
 
 

Delft University of Technology

Learning Learning Curves

Turan, O. Taylan; Tax, David M.J.; Viering, Tom J.; Loog, Marco

DOI
10.1007/s10044-024-01394-6
Publication date
2025
Document Version
Final published version
Published in
Pattern Analysis and Applications

Citation (APA)
Turan, O. T., Tax, D. M. J., Viering, T. J., & Loog, M. (2025). Learning Learning Curves. Pattern Analysis
and Applications, 28(1), Article 15. https://doi.org/10.1007/s10044-024-01394-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10044-024-01394-6
https://doi.org/10.1007/s10044-024-01394-6


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



ORIGINAL ARTICLE

Pattern Analysis and Applications           (2025) 28:15 
https://doi.org/10.1007/s10044-024-01394-6

1  Introduction

A learning curve shows the generalization performance of a 
learner as a function of the training set size. This should not 
be confused with training curves. Both curves find various 
applications in machine learning pipelines. Tuning hyper-
parameters, selecting models, and assessing whether add-
ing more data benefits a learner, for instance, are some of 
the applications [1]. However, training curves are used to 
track model performance for a single learning problem dur-
ing loss optimization, whereas the learning curve tracks the 
average model performance over different learning prob-
lems from the same dataset. In other words, one obtains the 
training curve at no cost while training the model. However, 
obtaining learning curves require training the model mul-
tiple times with different subsets of the dataset, making it 
computationally taxing to obtain.

The performance of a learner for increasing training set 
sizes can be predicted by extrapolating the learning curves. 
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Abstract
Learning curves depict how a model’s expected performance changes with varying training set sizes, unlike training 
curves, showing a gradient-based model’s performance with respect to training epochs. Extrapolating learning curves can 
be useful for determining the performance gain with additional data. Parametric functions, that assume monotone behav-
iour of the curves, are a prevalent methodology to model and extrapolate learning curves. However, learning curves do 
not necessarily follow a specific parametric shape: they can have peaks, dips, and zigzag patterns. These unconventional 
shapes can hinder the extrapolation performance of commonly used parametric curve-fitting models. In addition, the 
objective functions for fitting such parametric models are non-convex, making them initialization-dependent and brittle. 
In response to these challenges, we propose a convex, data-driven approach that extracts information from available 
learning curves to guide the extrapolation of another targeted learning curve. Our method achieves this through using a 
learning curve database. Using the initial segment of the observed curve, we determine a group of similar curves from the 
database and reduce the dimensionality via Functional Principle Component Analysis FPCA. These principal components 
are used in a semi-parametric kernel ridge regression (SPKR) model to extrapolate targeted curves. The solution of the 
SPKR can be obtained analytically and does not suffer from initialization issues. To evaluate our method, we create a new 
database of diverse learning curves that do not always adhere to typical parametric shapes. Our method performs better 
than parametric non-parametric learning curve-fitting methods on this database for the learning curve extrapolation task.
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Starting with very small training set sizes, the initial seg-
ment of a learning curve can be obtained in a cheap and 
quick manner. With this partially observed learning curve, 
one can extrapolate it to predict a model’s performance for 
the given dataset without the need for excessive amount of 
data or computational resources.

Historically, learning curves are extrapolated by fitting 
to parametric functions, such as exponential or power law 
functions [1, 2]. These parametric models often (implicitly) 
assume that the learning curves are well-behaved, i.e. that 
increasing dataset size the generalization performance gets 
better. As pointed out in the survey [3], this assumption 
can be violated in various ways. Moreover, due to limited 
number of training samples available, the fitting of nonlin-
ear functions becomes fragile and highly dependent on the 
initialization.

It is worth mentioning that these parametric functions are 
used not only to model learning curves but also for model-
ing training curves. One example of this usage is presented 
in [4], where a collection of parametric curve models is used 
as a prior to extrapolate training curves with a transformer. 
Moreover, in [5], a hand-crafted collection of parametric 
models is used to model learning and training curves with 
multiple infliction points. Finally, [6] uses trainable para-
metric models for the mean function of a Gaussian Process.

Using parametric models is a logical choice, if curves 
have underlying parametric forms. However, curves do not 
follow fixed parametric shapes. For this reason, obtaining 
these functional forms from data is a promising path to auto-
mate learning curve extrapolation further.

To break free from limitations of parametric functions, 
we assume the existence of a database of learning curves, 
as shown in Fig. 1a. The goal is to extrapolate an unknown 
targeted learning curve to get a generalization performance 
at a specific training set size, as depicted in Fig. 1b, without 
using any parametric models.

