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Abstract
In the field of optimization problems, the optimization of energy systems problems is of significant importance, mainly 
due to their dramatic role in achieving sustainability. The complexity of energy systems optimization problems, intense 
constraints, and various decision variables have led many researchers to utilize meta-heuristics optimization algorithms to 
optimize such issues and improve energy systems. Meta-heuristic algorithms that can find global solutions and prevent trap-
ping in local optima can efficiently solve energy systems problems. Grey Wolf Optimizer (GWO), one of the well-known 
meta-heuristic optimizers inspired by the grouped hunting process of wolves, has been employed in different studies to deal 
with energy systems optimization problems. GWO has received much attention in the literature due to its proper explora-
tory and exploitative features, rapid and mature convergence rate, and simplicity in design and coding. This paper reviews 
various GWO applications for tackling optimization problems related to production, conversion, transmission and distribu-
tion, storage, and energy consumption. It is highly believed that this paper can be a practical and innovative reference for 
researchers, professionals, and engineers.
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1 Introduction

In recent years in particular, with the comprehensive devel-
opment of countries and the growing need of societies for 
energy demand, the world has witnessed a dramatic rise in 
energy consumption [1]. According to the provided data by 
IEA, the world TFC of energy between 1990 and 2019 has 
increased from 2.61E + 08 to 4.18E + 08 TJ (see Fig. 1) [2]. 
To meet such an essential need for energy stably and reli-
ably, humanity had to conduct studies, research, and analysis 
for many years, achieving the design and development of 
"energy systems" to ensure the required energy [3–8].

“Energy systems” refers to the generation, conversion, 
transmission and distribution, and energy consumption pro-
cesses [9–12]. More precisely, an energy system is designed 
to supply  energy services  to  end users and consumers 
[13–17]. Taking a structural viewpoint, the Intergovern-
mental Panel on Climate Change (IPCC) Fifth Assessment 
Report has defined an energy system as "all components 
related to the production, conversion, delivery, and use of 
energy" [18].

In terms of energy economics, energy systems are the 
technical and economic systems that meet consumer energy 
demands in heat, fuels, and electricity forms [19–23]. Fig-
ure 2 displays the main components of an energy system. 
According to Fig. 2, the energy system involves energy 
sources, energy conversion, energy transmission & dis-
tribution, and energy consumption. All natural resources 
(Fossil fuels, nuclear fuel, and renewable energies) are 
considered primary energy resources. In contrast, refineries 
and types of power plants convert natural energy resources 
to consumable energies as energy conversion. Finally, the 
facilities’ fuel and electrical energy output can be delivered 
to end users using energy transfer equipment.

Oil is a primary energy resource for transportation, heat-
ing, and cooling. Other energy sources produce electrical 
energy, which is used for lighting, heating and cooling, elec-
tric vehicles, etc.

Global warming resulting from extensive fossil fuel 
consumption has become a challenging global phenom-
enon. Thus, electrification in the transport, residential, 
industrial, commercial, and other areas is indispensable for 
weaning the world off fossil fuels and realizing a low-car-
bon society. For this reason, energy is moving more toward 
electrical power due to its advantages, such as minimal 
environmental impact, relatively valuable energy produc-
tion levels, minimal greenhouse emissions, high conver-
sion efficiency, etc. According to the provided data by the 
IEA, world electricity final consumption between 1990 
and 2019 has increased from 34,928,037 to 82,251,570 
TJ [2].

According to the Fig. 3, total electricity consumption 
between 1990 and 2019 has increased from 14% to 20%. 
This represents a 6% increase in electrical energy con-
sumption [2]. Therefore, technical and economic problems 
based on electrical energy systems are significant. Further-
more, sustainable energy focuses primarily on generating 
and operating electricity by means other than fossil fuel 
consumption, as fossil fuel emissions are very high.

A particular focus on energy efficiency and reduction 
of environmental pollution on the one hand, and the mini-
mization of various costs associated with the production, 
transmission distribution, and consumption of energy, on 
the other hand, has led to exceptional attention to optimi-
zation of problems related to energy systems using opti-
mization methods, especially in recent years. Therefore, 
solving the energy systems problems using optimization 
algorithms has been studied from the point of view of ana-
lyzing, designing, and optimizing both existing and future 
systems, as also their operation and control for production, 

Fig. 1  World TFC from 1990 to 
2019 by source (TJ) [2]

0
20000000
40000000
60000000
80000000
100000000
120000000
140000000
160000000
180000000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

T
J

Year

Coal Crude oil Oil products Natural gas

Wind, solar, etc. Biofuels and waste Electricity Heat



 M. Nasir et al.

conversion, transmission and distribution, storage and con-
sumption of electricity, heat and cooling and fuels in many 
articles [24–29].

In this regard, diverse classic methods have been 
employed for optimizing energy systems problems 
[30–34]. In recent years, some traditional methods, such 
as the Newton–Raphson method and Lagrange relaxation, 
have been used to solve different problems. However, these 
methods are inappropriate in large-scale systems with 
complex objective functions and practical constraints due 

to time-consuming processes, running limitations, and 
their non-differentiation nature [35].

Moreover, traditional methodologies can only be used to 
optimize some complex scientific problems requiring pre-
cise calculations and time. In this respect, artificial methods 
inspired by nature can be utilized to solve such complex 
problems [36–39]. Thus, utilizing meta-heuristic optimiza-
tion algorithms has been recommended for finding optimal 
solutions.

Fig. 2  Main components of an 
energy system
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The solved problems using meta-heuristics in the pub-
lished papers include a wide range of optimization problems 
in various energy systems sections, from energy sources to 
energy consumers. The range of coverage includes energy 
source optimization, the operation optimization of electri-
cal energy systems, the generation, conversion, transmis-
sion, and distribution of energy, and optimization problems 
related to end consumers.

In the published papers in the literature, there are many 
and various optimization problems related to energy systems, 
such as sizing of PV power plant components (PV modules 
and inverters) [40–46], biomass power plant [47–49], PV/
biomass hybrid energy systems [50–54], geothermal power 
plants [48, 55, 56], thermal power plant [57–59], nuclear 
power plant [60], optimization of refinery production plan-
ning [61–66], hydropower [67–72], forecasting of daily 
total horizontal solar radiation [73–75], sizing of the HRES 
[52, 76–82], optimal DG allocation problem [83–85], water 
source optimization [86–88], WECS [89–93], ED [94–99], 
CHPED [100–105], UC [106–111], OPF [112–119], SCOPF 
[120], GS and generation rescheduling [121–128], TNEP 
[129–133], optimal voltage control in DNs [134–136], ESS 
[137–141], tuning PID controller in MGs [142–144], MGs 
planning [145–148], HEMS [149–154] and EV [155–160].

