proof. From the structure (7.4) of the semigroup as well as (7.3) of F and G we deduce the following
variation-of-constants formula for the first component of the mild solution

t
u(?) = cos(tA"?)uy + A3 sin(zA %), +/0 A2 sin((t — P) AV F(r, u(r)) dr
t 1
+/ AT 2 sin((t — r) AY2)G(r, u(r)) AW (r).
0
Hence, the difference can be split up as
lu(®) = u)ll gy < |lcos@A?) — cos(sAV?)]uy + A2 [sin(tAV?) — sin(sA'/?) v, |
U 1/2 . 1/2
| [ 1A singe = nAY?) = sin(s — D AVAIEE u@)]ly drH
0 p
¢ 1
+ / 1A= sin((z — VAV Eru() |y drH
K 14

+ /s A7 [sin((t — 1) A"2) = sin((s — ) A2 G (r, u(r) AWy ()
0

Lr($2;V)

= El +E2 +E3 +E4+E5,

t
+ /A‘%sin((t—r)A”z)G(r,u(r)) W, )

N

where E, := E,(t,5) for 1 < £ < 5. We proceed to bound these five expressions individually. Lemma
7.4 yields

Ey < [lcosa'/?) — coss A4~ % 2y | AT gl
. . _a a—1
+ [Isin(t A7) — sin(s A 1A% | ) 1A% VOHVH,,
<2(t—9)“| ””O”Va + ||V0||V0[_1 ||p =< 2‘/§||Uo||1p(_(z;xa) (t— )"

< 2V2Cy Ul gy - (= 9)7,

where we have used the embedding ¥ = X5 < X, in the last line. Using the same trick of inserting

A73, applying Lemma 7.4, and using the embedding Vs_; < V,,_, as well as linear growth of F from
Vs to Vs_; we obtain

a—1
sup [|AZ F(r,u(n)lly
rel0,T]

E, <2s(t—s)* < 2Cys(t — 5)*

p

sup [|F(r,u(m)lly,_,
re(0,T]

p

sup [lu(r)lly,

<2Cys(t — s)* (LF(I +
re[0,T]

) + ”‘f“PsOOsVSI) =< 2CYL1,FT(t - S)a.
P
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Likewise, for the stochastic integral we conclude
1 o 1 o
E, < 2CYBp(LGCU0’f’g’Y + |||g|||p,oo,va71)s2(t ) 2CYBpL2’GT2(t — ).

Recalling that sin(0 - A!/?) = 0 we can estimate
t o a—1
%sH/nmmwwAW%wmoAmmrwamMTTmmmmmﬂ
s P

sup ||F(r,u(r)lly,_,
rel[0.7]

o+ 1 T a+1

t
< ZCY/ (t—r)* dr
N

P
2CyL
Pttt ¥

(t - s)Ol 5
and, analogously,

172
E, < ZCYBpLZ,G ‘- S)ot+% - 2CYBpL2’GT
T V2041 B V20 +1

(t— ).

Adding the bounds for E; to E5 results in the desired statement. g

Analogous to the considerations in Remark 6.3 the regularity assumptions on f and g can be relaxed
in this lemma. Having established Holder continuity of u of order up to 1 we can derive an error
bound attaining the optimal order 1 for sufficiently good schemes and regular nonlinearity, noise and
initial values. The following main theorem of this section generalizes (Wang, 2015, Thm. 3.1) from the
exponential Euler method to general contractive schemes as well as more general F' and G.

THEOREM 7.6. Suppose that Assumption 7.1 holds for some o € (0,1], § > « and p € [2,00). Let
X = Xyand Y := X as defined in (7.2) and U, € L’]’_-O(.Q; Y). Let (R));( be a contractive time
discretization scheme on X which commutes with the resolvent of A. Assume R approximates S to order
o on Y. Denote by U the mild solution of (7.1) and by (U’ )j=0,...n, the temporal approximations as
defined in (7.6). Then for N} > 2

< C.(C, + Cyy/max{log(T/k), p})k*

p

max |U(@) — U]
0<j<Ni

with C, := (1 + C*T)!2exp((1 4 C*T)/2), C := Cpv/T + B,Cg. C; := KC,K;+/T and

1
Cy = CllUpllpp(2.v) + (m(CFL + Cor +2CyKp) + CaKF)T

Bpﬁ
+ W(CGL + C, 6+ 2CyKp),
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Kp = LKy, pev + Wl@:caomivsiy Ko = LeKuy gy T8l @:cqo.mica@vs_ 1)), L as defined
in Lemma 7.5, KUo,f,g,Y asin (7.9), K = 4exp (l + 21—6), Cy denotes the embedding constant of Y into
D, (a, 00) and B, is the constant from Theorem 2.2.