A similar setting is considered in [7], where, a non-
parametric, data-driven pipeline is introduced that uses a 
similar setting where a learning curve database is available. 

However, their task is to perform a binary model selec-
tion for classification problems at unseen sample sizes. We 
propose a pipeline using the semi-parametric kernel ridge 
(SPKR) model for extrapolating learning curves. SPKR can 
incorporate any real-valued function in addition to train-
ing points from the targeted learning curve. We obtain 
these functions by functional principal component analy-
ses (FPCA) and the mean of the relevant part of a database 
to incorporate related learning curve behaviours for better 
extrapolation performance for learning curves.

In addition to our method, we provide a learning curve 
database. The motivation to create a new learning curve 
database is threefold. Firstly, to have a database free from 
missing values, something the dataset from [1] suffers 
from. Secondly, we want to include some significantly non-
monotonic curves, for instance, sawing [8] and dipping [9] 
curves, to highlight the ability of a non-parametric approach 
to curve extrapolation. Finally, we want to have learning 
curves obtained from regression problems which [1] lacks 
again.

This paper is organized as follows: In Sect. 2, we provide 
a brief background on learning curves. Section 3 presents 
common methods for extrapolating learning curves, along 
with our proposed methodology. We then detail our experi-
mental setup in Sect. 4. Section 5 presents our results, fol-
lowed by the main conclusions in Sect. 6. Before giving our 
learning curve definition in Sect. 2, we should mention that 
this paper deviates from the works proposed on training 
curve extrapolation [10–16], simply because of the inherent 
differences between learning and training curves.

2  Background on the learning curves

In this section we cover the necessary background on learn-
ing curve theory following the notation of [2]. We employ 
the term learning curve, as defined in the broader context of 
the general machine learning literature, to describe general-
ization performance as it relates to the number of training 

Fig. 1  Learning curve plots show 
generalization performance vs 
sample size. In b: initial points 
observed marked with pink, and 
the desired training set size marked 
with green for which we would 
like to get the generalization 
performance
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samples. It is worth noting that the same term is used to 
refer to different types of curves in various domains. This 
can lead to common misconceptions, especially when deal-
ing with the artificial neural network (ANN) literature, where 
the x-axis of the learning curve often represents the number 
of training iterations [17].

To formalize our definition of a learning curve for super-
vised regression and classification problems, let us denote 
the input and output spaces as X and Y, respectively. A learn-
ing algorithm A takes N  i.i.d samples DN := (xi, yi)N

i=1 
from an unknown distribution P(x, y) over X × Y and pro-
duces a hypothesis h from a hypothesis class H. This can 
also be represented by h := A(DN )). Then, the prediction 
of a learner can be represented as ŷ = h(x) ∈ Y. The error 
of the learner is measured by a loss function L(y, ŷ). In clas-
sification this is typically the zero–one error, and in regres-
sion the mean squared error is often used. The expected 
loss (or risk) R of a hypothesis h over the true distribution 
P(x, y) is given by:

R(h) =
∫

L(y, ŷ)P(x, y)dxdy� (1)

An individual learning curve of a learner A is ideally 
obtained by plotting R against N . Thus, a learning curve 
C : Z+ → R depends on A, P , and N .

3  Extrapolating learning curves

Learning curve extrapolation can be formulated as a 
learning problem too. Assume that we are given pairs 
Z := (Ni, Ri)Q

i=1, which are sampled points from the 
beginning of an arbitrary learning curve. Our primary goal 
is to learn this unknown learning curve C such that, pre-
dicted risk R̂target is as close to the real risk Rtarget as pos-
sible for a given sample size Ntarget ̸∈ [N1, NQ]. In the rest 
of this section, we first recall parametric curve-fitting and 
subsequently present our proposed approach for extrapolat-
ing learning curves.

3.1  Parametric curve-fitting

Commonly, it is assumed that learning curves have simi-
lar shapes, making the parametric curve-fitting a com-
monly used approach [2]. Let us assume that an arbitrary 
parametric curve for fitting learning curve is represented by 
f·(N, θ), with θ as the adjustable model parameters. Then, 
for training pairs Z := (Ni, Ri)Q

i=1 the least squares curve-
fitting problem is given by:

θ̂ ∈ arg min
θ

Q∑
i=1

(Ri − f·(Ni, θ))2.� (2)

According to [1, 2], many researchers use power law and 
exponential parametric models for f . To account for behav-
iour changes for different regions of the learning curves, 
more complex parametric formulations are proposed in 
[5, 18]. All the parametric models proposed are non-linear 
functions of θ. This makes parametric curve-fitting initial-
ization dependent. When this is the case, Eq.  2 does not 
have a closed form solution and is non-convex.

