

Delft University of Technology

Learning Learning Curves

Turan, O. Taylan; Tax, David M.J.; Viering, Tom J.; Loog, Marco

DOI
10.1007/s10044-024-01394-6
Publication date
2025
Document Version
Final published version
Published in
Pattern Analysis and Applications

Citation (APA)
Turan, O. T., Tax, D. M. J., Viering, T. J., & Loog, M. (2025). Learning Learning Curves. Pattern Analysis
and Applications, 28(1), Article 15. https://doi.org/10.1007/s10044-024-01394-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10044-024-01394-6
https://doi.org/10.1007/s10044-024-01394-6

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

ORIGINAL ARTICLE

Pattern Analysis and Applications (2025) 28:15
https://doi.org/10.1007/s10044-024-01394-6

1  Introduction

A learning curve shows the generalization performance of a
learner as a function of the training set size. This should not
be confused with training curves. Both curves find various
applications in machine learning pipelines. Tuning hyper-
parameters, selecting models, and assessing whether add-
ing more data benefits a learner, for instance, are some of
the applications [1]. However, training curves are used to
track model performance for a single learning problem dur-
ing loss optimization, whereas the learning curve tracks the
average model performance over different learning prob-
lems from the same dataset. In other words, one obtains the
training curve at no cost while training the model. However,
obtaining learning curves require training the model mul-
tiple times with different subsets of the dataset, making it
computationally taxing to obtain.

The performance of a learner for increasing training set
sizes can be predicted by extrapolating the learning curves.

	
 O. Taylan Turan
o.t.turan@tudelft.nl

David M. J. Tax
d.m.j.tax@tudelft.nl

Tom J. Viering
t.j.viering@tudelft.nl

Marco Loog
marco.loog@ru.nl

1	 Intelligent Systems, Delft University of Technology, Van
Mourik Broekmanweg, Delft 2628XE, South Holland, The
Netherlands

2	 Institute for Computing and Information Sciences, Radboud
University, Toernooiveld, Nijmegen 6525EC, Gelderland,
The Netherlands

Abstract
Learning curves depict how a model’s expected performance changes with varying training set sizes, unlike training
curves, showing a gradient-based model’s performance with respect to training epochs. Extrapolating learning curves can
be useful for determining the performance gain with additional data. Parametric functions, that assume monotone behav-
iour of the curves, are a prevalent methodology to model and extrapolate learning curves. However, learning curves do
not necessarily follow a specific parametric shape: they can have peaks, dips, and zigzag patterns. These unconventional
shapes can hinder the extrapolation performance of commonly used parametric curve-fitting models. In addition, the
objective functions for fitting such parametric models are non-convex, making them initialization-dependent and brittle.
In response to these challenges, we propose a convex, data-driven approach that extracts information from available
learning curves to guide the extrapolation of another targeted learning curve. Our method achieves this through using a
learning curve database. Using the initial segment of the observed curve, we determine a group of similar curves from the
database and reduce the dimensionality via Functional Principle Component Analysis FPCA. These principal components
are used in a semi-parametric kernel ridge regression (SPKR) model to extrapolate targeted curves. The solution of the
SPKR can be obtained analytically and does not suffer from initialization issues. To evaluate our method, we create a new
database of diverse learning curves that do not always adhere to typical parametric shapes. Our method performs better
than parametric non-parametric learning curve-fitting methods on this database for the learning curve extrapolation task.

Keywords  Meta-learning · Data-driven modeling · Learning curves · Extrapolation · Kernel methods · functional data
analysis

Received: 29 August 2024 / Accepted: 6 December 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Learning Learning Curves

O. Taylan Turan1 · David M. J. Tax1 · Tom J. Viering1 · Marco Loog1,2

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-024-01394-6&domain=pdf&date_stamp=2024-12-24

Pattern Analysis and Applications (2025) 28:15

Starting with very small training set sizes, the initial seg-
ment of a learning curve can be obtained in a cheap and
quick manner. With this partially observed learning curve,
one can extrapolate it to predict a model’s performance for
the given dataset without the need for excessive amount of
data or computational resources.

Historically, learning curves are extrapolated by fitting
to parametric functions, such as exponential or power law
functions [1, 2]. These parametric models often (implicitly)
assume that the learning curves are well-behaved, i.e. that
increasing dataset size the generalization performance gets
better. As pointed out in the survey [3], this assumption
can be violated in various ways. Moreover, due to limited
number of training samples available, the fitting of nonlin-
ear functions becomes fragile and highly dependent on the
initialization.

It is worth mentioning that these parametric functions are
used not only to model learning curves but also for model-
ing training curves. One example of this usage is presented
in [4], where a collection of parametric curve models is used
as a prior to extrapolate training curves with a transformer.
Moreover, in [5], a hand-crafted collection of parametric
models is used to model learning and training curves with
multiple infliction points. Finally, [6] uses trainable para-
metric models for the mean function of a Gaussian Process.

Using parametric models is a logical choice, if curves
have underlying parametric forms. However, curves do not
follow fixed parametric shapes. For this reason, obtaining
these functional forms from data is a promising path to auto-
mate learning curve extrapolation further.

To break free from limitations of parametric functions,
we assume the existence of a database of learning curves,
as shown in Fig. 1a. The goal is to extrapolate an unknown
targeted learning curve to get a generalization performance
at a specific training set size, as depicted in Fig. 1b, without
using any parametric models.

A similar setting is considered in [7], where, a non-
parametric, data-driven pipeline is introduced that uses a
similar setting where a learning curve database is available.

However, their task is to perform a binary model selec-
tion for classification problems at unseen sample sizes. We
propose a pipeline using the semi-parametric kernel ridge
(SPKR) model for extrapolating learning curves. SPKR can
incorporate any real-valued function in addition to train-
ing points from the targeted learning curve. We obtain
these functions by functional principal component analy-
ses (FPCA) and the mean of the relevant part of a database
to incorporate related learning curve behaviours for better
extrapolation performance for learning curves.

In addition to our method, we provide a learning curve
database. The motivation to create a new learning curve
database is threefold. Firstly, to have a database free from
missing values, something the dataset from [1] suffers
from. Secondly, we want to include some significantly non-
monotonic curves, for instance, sawing [8] and dipping [9]
curves, to highlight the ability of a non-parametric approach
to curve extrapolation. Finally, we want to have learning
curves obtained from regression problems which [1] lacks
again.

