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A B S T R A C T

Motivated by the physical exchange of energy and its dissipation in electro-mechanical systems, we propose
a new fault detection method based on data-driven dissipativity analysis. We first identify a dissipativity
inequality using one or multiple shots of data obtained from a linear time-invariant system. This dissipativity
inequality’s storage and supply rate functions assume generic quadratic difference forms encompassing all LTI
systems. By analysing the norm of the identified dissipative inequality as the residual function, we can detect
the occurrence of faults in real-time without the need to model each fault the system is subjected to. Through
academic examples, we demonstrate how we can identify supply rate and storage functions from persistently
exciting data shots. We present a practical example of detecting faults on a two-degree-of-freedom planar
manipulator with zero missed fault detection rate, which is compared to a standard PCA-based fault detection
algorithm.
. Introduction

The second law of thermodynamics dictates that all physical pro-
esses have a finite lifetime and are subject to faults that can be
ttributed to fatigue accumulation and irreversible degradation pro-
esses in some parts of the systems. These problems can be fixed a
osteriori by replacing the faulty components or be circumvented by
erforming predictive maintenance operations based on the a priori
nowledge of the systems’ state. Especially in complex and advanced
ystems, such as chemical plants, aircraft, production lines, railway
etworks and integrated systems, having a real-time system monitoring
rocess has become critical.

In this context, timely and accurate fault diagnosis is essential for
aintaining a healthy and operational system. The main fault detection
roblem consists of promptly determining when a dynamical system
tarts deviating from its nominal dynamical behaviour. A fault can be
riven by, e.g., changes in system parameters, failures on sensors or
ctuators, or unexpected external disturbances influencing the system.
here are many approaches to dealing with faults in the literature, and
e refer to the works in [1–4], among others, that present most of the
ain well-established techniques.

In the fault diagnosis literature, it is common to deploy fault diag-
osis systems using either a model describing the systems’ dynamics
r machine learning methods based on several batches of data from
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the systems [1,5,6]. However, with the increasing complexity of high-
tech systems, the resulting complex models impede the deployment
of model-based fault detection methods. At the same time, standard
data-driven machine learning techniques are oblivious to fundamental
mathematical properties that most physical systems possess, failing to
achieve satisfactory results or requiring impractical amounts of data.
As a hybrid approach, we present and use a behaviour-based fault
detection method in this paper, where we monitor physics-informed
systems’ behaviour, such as dissipativity and passivity, which can be
linked to the exchange of energy internally and externally with the
environment. The energy interpretation of the method fits well with the
law of degradation of energy from the second law of thermodynamics,
as mentioned before.

Dissipativity theory was introduced by Willems [7], allowing the
analysis of systems’ dynamical behaviour via an energy dissipativity
inequality defined by the input–output behaviours. The dissipativity
inequality describes how the systems exchange their stored energy with
the environment and dissipate it internally. Data-driven behavioural
methods for establishing stability, passivity and dissipativity have been
recently explored in control and fault diagnosis areas [8–12].

The application of dissipative systems theory for fault diagnosis was
first proposed in [13], where the authors rely on the knowledge of
the model to obtain the dissipativity inequality for fault diagnosis, and
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it is extended in [8,9,14] to the context of data-driven approach and
learning method. The central point in [8,9,13] is to identify multiple
dissipativity inequalities corresponding to the nominal system and each
known fault. Accordingly, based on the obtained data-driven dissipative
inequalities of various scenarios, they can be used online to test which
scenario fits the measured data.

In contrast to the methods mentioned above, we present a data-
driven method that can detect a fault based on observing a single
dissipativity inequality, in which we follow a similar procedure as the
one presented in [14]. While the method is not applicable for fault
solation, which is the case in [8,9,13], it allows for the detection
f a fault in a simple way, without the need of building extensive
nowledge of all possible faults that can occur. Particularly, in the
evelopment and deployment of customized high-tech systems, the
ccurrence of faults may not be known apriori during the design phase,
nd the demand for short time-to-market means that lifetime testing
nd characterization may not be performed extensively.

For data-driven identification and verification of dissipativity prop-
rties, we refer to recent works in [9,15–17]. The authors in [15]
resent a data-driven method to verify the standard 𝑄𝑆𝑅-dissipativity
sing one shot of data. In this case, the 𝑄𝑆𝑅-dissipativity is given by a
uadratic supply-rate function encompassing passivity and 𝓁2-stability.
pecifically, the supply-rate function uses the input and output signals
t the current time with no dependence on the past time. As a gener-
lization of this standard supply-rate function, the Quadratic Difference
orms (QdF) [18] can be used, taking past values into account. In fact,
dFs can be used to describe dissipativity of all linear systems [19].
dF supply-rate functions have been used in data-driven dissipativity
erification methods in [16,17]. However, in those works, the dissipa-
ivity is verified with only the supply-rate function without identifying
he corresponding energy storage functions. Thus, using such methods
n the fault detection context could lead to less accuracy in analysing
he system’s nominal dynamics. In [8,9,13,14], the authors point out
hat QdF-based dissipativity can provide more details of the process
ynamic than the traditional sense, which helps improve the fault
etection procedure.

Note also that a few methods were introduced in recent liter-
ture to obtain the so-called L-𝑄𝑆𝑅-dissipativity. These approaches
orrespond to the verification of the 𝑄𝑆𝑅-dissipativity over a defined

time-horizon [14,16,17,20]. In the present paper, differently from the
methods above, we verify the infinite time-horizon approach that con-
sists of the 𝑄𝑆𝑅-dissipativity, which is also investigated in [9]. While
the authors in [9] apply the weaving response lemma concept to verify
the dissipativity using a QdF form of both supply rate and storage
functions, we extend the concepts introduced in [15] for a dissipative
inequality written in terms of QdF supply rate form and standard
energy storage functions, that is, depending on the state information.
In the approach proposed in [15], which we extend in this paper, by
applying the concept of Willems’ fundamental lemma [21] and the
definition of lag [15], the state of an LTI system can be rewritten as the
extended state composed by inputs and outputs. In this way, by using
the usual state-dependent storage function, the technique can also be
further extended to deal with classical state-space approaches based on
dissipativity properties.

Another important feature we cover in this paper is the use of
multiple data shots in identifying a dissipativity inequality. This is par-
ticularly important in cases where the available data is not persistently
exciting. Examples of these cases are those where it is impossible to
perform several experiments to obtain the data, as in the ultra-high
vacuum chemical vapour deposition processes described in [22], or
when there are missing data in the available data. To solve this issue,
the notion of collective persistence of excitation was proposed in [23],
which is later used in [17] to verify the dissipativity of an LTI system.

Using the development in data-driven dissipativity analysis and
verification described above, we present a fault detection method in
this paper based on a data-driven dissipativity approach with QdF
supply-rate and energy storage functions. We summarize the main
2

contributions of this paper as follows:
• A method for the dissipativity analysis using a QdF supply-rate
and standard energy storage functions;

• Verification of dissipativity using both one shot of persistently ex-
citing input data and using multiple shots of collectively exciting
input data coming from LTI systems;

• Data-driven fault detection method based on the use of the single
dissipativity inequality identified in the previous step;

• Academic examples and an experimental result using a two-
degree-of-freedom planar manipulator.

Notation. The set of vectors (matrices) of order 𝑛 (𝑛 × 𝑚) with real
entries is represented by R𝑛 (R𝑛×𝑚) and correspondingly, that with
integer entries is denoted by Z𝑛 (Z𝑛×𝑚). Similar notation is applied to
denote a vector (matrix) with zeros and ones by 0𝑛 and 1𝑛 (or 0𝑛×𝑚 and
1𝑛×𝑚), respectively. 𝐼𝑛 denotes the 𝑛×𝑛 identity matrix. Additionally, we
use a subscript + to denote sets with only positive entries, for instance,
Z+ that denotes a set of positive integers. For matrices or vectors, the
symbol ⊤ denotes the transpose. A positive definite symmetric matrix
𝑃 is denoted by 𝑃 ⪰ 0. The space of square-summable discrete-time
signals is denoted by 𝓁2(R∙). Given 𝑒 ∈ 𝓁2(R∙), we denote {𝑒}𝑗𝑖 =
𝑒(𝑖),… , 𝑒(𝑗)} and we define its stacked vector by

[𝑖,𝑗] =
[

𝑒(𝑖)⊤ 𝑒(𝑖 + 1)⊤ ⋯ 𝑒(𝑗)⊤
]⊤ . (1)

hroughout the paper, we use them interchangeably whenever it is
lear from the context.