On the one hand, the cost and waste reduction of gener-
ated energy and the effort to increase efficiency in achiev-
ing sustainable energy, and on the other, the complexity of 
energy systems optimization problems along with intense 
constraints and various decision variables have led many 
researchers, engineers, and professionals to use meta-heu-
ristic optimization algorithms to improve energy systems.

From selecting the optimal size and placement of energy-
related equipment and resources and energy management 
to trying to increase the efficiency of energy systems by 
employing optimization strategies for energy mitigation 
and developing smart grids of green energy-based resources, 
homes, cities, and vehicles as well, all provide redoubled 

efforts for shaping a secure and sustainable energy future, 
followed by a sustainable world [161–168]. By relying on 
their powerful capabilities, meta-heuristic optimization algo-
rithms can pave the way for achieving such great success.

Meta-heuristics have considerable advantages, such as 
finding global solutions and preventing trapping in local 
optima to other methods. However, neither algorithm can 
solve all optimization problems alone and entirely. Novel 
algorithms that are highly capable of solving specific opti-
mization problems are therefore being adopted.

Grey Wolf Optimizer (GWO) is one of the novel optimiz-
ers inspired by optimal searching of the grey wolves in nature 
for hunting prey [169]. Proper exploratory and exploitative 
features, rapid and mature convergence rate, and simplicity 
in design and coding make the GWO an efficient tool for 
dealing with large-scale and complex problems. Due to these 
advantages, the GWO has received more attention than other 
algorithms in the literature. In this regard, Fig. 4 depicts the 
citation number of papers based on meta-heuristics.

As seen in Fig. 4, the number of citations for articles con-
taining GWO is considerably higher than that of other arti-
cles. The reported results show that the utilization of GWO 
among meta-heuristics in research is significantly increasing.

Figures 5 and 6 show the distribution of each year of pub-
lished papers related to the GWO from 2014 to the present. 
The collected database was based on validated reports on 
Web of Science and Google Scholars using keywords such as 
“GWO,” “grey wolf optimizer, " “grey wolf optimization,” 
and “grey wolf optimization” to extract the desired results.

Based on the outcomes shown in Figs. 5 and 6, from 2014 
to the present, the number of articles published has grown 
considerably each year. However, the number of publica-
tions written in 2020 and 2019 is significantly greater than 
in other years. Results indicate that the usage of GWO in 
different studies is increasing considerably year after year.

This review paper presents and discusses in detail the 
applications of the GWO for energy systems. It also explains 

Fig. 3  1990 and 2019 source 
shares of TFC [2]
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its variants and applications in evaluating studies conducted 
in the literature.

The remaining paper is arranged as follows. Section 2 
explains GWO’s concept, search operators, and step-by-
step pseudo code. A wide range of GWO applications for 
energy systems has been provided in Sect. 3. Discussions 
and research trends about diverse applications and variants 
of GWO for energy systems, along with statistical results of 
GWO contributions in the literature, are provided in Sect. 4. 
Finally, Sect. 5 concludes all information provided in this 
review paper along with some future directions on the GWO, 
the findings, and the purpose of this review paper.

2  Grey Wolf Optimizer

The GWO algorithm was proposed in 2014, mimicking the 
social hierarchy and hunting mechanism of grey wolves in 
nature [169]. A pack of wolves has one of the fascinating 
social intelligence, in which wolves play different roles in 
coordinating activities in the pack. Wolves can be catego-
rized into four groups (see Fig. 7) based on their position in 
the hierarchy power pyramid.

According to Fig. 7, the wolves are categorized into 
four types: alpha, beta, delta, and omega. In the pack, the 
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alpha wolf is the dominant one. The alpha wolf has author-
ity over the beta wolf. While it subjugates the omega 
wolves, the delta wolf obeys the dictates of the alpha and 
beta wolves. In addition, omega wolves are at the bottom 
of their social hierarchy. In other words, alphas are males 
and females who serve as the leaders. The alpha mostly 

makes decisions concerning hunting, sleeping arrange-
ments, wake-up times, etc. The second rung of the grey 
wolf hierarchy is beta. The betas are subordinate wolves 
who assist the alpha with decision-making and other group 
duties. The beta wolf can be male or female, and he or 
she is most likely the best contender to be the alpha if 
one of the alpha wolves dies or grows old. The beta wolf 
should respect not only the alpha but also command the 
lower-level wolves. It serves as the alpha’s counselor and 
pack discipliner. The beta reinforces the alpha’s directives 
across the pack and provides feedback to him. Omega is 
the lowest-ranking grey wolf. The omega takes on the role 
of a scapegoat. Omega wolves are constantly forced to 
subordinate to all other dominant wolves. They are the 
final wolves allowed to eat. They are called delta if a wolf 
is not alpha, beta, or omega. Delta wolves are subject to 
alphas and betas, but they control the omega. Scouts, sen-
tinels, elders, hunters, and caretakers fall within this cat-
egory. Scouts are in charge of monitoring the territory’s 
limits and alerting the pack if something dangerous occurs. 
Sentinels protect and ensure the safety of the pack. In the 
GWO algorithm, the three best solutions are considered to 
be alpha, beta, and delta during the optimization process. 
Indeed, each wolf represents a potential solution for the 
whole population, where the position of alpha represents 

Fig. 7  Leadership hierarchy in a pack of grey wolves
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the best solution, and the position of beta represents a 
good solution. Finally, the delta position represents a sub-
optimal solution. The rest of the wolves are omega wolves 
and update their positions based on the position of the 
three best solutions.

Figure 8 shows a conceptual model of gray wolf hunt-
ing behavior. As discussed above, the second mechanism 
implemented in the GWO algorithm is the hunt. Hunting 
is led by alpha, beta, and delta wolves, who mainly search, 
encircle, attack, and hunt prey. The original paper on GWO 
mentioned that grey wolves start the hunt by first chasing 
and harassing prey. Then, they constantly encircle the prey 
until the prey gets exhausted to start the final attack.