This paper is organized as follows: In Sect. 2, we provide
a brief background on learning curves. Section 3 presents
common methods for extrapolating learning curves, along
with our proposed methodology. We then detail our experi-
mental setup in Sect. 4. Section 5 presents our results, fol-
lowed by the main conclusions in Sect. 6. Before giving our
learning curve definition in Sect. 2, we should mention that
this paper deviates from the works proposed on training
curve extrapolation [10–16], simply because of the inherent
differences between learning and training curves.

2  Background on the learning curves

In this section we cover the necessary background on learn-
ing curve theory following the notation of [2]. We employ
the term learning curve, as defined in the broader context of
the general machine learning literature, to describe general-
ization performance as it relates to the number of training

Fig. 1  Learning curve plots show
generalization performance vs
sample size. In b: initial points
observed marked with pink, and
the desired training set size marked
with green for which we would
like to get the generalization
performance

1 3

 15   Page 2 of 13

Pattern Analysis and Applications (2025) 28:15

samples. It is worth noting that the same term is used to
refer to different types of curves in various domains. This
can lead to common misconceptions, especially when deal-
ing with the artificial neural network (ANN) literature, where
the x-axis of the learning curve often represents the number
of training iterations [17].

To formalize our definition of a learning curve for super-
vised regression and classification problems, let us denote
the input and output spaces as X and Y, respectively. A learn-
ing algorithm A takes N i.i.d samples DN := (xi, yi)N

i=1
from an unknown distribution P(x, y) over X × Y and pro-
duces a hypothesis h from a hypothesis class H. This can
also be represented by h := A(DN)). Then, the prediction
of a learner can be represented as ŷ = h(x) ∈ Y. The error
of the learner is measured by a loss function L(y, ŷ). In clas-
sification this is typically the zero–one error, and in regres-
sion the mean squared error is often used. The expected
loss (or risk) R of a hypothesis h over the true distribution
P(x, y) is given by:

R(h) =
∫

L(y, ŷ)P(x, y)dxdy� (1)

An individual learning curve of a learner A is ideally
obtained by plotting R against N . Thus, a learning curve
C : Z+ → R depends on A, P , and N .

3  Extrapolating learning curves

Learning curve extrapolation can be formulated as a
learning problem too. Assume that we are given pairs
Z := (Ni, Ri)Q

i=1, which are sampled points from the
beginning of an arbitrary learning curve. Our primary goal
is to learn this unknown learning curve C such that, pre-
dicted risk R̂target is as close to the real risk Rtarget as pos-
sible for a given sample size Ntarget ̸∈ [N1, NQ]. In the rest
of this section, we first recall parametric curve-fitting and
subsequently present our proposed approach for extrapolat-
ing learning curves.

3.1  Parametric curve-fitting

Commonly, it is assumed that learning curves have simi-
lar shapes, making the parametric curve-fitting a com-
monly used approach [2]. Let us assume that an arbitrary
parametric curve for fitting learning curve is represented by
f·(N, θ), with θ as the adjustable model parameters. Then,
for training pairs Z := (Ni, Ri)Q

i=1 the least squares curve-
fitting problem is given by:

θ̂ ∈ arg min
θ

Q∑
i=1

(Ri − f·(Ni, θ))2.� (2)

According to [1, 2], many researchers use power law and
exponential parametric models for f . To account for behav-
iour changes for different regions of the learning curves,
more complex parametric formulations are proposed in
[5, 18]. All the parametric models proposed are non-linear
functions of θ. This makes parametric curve-fitting initial-
ization dependent. When this is the case, Eq. 2 does not
have a closed form solution and is non-convex.

3.2  Semi-Parametric Kernel Ridge (SPKR)

Next to the training pairs Z := (Ni, Ri)Q
i=1, we now assume

that other learning curves are available at training time.
Let us assume a model in the form f̃ = f + h to approxi-

mate an arbitrary learning curve C. Here, f ∈ RX represents
the information coming from Z , and h ∈ span{ψp}, where
{ψp}M

p=1 is a set of real-valued functions that represent the
information coming from the available learning curves.
Assuming a strictly increasing loss function L, and a strictly
increasing regularizer function Ω, our learning problem can
be expressed as:

ˆ̃f ∈ arg min
f̃∈H

L(f̃ , R) + Ω(||f ||H).� (3)

In this equation, H is the Reproducing Hilbert Space and
R ∈ RQ×1 is all the labels of our training set. According to the
Semi-parametric Representer Theorem [19], the solution to

Eq. 3 has the form: f̃(·) =
∑Q

i αiK(·, Ni) +
∑M

j βjψj(·)

, where K is any Mercer kernel. If we assume
Ω(||f ||H) := λ||f ||2H and the squared error as loss func-

tion L =
∑Q

i=1(Ri − f̂(Ni, θ))2, the convex optimization
problem has a unique solution. The optimal parameters are
represented by α̂ ∈ RQ×1, and β̂ ∈ RM×1. Furthermore,
when K ∈ RQ×Q, ψ ∈ RQ×M are the kernel matrix, and the
additional information coming from the available learning
curves, respectively, this unique solution can be obtained as:

ŵ = (ATA + λBT)−1ATR.� (4)

Here, ŵ := [α̂; β̂] ∈ R(Q+M)×1 is the collection of the
optimal parameters, and A := [K, ψ] ∈ RQ×(Q+M) is
the concatenation of the Kernel matrix and the additional
information coming from the available learning curves, and

1 3

Page 3 of 13  15

Pattern Analysis and Applications (2025) 28:15

definition. Thus, our final proposed model for learning
curve extrapolation takes the form f̃ = f + h + µC . Simi-
lar to Eq. 4, the optimal solution with the addition of the

database mean at the training points C̄ := {µC(Ni)}Q
i=1 can

be obtained as:

ŵ = (ATA + λBT)−1AT(R − C̄).� (6)

The entire pipeline is summarized in Algorithm 1, where the
steps for extrapolation using SPKR on learning curves are
outlined in detail.

4  Experimental setup

This section provides details of the learning curve database
generation, outlines the extrapolation setting that we con-
sider, methodological choices, and the experimental setting.

4.1  Learning curve database

The true risk in Eq. 1 can only be computed when we have
access to the exact joint distribution P(x, y) and when the
integral is tractable. In practice, however, we only have
access to a finite sample drawn from P(x, y). To estimate
a learning curve, we choose to repeatedly select a subset
of size N from the available dataset, using the remaining
data to compute the test error [2]. This process is repeated
100 times, and the resulting errors are averaged to get an
estimate for Eq. 1. We apply this procedure for each training
set size in the range N ∈ [2, 100] to generate one complete
learning curve.