A Hankel matrix with 𝐿 ∈ Z+ block rows of a finite sequence 𝑒[0,𝑇−1]
s given by

𝐿(𝑒[0,𝑇−1]) =

[

𝑒(0) 𝑒(1) ⋯ 𝑒(𝑇−𝐿)
𝑒(1) 𝑒(2) ⋯ 𝑒(𝑇−𝐿+1)
⋮ ⋮ ⋱ ⋮

𝑒(𝐿−1) 𝑒(𝐿−2) ⋯ 𝑒(𝑇−1)

]

. (2)

efinition 1 ([21]). A measured trajectory 𝑒[0,𝑇−1], 𝑒 ∶ Z → R𝑛 is
ersistently exciting of order 𝐿 if rank(𝐻𝐿(𝑒[0,𝑇−1])) = 𝑛𝐿.

. Dissipativity analysis

In this paper, we analyse the following discrete-time linear time-
nvariant (LTI) system

∶

⎧

⎪

⎨

⎪

⎩

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘),

𝑥(0) = 𝑥0,

(3)

here 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑚 and 𝑦(𝑘) ∈ R𝑝 are, respectively, the state
ector, the control input and the output of the system. We assume
hat 𝑢 ∈ 𝓁2(R𝑚) and the state-space matrices are assumed to be the
inimal realization of system 𝛴. Furthermore, we consider the case
here the state-space matrices are unknown, but the inputs and outputs
re available for all 𝑘 = 0,… , 𝑇𝑓 , with 𝑇𝑓 being any arbitrary given
ime.

efinition 2. System (3) is said to be dissipative with respect to a
upply-rate operator 𝑤 ∶ 𝓁2(R𝑚) × 𝓁2(R𝑝) × Z+ → R if there exists a
torage function 𝑉 ∶ R𝑛 → R+ with 𝑉 (0) = 0 such that

(𝑥(𝑘 + 1)) − 𝑉 (𝑥(𝑘)) ≤ 𝑤(𝑦, 𝑢, 𝑘) (4)

olds along all possible trajectories of (3) for all 𝑘 ≥ 0, (𝑥, 𝑦, 𝑢) satisfying
3) and 𝑢 ∈ 𝓁2(R𝑚). This definition can be found in detail in [7,24].

Regarding the supply rate function/operator 𝑤, as used in [8,16,19],
e consider the quadratic difference forms (QdF) as follows

(𝑦[𝑘,𝑘+𝑁], 𝑢[𝑘,𝑘+𝑁])

=
𝑁
∑

𝑖,𝑗=0

[

𝑦(𝑘 + 𝑖)
𝑢(𝑘 + 𝑖)

]⊤ [

𝑄𝑖𝑗 𝑆𝑖𝑗
𝑆⊤
𝑖𝑗 𝑅𝑖𝑗

]

[

𝑦(𝑘 + 𝑗)
𝑢(𝑘 + 𝑗)

]

,

=
[

𝑦[𝑘,𝑘+𝑁]
]⊤ [

𝑄 𝑆
⊤

] [

𝑦[𝑘,𝑘+𝑁]
]

,

(5)
𝑢[𝑘,𝑘+𝑁] 𝑆 𝑅 𝑢[𝑘,𝑘+𝑁]
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⎢

⎢

for every 𝑘 ≥ 𝑁 , where each 𝑄𝑖𝑗 , 𝑆𝑖𝑗 and 𝑅𝑖𝑗 are part of the usual 𝑄𝑆𝑅
matrix and 𝑄𝑖𝑗 = 𝑄⊤

𝑖𝑗 and 𝑅𝑖𝑗 = 𝑅⊤
𝑖𝑗 and

𝛷 =
[

𝑄 𝑆
𝑆⊤ 𝑅

]

.

Similarly, for the construction of the energy storage function 𝑉 , we
assume that it is given by

𝑉 (𝑥(𝑘)) = 𝑥(𝑘)⊤𝑃 ′𝑥(𝑘), (6)

where 𝑃 ′ = 𝑃 ′⊤ ⪰ 0 and 𝑃 ′ ∈ R𝑛×𝑛.

2.1. Dissipativity analysis via one-shot of data

In order to verify the dissipativity inequality (4) from the available
data, the well-known Willem’s fundamental lemma [21, Theorem 1]
on persistence of excitation has become an essential tool. This lemma,
which we recall in Definition 1, states that all possible trajectories
(𝑦̄[0,𝐿−1], 𝑢̄[0,𝐿−1]) of System (3) can be obtained from a single trajectory
whose input is persistently exciting.

Lemma 1 ([21]). Suppose that
[

𝑦[0,𝑇−1]
𝑢[0,𝑇−1]

]

is a trajectory of 𝛴 where 𝑢[0,𝑇−1]
is persistently exciting of order 𝐿+𝑛. Then (𝑦̄[0,𝐿−1], 𝑢̄[0,𝐿−1]) is an admissible
trajectory of 𝛴 if and only if there exists a vector 𝛼 ∈ R𝑇−𝐿+1 such that
[

𝐻𝐿(𝑦[0,𝑇−1])
𝐻𝐿(𝑢[0,𝑇−1])

]

𝛼 =
[

𝑦̄[0,𝐿−1]
𝑢̄[0,𝐿−1]

]

. (7)

This lemma is supported by the concept of lag of a system, also
introduced in [21], using the behavioural framework. In [15], the
authors introduce a well-defined definition of lag in the context of
state-space systems. This definition is presented as follows.

Lemma 2 ([15]). The lag 𝐿 of system (3) is the smallest 𝐿 ∈ Z+ such that
the observability matrix 𝐿 = [ 𝐶⊤ (𝐶𝐴)⊤ ⋯ (𝐶𝐴𝐿−1)⊤ ]⊤ has rank 𝑛.

Now, using this concept and as discussed in detail in [15], we have
hat, given 𝐿 ≥ 𝐿 and a set of data {𝑦, 𝑢}[0,𝑇−1] obtained from (3), we

can rewrite system (3) using an extended state

𝜉(𝑘) =
[

𝑦[𝑘−𝐿,𝑘−1]
𝑢[𝑘−𝐿,𝑘−1]

]

. (8)

This extended system is given by

𝜉(𝑘 + 1) = 𝐴̃𝜉(𝑘) + 𝐵̃𝑢(𝑘),

𝑦(𝑘) = 𝐶̃𝜉(𝑘) + 𝐷̃𝑢(𝑘),
(9)

ith existing initial condition 𝜉0 and matrices 𝐴̃, 𝐵̃, 𝐶̃ and 𝐷̃ obtained
irectly from the measured set of data {𝑢, 𝑦}[0,𝑇−1]. Another critical
oint to highlight is that using the measured set of data with the
nput being persistently exciting, we can map the state 𝑥 from 𝜉 via
𝑥(𝑘) = 𝑀𝜉(𝑘) where 𝑀 can be constructed directly from the data. For
the sake of simplicity, we refer interested readers to [15].

Let us now state our first problem that will be tackled in this paper
as follows.

𝑄𝑑𝐹 -dissipativity verification problem: For a trajectory (𝑦[0,𝑇−1],
𝑢[0,𝑇−1]) of 𝛴, 𝐿 ≥ 𝐿 and the input being persistently exciting of order
+ 𝑁 + 𝑛 + 1, verify if there exists a symmetric matrix 𝑃 = 𝑃⊤ ⪰ 0,
∈ R(𝑚+𝑝)𝐿×(𝑚+𝑝)𝐿 and 𝑃 = 𝑀⊤𝑃 ′𝑀 such that

(𝜉(𝑘 + 1)) − 𝑉 (𝜉(𝑘)) ≤ 𝑤(𝑦[𝑘,𝑘+𝑁], 𝑢[𝑘,𝑘+𝑁]) (10)

olds for 𝜉0 ∈ R(𝑚+𝑝)𝐿 with

(𝜉(𝑘)) = 𝜉(𝑘)⊤𝑃𝜉(𝑘), (11)

nd 𝑤 be as in (5).
In order to accommodate the presentation of our first main result,

et us introduce the following notations.