In particular, the approximations (UY) ; converge at rate min{a, 1} up to a logarithmic correction factor
ask — 0.

Possible choices for R in the above include, but are not limited to the EE, the IE and the CN methods,
as well as other A-stable schemes. We recall that the contractivity of a large class of schemes follows
from Proposition 2.5.

Proof. By the discussion before Lemma 7.2 the conditions of Theorem 6.4 follow from Assumption
7.1. Second, we make use of Lemma 7.5 to obtain decay of rate « for those terms limiting the rate of
convergence in Theorem 6.4 to %

Contractivity of S, Lipschitz continuity of F from V to V_, and Lemma 7.5 together yield

lit1

N-1
My, = Z/ ¥ s, Us) = F@s, U (2x) ds
i=0 i

N-l tiv1 -
=> / 1F (s, u(s)) — F(s,ut) I ppgey. ) ds
i=0 7

tit1

N=1 N—1 Crl
<Cp Z/ lu(s) = u(t)l|pg:y) ds < CpL Z/ (s —1)%ds = " ltNk“.
i=0 /i i=0 Vi

Combining this with the bounds for M, , to M, 4 from Theorem 6.4 leads to

172

CpL+C, p +2CyK Nt
M2§( F :il u F+CQKF) sz“+cF\/Q(kZE(i)2
i=0

Here, we have used (7.7) to pass from the Y-norm of f to the Vs_-norm of f appearing in K. For the
term M, an application of the maximal inequality is required additionally. By the same reasoning as
for M, ; we then deduce

B,CiL

N1 gy 1/2
M,, <B.C / lu(s) — u(@)|?p, 0. ds) < P k.
3,1 P G(g(; . i/ WLP(§2;V) \/20[—_’_1\/;

In conclusion from the bounds for M3 | to Mj 5

N—1
12
My < C,q v/Ink" + KCoKg/iyy/max{log N, p}k® + B,C (k D E(i)z)
i=0
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with Cp,a,G = Bp(Z(x + 1)_1/2(CGL + Cy.g + 2CyK(). The final statement follows by summing the
estimates for M, M, and M5 and then applying Gronwall’s inequality from Lemma 2.7. 0

7.2 The exponential Euler method

Also for the abstract stochastic wave equation the logarithmic correction factor vanishes when using the
exponential Euler method. Hence, we obtain convergence of the optimal rate.

CoroLLARY 7.7. Suppose that Assumption 7.1 holds for some ¢ € (0,1],§ > o and p € [2,00). Let
X := Xy and Y := X; as defined in (7.2) and U, € L’}O (£2;Y). Consider the exponential Euler method

=0,...,

approximations as defined in (7.6). Then, for N, > 2

< CgCq - k*
14

J

max ||U(t) — U/
=0,...,Nk” f 1%

with constants CS,e := C, as in Theorem 7.6 and

 CpL+Cyp+2CyKy BT
S a+1 V2 +1

where L is as defined in Lemma 7.5, K and K; are as in Theorem 7.6, Cy denotes the embedding
constant of Y into D, («, 00) and Bp is the constant from Theorem 2.2.

(CoL+ Cy 6 +2CyKp),

In particular, the approximations (Uj)j converge at rate min {«, 1} as k — 0.

7.3 Error estimates on the full time interval
In the same way as in the proof of Theorem 6.13 we see that the next result follows from Theorem 7.6.

CoroLLARY 7.8. Suppose that the conditions of Theorem 7.6 hold for o € (0,1/2]. Let p, € (p, o0) and
q € (2,00] be such that % — % = «, and suppose that f, g, and U, have additional integrability

f el (@210, T;V)), gLl (2:L90,T; Ly(H, V), and Uy € L2 (2;X) N L (82; X;).

