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Abstract Simulations are presented that demonstrate
that the global state of spatial coherence of an optical
wavefield can be altered on transmission through an
array of subwavelength-sized holes in a metal plate that
supports surface plasmons. It is found that the state of
coherence of the emergent field strongly depends on
the separation between the holes and their scattering
strength. Our findings suggest that subwavelength hole
arrays on a metal film can be potentially employed as
a plasmon-assisted coherence converting device, useful
in modifying the directionality, spectrum, and polariza-
tion of the transmitted wave.
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Introduction

Surface plasmon-mediated optical effects are now
widely employed in the development of novel and
improved nano-photonic devices. For instance, surface
plasmons have been used to perform nanolithogra-
phy [1], to develop plasmonic lasers [2], to act as a gate
for light transmission [3], to improve the capabilities of
nano-optical readout systems [4, 5], and to serve as the
carrier signal in nano-optical circuits [6].

The amount of light transmitted through
subwavelength-size apertures is typically low. However,
it is now well-known that surface plasmons can increase
the amount of light passing through an array of such
apertures [7], or an appropriately structured single
aperture [8]. The enhancement can be understood as
arising from constructive interference between the light
that is directly transmitted through the hole and light
that has coupled into a plasmon; this was illustrated
clearly using a plasmonic version of Young’s double
slit experiment [9].

Recently, through a series of investigations based on
Young’s double slit configuration, it has been found
that surface plasmons play a central role in not only
the interference and transmission of light but also the
coherence properties of the transmitted light [10, 11].
Specifically, the presence of surface plasmons in the
double-slit system leads to the modulation of the spatial
coherence of light that emerges from the slits, and the
resulting coherence can be higher or lower than the
coherence of the illuminating field.

The spatial coherence, or more specifically the spec-
tral degree of coherence of an optical field, is a
measure of the “statistical similarity” of the field at
any two points and determines its interference-causing
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capability [12]. Fields that are fully coherent produce
interference fringes with maximum fringe visibility,
while completely incoherent fields produce no fringes.
The spatial coherence influences numerous properties
of the light field as it propagates, such as its direc-
tionality [13], spectrum [14], and state of polarization
[15, 16]. Because of this, partial coherence has become
an important ingredient in a number of applications
[17]. Therefore, any new method that would allow us
to modulate the spatial coherence of a wavefield is of
great interest.

The plasmon double-slit experiment described
above suggests that it may be possible to alter the
state of coherence of a light field as a whole, i.e., the
global state of coherence, by transmitting light through
an appropriate array of subwavelength-size holes in
a metal plate. Such a plate will be referred to as a
coherence converting plasmonic hole array. However,
it is unclear how the presence of multiple holes and
multiple interactions between them would affect the
state of coherence of the transmitted wave. Recent
research on a three-slit Young-type experiment [18]
has indicated that the center slit can serve not just to
decrease the effects of the plasmons propagating from
one slit to the other but also to preserve and even en-
hance these effects; it is therefore reasonable to expect
a similar effect for a two-dimensional array of holes. In
a sense, our work can be regarded as complimentary
to research [19] that demonstrated that the patterning
of subwavelength holes can significantly affect the total
transmitted power.

It is to be noted that other research has shown that
plasmons can have an interesting and non-trivial effect
on the statistical properties of light. For instance, it
has been demonstrated [20, 21] that the presence of
surface waves in a thermal source can produce highly
directional and coherent emission. In the quantum
regime, plasmon-assisted transmission of entanglement
has been experimentally verified [22, 23], and decoher-
ence effects have also been connected with plasmons
[24].

In the present study, we explore the possibility of
using a plasmonic hole array as a practical coher-
ence converting device. In particular, we apply a sim-
ple cylindrical wave model for plasmons to study the
change in the spatial coherence of a wavefield as it is
transmitted through such an array. It is shown that it
is possible to achieve a significant enhancement in the
spatial coherence of the field, even approaching the
limit of complete coherence. We begin by reviewing
the relevant concepts from optical coherence theory
and then introduce the geometry of the system and the

theoretical model used to study it. Simulation results
are then presented, followed by concluding remarks.

