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Abstract
Solutions for the Train Unit Shunting Problem are
constantly being researched and improved to be-
come more efficient and match the needs of train
transport in the Netherlands. For this reason, we
are exploring new ways to find patterns in the train
data to identify where those solutions could be en-
hanced. More specifically, we are trying to find
patterns that make identifying different locations
possible. We identify patterns in the capacity of
the shunting yards and the types of trains used in
various locations, which result in reasonable ac-
curacy in classification. Some locations operate
closer to their capacity, and some require longer
paths to get inside the shunting yards. These find-
ings could be helpful not only for the planning algo-
rithms but also in identifying which locations might
need expansion or restructuring and where more of
the train fleet should be allocated.

1 Introduction
In densely populated countries like the Netherlands, train
transport is prominent and has a lot of traffic. This requires
very complex planning of the allocation of trains and re-
sources since the infrastructure is very limited compared to
the significant demand. Additionally, depending on the dif-
ferent demand throughout the day, a varying number of trains
are needed. Because of this, some of them should stay parked
somewhere for most of the day without disrupting the traffic.
This is where the Train Unit Shunting Problem appears. The
aim is to create a feasible schedule given different constraints
like track availability, needs for servicing, etc.

Much research has been done in the field to find a good
solution for the problem [1], [3]. Currently, there are two
main types of algorithms used by Nederlandse Spoorwegen
(NS) - one using Deep Reinforcement Learning (DRL) and
one using local search [1]. Most of them still rely on hu-
man input to provide feasible solutions. The algorithms that
do not rely on that have other disadvantages, like infeasible
computation time or incompleteness- missing activities in the
schedule. Furthermore, the solutions created by such algo-
rithms may be inconsistent, which is generally not preferred
in scenarios like timetable scheduling [5]. Because of these
reasons, we are still in search of an optimal algorithm that is
adaptive to different scenarios and computes in a reasonable
time. This is why the local search using different heuristics
is in focus. Here lies the reason why studying and finding
patterns in already existing solutions, i.e. schedules, could
be very beneficial to improving those algorithms in the future
and limiting the need for human input. Using the insight we
get from these patterns, different aspects of the existing algo-
rithms can be improved, such as the heuristics used in local
search.

To the best of our knowledge, there has not been in-depth
research into finding patterns that arise in different locations.
Our research aims to bridge this gap by finding such patterns
in existing solutions and using them to differentiate between
locations automatically as a verification method.

With the help of this research, we can identify different
patterns in train shunting, given the scheduling of the train
movements in a specific station. By finding these patterns,
we can automatically detect when a solution is coming from
one station or another. Identifying which patterns arise in
which locations can help optimise future and existing algo-
rithms when we fine-tune the specific heuristics used in them
or identify best practices. Additionally, these patterns can
help when designing the locations by identifying which need
expanding or which layouts are better performing and easier
to create schedules for (shuffleboard1 or carousel2).

The rest of this paper is structured as follows: Section 2
gives background on the main methods, data and problems
and briefly discusses related work. In section 3, we describe
the research process step by step. Section 4 describes the
achieved results from the conducted experiments. After that,
there is a section where we reflect on the ethical side of the
research and whether it is reasonably reproducible. There is a
separate section where a discussion is done on the meaning of
the achieved results. The last section contains the conclusion
on the research and ideas for possible future work.