=0U,...,

=V,...,

te [tj, fj+1), 0<j<N,—1land U(T) := UMk, Then, for all N, > 2 there is a constant C > 0 depending
on (T,p,py,a,uy, F,G,V,8) such that

< C(1 + y/max{log(T /k), p})k*.

p

sup [|U(1) — U@y
t€[0,T]

In case we only estimate the first component # more can be said about the convergence rate on the full
time interval. Under weaker integrability conditions and for general & € (0, 1] we obtain the following.
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CoroLLARY 7.9. Suppose that the conditions of Theorem 7.6 hold. Define the piecewise linear extension
U= V) :[0,T] - LP(£2;X) of(Uf) —0...N, bY U(t) := Ul fort € [t;,441), 0 < j < Ny — 1 and

,,,,,

U(T) := UM, Let 8, := min{é, 1}. Then, the following two error estlmates hold.
(1) (general schemes) It holds that

sup |lu(@) —u@®lly
te[0,T]

< 2Cy,1gx;, Kot + C,(Cy + Cyy/max{log(T/k), p})k*

p
(ii) (exponential Euler) If R, = S(k) then

sup [lu(t) —u@®lly
1€[0,T]

)
< 2CU0,f,g,X51k '+ CsCs k%
p

Proof. Since the mild solution is also a weak solution to (7.1) writing U = (u,v) € LP(§2;C([0,T]; V x
V_1)) we see that (u(9), ¢) — (ugy, 9) = fé(v(s),q)) ds for all ¢ € V_,. Therefore, u is continuously
differentiable as a V_-valued function.

By (6.5)

max{lullp@scqo.rivs e 14 1 @scaorivs, -} = Wlp@corx ) = Coptexs - (710

151

Using the above and the interpolation estimate ||x|[;, < ||x||Va . llx|ly, ™ we find that

) 8 8 1-68
lu(@® —uls)lly = llu@) — ”(s)”\/lgl,l lu(®) — M(S)HV5 P <2ft—s] 1”” ”C( [0.7]:Vs, 1)”””(‘([01]‘ 1:Vs,)"

Therefore, by Holder’s inequality and (7.10) we find that
[ < I} e <2C
Lr($2;C°1([0,T1;V)) — LP($2;C(10,T1;Vs, 1)) "HILP (£2:C(10,T); Vs, ) — <~ Uo.£.8.Xs, *
By Lemma 6.9 we find that for U/ = (i/,1/)

sup |lu(®) — u(Hly < K llull o5 ([0,T];V) + maX ||u(t) - u/”v
t€[0,T] =0,..

Therefore, taking L”-norms and using the error estimate of Theorem 7.6 we find that

sup [Ju(r) — u(t)llv
te[0,7T]

,,,,,

p

< 2Cy, pexy, K+ Ce(c1 + Cyy/max{log(T/k), p})K*

The second estimate is obtained from Corollary 7.7 in place of Theorem 7.6 in the last step. g
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7.4 Application to the stochastic wave equation with trace class noise

As an example, we consider the classical stochastic wave equation on an open and bounded subset O C
Rd

dit = (Au+ F)) dt+ G@w) dW() onl0,T], (7.11)
u(0) =uy, u(0) = vy, ’

with Dirichlet boundary conditions. In the current subsection we consider trace class noise in L? for any
d € N, and in Section 7.5 space—time white noise in case d = 1.

It is well-known that A = — A is a positive and self-adjoint operator on L?>(O), which is invertible.
Let {W(t)},e[O’T] be a Q-Wiener process with Q € L(L*(0)) so that Q is positive and self-adjoint. Finite-
dimensional noise is included, since Q need not be strictly positive. Assume

0% € LUL*(0),L®(0)). (7.12)

In particular, this implies Q'/? € L, (L*(0), L*(©)) and that Q is trace class (see Hytonen ef al., 2017,
Corollary 9.3.3).

We consider the stochastic wave equation (7.11) on V := L*(O) and set H := L*(©). For the
nonlinearity and the multiplicative noise we choose Nemytskij operators ' : V — Vand G : V —
Ly(H,V) = L,(L*(0), L*(O)) determined by

F)(€) = ¢(&,u®©), (Gu)(h)(E) =¥ (E,u@)0"?hE), &eO. (7.13)

Here, the measurable functions ¢, : O x R — R are Lipschitz and of linear growth in the second
coordinate, i.e. there is a constant L > 0 such that for all u, u;,u, € R, & € O it holds that

&, wl+ v E w| < LA+ ul), @@ u) —d@E u)l+ Y& u) — &, uy)| < Liuy — uy|.
(7.14)