Coherence in the Space–Frequency Domain

To study the coherence of a fluctuating wavefield, we
employ the space–frequency representation, in which
the second-order coherence properties of the wavefield
(“first order” in the terminology of quantum coher-
ence) are characterized by the cross-spectral density
function W(r1, r2, ω) defined as [25]

W(r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉 , (1)

where r1 and r2 are position vectors and U(r, ω) is a
monochromatic realization of the field at position r with
frequency ω. Here the asterisk indicates complex conju-
gation, and the angular brackets 〈· · · 〉 denote averaging
over the ensemble of realizations. The field U(r, ω) at
frequency ω satisfies the Helmholtz equation in free
space,
(∇2 + k2

)
U(r) = 0,

where k = ω/c is the wavenumber.
The normalized strength of the spatial correlations

between two points is characterized by the spectral
degree of coherence μ(r1, r2, ω), defined by the expres-
sion

μ(r1, r2, ω) = W(r1, r2, ω)
[
S(r1, ω)S(r2, ω)

]1/2 , (2)

where S(r, ω) = W(r, r, ω) is the spectral density at po-
sition r (the intensity of light at frequency ω). It can be
shown that 0 ≤ |μ(r1, r2, ω)| ≤ 1, with |μ(r1, r2, ω)| = 1
representing complete coherence, and |μ(r1, r2, ω)| = 0
representing complete incoherence. For Young’s dou-
ble slit experiment with equal intensity illumination of
the two slits, the modulus of the spectral degree of
coherence of light emanating from the two slits is equal
to the visibility [12, Sec. 4.2] of the interference fringes
seen on the plane of observation, i.e.,

V(P, ω) = Smax(P, ω) − Smin(P, ω)

Smax(P, ω) + Smin(P, ω)
. (3)

Here Smax(P, ω) and Smin(P, ω) are the maximum and
minimum intensity of the fringes in the immediate
neighborhood of a point P on the plane of observation.
The visibility V(P, ω) tends to unity if Smax(P, ω) �
Smin(P, ω) and is equal to zero if no interference fringes
are formed. For a multiple hole interferometer, there
is no direct relationship between visibility and the
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spectral degree of coherence, as the latter quantity is
typically different for each pair of holes. To assess the
overall, or global, coherence of a wavefield, we must
instead consider the spectral degree of coherence at
relevant pairs of points in the field and look for trends
in the function μ(r1, r2, ω) as a whole. Equations 1 and
2 will be used to characterize how the spatial coherence
of an incident partially coherent field is changed on
transmission through the plasmonic hole array, to be
discussed next.

Theoretical Model

We consider an array of subwavelength holes perfo-
rated in a thin metal film that is located at the plane
z = 0 (Fig. 1). The hole array is illuminated on the side
z < 0 by a partially coherent scalar field U0(r, ω), where
r = (ρ, z); the spectral degree of coherence of this field
in the plane z = 0 is denoted as μ0(ρ1, ρ2, ω). It is
assumed that the field U0(r, ω) is quasi-monochromatic
and has a central wavelength λ0. A fraction α of the inci-
dent field will be directly transmitted through the holes.
Part of the field impinging on the holes may scatter
and couple to surface plasmons, which can propagate
along the two surfaces of the metal film. In terms of
the free-space wavenumber (k0 = 2π/λ0), the in-plane
wavevector of a surface plasmon mode at a metal/air
interface (with relative permittivities εm and ε0) is given
by ksp = k0

√
ε0εm/(ε0 + εm), and its amplitude decays

exponentially into both the metal and air [26]. When
the plasmonic field propagates to a neighboring hole,
it is either scattered as a plasmon or coupled back
into a transmitted, freely propagating field. In general,

z

x

y

z = 0

Fig. 1 Depicting the general geometry of the plasmon coherence
system. Brown arrows represent the incident field, black arrows
represent the in-plane plasmonic surface wave, and red arrows
represent the emergent field

incident incoherent beams

plasmon-mediated
coupling

partially correlated output beams

Fig. 2 Illustration of the physical mechanism behind plasmon-
mediated coherence enhancement for a two-slit array

the surface plasmons can be multiply scattered by the
hole array before they are absorbed or recoupled into
light. Interference between the field transmitted via
surface plasmon coupling and the part that is directly
transmitted can alter the coherence properties of light
emerging from the array. We denote by μf (r1, r2, ω) the
spectral degree of coherence between any two points of
the field Uf (r, ω) emergent on the dark side of the plate.