In this regard, mathematical models define grey wolves’ 
searching, encircling, and attacking processes. Grey wolves 
search for possible solutions using a math model that copies 
how they hunt. When a good candidate for food is found in the 
encircling process, grey wolves work together to circle it. This 
helps them increase their chances of catching the prey. Finally, 
grey wolves pick the best target to attack after encircling their 
prey. This helps make the whole group stronger. To mathemat-
ical model the movement of grey wolves and their encircling 
mechanism, Mirjalili et al. proposed the following equations:

where t indicates the current iteration, �⃗A and ��⃗C are coef-
ficient vectors, ���⃗Xp is the position vector of the prey, and �⃗X 
indicates the position vector of a grey wolf. The vectors �⃗A 
and ��⃗C are calculated as follows:

where components of �⃗a are linearly decreased from 2 to 0 
throughout iterations, and, r1 and r2 are random vectors in 
[0,1]. As mentioned earlier, the equations allow us to create 
a hypersphere between a wolf and prey with the radius of the 
Euclidean distance between a wolf and a prey. The position 
of the prey in hypersphere is defined as the average position 
of alpha, beta, and delta as follows:

(1)��⃗D = |��⃗C.���⃗Xp(t) −
�⃗X(t)|

(2)�⃗X(t + 1) = ���⃗Xp(t) −
�⃗A.��⃗D

(3)A⃗ = 2a⃗ ⋅ r⃗ − a⃗

(4)��⃗C = 2.��⃗r2

(5)

����⃗D𝛼 =
|||C⃗1.

���⃗X𝛼 − X⃗
|||,

����⃗D𝛽 =
|||C⃗2.

���⃗X𝛽 − X⃗
|||,

����⃗D𝛿 =
|||
���⃗C3.

���⃗X𝛿 − X⃗
|||,

(6)

���⃗X1 =
���⃗X𝛼 − a⃗1.

(
����⃗D𝛼

)
, ���⃗X2 =

���⃗X𝛽 − ���⃗a2.
(
����⃗D𝛽

)
, ���⃗X3 =

���⃗X𝛿 − ���⃗a3.
(
����⃗D𝛿

)
,

where X� , X� and X� are the position of α, β, and δ wolves 
position. Also, D� , D� and D� are average positions of alpha, 
beta, and delta wolves. Also, X1 , X2 and X3 are positions of 
α, β, and δ wolves.

The flowchart of GWO is shown in Fig. 9.

3  Applications of GWO for Energy Systems 
Optimization

In various studies, GWO has been implemented to opti-
mize optimization problems related to energy systems. The 
reviewed papers in the current research include a wide range 
of problems and applications. Table 1 presents the inves-
tigated problems by GWO and their definitions in the 
reviewed papers.

3.1  Unit Commitment

The fundamental purpose of UC is to plan the production 
unit to meet load at minimum costs and constraints [170]. 
This turns UC into a large-scale, non-convex, nonlinear 

(7)X⃗(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

3

Start

Create a population  

End 

Initialize a, A, and C
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Update alpha, beta, and delta 
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Calculate updated values of all wolves 

NO 
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Fig. 9  The flowchart of GWO (t shows the current iteration, and T 
indicates the maximum number of iterations)
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mixed integer programming [171]. Many mathematical 
and heuristic techniques have been used, mainly dynamical 
and LR techniques. The LR methodology uses a multiplier 
Lagrange to deal with system restrictions and modify the 
penalty-based objective function [172, 173].

Different single and hybrid meta-heuristics algorithms 
have been applied to tackle UC, such as GAs, [174, 175], 
ABC [176], PSO [177], WOA [178], Lagrangian Relaxa-
tion PSO [179], improved pre-prepared power demand 
table and Muller [180], NNA [181], Hybrid HS Random 
Search Approach [182] and HGWO and PSO method 
[183]. The binary nature of UC requires the utilization 
of real-valued GWO binary transformation. Thus, some 
studies have solved UC using BGWO.

A method based on dynamic penalty was presented 
to solve the problem of power resource scheduling with 

uncertain wind energy, thermal UC, and DRs using BGWO 
[184]. The UC consists of two sub-problems. In the first 
step, the ON/OFF status of the generator is determined, 
and the power and generation allocation to the committed 
units is followed. The thermal units’ commitment or de-
commitment can be coded binary with 0 and 1 indicating 
the respective OFF and ON States. Thus, the wolves’ posi-
tion in the binary version of GWO is either 0 or 1 at any 
given time. Furthermore, Reddy et al. [185] presented an 
improved BGWO for solving the UC.

Srikanth et  al. [186] suggested a quantum-inspired 
BGWO to solve UC. The method combines quantum com-
puting concepts with BGWO to enhance the wolf pack hunt-
ing process. The inherent characteristics of the q-bit and 
q-gate concepts in quantum computing assist in achieving 
a better balance between exploration and exploitation. The 

Table 1  Investigated problems by GWO and their definitions in the reviewed papers

Problems Definitions

ED Planning production units while minimizing GC and meeting constraints
DELD Economic Dispatch during 24 h
CEED Planning generation units to minimize TFCs and emissions at the same time
CHPED Planning generation units to produce heat and power to minimize the TFCs
UC Determination of the generation units’ operating schedule by minimal cost under 

various constraints at each interval
OPF Minimization of TFCs for power generation by determining a set of control vari-

ables under constraints
Optimal DG allocation problem Optimal sizing of DG units in the distribution network for minimization of PL
GS Determining the commitment and generation of all schedulable power resources 

over a scheduling horizon to minimize production costs and meet demands and 
constraints

TNEP Finding an optimal expansion plan with the aim of meeting demands Economically 
and efficiently

Optimal Voltage Control in Distribution Systems Voltage maintenance and control at end consumers’ buses
EV optimization Reducing the CO2 and environmental emissions and saving energy in EV using 

different algorithms
Optimal sizing of ESS in DN Optimal sizing of ESS to minimize TC in DNs
Sizing of PV plant components (PV modules and inverters) Optimal sizing of parameters related to the PV power plants, such as PV cells and 

modules and inverter types, to improve energy cost
Forecasting of Daily Total Horizontal Solar Radiation Estimation of solar radiation for PV and solar-thermal systems using solar-radiation 

data
WECS Energy conversion of wind movement into mechanical power and subsequently 

electricity energy
Sizing of the HRES Optimal sizing of the HRES to minimize the TC and meet the load
Tuning PID controller in MGs The finding process of optimal values in the controller
MGs planning Optimal sizing of components related to the MGs to improve cost
HEMS A hardware and software system to monitor energy consumption and production 

users to minimize electricity costs and manually control and/or automate house-
hold energy use

Water sources optimization Attaining optimal sizing for WDNs, minimizing water pollution, and optimal 
allocation

Heat exchanger optimization Optimization of heat exchanger using tuning controllers
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update process of the wolf’s position at different levels of 
the hierarchy is replaced by a dynamic and rotary angle by 
the individual probabilistic representation of q-bit. Conse-
quently, solutions use GWO and quantum computing search 
capability, which uses quantum bits, gates, the principle of 
superposition, etc., to resolve the schedule of UCs.