Our database is comprised of 11, 240 learning curves, of
which 4840 are classification problems and 6400 are regres-
sion problems. This collection of learning curves involve
curves that are known to exhibit non-monotonic behaviour
(i.e. sawing-type [8] and special high dimensional Gaussian
Process model learning curves [22], dipping phenomenon
[9]) as well as monotone learning curves.

Classification models are selected to be Linear Discrimi-
nant (LDA), Quadratic Discriminant (QDA), Nearest Mean
(NMC) and Nearest Neighbor (NNC) classifiers. Learning

B := [I, 0; 0, 0] ∈ R(Q+M)×(Q+M) is the regularization
applied to f.

A crucial part of SPKR is how the {ψp}M
p=1 are obtained. In

our aforementioned extrapolation problem, we aim to obtain
it from the relevant part of a learning curve database. First,
the relevant part of the database can be selected by using a
similarity measure S(Z, C). It measures the similarity of Z
with respect to the initial part of all the curves available in
the learning curve database C.

One of the most obvious choices is to use all the simi-
lar curves in the database, but note that there is an inverse
operation in Eq. 4 with the complexity O((Q + M)3). This
results in a computational bottleneck when the relevant part
of the database is large. To keep the computations feasible, a
small set of curves representing the biggest modes of varia-
tions is derived using principal component analysis (PCA)
[20]. Next to reducing the computational cost, it also pre-
vents overfitting to the learning curve database. Our learn-
ing curve database consists of functionals; hence we use
functional principal component analysis (FPCA) to extract
the most important modes of variations in the learning curve
database.

Using the notation of [21], the covari-
ance of learning curve database is given by
v(s, t) = U−1 ∑U

i=1(Ci(s) − µC(s))(Ci(t) − µC(t))
, where U is the number of learning curves present in the
database and µC is the mean function for the relevant part of
the database. We can formulate the eigenvalue problem for
the FPCA as follows (see also [21]):
∫

v(s, t)ξ(t)dt = ρξ(s).� (5)

This eigenvalue problem is satisfied for each eigenfunc-
tion ξ with the corresponding eigenvalue ρ. Eigenfunctions,
in this case, represent the modes of variation in the data-
base. We choose the first M of these eigenfunctions with

the largest eigenvalues ({ψp}M
p=1 = {ξp}M

p=1) to be used

in the SPKR. Since the principal components describe the
principal variations around the mean µC of the relevant part
of the database, we also separately include it in our model

Algorithm 1  Extrapolation with
SPKR on learning curves

1 3

 15   Page 4 of 13

Pattern Analysis and Applications (2025) 28:15

fmmf4(N, θ) = (θ1θ2 + θ3 · (N)θ4)/(θ2 + (N)θ4) � (8)

These two parametric functions are reported to perform
the best for extrapolating learning curves in [1] for another
learning curve database. We use LBFGS [25] to solve Eq. 2.
Since gradient approximation (i.e. finite difference) results
are reported to be unstable for optimization, we use the
exact gradients for both parametric models [14]. The opti-
mization is repeated 100 times where the initial parameters
are drawn from a normal distribution with zero mean and
unit variance. For each observed curve we do a 80–20%
random train-validation split on the observed data of that
curve. The best performing parameter configuration on the
validation set is used to initialize the fitting procedure again
with the 100% of the observed data. Note that the baseline
models do not have access to the learning curve database by
construction.
We also use the parametric formulation given in [5], which
can handle non-monotonic curves. The training procedure
in the paper is followed. A general form with k infliction
points is given by:

fbnslk (N, θ) = θ1 + (θ2N−θ3)
k∏

i=1
(1 + (N/θ1i

)1/θ2i)−θ3i
θ2i .� (9)

Although, authors of [5] suggest using cross-validation to
obtain the number of infliction points. We train separate
models up until 3 infliction points to see the general trend
of these parametric models. Although 3 infliction points
might not be sufficient to model some of the curves in our
database, computational resources create a bottleneck given
the training procedure in [5]. These baselines are tokened
as BNSLk, where the k represents the number of infliction
points 0, 1, 2.
A similar method to ours is [6], where parametric models
used for enhancing the extrapolation performance of Gauss-
ian Process Regression. However, since this model depends
on an expert decision regarding the saturation limit and is
designed solely for classification problems, we are unable
to use it as a baseline.

We compare our model also to the non-parametric
method Meta-learning on Data Samples MDS proposed
in [7]. However, since our task is to extrapolate a learn-
ing curve and approximate the generalization performance
given the initial segment of the learning curve, we adjust
MDS as follows: First, k most similar curves of the data-
base to the target curve Z is selected, from learning curve
database C with a similarity measure S(Z, C). The result-
ing collection of curves are denoted by Ck. These selected

curves are then scaled with s =
∑Q

i=0
(RiCk(Ni)wi)∑Q

i=0
(Ck(Ni)2wi)

, where

w represents an arbitrary weight for a given point. Finally,

curves of these classifiers with range of hyperparameters are
created for the Banana (BAN), Gaussian (GAU) and Dip-
ping [9] (RDIP-DDIP) datasets. Different variants of the
Banana and Gaussian datasets are obtained by varying the
separation of the two classes. Moreover, For the Dipping
dataset dimension of the problem (DDIP) and the radius of
the outer class (RDIP) increased to create various datasets.

Regression learning curves are obtained for linear model
(LIN) with a range of regularization, multi-layer perceptron
(ANN) model with changing width of the two hidden layers
with soft-sign activation function. Kernel Ridge model with
Gaussian (GKR) and Laplace (LKR) kernel. Datasets used
include linear (ELN), sinc (ESC), and sine (ESN) datasets
with a homoscedastic noise. Variants of these datasets are
created by increasing the variance of the added Gaussian
noise. Moreover, a sawing dataset (SAW) [8] (used only for
a linear model without bias term), and finally DGP prior
dataset [22] (used only by Gaussian process model). Fur-
ther details about the models and datasets used to create the
learning curves, along with their respective abbreviations,
can be found in Appendix A.