A simple picture of this effect for two holes is de-
picted in Fig. 2, after [10]. Each hole is illuminated by
an independent beam of light, and these two beams
do not produce interference fringes. However, at the
apertures, each beam is partly transmitted directly and
partly coupled into a plasmonic surface wave, the latter
of which travels to the other hole and is then transmit-
ted as light. The net result is that the emission from each
hole consists partly of the light from both beams, and
a correlation has been introduced. Because plasmons
are waves and can produce interference effects, the
overall transmission and the change in coherence will
depend upon the phase relation between the plasmon
and directly transmitted beam and hence upon the hole
separation.

The development of the theoretical model can be
divided into three parts. First, the illuminating field is
modeled using a coherent-mode decomposition of the
field, discussed in the “Coherent-Mode Decomposition
of the Illuminating Field” section. Second, the interac-
tion of each mode of the field and the metal
plate is taken into account using a multiple scat-
tering formalism, detailed in the “Analytic Model
for the Multiply Scattered Plasmonic Field” section.
Finally, the coherence properties of the transmitted
field are analyzed by comparing μ0(ρ1, ρ2, ω) and
μf (r1, r2, ω); this is discussed in the “Coherence of the
Transmission Field” section.
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Coherent-Mode Decomposition of the Illuminating
Field

The illuminating field is taken to be of Gaussian Schell
model form [12, Sec. 5.3.1] in the plane z = 0, such that

W0(ρ1, ρ2) = √
S0(ρ1)

√
S0(ρ2)μ0(ρ2 − ρ1). (4)

Here S0 represents the spectral density of the field,
and μ0 is the spectral degree of coherence; the explicit
dependence on ω is now suppressed for brevity. Schell
model fields are characterized by the property that
their spectral degree of coherence μ0(ρ1, ρ2) at any two
field points ρ1 and ρ2 depends only on the difference
ρ2 − ρ1; a Gaussian Schell model field is one whose
spectral degree of coherence μ0 is of Gaussian form,

μ0(ρ2 − ρ1) = exp
(−|ρ2 − ρ1|2/2δ2) , (5)

where δ is the transverse correlation length.
We may rewrite Eq. 4 by expressing μ0(ρ2 − ρ1) in

terms of its Fourier transform, i.e.,

μ0(ρ2 − ρ1) =
∫ ∫

μ̃0(K) exp[iK · (ρ2 − ρ1)]d2 K. (6)

The cross-spectral density then takes on the form

W0(ρ1, ρ2) =
∫ ∫

μ̃0(K)
[√

S0(ρ1) exp[iK · ρ1]
]∗

×√
S0(ρ2) exp[iK · ρ2]d2 K. (7)

This expression for the cross-spectral density is of the
form of an incoherent superposition of modes φK(ρ),
defined as

φK(ρ) ≡ √
S0(ρ) exp[iK · ρ]. (8)

With this definition, we may write

W0(ρ1, ρ2) =
∫ ∫

μ̃0(K)φ∗
K(ρ1)φK(ρ2)d

2 K. (9)

The modes are weighted by the function μ̃0(K) which,
using Eq. 5, has the form

μ̃0(K) = 1

2πδ2
k

exp
[−K2/2δ2

k

]
, (10)

where we have introduced δk ≡ 1/δ; small values of δk

correspond to a high degree of spatial coherence.
We now take the spectral density of the illuminating

field to be uniform across the plane z = 0, i.e., S0(ρ) =
S0. Then the cross-spectral density of the field takes
on the form of a weighted incoherent superposition of
plane waves,