It is clear that F is Lipschitz from V to V. To see that the same holds for G, note that by (7.12)
IG@h(E)| = ¥ (& u@)IIQ"*hE)] < Cy o (1 + @) [1All .

where Cyo=LIQ 172 LU2(0).L(0))- Therefore, arguing as in (Hytonen ez al., 2017, Theorem 9.3.6
(3)=-(4)) by Riesz’ theorem we canfind k,, : O — H suchthatfora.e.& € Oforallh € H, (k,(§),h)y =
(G(wh)(&) and ||k, (&)l < Cw’Q(l + |u(§)|) Therefore, for an orthonormal basis (hn)nzl of H we find
that

G2, gryy = D NG, I} = / > 16, 6).hy)? ds = / Ik, (€)1 d&

n>1 n>1

< Cholll+ [ullly < €5 (01" + [lully)?

with |O| denoting the Lebesgue measure of the set O. Likewise, we obtain Lipschitz continuity of G. In
particular, F" and G satisfy the required mapping properties of Assumption 7.1 for any § € (0, 1].
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The semigroup associated with (7.11) is the wave semigroup (S(?)),~-

As an immediate consequence of Theorem 7.6 and Corollary 7.7 this yields the following conver-
gence estimate generalizing (Wang, 2015, Cor. 4.2) to arbitrary contractive schemes and slightly more
general Q-Wiener processes W.

THeEOREM 7.10 (Wave equation with trace class noise in L2). Let O C R4 ,d € N, be a bounded and
open set, V = LZ(O),X =VxV_,p€[2o0)and0 < a < 6 < 1. Suppose that (uy,v,) €
L[;_-O (£2; X;). Let F and G be the Nemytskij operators as in (7.13) with ¢ and v satisfying (7.14). Suppose

the covariance operator Q € L(LZ(O)) satisfies (7.12). Let Y := X be as defined in (7.2). Let (R});.(
be a time discretization scheme which is contractive on both X and Y. Suppose that R approximates
S to order a on Y. Denote by U the mild solution of (7.1) with trace class noise and by (I¥) i=0,...N}
the temporal approximations as defined in (7.6). Then, there exists a constant C > 0 depending on
(g, vy, &, ¥, T, p,t, O,d, V, §) such that for N, > 2

max | U(5) — Ullg

0<j<N

< C(1+ 10" 21l 20y (0 ) v max{log(T /&), p}k*.

p

In particular, the approximations (U/) ; converge at rate L if (uy, vg) € L’}_-O (£2; X;) and the exponential
Euler method R = § is used. The logarithmic factor can be omitted in this case.

In case § = 1, for the IE and the CN method, we can take o = 1/2 and o = 2/3, respectively. This is
due to convergence at rate & on D((—A)z“‘) and D((—A)3“/ 2), respectively. Using higherorder schemes,
we can come as close to rate 1 as we want. In Theorem 7.12 we show that for smoother noise o = 1 can
be reached even for the IE method.

7.5 Application to the stochastic wave equation with space—time white noise

We use the same notation as in Section 7.4, but this time with O = (0, 1) and Q = I, so that (7.11) is the
classical wave equation with space—time white noise. The required mapping properties can be checked
as in (Wang, 2015, Cor. 4.3). For convenience of the reader we include the details. The functions F' and
G are defined via (7.13), but this time we have to consider G as a mapping G : V — L,(H,V_)).

The eigenvalues of the negative Dirichlet Laplacian A = —A are A; = 722, i € N, with the

corresponding orthonormal basis {e; = V2sin(ir-) : i € N} of V consisting of eigenfunctions of A.
Clearly,

o0
e+1
sup sup le;(§)] <+/2, and ||A_T||2£(V) =g~ E+D E i) = ¢ < 00
ieN £€[0,1] i=1

then hold for every ¢ > 0. Now let ¢ € (0, 1]. Using the properties above we conclude that
e+l g e+1 XX _etl
AT G2, gryy = 2, D (Gwe, A= T ey P => > "2 7 ‘/O (&, u(®))e;(€)e;(€) k|
i=1 j=1 i=1 j=1

e+1

o0
<2 D% F | lgCut)IT <207, (101" + |lully)*.
j=1
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Hence, G satisfies the linear growth condition of Assumption 7.1 with § = 1%8 Repeating the arguments
for A_1/2[G(u1) — G(uy)] and using ¢; = 712/6 results in

00 2
_ 1 L
1A™21G(uy) — G,y <2 D o I8¢, () = gC (DI = - lluy = Y.
J=1

The nonlinearity F' was already considered in Section 7.4. In conclusion we obtain the following
generalization of (Wang, 2015, Cor. 4.3) to contractive time discretization schemes.

