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Abstract

We inspect the behavior of the probability that a weighted sum of random variables with
log-normal tails is greater than its expected value. Under the right conditions for the
weights and the variance being set to 1; we were able to bound a suitable transformation
of this probability with the upper bound being a fixed factor of

√
e above the lower

bound. Beyond this, we analyse the conditions on the weights and determine a method
for letting the weights be random and give an example.
We end off by extending our result to general variance, where we see that the deviation
between the lower and upper bound as well as the domain for the result are dependant
on the variance.
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1 Introduction

Large Deviations Theory is a topic in mathematics that deals with the likelihood of ex-
treme events. The popularity of this topic has steadily increased in the past century with
the rise of the financial market and along with that, insurance companies. These compa-
nies would like to receive more premiums than claims. Premiums are the income, which
are set. However, the claims are randomly distributed, possibly leading to a situation
where an insurance company could become bankrupt as a result of too many incoming
claims or claims that are too large. Insurance companies want enough clients so that the
chance of bankruptcy is small. Consequently, the interest in the study of Large Devia-
tions Theory grew.
The problem sketched above is inherently different from the Law of Large Numbers [4,
p. 234-235] and the Central Limit Theorem [4, p. 172]. To elaborate upon this, the
mathematical representation of these two theorems is given by

lim
n→∞

P (Sn ≥ µ+ a) = 0, (1)

P
(
Sn ≥ µ+

σa√
n

)
≈ 1− Φ (a) . (2)

where {Xj}nj=1 is an i.i.d. sequence of random variables and Sn =
∑n

j=1Xj

n
; µ = E[X1];

σ2 = var(X1); a > 0; and Φ(x) is the CDF for the normal distribution.
We see that the Law of Large Numbers implies that the probability of any deviation of the
sample mean from the mean tends to 0. On the other hand, the Central Limit Theorem
tells us that the standardized sample mean approaches the standard normal distribution
and we can approximate the probability of deviations in this manner. We see that neither
of these two methods can be used for the above insurance company problem.
As we shall see, our problem corresponds to studying the decay of P (Sn ≥ µ+ a). In the
standard case of Cramér [3], [6]; the following solution was found:

P (Sn ≥ µ+ a) ≈ exp (−nI(µ+ a)) ; (3)

where I is the rate function and we have that I ≥ 0 and I(µ) = 0. We see that that
the probability goes to 0, for a > 0. We can deduce that Large Deviations Theory shows
the development towards the result of the Law of Large Numbers; in the sense that the
probability of a deviation goes to 0 as n→∞. We will now move on to the origin of this
solution.

At first, a solution for the Large Deviations problem was given by Harald Cramér [3];
however, we shall be working with the modern formulation of his work [6]. Let {Xj}nj=1

be a sequence of i.i.d. random variables with an existing expected value; m := E[X1] <∞
and let Sn =

∑n
j=1Xj

n
be the sample mean. We define light-tailed distributions here as

distributions that have a finite moment generating function; i.e. M(t) = E[exp(X1t)]
exists for some t > 0. Cramér’s Theorem tells us that light-tailed distributions have the
property that deviations from the mean occur with exponentially decreasing probability.
That is,

lim
n→∞

log (P (Sn ≥ x))

n
= − sup

t>0
(tx− log(M(t))) , (4)
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where the right-hand side corresponds to the rate function. Taking the inverse of the
transformation on the probability shows that the probability tends to 0 exponentially.

lim
n→∞

log (P (Sn ≥ x))

n
= − sup

t>0
(tx− log(M(t))) ; (5)

⇒
log (P (Sn ≥ x))

n
≈ − sup

t>0
(tx− log(M(t))) ; (6)

P (Sn ≥ x) ≈ exp

(
−n sup

t>0
(tx− log(M(t)))

)
. (7)

However, as stated above, this theorem only provides a solution for light-tailed distribu-
tion; whilst many problems revolve around heavy-tailed distributions.
The problem for heavy-tailed distributions is that the moment generating function is
infinite for all positive t. But because all tail events can occur with more probability, we
can consider the possibility that just one observation, Xj, causes the sample mean to be
greater than the expected value. The methods developed in this thesis are based on this
idea and gave rise to the first steps of both the lower and upper bound for the probability.

In a paper by Gantert et al [5], a Large Deviations Theorem was set up for weighted
sums of stretched exponential variables, where the weighted sum corresponds to S̄n =∑n

j=1 aj(n)Xj and aj(n) is an array of positive weights satisfying Assumptions 3.1. Previ-

ously, we had that aj(n) = 1
n

for j ≤ n, in the case of Cramér. The stretched exponential
distribution is a heavy-tailed distribution; thus the moment generating function is infinite
for all t > 0. Therefore, this is a solution to the large deviations problem for heavy-tailed
distributions. However, the knowledge of Large Deviations Theory for this category of
distributions is still quite limited.
We are going to analyse the conditions of the theorem and proof by Gantert et al [5].
After, we will create a Large Deviations Theorem for log-normal random variables. We
would like to do this to further advance Large Deviations Theory, but also because the
log-normal distribution satisfies certain conditions that the stretched exponential dis-
tribution does as well. Besides this, the log-normal distribution arises in many areas;
including log-returns on stocks.
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2 Preliminaries

Throughout this paper, we work with slowly-varying functions and their properties. For
this reason we dedicated this section to explaining what they entail; to avoid confusion.
We will start by giving the definition of a slowly-varying function.

Definition 2.1. (Slowly-varying function)
We say a function g : (0,∞) → (0,∞) is slowly-varying at infinity if it satisfies the

following property:

lim
x→∞

g(αx)

g(x)
= 1, ∀α > 0. (8)

Remark 2.1. If f(x) is a polynomial of finite order, then ln(f(x)) is a slowly-varying
function

Next, we shall introduce properties of these functions that we shall use later on.

Proposition 2.1. Given a slowly-varying function g(x) : (0,∞)→ (0,∞), we have that
g satisfies the following:

1. limx→∞
ln(g(x))

ln(x)
= 0,

2. ∀α > 0, xαg(x)→∞ and x−αg(x)→ 0,

3. for γ ∈ R, g(x)γ is also slowly-varying,

4. limx→∞
ln(g(x)x)

ln(x)
= 1.

Proof. The first three properties were already used in the paper by Gantert et al [5] and
proven in [1]. The last property was not given, but is a direct consequence of the property
of logarithms:

log(ab) = log(a) + log(b). (9)

The last property can be proven as follows:

lim
n→∞

ln(g(x)x)

ln(x)
= lim

n→∞

ln(g(x)) + ln(x)

ln(x)
, (10)

= lim
n→∞

ln(g(x))

ln(x)
+

ln(x)

ln(x)
, (11)

= 1. (12)

Remark 2.2. Note that in the last step of the proof of the fourth property, the first
property of Proposition 2.1 was applied.
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3 Stretched exponential random variables

The stretched exponential distribution is found by stretching out the exponential dis-
tribution. This can be seen by comparing the density functions. Where normally the
exponential density function is given by λ exp(−λt), the density function of the stretched
exponential distribution is given by λ exp(−λtr), for r ∈ (0, 1). This slight change in the
power of t causes the density function of the stretched exponential to go to 0 slower and
as a consequence the tails thicken. As a consequence of the thicker tails, the moment
generating function, M(t), is no longer finite for any t > 0. As stated before, a Large
Deviations Theorem for weighted sums of stretched exponential random variables was set
up by Gantert et al [5]. Since this is an extension of Cramér’s theorem for a heavy-tailed
distribution, we will study this theorem thoroughly.
In this section, we are going to explore their theorem. This will be done through analysing
the conditions: we will look into the assumptions on the weights and the tail probability
bounds. After this, we inspect the different elements of the statement and find out more
about their significance with the help of their proof for the lower bound of their state-
ment. We start with an analysis of the weights.

3.1 Weights

For the weights used in the paper for the theorem, only two assumptions were made.

Assumptions 3.1. Let aj(n) be an array of non-negative weights and let amax(n) =
maxj=1,..,n(aj(n)) such that:

1. ∃ s1 > 0 such that:

lim
n→∞

n∑
j=1

aj(n) = s1, (13)

2. ∃ s > 0, such that

lim
n→∞

amax(n)n = s. (14)

Remark 3.1. In the classical case of Cramér’s Theorem [6], equal weights are taken;
that is aj(n) = 1

n
, ∀j = 1, .., n. With these equal weights, we get that:

s1 = lim
n→∞

n∑
j=1

1

n
= lim

n→∞
n

1

n
= 1,

s = lim
n→∞

amax(n)n = lim
n→∞

1

n
n = 1.

3.1.1 Random weights

We shall first introduce the conditions that we require for the distribution. After, we
shall show for Example 1 that setting

aj(n) =

{
Zj

n
, for j ≤ n,

0, for j > n;
(15)
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where {Zj} is a sequence of i.i.d. random variables such that Zj ∼ U(0, 1); works as a
distribution for the weights and we will calculate s and s1 for this example.
In order to take a sample from a distribution for the sequence of weights, the first thing
we note is the existence of limn→∞ amax(n)n. To ensure this converges to the positive
constant s, we require that amax(n) grows with a factor n−1. From this it follows that we
need a distribution for which the upper bound of the domain decreases at a rate of n−1.
This condition alone suffices for the distribution for the sequence of weights. This follows
from the fact that s1 ≤ s:

s1 = lim
n→∞

n∑
j=1

aj(n) ≤ lim
n→∞

n∑
j=1

amax(n) = lim
n→∞

amax(n)n = s. (16)

In other words, the existence of s implies the existence of s1.
Since we multiplied realizations of U(0, 1) with the factor 1

n
, we have that the example sat-

isfies the required growth condition. We will now calculate the corresponding constants,
s and s1.

Example 1. As an example, one could use weights as defined in (15), with Zj a sequence
of i.i.d random variables with Zj ∼ U(0, 1); as the distribution for the weights. Since
we have already shown that this distribution works, we shall calculate the corresponding
constants s1 and s. Since we are working with a distribution, we can try to interpret the
different assumptions to calculate s and s1. We start with s1.
Let the sequence {Zj}nj=1 be a sequence of independent observations from U(0, 1). We see

that we thus have that the weights equal aj(n) =
Zj

n
and thus condition one becomes:

s1 =
n∑
j=1

aj(n) =
1

n

n∑
j=1

Zj. (17)

From the equation above, we see that s1 is equal to the sample mean of observations from
U(0, 1), therefore we have that s1 = limn→∞

1
n

∑n
j=1 Zj = 1

2
, by the Law of Large Numbers

[4, p. 234-235].
Next, we calculate s. We want to find out how we can represent amax(n). We know that

every weight can be written as aj(n) =
Zj

n
, for j = 1, .., n. From this, it follows that the

greatest weight corresponds to the greatest of the n observations from U(0, 1). Thus, we

have that amax(n) =
maxj=1,..,n{Zj}

n
. Filling this out in (14) gives

s = lim
n→∞

namax(n) = lim
n→∞

nmaxj=1,..,n{Zj}
n

= lim
n→∞

max
j=1,..,n

{Zj}. (18)

Furthermore, maxj=1,..,n{Zj} will tend to the essential supremum of U(0, 1). That is,
the greatest observation will tend towards the greatest possible realization; and therefore
s = limn→∞maxj=1,..,n{Zj} → 1.