3.2  Semi-Parametric Kernel Ridge (SPKR)

Next to the training pairs Z := (Ni, Ri)Q
i=1, we now assume 

that other learning curves are available at training time.
Let us assume a model in the form f̃ = f + h to approxi-

mate an arbitrary learning curve C. Here, f ∈ RX represents 
the information coming from Z , and h ∈ span{ψp}, where 
{ψp}M

p=1 is a set of real-valued functions that represent the 
information coming from the available learning curves. 
Assuming a strictly increasing loss function L, and a strictly 
increasing regularizer function Ω, our learning problem can 
be expressed as:

ˆ̃f ∈ arg min
f̃∈H

L(f̃ , R) + Ω(||f ||H).� (3)

In this equation, H is the Reproducing Hilbert Space and 
R ∈ RQ×1 is all the labels of our training set. According to the 
Semi-parametric Representer Theorem [19], the solution to 

Eq. 3 has the form: f̃(·) =
∑Q

i αiK(·, Ni) +
∑M

j βjψj(·)

, where K is any Mercer kernel. If we assume 
Ω(||f ||H) := λ||f ||2H and the squared error as loss func-

tion L =
∑Q

i=1(Ri − f̂(Ni, θ))2, the convex optimization 
problem has a unique solution. The optimal parameters are 
represented by α̂ ∈ RQ×1, and β̂ ∈ RM×1. Furthermore, 
when K ∈ RQ×Q, ψ ∈ RQ×M  are the kernel matrix, and the 
additional information coming from the available learning 
curves, respectively, this unique solution can be obtained as:

ŵ = (ATA + λBT)−1ATR.� (4)

Here, ŵ := [α̂; β̂] ∈ R(Q+M)×1 is the collection of the 
optimal parameters, and A := [K, ψ] ∈ RQ×(Q+M) is 
the concatenation of the Kernel matrix and the additional 
information coming from the available learning curves, and 
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definition. Thus, our final proposed model for learning 
curve extrapolation takes the form f̃ = f + h + µC . Simi-
lar to Eq. 4, the optimal solution with the addition of the 

database mean at the training points C̄ := {µC(Ni)}Q
i=1 can 

be obtained as:

ŵ = (ATA + λBT)−1AT(R − C̄).� (6)

The entire pipeline is summarized in Algorithm 1, where the 
steps for extrapolation using SPKR on learning curves are 
outlined in detail.

4  Experimental setup

This section provides details of the learning curve database 
generation, outlines the extrapolation setting that we con-
sider, methodological choices, and the experimental setting.

4.1  Learning curve database

The true risk in Eq. 1 can only be computed when we have 
access to the exact joint distribution P(x, y) and when the 
integral is tractable. In practice, however, we only have 
access to a finite sample drawn from P(x, y). To estimate 
a learning curve, we choose to repeatedly select a subset 
of size N  from the available dataset, using the remaining 
data to compute the test error [2]. This process is repeated 
100 times, and the resulting errors are averaged to get an 
estimate for Eq. 1. We apply this procedure for each training 
set size in the range N ∈ [2, 100] to generate one complete 
learning curve.

Our database is comprised of 11, 240 learning curves, of 
which 4840 are classification problems and 6400 are regres-
sion problems. This collection of learning curves involve 
curves that are known to exhibit non-monotonic behaviour 
(i.e. sawing-type [8] and special high dimensional Gaussian 
Process model learning curves [22], dipping phenomenon 
[9]) as well as monotone learning curves.

Classification models are selected to be Linear Discrimi-
nant (LDA), Quadratic Discriminant (QDA), Nearest Mean 
(NMC) and Nearest Neighbor (NNC) classifiers. Learning 

B := [I, 0; 0, 0] ∈ R(Q+M)×(Q+M) is the regularization 
applied to f.

A crucial part of SPKR is how the {ψp}M
p=1 are obtained. In 

our aforementioned extrapolation problem, we aim to obtain 
it from the relevant part of a learning curve database. First, 
the relevant part of the database can be selected by using a 
similarity measure S(Z, C). It measures the similarity of Z  
with respect to the initial part of all the curves available in 
the learning curve database C.