2 Background
2.1 Train Unit Shunting Problem
The Train Unit Shunting Problem (TUSP) is a complex logis-
tical challenge railway operators face involving the efficient
organization and management of train units (rolling stock) in
and around railway yards. First introduced by Freling et al.
[4], TUSP is still the main topic of broad research, and the al-
gorithms used for solving it are constantly being improved to
match the increasing demand. The main problem consists of
multiple sub-problems like the matching, track assignment,
shunting routing and shunting maintenance problems [7]. All
of those are NP-Hard problems, which are the focus of dif-
ferent optimizations. As mentioned in the previous section,
NS used to develop a scheduling algorithm using deep rein-
forcement learning first introduced by Peer et al. [10]. This
algorithm was shown to provide outstanding solutions, which
required much less training than others. Furthermore, it main-
tained reasonable consistency, which is a significant factor in
scheduling. However, Gevel [5] argues that this algorithm
sometimes provides partial solutions, which are impossible
to use unless completed, and that is generally not a trivial
task. For this reason, the proposed local search algorithm [1]
is still preferred by NS. The solution is represented as a graph
where the nodes represent the different types of activities per-
formed. The algorithm starts with an initial solution and uses
simulated annealing3 to iterate over better solutions. This re-
sults in a significantly slower computation time than the DRL
algorithm, but it is currently still feasible. Furthermore, it is
easier for planners to work with, which is a crucial aspect of
these algorithms [6]. The long computation time begs for the
optimization and employment of different heuristics.

1Tracks with a dead-end
2Tracks are accessible from both ways
3Technique for approximating the global optimum of a function
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2.2 Clustering and Classification
Clustering algorithms play a crucial role in computer science,
data science, machine learning, pattern recognition, and many
other fields. While numerous clustering techniques and algo-
rithms exist, our research focuses on two specific methods:
K-means clustering and the Random Forest Classifier. We
chose these because we have a precise number of clusters,
which is usually not the case. Furthermore, they are speed-
efficient and not very sensitive to outliers.

K-means is one of the most well-known and widely used
clustering algorithms. The primary goal of k-means cluster-
ing is to divide a set of n data points into K clusters, where
each cluster is defined by its centroid. The algorithm fol-
lows a straightforward process of iteratively selecting ini-
tial centroids, assigning data points to the nearest centroids
to form clusters, recalculating the centroids by calculating
means, and repeating these steps until the centroids stabilize
or a set number of iterations is completed. If those clusters
are well-defined, the results will be very effective. K-means
works particularly well with numerical data, which often re-
quires normalization. Various normalization techniques are
available, and selecting the most suitable one depends on the
specific dataset [2], so it is best to experiment with multiple.
New data points are classified by evaluating their distances to
the cluster centres. Visual verification of the clustering can be
straightforward by performing Principal Component Analysis
(PCA) on the data and labelling the points according to their
assigned clusters. PCA is a standard tool used to reduce the
dimensionality of complex data, thus simplifying its structure
and finding underlying patterns [12].

The Random Forest Classifier (RFC) is a versatile
machine-learning algorithm known for its robustness and ac-
curacy. It is mainly used for classification tasks but can also
be used for clustering. The key advantage of Random For-
est is that it consists of an ensemble of decision trees [8],
each trained on a subset of the data. The final classification
is determined by aggregating the predictions from all indi-
vidual trees. That improves overall accuracy in predictions
and controls overfitting. In a clustering context, RFC can
be used to measure the similarity between data points based
on the frequency with which they end up in the same leaf
node across all trees in the forest. This similarity measure
can then be used to group data points into clusters. Random
Forests have several advantages, like handling large datasets
with higher dimensionality and providing estimates of fea-
ture importance. This can be valuable for understanding the
underlying structure of the data, such as existing patterns.

2.3 Related Work
As mentioned earlier, there is no extensive research in the as-
pect we are considering and with similar data. However, we
can draw inspiration from other attempts to perform classifi-
cations to draw conclusions about underlying patterns. Au-
tomatic classification has been employed in various fields in
recent years. However, there are many aspects of that process
that little attention is paid to or disregarded altogether. In Luz
et al. [9], classification is utilized to detect heart diseases from
electrocardiograms (ECGs) as this is the most widely used

non-invasive method for testing. This work mentions a cru-
cial aspect of the classification that also affects our research-
the data preprocessing. One of the main points is that no mat-
ter how the data was collected, there is always the possibility
of noise or inaccuracies, which should be eliminated in the
best possible way. We will later see that it is especially true
regarding GPS coordinates and approximations like track as-
signment in our data. Another critical aspect they mention
is ensuring the training and testing data is as unbiased and
inclusive as possible. Data from all classes should be pro-
vided with equal weights to ensure realistic accuracy. We
want to expand this statement even more; picking the features
can also negatively influence absolute accuracy if we identify
’fake’ trends or ones that do not contribute to our findings
in a useful way. For example, GPS coordinates can be used
to classify locations with 100% accuracy, but no insights are
gained from that. That is why we put a lot of effort into pick-
ing the right features.