3.2 Main result

The following theorem was the key result found by Gantert et al [5].

Theorem 3.1. (Large Deviations for Weighted Sums, Stretched Exponential Tails). Let
{Xj}j∈N be a sequence of i.i.d. random variables on a probability space (Ω,F ,P) with

E[|X1|k] <∞, ∀k ∈ N, (19)
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and let m := E[X1]. Suppose that there exists a constant r ∈ (0, 1), slowly-varying
functions b, c1, c2 : (0,∞)→ (0,∞) and a constant t∗ > 0 such that for t ≥ t∗,

c1(t) exp (−b(t)tr) ≤ P(X1 ≥ t) ≤ c2(t) exp (−b(t)tr) . (20)

Let {aj(n)}j∈N, n ∈ N, be an infinite array of non-negative real numbers that satisfy
Assumptions 3.1; let s and s1 be the associated constants, respectively; and let {S̄n}n∈N
be the sequence of weighted sums

S̄n :=
n∑
j=1

aj(n)Xj. (21)

Then

lim
n→∞

1

b(n)nr
logP

(
S̄n ≥ x

)
= −

(x
s
− s1

s
m
)r
, ∀x > s1m. (22)

Remark 3.2. Comparing (22) to the Cramér case from (4), we see that we had to take
nr with r ∈ (0, 1) as opposed to just multiplying by n in the Cramér case. This leads to a
decay of exp (−(nc)r) in the case of Gantert et al, which decreases slower than exp(−nc)
from Cramér.

3.3 Conditions

Keeping our goal in mind of adapting this theorem so that it works for log-normally
distributed random variables, we would like to alter the conditions as little as we can.
The only condition we will truly have to change is (20). This particular inequality needs
to be changed as it describes the way the tail probability of the distribution behaves;
which, for this case, is stretched exponentially. Therefore, we will need to adapt this
condition so that the tail bound behaves log-normally. However, we will see that we also
have to adapt the statement.

3.4 Statement

With regards to the statement, (22), of Theorem 3.1; we are interested in the transforma-
tions applied to P

(
S̄n ≥ x

)
. From the statement, we can see that first the logarithm was

taken, which we shall call f−1; then a factor was introduced, in this case 1
b(n)nr , which we

shall call ψ(n); and finally the limit was taken. Next, we want to know why these steps
were taken and what their significance was. We will do this by walking through their
proof of the lower bound of their statement.

3.4.1 Lower Bound

Let ε > 0, m = E[X1], x > m and j∗ = inf{j ∈ {1, .., n} : aj(n) = amax(n)}; in other
words, let j∗(n) be the lowest index such that the weight aj∗(n) is equal to the greatest
weight. As stated in the introduction, large deviations of the type S̄n ≥ x are caused
by one extremely large observation for thick-tailed distributions. The beginning of this
proof is based on this idea and only uses the i.i.d.-property of the sequence of random
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variables, thus:

P
(
S̄n ≥ x

)
= P

( ∑
j=1,..,n

aj(n)(Xj −m) ≥ x−
∑

j=1,..,n

aj(n)m

)
, (23)

≥ P

({
amax(n)(Xj∗(n) −m) ≥ x−

∑
j=1,..,n

aj(n)m+ ε

}
, Rn

)
, (24)

where

Rn :=

{ ∑
j=1,..,n;j 6=j∗

aj(n)(Xj −m) ≥ −ε

}
. (25)

We can see that the idea of having one great realization is incorporated in the inequality
above; in (24). We will come back to this later in (39). All of the other Xj’s can be found
in Rn. We can interpret P(Rn) as the probability that the weighted sample mean of n−1
random variables minus the mean is bigger than any non-positive constant. Intuitively
and by the Law of Large Numbers, we have that P(Rn)→ 1 as n→∞. We shall prove
this now first.

Lemma 3.2. Let X1, X2, ... be a a sequence of i.i.d. log-normal random variables and let
aj(n) be an array of weights that satisfy Assumptions 3.1. Then, ∀ε > 0, we have

lim
n→∞

P (Rn) = 1, (26)

where Rn is defined in (25).

Proof. We would like to work with the Chebyshev Inequality, see Theorem A.3; so we
are going to show that the complement goes to 0, i.e.

lim
n→∞

P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≤ −ε

)
= 0. (27)

The Chebyshev Inequality gives us:

P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≤ −ε

)
(28)

≤ P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≤ −ε

)
+ P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≥ ε

)
,

(29)

= P

(
amax(n)

∑
j=1,..,n, j 6=j∗

|Xj − E[X1]| ≥ ε

)
, (30)

≤
E
[(
amax(n)

∑
j=1,..,n, j 6=j∗ |Xj − E[X1]|

)2
]

ε2
. (31)
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Next, we will write out the expectation in the numerator of (31). We see that the terms
equal the variance and covariance. Recall the independence of our Xj. This implies that
cov(Xi, Xj) = 0, i 6= j. We have that

E
[(
amax(n)

∑
j=1,..,n, j 6=j∗ |Xj − E[X1]|

)2
]

ε2
(32)

=
a2
max(n) ((n− 1) var(X1) + (n− 1)(n− 2)cov (X1, X2))

ε2
, (33)

≤ n a2
max(n) var(X1)

ε2
, (34)

=
(n amax(n))2 var(X1)

n ε2
. (35)

Next, using (14) and (19), the overall limit becomes:

lim
n→∞

P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≤ −ε

)
≤ lim

n→∞
n−1 (amax(n) n)2 var(X1)

ε2
, (36)

= 0; (37)

since namax(n)→ s by Assumption 3.1.
Therefore, we have that

lim
n→∞

P

( ∑
j=1,..,n, j 6=j∗

aj(n) (Xj − E[X1]) ≤ −ε

)
= 0. (38)

Moving on, we use the independence of the Xj on (24):

P

({
amax(n)(Xj∗(n) −m) ≥ x−

∑
j=1,..,n

aj(n)m+ ε

}
, Rn

)
≥ P (X1 ≥ t1(n))P (Rn) ,

(39)

where

t1(n) =
n

namax(n)

(
x−

∑
j=1,..,n

aj(n)m+ amax(n)m+ ε

)
. (40)

It might not be immediately clear, but the constant in the statement (22), −
(
x
s
− s1m

s

)r
;

is processed into t1(n) and is isolated after dividing by n, taking the limit n → ∞ and
letting ε ↓ 0. We shall show the constant isolation first.

Lemma 3.3. We have that

lim
n→∞

t1(n)

n
=
(x
s
− s1m

s

)
+
ε

s
. (41)

Proof. We begin by writing out t1(n):

t1(n)

n
=
x−

∑
j=1,..,n aj(n)m+ amax(n)m+ ε

namax(n)
. (42)

From the assumptions, we have the following limits:
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1. limn→∞
∑

j=1,..,n aj(n) = s1,

2. limn→∞ amax(n)n = s,

3. limn→∞ amax(n) = 0.

Using these limits, we see that:

lim
n→∞

t1(n)

n
= lim

n→∞

[
x−

∑
j=1,..,n aj(n)m+ amax(n)m+ ε

]
namax(n)

, (43)

=
x− s1m+ ε

s
. (44)

Remark 3.3. After letting ε ↓ 0 on the result of Lemma 3.3, the constant
(
x
s
− s1m

s

)
remains.

Next, they used the tail bound from (20) on (39):

P (X1 ≥ t1(n))P (Rn) ≥ c1(t1(n)) exp (−t1(n)rb(t1(n)))P (Rn) . (45)

Now we have everything to isolate the constant. The log was taken so that the b-term
and the P(Rn)-term can be easily split off from the t1(n)r and functions as an inverse
function for the density function of the stretched exponential distribution. Besides this,
the continuity of the log and Lemma 3.2 together give us that that log (P(Rn))-term goes
to 0. The other factor, 1

b(n)nr , is included so that the constant can get completely isolated

from b(t)tr and the other terms go to 0. Once again, we shall refer to the inverse as f−1

and the other introduced factor as ψ(n).
Therefore, in order to adapt the theorem so that it works for log-normally distributed
random variables; there are three things we must do. We must adapt the tail probability
bounds; find the inverse density function for log-normal distribution, f−1; and find a
suitable ψ(n) so that the final limit converges. We will start by adapting the tail bounds
and finding f−1.

Remark 3.4. Even though f−1 is not necessarily the inverse of the entire density func-
tion; we shall refer to f−1 as the inverse density function since it concerns the density
function of the distribution at hand.
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4 Log-normal distribution

Let X ∼ N(µ, σ2), i.e. let X be normally distributed with mean µ and variance σ2. A
log-normally distributed random variable is defined as the variable Y in X = ln(Y ), [8].
In this section, we are going to find the tail bounds for the log-normal distribution as
well as the inverse density function. In addition, we will also give our main result and we
will use the rest of the thesis to prove the result. We start with the tail bounds.

4.1 Tail probability bounds

Similarly to the bounds for the stretched exponential random variables, our bounds will
work starting from a certain t∗. We will bound P (X1 ≥ x). Note that the previous prob-
ability is equal to the cumulative distribution function for the log-normal distribution,
therefore, we can represent the CDF with the error function as

P (X1 ≥ x) = 1−
(

1

2
+

1

2
erf

(
ln(x)− µ

σ

))
=

1

2
− 1

2
erf

(
ln(x)− µ

σ

)
. (46)

The error function is defined as

erf(x) =
2√
π

∫ x

0

exp
(
−t2
)
dt. (47)

The error function is used to calculate the CDF of the normal distribution, hence filling
in ln(x) in the input for the error function, [7], in (46) allows us to use the error function
for the CDF of the log-normal distribution.