THEOREM 7.11 (Wave equation with white noise). Let O = (0,1), V := [2(0), X ==V x V_i,p €
[2,00) and 0 < @ < § < 1/2. Suppose that (u,,v,) € L[;_-O (£2; X;). Let F and G be Nemytskij operators

as above with ¢ and ¢ satisfying (7.14). Suppose the covariance operator Q = I on L>(0). Let Y = Xs.
Let (R;);~ o be a time discretization scheme which is contractive on X and Y. Assume that R approximates
Son Y to order ar. Denote by U the mild solution of (7.1) with space—time white noise and by (U” )i=0,...Ny
the temporal approximations as defined in (7.6). Then, there exists a constant C > 0 depending on
(ugy, vy, @, ¥, T,p,a,0,d, V,5) such that for N, > 2

max |U(t) — Ul

0<j<Ni

< Cy/max{log(T/k), p}k*.
P

In particular, the approximations (U/); converge at rate arbitrarily close to L f (ug, vg) € L’)}-O(Q;Xl)
and the exponential Euler method R = § is used. The logarithmic factor can be omitted in this case.

For the IE and the CN method we can take « = §/2 and o« = 24/3, respectively. Since we can choose
§ arbitrarily close to 1/2 this leads to rates which are almost 1/4 and 1/3, respectively.

7.6 Application to the stochastic wave equation with smooth noise

We have already seen that the exponential Euler method leads to convergence rates of any order o € (0, 1]
depending on the given data. In this section we show that this can also be attained for other schemes such
as the IE and the CN method under some smoothness conditions on the noise. To avoid problems with
boundary conditions we only consider periodic boundary conditions. Consider

dit = (A —Du+ F(uw) dt+ G@u) dW(#) on|0,T],

u(0) = ugy, 1(0) = v, (7.15)

with A = 1— A and periodic boundary conditions on the d-dimensional torus T¢ = [0, 1]¢. For notational
convenience we will write H? = HP (T?) = V. Note that [|A™#| cq2y < lforall > 0. The additional
+1 in the definition of A is in order to ensure invertibility. Of course, F' can be suitably redefined so that
this is without loss of generality.

Let§ € (1,2] and write s = § — 1. Let

Fu) () = @), (Gw)(m)(E) = ¥ uE@)Q"*hE), &e T

GZ0Z 1SNBNY 8|, UO Jasn Yo JSNSISAIUN BUDSIUYIDL AQ 1€/£28//0902/%/SH/101Me eUleWI/ W0 dNo™dlWspese)/:SdjY Wolj paPEojuMOQ



2126 K. KLIOBA AND M. VERAAR

Here, the measurable functions ¢,¢¥ : R — R are Lipschitz with Lipschitz constants L¢ and L,/,,
respectively. The Lipschitz estimates for F' and G follow as in Section 7.4 since we will assume even
more restrictive conditions on Q. The growth estimates for F and G as in Assumption 7.1 5 are more
complicated. In case § = 2 the paraproduct constructions from Taylor (2007) can be avoided, but we
will consider the general case.

By the torus version of (Taylor, 2007, Prop. 2.4.1) for u € V there is a constant C; , > 0 such that

IF@ly,_, = llo@llgs-1 < CsgUlullgs-1 +1) < C g(lullgs + 1) = Cy g (lully, + 1.

For G the estimate is still more complicated. In order to estimate the Hilbert—Schmidt norm of G(u),
paraproduct estimates are required, as, for instance, in (7.17). These paraproduct estimates involve Bessel
potential spaces H*4, which, in general, are not Hilbert spaces. Consequently, an extension of Hilbert—
Schmidt operators to Banach spaces is needed; the so-called y-radonifying operators (Hytonen et al.,
2017, Section 9.1). For a Banach space E let y (H, E) denote the space of y-radonifying operators. Let
(¥,),>1 be an 1.i.d. sequence of standard Gaussian random variables taking values in R. Suppose that
AT QY2 . [2 5 [®. Then by (Hytonen et al., 2017, Corollary 9.3.3), Q'/? € y(H, HP) for all
ge[l,oo)andall B <46 —1,and