(𝑘) =
[

𝑦(𝑘)⊤ ⋯ 𝑦(𝑘 +𝑁)⊤ 𝑢(𝑘)⊤ ⋯ 𝑢(𝑘 +𝑁)⊤
]⊤,

𝑈 (𝑘) =
[

𝑢(𝑘)⊤ ⋯ 𝑢(𝑘 +𝑁)⊤
]⊤ ,

𝛯𝑘 =
[

𝐻𝐿(𝑦[𝑘,𝑇−2+𝑘])
]

.

(12)
3

𝐻𝐿(𝑢[𝑘,𝑇−2+𝑘]) ⎣
Theorem 1. Let (𝑦[0,𝑇+𝑁−1], 𝑢[0,𝑇+𝑁−1]) be a trajectory of (3), where
𝑢[0,𝑇+𝑁−1] is persistently exciting of order 𝐿 + 𝑁 + 𝑛 + 1, and 𝐿 ≥ 𝐿. If
there exists a matrix 𝑃 = 𝑃⊤ ⪰ 0 such that

𝛯⊤
1 𝑃𝛯1 − 𝛯⊤

0 𝑃𝛯0 −𝑍⊤
[𝐿,𝑇−1]𝛷𝑍[𝐿,𝑇−1] ⪯ 0 (13)

holds, then (3) is 𝑄𝑆𝑅-dissipative.

roof. In Theorem 1 we want to verify the dissipative inequality in
4), which can be rewritten as
(𝑘 + 1)⊤𝑃 ′𝑥(𝑘 + 1) − 𝑥(𝑘)⊤𝑃 ′𝑥(𝑘) ≤

[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤

𝛷
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]

,
(14)

hich holds for all 𝑘 ≥ 0, with 𝑥(0) = 𝑥0, and 𝑃 ′ = 𝑃 ′⊤ ⪰ 0. When
≥ 𝐿, the system (3) can be rewritten as (9) using the extended state

𝜉. Subsequently, we can rewrite the dissipativity inequality as

𝜉(𝑘 + 1)⊤𝑃𝜉(𝑘 + 1)−𝜉(𝑘)⊤𝑃𝜉(𝑘) ≤
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤

𝛷
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

] (15)

hich is equivalent to

𝑦[𝑘−𝐿+1,𝑘]
𝑢[𝑘−𝐿+1,𝑘]

]⊤

𝑃
[

𝑦[𝑘−𝐿+1,𝑘]
𝑢[𝑘−𝐿+1,𝑘]

]

−
[

𝑦[𝑘−𝐿,𝑘−1]
𝑢[𝑘−𝐿,𝑘−1]

]⊤

𝑃
[

𝑦[𝑘−𝐿,𝑘−1]
𝑢[𝑘−𝐿,𝑘−1]

]

≤
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤

𝛷
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]

.

(16)

According to Lemma 1, if the input 𝑢[0,𝑇+𝑁−1] is persistently exciting
of order 𝐿+𝑛 then any other trajectory (𝑦[0,𝐿−1], 𝑢[0,𝐿−1]) can be obtained
from the measured data. Looking at the extended system (9), we have
that with the input being persistently exciting of order 𝐿 + 𝑛, we can
obtain the extended state-space matrices, such that we can rewrite (15)
as
[

𝜉(𝑘)
𝑢(𝑘)

]⊤ [

𝐴̃⊤𝑃 𝐴̃ − 𝑃 ⋆
𝐵̃⊤𝑃 𝐴̃ 𝐵̃⊤𝑃 𝐵̃

] [

𝜉(𝑘)
𝑢(𝑘)

]

≤

[

𝜉[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤ [

𝛱11 ⋆
𝛱12 𝛱22

] [

𝜉[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]

(17)

with
𝛱11 = ̃⊤𝑄̃, 𝛱12 = 𝑆⊤̃ + ̃⊤𝑄̃,

𝛱22 = ̃⊤𝑄̃ + ̃⊤𝑆 + 𝑆⊤̃ + 𝑅,

nd ̃ = 𝐶̃ ⊗ 𝐼𝑁 , ̃ = 𝐷̃ ⊗ 𝐼𝑁 .
Moreover, when the input is persistently exciting of order 𝐿+𝑛, the

ankel matrix
[

𝐻𝐿(𝑦[0,𝑇−1])
𝐻𝐿(𝑢[0,𝑇−1])

]

is full row rank, which spans all possible
rajectories (𝑦̄[0,𝐿−1], 𝑢̄[0,𝐿−1]) of inputs and outputs of this system. Recall
hat
𝐻𝐿(𝑦[0,𝑇−1])
𝐻𝐿(𝑢[0,𝑇−1])

]

=
[

𝜉(𝐿) 𝜉(𝐿 + 1) ⋯ 𝜉(𝑇 − 1) 𝜉(𝑇 )
]

,

=
[

𝛯0 𝜉(𝑇 )
]

=
[

𝜉(𝐿) 𝛯1
]

.
(18)

sing this relation, if the input is persistently exciting of order 𝐿 + 𝑛
e have that both 𝛯0 and 𝛯1 span all reachable states of the extended

ystem (9). Now, if 𝑢[0,𝑇−1] is persistently exciting of order 𝐿 + 𝑛 + 1,
hen

[

𝐻𝐿+1(𝑦[0,𝑇−1])
𝐻𝐿+1(𝑢[0,𝑇−1])

]

has full row rank and, from this result, we have that

𝛯0
𝑢⊤[𝐿,𝑇−1]

]

pans all input-state trajectories of the extended system.
However, note that we also need to guarantee all possible input-

tate trajectories to verify the supply function. This can be achieved
f we consider the input 𝑢[0,𝑇+𝑁−1] being persistently exciting of order
+𝑁 + 𝑛 + 1, which guarantees that

𝐻𝐿+𝑁 (𝑦[0,𝑇+𝑁−2])
𝐻𝐿+𝑁 (𝑢[0,𝑇+𝑁−2])

⊤

⎤

⎥

⎥
𝑈[𝐿,𝑇−1] ⎦
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spans all input-state trajectories of the extended system for all the
trajectories (𝑦̄[0,𝐿+𝑁−1], 𝑢̄[0,𝐿+𝑁−1]) with 𝑈[𝐿,𝑇−1] be defined as in (1) and
𝑈 (𝑘) as in (12). Note that 𝛯[0,𝑁] and

[

𝐻𝐿+𝑁 (𝑦[0,𝑇+𝑁−2])
𝐻𝐿+𝑁 (𝑢[0,𝑇+𝑁−2])

]

are similar, since
he former is a rearrangement of the same elements contained on the
atter, i.e., they are related by a permutation matrix. Thus, we have that

𝛯[0,𝑁]
𝑈⊤
[𝐿,𝑇−1]

]

lso spans all input-state trajectories of the extended system for all the
rajectories (𝑦̄[0,𝐿+𝑁−1], 𝑢̄[0,𝐿+𝑁−1]).

Thus, we can rewrite (17) in terms of the available data, that is

𝛯0
𝑢⊤[𝐿,𝑇−1]

]⊤
[

𝐴̃⊤𝑃 𝐴̃ − 𝑃 ⋆
𝐵̃⊤𝑃 𝐴̃ 𝐵̃⊤𝑃 𝐵̃

]

[

𝛯0
𝑢⊤[𝐿,𝑇−1]

]

⪯

[

𝛯[0,𝑁]
𝑈⊤
[𝐿,𝑇−1]

]⊤
[

𝛱11 ⋆
𝛱12 𝛱22

]

[

𝛯[0,𝑁]
𝑈⊤
[𝐿,𝑇−1]

]

,

(19)

ith the same matrices 𝛱𝑖𝑗 , 𝑖, 𝑗 = {1, 2} as before.
Therefore, the existence of a matrix 𝑃 = 𝑃⊤ ⪰ 0 such that (19)

olds, implies that the system is dissipative with respect to the supply
ate 𝑤.