One of the most obvious choices is to use all the simi-
lar curves in the database, but note that there is an inverse 
operation in Eq. 4 with the complexity O((Q + M)3). This 
results in a computational bottleneck when the relevant part 
of the database is large. To keep the computations feasible, a 
small set of curves representing the biggest modes of varia-
tions is derived using principal component analysis (PCA) 
[20]. Next to reducing the computational cost, it also pre-
vents overfitting to the learning curve database. Our learn-
ing curve database consists of functionals; hence we use 
functional principal component analysis (FPCA) to extract 
the most important modes of variations in the learning curve 
database.

Using the notation of [21], the covari-
ance of learning curve database is given by 
v(s, t) = U−1 ∑U

i=1(Ci(s) − µC(s))(Ci(t) − µC(t))
, where U  is the number of learning curves present in the 
database and µC  is the mean function for the relevant part of 
the database. We can formulate the eigenvalue problem for 
the FPCA as follows (see also [21]):
∫

v(s, t)ξ(t)dt = ρξ(s).� (5)

This eigenvalue problem is satisfied for each eigenfunc-
tion ξ with the corresponding eigenvalue ρ. Eigenfunctions, 
in this case, represent the modes of variation in the data-
base. We choose the first M  of these eigenfunctions with 

the largest eigenvalues ({ψp}M
p=1 = {ξp}M

p=1) to be used 

in the SPKR. Since the principal components describe the 
principal variations around the mean µC  of the relevant part 
of the database, we also separately include it in our model 

Algorithm 1  Extrapolation with 
SPKR on learning curves
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fmmf4(N, θ) = (θ1θ2 + θ3 · (N)θ4)/(θ2 + (N)θ4) � (8)

These two parametric functions are reported to perform 
the best for extrapolating learning curves in [1] for another 
learning curve database. We use LBFGS [25] to solve Eq. 2. 
Since gradient approximation (i.e. finite difference) results 
are reported to be unstable for optimization, we use the 
exact gradients for both parametric models [14]. The opti-
mization is repeated 100 times where the initial parameters 
are drawn from a normal distribution with zero mean and 
unit variance. For each observed curve we do a 80–20% 
random train-validation split on the observed data of that 
curve. The best performing parameter configuration on the 
validation set is used to initialize the fitting procedure again 
with the 100% of the observed data. Note that the baseline 
models do not have access to the learning curve database by 
construction.
We also use the parametric formulation given in [5], which 
can handle non-monotonic curves. The training procedure 
in the paper is followed. A general form with k infliction 
points is given by:

fbnslk (N, θ) = θ1 + (θ2N−θ3)
k∏

i=1
(1 + (N/θ1i

)1/θ2i )−θ3i
θ2i .� (9)

Although, authors of [5] suggest using cross-validation to 
obtain the number of infliction points. We train separate 
models up until 3 infliction points to see the general trend 
of these parametric models. Although 3 infliction points 
might not be sufficient to model some of the curves in our 
database, computational resources create a bottleneck given 
the training procedure in [5]. These baselines are tokened 
as BNSLk, where the k represents the number of infliction 
points 0, 1, 2.
A similar method to ours is [6], where parametric models 
used for enhancing the extrapolation performance of Gauss-
ian Process Regression. However, since this model depends 
on an expert decision regarding the saturation limit and is 
designed solely for classification problems, we are unable 
to use it as a baseline.

We compare our model also to the non-parametric 
method Meta-learning on Data Samples MDS proposed 
in [7]. However, since our task is to extrapolate a learn-
ing curve and approximate the generalization performance 
given the initial segment of the learning curve, we adjust 
MDS as follows: First, k most similar curves of the data-
base to the target curve Z  is selected, from learning curve 
database C with a similarity measure S(Z, C). The result-
ing collection of curves are denoted by Ck. These selected 

curves are then scaled with s =
∑Q

i=0
(RiCk(Ni)wi)∑Q

i=0
(Ck(Ni)2wi)

, where 

w represents an arbitrary weight for a given point. Finally, 

curves of these classifiers with range of hyperparameters are 
created for the Banana (BAN), Gaussian (GAU) and Dip-
ping [9] (RDIP-DDIP) datasets. Different variants of the 
Banana and Gaussian datasets are obtained by varying the 
separation of the two classes. Moreover, For the Dipping 
dataset dimension of the problem (DDIP) and the radius of 
the outer class (RDIP) increased to create various datasets.