Reddy et al. [187] presented different BGWO models 
for PBUC resolving in deregulated markets because of the 
binary nature of UC. Concerning the transformation function 
used to map a valued absolute position for the wolf, the mod-
els proposed by BGWO differ. Binary mapping of the com-
mitment status was done by sigmoid and tangent hyperbolic 
transfer. Two binary transformation methods, crossover, and 
conventional sigmoidal transmission, were also presented in 
the sigmoidal transfer function, Reddy et al. [188] investi-
gated the conversion from real-world to binary transforma-
tion in the solution of UC in two general ways: sigmoid 
transformation and hyperbolic transformation.

Panwar et al. [189] Two models of BGWO were rep-
resented to address UC. The first method involved the 
upstream binarization and crossover operations of wolf 
updates to the best global solution (s). The second approach 
estimated the wolves’ continuous update on global best solu-
tions, and sigmoid transformation was followed.

Lit and Liu [190] offered an enhanced dual GWO with 
binary and dogmatic elements. The BGWO optimizes the up 
and down state of units, and the exchange speed is modified 
by adding two dynamic factors to produce random numbers. 
During the decision-making process and after the solution, 
the GWO is used for load planning. Table 2 shows the main 
features of the papers on GWO applications in UC.

3.2  Economic Dispatch

ED aims to schedule generation units to meet the fixed 
load demand at a minimum TFCs and satisfy constraints 
[35, 191, 192]. Although the ED is only concerned with 
a one-hour time interval that must be met, DELD deals 
with the delivery of thermal generators within 24 h with 
numerous restrictions [193]. Nowadays, CHP production 
is utilized to increase the efficiency of the combined cycle 
plants, reduce environmental emissions, and save energy 
costs. The CHPED refers to electrical and heat energy pro-
duced from one source simultaneously to minimize TFCs 
[35, 194]. In general, problems based on ED require effi-
cient methods to be resolved with strong operators. As a 
result, many studies have been carried out on ED-based 
problems.

In a study by Al-Betar et al. [195], a hybrid of GWO and 
bHC was proposed to improve the convergence properties of 
ED and balance the exploration and exploitation phases of 
GWO (Jayabarathi et al. [196] presented the GWO applica-
tion to resolve the ED, while crossover and mutation were 
hybridized for better optimizer performance. Kamboj et al. 
[197] verified the better convergence of GWO to PSO, GA, 
etc., by testing the GWO on small-, medium- and large-scale 
systems in ED problems. Pradhan et al. [198] used OBL 
concept-based GWO to accelerate the convergence rate. The 
proposed algorithm first uses grey wolves’ hunting behavior 
and social hierarchy to search for optimal solutions. Sec-
ondly, the oppositional concept is integrated with the GWO 
to accelerate its convergence rate. All these studies showed 
the proper performance of the GWO.

With the consideration of transmission losses and the 
valve-point effect, ED was solved using GWO, [199–201] 
and [202]. The results of the GWO demonstrated a good 

Table 2  The main features of the papers on GWO applications in UC

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of Hybrid/
Modified)

[184] UC Operational cost Operational cost reduction Modified BGWO
[186] UC TC (TFCs, start-up and shut-

down costs)
Obtaining optimal value Modified Quantum computing concepts 

with BGWO
[185] UC TC (TFCs, start-up and shut-

down costs)
High solution quality in terms 

of cost reduction and con-
vergence

Modified BGWO

[187] PBUC Profit maximize
TC

High solution quality Modified BGWO

[188] UC TFCs of thermal generators
Start-up cost

Fast convergence and better 
quality

Modified BGWO

[189] UC TFCs
Start-up cost

High solution quality Modified BGWO

[190] UC TFCs Improvement of convergence 
rate and solution accuracy

Modified GWO with binary and dogmatic 
parts
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balance between exploration and exploitation. Maamri et al. 
[203] considered three scenarios for analyzing the impact of 
integrating this renewable energy (WT/PV) and gas turbine 
on the ED problems in Algeria using GWO. Results showed 
that incorporating PV and WT into the system illustrated an 
optimal cost. Singh and Dhillon [204] presented an ame-
liorated GWO that balances exploration and exploitation to 
solve ED. The method coordinates gray wolves’ behavior, 
random exploration, LRS, and opposition heuristics learn-
ing behavior. To prevent premature convergence, LRS was 
embedded in the local search mechanism. The results vali-
dated the improvement of the GWO performance.

Paramguru and Barik [205] presented MGWO for the ED 
problem by including exponential operators in the GWO. 
There are two steps in the MGWO. In the first step, the 
individuals are dispersed across the search space, i.e., they 
cannot concentrate on the local minima. In the second step, 
individuals reach the minimum global level from the infor-
mation collected. By correctly adjusting the two parameters, 
a and A, the proposed MGWO reaches the optimum point 
very quickly. In GWO,”a” is reduced from 2 to 0 linearly. 
However, the exponential function in the iteration process is 
used to explore better and exploit the “a” decaying process.

Xu et al. [206] proposed a modified GWO known as the 
NGWO for resolution of the ED. The GWO in the NGWO 
(GWOI) is supplemented with a local search strategy to 
explore the regional district of the global optimum loca-
tion in depth and guarantee a better candidate. In addition, 
a local search method based on non-inferior solution neigh-
borhood independence is integrated into the GWOI, GWO-
II, to obtain a better solution in the non-inferior solutions 
neighborhood and to provide a higher probability of jumping 
from the optimal local solution.

Halbhavi et al. [207] introduced GWO-ES as the solution 
for the CEED. The hunting process in the GWO is performed 
by α, β, and δ. In contrast, the GWO-ES adopts another wolf 
called γ. It confirmed the robustness of the proposed algo-
rithm in seven HRES test bus systems, combining the wind 
turbine and the thermal power plant in research performed 
by Jangir et al. [208], the MOGWO, known as NSGWO, was 
introduced to solve CEED. The NSGWO initially collects all 
the optimal Pareto solutions until the last iteration limit is 
evolved. From the Pareto optimal solutions collection, the 
best solutions are chosen using a crowding distance mecha-
nism based on solutions and the Leadership hierarchy of 
gray wolves to guide the hunt for wolves in the dominated 
areas of MO search spaces.