In our experiments, we treat classification and regres-
sion problems separately due to the distinct nature of their
performance metrics. Specifically, classification tasks are
evaluated based on the error rate, while regression tasks are
assessed using the mean squared error (MSE). To accom-
modate these differences, we create separate curve data-
bases for classification and regression, ensuring that each is
split independently. For both cases, we allocate 80% of the
learning curves for training and use the remaining 20% for
evaluating extrapolation performance.

4.2  Learning curve extrapolation

During extrapolation, we assume that the learning curve is
partially observed; up to a maximum value for N . We con-
sider only Q = 10, Q = 25, or Q = 50 initial points of the
targeted curve learning curve is observed. Given a learning
curve database and a targeted learning curve, our primary
objective is to predict the performance at the end of each
targeted learning curve, N = 100. Finally, the extrapolation
error is calculated using the squared loss for each curve for
every extrapolation method. All the curves are normalized
such that the area under each curve is 1.

4.2.1  Baselines

We choose the parametric curve-fitting baselines as WBL4
[23] and MMF4 [24], with parametric functions given in
Eqs. 7 and 8 respectively.

fwbl4(N, θ) = −θ1exp(−θ2(N)θ3) + θ4 � (7)

1 3

Page 5 of 13  15

Pattern Analysis and Applications (2025) 28:15

4.2.2  Fitting semi-parametric kernel ridge

Our method has several hyperparameters, including the
regularization parameter (λ), kernel parameters (e.g. length-
scale of the kernel), the number of FPCA components,
similarity measure, and set the number of curves for select-
ing the relevant part of the database. We choose similarity
measure as cosine similarity and the number of curves to be
selected from the database as 100. Then, Nadaraya-Watson
smoothing [27] with default values is applied to make the
eigenfunctions smoother. In this work, we select M FPCA
components which represent 95% of the selected subset of
the database.

For our method we optimize only for the length-scale of
a Gaussian Kernel length scale in the range γ ∈ [100, 102]
and a regularization parameter λ ∈ [100, 101]. Similar to the
approach used for baselines, an 80%-20% train-validation

the scaled curves are averaged to predict generalization per-
formance at Ntarget which is given by:

fmds(N, C, k) = 1
k

∑
i∈Ck

siCi(N).� (10)

In [7] weights are defined as wi = N2
i , however [26] sug-

gests wi = 2i claiming improved performance. Our pre-
liminary experiments confirmed the superiority of this
weighing scheme on our database as well, hence we adopt
it. Moreover, for the similarity measure we use the cosine
similarity, since we did not observe significant difference
between the results of average squared distance between the
curves. Additionally, we set k = 100 to be consistent with
our method. By selecting the same similarity measure and
number of curves, we ensure a fair comparison between
MDS and our proposed method.

Fig. 2  Mean and standard deviation
of the extrapolation squared errors
(SE) for varying training points.
Classification and regression learn-
ing curve results are plotted with
solid and dashed lines respectively

1 3

 15   Page 6 of 13

Pattern Analysis and Applications (2025) 28:15

increased spread for small training points can be caused
by the lack of information selecting the relevant part of the
database with little number of training points. Additionally,
in our database, highly non-monotonic curves exist where
the beginning of the curve is not representative of the end
portion. We also observe a slight standard deviation increase
for regression problems for our method for when the train-
ing set size is increased from 10 to 25, although it still has
the lowest spread.

Another observation in Fig. 2 is that BNSL performance
does not strictly improve as the number of infliction points
are increased, hindering the trivial usage of this method in
learning curve extrapolation. The varying performances of
parametric models for classification and regression learning
curves across varying initial segment lengths suggests that
our method is able to adjust its bias dynamically with the
selected curves.

Since averaging squared errors is prone to being affected
by the outliers, we also examine the average rankings in
Table 1. Similar to average performance, SPKR achieves a
better average rank for all initial segment sizes. We observe
that our method is highly effective for regression problems
with smaller initial segments (Q). Additionally, we investi-
gate the average rank on subsets of the database and found
that our model has a better average rank in almost all of the
subsets we considered. (See Tables 2 and 3.)

Figure 3 illustrates the cumulative error distribution,
where SPKR has consistently lower median for all experi-
ments. The only instances where baselines MMF4 and
WBL4 have lower errors is in the first quartile of Q = 10 for
classification problems. Finally, we observe that the inflic-
tion point increase does not influence the performance of
BNSL significantly, especially for lower Q values.

Tables 2 and 3 show the average rankings for various
subsets of the data. Our method performs well across all
the subsets besides the Gaussian Dataset where MMF4 and
WBL4 has better average ranks. Only, on the Gaussian data-
set (GAU) our method comes third.

All the results discussed so far pertain to the extrapolation
performance; however, our method also performs as good in
interpolation regime with the overall curve. Ranking with

split of the targeted curve is followed by a grid search for
hyper-parameter optimization. Each hyper-parameter range
is divided into 20 evenly spaced values in logarithmic
space. The hyper-parameter configuration that yields the
lowest validation error is selected for training with the full
observed data of the partially observed curve. The resulting
model is evaluated for extrapolation at N = 100. This pro-
cess is carried our for each curve to be predicted.

5  Results and discussion

In this section, we investigate the extrapolation perfor-
mance of our model compared to parametric baselines for
regression and classification learning curves. Next, we ana-
lyze the average performances of all the models along with
their variances. Then we examine the partial ordering and
full ordering by analyzing the empirical cumulative distri-
bution function and average rankings. We further explore
the importance of selecting the relevant part of the database
through additional experiments. Finally, we compare the
average ranking of our method with a non-parametric learn-
ing curve extrapolation method MDS.

Note that a Wilcoxon significance test showed that the
error distributions of our method compared to all the para-
metric and non-parametric baselines is significantly differ-
ent with all the p-values smaller than the significance level
of 0.0001.

5.1  Extrapolation performance

Figure 2 shows the extrapolation errors for the SPKR, and
other baselines for both classification and regression learn-
ing curves. The top row shows the averaged squared error,
the bottom row shows the standard deviations. The left col-
umn shows the results for the classification learning curves,
while the right column the regression results.