φK(ρ) ≡
√

S0 exp[iK · ρ]. (11)

Let us consider the coupling of the modes φK(ρ)

from the illuminated side to the dark side of the metal

plate. Regardless of the specific mechanism of coupling,
provided it is linear, the modes will remain incoherent
as they traverse the system; this implies that the cross-
spectral density of the field on the dark side of the plate
may be written as

W f (r1, r2) =
∫ ∫

μ̃0(K)ψ∗
K(r1)ψK(r2)d2 K, (12)

where ψK(r) is the field of the Kth mode on the dark
side, to be determined below. To evaluate the cross-
spectral density of the field on this side, we can inde-
pendently evaluate the propagation of each individual
mode and then sum them according to Eq. 12.

Equation 9 is, in essence, a coherent mode repre-
sentation of the wavefield, as first introduced in [25].
In such a representation, the wavefield is decomposed
into a set of mutually incoherent wavefields that are
also mutually orthogonal over a given domain of inte-
gration, in this case the plane z = 0. On traversing the
metal film, the modes are no longer mutually orthogo-
nal but remain mutually incoherent with respect to one
another, as Eq. (12) holds and μ̃0(K) does not change
in the process.

Analytic Model for the Multiply Scattered
Plasmonic Field

In previous research, it has been shown that rela-
tively simple models for plasmonic interactions can
provide good quantitative results. For instance, both
plasmonic enhanced transmission [9] and plasmonic co-
herence changes [10] in Young’s double slit experiment
were successfully characterized by a simple plane wave
model. Furthermore, in-plane scattering of surface plas-
mons from surface defects was well described by a
simple scalar cylindrical wave model [27]. We follow
this latter approach to calculate the transmission modes
ψK(r) in a manner that takes into account the effects
of multiple scattering of the surface plasmons between
holes. While it is recognized that a scalar model will
not fully describe the effects of the surface plasmons, its
simplicity offers much computing convenience and can
provide insights into the fully electromagnetic problem.

In our approach, the surface plasmons propagating
from an individual hole at position ρm in the metal plate
to a position ρ j are modeled as a scalar cylindrical wave
of the form

G
(
ρ j, ρm

) = i
4

H(1)
0

(
ksp|ρ j − ρm|) , (13)

where ksp is the wavenumber of the surface plasmons
and H(1)

0 the zeroth-order Hankel function of the first
kind.
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We consider the response of a plasmonic system of N
holes to a plane wave with incident wavevector K. The
holes are treated as point scatterers on the surface of
the metal plate; this approximation is reasonable con-
sidering the assumed subwavelength size of the holes
and their multiple-wavelength separation. The field ra-
diated by the jth hole of the array will be proportional
to the total field ψK(ρ j) at this hole, which in turn is
the sum of that part of the mode φK that is directly
transmitted through the hole and the plasmonic field
originating from all other holes in the system, denoted

K(ρ j). The total field may be written as

ψK(ρ j) = αφK(ρ j) + 
K(ρ j) , (14)

where α represents the fraction of light directly trans-
mitted. Let β describe the scattering strength of each
of the point scatterers; one may then express 
K(ρ j)

as a superposition of the field contributions originating
from all the other holes in the plane of the array, i.e.,


K(ρ j) = β

N∑

m=1,m 
= j

G(ρ j, ρm) ψK(ρm) . (15)

Substituting from Eq. 15 for 
K(ρ j) in Eq. 14, the
total field at the jth scatterer is

ψK(ρ j) = αφK(ρ j) + β

N∑

m=1,m 
= j

G(ρ j, ρm)ψK(ρm) . (16)

We therefore have a system of N equations for the
total field ψK(ρ j) at each of the N holes; this system
of equations is often referred to as the Foldy–Lax
equations [28, 29].