8—1
Cop = 1021, sy < NQ2 110y < AT Q21| £ 12 120 (7.16)

where ¢ = 1711lza¢ey- Let (h,),>; be an orthonormal basis for H and fix N > 1. Let ny :=
St ¥aQ'h, € LX(2; V). Then, Inyll2(o.v,) < 101, g prea forall B < 8 — 1. Tt follows that

N
DNGWh,IY, = 1@yl gy, -
n=1

Next, we estimate ||y (u)ny |y, | pointwise in £2. By the torus version of (Taylor, 2007, Proposition 2.1.1)
(see (Agresti & Veraar, 2024, Proposition 4.1(1))) and (Taylor, 2007, Prop. 2.4.1), there is a constant
Cs.4.1 = 0 such that

IV @nylly, , = 1V @nyllgs-1 < 1@ lpa Iyl gs-1a + 1 @l gs-1m Iyl
< Ly (lullgar + Dllnyllgs-1ay + Ly Cs g (el o1, + Dllnyll gs-11 5 (7.17)
where ql—l + ql—z = rl—l + % = % and g;,r; € (2,00] and g5, r, € [2,00). Taking r; < oo and using (7.16)

we find that

IV @nyll2ev; ) = Lwcqz,afl(”““ml +1)+ Ly,C,s,d,1Crl’afl(”u”HS*lJz +D

for suitable constants C,, 5_1,C, s = 0. It remains to estimate |[ul;q, and [[ulgo-1., by llullys =
l|ully, using suitable Sobolev embeddings and choosing ¢; € (2,00] and r, € (2, 00) suitably. As soon

as we have done that we can let N — oo and conclude the required estimate

1G@ 2y, ) < KA+ lully,)-
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To obtain H® <> L% we consider two cases. If § < d/2 (e.g. d € {1,2}) we can take g; < o0
arbitrary. If § > d/2 then we take ¢; = %, and thus ¢, = %.

To obtain H® — H°~!"2 we consider two cases. If d € {1, 2} then we can take r, € (2, c0) arbitrary.
Ifd > 3 then we set ry = %, and thus r; =d.

THEOREM 7.12. (Wave equation with smooth noise). Let V := L2(TY, X :=V x V_i,p € [2,00) and
0 <a <1 < § < 2. Suppose that (g, vy) € L’;_-O (£2; X;). Let F and G be Nemytskij operators as above

with Lipschitz functions ¢ and 1. Suppose the covariance operator Q on L?(Q) satisfies A¥Q1/ 2 e
L(L2(T%), L®(T9)). Let Y := X; be as defined in (7.2). Let (R;);.o be a time discretization scheme
which is contractive on both X and Y. Assume that R approximates S to order « on Y. Denote by U the
as defined in (7.6). Then, there exists a constant C > 0 depending on’(ﬁo, Vo, ®, ¥, T,p,a,d,V,8) such
that for Ny, > 2

max [|U(t) — V|

0<j<N

< C(L+ 1A D2QV2| 112 pay oo Tayy ) v/ max{log (T k), pIK*.

p

The above result is not useful for the exponential Euler method, since Theorem 7.10 is better in
that case. However, if we specialize to the IE and the CN method then we obtain rates ¢ = % and
o = min{%c‘i, 1}, respectively. In particular, this leads to convergence of order one if § = 2 for many
numerical schemes. Note that § = 2 more or less corresponds to a noise W which is in H g (Td) for all
q < 0.

RemMARK 7.13. Theorem 7.12 gives an explanation for the numerical convergence rates obtained in
(Wang, 2015, Fig. 6.1, right figure). There, trace class noise determined by ¥ (#) = u and Q with
eigenvalues g; = j7.j € N, B = 1.1 has been investigated. Denote by (¢)jen the orthonormal basis of

Vandby A; = Cj? the eigenvalues of A as in Section 7.5 for some constant C > 0. We calculate that
5—1 gl 5—1
2

1
AT Qe =gl AT =207 ¢ = cz -

(ST

¢

forj € N. Thus, A*Z Q7 maps L2 into L if § < 145 Setting 8 := min {1+£,2} = 144! = 1.55we
derive convergence of rate % = 0.775 for the IE method and min {%8 , 1} = 1 for the CN method. Taking

numerical errors into account this corresponds exactly to the numerical convergence rates obtained in
(Wang, 2015, Fig. 6.1, right figure).
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