SPKR exhibits lower average squared errors made for the
targeted extrapolation point compared to baselines across
all the Q values that is considered in this work. Similarly,
the spread of SPKR errors is smaller, except Q = 10, where
MMF4 and BNSL0 and BNSL1 show lower spread. The

Table 1  Average extrapolation ranking (lower is better) for both classification and regression learning curves
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 2.5 2.2 1.8 1.1 1.3 1.5
MMF4 3.4 3.2 3.0 3.1 2.7 2.6
WBL4 3.8 3.2 2.7 2.9 2.5 2.2
BNSL0 3.7 4.0 4.4 4.6 4.7 4.7
BNSL1 3.7 4.0 4.4 4.5 4.8 4.8
BNSL2 3.7 4.0 4.4 4.5 4.7 4.8

1 3

Page 7 of 13  15

Pattern Analysis and Applications (2025) 28:15

5.2  Obtaining ψ from database

In [28] it is argued that cosine similarity can be a problem-
atic choice in some cases. This is why we investigated two

respect to whole curve fitting (including all extrapolation
and interpolation) based on MSE can be seen in Table 4.

Table 2  Average rankings (lower is better) of several groupings for the classification learning curves
SPKR MMF4 WBL4 BNSL0 BNSL1 BNSL2

NMC 1.6 2.8 2.4 4.7 4.6 4.6
LDC 1.9 2.9 2.9 4.3 4.4 4.4
QDC 2.3 3.5 2.8 4.1 4.0 4.0
NNC 1.5 2.7 2.8 4.7 4.6 4.5
DDIP 1.8 3.3 3.1 4.1 4.2 4.1
RDIP 1.6 3.2 2.9 4.4 4.3 4.3
GAU 2.2 1.9 1.8 4.9 4.9 4.9
BAN 1.6 3.4 3.1 4.3 4.2 4.2

Table 3  Average rankings (lower is better) of various groupings for the regression learning curves
SPKR MMF4 WBL4 BNSL0 BNSL1 BNSL2

DGP 1.5 1.5 2.7 5.5 4.8 4.8
NN 1.3 3.1 2.7 4.4 4.6 4.6
LKR 1.6 2.5 1.9 4.8 4.9 4.9
GKR 1.5 2.6 1.9 4.9 4.9 4.9
LIN 1.7 2.3 2.1 4.7 5.0 4.9
ELN 1.6 2.6 2.1 4.7 4.8 4.8
ESC 1.5 2.5 2.2 4.7 4.9 4.9
ESN 1.5 2.6 2.2 4.7 4.8 4.8

Table 4  Average ranking for the whole curves (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.8 1.7 1.5 1.3 1.5 1.6
MMF4 2.0 2.2 2.4 2.4 2.5 2.6
WBL4 2.2 2.1 2.1 2.3 2.0 1.7

Fig. 3  Empirical cumulative distribution
of the extrapolation errors. Solid lines
and dashed lines represent the experi-
ments on classification and regression
subsets respectively

1 3

 15   Page 8 of 13

Pattern Analysis and Applications (2025) 28:15

Since our method has analytical solution, we do not have
diverging solutions. Our method is able to find the best solu-
tion that is minimizing the squared error for the training data
with the obtained FPCA components. Moreover, although
we eliminate the diverging results of the parametric mod-
els our proposed method has lower variance in most of the
cases, making our model more reliable.

5.4  Comparison with MDS

Performance across classification and regression tasks are
presented in Tables 6 and 7. For both types of learning
curves, SPKR achieved the lowest rankings, outperforming
MDS in all experiments, except for the classification learn-
ing curves with smaller observed part Q = 10.

The better performance of our method is expected
since it incorporates the MDS method. Prediction of MDS
is based solely on the average of the obtained learning
curves from the database. We assumed a solution in the
form f̃ = f + h + µC , where µC is the mean of the learn-
ing curves obtained from the database. Hence, on top of
the mean of the most similar curves, we also leverage data
points and FPCA components from the database to improve
our prediction compared to MDS. In addition, our method
relies on interpolation of the learning curves in the database
as it is required for the FPCA. This makes our method more
robust for cases where the learning curve database might
have missing values or follows different sampling strategies

other types of similarity measures. We found that minimiz-
ing the area between the targeted curve and the curves in
the database, and dynamic time warping [29] does not yield
vastly different eigenfunctions ψ in our case. Nonetheless,
care must be taken when determining ψ as it the main driv-
ing force of the extrapolation performance of the SPKR. To
demonstrate this, we intentionally choose the most dissimi-
lar curves in our method and observe the average rank of our
method drops significantly as shown in 5. Finally, we also
attempted to get rid of the similarity measure and extract ψ
via FPCA on the whole database, we see a similar drop in
performance again for the SPKR.

We assume that the learning curve database contains
only learning curves, with no other information available.
As shown in [26], an active testing strategy proposed in [30]
for learning curve selection can enable these types of curve
selection strategies when the information is available, and
might improve our methods extrapolation performance.

5.3  Divergence of parametric models

We observed diverging curve-fitting results for complex
problems, which can happen for non-convex objective func-
tions. To ensure a fairer comparison between all models, we
decided to exclude all curves that were problematic for at
least one model. Thus, we ended up removing 9% of our
results for the test part of our learning curve database.

Table 5  Average extrapolation ranking (lower is better) for the case when we choose the least similar curves in the database
Classification Regression
Q:10 Q:25 Q:50 Q:10 Q:25 Q:50

SPKR 5.8 5.7 5.8 3.9 4.8 5.7
MMF4 2.8 2.6 2.3 2.5 2.0 1.9
WBL4 3.2 2.6 2.1 2.3 1.7 1.5
BNSL0 3.0 3.3 3.6 4.1 4.0 3.8
BNSL1 2.9 3.2 3.6 4.0 4.1 3.9
BNSL2 2.9 3.2 3.5 4.0 4.0 3.9

Table 7  Average ranking for the whole curves (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.54 1.40 1.28 1.29 1.44 1.38
MDS 1.46 1.60 1.72 1.71 1.56 1.62

Table 6  Average ranking for extrapolation at N = 100 (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.40 1.45 1.45 1.18 1.36 1.49
MDS 1.60 1.55 1.55 1.82 1.64 1.51

1 3

Page 9 of 13  15

Pattern Analysis and Applications (2025) 28:15

for the sample size N . However, this remains an open ques-
tion, as our learning curve database and experimental design
do not explicitly address such case.

6  Conclusions

We introduced a data-driven approach that facilitates the
rapid extrapolation of learning curves by incorporating
already available learning curves. We utilize a learning
curve database to extrapolate partially observed learning
curves that are not present in the database. Our proposed
method, called SPKR, extracts the relevant part of the data-
set, applies dimensionality reduction and uses this informa-
tion in combination with the partial observations to model
the learning curves. To test our method, we create a learn-
ing curve database consisting of curves that have monotone
and non-monotone behaviours. The extrapolation results
demonstrate that, on average and rank wise, our approach
yields better extrapolation performance than current para-
metric and non-parametric methods for learning curve
extrapolation.