By writing Eq. 16 in a matrix form, the field at each
of the jth scatterer can be formally calculated as

U = α[I − βG]−1U(0) , (17)

where U = [ψK(ρ1), ψK(ρ2), . . . , ψK(ρN)]T, U(0) =
[φK(ρ1), φK(ρ2), . . . , φK(ρN)]T, the superscript T
refers to matrix transposition, I is the identity matrix,
and G is an N × N matrix with null diagonal elements.
By solving for U, the field ψK(ρ j) at each of the holes
may be determined, and this field may then be substi-
tuted into Eq. 12 to evaluate Wf (r1, r2). It is to be noted
that α represents an overall scaling factor that plays
a role in the overall light transmission but not in the
normalized coherence properties of the wavefield.

We have yet to specify β, the complex parameter
describing the scattering of the plasmonic field at each
of the holes. The value of the modulus of β, which is
a measure of the scattering strength of each hole, sig-
nificantly affects the behavior of the transmitted field

and must be carefully determined. To do so, we treated
each hole as an electric dipole with dipole moment as
given by electrostatics theory [30, Sec. 5.2] and arrived
at an order of magnitude estimate of |β| ∼ 5. The de-
tails leading to this estimate are given in “Appendix.”

Coherence of the Transmitted Field

As the modes ψK(ρ j) are associated with the two-
dimensional Green’s function in our multiple scattering
model, they collectively describe the field emerging
from the holes at the plane z = 0. The spectral degree
of coherence of the transmitted field may be deter-
mined using Eqs. 12 and 2.

As noted previously, there is no definition for the
global or overall degree of coherence of a wavefield.
We characterize an increase in the global degree of
coherence if |μf | > |μ0| for light coming from most,
but not necessarily all, pairs of apertures. Because of
the symmetry of the arrays considered, we only need
to consider a small number of pair correlations to
determine whether a majority of pairs have enhanced
coherence.

Simulations of Coherence Modulating Devices

We consider the coherence properties of three different
arrays of holes, illustrated in Fig. 3. A 3 × 3 array, a
4 × 4 array, and a seven-hole hexagonal array are con-
sidered. For all simulations, the free-space wavelength
of light is taken to be λ0 = 600 nm, and the metal plate
is taken to be gold. The refractive index of gold at
600 nm is nAu = 0.21 + i3.27, taken from [31]. The cor-
responding wavelength of the surface plasmons is λsp =
2π/�{ksp} = 0.57 μm, and the propagation distance at
which the intensity of the surface plasmons decreases to
1/e is Lsp = (2 
{ksp})−1 ≈ 7 μm. The distance between
neighboring holes in the array is kept shorter than Lsp

d d

d
A

B

C

D

A

B

C

A
B

C

(a) (c)(b)

Fig. 3 The three hole geometries under consideration: a 3 × 3
square hole array, b 4 × 4 hole array, and c a seven-hole hexago-
nal array
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in the simulations so that the surface plasmon effects re-
main significant. The value of |β| is taken to be 5, unless
otherwise stated. As a simple check on the model, we
verified that μf −→ μ0 as |β| −→ 0 in our simulations,
i.e., the modulation of the spatial coherence depends on
the presence of surface plasmons in the system.

We consider the behavior of the 3 × 3 hole array
first. Figure 4a shows the absolute value of the spec-
tral degree of coherence μf between holes A and C
as a function of the hole separation d; the degree
of coherence of the illuminating field is shown as a
dashed line for comparison. It can be seen that the
coherence of the output field between the two holes is
in general greater than the coherence of the input field.
Most notably, there exist very significant increases of
coherence for d ≈ 1.1 μm, d ≈ 1.4 μm, and d ≈ 1.9 μm.
Such increases can only be said to be global increases,
however, if they occur for most pairs of holes in the
system. In Fig. 4b, the degree of coherence of hole pairs
(A, B) and (A, C) are compared. It can be seen that
the peaks of the greatest enhancements coincide; due
to the symmetry of the hole system, this implies that
the coherence between most pairs of holes dramatically
increases at the same separations d.