Regression learning curves are obtained for linear model 
(LIN) with a range of regularization, multi-layer perceptron 
(ANN) model with changing width of the two hidden layers 
with soft-sign activation function. Kernel Ridge model with 
Gaussian (GKR) and Laplace (LKR) kernel. Datasets used 
include linear (ELN), sinc (ESC), and sine (ESN) datasets 
with a homoscedastic noise. Variants of these datasets are 
created by increasing the variance of the added Gaussian 
noise. Moreover, a sawing dataset (SAW) [8] (used only for 
a linear model without bias term), and finally DGP prior 
dataset [22] (used only by Gaussian process model). Fur-
ther details about the models and datasets used to create the 
learning curves, along with their respective abbreviations, 
can be found in Appendix A.

In our experiments, we treat classification and regres-
sion problems separately due to the distinct nature of their 
performance metrics. Specifically, classification tasks are 
evaluated based on the error rate, while regression tasks are 
assessed using the mean squared error (MSE). To accom-
modate these differences, we create separate curve data-
bases for classification and regression, ensuring that each is 
split independently. For both cases, we allocate 80% of the 
learning curves for training and use the remaining 20% for 
evaluating extrapolation performance.

4.2  Learning curve extrapolation

During extrapolation, we assume that the learning curve is 
partially observed; up to a maximum value for N . We con-
sider only Q = 10, Q = 25, or Q = 50 initial points of the 
targeted curve learning curve is observed. Given a learning 
curve database and a targeted learning curve, our primary 
objective is to predict the performance at the end of each 
targeted learning curve, N = 100. Finally, the extrapolation 
error is calculated using the squared loss for each curve for 
every extrapolation method. All the curves are normalized 
such that the area under each curve is 1.

4.2.1  Baselines

We choose the parametric curve-fitting baselines as WBL4 
[23] and MMF4 [24], with parametric functions given in 
Eqs. 7 and 8 respectively.

fwbl4(N, θ) = −θ1exp(−θ2(N)θ3) + θ4 � (7)

1 3
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4.2.2  Fitting semi-parametric kernel ridge

Our method has several hyperparameters, including the 
regularization parameter (λ), kernel parameters (e.g. length-
scale of the kernel), the number of FPCA components, 
similarity measure, and set the number of curves for select-
ing the relevant part of the database. We choose similarity 
measure as cosine similarity and the number of curves to be 
selected from the database as 100. Then, Nadaraya-Watson 
smoothing [27] with default values is applied to make the 
eigenfunctions smoother. In this work, we select M  FPCA 
components which represent 95% of the selected subset of 
the database.

For our method we optimize only for the length-scale of 
a Gaussian Kernel length scale in the range γ ∈ [100, 102] 
and a regularization parameter λ ∈ [100, 101]. Similar to the 
approach used for baselines, an 80%-20% train-validation 

the scaled curves are averaged to predict generalization per-
formance at Ntarget which is given by:

fmds(N, C, k) = 1
k

∑
i∈Ck

siCi(N).� (10)

In [7] weights are defined as wi = N2
i , however [26] sug-

gests wi = 2i claiming improved performance. Our pre-
liminary experiments confirmed the superiority of this 
weighing scheme on our database as well, hence we adopt 
it. Moreover, for the similarity measure we use the cosine 
similarity, since we did not observe significant difference 
between the results of average squared distance between the 
curves. Additionally, we set k = 100 to be consistent with 
our method. By selecting the same similarity measure and 
number of curves, we ensure a fair comparison between 
MDS and our proposed method.

Fig. 2  Mean and standard deviation 
of the extrapolation squared errors 
(SE) for varying training points. 
Classification and regression learn-
ing curve results are plotted with 
solid and dashed lines respectively
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increased spread for small training points can be caused 
by the lack of information selecting the relevant part of the 
database with little number of training points. Additionally, 
in our database, highly non-monotonic curves exist where 
the beginning of the curve is not representative of the end 
portion. We also observe a slight standard deviation increase 
for regression problems for our method for when the train-
ing set size is increased from 10 to 25, although it still has 
the lowest spread.

Another observation in Fig. 2 is that BNSL performance 
does not strictly improve as the number of infliction points 
are increased, hindering the trivial usage of this method in 
learning curve extrapolation. The varying performances of 
parametric models for classification and regression learning 
curves across varying initial segment lengths suggests that 
our method is able to adjust its bias dynamically with the 
selected curves.

Since averaging squared errors is prone to being affected 
by the outliers, we also examine the average rankings in 
Table 1. Similar to average performance, SPKR achieves a 
better average rank for all initial segment sizes. We observe 
that our method is highly effective for regression problems 
with smaller initial segments (Q). Additionally, we investi-
gate the average rank on subsets of the database and found 
that our model has a better average rank in almost all of the 
subsets we considered. (See Tables 2 and 3.)