Although we show that SPKR outperforms the alterna-
tive approaches considered in the paper, it just provides a
point estimate. In order to get an idea about the uncertainty
of the estimate, its probabilistic counterpart, Gaussian Pro-
cesses can be used (similar to [6]). This would be particu-
larly useful for applications

concerning learning curves such as hyperparameter opti-
mization and model selection. Finally, we present our results
using a densely sampled learning curve database without
missing values. The effectiveness of our method in cases
involving partially missing learning curves remains an open
question. As a next step, investigating learning curves with
varying sizes or partial observations presents an interesting
research direction.

Appendix A: Learning curve database details

In this work, both classification and regression problems
are used to create a learning curve database. We introduced
variety into the learning curves by altering dataset param-
eters and model hyperparameters. We obtain our learning
curves by using 20 different hyper-parameter and 20 dif-
ferent dataset realizations by regular sampling from the
given ranges summarized in Tables 8 and 9. Figures 4 and
5 presents one realization for some of the datasets used.
The combinations of models and the datasets used for our
learning curve database can be seen in Table 10.

Table 8  Datasets used for the learning curve database
Name Description
Classification
Gaussian (GAU) Artificial 2-class classification problem where

both classes are observed from unit multivari-
ate normal N (0, I). Means of the classes are
separated from each other with p ∈ [0.1, 5]

Banana (BAN) Artificial 2-class classification problem where
both classes are observed from mirrored banana
shapes. Centers of the two banana shapes are
separated from each other with p ∈ [0.1, 5]

Dipping
(RDIP-DDIP)

Artificial 2-class classification problem where
first class is observed from the unit multivariate
normal N (0, I) and the other class is obtained
from a hyper-sphere around the first class
with some additional Gaussian noise [9]. This
curve is parametrized by the dimensionality
D ∈ [2, 20] and radius of the outer hyper-
spherical class r ∈ [1, 100]. See Fig. 4

Regression
Linear (ELN) y = x + ϵ where x ∼ N (0, 1) and

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sine (ESN) y = sin(x) + ϵ where x ∼ N (0, 1) and

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sinc (ESC) y = sin(x)/x + ϵ where x ∼ N (0, 1) and

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sawing (SAW) Point masses at (xa, ya) = (1, 1) and

(xb, yb) = (0.1, 1) with probabilities
pa = 0.001 and pb = 1 − pa respectively. See
Fig. 5

Gaussian process
(DGP)

Special dataset obtained from the prior of a 20
dimensional Gaussian [22]

Table 9  Models and hyperparameters, that are used for the learning
curve database
Name Hyperparameters
Classification
Nearest mean (NMC) No hyperparameters
Nearest neighbor (NNC) Number of neighbours: λnn ∈ [1, 20]
Linear discriminant
(LDC)

Regularization parameter for the covari-
ance matrix: λld ∈ [10−5, 1]

Quadratic discriminant
(QDC)

Regularization parameter for the covari-
ance matrix: λqd ∈ [10−5, 1]

Regression
Linear ridge (LR) Regularization parameter: λr ∈ [10−5, 1]
Kernel ridge (KR) Regularization parameter:

λkr ∈ [10−5, 1] Gaussian and Laplace
kernels with default length-scale γ = 1

Gaussian process (GP) Regularization parameter:
λkr ∈ [10−5, 1] Gaussian kernel with
default length-scale γ = 1

Artificial Neural Net-
work (ANN)

Adam [32] optimizer with learning rate
0.001 and width of the 2 hidden layer
network changing between [5, 25]

1 3

 15   Page 10 of 13

Pattern Analysis and Applications (2025) 28:15

Fig. 5  Scatter plots for one realization
of regression datasets (sine, sinc, sawing
and linear datasets from left to right)

Fig. 4  Scatter plots for one realization of
classification datasets (dipping, Gaussian
and banana datasets from left to right)

1 3

Page 11 of 13  15

Pattern Analysis and Applications (2025) 28:15

7.	 Leite R, Brazdil P (2005) Predicting relative performance of clas-
sifiers from samples. In: Proceedings of the 22nd International
Conference on Machine Learning - ICML ’05, pp 497–503. ACM
Press, Bonn, Germany. https:/​/doi.or​g/10.11​45/11​02351.1102414
. Accessed 2024-11-25

8.	 Chen Z, Loog M, Krijthe JH (2023) Explaining two strange
learning curves. In: Calders T, Vens C, Lijffijt J, Goethals B (eds)
Artificial intelligence and machine learning. Springer, Cham, pp
16–30

9.	 Loog M, Duin RPW (2012) The dipping phenomenon. In:
Gimel’farb G, Hancock E, Imiya A, Kuijper A, Kudo M, Omachi
S, Windeatt T, Yamada K (eds) Structural, syntactic, and statisti-
cal pattern recognition. Springer, Berlin, pp 310–317

10.	 Ruhkopf T, Mohan A, Deng D, Tornede A, Hutter F, Lindauer MT
(2023) Masif: meta-learned algorithm selection using implicit
fidelity information. Trans Mach Learn Res

11.	 Jawed S, Jomaa H, Schmidt-Thieme L, Grabocka J (2021) Multi-
task learning curve forecasting across hyperparameter configura-
tions and datasets. In: Oliver N, Pérez-Cruz F, Kramer S, Read J,
Lozano JA (eds.) Machine Learning and Knowledge Discovery in
Databases. Research Track, pp 485–501. Springer, Cham

12.	 Domhan T, Springenberg JT, Hutter F (2015) Speeding up auto-
matic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In: International Joint Confer-
ence on Artificial Intelligence. ​h​t​t​​p​s​:​/​​/​a​p​​i​.​s​​e​m​a​n​t​i​c​s​c​h​o​l​a​r​.​o​r​g​/​C​o​
r​p​u​s​I​D​:​3​6​9​4​5​7​​​​​​​

13.	 Klein A, Falkner S, Springenberg JT, Hutter F (2017) Learning
curve prediction with bayesian neural networks. In: International
Conference on Learning Representations. ​h​t​t​​p​s​:​/​​/​o​p​​e​n​r​​e​v​i​e​w​.​n​e​t​/​
f​o​r​u​m​?​i​d​=​S​1​1​K​B​Y​c​l​x​​​​​​​