Also, GWO was improved by six mutation operators for 
the CEED solution [209]. The study used mutation operators 
to better search for the best solution and improve explo-
ration and exploitation in the search space. Li et al. [210] 
solved the short-term complementary scheduling problem 
of hydro-thermal-renewable power systems based on CEED 

using HGWO. To develop the MO version of GWO, the 
concepts of archive and leader selection were introduced 
into the optimizer mechanism. The results demonstrated that 
the proposed algorithm can achieve the best Pareto front for 
economic/emission bi-objectives.

Sattar et al. [211] addressed the DELD problem by con-
sidering four unique ramp rate handling approaches using 
the GWO. (1) Handling by starting DELD from hour one. 
(2) Handling by starting DELD from the last hour. (3) Han-
dling by starting DELD for hour one and Power regulation 
for the rest of the hours by total load average production 
cost. (4) Handling by starting DELD from random hours. 
Comparisons indicated that Strategy 4 has achieved the best 
cost results, while Strategy 3 has achieved a minimum exe-
cution time. Furthermore, the results showed that the most 
precise and convergent rates in Strategy 2 can be seen.

Authors in [212] and [213] presented GWO to solve the 
CHPED in static and dynamic environments. Also, Jayaku-
mar et al. [214] presented GWO for solving CHPED. The 
practical nature of the proposed method was validated on 
static ED, environmental-economic dispatching, and DELD. 
Table 3 displays the papers on GWO applications in ED.

3.3  Optimal Power Flow

OPF is a significant tool for effectively planning and increas-
ing the operation of electricity systems. The OPF problem 
involves the determination of the best or safest operating 
point (control variables) for certain objective functions 
(transmission losses, cost of generation, and so on) while 
meeting system constraints. Several meta-heuristics optimiz-
ers to find the OPF solution have been proposed, including 
ABC [215, 216], PSO [217, 218], CS and krill herd tech-
nique [219], Sine Cosine Algorithm [220], HS [221–223], 
and so forth.

An attempt to solve OPF has been performed based on a 
developed GWO, using a random mutation to increase popu-
lation diversity. At the same time, exploitation is improved 
by updating population location spiraling towards the 
best solution [224]. The method used an adaptive opera-
tor to maintain the local and global search parity. Rambabu 
et al. [225] presented the OPF of HRES using the GWO in 
the presence of TCSC. Singh et al. [226] employed GWO 
to solve OPF, mainly focusing on minimizing TFCs (with 
and without valve point effect) and minimizing transmission 
loss by incorporating FACTS devices TCSC and thyristor-
controlled phase shifter. Dilip et al. [227] used the MOGWO 
solution to minimize TFCs at emission value and active 
loss in the OPF problem. Compared with NSGA-II (non-
dominated sorting genetic algorithm), the MOGWO is best 
set for the Pareto-optimal front. El-Fergany and Hasanien 
[228] employed GWO and DE in optimizing single objective 
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functions and DE in optimizing MO functions using the 
Pareto front-line method to fix the OPF problem.

Siavash et al. [229] solved the OPF using the GWO in 
a system integrated into wind farms. Two additional cost 
components corresponding to the under- and over-estimated 
states are used to model the variable nature of the wind farm 
output. Hassan and Zellagui [230] considered the GWO for 
two terminal HVDC power systems. The OPF of AC-DC 

systems is extended to incorporate HVDC connections, tak-
ing into account the characteristics of power transmission 
control by GWO. Haddi et al. [231] performed OPF to assess 
the GWO impact on two IEEE30 and IEEE57 systems of 
variable wind power generation. The results demonstrated 
that GWO was superior to techniques like PSO, ABC, and so 
forth [232]. Ben Hmida et al. [233] used a hybrid approach 
for OPF of systems based on wind and solar generators by 

Table 3  Main features of the papers on GWO applications in the ED

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of Hybrid/Modi-
fied)

[195] ELD TFCs Improvements in TFCs Hybrid bHC optimizer is utilized as a new 
operator in the improvement phase 
of GWO

[207] CEED TFCs
EC

The efficiency of the GWO-ES in 
terms of TFCs and EC reduction

Modified GWO-ES adopts an additional wolf 
termed γ

[208] CEED TFCs
EC

The superiority of NSGWO is in 
terms of runtime and convergence 
rate

MO MO version of the GWO

[196] ED TFCs Convergence and cost improvement Hybrid GWO with mutation and crossover 
operators

[212] CHPED TFCs
EC

Good computational efficiency Standard –

[213] CHPED TFCs Obtaining a high-quality solution Standard –
[214] CHPED TFCs GWO performs better in terms of 

solution quality and consistency
Standard –

[197] ELD TFCs Obtaining an optimal solution with 
high convergence

Standard –

[201] ELD TFCs Solution quality in terms of cost, 
convergence

Standard –

[199] ED TFCs The effectiveness
the superiority of GWO

Standard –

[202] ELD TFCs Less runtime and premature conver-
gence, and stable convergence

Standard –

[200] ED TFCs The efficiency of GWO Standard –
[209] CEED GC emission Achieving optimal values Hybrid GWO with six mutation operators
[206] ELD GC High convergence rate and solution 

quality
Modified Using a local search strategy and a 

non-inferior solution neighborhood 
independent local search technique 
for the original GWO

[205] ELD TFCs The effectiveness of GWO Modified Adjustment of the two parameters a 
and A

[198] ELD GC Improving computational time and 
TFCs

Modified Hunting behavior and social hierarchy 
of grey wolves are used to search 
for optimal solutions, and the oppo-
sitional concept is used to accelerate 
the convergence rate of GWO

[211] DELD TFCs Improvement in cost and solution time Standard –
[204] ELD GC Effectiveness of the method to search 

for the optimum generation
Hybrid Combining GWO with a random 

exploratory heuristic method based 
on the LRS mechanism and OBL

[210] CEED TFCs emission Improvement in cost and emission MO MO version of the GWO
[203] ED GC Obtaining optimal values Standard –
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GWO to strengthen the exploration ability of the ICA for 
exploration. The best ICA solution is calculated using this 
approach as an initial GWO condition. If it is less than the 
ICA solution, GWO is saved as the best value. The hybrid 
suggested is much more efficient and offers better solutions.