2.4 Train Position Data
For the goals of this research, ProRail provided us with a
dataset containing train position data. The trains in ques-
tion are commercial trains operated by NS, the primary Dutch
railway operator. This data was collected from May 2023 to
February 2024 in seven stations across the Netherlands. The
data contains the trains’ GPS locations, timestamps, and la-
bels like the type of activity4, track assignment, and many
more features that are not strictly relevant to our goals. Ad-
ditionally, multiple versions of the data were provided with
different amounts of processing since the GPS locations and
track assignments are not always accurate. Code was also
available to fetch the data from Azure Blob Storage and visu-
alize it for a specific location and timeframe.

3 Methodology
Having access to the relevant data, together with our research
group, we designed a data structure that contained only the
data we deemed relevant at that point. It was structured in a
way that we combined the whole paths of the trains instead
of having only different timestamps with locations. The in-
formation about the paths contains the type of activity, the
type of the train, and the list of visited tracks with the cor-
responding timestamps. This data structure enables further
processing and extracting more valuable features when the
solutions are considered as a whole. The other essential part
of this data structure is the addition of a filtering of the trains
to only those that enter the shunting yards at some point. That
is done by ensuring the specific train has been on tracks inside
the shunting yard for at least three5 consecutive timestamps.
The reason for the filtering is that we focus mainly on inves-
tigating patterns of the movements inside the shunting yard.
We are aware that movements inside and outside are not en-
tirely independent, but from now on, we disregard that fact.

Using the completed data structure, we examine the data
and determine which specific features could be useful to in-

4long stop, short stop, shunting, entering, exiting
5That is done to eliminate the possibility of inaccurate track as-

signment in the data
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vestigate and which others we could extract from the avail-
able data. First, we focus on separate train paths inside the
yards instead of the whole solution6. This can show whether
different single units follow different patterns in different lo-
cations. In this case, we can group the features into three
categories:

1. Geographic features

2. Time-specific features

3. Path-specific features

The first includes features such as compass direction, GPS lo-
cations, etc. These can be very easy to classify, but we will
avoid using them because they do not provide any insight into
our ultimate goal. The time-specific features like relative time
of entry in the yard7, time spent inside the shunting yard did
not provide any useful patterns, keeping in mind that we only
look at trains separately at this point. The third kind of fea-
tures include how many tracks the train covered to get to the
yard, inside the yard, and so on. These features already pro-
vided some visible patterns and could be used for classifica-
tion, combined with some time-specific features.

Since we want to classify a specific number of different
locations and with the possibility of adding new ones, we
will investigate the two well-known algorithms mentioned
previously- Unsupervised K-means [13] and RFC. K-means
is featured because of its ease of use and its combination with
PCA, which provides visual assurance of whether the cluster-
ing is what we expect. RFC, on the other hand, is very ver-
satile when it comes to multiple features, and it can be used
to identify which of these features are useful and contribute
to the classification. The latter proved to give better results
and insights complimenting our assumptions, which will be
stated in the next section and discussed later.

After that, we focus on the solutions for whole days rather
than for separate trains. Here, we investigate features like
what percentage of the trains are of a specific type, what per-
centage of the location’s capacity is used, how many trains
have been stopped for a long time, the amount of manoeuvres
performed, etc. We chose these features because we suspect
they would give the most clear indication of whether there are
patterns in the usage and layouts of the stations. Again, we
use the earlier algorithms to evaluate whether the patterns we
identify statistically in those features can be used for classifi-
cation.