14.	 Egele R, Guyon I, Sun Y, Balaprakash P (2023) Is one epoch all
you need for multi-fidelity hyperparameter optimization?. ​h​t​t​​p​s​:​/​​/​
a​r​​x​i​v​​.​o​r​g​/​a​b​s​/​2​3​0​7​.​1​5​4​2​2​​​​​​​

15.	 Yan S, White C, Savani Y, Hutter F (2021) NAS-Bench-x11 and
the power of learning curves. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​o​​r​g​/​1​0​.​4​8​5​5​0​/​a​r​X​i​v​.​2​1​1​
1​.​0​3​6​0​2​​​​​a​r​X​i​v​. arXiv:2111.03602 [cs]. Accessed 2024-11-25

16.	 Lee DB, Zhang AS, Kim B, Park J, Lee J, Hwang SJ, Lee HB
(2024) Cost-sensitive multi-fidelity bayesian optimization with
transfer of learning curve extrapolation. arXiv. arXiv:2405.17918
[cs]. https:/​/doi.or​g/10.48​550/a​rXiv.2405.17918. Accessed
2024-11-25

17.	 Perlich C (2010) In: Sammut C, Webb GI (eds) Learning curves
in machine learning, pp 577–580. Springer, Boston, MA. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​o​​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​0​-​3​8​7​-​3​0​1​6​4​-​8​_​4​5​2​​​​​​​

18.	 Jain A, Swaminathan G, Favaro P, Yang H, Ravichandran A,
Harutyunyan H, Achille A, Dabeer O, Schiele B, Swaminathan
A, Soatto S (2023) A meta-learning approach to predicting per-
formance and data requirements. In: 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp 3623–
3632. https:/​/doi.or​g/10.11​09/CV​PR52729.2023.00353

Appendix B: Computational details

All of the learning curve generation and majority of experi-
mentation is done in a home-brewed C++ machine learn-
ing library that can be found in ​h​t​t​​p​s​:​/​​/​g​i​​t​h​u​​b​.​c​o​m​/​t​a​y​l​a​n​o​
t​/​m​l​c​x​x​.​g​i​t​​​​​. If a model that we mention was not available
in mlpack [31] we code it from scratch (e.g. , NMC, LDC,
QDC, KR, DGP). All the datasets used for the database are
created by us. BNSL [5] and MDS [7] are implemented in
a library designed specifically for fitting learning curves in
the python environment and is accessible at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​u​​b​
.​c​o​m​/​t​a​y​l​a​n​o​t​/​l​e​a​r​n​i​n​g​c​u​r​v​e​f​i​t​t​i​n​g​.​g​i​t​​​​​. The learning curve
database that we created and the experimental results can
be downloaded from ​h​t​t​​p​s​:​/​​/​s​u​​r​f​d​​r​i​v​​e​.​s​​u​r​f​.​​n​l​​/​f​i​l​e​s​/​i​n​d​e​x​.​p​
h​p​/​s​/​6​K​4​F​i​C​t​x​e​E​d​v​Q​d​x​​​​​.​​

Funding  No funding was received for conducting this study.

Declarations

Conflict of interest  The authors declare that they have no competing
financial or non-financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

References

1.	 Mohr F, Viering TJ, Loog M, Rijn JN (2023) Lcdb 1.0: an exten-
sive learning curves database forÂ classification tasks. In: Amini
M-R, Canu S, Fischer A, Guns T, Kralj Novak P, Tsoumakas G
(eds) Machine learning and knowledge discovery in databases, pp
3–19. Springer, Cham

2.	 Viering TJ, Loog M (2021) The shape of learning curves: a
review. CoRR. arxiv:abs/2103.10948

3.	 Loog M, Viering T (2022) A survey of learning curves with bad
behavior: or how more data need not lead to better performance.
https:/​/arxiv.​org/abs​/2211​.14061

4.	 Adriaensen S, Rakotoarison H, Müller S, Hutter F (2023) Effi-
cient Bayesian learning curve extrapolation using prior-data fitted
networks. https:/​/arxiv.​org/abs​/2310​.20447

5.	 Caballero E, Gupta K, Rish I, Krueger D (2023) Broken neural
scaling laws. https:/​/arxiv.​org/abs​/2210​.14891

6.	 Harvey E, Chen W, Kent DM, Hughes MC (2023) A probabilis-
tic method to predict classifier accuracy on larger datasets given
small pilot data. https:/​/arxiv.​org/abs​/2311​.18025

Table 10  Combinations of datasets and models to create learning curve database
GAU BAN RDIP DDIP ESN ESC ELN SAW DGP

QDC ✓ ✓ ✓ ✓
LDC ✓ ✓ ✓ ✓
NNC ✓ ✓ ✓ ✓
NMC ✓ ✓ ✓ ✓
ANN ✓ ✓ ✓
LR ✓ ✓ ✓ ✓
KR ✓ ✓ ✓
GP ✓

1 3

 15   Page 12 of 13

https://doi.org/10.1145/1102351.1102414
https://api.semanticscholar.org/CorpusID:369457
https://api.semanticscholar.org/CorpusID:369457
https://openreview.net/forum?id=S11KBYclx
https://openreview.net/forum?id=S11KBYclx
https://arxiv.org/abs/2307.15422
https://arxiv.org/abs/2307.15422
https://doi.org/10.48550/arXiv.2111.03602
https://doi.org/10.48550/arXiv.2111.03602
http://arxiv.org/abs/2111.03602
http://arxiv.org/abs/2405.17918
https://doi.org/10.48550/arXiv.2405.17918
https://doi.org/10.1007/978-0-387-30164-8_452
https://doi.org/10.1007/978-0-387-30164-8_452
https://doi.org/10.1109/CVPR52729.2023.00353
https://github.com/taylanot/mlcxx.git
https://github.com/taylanot/mlcxx.git
https://github.com/taylanot/learningcurvefitting.git
https://github.com/taylanot/learningcurvefitting.git
https://surfdrive.surf.nl/files/index.php/s/6K4FiCtxeEdvQdx
https://surfdrive.surf.nl/files/index.php/s/6K4FiCtxeEdvQdx
http://arxiv.org/abs/abs/2103.10948
https://arxiv.org/abs/2211.14061
https://arxiv.org/abs/2310.20447
https://arxiv.org/abs/2210.14891
https://arxiv.org/abs/2311.18025