Mohamed et al. [234] presented the GWO and MOGWO 
for solving OPF and minimizing cost and emissions. In addi-
tion, a fuzzy decision is made to make the global Pareto-
optimal solutions the most suitable. A modification has also 
been introduced to improve the balance between exploration 
and exploitation and GWO’s convergence rate. As shown in 
the following formulation, two control parameters (µ and 
∅) were proposed.

(8)� = �e−�×t (Numbering),

where control parameters govern the behavior of GWO’s 
convergence characteristics over t-iterations. This acceler-
ates the rate of convergence while maintaining the explora-
tory characteristics.

Salem et al. [235] solved SCOPF by GWO by consid-
ering transmission security and various contingency cases. 
Alam et al. [236] addressed TSCOPF by GWO. The cal-
culated results showed that GWO is smart enough to find 
the best solutions for every aspect while complying with 
all operating restrictions. Teeparthi and Kumar [237] uti-
lized the GWO to resolve DSCOPF while considering static 
and dynamic constraints. The results of the GWO demon-
strated the ability to achieve a near-optimum global point for 
increasing diversity in search spaces.

Soni et al. [238] used Intelligent GWO to tackle the TSS-
COPF problem, suggesting two GWO structural changes in 

Table 4  Main features of the papers on GWO applications in OPF

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of 
Hybrid/Modified)

[224] Non-Smooth OPF TFCs Fast and stable conver-
gence

Modified Diversify population
Updating the position of 

populations
Parity exploration and 

exploitation
[236] Transient stability con-

straint -OPF
TFCs Better convergence Standard –

[233] Simple- and MO OPF TFCs
PL
Emission
VD

Better solutions Hybrid ICA and GWO (Hybrid 
imperialist competitive 
-GWO)

[225] OPF of Integrated Renew-
able Energy System

TFCs
PL
VD emission

Improvement of objective 
functions

Standard –

[227] OPF TFCs
PL emission

Fast convergence MO Pareto-based strategy

[234] OPF TFCs emission Fast convergence Single/MO Pareto-based strategy
[228] OPF TFCs

PL emission
Effectiveness of proposed 

algorithms
Standard –

[235] SCOPF GC Improvement of GC Standard –
[237] DSCOPF GC Obtaining optimal solution Standard –
[238] TSSCOPF TFCs Efficiency of proposed 

algorithms
Modified Using sinusoidal trun-

cated function and OBL 
mechanism

[226] OPF with the incorporation 
of FACTS devices

TFCs
Transmission loss

Fast convergence Standard –

[229] OPF of Wind Integrated 
Power Systems

GC
PL

Improvement of conver-
gence rate and obtaining 
optimal solution

Standard –

[230] OPF of Two-Terminal 
HVDC

Transmission System

GC Less CPU time and mini-
mized cost

Standard –

[231] OPF with the incorporation 
of Wind Power

TFCs
VP

Operating cost reduction 
and VP improvement

Standard –
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the research. (1) the sinusoidal truncated function was pro-
posed instead of the linear bridging mechanism for accelera-
tion of the exploration and exploitation phase. (2) An OBL 
mechanism was incorporated to increase the exploration of 
GWO. The effectiveness of the method was determined by 
the observation of simulations and rotor angle trajectories 
under various contingencies. Papers features on GWO appli-
cations in OPF are shown in Table 4.

3.4  Distributed Generation Resources

DG units (e.g., the WT, PV) are defined as small-scale 
centralized generation units installed at DNs near energy 
consumers for improvement of the network characteristics 
[239, 240]. Due to the significance of the DGs type, size, 
and location in DNs in terms of technical, economic, and 
environmental objectives, the best types of DGs with the 
best size should be installed at the best places in DNs [241, 
242]. The problem of finding the optimal type, location, and 
size of DGs in DNs is referred to as the “DG allocation 
problem” [239]. In some researches in literature, GWO vari-
ants have been used for optimal sitting and sizing of DGs 
resources in DNs.

Ahmadi et al. [243] and Mohsen et al. [244] presented 
DGs (PV and WT) optimal sitting and sizing using GWO to 
improve the VP and minimize active PL in DNs. Tyagi et al. 
[245] and Sultana et al. [246] demonstrated the application 
of GWO for sizing solar-based DGs in an unbalanced and 
balanced DN. Also, Sanjay et al. [247] presented HGWO 

and operators from evolutionary algorithms for sizing DG. 
The simulations showed that WT results are better than PV 
results because the reaction power component supplied 
by WT is available. In contrast, the system performance 
improvement was increased using two units.

Algabalawy et al. [248] presented a hybrid power genera-
tion system based on some DG units that consist of WT, PV, 
MT, and so forth using the GWO and dragonfly optimizer. 
The results of DO indicated better results than GWO for 
TAC, while GWO showed better results than DO for SP. 
Boktor et al. [249] suggested a hybrid PSO, GWO, and LSF 
for sizing DGs in DNs. The procedure is two stages. In the 
first stage, the LSF chooses the potential busses to reduce the 
search area and the calculating time. The hybrid will select 
the optimum DG locations and sizes in the second phase.

Lakum and Mahajan [250] discussed the DG impact on 
optimal sizing of APF in DNs using the GWO. The results of 
GWO showed superiority compared with the PSO and HS. 
Routray et al. [251] demonstrated the application of GWO 
for sizing solar-based DGs by considering the simultaneous 
effects of radiation from the obstruction astronomical model 
and implementing temperature and shadowing parameters 
in test systems. The solar panels were modeled on solar 
astronomy and obstructed the solar model as a global radia-
tion source. The summary of the review papers on GWO 
applications in the DG is provided in Table 5.

Table 5  Main features of the papers on GWO applications in the DG

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modifica-
tion (Type of 
Hybrid/Modi-
fied)

[243] DG allocation VPs Improvements in VP Standard –
[248] DG allocation TAC 

SP
Improvements in results Standard –

[249] DG allocation PL
VP

Small time with more stability and faster convergence Hybrid PSO with GWO

[250] Impact of DG 
on sizing 
APF

Current of APF Obtaining optimal solution Standard –

[244] DG allocation PL The GWO is superior to GAs, CSA, etc Standard –
[247] DG allocation PL Voltage and loss improvement Hybrid GWO with 

mutation and 
crossover 
operators

[246] DG allocation PL
VP

Better performance of GWO to GSA and BA Standard –

[245] DG allocation PL
VD

Voltage and loss improvement Standard –

[251] DG allocation PL Voltage and loss improvement Standard –
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3.5  Energy Generation, Transmission 
and Distribution Systems

3.5.1  Generation Systems

One of the most critical optimization problems related to 
electricity generation systems is the GS problem [252]. If the 
electricity generating units are correctly planned, the eco-
nomic advantages of the power grid will undoubtedly increase. 
Therefore, to achieve a proper solution to the GS problem 
and reduce overall TFCs, an appropriate scheduling strategy 
should be used [253]. Mathematical and meta-heuristics meth-
ods such as dynamic programming [254], LR [255], simulated 
annealing [256], GAs [257], PSO [258], and ABC [259] are 
all prevalent optimization strategies used for two decades to 
solve GS issues.