Now we prove the converse result. If system (3) is dissipative with
espect to the supply rate 𝑤 with a storage function given by 𝑉 (𝑥(𝑘)) =
(𝑘)⊤𝑃 ′𝑥(𝑘), a combination of the results in [19,25] gives that the
ollowing inequality holds for all of its state-input trajectories:

𝑥(𝑘)
𝑢(𝑘)

]⊤ [

𝐴⊤𝑃𝐴 − 𝑃 ⋆
𝐵⊤𝑃𝐴 𝐵⊤𝑃𝐵

] [

𝑥(𝑘)
𝑢(𝑘)

]

≤

[

𝑥[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤ [

𝛱 ′
11 ⋆

𝛱 ′
12 𝛱 ′

22

] [

𝑥[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]

,

(20)

ith
′
11 = ⊤𝑄, 𝛱 ′

12 = 𝑆⊤ +⊤𝑄,

𝛱 ′
22 = ⊤𝑄 +⊤𝑆 + 𝑆⊤ + 𝑅,

nd  = 𝐶 ⊗ 𝐼𝑁 ,  = 𝐷 ⊗ 𝐼𝑁 . Since we know from Lemmas 1 and 2
hat there is a matrix 𝑀 such that 𝑥(𝑘) = 𝑀𝜉(𝑘), we can obtain (19)
rom (20). □

Note that when we apply Theorem 1 with a supply function (5) with
= 0, we recover the results given in [15, Theorem 5]. This means that

uch conditions are included in Theorem 1, but not the opposite. As
e have mentioned in the introduction, the main advantages of using
supply-rate with a QdF formulation, that is, 𝑁 ≥ 0, are that we can

escribe the dissipativity of all linear systems [19]. Also, in the context
f fault detection, this formulation can provide more insights into the
ystems’ dynamics, which leads to a better fault detection method [8].

.2. Dissipativity analysis via multiple shots of data

In the previous section, we have dealt with the case of one shot of
easured data {𝑦, 𝑢}[0,𝑇−1] that is sufficient to describe the dynamical

ehaviour of the system. However, in practice, finding such batch of
ata is not always possible. We can have cases, for instance, where we
ave corrupted or missing data or even an insufficient amount of data
hat may not satisfy the persistence of the excitation condition given in
emma 1. One approach to deal with such cases is using the collective
ersistence of excitation concept [23], defined as follows.

efinition 3 ([23]). Consider a set of 𝑞 measured trajectories given by
[0,𝐓−1] ∶=

{

𝑒1[0,𝑇1−1], 𝑒
2
[0,𝑇2−1]

,… , 𝑒𝑞[0,𝑇𝑞−1]
}

, 𝑒𝑖 ∶ Z → R𝑛, where 𝐿 ≤ 𝑇𝑖
olds for a positive integer 𝐿 and for all 𝑖. This set of trajectories is
ollectively persistently exciting of order 𝐿 if the following mosaic-Hankel
atrix

𝐿(𝐞[0,𝐓−1]) =
[

𝐻𝐿(𝑒1[0,𝑇1−1]) 𝐻𝐿(𝑒2[0,𝑇2−1])

⋯ 𝐻 (𝑒𝑞 )
] (21)
4

𝐿 [0,𝑇𝑞−1]
as full row rank.

Using this notion, a set of measured trajectories with possible dif-
erent lengths can be used together to obtain every possible trajectory
f 𝛴 with a time horizon 𝐿, as given in the following lemma.

emma 3 ([23]). Let
(

𝑦𝑖[0,𝑇𝑖+𝑁−1], 𝑢
𝑖
[0,𝑇𝑖+𝑁−1]

)

, 𝑖 = 1,… , 𝑞, be trajectories
of 𝛴, with 𝐿 ≤ 𝑇𝑖 for all 𝑖 for some 𝐿 > 0. If the set of inputs 𝑢𝑖(𝑘) is
ollectively persistently exciting of order 𝐿 + 𝑛, then

(

𝑦̄[0,𝐿−1], 𝑢̄[0,𝐿−1]
)

is
n admissible trajectory of (3) if and only if there exists a vector 𝛼 with
ppropriate dimension such that
[

𝐿
(

𝐲[0,𝐓−1]
)

𝐿
(

𝐮[0,𝐓−1]
)

]

𝛼 =
[

𝑦̄[0,𝐿−1]
𝑢̄[0,𝐿−1]

]

, (22)

here the matrices on the left side are mosaic-Hankel matrices as in (21).

Accordingly, we can define the following data-driven dissipativity
erification problem.
𝑄𝑆𝑅-dissipativity verification problem for multiple shots of

ata: For given multiple shots of trajectories
(

𝑦𝑖[0,𝑇𝑖], 𝑢
𝑖
[0,𝑇𝑖]

)

, 𝑇𝑖 > 0,
= 1,… , 𝑞 of 𝛴, where 𝐿 ≥ 𝐿 and the set of inputs 𝑢𝑖[0,𝑇𝑖+𝑁−1],
= 1,… , 𝑞, is collectively persistently exciting of order 𝐿 +𝑁 + 𝑛 + 1,

verify if there exists a symmetric matrix 𝑃 = 𝑃⊤ ⪰ 0, 𝑃 ∈ R(𝑚+𝑝)𝐿×(𝑚+𝑝)𝐿

and 𝑃 = 𝑀⊤𝑃 ′𝑀 such that (15) holds for 𝜉0 ∈ R(𝑚+𝑝)𝐿 with the storage
function as in(11) and the supply-rate 𝑤(𝑦(𝑘), 𝑢(𝑘)) as in (5).

Before we introduce our next result, let us introduce the following
notations

𝐙 =
[

𝑍1
[𝐿,𝑇−1] ⋯ 𝑍𝑞

[𝐿,𝑇−1]

]

,

Ξ𝑘 =
[

𝐿
(

𝐲[𝑘,𝐓−2+𝑘]
)

𝐿
(

𝐮[𝑘,𝐓−2+𝑘]
)

]

,
(23)

where 𝑍𝑖(𝑘) as described in (12) and 𝐿(⋅) are Mosaic-Hankel matrices
as in (21).

Corollary 1.
Let 𝐿 ≥ 𝐿 and

(

𝑦𝑖[0,𝑇𝑖+𝑁−1], 𝑢
𝑖
[0,𝑇𝑖+𝑁−1]

)

, 𝑇𝑖 > 0, 𝑖 = 1,… , 𝑞 be a set
of trajectories of (3) with 𝑛 being the order of the system, with the set of
inputs 𝑢𝑖[0,𝑇𝑖+𝑁−1], 𝑖 = 1,… , 𝑞, being collectively persistently exciting of order
𝐿 +𝑁 + 𝑛 + 1. If there exists a matrix 𝑃 = 𝑃⊤ ⪰ 0 such that

Ξ⊤
1 𝑃Ξ1 −Ξ⊤

0 𝑃Ξ0 − 𝐙⊤𝛷𝐙 ⪯ 0, (24)

holds, then (3) is 𝑄𝑆𝑅-dissipative.

Proof. The proof of this theorem comes directly from the application
of Lemma 3 on Theorem 1. This can be done by using the fact that
[

𝐿+𝑁+1
(

𝐲[0,𝐓−1]
)

𝐿+𝑁+1
(

𝐮[0,𝐓−1]
)

]

spans the whole space of input–output trajectories. □

3. Fault detection

In this section, we will present the application of previous data-
driven dissipativity analysis in fault detection. Let us consider again the
LTI system described in (3) that is dissipative with respect to a supply
rate 𝑤. Following Definition 2, when the system is dissipative, there
exist 𝑃 ≻ 0 and 𝛷 such that the dissipativity inequality (15) holds.
Note that (15) can be rewritten into

𝛶 (𝑘) ∶= 𝑉 (𝜉(𝑘 + 1)) − 𝑉 (𝜉(𝑘)) −𝑤(𝑦[𝑘,𝑘+𝑁], 𝑢[𝑘,𝑘+𝑁]) ≤ 0, (25)

with 𝑉 (𝜉(𝑘)) = 𝜉(𝑘)⊤𝑃𝜉(𝑘) and 𝑤 be as in (5) for all 𝑘 − 𝐿 ≥ 0. Note
hat 𝑘−𝐿 ≥ 0 is required given that 𝜉(𝑘) consists of the 𝐿 past samples

as shown in (8). We remark here that for an online approach, the time
variable 𝑘 may not correspond directly to the real time instant. In this
case, the real time instant 𝑘′ can, for instance, be related to 𝑘′ = 𝑘+𝑁 .
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When the dissipative system (3) operates normally, that is, without
any faults, the inequality (25) holds for all trajectories. This inequality
can be physically interpreted as an energy balance description of the
system. The presence of a fault in the system can change the relation
of energy exchange and dissipation. For example, a faulty spring-
damper element will lead to a different dissipativity inequality than the
nominal one. In this case, monitoring the energy dissipation relation
(25) directly can be used as a fault detection method.