Lemma 4.1. Let X be log-normally distributed and let σ = 1. Then there exists slowly-
varying functions b, c1 and c2; and a constant t∗ > 0 such that ∀t > t∗ we have that

c1(t) exp
(
− ln2(tb(t))

)
≤ P (X ≥ t) ≤ c2(t) exp

(
− ln2(tb(t))

)
. (48)

Proof. We will use the Q-function to bound (46), where the Q-function is given by:

Q(x) :=
1√
2π

∫ ∞
x

e−
u2

2 du. (49)

Using the fact that limx→∞ erf(x) = 1 and setting I(t) = ln(t)−µ
σ
√

2
, we see that:

1

2
− 1

2
erf [I(t)] =

1√
π

∫ ∞
0

e−t
2

dt− 1√
π

∫ I(t)

0

e−t
2

dt, (50)

=
1√
π

∫ ∞
I(t)

e−t
2

dt. (51)

Next, using substitution with u(x) = x√
2
, we get that:

1√
π

∫ ∞
I(n)

e−t
2

dt =
1√
π

∫ ∞
u−1(I(n))

du

dx
eu(t)2dt, (52)

=
1√
2π

∫ ∞
√

2I(n)

e
t2

2 dt, (53)

= Q(
√

2I(n)). (54)
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Thus, P (X1 ≥ t) = Q
(

ln(t)−µ
σ

)
. Filling in σ = 1 gives

P (X1 ≥ t) = Q (ln(t)− µ) . (55)

The reason why we wanted to represent the CDF with the Q-function is because there
exists bounds for the Q-function. Let φ(x) denote the density function for the standard
normal distribution. We then have the following inequality [2]:

x

1 + x2
φ(x) ≤ Q(x) ≤ 1

x
φ(x). (56)

We would like to extend (56) to a slowly-varying functions inequality, where we also take
into account the input for the functions. We note that ln(t) − µ = ln(t) − ln(exp(µ)) =
ln(t exp(−µ)), so we set exp(−µ) = b(t); so x = ln(t)−µ = ln(tb(t)). Since all converging
functions are slowly-varying at infinity and the two prefactors, x

1+x2
and 1

x
, are convergent,

we represent them with the slowly-varying functions c1(t) and c2(t), respectively. That
is,

c1(t) =
ln(tb(t))

1 + ln2(tb(t))
, (57)

c2(t) =
1

ln(tb(t))
. (58)

This leads to:

c1(t) exp
(
− ln2(tb(t))

)
≤ Q(ln(tb(t))) ≤ c2(t) exp

(
− ln2(tb(t))

)
. (59)

This gives rise to the following tail bounds.

c1(t) exp
(
− ln2(tb(t))

)
≤ P (X1 ≥ t) ≤ c2(t) exp

(
− ln2(tb(t))

)
. (60)

Remark 4.1. Note that for σ 6= 1, ln(t)−µ
σ

cannot be expressed as ln(tb(t)) for some
slowly-varying function b. It would rather be ln(tαb(t)), where we can set b(t) = bα(t) by
property 3 of Proposition 2.1; for α = 1

σ
. However, we shall work with σ = 1 in order to

extract the main ideas. See (228) for the extension of the tail bounds for general variance.

We, now, have adapted the tail bounds so that it is suited for log-normally distributed
random variables. The next step is to find the inverse of the log-normal density function.

4.2 Inverse density function

Next, we would like to find the inverse of the density function for log-normal random
variables. That is, we want to find the inverse of f(x) = φ(ln(x)).

Corollary 4.2. Given the density function f(x) = φ(ln(x)), where φ(x) is the standard
normal density function, i.e.

φ(x) = exp
(
−x2

)
. (61)

The inverse for f(x) is, accordingly, given by

f−1(x) = exp
(
−
√
− ln(x)

)
. (62)
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Remark 4.2. We overlook the constant part of the density function, the factor 1√
2π

. This
can be done as the constant can be processed into the slowly-varying functions c1 and c2

of the tail bounds.

Proof.

f(x) = exp
(
− ln2(x)

)
, (63)

ln(f(x)) = − ln2(x), (64)

±
√
− ln(f(x)) = ln(x), (65)

exp
(
±
√
− ln(f(x))

)
= x, (66)

f−1(x) = exp
(
−
√
− ln(x)

)
. (67)

Remark 4.3. The reason why we chose for this inverse function instead of exp
(√
− ln(x)

)
,

is because the inverse function, as defined in (62), maintains order relations.

Having found the inverse function allows us to start working with the bounds for
P
(
S̄n ≥ x

)
for log-normally distributed random variables.

4.3 Main Result

Now that we have found two of the main components, we will give the main result. In
contrast to the Large Deviations Theorem for stretched exponential random variables,
we do not have that the upper bound and lower bound converge to the same constant.
In our case, they differ from each other with a factor exp

(
1
2

)
. This is not completely

optimal, however, it is a good first step towards a Large Deviations Theorem for the log-
normal distribution. We will now present our result for log-normally distributed random
variables.

Theorem 4.3. (Large Deviations for Weighted Sums, Log-Normal Tails).
Let {Xj}j∈N be a sequence of i.i.d. random variables on a probability space (Ω,F ,P)

with

E[|X1|k] <∞, ∀k ∈ N; (68)

m := E[X1] and var(X1) = 1. Suppose that there exists slowly-varying functions b, c1, c2 :
(0,∞)→ (0,∞) and a constant t∗ > 0 such that for t ≥ t∗,

c1(t) exp
(
− ln2(b(t)t)

)
≤ P(X1 ≥ t) ≤ c2(t) exp

(
− ln2(b(t)t)

)
. (69)

Let {aj(n)}j∈N, n ∈ N, be an infinite array of non-negative real numbers that satisfy
Assumptions 3.1; let s and s1 be the associated constants, respectively; and let {S̄n}n∈N
be the sequence of weighted sums

S̄n :=
n∑
j=1

aj(n)Xj. (70)

Let f−1 be the function defined in Corollary 4.2, then(x
s
− s1

s
m
)−1

≤ lim
n→∞

b(n)n f−1
(
P
(
S̄n ≥ x

))
≤ exp

(
1

2

)(x
s
− s1

s
m
)−1

, ∀x > s+ s1m.

(71)
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Remark 4.4. Note that, just like stretched exponential random variables, log-normal
random variables satisfy the finiteness of the moments assumption (68). Furthermore,
see Theorem 8.1 for the extension to σ2 ∈ R>0; where σ2 = var(X1).

The rest of the thesis is the proof of Theorem 4.3. Within this proof, we split the
upper bound into two terms and show that the lower bound as well as both parts of the
upper bound can be represented by one equation. Then we calculate the limit of this
equation for the three situations. Lastly, we use the Laplace Principle to combine the
two parts of the upper bound.
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5 A general form

In this section, we are going to work out the bounds for the log-normal distribution until
the part where we multiply the bounds with ψ(n). We are going to show that each part
of the bound can be written in the form

ψ(n) (tb(t))Γ(n) . (72)

In Section 6.2, we will calculate the limits of this equation, where we assume that ψ(n) =
(nb(n))α, for α ∈ R.
We will start with the lower bound.

5.1 Lower Bound

As we saw before in (39), the first few steps followed only from the i.i.d. property of the
sequence of Xj’s; therefore we can continue from here and utilize our tail bounds from
Lemma 4.1:

P
(
S̄n ≥ x

)
≥ P (X1 ≥ t1(n))P(Rn), (73)

P (X1 ≥ t1(n))P(Rn) ≥ c1(t1(n)) exp
(
− ln2(t1(n)b(t1(n)))

)
P(Rn). (74)

Next, we apply our inverse function from Corollary 4.2. Overall, we then get:

f−1
(
P
(
S̄n ≥ x

))
≥ f−1

(
c1(t1(n)) exp

(
− ln2(t1(n)b(t1(n)))

)
P(Rn)

)
, (75)

≥ exp

(
−
√

ln2(t1(n)b(t1(n)))− ln(c1(t1(n))P(Rn))

)
, (76)

≥ exp

(
− ln(t1(n)b(t1(n)))

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))2

)
, (77)

≥ (t1(n)b(t1(n)))Γ1(n) , (78)

where

Γ1(n) := −

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))2
. (79)

The next step is when we introduce our factor ψ(n). This gives

ψ(n)f−1
(
P
(
S̄n ≥ x

))
≥ ψ(n) (t1(n)b(t1(n)))Γ1(n) . (80)

Next, we are going to work out the upper bound up until this step.

5.2 Upper Bound

Analogously to the lower bound, the first few steps of the upper bound are done using
conditions that our theorem also satisfies. It starts by splitting the upper bound into two
parts.

P
(
S̄n ≥ x

)
≤ An1 + An2 ; (81)
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where

An1 := P
(

max
j=1,..,n

{Xj} ≥ t2(n)

)
, (82)

An2 := P
(
S̄n ≥ x, max

j=1,..,n
{Xj} < t2(n)

)
, (83)

t2(n) = n
(x
s
− s1m

s

)
. (84)

We can tell from the above definitions that An1 represents the situation where at least one
of the observations takes on such a high value that could cause the deviation; whereas
An2 describes a situation in which all observations are slightly higher in value than one
would expect, causing the weighted mean to be greater than the expected value.
We are going to show that these two probabilities individually can also be written in the
general form (72). The limits of the individual parts will be calculated and brought back
together in Proposition 7.5.
We will start with An1

5.2.1 An1

Analogous to the proof of Gantert et al [5], we can start by performing the union bound.
This, accordingly, makes way for the tail bound, which results in the following for the
log-normal case:

An1 ≤ nP (X1 ≥ t2(n)) ≤ nc2(t2(n) exp (− ln(t2(n)b(t2(n)))) . (85)

Now, we apply f−1 and then multiply by ψ(n). This gives us:

ψ(n)f−1(An1 ) ≤ ψ(n)f−1 (nc2(t2(n) exp (− ln(t2(n)b(t2(n))))) , (86)

≤ ψ(n) exp

(
−
√

ln2(t2(n)b(t2(n)))− ln(c2(t2(n))n)

)
, (87)

≤ ψ(n) exp

(
− ln(t2(n)b(t2(n)))

√
1− ln(c2(t2(n))n)

ln2(t2(n)b(t2(n)))

)
, (88)

≤ ψ(n)(t2(n)b(t2(n)))Γ2(n); (89)

where

Γ2(n) := −

√
1− ln(c2(t2(n))n)

ln2(t2(n)b(t2(n)))
. (90)

5.2.2 An2

Lastly, we would like to do the same for An2 .
This starts by applying the Chernoff Bound, see Theorem A.2; with the positive real
parameter β(n)

s
, where

β(n) := ln2(t2(n)b(t2(n))). (91)

Remark 5.1. Note that β(n) is a slowly-varying function by Remark 2.1
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Applying this bound to An2 leads to

An2 ≤ exp
(
−β(n)

x

s

) ∏
j=1,.,,n

E
[
exp

(
β(n)

aj(n)

s
Xj

)
1{Xj<t2(n)}

]
. (92)

Now, we can once again apply our inverse function and consequently multiply by ψ(n).
This gives:

ψ(n)f−1(An2 ) ≤ ψ(n)f−1

(
exp

(
−β(n)

x

s

) ∏
j=1,.,,n

E
[
exp

(
β(n)

aj(n)

s
Xj

)
1{Xj<t2(n)}

])
,

(93)

≤ ψ(n) exp

−
√√√√ ln2(t2(n)b(t2(n)))x

s
−
∑

j=1,..,n

Λj

 , (94)