Prajapati and Mahajan [260] used an energy management 
strategy to alleviate congestion on the transmission line by 
rescheduling generators to minimize the expense of reschedul-
ing using GWO. The rescheduling of generators was carried 
out with and without RES on the updated IEEE 30 bus system. 
It was seen that the rescheduling costs, energy losses, and the 
use of fossil fuels with RES generators were minimized rela-
tive to the rescheduling of generators without RES generators.

Saravanan et al. [261] employed the GWO for the GS prob-
lem with the large-scale incorporation of RES, including PV, 
WT, thermal, and hydro plants. Using the penalty function 
process, the restrictions of the GS problem were treated. The 
GWO’s analysis of findings with PSO, GSA, etc. revealed 
that the GWO can produce very competitive results relative to 
those well-known meta-heuristics.

3.5.2  Transmission Systems

The most necessary feature of the power system is the TNEP. 
The TNEP explains the cost-effective and optimal extension 
of new lines to meet the planning horizon load rise and is 
needed to provide enough capacity safely and economically to 
customer load demand [262, 263]. The purpose of the TNEP 
is to determine the optimal configuration of the circuit that 
should be applied to the device to meet load requirements and 
operational constraints [264].

Different mathematical models such as static model, hybrid 
model, and DC model are generated for the solution of the 
TNEP problem [265, 266]. The TNEP is a complex problem 
with various types of random and non-random uncertainties 
such as load, cost of generation, generator availability, line 
availability, transmission facility substitution, and market law 
[267, 268]. Due to their ability to solve unknown situations, 
these uncertainties can be treated independently using differ-
ent expert systems such as artificial neural networks and FL 
[269–272].

In a study performed by Khandelwal et al. [273], an MGWO 
was used to tackle the TNEP for Graver’s six-bus and Brazil-
ian 46-bus systems. In the GWO, the solution can trap in the 
position of ω wolves. Therefore, the position of the ω should 
also be updated and participate in finding the best solution. In 
the MGWO, wolves and some wolves are also proposed to be 
involved in the hunt. Thus, with the help of δ and ω wolves 
existing, an updated family of δ wolves is created. Equation 9 
is used for the creation of the new wolf family.

where X4 is ω wolves’ position and X3 (new) is the new 
family position of δ wolves’. In the MGWO, the ω wolves’ 
position is also updated similar to α, β, and δ wolves using 
Eq. (11):

where X� is ω wolves’ position, �4 and �4 are coefficient 
vectors. The best-updated solution equation is displayed in 
Eq. (12):

where X 1 and X 2 are positions of α, β wolves, and X3(new) 
is δ wolf’s new position.

The results showed that the algorithm proposed is both 
accurate and competent. Khandelwal et al. [274] solved 
ACOPF-based TNEP using the GWO. In the study, the 
ACOPF-based TNEP formulation is chosen, and the 
increased number of circuits to be reached is given during 
the planning timeframe so that the minor expansion costs 
are provided without any overloads. The GWO was checked 
via TNEP for six buses, Graver’s solution, and 24 bus IEEE 
systems. The recorded findings demonstrated that GWO is 
a cost-effective and more detailed technique for solving this 
TNEP.

Khandelwal et al. [275] discussed the TNEP problem 
using L-index as a VSC problem and FCGWO. In the GWO, 
the position is updated using Eq. (7). A new position update 
equation was suggested, Eq. (13), to balance the solution 
convergence by changing the position update equation in 
the FCGWO.

where the reciprocal position is equivalent to the reciprocal 
sum of the α, β, and δ wolves’ positions. In this equation, 

(9)�����������⃗
X3(new) =

����⃗X3 + ����⃗X4

2

(10)���⃗𝜆𝜔 =
||| ���⃗𝜑4.

����⃗X𝜔 − �⃗X
|||

(11)����⃗X4 =
|||
����⃗X𝜔 − ��⃗𝜁4.

������⃗(𝜆𝜔)
|||

(12)�⃗X(t + 1) =
����⃗X1 + ����⃗X2 + ��������������⃗X3(new)

3

(13)
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�⃗X(t + 1)
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1
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+

1

����⃗X2
+

1

����⃗X3
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X 1, X 2 and X3 are the position of α, β, and δ wolves. The 
GWO and FCGWO were utilized for the IEEE 24 bus sys-
tem. The findings showed that FCGWO is an algorithm that 
converges more reliably and rapidly. In addition, the studies 
indicated that FCGWO is an efficient variant of GWO for the 
TNEP and VSC-TNEP solutions.

In research performed by Khandelwal et al. [276], the 
GWO was used to solve (N-1) STNEP problem based on 
contingency. The results accessed by GWO for Graver 6-bus 
and 46-bus Brazilian networks demonstrated the GWO’s 
ability to determine the optimal system cost for STNEP.

Moradi et al. [277] suggested the GWO application for 
improvement of uncertainties management in the multi-year 
TNEP from the point of view of private investors with the 
consideration of FSC and uncertainty. The findings of this 
analysis on the IEEE 24-bus and 118-bus test systems sug-
gested that in addition to lowering investment costs, add-
ing FSC would provide private developers with an excellent 
vision to achieve viable transmission projects for investment.

3.5.3  Distribution Systems

Electricity distribution systems are carriers of electricity 
delivered by transmission system manufacturers to end 
users. The regulation of voltage in a distribution grid is 
essential for consumers and energy supplies. End custom-
ers require their buses to have their voltage under statutory 

limits. Voltage control can be done using a variety of 
techniques.