Figure  3 illustrates the cumulative error distribution, 
where SPKR has consistently lower median for all experi-
ments. The only instances where baselines MMF4 and 
WBL4 have lower errors is in the first quartile of Q = 10 for 
classification problems. Finally, we observe that the inflic-
tion point increase does not influence the performance of 
BNSL significantly, especially for lower Q values.

Tables 2 and 3 show the average rankings for various 
subsets of the data. Our method performs well across all 
the subsets besides the Gaussian Dataset where MMF4 and 
WBL4 has better average ranks. Only, on the Gaussian data-
set (GAU) our method comes third.

All the results discussed so far pertain to the extrapolation 
performance; however, our method also performs as good in 
interpolation regime with the overall curve. Ranking with 

split of the targeted curve is followed by a grid search for 
hyper-parameter optimization. Each hyper-parameter range 
is divided into 20 evenly spaced values in logarithmic 
space. The hyper-parameter configuration that yields the 
lowest validation error is selected for training with the full 
observed data of the partially observed curve. The resulting 
model is evaluated for extrapolation at N = 100. This pro-
cess is carried our for each curve to be predicted.

5  Results and discussion

In this section, we investigate the extrapolation perfor-
mance of our model compared to parametric baselines for 
regression and classification learning curves. Next, we ana-
lyze the average performances of all the models along with 
their variances. Then we examine the partial ordering and 
full ordering by analyzing the empirical cumulative distri-
bution function and average rankings. We further explore 
the importance of selecting the relevant part of the database 
through additional experiments. Finally, we compare the 
average ranking of our method with a non-parametric learn-
ing curve extrapolation method MDS.

Note that a Wilcoxon significance test showed that the 
error distributions of our method compared to all the para-
metric and non-parametric baselines is significantly differ-
ent with all the p-values smaller than the significance level 
of 0.0001.

5.1  Extrapolation performance

Figure 2 shows the extrapolation errors for the SPKR, and 
other baselines for both classification and regression learn-
ing curves. The top row shows the averaged squared error, 
the bottom row shows the standard deviations. The left col-
umn shows the results for the classification learning curves, 
while the right column the regression results.

SPKR exhibits lower average squared errors made for the 
targeted extrapolation point compared to baselines across 
all the Q values that is considered in this work. Similarly, 
the spread of SPKR errors is smaller, except Q = 10, where 
MMF4 and BNSL0 and BNSL1 show lower spread. The 

Table 1  Average extrapolation ranking (lower is better) for both classification and regression learning curves
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 2.5 2.2 1.8 1.1 1.3 1.5
MMF4 3.4 3.2 3.0 3.1 2.7 2.6
WBL4 3.8 3.2 2.7 2.9 2.5 2.2
BNSL0 3.7 4.0 4.4 4.6 4.7 4.7
BNSL1 3.7 4.0 4.4 4.5 4.8 4.8
BNSL2 3.7 4.0 4.4 4.5 4.7 4.8

1 3
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5.2  Obtaining ψ from database

In [28] it is argued that cosine similarity can be a problem-
atic choice in some cases. This is why we investigated two 

respect to whole curve fitting (including all extrapolation 
and interpolation) based on MSE can be seen in Table 4.

Table 2  Average rankings (lower is better) of several groupings for the classification learning curves
SPKR MMF4 WBL4 BNSL0 BNSL1 BNSL2

NMC 1.6 2.8 2.4 4.7 4.6 4.6
LDC 1.9 2.9 2.9 4.3 4.4 4.4
QDC 2.3 3.5 2.8 4.1 4.0 4.0
NNC 1.5 2.7 2.8 4.7 4.6 4.5
DDIP 1.8 3.3 3.1 4.1 4.2 4.1
RDIP 1.6 3.2 2.9 4.4 4.3 4.3
GAU 2.2 1.9 1.8 4.9 4.9 4.9
BAN 1.6 3.4 3.1 4.3 4.2 4.2

Table 3  Average rankings (lower is better) of various groupings for the regression learning curves
SPKR MMF4 WBL4 BNSL0 BNSL1 BNSL2

DGP 1.5 1.5 2.7 5.5 4.8 4.8
NN 1.3 3.1 2.7 4.4 4.6 4.6
LKR 1.6 2.5 1.9 4.8 4.9 4.9
GKR 1.5 2.6 1.9 4.9 4.9 4.9
LIN 1.7 2.3 2.1 4.7 5.0 4.9
ELN 1.6 2.6 2.1 4.7 4.8 4.8
ESC 1.5 2.5 2.2 4.7 4.9 4.9
ESN 1.5 2.6 2.2 4.7 4.8 4.8