≤ ψ(n) (t2(n)b(t2(n)))Γ3(n) ; (95)

where

Γ3(n) := −

√
x

s
−

∑
j=1,..,n Λj

ln2(t2(n)b(t2(n)))
, (96)

Λj := ln

(
E
[
exp

(
β(n)

aj(n)

s
X

(n)
j

)])
, (97)

X
(n)
j := Xj1{Xj<t2(n)}. (98)

5.3 Summary

All in all, we were successfully able to write each separate part of the bounds; the lower
bound, An1 , and An2 ; in the given form (72). We will now state each different t and Γ(n),
respectively. We will put all the results together for clarity.
For the lower bound, we found

ψ(n)f−1
(
P
(
S̄n ≥ x

))
≥ ψ(n) (t1(n)b(t1(n)))Γ1(n) ; (99)

where

t1(n) =
n

namax(n)

(
x−

∑
j=1,..,n

aj(n)m+ amax(n)m+ ε

)
, (100)

Γ1(n) = −

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))2
; (101)

see Remark 5.2 below for the form of t1(n).
Next, for An1 , we found

ψ(n)f−1 (An1 ) ≤ ψ(n) (t2(n)b(t2(n)))Γ2(n) ; (102)

20



where

t2(n) = n
(x
s
− s1m

s

)
, (103)

Γ2(n) = −

√
1− ln(c2(t2(n))n)

ln2(t2(n)b(t2(n)))
. (104)

Lastly, we were also able to represent An2 in the form (72) as follows:

ψ(n)f−1 (An2 ) ≤ ψ(n) (t2(n)b(t2(n)))Γ3(n) ; (105)

where

t2(n) = n
(x
s
− s1m

s

)
, (106)

Γ3(n) = −

√
x

s
−

∑
j=1,..,n Λj

ln2(t2(n)b(t2(n)))
. (107)

Remark 5.2. For both t1(n) and t2(n), we have a function of the form:

t(n) ∼ c n, (108)

where c = x−s1m
s

+ ε
s

for t1(n) and c = x−s1m
s

for t2(n). This follows from Lemma 3.3 and
the definition of t2(n) from (84).

Next, we are going to give ψ(n) such that the above cases converge.
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6 Convergence of the bounds

Now that we have worked out all the bounds until the introduction of ψ(n), we can have
a further look into this factor. Based on the statement of the theorem by Gantert et al
[5], (22), we assume that

ψ(n) = (nb(n))α, α ∈ R. (109)

In order to get a better indication of this α, we will calculate the limits of the different Γ’s
first, where we find that Γ1(n) and Γ2(n) tend to -1. Accordingly, we will show that the
lower bound and An1 converge for α = 1. For An2 , we will see that the − ln(ψ(n))Γ2

3(n)-
term does not converge when calculating the full limit; but rather diverges to ±∞ for
certain values of x. However, the divergence occurs in the exponent and we will be able
to work our way around it when − ln(ψ(n))Γ2

3(n)→ −∞. We start with the calculation
of the limits of Γi(n), i ∈ {1, 2, 3}.

Remark 6.1. We could have chosen to already set α = 1 and we will do so in the
following sections. We would like to note that this is only the case because we set σ2 = 1
in Lemma 4.1. This will be elaborated upon in the discussion; see Section 8.

6.1 Limit of Γi

In this section, we are going to look into the limit of Γi(n), i ∈ {1, 2, 3}. We will look at
the different limits individually. We begin with Γ1(n).

6.1.1 Limit of Γ1(n)

Lemma 6.1. We find the following result for the limit for Γ1(n), where Γ1(n) is defined
in (79). We then have that the limit is

lim
n→∞

Γ1(n) = −1. (110)

Proof. For Γ1(n), we have:

lim
n→∞

Γ1(n) = lim
n→∞

−

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))2
, (111)

= lim
n→∞

−

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))

1

ln(t1(n)b(t1(n)))
. (112)

From Lemma 3.2, we know that P(Rn) → 1 and since the log-function is continuous
around 1, we have that ln(P(Rn))→ 0. Furthermore, we can split P(Rn) off of the product

by (9). For this reason, we only need to look at limn→∞
ln(c1(t1(n)))

ln(t1(n)b(t1(n)))
1

ln(t1(n)b(t1(n)))
. This

also tends to 0 as n→∞, by property 1 of Proposition 2.1, since t1(n)b(t1(n))→∞ by
property 2 of Proposition 2.1. Putting all of this together, we get that:

lim
n→∞

Γ1(n) = lim
n→∞

−

√
1− ln(c1(t1(n))P(Rn))

ln(t1(n)b(t1(n)))

1

ln(t1(n)b(t1(n)))
= −1. (113)
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6.1.2 Limit of Γ2(n)

Lemma 6.2. We find the following result for the limit for Γ2(n), where Γ2(n) is defined
in (90). We then have that the limit is

lim
n→∞

Γ2(n) = −1. (114)

Proof. We consider Γ2(n):

lim
n→∞

Γ2(n) = lim
n→∞

√
1− ln(c2(t2(n))n)

ln(t2(n)b(t2(n)))

1

ln(t2(n)b(t2(n)))
. (115)

Here, we have that limn→∞
ln(c2(t2(n))n)

ln(t2(n)b(t2(n)))
= 1 by property 4 of Proposition 2.1. It follows

that limn→∞
ln(c2(t2(n))n)

ln(t2(n)b(t2(n)))
1

ln(t2(n)b(t2(n)))
= 0 and the overall limit becomes:

lim
n→∞

Γ2(n) = lim
n→∞

√
1− ln(c2(t2(n))n)

ln(t2(n)b(t2(n)))

1

ln(t2(n)b(t2(n)))
= −1. (116)

6.1.3 Limit of Γ3(n)

Lastly, we direct our attention to the limit of Γ3(n). Unlike the other two cases, we are
not able to directly calculate the limit. We are going to bound it instead using Lemma
6.4. We will first give the result.

Lemma 6.3. We find the following results for the limits for Γ3(n), where Γ3(n) is defined
in (96). We then have that the limit is

lim
n→∞

Γ3(n) ≤ −
√
x

s
− s1m

s
. (117)

Proof. Using the continuity of the square root function and taking the limit of Γ3(n) from
(96) gives:

lim
n→∞

−

√
x

s
−

∑
j=1,..,n Λj

ln2(t2(n)b(t2(n)))
≤ −

√
x

s
− s1m

s
, (118)

by Lemma 6.4.

This proof was based on the following lemma.

Lemma 6.4. With β(n) as defined in (91) and Λj as defined in (97), we have that

lim
n→∞

∑
j=1,..,n Λj

β(n)
≤ s1m

s
. (119)
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Proof. We use the same estimates as in the paper by Gantert et al [5]: ln(x) ≤ x− 1 and

ex − 1 ≤
∑k

j=1
xj

j!
+ xk+1

(k+1)!
ex; for some k ∈ N, which we shall define later. Using these

estimates, we have:

lim
n→∞

∑n
j=1 Λj

β(n)
≤ lim

n→∞

 k∑
i=1

n∑
j=1

E
[(
β(n)

aj(n)

s
X

(n)
j

)i]
β(n)i!

+
B0

(k + 1)!
. (120)

Here, B0 := limn→∞ β(n)−1
∑n

j=1 E
[(
X

(n)
j

)k+1

exp
(
β(n)

aj(n)

s
X

(n)
j

)]
.

Now, we will show that limn→∞
∑k

i=1

∑n
j=1

E

[(
β(n)

aj(n)

s
X

(n)
j

)i
]

β(n) i!
≤ s1m

s
.

Fix i and look at limn→∞
∑n

j=1

E

[(
β(n)

aj(n)

s
X

(n)
j

)i
]

β(n) i!
. We have that

lim
n→∞

n∑
j=1

E
[(
β(n)

aj(n)

s
X

(n)
j

)i]
β(n) i!

= lim
n→∞

E
[(
X

(n)
1

)i] β(n)i−1

si

∑n
j=1 aj(n)i

i!
. (121)

For i=1, we have that E
[
X

(n)
1

]
≤ m and by (13) of Assumptions 3.1, we have that

limn→∞
∑n

j=1 aj(n)→ s1. Filling this in gives that limn→∞ E
[(
X

(n)
1

)i]
β(n)i−1

si

∑n
j=1 aj(n)i

i!
≤

s1
s
m.

Next, for the other i > 1, we use the fact that
∑n

j=1 aj(n)i ≤ n amax(n)i and that
limn→∞ namax(n) = s; the latter of which corresponds to (14) of Assumptions 3.1. This
gives:

lim
n→∞

E
[(
X

(n)
1

)i] β(n)i−1

si

∑n
j=1 aj(n)i

i!
≤ lim

n→∞
E
[(
X

(n)
1

)i] β(n)i−1

si
namax(n)i

i!
,

≤ lim
n→∞

E
[(
X

(n)
1

)i]
n−i+1β(n)i−1

si
(namax(n))i

i!
.

(122)

Here we have that E
[(
X

(n)
1

)i]
<∞; limn→∞ n

−i+1 β(n)i−1

si
→ 0, by (68) and property 2 of

Proposition 2.1, since β(n) is a slowly-varying function; and limn→∞
(namax(n))i

i!
→ si

i!
<∞.

Therefore, we have limn→∞ E
[(
X

(n)
1

)i]
β(n)i−1

si

∑n
j=1 aj(n)i

i!
= 0.

All this together shows that:

lim
n→∞

 k∑
i=1

n∑
j=1

E
[(
β(n)

aj(n)

s
X

(n)
j

)i]
β(n) i!

 ≤ s1

s
m. (123)

In order to complete the proof, we need to show that B0 = 0:

lim
n→∞

β(n)−1

n∑
j=1

E
[(
X

(n)
j

)k+1

exp

(
β(n)

aj(n)

s
X

(n)
j

)]
= 0. (124)
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We will follow the same steps as in the paper. We begin by bounding B0 by
lim supn→∞ (B1(n) +B2(n)), where

B1(n) := β(n)−1

n∑
j=1

(
β(n)

aj(n)

s

)k+1

(t∗)k+1 exp

(
β(n)

aj(n)

s
t∗
)
, (125)

≤ β(n)−1n−k
(
β(n)

namax(n)

s

)k+1

(t∗)k+1 exp

(
n−1β(n)

namax(n)

s
t∗
)

; (126)

and

B2(n) := β(n)−1

n∑
j=1

(
β(n)

aj(n)

s

)k+1

E
[(
X

(n)
j

)k+1

exp

(
β(n)

aj(n)

s
X

(n)
j

)
1{t∗≤X(n)

j }

]
,

(127)

≤ β(n)−1n−k
(
β(n)

namax(n)

s

)k+1

E
[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
.