As discussed in the Introduction, such fault can have severe con-
sequences for the safety of the operation when, e.g., the system is
interconnected with others. Nonetheless, there are cases where the
system may still be dissipative with respect to the nominal supply rate,
but the energy balance does not follow the nominal values. Therefore,
we propose using the signal 𝛶 in (25), which measures the change in
he total energy balance of the system as a basis for a fault diagnosis
unction but not as a residual function itself.

Generally, a faulty system is described as the LTI systems (3)
ubjected to an unknown additive fault signal 𝑓 (𝑘):

𝛴 ∶

⎧

⎪

⎨

⎪

⎩

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐹𝑢𝑓 (𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘) + 𝐹𝑦𝑓 (𝑘),

𝑥(0) = 𝑥0,

(26)

where 𝐹𝑢 and 𝐹𝑦 are matrices that describe how the fault affects the
dynamics and the measurement, respectively. This general description
accommodates different types of faults, for instance, 𝐹𝑢 = 𝐵 represents
actuator faults, and 𝐹𝑦 = 𝐶 represents sensor faults. The fault detection
problem is to determine online whether 𝑓 (𝑘) ≠ 0 for some 𝑘.1 As
discussed at the beginning of this paper, we assume that we do not
know all state-space matrices of the system, nor do we have direct
access to 𝑥(𝑘). Thus, we propose a fault detection method that only
observes the input and output signals.

Correspondingly, we consider the following residual function based
on the dissipativity inequality (25)

𝐽 (𝑘) =

√

√

√

√

√

𝑘
∑

𝑖=𝑘−𝑇F

𝛶 2(𝑖), (27)

that can be computed for any 𝑘 − 𝑇F ≥ 0 and where 𝑘 ≥ 𝑇F does not
nclude the transient data and 𝑇F is the window of samples observed
or detecting faults.

It is necessary to define a threshold2 to detect the fault occurrence.
he threshold definition is an important step in most fault detection
pproaches since it determines the rate of false alarms. In other words,
he problem of detecting a fault is given by

(𝑘) ≤ TH, for 𝑓 (𝑘) = 0,

(𝑘) > TH, for 𝑓 (𝑘) ≠ 0,
(28)

here TH is the threshold value.
Determining an effective threshold can be difficult, and there are

ultiple ways to do it [1]. In this paper, we propose two simple
pproaches based on the assumption that we are dealing with a LTI
ystem without uncertainties.

Following the methodology in [1], the first method starts from veri-
ying the largest magnitude value obtained for the residual function 27
n a fault-free trajectory. Then, we can set the threshold slightly larger
han this value. In other words,

H𝛽 = 𝛽 max{𝐽[0,𝑇TH]}, (29)

1 No assumption is made on whether or not 𝑓 is independent of 𝑥. To
represent changes in parameters in 𝐴, we have so-called multiplicative faults,
i.e., 𝑓𝑖(𝑘) = 𝑤𝑖(𝑘)𝑥𝑖(𝑘), where 𝑤(𝑘) is taken as an unknown signal. Clearly, if
(𝑘) ≠ 0, that is, the system is not resting in equilibrium, then 𝑓 (𝑘) = 0 only
f 𝑤(𝑘) = 0, which is the faultless case.

2 Here, a threshold refers to the value of 𝐽 (𝑘) corresponding to the boundary
5

f fault occurrence when it is surpassed.
here 𝛽 > 0, 𝑇TH ≥ 𝑇F, and [0, 𝑇TH] is an interval of data that is fault-free
nd also contains the data used for the identification of the dissipative
nequality (25).

Another way to define the threshold is to obtain the mean value
f 𝐽 (𝑘) using these samples and its standard deviation to obtain the
hreshold. In this case

H𝛾 = mean(𝐽[0,𝑇TH]) + 𝛾 std(𝐽[0,𝑇TH]), (30)

here mean is the time average of the observed trajectory and std
s its standard deviation. The user-defined parameter 𝛾 is the Z-score,
hich dictates how much deviation is allowed before triggering a fault;
.g., under the assumption of 𝐽[0,𝑇TH] being normally distributed, 𝛾 = 3
ould allow for 99.73% of the cases to be considered normal. Both
arameters 𝛽 and 𝛾 should be tuned to get an acceptable trade-off
etween false alarm rate with missed detection rate. Note that the
hoice of parameters 𝛽 and 𝛾 are case-based and should be made by
he user.

In Algorithm 1 below, we summarize the main procedure of fault
etection using the dissipativity inequality identified in Section 2.

Algorithm 1 Fault detection online procedure.
Initialization: {𝑦, 𝑢}[𝑘−𝐿,𝑘+𝑁−1] for each 𝑘 − 𝐿 ≥ 0, scalars 𝐿, 𝑇 , 𝑁 ,

TH, matrices 𝑃 and 𝛷
or each time instant 𝑘 compute

𝛶 (𝑘) =
[

𝑦[𝑘−𝐿+1,𝑘]
𝑢[𝑘−𝐿+1,𝑘]

]⊤

𝑃
[

𝑦[𝑘−𝐿+1,𝑘]
𝑢[𝑘−𝐿+1,𝑘]

]

−
[

𝑦[𝑘−𝐿,𝑘−1]
𝑢[𝑘−𝐿,𝑘−1]

]⊤

𝑃
[

𝑦[𝑘−𝐿,𝑘−1]
𝑢[𝑘−𝐿,𝑘−1]

]

−
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]⊤

𝛷
[

𝑦[𝑘,𝑘+𝑁]
𝑢[𝑘,𝑘+𝑁]

]

𝐽 (𝑘) =
√

∑𝑘
𝑖=𝑘−𝑇F

𝛶 2(𝑖)
if 𝐽 (𝑘) ≤ TH then

𝑓 (𝑘) = 0
else if 𝐽 (𝑘) > TH then

𝑓 (𝑘) = 1
end if

In this paper, we do not provide a method to establish and analyse
the values of the fault signal 𝑓 (𝑘). In Algorithm 1, we simply identify
the presence of a fault by giving it a binary number where the presence
of a fault is indicated as 𝑓 (𝑘) = 1 and the contrary 𝑓 (𝑘) = 0.

Remark 1. We treat the problem of fault detection in a semi-supervised
learning framework. That is, we only assume to have data from con-
trolled experiments (i.e., using persistently exciting input data) from
the nominal system. Based only from this limited information, we
construct the dissipativity function and the fault detection algorithm.
We chose this approach because it is a common challenge in fault
diagnosis to obtain data from faulty scenarios, especially because (i)
it is difficult to anticipate all faults that can occur in a system, and
(ii) it is often risky to operate a system in faulty conditions. This is in
contrast to the methods that treat the problem of fault classification as
a multi-class supervised learning problem, where there are 𝑞+1 modes (1
nominal and 𝑞 faulty modes) that are known to exist, and one has data
available for all of those 𝑞 modes. In particular, the data available for
the faulty modes has also persistently exciting input property, which
means that potentially controlled experiments for the faulty modes are
necessary. The advantage of the approach of [8,9,14] is that, if the data
for all fault modes is available, the detection guarantees are stronger.

4. Simulation and experimental validation

In this section, we present numerical simulations for checking the
𝑄𝑆𝑅-dissipativity and experimental results on dissipativity analysis
and its use for data-driven fault detection using a two-degree-of-

freedom (DoF) planar manipulator.
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For the simulation setup, we use the numerical software Matlab

(R2022a) in conjunction with the parser YALMIP [26] and the solver
Mosek [27] for the optimization procedures of finding feasible solutions
for Theorem 1 via linear matrix inequality (LMI) conditions.