Pattern Analysis and Applications (2025) 28:15

28.	 Steck H, Ekanadham C, Kallus N (2024) Is cosine-similarity of
embeddings really about similarity? In: Companion Proceedings
of the ACM Web Conference 2024. WWW ’24, pp. 887–890.
Association for Computing Machinery, New York, NY, USA.
https:/​/doi.or​g/10.11​45/35​89335.3651526

29.	 Bringmann K, Fischer N, Hoog I, Kipouridis E, Kociumaka T,
Rotenberg E (2023) Dynamic dynamic time warping. ​h​t​t​​p​s​:​/​​/​a​r​​x​i​
v​​.​o​r​g​/​a​b​s​/​2​3​1​0​.​1​8​1​2​8​​​​​​​

30.	 Leite R, Brazdil P (2010) Active testing strategy to predict the
best classification algorithm via sampling and metalearning. In:
Proceedings of the 2010 Conference on ECAI 2010: 19th Euro-
pean Conference on Artificial Intelligence, pp 309–314. IOS
Press, NLD

31.	 Curtin RR, Edel M, Shrit O, Agrawal S, Basak S, Balamuta
JJ, Birmingham R, Dutt K, Eddelbuettel D, Garg R, Jaiswal S,
Kaushik A, Kim S, Mukherjee A, Sai NG, Sharma N, Parihar
YS, Swain R, Sanderson C (2023) mlpack 4: a fast, header-only
c++ machine learning library. J Open Source Softw 8(82):5026.
https:/​/doi.or​g/10.21​105/j​oss.05026

32.	 Kingma DP, Ba J (2017) Adam: a method for stochastic optimiza-
tion. https:​​​//arx​iv.​org​/abs​/​1412.6980

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

19.	 Schölkopf B, Smola AJ (2001) Learning with Kernels: support
vector machines, regularization, optimization, and beyond. MIT
Press, Cambridge

20.	 Pearson K (1901) Liii. On lines and planes of closest fit to sys-
tems of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 2(11):559–572.
https:/​/doi.or​g/10.10​80/14​786440109462720

21.	 Billheimer D (2007) Functional data analysis, 2nd Edition Edited
by J. O. Ramsay and B. W. Silverman. Biometrics 63(1):300–301. ​
h​t​t​​p​s​:​/​​/​d​o​​i​.​o​​r​g​/​​1​0​.​​1​1​1​1​​/​j​​.​1​5​​4​1​-​0​​4​2​0​​.​2​0​​0​7​.​​0​0​7​​4​3​_​1​​.​x​​​​​​​​h​t​t​p​s​:​/​/​a​c​a​d​e​
m​i​c​.​o​u​p​.​c​o​m​/​b​i​o​m​e​t​r​i​c​s​/​a​r​t​i​c​l​e​-​p​d​f​/​6​3​/​1​/​3​0​0​/​5​2​3​0​0​8​3​6​/​b​i​o​m​e​t​r​i​
c​s​_​6​3​_​1​_​3​0​0​.​p​d​f​​​​​​​

22.	 Sollich P (2001) Gaussian process regression with mismatched
models. https:/​/arxiv.​org/abs​/cond​-mat/0106475

23.	 Gu B, Hu F, Liu H (2001) Modelling classification performance
for large data sets. In: Wang XS, Yu G, Lu H (eds) Advances in
web-age information management. Springer, Berlin, pp 317–328

24.	 Kolachina P, Cancedda N, Dymetman M, Venkatapathy S (2012)
Prediction of learning curves in machine translation. In: Li H, Lin
C-Y, Osborne M, Lee GG, Park JC (eds.) Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp 22–30. Association for Computa-
tional Linguistics, Jeju Island, Korea. ​h​t​t​p​s​:​/​/​a​c​l​a​n​t​​​h​o​l​o​g​y​.​o​r​g​/​P​1​
2​-​1​0​0​3​​​​​​​

25.	 Liu DC, Nocedal J (1989) On the limited memory bfgs method
for large scale optimization. Math Program 45:503–528

26.	 Kielhöfer L, Mohr F, Rijn JN (2024) Learning curve extrapolation
methods across extrapolation settings. In: Miliou I, Piatkowski N,
Papapetrou P (eds) Advances in intelligent data analysis XXII.
Springer, Cham, pp 145–157

27.	 Nadaraya EA (1964) On estimating regression. Theory Prob Appl
9(1):141–142. https:/​/doi.or​g/10.11​37/11​09020

1 3

Page 13 of 13  15

https://doi.org/10.1145/3589335.3651526
https://arxiv.org/abs/2310.18128
https://arxiv.org/abs/2310.18128
https://doi.org/10.21105/joss.05026
https://arxiv.org/abs/1412.6980
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1111/j.1541-0420.2007.00743_1.x
https://doi.org/10.1111/j.1541-0420.2007.00743_1.x
https://academic.oup.com/biometrics/article-pdf/63/1/300/52300836/biometrics_63_1_300.pdf
https://academic.oup.com/biometrics/article-pdf/63/1/300/52300836/biometrics_63_1_300.pdf
https://academic.oup.com/biometrics/article-pdf/63/1/300/52300836/biometrics_63_1_300.pdf
https://arxiv.org/abs/cond-mat/0106475
https://aclanthology.org/P12-1003
https://aclanthology.org/P12-1003
https://doi.org/10.1137/1109020

	﻿Learning Learning Curves
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background on the learning curves
	﻿﻿3﻿ ﻿Extrapolating learning curves
	﻿3.1﻿ ﻿Parametric curve-fitting
	﻿3.2﻿ ﻿Semi-Parametric Kernel Ridge (﻿SPKR﻿)

	﻿﻿4﻿ ﻿Experimental setup
	﻿4.1﻿ ﻿Learning curve database
	﻿4.2﻿ ﻿Learning curve extrapolation
	﻿4.2.1﻿ ﻿Baselines
	﻿4.2.2﻿ ﻿Fitting semi-parametric kernel ridge

	﻿﻿5﻿ ﻿Results and discussion
	﻿5.1﻿ ﻿Extrapolation performance
	﻿5.2﻿ ﻿Obtaining ﻿￼﻿﻿ from database
	﻿5.3﻿ ﻿Divergence of parametric models
	﻿5.4﻿ ﻿Comparison with ﻿MDS﻿

	﻿﻿6﻿ ﻿Conclusions
	﻿Appendix A: Learning curve database details
	﻿Appendix B: Computational details
	﻿References