(128)

Since β(n) is slowly-varying, we have that limn→∞ n
−1β(n)p = 0, for any p ∈ N by

property 2 and 3 of Proposition 2.1. Along with the fact that t∗ < ∞ and (14) from
Assumptions 3.1, we have that limn→∞B1(n) = 0.
Now all that is left to prove is that limn→∞B2(n) = 0. Since we only need one factor of
n−1 in (128), we can rewrite (128) as follows:

β(n)−1n−k
(
β(n)

namax(n)

s

)k+1

E
[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
,

(129)

= n−1

(
β(n)

namax(n)

s

)k+1

n−k+1β(n)−1E
[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
.

(130)

Using the previous limits, we see that what we need to show is:

lim
n→∞

n−k+1β(n)−1E
[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
<∞. (131)

Next, we bound the expectation in (131) using Hölder’s inequality. That is, ∀ε > 0:

E
[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
(132)

≤ E
[(
X

(n)
1

)(k+1) 1+ε
ε
1{t∗≤X(n)

1 }

] ε
1+ε

E
[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

] 1
1+ε

.

(133)

Using the fact that the log-normal distribution has finite moments, we have that

E
[(
X

(n)
1

)(k+1) 1+ε
ε
1{t∗≤X(n)

1 }

] ε
1+ε

<∞, (134)
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which leaves to prove that:

lim
n→∞

n−k+1β(n)−1E
[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

] 1
1+ε

<∞. (135)

Bear in mind that we have not yet set k. We will prove (135) with the same Integration
by Parts Theorem as in the paper, which can be found in the appendix, Theorem B.1.
Applying this theorem, we can bound (135) as follows:

n−k+1β(n)−1E
[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
j

)
1{t∗≤X(n)

1 }

]
(136)

≤ n−k+1(1 + ε)β(n)−1β(n)
amax(n)

s

∫ t2(n)

t∗
exp

(
(1 + ε)β(n)

amax(n)

s
z

)
P (X1 ≥ z) dz

(137)

+ n−k+1β(n)−1 exp

(
(1 + ε)β(n)

amax(n)

s
t∗
)
. (138)

We have that for k ≥ 2, that the term in (138) will go to 0 in its limit, as a result
of Assumptions 3.1 and due to the fact that β(n) is slowly-varying. To clarify, we can
rewrite the term in (138) as follows:

n−k+1β(n)−1 exp

(
(1 + ε)β(n)

amax(n)

s
t∗
)

= n−k+1β(n)−1 exp

(
(1 + ε)

β(n)

n

amax(n)n

s
t∗
)
.

(139)

Therefore, we shift our focus to (137). To start off, we are going to bound P (X1 ≥ z)
using the tail bounds from Lemma 4.1:

n−k+1(1 + ε)
amax(n)

s

∫ t2(n)

t∗
exp

(
(1 + ε)β(n)

amax(n)

s
z

)
P (X1 ≥ z) dz ≤

n−k+1(1 + ε)
amax(n)

s

∫ t2(n)

t∗
c2(z) exp

(
(1 + ε)β(n)

amax(n)

s
z − ln2 (zb(z))

)
dz. (140)

Lastly, we apply substitution with y := z
t2(n)

. Then, we have that dy
dz

= 1
t2(n)
⇒ t2(n)dy =

dz. Substituting into (140) gives:

n−k+1(1 + ε)
amax(n)

s

∫ t2(n)

t∗
c2(z) exp

(
(1 + ε)β(n)

amax(n)

s
z − ln2 (zb(z))

)
dz

= n−k+1t2(n)(1 + ε)
amax(n)

s

∫ 1

t∗
t2(n)

c2(z) exp

(
(1 + ε)β(n)

amax(n)

s
t2(n)y − ln2 (t2(n)yb(t2(n)y))

)
dy,

(141)

≤ (1− t∗

t2(n)
)n−kt2(n)(1 + ε)

amax(n)n

s
c2(t∗) exp

(
(1 + ε)β(n)

amax(n)

s
t∗ − ln2 (t∗b(t∗))

)
;

(142)
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where we have that the following limits:

lim
n→∞

(1− t∗

t2(n)
) = 1,

lim
n→∞

t2(n)

nk
= 0, k ≥ 2, using the definition of t2(n) from (84),

lim
n→∞

amax(n)n = s,

lim
n→∞

β(n)amax(n) = 0.

All the terms in (142) that are not found in the list above are constants. We thus have
that

lim
n→∞

(1− t∗

t2(n)
)n−kt2(n)(1 + ε)

amax(n)n

s
c2(t∗) exp

(
(1 + ε)β(n)

amax(n)

s
t∗ − ln2 (t∗b(t∗))

)
= 0.

(143)

This concludes the proof of this lemma.

Knowing the limits of the different Γ(n)’s gives us more insight in the calculations of
the overall limits, which we shall do next. For notational convenience, we will henceforth
write t instead of either t1(n) or t2(n), where the definition of t will be specified. In the
context of general equations, t will be used to represent both t1(n) and t2(n).

6.2 The overall limit

Using (108), Definition 2.1, Remark 5.2 and (109); we can rewrite (72):

ψ(n) (t(n)b(t(n))))Γ(n) = (nb(n))α (cnb(t(n))))Γ(n) , (144)

=

(
b(n)

b(t)

)α
(b(t)n)α+Γ(n) cΓ(n). (145)

Remark 6.2. The definition of slowly-varying functions was used here with the intro-

duction of
(
b(t)
b(t)

)α
. We saw in Remark 5.2 that both t1(n) and t2(n) can be seen as a

constant times n. This implies that b(t)
b(n)
→ 1 as n→∞.

As a result of the above remark and the convergence of the Γ(n)’s; the convergence
of (145) only requires the convergence of the last term:

(nb(t))α+Γ(n) . (146)

In order to calculate the limit of this term, we need to work nb(t) into the exponent. The
identity transformation x→ exp(ln(x)) allows this:

lim
n→∞

(nb(t))α+Γ(n) = lim
n→∞

exp
(

ln
(

(nb(t))α+Γ(n)
))

, (147)

= lim
n→∞

exp ((α + Γ(n)) ln (nb(t))) . (148)
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When we look back at the definition of the Γ(n)’s, we see that all of them include a
square root. With the goal of getting rid of the square root in the numerator, we raise
(148) to the power α−Γ(n)

α−Γ(n)
, giving us the following

lim
n→∞

(nb(t))α+Γ(n) = lim
n→∞

exp

(
(α + Γ(n))

α− Γ(n)

α− Γ(n)
ln (nb(t))

)
, (149)

= lim
n→∞

exp

(
α2 − Γ(n)2

α− Γ(n)
ln (nb(t))

)
. (150)

Therefore, we need (150) to converge so that the bounds converge. We will check this
equation for all three of our cases, starting with the lower bound. We will prove that this
is the case for α = 1. However, as we shall see, An2 will require us to make additional
conditions for convergence.

6.2.1 Lower Bound

Proposition 6.5. Under the assumptions of Theorem 4.3, we have(x
s
− s1

s
m
)−1

≤ lim
n→∞

b(n)n f−1
(
P
(
S̄n ≥ x

))
, if x > s1m. (151)

Proof. Let t = t1(n). From (151) we can see that this ψ(n) = nb(n) corresponds to the
case when α = 1.

For the lower bound, we found Γ(n) = −
√

1− ln(c1(t)P(Rn))
ln(tb(t))2

, in (79). Filling this out in

(150) gives us:

lim
n→∞

exp

(
α2 − Γ(n)2

α− Γ(n)
ln (nb(t))

)
= lim

n→∞
exp

(
α2 − (1− ln(c1(t)P(Rn))

ln(tb(t))2
)

α− Γ(n)
ln(nb(t))

)
, (152)

= lim
n→∞

exp

(
α2 ln(nb(t))− ln(nb(t)) + ln(nb(t)) ln(c1(t)P(Rn))

ln(tb(t))2
)

α− Γ(n)

)
.

(153)

Take a closer look at ln(nb(t)) ln(c1(t)P(Rn))
ln(tb(t))2

). Rewriting this as follows; ln(nb(t))
ln(tb(t))

ln(c1(t)P(Rn))
ln(tb(t))

,
makes it easier to see that this term goes to 0 as a result of Lemma 3.2 and by property
3 of Proposition 2.1. This also implies that if we set α = 1, then the limit of the factor
inside the exponent in (153) goes to 0, since Γ(n) converges to -1 from Lemma 6.1. That
is,

lim
n→∞

exp

(
ln(nb(t))− ln(nb(t)) + ln(nb(t)) ln(c1(t)P(Rn))

ln(tb(t))2
)

1− Γ(n)

)
(154)

= lim
n→∞

exp

( ln(nb(t))
ln(tb(t))

ln(c1(t)P(Rn))
ln(tb(t))

)

1− Γ(n)

)
= exp

(
1 · 0

2

)
= 1. (155)

This means, that for the overall limit for the lower bound, we get from (145):

lim
n→∞

(
b(n)

b(t)

)1

(b(t1(n))n)1+Γ(n) cΓ(n) = 1 · 1 ·
(x
s
− s1m

s
− ε

s

)−1

, (156)

=

(
x− s1m

s

)−1

, (157)

where c is from Lemma 3.3 and we let ε ↓ 0 in (157), for α = 1.
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We would like to note that we calculated the constant in (157) by immediately working
with the constant, instead of the function that converges to the constant, from Lemma
3.3. With the following result, we show that the calculation still works.

Lemma 6.6. Let a, f(n) > 0, and let g(n) and b such that

lim
n→∞

f(n) = a, (158)

lim
n→∞

g(n) = b. (159)

Then

lim
n→∞

f(n)g(n) = ab. (160)

Proof. We apply the identity transformation x→ exp(log(x)):

f(n)g(n) = exp (log (f(n)g(n))) , (161)

= exp (g(n) log(f(n))) . (162)

Now, we have by the conditions that f(n) is positive, therefore, log(f(n)) is well-defined
and by continuity of the log we have that limn→∞ log(f(n)) = log(a). Then, by the
multiplication rule of limits, we have that the following equation holds

lim
n→∞

g(n) log(f(n)) = b log(a). (163)

Also using the continuity of the exponential function, this gives us

lim
n→∞

f(n)g(n) = lim
n→∞

exp
(
log
(
f(n)g(n)

))
, (164)

= lim
n→∞

exp(g(n) log(f(n))), (165)

= exp(b log(a)), (166)

= ab. (167)

We applied Lemma 6.6 for

f(n) =
t1(n)

n
=

1

namax(n)

(
x−

∑
j=1,..,n

aj(n)m+ amax(n)m+ ε

)
, (168)

g(n) = Γ1(n) = −

√
1− ln(c1(t)P(Rn))

ln(tb(t))2
. (169)

To give us that

lim
n→∞

f(n)g(n) =

(
x− s1m

s
+
ε

s

)−1

, (170)

for (157).