It is of interest to ask whether the location of these
resonant peaks depend on the value of μ0. In Fig. 5,
the coherence between holes A and C as a function of
d is shown for several values of the incident degree of
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Fig. 5 Illustrating the dependence of the degree of coherence of
the 3 × 3 square hole array on the degree of coherence of the
illuminating field

coherence. It can be seen that, though the degree of en-
hancement varies, the resonances occur for essentially
the same values of d.

For a 4 × 4 hole array, the relationship between coher-
ence enhancement and d becomes more complicated,
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Fig. 4 The absolute value of a the spectral degree of coherence between points A and C in the 3 × 3 hole array, as a function of hole
separation d, and b the spectral degree of coherence between multiple points in the array. Here δk = 0.1k0
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Fig. 6 The absolute value of a the spectral degree of coherence between points A and D in the 4 × 4 hole array, as a function of hole
separation d, and b the spectral degree of coherence between multiple points in the array. Here δk = 0.1k0

but the same qualitative behaviors can be seen. In
Fig. 6a, the degree of coherence between holes A and D
are shown, and the degree of coherence of the incident
field is shown for comparison. In Fig. 6b, it can be

seen that a number of coherence increases are global
and occur for multiple pairs of holes, notably those at
d ≈ 0.75 μm, d ≈ 1.1 μm, d ≈ 1.4 μm, d ≈ 1.7 μm, and
d ≈ 2.3 μm.
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Fig. 7 The absolute value of a the spectral degree of coherence between points A and C in the seven-hole hexagonal array, as a function
of hole separation d, and b the spectral degree of coherence between multiple points in the array. Here δk = 0.1k0
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Similar results hold for different geometries of holes.
The results for a seven-hole hexagonal array are pre-
sented in Fig. 7. Three peaks stand out as global in-
creases of coherence, namely d ≈ 1.1 μm, d ≈ 1.7 μm,
and d ≈ 2.25 μm.

The effectiveness of the plasmonic coherence en-
hancement depends crucially upon the strength of plas-
monic coupling β. Figure 8 repeats the calculation of
Fig. 7a but with β = 1. As can be seen, the enhancement
is much less significant.

In all of the previous simulations, a global enhance-
ment of coherence can be seen, but there is no clear
example of a global suppression of coherence. To as-
certain whether such a suppression can occur, simu-
lations were performed for a hexagonal array with a
higher degree of coherence of the incident field, δk =
0.05k0; the results are shown in Fig. 9. Though the
points of enhancement are clearly overlapping, there
are no values of d for which μf (A, B) and μf (A, C)

are simultaneously suppressed. It seems that a global
suppression of coherence does not occur, at least in the
simple hole geometries considered here.

Looking at Fig. 9 again, it can be seen that the
enhancement peaks occur at regularly spaced intervals
in d. This distance is approximately the plasmon wave-
length, λsp = 0.57 μm, which agrees with the earlier
argument that enhancement is due to a constructive in-
terference between the plasmonic wave and the directly
transmitted wave. For the 3 × 3 and 4 × 4 hole arrays,
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Fig. 8 The absolute value of the spectral degree of coherence
between points A and C in the seven-hole hexagonal array, as a
function of hole separation d, with δk = 0.1k0 and β = 1
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Fig. 9 The absolute value of the spectral degree of coherence
between points A and C in the seven-hole hexagonal array, as a
function of hole separation d, with δk = 0.05k0. The dashed lines
indicate the coherence of the illuminating field at the holes

however, there is no clear relationship between the
wavelength and the resonance positions. This is perhaps
understandable, as even a simple square array has many
different paths by which a plasmon can travel between
holes and therefore many different length scales. For
instance, a plasmon can travel a direct diagonal distance
between holes, in which case it has traveled

√
2d. For

the hexagonal array, most paths between holes are
either distance d or 2d.

Conclusions

We have demonstrated that the coherence properties of
a planar Gaussian Schell model field can be modulated
with a metallic film perforated with subwavelength
holes. When the effects of the surface plasmons are
significant, the degree of coherence of the field emerg-
ing from the array depends on the separation between
the holes and their scattering strength. For larger hole
arrays, the coherence peaks become much narrower
and more erratic, chiefly due to the variety of path
lengths that the plasmons can travel. It seems likely that
breaking the symmetry of the array can help to “smooth
out” the sharp resonances.