4.1. Dissipativity of a mass–spring–damper system

Consider the classic mass–spring–damper system based on Example
6.4 from [19]. This example has also been explored in [16] in the
context of data-driven dissipative analysis where the 𝑄𝑆𝑅-dissipativity
is verified using a one-shot of data. We assume that the following
state-space describes its dynamics

𝑥(𝑘 + 1) =
[

0 1
−𝐾 −𝐷

]

𝑥(𝑘) +
[

0
1

]

𝑢(𝑘),

𝑦(𝑘) =
[

1 0
]

𝑥(𝑘),
(31)

which can also be described in terms only of the inputs and outputs,
that is

𝑦(𝑘 + 2) +𝐷𝑦(𝑘 + 1) +𝐾𝑦(𝑘) = 𝑢(𝑘). (32)

In this paper, we assume 𝐾 = 𝐷 = 1. Additionally, we consider
the trajectories computed in [16], where different batches of data are
generated using zero initial conditions and a normally distributed input
with a standard deviation of 10 and zero mean. For the verification of
dissipativity, we consider 𝐿 = 2, 𝑁 = 1, and 𝑇 = (𝑚+1)(𝐿+ 𝑛) +𝑚(𝑁 +
1) = 10, which guarantees that the set of data is persistently exciting.
The choice of 𝐿 = 2 comes from 𝐿 ≤ 𝑛 ≤ 𝐿, and that 𝑛 = 2.

In this example, we consider three cases for verifying the 𝑄𝑆𝑅-
dissipativity. We apply one shot of data from the available measure-
ments for all three cases.

The first case we tackle is where both the supply rate and the storage
functions, 𝛷 and 𝑃 , respectively, are unknown and based on a single
trajectory, and we use Theorem 1 for their search. We can apply the
procedure for the first case using the information above. As expected,
since we already know that the system is dissipative, we can find both
matrices 𝛷 and 𝑃 , which are given as follows

𝛷 =

⎡

⎢

⎢

⎢

⎢

⎣

−4.3345 −2.1746 −2.1826 0.0044
−2.1746 2.1614 −0.0084 0.0029
−2.1826 −0.0084 −2.1100 −0.0132
0.0044 0.0029 −0.0132 4.3495

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎣

2.1823 0.0037 −2.1834 0.0033
0.0037 4.3429 −0.0090 0.0017

−2.1834 −0.0090 2.2191 −0.0083
0.0033 0.0017 −0.0083 4.3426

⎤

⎥

⎥

⎥

⎥

⎦

.

Note that both 𝛷 and 𝑃 are symmetric and 𝑃 ⪰ 0, as required in
Theorem 1.

For the second case, we can consider a storage function 𝑉 that
depends only on the outputs (𝑦(𝑘), 𝑦(𝑘 + 1)), the same way as proposed
in [16]. Writing the storage function in terms of the extended state 𝜉(𝑘),
we obtain

𝑉 (𝑘) = 𝜉(𝑘)⊤

⎡

⎢

⎢

⎢

⎢

⎣

10 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

𝜉(𝑘), (33)

from which we can recover the respective matrix 𝑃 and apply it as
an input to the optimization problem. Thus, we can apply Theorem 1
searching for an existing matrix 𝛷. We can find such a suitable supply
rate, which is given as follows

𝛷 =

⎡

⎢

⎢

⎢

⎢

1.0378 0.9091 −2.9291 2.2938
0.9091 2.7223 −5.1728 2.5707

−2.9291 −5.1728 26.5080 −10.0341

⎤

⎥

⎥

⎥

⎥

.

6

⎣

2.2938 2.5707 −10.0341 14.2297
⎦

Now, for the last case, we consider the knowledge of the supply
ate 𝑤 a priori, and we search for the matrix 𝑃 . We know from [16],

that a suitable supply rate for system (32) is as follows

𝑤(𝑦(𝑘), 𝑢(𝑘)) = 𝑢2(𝑘) − 2𝑦(𝑘)𝑢(𝑘) − 2𝑦(𝑘 + 1)𝑢(𝑘)

+2𝑦(𝑘)𝑦(𝑘 + 1) + 𝑦(𝑘 + 1)2,

which, based on (5) with 𝑁 = 1, can be rearranged using

𝛷00 =
[

0 1
1 1

]

, 𝛷01 =
[

−1 0
−1 0

]

, 𝛷11 =
[

1 0
0 0

]

. (34)

We can use this matrix on the problem and then search for a suitable
storage function. By doing so, we obtain the following matrix

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 −1 0
1 2 −1 0

−1 −1 1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

which, as expected, holds with the requirements of 𝑃 ⪰ 0.

4.2. Unknown LTI system with missing data samples

This example considers the unknown LTI system with missing data
as presented in [23]. In the first part of this example, we apply
Corollary 1 to verify, based only on the available multiple data samples,
whether the system is dissipative with respect to a supply function
of the form (5) with 𝑁 = 0. This supply and storage functions are
found via an optimization procedure that will be discussed further. In
the second part, using the system as identified in [23], we generate
other trajectories to verify whether the dissipation inequality as in
(16), with the supply and storage functions found in the first part of
the example, holds in general for a larger interval, i.e., [0,𝑀] with
𝑀 ≫ 𝐿. This numerical experiment intends to show that the 𝑄𝑆𝑅-
dissipativity property indeed corresponds to the standard dissipativity
with an infinite time horizon.

In [23], the authors consider a measured trajectory obtained from
one measurement batch containing missing samples. This trajectory is
given as follows

𝑘 0 1 2 3 4 5 6 7 8 9
𝑦(𝑘) 3 3 7 6 11 × 18 21 23 24
𝑢(𝑘) 1 0 2 −1 0 × 1 1 −1 −5

𝑘 10 11 12 13 14 15 16 17 18 19
𝑦(𝑘) 33 31 × 30 20 26 14 10 3 ×
𝑢(𝑘) 0 −1 × 1 −6 2 −2 0 1 ×

where × represents the missing samples. From this information, we can
immediately infer that 𝑚 = 𝑝 = 1, and we can also visualize the three
different snapshots of data (𝑞 = 3), with 𝑇1 = 5 and 𝑇2 = 𝑇3 = 6.
Additionally, in [23], the authors assume the order of the system to be
equal to 𝑛 = 2 and a parameter 𝐿 = 3, which we also assume in this
paper.

Given this a priori information, we can search for a supply function
of the form (5) with 𝑁 = 0 and a matrix 𝑃 as in (11) using Corollary 1
and programming the conditions accordingly. We are indeed able to
find the associated quadratic supply-rate function (5) with

𝛷0 =
[

0.0011 0.0007
0.0007 0.1709

]

and the associated storage function with

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

0.084 −0.140 0.061 −0.138 0.123 −0.061
−0.140 0.286 −0.144 0.257 −0.250 0.144
0.061 −0.144 0.080 −0.124 0.126 −0.080

−0.138 0.257 −0.124 0.340 −0.216 0.124
0.123 −0.230 0.126 −0.216 0.352 −0.126

⎤

⎥

⎥

⎥

⎥

⎥

⎥

.

⎣ −0.061 0.143 −0.080 0.124 −0.126 0.080 ⎦
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For comparison purposes, we can apply the method presented
in [17, Theorem 1] using the available sets containing missing data,
assuming the parameters mentioned above and 𝜈 = 2, and then search-
ing for a supply rate of the form 𝛷 ⪰ 0. Note that for the mentioned

ethod, only (𝐿, 𝜈,𝑁)-𝑄𝑆𝑅-dissipativity3 is verified; in addition, only
he supply rate function is present on the verification, not the storage
unction. Thus, when applying the search algorithm of [17], we can
ind the following supply rate

=
[

0.3709 −0.3362
−0.3362 0.3709

]

.

We can also verify other methods, namely, [20, Theorem 5], [16],
nd Theorem 1, to check whether these methods can find a supply
unction to which the system is dissipative, and a storage function,
or Theorem 1. Note, however, that for all these methods, we need
o separately apply the three different snapshots from the original
ata since they do not assume the collective persistence of excitation
oncept.

For the methods in [20, Theorem 5] and [16], we search for a
ositive supply function 𝛷 ⪰ 0 such that (𝐿 − 𝜈)-𝑄𝑆𝑅-dissipativity

holds.4 In both methods [20, Theorem 5] and [16], we need to give
a scalar 𝜈 to proceed with the search of the supply-rate function.
In this example, we apply 𝜈 = 2 for the search. Considering both
theorems, we cannot find feasible results when checking all three data
snapshots separately. This can be explained by the fact that each dataset
individually is not persistently excited and because the null matrices
that those theorems use do not exist when 𝑇 is too short. When applying
the condition given in Theorem 1 for each dataset separately, we can
find matrices 𝑃 and 𝛷 that satisfy the inequality in (13). However, note
that in the latter case, the persistence of excitation is not met; therefore,
using such matrices does not imply that the system is dissipative.