Table 4  Average ranking for the whole curves (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.8 1.7 1.5 1.3 1.5 1.6
MMF4 2.0 2.2 2.4 2.4 2.5 2.6
WBL4 2.2 2.1 2.1 2.3 2.0 1.7

Fig. 3  Empirical cumulative distribution 
of the extrapolation errors. Solid lines 
and dashed lines represent the experi-
ments on classification and regression 
subsets respectively
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Since our method has analytical solution, we do not have 
diverging solutions. Our method is able to find the best solu-
tion that is minimizing the squared error for the training data 
with the obtained FPCA components. Moreover, although 
we eliminate the diverging results of the parametric mod-
els our proposed method has lower variance in most of the 
cases, making our model more reliable.

5.4  Comparison with MDS

Performance across classification and regression tasks are 
presented in Tables 6 and 7. For both types of learning 
curves, SPKR achieved the lowest rankings, outperforming 
MDS in all experiments, except for the classification learn-
ing curves with smaller observed part Q = 10.

The better performance of our method is expected 
since it incorporates the MDS method. Prediction of MDS 
is based solely on the average of the obtained learning 
curves from the database. We assumed a solution in the 
form f̃ = f + h + µC , where µC  is the mean of the learn-
ing curves obtained from the database. Hence, on top of 
the mean of the most similar curves, we also leverage data 
points and FPCA components from the database to improve 
our prediction compared to MDS. In addition, our method 
relies on interpolation of the learning curves in the database 
as it is required for the FPCA. This makes our method more 
robust for cases where the learning curve database might 
have missing values or follows different sampling strategies 

other types of similarity measures. We found that minimiz-
ing the area between the targeted curve and the curves in 
the database, and dynamic time warping [29] does not yield 
vastly different eigenfunctions ψ in our case. Nonetheless, 
care must be taken when determining ψ as it the main driv-
ing force of the extrapolation performance of the SPKR. To 
demonstrate this, we intentionally choose the most dissimi-
lar curves in our method and observe the average rank of our 
method drops significantly as shown in 5. Finally, we also 
attempted to get rid of the similarity measure and extract ψ 
via FPCA on the whole database, we see a similar drop in 
performance again for the SPKR.

We assume that the learning curve database contains 
only learning curves, with no other information available. 
As shown in [26], an active testing strategy proposed in [30] 
for learning curve selection can enable these types of curve 
selection strategies when the information is available, and 
might improve our methods extrapolation performance.

5.3  Divergence of parametric models

We observed diverging curve-fitting results for complex 
problems, which can happen for non-convex objective func-
tions. To ensure a fairer comparison between all models, we 
decided to exclude all curves that were problematic for at 
least one model. Thus, we ended up removing 9% of our 
results for the test part of our learning curve database.

Table 5  Average extrapolation ranking (lower is better) for the case when we choose the least similar curves in the database
Classification Regression
Q:10 Q:25 Q:50 Q:10 Q:25 Q:50

SPKR 5.8 5.7 5.8 3.9 4.8 5.7
MMF4 2.8 2.6 2.3 2.5 2.0 1.9
WBL4 3.2 2.6 2.1 2.3 1.7 1.5
BNSL0 3.0 3.3 3.6 4.1 4.0 3.8
BNSL1 2.9 3.2 3.6 4.0 4.1 3.9
BNSL2 2.9 3.2 3.5 4.0 4.0 3.9

Table 7  Average ranking for the whole curves (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.54 1.40 1.28 1.29 1.44 1.38
MDS 1.46 1.60 1.72 1.71 1.56 1.62

Table 6  Average ranking for extrapolation at N = 100 (lower is better) for both classification and regression problems
Classification Regression
Q = 10 Q = 25 Q = 50 Q = 10 Q = 25 Q = 50

SPKR 1.40 1.45 1.45 1.18 1.36 1.49
MDS 1.60 1.55 1.55 1.82 1.64 1.51

1 3

Page 9 of 13     15 



Pattern Analysis and Applications           (2025) 28:15 

for the sample size N . However, this remains an open ques-
tion, as our learning curve database and experimental design 
do not explicitly address such case.