Remark 6.3. The limits of f(n) and g(n) were found in Lemma 3.3 and Lemma 6.1,
respectively.
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6.2.2 An1

Next, we are going to show that the An1 -bound also converges for ψ(n) = nb(n).

Lemma 6.7. Let An1 be the probability defined in (82). Under the same conditions as
Theorem 4.3, we have that

lim
n→∞

b(n)n f−1 (An1 ) ≤ exp

(
1

2

)(x
s
− s1m

s

)−1

, if x > s1m. (171)

Proof. Let t = t2(n). We once again start by noting that this for this particular case we

found Γ(n) = −
√

1− ln(c2(t)n)

ln2(tb(t))
in (90). We insert this into (150), giving

lim
n→∞

exp

(
α2 − Γ(n)2

α− Γ(n)
ln (nb(t))

)
= lim

n→∞
exp

α2 − (1− ln(c2(t)n)

ln2(tb(t))
)

α− Γ(n)
ln(nb(t))

 , (172)

= lim
n→∞

exp

α2 ln(nb(t))− ln(nb(t)) + ln(nb(t)) ln(c2(t)n)

ln2(tb(t))
)

α− Γ(n)

 .

(173)

Analogously to the lower bound, we need to inspect the term ln(nb(t)) ln(c2(t)n)

ln2(tb(t))
; and we can

rewrite as follows: ln(nb(t))
ln(tb(t))

ln(c2(t)n)
ln(tb(t))

. By property 4 of Proposition 2.1, we have that the
fraction converges to 1:

lim
n→∞

ln(nb(t))

ln(tb(t))

ln(c2(t)n)

ln(tb(t))
= 1 · 1 = 1. (174)

Applying this along with α = 1 and Lemma 6.2 in (173), we get:

lim
n→∞

exp

 ln(nb(t))− ln(nb(t)) + ln(nb(t)) ln(c2(t)n)

ln2(tb(t))

1− Γ(n)

 (175)

= lim
n→∞

exp

( ln(nb(t))
ln(tb(t))

1− Γ(n)

)
= exp

(
1 · 1
1 + 1

)
= exp

(
1

2

)
. (176)

This previous limit implies that we get

lim
n→∞

(
b(n)

b(t)

)1

(b(t)n)1+Γ(n) cΓ(n) = 1 · exp

(
1

2

)
· c−1, (177)

= exp

(
1

2

)(
x− s1m

s

)−1

; (178)

for the overall limit of An1 with α = 1, where c is the constant from t2(n) as defined in
(84).

The constant found in (178) is not exactly the same constant as the one we found for
the lower bound in (157) but it did converge. The next case is where we run into a bit
of trouble.
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6.2.3 An2

We ran into trouble for this case as a result of the fact that we were only able to find a
bound for Γ3(n) in Lemma 6.3. Using the bound, we are only able to definitely state the
following the lemma.

Lemma 6.8. Let An2 be the probability defined in (83), using the same assumptions as in
Theorem 4.3; but for general var(X1) = σ2 and α = 1

σ
, gives us

lim
n→∞

(b(n)n)α f−1 (An2 ) = 0, if x > sα2 + s1m. (179)

Proof. Let t = t2(n). Using the Γ(n) we found for this case in (96), Γ(n) = −
√

x
s
−
∑

j=1,..,n Λj

ln2(tb(t))
,

(150) then becomes:

lim
n→∞

exp

(
α2 − Γ(n)2

α− Γ(n)
ln (nb(t))

)
= lim

n→∞
exp

α2 −
(
x
s
−
∑

j=1,..,n Λj

ln2(tb(t))

)
α− Γ(n)

ln(nb(t))

 .

(180)

Looking at (180), we see that we need to calculate the limit of ln(nb(t))Γ2(n). Calculating
this limit directly will not work with the method we used in the proof Lemma 6.4, but

rather it would diverge. What we can look at is when ln(nb(t))α
2−Γ2(n)
α−Γ(n)

→ −∞.

We need to check the sign of the above term. We begin by noting that both ln(nb(t))
and α−Γ(n) are both greater than 0, see (96). Then, only α2−Γ2(n) remains. We want
to find out if and when limn→∞ α

2 − Γ2(n) < 0.
Using our bound from Lemma 6.3, we have that

lim
n→∞

α2 − Γ2(n) ≤ α2 − x

s
+
s1m

s
. (181)

We want this to be less than 0. This gives:

α2 − x

s
+
s1m

s
< 0, (182)

x > s1m+ sα2. (183)

Remark 6.4. We only considered the case where ln(nb(t))α
2−Γ2(n)
α−Γ(n)

→ −∞; since the
divergence of the above limit to infinity does not produce any significant results. This is a
consequence from the fact that we were only able to bound Γ3(n) because we cannot make

any absolute statements about the the limit of ln(nb(t))α
2−Γ2(n)
α−Γ(n)

for s1m ≤ x ≤ s1m+ s.

However, since we work with α = 1 for the lower bound and An1 , we are particularly
interested in Lemma 6.8 for this case. Giving us the following corollary.

Corollary 6.9. Under the same conditions as Theorem 4.3 and with An2 as defined in
(83), we have that

lim
n→∞

nb(n)f−1(An2 ) = 0, if x > s+ s1m, (184)

All that is left is to use the Laplace Principle to combine the upper bound.
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7 Laplace Principle

When computing the limit of the bound for An2 , a problem arose. Besides not converging
to the either of the two constants found in Proposition 6.5 or Lemma 6.7, An2 only
converged for certain values of x. However, the method for reuniting An1 and An2 for the
upper bound also provides a solution for this problem.
In the paper by Gantert et al [5], the Laplace principle was used. We start by giving the
statement and its proof. Accordingly, we look at what it accomplished for the stretched
exponential case and see what it can do for us.

Theorem 7.1. (Laplace principle)
Let an, bn ≥ 0 be two sequences such that

lim
n→∞

1

n
log(an) = a, (185)

lim
n→∞

1

n
log(bn) = b. (186)

Then

lim
n→∞

1

n
log (an + bn) = max(a, b). (187)

Proof. The proof of this result is based on the following inequality, for x, y > 0:

max(x, y) ≤ x+ y ≤ 2 max(x, y). (188)

We will use this bound for the sum in 1
n

log(an + bn):

1

n
log(max(an, bn)) ≤ 1

n
log(an + bn) ≤ 1

n
log(2 max(an, bn)), (189)

≤ log(2)

n
+

1

n
log(max(an, bn)). (190)

Since the log-function preserves order relations, we can interchange max and log.

max

(
1

n
log(an),

1

n
log(bn)

)
≤ 1

n
log(an + bn) ≤ log(2)

n
+ max

(
1

n
log(an),

1

n
log(bn)

)
.

(191)

We were able to put the factor 1
n

inside of the max on account of this term being non-
negative.
Lastly, the result follows when taking the limit of (191), since log(2)

n
→ 0.

We will now demonstrate the Laplace Principle application in the paper by Gantert
et al [5].

7.1 Stretched exponential case

Gantert et al [5] used the Laplace Principle for the upper bound. This was necessary due
to the fact that the upper bound was split into two parts. They found that both parts
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converged to the same constant. That is, for the upper bound they found the following
two limits

lim
n→∞

1

b(n)nr
log (An1 ) ≤

(x
s
− s1m

s

)r
, (192)

lim
n→∞

1

b(n)nr
log (An2 ) ≤

(x
s
− s1m

s

)r
. (193)

Given these limits, the Laplace Principle could be applied and gave in their case:

lim
n→∞

1

b(n)nr
log
(
P
(
S̄n ≥ x

))
≤ lim

n→∞

1

b(n)nr
log (An1 + An2 ) , (194)

= −
(x
s
− s1m

s

)r
. (195)

Now, let us apply this principle for log-normally distributed random variables. We will
try to work it out alongside of the proof.

7.2 Laplace extension

Gantert et al [5] were able to apply the Laplace principle for their upper bound as the
log-function was their f−1. However, our inverse density function, as found in Corollary
4.2, is not just the log-function, but a composition of functions including the log. In this
section, we will show that the Laplace Principle still holds for our f−1.

Theorem 7.2. (Laplace Extension).
Let 0 < an, bn < 1. If limn→∞ ψ(n)f−1(an) = a; max{an, bn} = an for large n; and
ψ(n)→∞, then

lim
n→∞

ψ(n)f−1(an + bn) = a. (196)

The proof of Theorem 7.2 is based on the following lemma.

Lemma 7.3. Let an, a, bn, cn > 0 and let ln2(xn)−ln(cn) = − ln(an). If limn→∞ xnf
−1(an) =

a and

lim
n→∞

ln(bn)

ln(xn)
= 0, (197)

then

lim
n→∞

xnf
−1(bnan) = a. (198)

Proof. Let us begin by writing out the inverse function in the limit of (198)

lim
n→∞

xnf
−1(bnan) = lim

n→∞
xn exp

(
−
√
− ln(bn)− ln(an)

)
, (199)

= lim
n→∞

xn exp

(
−
√

ln2(xn)− ln(bn)− ln(cn)

)
, (200)

= lim
n→∞

xnx
Γ(n)
n , (201)
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where

Γ(n) = −

√
1− ln(bn) + ln(cn)

ln2(xn)
. (202)

Using the identity transformation x→ exp(ln(x)) on (201) gives

lim
n→∞

x1+Γ(n)
n = lim

n→∞
exp ((1 + Γ(n)) ln(xn)) , (203)

= lim
n→∞

exp

(
1− Γ2(n)

1− Γ(n)
ln(xn)

)
; (204)

where we raised (203) to the power 1−Γ(n)
1−Γ(n)

in the last step. Writing out the Γ2(n)-term
results in the following

lim
n→∞

exp

(
1− Γ2(n)

1− Γ(n)
ln(xn)

)
= lim

n→∞
exp

1− 1 + ln(bn)+ln(cn)

ln2(xn)

1− Γ(n)
ln(xn)

 , (205)

= lim
n→∞

exp

( ln(bn)
ln(xn)

1− Γ(n)

)
exp

( ln(cn)
ln(xn)

1− Γ(n)

)
. (206)

By our assumptions, we have that limn→∞ exp

(
ln(bn)
ln(xn)

1−Γ(n)

)
= 1; and limn→∞ exp

(
ln(cn)
ln(xn)

1−Γ(n)

)
=

a. The latter limit follows by writing out the assumption concerning limn→∞ xnf
−1(an)

analogously to the method above; gives the following result:

lim
n→∞

xnf
−1(an) = lim

n→∞
exp

 1− 1 + ln(cn)

ln2(xn)

1 +
√

1− ln(cn)

ln2(xn)

ln(xn)

 = a. (207)

We see that this assumption implies the convergence of
√

1− ln(cn)

ln2(xn)
. Alongside the

assumption that limn→∞
ln(bn)
ln(xn)

= 0 and the continuity of the square root; we have that

1− Γ(n) converges. Altogether, we have that

lim
n→∞

xnf
−1(bnan) = a. (208)

We now move on to the proof of Theorem 7.2.