To verify whether the dissipative condition in (15) holds with the
storage and supply functions previously obtained with Corollary 1
and Theorem 1, we can evaluate (25) using different trajectories. We
assume these methods are represented by 𝛶1(𝑘) and 𝛶2(𝑘), respectively.
For the method in [17, Theorem 1], we verify

𝛶3(𝑘) ∶=
1000
∑

𝑘=𝐿
𝑤(𝑢(𝑘), 𝑦(𝑘)) ≥ 0. (35)

Using the system model identified in [23], we generate 1000 dif-
ferent trajectories with length 𝑘 = 1000, zero initial conditions and
a normally distributed input with a standard deviation of 1 and zero
mean. Using these trajectories, we validate whether the dissipativity
inequalities described above hold for the whole time interval 𝑘 =
{𝐿, 1000}.

In Fig. 1 we present the plot of the dissipativity inequalities iden-
tified using Corollary 1, Theorem 1, and [17, Theorem 1], represented
by 𝛶1(𝑘), 𝛶2(𝑘), and 𝛶3(𝑘), respectively. In this plot, we present the
average, minimum and maximum values of 𝛶𝑖(𝑘) obtained for the
set of 1000 different trajectories. The plot of 𝛶2(𝑘) is obtained using
the matrices identified using Theorem 1 with the second measured
snapshot, of length 𝑇2.

Fig. 1 shows that, as expected, the dissipative inequality (25) with
the matrices identified by Corollary 1 (𝛶1(𝑘)) holds for all 𝑘 and for
all trajectories tested. The same can be observed with the method
from [17, Theorem 1], where it is seen that (35) indeed holds for the

3 (𝐿, 𝜈,𝑁)-𝑄𝑆𝑅-dissipativity is a relaxed version of the 𝑄𝑆𝑅-dissipativity,
in which the supply-rate function is verified on a finite-time interval of
[0, 𝐿 − 𝜈 − 1], instead of [0,∞], which is equivalent to the general notion of
dissipativity.

4 Similarly to the (𝐿, 𝜈,𝑁)-𝑄𝑆𝑅-dissipativity, the (𝐿− 𝜈)-𝑄𝑆𝑅-dissipativity
is a relaxed version of the 𝑄𝑆𝑅-dissipativity, in which the supply function is
verified on a finite-time interval of [0, 𝐿−1], with the first [0, 𝜈] instants being
7

equal to zero. t
Fig. 1. The plot of 𝛶1(𝑘) (Corollary 1) and 𝛶2(𝑘) (Theorem 1, with 𝑇2) as given in
25), with the respective identified supply-rate and storage functions. Additionally, the
lot of 𝛶3(𝑘) ([17, Theorem 1]) with the respective identified supple-rate function.

hole interval tested. On the other hand, we can see in this figure
hat using the inequality identified using Theorem 1 with the second
easured snapshot, 𝛶2(𝑘) is positive in some instants 𝑘 for several

rajectories. This is expected since the input of the trajectories used for
dentifying 𝛷 and 𝑃 were not persistently exciting, showing that the
equirement of the persistence of excitation is indeed necessary. We do
ot show explicitly the plots of 𝛶2(𝑘) for the matrices identified using
he snapshots 𝑇1 and 𝑇3 since they have similar behaviour as the one
hown in Fig. 1.

.3. Fault detection of a 2 DoF planar manipulator

In this example, we validate our fault detection method by ap-
lying it to a two-degree-of-freedom (DoF) planar manipulator from
uanser [28], using a rigid joint configuration as detailed in [29].
his setup can be seen in Fig. 2, where we can see the rigid bars in
he joints. In the first part of the example, we identify the dissipative
nequality using a shot of data from a fault-free batch of data obtained
xperimentally on this setup. Later, we apply the fault detection method
o several fault cases obtained experimentally.

Regarding the experimental setup, using the rigid joint configura-
ion discussed in [29], the robot can be modelled using a state-space
epresentation where four states represent the generalized positions
nd momenta of the two joints. Each joint can be actuated with input
ariables of electrical current (in Amperes) applied to the actuation
otors, and we assume the output variables as the generalized position

f each joint. For obtaining the fault-free data, we apply a closed-loop
ystem using the controller proposed in Case 2 of Section 5.1 of [29],
n which the robot is operated in the neighbourhood of generalized
ositions 𝑞∗ =

[

0.6 0.8
]⊤ and generalized momenta 𝑝∗ =

[

0 0
]⊤

o that the dynamics can be approximated by an LTI system (3).
dditionally, for exciting the input, we consider an external signal with
normal distribution, a standard deviation of 0.05 and zero mean that

s calculated and applied separately to each of the joints. The time-
eries input–output data is collected with a sampling time of 𝑇𝑠 =
.005s. A block diagram of the experimental setup is shown in Fig. 3.

Fig. 4 shows the data from one of the experiments where we can see
hat the robots operate in the neighbourhood of (𝑞∗, 𝑝∗). Note that we
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Fig. 2. 2 DoF planar manipulator from Quanser.

Fig. 3. Schematic of the experimental setup.

do not include the transient time, instead, we consider the input–output
data of the robot already stabilized. This experiment can be found in
form of a video at youtu.be/2kg4Tp3qp3Y.

In this example, we consider the data obtained in the experiment
shown in Fig. 4 for identifying the dissipative inequality (25). We take
𝑁 = 1, 𝐿 = 4 and 𝑇 = (𝑚 + 1)(𝐿 + 𝑛) + 𝑚(𝑁 + 1) = 28 samples.
The snapshots then have the form of (𝑢[0,𝑇+𝑁−1], 𝑦[0,𝑇+𝑁−1]) and are
obtained from a window starting at 1s. Note, however, that we can
choose this interval to start at any point of the batch of experiments
in which the robot is already stabilized. The choice of 𝐿 = 4 comes
from the knowledge of the order of the system and 𝑁 = 1 given that
we know that any robotic manipulator is dissipative with respect to the
QdF supply-rate function of 𝑤(𝑢(𝑡), 𝑦(𝑡)) = 𝑦̇(𝑡)⊤𝑢(𝑡) (in the continuous-
time case) or its associated discrete-time version 𝑤(𝑢[⋅,⋅+1], 𝑦[⋅,⋅+1]) =
(𝑦(𝑘 + 1) − 𝑦(𝑘))⊤𝑢(𝑘 + 1). Thus, we choose a QdF that includes both
𝑦(𝑘+ 1) and 𝑦(𝑘). Using these parameters, we can search for and find a
feasible solution of 𝑃 and 𝛷 using Theorem 1.

With the identified dissipative inequality in hands, we can construct
the residual function as in 27 and apply it to the fault detection case.
We assume several kinds of faults caused manually after the time
instant of 5s but not directly after 5s. They are: (i) holding the robot
manually; (ii) a gain representing an increase of 50% in the applied
input; (iii) removal of the rigid bar on link 1; (iv) removal of the rigid
bar on the link 2; and (v) removal of the rigid bars on both links 1
and 2. Removing the rigid bar makes the robot operate with a flexible
configuration, which is not considered in the control configuration we
8

Fig. 4. One set of experimental data of a 2-DoF planar manipulator from Quanser.
The closed-loop system (robot + controller) operates at an equilibrium point (𝑞∗ , 𝑝∗) =
(
[ 0.6
0.8

]

,
[ 0
0

]

) while perturbed by an external signal.

are applying. A video of this experiment can be found at youtu.be/
CeRoGj1nRHY.

Before we present the fault detection results, we can analyse the
behaviour of the dissipative inequality as in 𝛶 (𝑘). In Fig. 5, we present
the plot of 𝛶 (𝑘) for the five different faulty cases. For obtaining this
plot, the function 𝛶 (𝑘) uses the matrices 𝑃 and 𝛷 that are identified
using Theorem 1 with the parameters described before and a small
window of data from the trajectory of the fault-free case. Note that for
all faulty cases, the dissipativity properties still hold, that is, 𝛶 (𝑘) ≤ 0
for all instants tested. Thus, as we mentioned in Section 3, the use of
this dissipative inequality (25) as a method for verifying the presence
of a fault would not be able to detect any of the faults that we show in
this paper.

Hence, we verify the residual function 𝐽 (𝑘) as in 27 with the
following choices of parameters: 𝑇F = 150, 𝛽 = 1.1, representing a
margin of 10% more than the largest magnitude value of the residual
function of the nominal case, and 𝛾 = 3, considering 𝐽[0,𝑇TH] to be
normally distributed. Using these parameters and the data from the
fault-free case, we obtain TH𝛽 = 50.9925 and TH𝛾 = 49.6243.