6  Conclusions

We introduced a data-driven approach that facilitates the 
rapid extrapolation of learning curves by incorporating 
already available learning curves. We utilize a learning 
curve database to extrapolate partially observed learning 
curves that are not present in the database. Our proposed 
method, called SPKR, extracts the relevant part of the data-
set, applies dimensionality reduction and uses this informa-
tion in combination with the partial observations to model 
the learning curves. To test our method, we create a learn-
ing curve database consisting of curves that have monotone 
and non-monotone behaviours. The extrapolation results 
demonstrate that, on average and rank wise, our approach 
yields better extrapolation performance than current para-
metric and non-parametric methods for learning curve 
extrapolation.

Although we show that SPKR outperforms the alterna-
tive approaches considered in the paper, it just provides a 
point estimate. In order to get an idea about the uncertainty 
of the estimate, its probabilistic counterpart, Gaussian Pro-
cesses can be used (similar to [6]). This would be particu-
larly useful for applications 

concerning learning curves such as hyperparameter opti-
mization and model selection. Finally, we present our results 
using a densely sampled learning curve database without 
missing values. The effectiveness of our method in cases 
involving partially missing learning curves remains an open 
question. As a next step, investigating learning curves with 
varying sizes or partial observations presents an interesting 
research direction.

Appendix A: Learning curve database details

In this work, both classification and regression problems 
are used to create a learning curve database. We introduced 
variety into the learning curves by altering dataset param-
eters and model hyperparameters. We obtain our learning 
curves by using 20 different hyper-parameter and 20 dif-
ferent dataset realizations by regular sampling from the 
given ranges summarized in Tables 8 and 9. Figures 4 and 
5 presents one realization for some of the datasets used. 
The combinations of models and the datasets used for our 
learning curve database can be seen in Table 10.

Table 8  Datasets used for the learning curve database
Name Description
Classification
Gaussian (GAU) Artificial 2-class classification problem where 

both classes are observed from unit multivari-
ate normal N (0, I). Means of the classes are 
separated from each other with p ∈ [0.1, 5]

Banana (BAN) Artificial 2-class classification problem where 
both classes are observed from mirrored banana 
shapes. Centers of the two banana shapes are 
separated from each other with p ∈ [0.1, 5]

Dipping 
(RDIP-DDIP)

Artificial 2-class classification problem where 
first class is observed from the unit multivariate 
normal N (0, I) and the other class is obtained 
from a hyper-sphere around the first class 
with some additional Gaussian noise [9]. This 
curve is parametrized by the dimensionality 
D ∈ [2, 20] and radius of the outer hyper-
spherical class r ∈ [1, 100]. See Fig. 4

Regression
Linear (ELN) y = x + ϵ where x ∼ N (0, 1) and 

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sine (ESN) y = sin(x) + ϵ where x ∼ N (0, 1) and 

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sinc (ESC) y = sin(x)/x + ϵ where x ∼ N (0, 1) and 

ϵ ∼ N (0, r) with r ∈ [0, 1]
Sawing (SAW) Point masses at (xa, ya) = (1, 1) and 

(xb, yb) = (0.1, 1) with probabilities 
pa = 0.001 and pb = 1 − pa respectively. See 
Fig. 5

Gaussian process 
(DGP)

Special dataset obtained from the prior of a 20 
dimensional Gaussian [22]

Table 9  Models and hyperparameters, that are used for the learning 
curve database
Name Hyperparameters
Classification
Nearest mean (NMC) No hyperparameters
Nearest neighbor (NNC) Number of neighbours: λnn ∈ [1, 20]
Linear discriminant 
(LDC)

Regularization parameter for the covari-
ance matrix: λld ∈ [10−5, 1]

Quadratic discriminant 
(QDC)

Regularization parameter for the covari-
ance matrix: λqd ∈ [10−5, 1]

Regression
Linear ridge (LR) Regularization parameter: λr ∈ [10−5, 1]
Kernel ridge (KR) Regularization parameter: 

λkr ∈ [10−5, 1] Gaussian and Laplace 
kernels with default length-scale γ = 1

Gaussian process (GP) Regularization parameter: 
λkr ∈ [10−5, 1] Gaussian kernel with 
default length-scale γ = 1

Artificial Neural Net-
work (ANN)

Adam [32] optimizer with learning rate 
0.001 and width of the 2 hidden layer 
network changing between [5, 25]
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Fig. 5  Scatter plots for one realization 
of regression datasets (sine, sinc, sawing 
and linear datasets from left to right)

 

Fig. 4  Scatter plots for one realization of 
classification datasets (dipping, Gaussian 
and banana datasets from left to right)
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