Our simulations show that the emergent field can in-
deed have a degree of coherence that is quite different
from that of the Gaussian Schell model field. These
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results indicate that subwavelength hole arrays on a
metal film can be potentially employed in nano-optical
systems as a coherence converting device.
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Appendix: Derivation of the Estimate of |β|

Here we provide details of the assumptions and approx-
imations used to arrive at the order of magnitude esti-
mate of the scattering strength of |β| ∼ 5. The deriva-
tion adheres closely to the electrostatics approximation
employed by Bohren and Huffman in the problem of
scattering of light by a sphere that is small compared
with the wavelength [30, Sec 5.2]. A spherical cavity in a
metal background medium is used as an approximation
for a hole in a metal plate.

We begin by considering the electric field radiated by
a monochromatic electric dipole into the far field [32,
Sec 9.2], with spatial dependence

Es = k2

4πεm

(
r̂ × p

) × r̂
exp (ikr)

r
(18)

with k is the wavenumber, εm is the dielectric constant
of the medium in which the wave propagates, p is the
electric dipole moment, and r̂ is a unit vector in the
direction of r, which is the position vector of the point
of observation as measured from the dipole (r = |r|).
We may treat the scattering of the sphere by replac-
ing it with an electric dipole with dipole moment p =
εm α E0 exp (iωt) p̂, where E0 is the amplitude of the
incident field illuminating the dipole, polarized along
the unit vector p̂, and the polarizability of the sphere α

is given by [32, Sec 4.4]

α = 4πa3 εs − εm

εs + 2εm
(19)

with εs and a the dielectric constant and radius of the
sphere, respectively. Substituting for p into Eq. 18 and
rearranging, we have

Es = E0X
exp (ikr)

ikr
, (20)

where

X = ik3

4π
α

(
r̂ × p̂

) × r̂ (21)

is the vector scattering amplitude, a dimensionless
quantity. In our model, we treat the plasmon scattering

parameter β as a scalar analog to the vector scattering
amplitude X. To estimate | β | , we thus attempt to
derive an estimate for | X | , i.e., | β | ∼ | X |. We note
that α as given in Eq. 19 is the polarizability for a sphere
of εs embedded in a medium of εm. we are interested in
the case of an air-filled spherical cavity (εs = ε0 = 1) for
which the cavity polarizability takes on the form

α = 4πa3 1 − εm/ε0

1 + 2εm/ε0
. (22)

Substituting this expression for α in Eq. 21, it is found
that

| X | = k3

4π
| α |

= (2π)3 a3

λ3

∣∣
∣
∣

1 − εm/ε0

1 + 2εm/ε0

∣∣
∣
∣. (23)

For metals that are conducive to the generation of sur-
face plasmons,

∣
∣Re (εm)

∣
∣ � ∣

∣Im (εm)
∣
∣, and

∣
∣Re (εm)

∣
∣ �

1, typically. Taking this into account, then for a sub-
wavelength sphere with radius a = λ/3, it is obtained
that

| β | ∼ | X | ∼ 5. (24)

It is to be noted that while the dipole approxima-
tion is shown to be valid by Bohren and Huffman for
a small sphere in a three-dimensional homogeneous
medium, we have applied the formalism to obtain an
order of magnitude estimate for | β |, which describes
the scattering by a cylindrical hole in a two-dimensional
plate. Provided the depth of the hole is not significantly
larger than its diameter (i.e., the hole is as wide as it is
tall), we expect that the scattering results for a sphere
will not differ significantly from that of a cylinder,
especially considering the assumed subwavelength size
of the scatterer. It should be noted that the depth of the
hole is not specified in the model used in this paper, but
for plasmonic transmission experiments is often taken
to be comparable to the width (see, for instance, [9]).
The result | β | ∼ 5 lies within the range of values found
by others for similar plasmonic systems; for instance,
[27] finds a value of β ≈ 3, while [33] finds values as
large as β ≈ 60.
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