In Fig. 6, we have the plot of the evaluation function 𝐽 (𝑘) as in
27 applied to the fault-free and faulty experiments using 𝛶 (𝑘) with the
matrices identified previously. Note that in the cases of faults (i) and
(ii)–(v), the evaluation function crosses both thresholds in the presence
of the fault during the whole time that there is a fault in the system.

In the case where we represent a failure in the input, i.e. fault (ii),
the evaluation function shows the presence of a fault for some parts of
the trajectory but not during the entire period where there is a fault
(in this case, we apply the fault directly from time instant 5s). This can
be explained by the safety procedure that saturates the input control.
Meaning that even if we force the increase in the input, the system will
saturate this signal. If this step is not considered, we can permanently
damage the system, which is not our goal. As shown in Fig. 4, the signal
applied to the motor in the second link is already saturating in most of
the trajectory during the nominal condition. Thus, the input increase
will not influence the behaviour much, at least for this link. On the
other hand, for the first link, we have a higher margin of increase in
the control actuation. This increase is considered in the feedback loop
and can eventually stabilize the system.

The results in Fig. 6 show that we can detect faults, even when their
effects in the system are minimum, as in the case of fault (ii). Note
also, that the thresholds TH and TH , as we designed, provide similar
𝛽 𝛾

https://youtu.be/2kg4Tp3qp3Y
https://youtu.be/CeRoGj1nRHY
https://youtu.be/CeRoGj1nRHY
https://youtu.be/CeRoGj1nRHY
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Fig. 5. The plot of 𝛶 (𝑘) for several experiments, where 𝛶 (𝑘) is of the form of (25), where the matrices 𝑃 and 𝛷 are identified using a trajectory from the fault-free experiment.
Fig. 6. The plot of the evaluation function 𝐽 (𝑘) for several experiments, including the fault-free experiment used to identify 𝛶 (𝑘). Note that the thresholds TH𝛽 and TH𝛾 are
represented by ∶ and −− respectively.
i
i

p

esults. In the presence of a fault, both are effective in detecting the
aults. If we had tuned, for instance, 𝛽 as a lower percentage margin,
e would trigger more faults, or, in the case where 𝛽 corresponds

o a higher margin, it would not be able to detect all faults. The
9

ame interpretation is application to the parameter 𝛾. This shows the s
mportance of tuning these parameters in the design phase of the
mplementation of the technique.

We compare our fault detection method to a PCA (Principal Com-
onent Analysis) method. For that, we use only the measured output

ignals as the input data for this algorithm since the PCA approach is



Mechatronics 97 (2024) 103111T.E. Rosa et al.
Fig. 7. The result of fault detection using principal component analysis method using the evaluation functions 𝐽PCA1
and 𝐽PCA2

for the same experimental data as before. Note
that the thresholds THPCA,𝛽1 and THPCA,𝛽2 are represented by ∶ and −− respectively. Note that the numbering 1 and 2 is related to the first and second joint signals, or 𝑦1 and 𝑦2.
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based on the correlation between the analysed variables. Since we do
not vary the input significantly in the nominal case in this example, we
will not be able to see a strong correlation to the input. For obtaining
a residual function, we apply a similar method to the one explained
in [30], using the principal components score plot, also called T2. We
use the Matlab function pca, using the inverse of variances of the
ingredients as variable weight and the principal component coefficients
matrix to obtain the residual function. In other words, we have

𝑟PCA(𝑘) = 𝑦(𝑘) − 𝑃PCA𝑦(𝑘);

where 𝑃PCA is the principal component coefficients matrix and 𝑟PCA(𝑘)
is the residual function. We obtain the matrix 𝑃PCA by applying the
function pca to the same fault-free trajectory used with our method
and use this same 𝑃PCA to verify the residual values in the fault detection
online algorithm.

Since the data we used in the PCA algorithm comprises the signals
of the two joints, we have residual values related to each. Thus, we can
obtain evaluation functions 𝐽PCA1 and 𝐽PCA2 , related respectively, to the
first and second joint signals 𝑦1 and 𝑦2. The evaluation functions are
as given in 27, where we assume the squared root of the norm of the
residue 𝑟(𝑘). We also consider the same 𝑇𝐹 as we used for our method,
that is, 𝑇𝐹 = 150.

We can obtain the threshold values using the idea proposed in
Section 3. We apply the same parameters we used for our method,
𝛽 = 1.1 and 𝛾 = 3. Using (29), we obtain THPCA,𝛽1 = 8.1340 and
THPCA,𝛽2 = 10.7024, which corresponds to the thresholds for joints 1 and
2, respectively. Using (30), these values are equal to THPCA,𝛾1 = 11.8315
and THPCA,𝛾2 = 15.5347, for joints 1 and 2, respectively.

In Fig. 7, we show the results of applying the evaluation functions
𝐽PCA1 and 𝐽PCA2 , where the residual function is obtained with the PCA
method and which function is related, respectively, to the first and
second joints. For easier visualization, we have omitted the thresholds
obtained as in (30) in Fig. 7 since the obtained threshold values are
higher than the ones obtained as in (29).

As we can see in Fig. 7, the PCA method is only able to detect part
of the faults for the cases (i), (iii) and (v), which can be seen when the
evaluation function crosses the thresholds. However, the method does
10
Table 1
Time of the first detected faults using the thresholds obtained for Algorithm 1 and for
the PCA approach.

Fault TH𝛽 TH𝛾 THPCA,𝛽1 THPCA,𝛽2 THPCA,𝛾1

(i) 6.815 6.815 – 7.130 –
(ii) 5.900 5.895 – – –
(iii) 7.100 7.100 8.425 9.030 8.625
(iv) 8.540 8.535 8.885 10.915 10.505
(v) 7.060 7.060 – – –

not detect the fault presence for most of the faulty trajectories. Let us
compare the signals related to the first and second joints, 𝑦1 and 𝑦2. For
ases (iii) and (v), we see that the first evaluation function detects the
ault in the first rigid bar for part of the trajectory, while the second
oes not always detect it. However, as we can see in the data from
he experiments shown in the aforementioned YouTube video, both
inks are affected in these cases. In case (i), we see the opposite, the
valuation function related to the second joint can briefly detect a fault.
n contrast, both evaluation functions do not detect faults during the
emainder of the trajectory. For cases (ii) and (iv), the method cannot
etect any faults in these experiments.

Comparing the results in Figs. 6 and 7, we see that even though our
ethod cannot directly be used for fault isolation, that is, identifying in
hich signal the fault is present, our method provides a better detection

han the PCA method. Note that both methods were offline trained
sing the same fault-free trajectory and applying the same evaluation
rocedure concerning the residue signals.

In Table 1, we provide the time instant (in seconds) of the first fault
etection using our method and the PCA approach. We have omitted
he column regarding the results obtained using the threshold THPCA,𝛾2
ince no fault in the second link was detected using it. From Table 1,
e can see that our method was able to detect the faults faster than

he compared method for all studied fault trajectories. With regard to
he proposed method, we can see that there is little to no difference
n this parameter considering the use of the threshold values TH𝛽 and

TH , which shows that the design we perform provides similar results.
𝛾
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5. Conclusions

This paper tackled the fault detection problem using dissipativity
analysis as a base. The first main novelty we provided was a new
method to verify the dissipativity of an LTI system using only one
or multiple shots of data considering a QdF form of the supply rate
function. From this result, we developed a new fault detection method
where the norm of the dissipativity inequality works as an evaluation
function. In order to illustrate the applicability of the theoretical re-
sults, we presented a set of simulations comparing our results with
the methods in [16,17,20]. Furthermore, an implementation using a
two-degree-of-freedom planar manipulator was also provided, where
we applied the method introduced in this paper and a PCA method,
for comparison purposes. The planar manipulator was subjected to
several types of faults, and as described in the results, all faults were
detected when applying our method. Using the PCA approach, not
all faults were detected and also not for the entire faulty trajectory.
Another important aspect was the results obtained for the fault-free
case, where not a single incidence of missed fault detection occurred
during the experiment when applying our method. The aforementioned
results show that the proposed solution is a fit approach for fault
detection, especially for cases where the mathematical models, due to
high complexity and data-driven, which require much data, are not
implementable.
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