4 Experimental Setup and Results
For the experiments performed in this section, data from six
locations is used from May 2023 till the end of February
2024. The data from Arnhem Goederen was not used because
the traffic there was very limited, and filtering the tracks be-
longing to the shunting yard was unreliable. We investigate
only trains that, at some point, stop at the shunting yard. Tran-
siting trains are ignored. In table 1, we show the capacity of
each location in number of trains and the number of trains that

6The combination of all the train movements inside
7That is the time passed since the train entered the station’s

whereabouts

have passed in that period. It is important to note that capac-
ity is an imprecise term- it depends on multiple factors, such
as the length and type of the trains present or varying parking
strategies. That is why we assume the total capacity is the
most trains that have been present in the shunting yard over
the whole period. An indication of that imprecision is Dor-
drecht, where the capacity is much smaller compared to the
others. When observing the traffic visualisation, the reason is
apparent- trains are often parked inside the station instead of
the shunting yard. However, we continue working with the
same assumption as the shunting yards are the main focus of
this research.

Location Capacity Number of Trains
Arnhem 19 5922

Watergraafsmeer 32 6355
Amersfoort 46 10306
Dordrecht 5 1783

Utrecht 40 11233
Hoofddorp 32 42493

Table 1: Train station capacity and traffic

4.1 Classifying single train paths
As mentioned in the previous section, we first investigate
whether the single train paths follow any patterns. We start
by extracting new features from the data in the three cate-
gories we identified earlier. After that, we plot different fea-
tures and try to identify any visual patterns. For example in
fig.1 we plot the average number of tracks visited throughout
the path of the train8 in the whole station. We can already
suspect that in some locations, trains almost immediately go
inside the yard and out of it without any additional manoeu-
vres, which is not the case in others. We plot the average
entry lengths in fig.2 to verify whether that is the case. Only
four of the six stations are used for this experiment because
Arnhem and Watergraafsmeer have roughly the same traffic,
and Arnhem has a little less capacity. Amersfoort and Utrecht
have roughly the same traffic and capacity. That means we
can compare them pairwise. We immediately notice that even
though stations are of similar capacity and traffic, trains there
have very different lengths of entry into the shunting yard.

Having established that this could be helpful for the classi-
fication, we run K-means to see whether our assumptions are
correct. We run that with four features- the whole path length,
the path length inside the shunting yards, the path length be-
fore entering the yards, and the number of U-turns9. We
chose this last feature because we suspect the different lay-
outs might influence the number of manoeuvres. Even though
the clustering seems well separated in fig.3, the accuracy10 we

8We randomly sample an equal amount of such different paths
from each dataset

9We assume a train does a U-turn if its direction changes by more
than 90 degrees. Alternatively, it starts going in the opposite direc-
tion

10We assign the clusters to the class with the most occurrences
inside
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Figure 1: A bar plot showing the average path number of tracks
visited by trains across the locations

Figure 2: A bar plot showing the average number of tracks visited
before entry in the shunting yard

achieve is only 66%. When we examine the actual labels of
the points in fig.4, it is clear why we have lower accuracy. It
is apparent that these features are not ideal for classification
with K-means.

Using K-means poses some difficulties because it requires
normalising the features to work optimally [2], which can be
challenging if we want to use features of entirely different
magnitudes, like timestamps. This is why we look into RFC
when we try to incorporate those. Aside from the mentioned
earlier four features, we add three timestamps - the time of
first entry in the shunting yard, the time when the train leaves
the shunting yard, and the duration of time spent inside the
yard. The times here are relative to the first timestamp the
specific train enters the vicinity of the station. That is done
to ensure that these times are comparable across trains. An-
other advantage of the RFC we are going to employ is the
feature importance estimation [14]. This means we can see
which features contribute to the classification and focus more
on them in the search for patterns, as seen in fig.5. In this
case, we can see that inside11, entrylen12 and Pathlen13 are

11The length of the path inside the shunting yard only
12The length of the path before entering the shunting yard
13The total length of the path inside the station

Figure 3: A scatterplot showing the clustering of the data points
after performing PCA

Figure 4: A scatterplot showing the true labels of the data points
after performing PCA

helpful for the classification, which proves the earlier obser-
vations about the lengths of the paths. In contrast, the others
do not seem to contain any underlying patterns. For exam-
ple, if we examine the number of U-turns in fig.6, there is no
clear distinction between the different locations. That shows
that no matter what the layout is (shuffleboard or carousel),
the trains perform roughly the same amount of manoeuvres;
hence, not many trains block others. From these findings,
we can also deduce that we should not focus on the times of
entry/exit in the shunting yard since they do not contribute
significantly.