Proof. Since 0 < an, bn < 1, we have that

max(an, bn) < an + bn < 2 max(an, bn). (209)

Since our inverse density function preservers order relations, this inequality still holds
after applying the inverse function as well as after multiplying by the positive factor ψ(n)
as follows

f−1(max(an, bn)) < f−1(an + bn) < f−1(2 max(an, bn)), (210)

ψ(n)f−1(max(an, bn)) < ψ(n)f−1(an + bn) < ψ(n)f−1(2 max(an, bn)), (211)

⇒
ψ(n)f−1(an) < ψ(n)f−1(an + bn) < ψ(n)f−1(2an). (212)
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This last step is the result of max(an, bn) = an for large n. The last step is to take the
limit of (212) giving

lim
n→∞

ψ(n)f−1(an) < lim
n→∞

ψ(n)f−1(an + bn) < lim
n→∞

ψ(n)f−1(2an), (213)

⇒
a < lim

n→∞
ψ(n)f−1(an + bn) < a. (214)

Note that we applied Lemma 7.3 for the right-hand side of the inequality. This was
possible as a result of ψ(n) → ∞, since xn grows at the same rate as ψ(n). As a
consequence, we have that limn→∞

2
xn

= 0.

By Theorem 7.2, we have that the following equation holds

lim
n→∞

b(n)nf−1 (P (An1 + An2 )) ≤ exp

(
1

2

)(
x− s1m

s

)−1

; (215)

if An1 ≥ An2 . We dedicate the next subsection to finding any new conditions so that this
inequality holds.

7.3 Final conditions

In this section, we will find out if any more conditions must be taken in order for the
upper bound to converge. That is, we need to find out if more conditions are required in
order to have that the inequality An1 ≥ An2 is satisfied. However, we worked out the limits
for the bounds of An1 and An2 , rather than An1 and An2 . We shall refer to the bounds as Cn

1

and Cn
2 from (85) and (92), respectively. We will first show that it suffices to compare

the bounds. Accordingly, we will show that this is the case for x > s1m+ s.
As stated, it suffices to compare Cn

1 and Cn
2 to find out which of the two is greater, as a

result of

P
(
S̄n ≥ x

)
≤ An1 + An2 ≤ Cn

1 + Cn
2 , (216)

Cn
1 := nc2(t2(n)) exp

(
− ln2(t2(n)b(t2(n)))

)
, (217)

Cn
2 := exp

(
−β(n)

x

s

) n∏
j=1

E
[
exp

(
β(n)

aj(n)

s
Xj

)
1{Xj≤t2(n)}

]
. (218)

Lemma 7.4. Under the same conditions as Theorem 4.3 and with Cn
1 and Cn

2 as defined
above in (217) and (218), respectively; we have that for large n:

Cn
1 ≥ Cn

2 , ∀x > s1m+ s. (219)

Proof. We would like to begin by restating the fact that our inverse density function f−1

preserves order relations; i.e.

x ≥ y ⇐⇒ f−1(x) ≥ f−1(y). (220)

Next, applying our inverse density function and the inequality described at (188) gives:

f−1
(
P
(
S̄n ≥ x

))
≤ f−1 (Cn

1 + Cn
2 ) ; (221)

f−1 (max{Cn
1 , C

n
2 }) ≤ f−1 (Cn

1 + Cn
2 ) ≤ f−1 (2 max{Cn

1 , C
n
2 }) . (222)
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Since our inverse function preserves order relations, we can interchange the max and the
inverse function as follows

f−1 (max{Cn
1 , C

n
2 }) ≤f−1 (Cn

1 + Cn
2 ) ≤ f−1 (2 max{Cn

1 , C
n
2 }) , (223)

⇐⇒
max{f−1(Cn

1 ), f−1(Cn
2 )} ≤f−1 (Cn

1 + Cn
2 ) ≤ max{f−1(2Cn

1 ), f−1(2Cn
2 )}. (224)

This means that we can compare the limits of ψ(n)f−1(Cn
1 ) and ψ(n)f−1(Cn

2 ). We already
calculated these limits in Lemma 6.7 and Lemma 6.8. We see from these two lemmas
that

lim
n→∞

nb(n)f−1 (Cn
1 ) ≥ lim

n→∞
nb(n)f−1 (Cn

2 ) , ∀x > s1m+ s; (225)

where Lemma 6.8 requires us to restrict the domain to x > s1m+ s.

Now that we have proved Lemma 7.4, the following lemma holds.

Proposition 7.5. Under the same conditions as Theorem 4.3 and with both An1 and An2
as the probabilities defined in (82) and (83), respectively. Then

lim
n→∞

b(n)n f−1
(
P
(
S̄n ≥ x

))
≤ exp

(
1

2

)(x
s
− s1m

s

)−1

. (226)

Proof. The result directly follows from applying Theorem 7.2 on Lemma 7.4 along with
the limits found in Lemma 6.7 and Lemma 6.8.
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8 Discussion

In this discussion, we will elaborate upon a few of the ideas given in the thesis. Most
significantly, we will work out Theorem 4.3 for σ2 ∈ R>0; where we will also compare the
rate of decrease found for log-normal random variables with those found by Cramér and
Gantert et al.
Furthermore, we would like to elaborate upon the limits of the upper bound.

8.1 σ2 ∈ R>0

We begin by examining the consequences of remark right after Lemma 4.1. In this remark,
we stated that for general σ, we would get that (48) becomes:

∃α ∈ R>0, namely α :=
1

σ
: (227)

c1(t) exp
(
− ln2(tαb(t))

)
≤ P (X1 ≥ t) ≤ c2(t) exp

(
− ln2(tαb(t))

)
. (228)

We are going to check how this changes the general equations.
This change in the tail bounds becomes clear once we apply (228) for the bounds of
P(S̄n ≥ x). For example, we can look at the lower bound from (73) and see that applying
(228) we get

P (X1 ≥ tα1 (n))P(Rn) ≥ c1(t) exp
(
− ln2(tαb(t))

)
P(Rn). (229)

Then, applying f−1 and working it out we get that

f−1
(
P
(
S̄n ≥ x

))
≥ (t1(n)b(t1(n)))αΓ1(n) (230)

Γ1(n) := −

√
1− ln(c1(tα1 (n))P(Rn))

ln(tα1 (n)b(t1(n)))2
. (231)

Note that since b(t) is a slowly-varying function, we can represent all powers of b(t) with
b(t) by property 3 of Proposition 2.1. Multiplying (230) with ψ(n) gives

ψ(n)f−1
(
P
(
S̄n ≥ x

))
≥ ψ(n) (t1(n)b(t1(n)))αΓ1(n) . (232)

When working out the different parts of the upper bound, we see that we can also work
it out to get a the same general equation as in (232). That is, (72) becomes

ψ(n)(tb(t))αΓ(n). (233)

Since the exponent only differs by a constant from what we had before, we have that the
limits of Γi(n) for i ∈ {1, 2, 3} all converge to α times their limit. From here, we can
tell that this changes the final limit of the constant and ψ(n). We shall show the work
for the lower bound. We will show that the main statement of Theorem 4.3 becomes(x

s
− s1m

s

)−α
≤ lim

n→∞
nαb(n)f−1

(
P
(
S̄n ≥ x

))
, (234)

for the lower bound and changing the work for the upper bound gives the analogous
result.
We had that limn→∞ Γ1(n) = −1, therefore limn→∞ αΓ1(n) = −α. Since we required
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that ψ(n) = nb(n) to counter Γ1(n) previously it is clear that in the new case we require
that ψ(n) = nαb(n), the b(n) term once again does not require the α in the exponent as
a consequence of b(n) being slowly varying. When altering the calculations of the proof

of Proposition 6.5 this becomes clear. The constant,
(
x
s
− s1m

s

)−1
, changes as a result of

the change of the general equation. When we want to split off the constant from this
equation, analogously to (145), we see that the only difference is the exponent; that is

ψ(n) (t(n)b(t(n))))αΓ(n) = (nb(n))α (cnb(t(n))))αΓ(n) , (235)

=

(
b(n)

b(t)

)α
(b(t)n)α+αΓ(n) cαΓ(n), (236)

where we now have that cαΓ1(n) → c−α.
The analog of this bound for the upper bound can be shown in the same fashion. We
will now present the main theorem of this thesis for any σ ∈ R>0.

Theorem 8.1. (Large Deviations for Weighted Sums, Log-Normal Tails).
Let {Xj}j∈N be a sequence of i.i.d. random variables on a probability space (Ω,F ,P)

with

E[|X1|k] <∞, ∀k ∈ N, (237)

and let m := E[X1]. Suppose that there exists slowly-varying functions b, c1, c2 :
(0,∞)→ (0,∞) and constants α > 0 and t∗ > 0 such that for t ≥ t∗,

c1(t) exp
(
− ln2(b(t)tα)

)
≤ P(X1 ≥ t) ≤ c2(t) exp

(
− ln2(b(t)tα)

)
. (238)

Let {aj(n)}j∈N, n ∈ N, be an infinite array of non-negative real numbers that satisfy
conditions (3.1); let s and s1 be the associated constants, respectively; and let {S̄n}n∈N be
the sequence of weighted sums

S̄n :=
n∑
j=1

aj(n)Xj. (239)

Let f−1 be the function defined in (62), then(x
s
− s1

s
m
)−α
≤ lim

n→∞
b(n)nα f−1

(
P
(
S̄n ≥ x

))
≤ exp

(α
2

)(x
s
− s1

s
m
)−α

, ∀x > sα2 + s1m.

(240)

Remark 8.1. Note that the domain is also dependant on the variance, the cause of this
can be traced back to Lemma 6.8.

Now that we have found the bounds for general variance in Theorem 8.1, we can move
on to comparing the rate of decreases for P(S̄n ≥ x).

8.1.1 Speed of decay

We can tell that the probability for log-normally distributed random variables approaches
0 slower than the Cramér case [6] and the stretched exponential case from Gantert et al
[5]. This can be done by comparing the main statements of each of the theorems.
We already compared the rate of decay between Cramér and Gantert et al in a remark
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below Theorem 3.1. In order to see what the speed of decrease is for our result, we
calculate the inverse analogously to calculating the inverse for Cramér in the Introduction,
Section 1 of this thesis. That is;(x
s
− s1

s
m
)−α

/ b(n)nα f−1
(
P
(
S̄n ≥ x

))
/ exp

(α
2

)(x
s
− s1

s
m
)−α

; (241)

f

(
(b(n)nα)−1

(x
s
− s1

s
m
)−α)

/ P
(
S̄n ≥ x

)
/ f

(
(b(n)nα)−1 exp

(α
2

)(x
s
− s1

s
m
)−α)

;

(242)

where f(x) = φ(ln(x)) from Corollary 4.2. Filling this in in the equation above, (242);
gives

exp

(
− ln2

(
(b(n)nα)−1

(x
s
− s1

s
m
)−α))

/ P
(
S̄n ≥ x

)
/ exp

(
− ln2

(
(b(n)nα)−1 exp

(
1

2

)(x
s
− s1

s
m
)−α))

. (243)

Using the following property for logarithms,

ln2
(
x−r
)

= (−r ln (x)) (−r ln (x)) = (r ln(x))2 ; (244)

we have that (243) becomes

exp
(
− ln2

(
b(n)nα

(x
s
− s1

s
m
)α))

/ P
(
S̄n ≥ x

)
/ exp

(
− ln2

(
b(n)nα exp

(
−1

2

)(x
s
− s1

s
m
)α))

. (245)

Now, we can compare the different exponents for the three cases. We are particularly
interest in the speed function; that is

P
(
S̄n ≥ x

)
≈ exp(−R(n)c), (246)

where R(n) is the speed function given by

R(n) =


n, for Cramér;

nr, r ∈ (0, 1), for Gantert et al;

ln2 (b(n)nα) , α ∈ R>0 for log-normal random variables.

(247)

We shall call the speed functions R1(n), R2(n), and R3(n); respectively.

Remark 8.2. We used c to represent the constant parts of the speed functions. For this
reason, we were able to summarize the lower bound as well as the upper bound of the
decay speed with − ln2 (b(n)nαc). We are mainly interested in how fast the equations go
to −∞ in (247).
Also note that in the Cramér case we consider the probability Sn ≥ x, rather than S̄n ≥ x.
This corresponds to setting aj(n) 1

n
, j ≤ n.
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We are now able to compare the decay speeds by comparing the speed at which
Ri(n) → ∞, for i ∈ {1, 2, 3}. Doing so shows that Cramér’s speed of decrease is the
fastest.
We have that

lim
n→∞

R2(n)

R1(n)
= lim

n→∞

nr

n
= 0; (248)

and

lim
n→∞

R3(n)

R2(n)
=

ln2 (b(n)nα)

nr
= 0. (249)

The last limit follows from property 2 of Proposition 2.1.
As a result of Remark 2.1, the speed function, R3(n), is a slowly-varying function. There-
fore, it tends to infinity much slower than the other two functions. Beyond this, Cramér’s
Theorem considers light-tailed distributions, so deviations are bound to tend to 0 much
more quickly than heavy-tailed distributions and therefore, R1(n) grows much quicker
than the other functions. Concerning the stretched exponential distribution and the log-
normal distribution; especially for greater variance, the log-normal distribution has a lot
more mass in its tails than the stretched exponential distribution. This is also a conse-
quence of the logarithm being a slowly-varying function. For this reason, you would also
expect the rate function for the log-normal case to grow slower than the rate function for
stretched exponential case; which we found in (249).

8.2 Limits of the upper bound

In the result of Theorem 4.3, we found that the upper bound was a factor exp
(

1
2

)
off

from the lower bound. When considering general variance, we even found that this factor
was dependant on the variance, that is, for σ2 = var(X) and α = 1

σ
, we have that the

factor became exp
(
α
2

)
in Theorem 8.1.

When comparing this result to that the findings of Cramér and Gantert et al, we see that
their upper bound and lower bound converged to the same constant instead of finding
that they deviated from each other like our result did.
Besides this, our An2 did not converge. We had to put an extra constraint on the domain
as a consequence.
This leaves the question of whether or not further research could get rid of these two
problems.

8.2.1 An1

We start with An1 . By the application of the Laplace Principle and the lack of conver-
gence of An2 , we know that the constant for our upper bound is solely derived from An1 .
Therefore, in order to get rid of the exp

(
α
2

)
-term, we need to trace back to the root of

this deviation.
This can be viewed from two different perspectives. In (174), we saw that we had

lim
n→∞

ln(c2(n)n)

ln(t2(n)b(n))
= 1. (250)

In order to get rid of the deviation, we must have that this limit goes to 0. For this
reason, we could either look at getting rid of the n in ln(c2(n)n), which traces back to
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applying the union bound in (85); or we need to choose t2(n) differently. The latter of
which results in defining a t2(n) such that the above limit goes to 0.

8.2.2 An2

Next, we take a look at An2 . The problem here, was that Γ3(n) ln(ψ(n)) no longer con-
verged when calculating the final limit in Lemma 6.8. Inspecting the limit of Γ3(n) in
Lemma 6.3, we see that (123) does not go to a constant anymore.
We saw in the proof above (123) that changing the β(n) will not necessarily tackle the
convergence problem, as the β(n) from the numerator canceled the β(n) from the denom-
inator for i = 1. However, we needed to use a well-chosen β(n) in order to optimize the
Chernoff Bound, see Remark A.1. It could still be the case that there exists a β(n) that
would work better.
It does not make sense to look for a different t2(n) here because we would need it to be
decreasing, which is a definite contradiction to the An1 -case.

8.2.3 Summary

Altogether, we have that we could correct the deviation from the lower bound by either
looking for a stronger growing t2(n) or a tighter upper bound than the union bound for
An1 . Looking for a different t2(n) has all sorts of implications for all the limits of the
paper, since we would have to change the lower bound and might cause Γ3(n) → ∞.
This would result in a lot of research and will not necessarily ensure the riddance of the
deviation exp

(
α
2

)
.

Concerning the convergence of Γ3(n) ln(ψ(n)); this might follow from using tighter esti-
mates for the terms in the expectation of the Λj. Besides this, only a decreasing ψ(n)
would help otherwise but this would only cause further problems for the lower bound as
well as An1 .

8.3 Conclusion

All in all, we were able to bound the probability of the weighted mean of log-normally
distributed random variables up to a deviation between bounds dependant on the vari-
ance. For log-normal random variables this probability tends to 0 much slower than for
stretched exponential random variables or light-tailed distributions on account of the log-
normal random variables having a lot of mass in their tails.
Perhaps with the help of further research we could get rid of this mismatch; but we are
pleased with how far we have gotten with setting up a Large Deviations Theorem for
log-normal random variables.
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A Probabilistic Inequalities

In this appendix, we will give the statements and the proofs of the Markov Inequality,
the Chernoff Bound and the Chebyshev Inequality.

Theorem A.1. (Markov Inequality)
Let X be a non-negative random variable with finite mean and let α > 0. Then

P (X ≥ α) ≤ E[X]

α
. (251)

Proof. By the definition of expectation, we have that

E[X] =

∫ ∞
0

tfX(t)dt. (252)

We split this integral into two parts, one part up until α and the other part is the rest.∫ ∞
0

tfX(t)dt =

∫ α

0

tfX(t)dt+

∫ ∞
α

tfX(t)dt, (253)

≥
∫ ∞
α

tfX(t)dt, (254)

≥ α

∫ ∞
α

fX(t)dt, (255)

= αP (X ≥ α) . (256)

It follows that

E[X] ≥ αP (X ≥ α) . (257)

The desired result follows by dividing both sides of (257) by α.

Theorem A.2. (Chernoff Bound)
Let X be a non-negative random variable with finite mean and let α > 0 and t > 0.

Then

P (X ≥ α) ≤ E[etX ]

etα
. (258)

Proof. The proof is fairly straightforward. We apply two transformations to P(X ≥ α).
First, we multiply the inequality within the probability by t, then we apply it on the
exponential function. Both of these transformations preserve order relations, so that the
set of values for X for which X ≥ α stays the same; i.e.

{X ∈ [0,∞) : X ≥ α} (259)

= {X ∈ [0,∞) : tX ≥ tα} , (260)

=
{
X ∈ [0,∞) : etX ≥ etα

}
. (261)

Since X has the same distribution for all cases, all three situations have the same density
function. All of the above together shows that

P (X ≥ α) = P
(
etX ≥ etα

)
(262)

Lastly, the Chernoff Bound follows by applying Theorem A.1 to (262).
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Remark A.1. Typically, the Chernoff Bound is optimized over t. In fact, the optimiza-
tion can be traced back to Cramér [6] in (4); we see that we optimize over t in the rate
function This results in some t working better than others. As a consequence, it follows
that we might not have chosen the optimal β(n) in (91).

Theorem A.3. (Chebyshev Inequality)
Let X be a random variable with finite mean µ and existing variance σ2. For all k > 0,

we then have

P (|X − µ| ≥ kσ) ≤ 1

k2
. (263)

Proof. We are going to begin by squaring the inequality over which we take the probability
in (A.3). Unlike the proof of the Chernoff Bound, Theorem A.2, this transformation does
not preserve order relations. However, since we are looking at |X − µ|, the probability
remains the same; i.e.

P
(
(X − µ)2 ≥ σ2k2

)
(264)

= P (X − µ ≥ σk) + P (X − µ ≤ −σk) , (265)

= P (|X − µ| ≥ σk) . (266)

Now, we apply Markov’s Inequality on (264), yielding

P
(
(X − µ)2 ≥ σ2k2

)
≤ E[(X − µ)2]

σ2k2
. (267)

Note that E[(X − µ)2] = var(X) = σ2, therefore, (267) becomes:

P
(
(X − µ)2 ≥ σ2k2

)
≤ 1

k2
. (268)
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B Partial Integration

In this appendix we provide the Partial Integration Theorem used in the proof of Lemma
6.4

Theorem B.1. (Partial Integration)
Let X be a random variable, let α > 0 and let q1, q2 ∈ R, such that q1 < q2. Then

E
[
exp (αX)1{q1≤X≤q2}

]
= α

∫ q2

q1

exp (αt)P(X ≥ t)dt+ exp(αq1)P(X ≥ q1)

− exp(αq2)P(X ≥ q2). (269)

Proof. We begin by writing out the expectation (269).

E
[
exp (αX)1{q1≤X≤q2}

]
=

∫ q2

q1

exp (αt) fX(t)dt, (270)

where fX(t) is the density function of X. Next, we apply standard partial integration on
(270), yielding∫ q2

q1

exp (αt) fX(t)dt (271)

= |exp (αt)P(X ≤ t)|q2q1 − α
∫ q2

q1

exp (αt)P(X ≤ t)dt, (272)

= |exp (αt) (1− P(X ≥ t))|q2q1 − α
∫ q2

q1

exp (αt) (1− P(X ≥ t))dt, (273)

= exp(αq2)(1− P(X ≥ q2))− exp(αq1)(1− P(X ≥ q1))

− α
∫ q2

q1

exp(αt)dt+ α

∫ q2

q1

exp(αt)P(X ≥ t)dt, (274)

= α

∫ q2

q1

exp (αt)P(X ≥ t)dt+ exp(αq1)P(X ≥ q1)

− exp(αq2)P(X ≥ q2); (275)

since

α

∫ q2

q1

exp(αt)dt = exp(αq2)− exp(αq1). (276)
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