Using this method, we already achieved about 86% accu-
racy, which is a clear improvement over the first one. The
evaluation is done using 70% of the data for training and the
rest for testing. Additionally, we use Randomized Search14 to
find the best parameters for the classifier [11].

14This method explores random combinations of hyperparameters
in a specified range or distribution
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Figure 5: A bar plot showing the importance of each feature. The
path lengths have the highest significance

Figure 6: A scatterplot showing for each station the number of U-
turns the trains perform inside

4.2 Classifying whole solutions
Even though we achieved decent accuracy in the classifica-
tion, we still have not identified very clear patterns in the
schedules that could be reasoned about apart from the path
lengths. That is why we are shifting our focus to whole solu-
tions and not on single entities anymore.

First of all we state our definition of a solution: All train
movements inside the region we investigate for a period of 24
hours. According to experts, planners use the period from 8
a.m. to 8 a.m. the following day, which will also be our as-
sumption. Using this information, we now use the same data
but aggregate it across days and end up with entirely new fea-
tures from what we looked into in the previous subsection.
We focus primarily on the capacity and train distribution over
time. Considering this, we arrive at the following set of fea-
tures:

• Percentage of the capacity of the yard used

• Number of trains parked for more than 16 hrs15

• The ratio of trains parked over a long period of time and
the total number of parked trains

• What percentage of the trains each type accounts for
By plotting these features, we can identify that some shunt-

ing yards operate closer to their capacity than others. We can
see evidence of that in fig.7. Most of the time, Utrecht op-
erates closer to its total capacity than Amersfoort. The latter
usually operates at 0- 40% of its total capacity and Utrecht
around 20- 70%.

Figure 7: A bar plot comparing how much of the time a certain
percentage of the capacity is used in Amersfoort and Utrecht

Even though we are aware that NS has different amounts of
trains of different types, those do not always follow the same
distribution across all locations. As an example, the largest
amount of trains are SNG, but in Arnhem West, for example,
this is not the case as seen in fig.8.

Having visually identified these patterns, we run RFC on
these features to make sure whether there is a correlation in-
deed. That results in an accuracy of about 87% with the fol-
lowing feature importances in fig.9.

If we ignore the train types that we see prevailing here and
try classifying only on the capacity of the yard used and the
number of trains stopped for a long time, the accuracy drops
to 76%. We can argue that is still a good result—it proves
there is a pattern there, indeed, since we classify six different
locations.

5 Responsible Research
The most critical aspect of this research concerns data access
and integrity. ProRail has provided us with sensitive data,
and it is essential that this data remains confidential through-
out the research project and is not disclosed to any third par-
ties outside the agreement. An NDA (Non-Disclosure Agree-
ment) was signed at the project’s beginning, making this con-
fidentiality agreement official. Upon project completion, all
provided data will be securely and promptly deleted.

15We chose this period because that means the trains are parked
even during peak hours
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Figure 8: A bar plot showing the distribution of different train types
in Arnhem West

Regarding data reliability, it is essential to note that Pro-
Rail supplied the data which was not collected by our research
team. Therefore, we cannot guarantee its reliability or accu-
racy. However, this does not raise any ethical issues, as the
data does not contain elements that could lead to discrimina-
tion or bias. Even if there are inaccuracies, they do not intro-
duce any form of unethical bias into the research findings.

The FAIR (Findable, Accessible, Interoperable, Reusable)
principles are not directly applicable in this context, as the
data used is not publicly available and cannot be accessed
without explicit consent from the concerned parties. How-
ever, all methods described in the preceding sections can be
reproduced, even if the data used is different. Furthermore,
all code written in the process of this research is available on-
line. This ensures that the research is transparent and can be
validated by other researchers.

6 Discussion
An important point to note is that a successful classification is
no proof that the described patterns are the underlying reason
for this classification. It only confirms that there are patterns
related to those features indeed. Those results can be used to
do high-level reasoning about a hypothesis—rule out features
we initially thought were useful but do not result in a reason-
able classification and include those that do so. In this way,
we can narrow down the field that is being investigated.

When considering the train paths as separate entities, we
noticed that the lengths of those paths vary across locations,
and we can classify on that feature alone. The initial hypothe-
sis was that the differing path lengths were due to the varying
sizes of the stations. However, we noticed this pattern even
among stations of similar size, indicating that the variation in
path lengths is not solely related to the size of the stations. To
find the exact reason for that a discussion with experts in the
field should be done. Furthermore, in some stations, the entry
to the shunting yards appears to take longer paths than other
similarly sized ones, as noted in the previous section. This

Figure 9: A bar plot showing the feature importance when classify-
ing on train types and capacity features

pattern can introduce issues such as delays while entering the
yard in order to avoid collisions.

We must point out that because this first approach does not
focus on the solutions as a whole, it might miss some cor-
relations in the data. However, that is a good starting point
for identifying how each train path is affected in the differ-
ent locations and giving some intuition about how the whole
schedule is influenced.

Investigating the solutions as a whole shows that some lo-
cations, like Utrecht, are operating closer to their capacity
than others, which could cause future planning issues when
the demand increases. At this point, this is not yet concern-
ing as the usage rarely exceeds 70% of the capacity. Further-
more, we saw that some train types are used more often in
some stations than others, which could help in planning as
planners would stick to similar numbers instead of wasting
time investigating something entirely different. The methods
mentioned earlier could also be used to keep track of any aris-
ing trends and predict whether they could become a problem
in the near future. Apart from those findings and geograph-
ically specific features, most stations seem to follow similar
patterns in their scheduling. That could be explained by the
fact that the current solutions are feasible, and most planners
stick to the same rules- thus resulting in similar schedules.
Moreover, in scenarios where scheduling is involved, consis-
tency is preferred.

An interesting observation is that different layouts do not
seem to have that much effect on the scheduling. A possi-
ble reason is that FILO (first-in-last-out) setups are easier for
planners to work with, even though some trains might block
others which could cause additional manoeuvres. Further-
more, we saw that, in reality, not many trains seem to block
others judging by the roughly same amount of manoeuvres
performed across different locations with different layouts.
That seems to be the reason why most stations in the Nether-
lands use FILO setups indeed. According to experts, apart
from easier planning, they require less engineering during the
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building process when their connection to the main infras-
tructure is considered.

7 Conclusions and Future Work
In summary, this research focuses on finding train position
data patterns that appear across locations. We identify pat-
terns that are generally similar throughout all the locations as
well as those that are different. The first ones include how
much time trains spend in the shunting yard or the number
of manoeuvres they perform inside. The latter features, we
conclude, could be useful to automatically classify which lo-
cation a solution is from. This helps in identifying which
locations’ specific trends we are interested in are appearing.
These patterns include how much of the station’s capacity is
used and the length of the paths trains take inside the shunting
yards.

These patterns could help improve scheduling by providing
valuable insights into which parts of the schedules the local
search algorithm can add more heuristics to. They can also
indicate emerging trends like insufficient infrastructure. Fur-
thermore, these patterns could help us identify which layouts
and station designs work better and use that information to
improve the future engineering of new locations.

In the future, we could investigate even more patterns in
different aspects, which we did not have the time or avail-
able data to consider, to find differences/similarities across
locations. That could provide an even more comprehensive
understanding of the available infrastructure. For example, in
which stations occur more delays, which stations are more or
less affected during peak hours or seasons. Those are again
related to the capacity and possibly the layouts. This would
be possible if data from a more extended period were pro-
vided or from more locations.

It would be insightful to consider locations in different
countries as well since our research is limited to locations in
the Netherlands alone. This might mean that country-specific
architectures or layouts are missing. Finding best practices in
other railway networks that can be applied elsewhere is just
as crucial as our findings so far.
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