Mahmoud et al. [278] presented a MOGWO combined 
with a Lévy mutation operator (GWO-Lévy) to effectively 
solve the voltage regulation problem for DNs to consider 
the number of tap motions of transformers and the success-
ful power reduction of PV devices. In the study, Lévy flight 
was used to achieve more effective outcomes and boost the 
efficiency of the GWO. Indeed, global and local search capa-
bilities were improved by the Lévy mutation operator. The 
simulation’s findings showed the feasibility of the suggested 
approach for solving the PV problem while simultaneously 
maximizing the tap activity rate and decreasing the PV’s 
strength. The papers based on GWO applications in energy 
generation, transmission, and distribution systems are pro-
vided in Table 6.

3.6  Electric Vehicle

Despite advancements in transport technologies and power, 
the transport industry remains the fastest-growing energy 
user and source of greenhouse gasses, resulting in a marked 
decrease in emissions of such pollutants. Therefore, immedi-
ate attention must be paid to reducing the emissions of the 
present vehicle. Hybridizing a traditional vehicle could be 
one of the promising and necessary solutions for minimiz-
ing environmental effects, considering the available options.

Table 6  Main features of the papers on GWO applications in generation, transmission, and distribution systems

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of 
Hybrid/Modified)

Generation systems
[260] Generator rescheduling GC The annual saving in GC 

and energy-saving
Standard –

[261] Generator scheduling TC Efficiency of the method Standard –
Transmission systems
[273] TNEP Expansion cost Efficiency of MGWO Modified Updating the position of α, 

β, and δ to find the best 
position

[274] TNEP Expansion cost Efficiency of GWO Standard –
[275] TNEP TC of expansion Better performance of the 

FCGWO than the GWO
Modified Updating the position of α, 

β, and δ to find the best 
position

[276] STNEP Expansion cost Obtaining optimum 
solution

Standard –

[277] TNEP Investment cost for FSC Achieving the best solu-
tion

Standard –

Distribution systems
[278] Optimal voltage control Voltage drop

Voltage rise
Tap movement rate of 

transformer CPPV

Good performance of 
GWO-Lévy

MO/Hybrid Integrated with a Lévy 
mutation operator (GWO-
Lévy)
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The hybrid electric combination is a stronger alternative 
than available sources, integrating an internal combustion 
engine with an electric power-driven motor to deliver the 
advantages of traditional & electric technology. The fastest 
path for safe and effective transportation is electrification. 
The conversion of a traditional vehicle into a HEV or PHEV 
will, therefore, be one of the most effective, feasible, and 
improved transport system options that can follow require-
ments and keep emissions under control.

In research performed by Gujarathi et al. [279], to opti-
mize primary FC and pollutants such as carbon monoxide, 
the GWO application was presented for multidimensional 
engine optimization of transformed parallel-operated diesel 
plug-in hybrid electric vehicles. It was obvious that with 
slight deviation, the GWO can offer the global minimum 
value, but less calculation time and simplicity make this 
algorithm a possible candidate for real-time implementation.

EVs and the ESS provide a new way of coping with 
the extreme energy and emissions problem. In addition to 
releasing the line overload and power quality loss caused by 
uncoordinated charging, improving the charge and discharge 
mechanism can also balance the load curve and modulate 
frequency, increasing the power system’s reliability.

Liu et al. [280] suggested the real-time organized sched-
ule model for large EVs and ESS to eliminate real-time 
scheduling difficulties considering the particular restric-
tions of each EV and the secure DNs operation. Two phases 
were used in the optimization process using the GWO. In the 
first step, the GWO was adapted to measure the EV cluster 
and ESS charging/discharging strategy. In the second step, 
the energy buffer factor consensus allocation algorithm was 
proposed to create a comprehensive plan for each EV in 
the cluster, considering precise constraints. The simulation 

findings proved that the proposed model has excellent suc-
cess on huge EVs and ESS real-time scheduling optimiza-
tion and practice capability compared to other algorithms. 
The critical characteristics of GWO applications in EV are 
presented in Table 7.

3.7  Energy Storage System

ESSs are electric energy storage devices that are used to 
compensate for the energy deficit in an abnormal electric-
ity grid operating condition [162, 281, 282]. The ESSs are 
connected via an inverter to the network bus, converting the 
DC power supply from the storage system, battery, or FCs 
into an AC power supply [283]. Sizing ESSs is one of the 
major problems during the operation of DNs that improve 
the system’s reliability. Many investigators recommend 
using meta-heuristics to size ESSs to enhance the reliability 
of the DN [284–290].

To determine the optimum ESS size and location on 30 
and 69 bus power systems, the GWO was used [291]. Results 
achieved through the GWO indicated that the overall cost of 
the 30-bus system was saved by 14.12% for the basic case 
and 39.03% for the 69-bus system, respectively.

Sukumar et al. [292] presented optimum BESS sizing 
for the economic operation of microgrids with a mix-mode 
energy management system using the GWO, ABC, GA, and 
GSA. It was observed that GWO produces the best solution 
for others. The significant findings of GWO applications for 
papers based on ESS can be shown in Table 8.

Table 7  Summary of the papers on GWO applications in the EV

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

[279] Multidimensional engine optimization of 
converted PHEV

FC emissions Obtaining the optimal solution Standard

[280] Schedule optimization of EVs and ESS The average total load Good performance of GWO Standard

Table 8  Main features of GWO 
applications for the ESS

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

[291] Sizing of ESS in DN TAC Efficiency of 
the method to 
PSO and ABC

Standard

[292] Sizing of BESS TAC GWO efficiency in 
obtaining a solu-
tion

Standard
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3.8  Renewable Energy Resources

3.8.1  Solar Energy

PV systems are being used more frequently as RES. In this 
regard, the design of the PV model parameters, to determine 
the optimum values of those parameters resulting in the best 
performance and efficiency, should be defined and examined 
using mathematical models [293]. Furthermore, PV cells are 
usually designed as circuits. Thus, acquiring suitable PV cell 
circuit model parameters is critical to evaluating control, 
calculating efficiency, and MPPT of PV systems [294, 295].

Many meta-heuristic methods have recently been pro-
posed to estimate solar PV cell model parameters, such as 
GAs [296], PSO [293], CS [297], ABC [298, 299], TLBO 
[300], WOA [301], WCA [302, 303] and so forth. These 
meta-heuristic algorithms could produce satisfactory results 
for the PV model parameter extraction compared to the ana-
lytical and numerical approaches.

AlShabi et  al. [304] designed the MGGWO, which 
searches several wolves’ clans/packages to find the prey and 
estimate the parameters of a single-diode PV cell model. The 
results showed that MGGWO performs better than the PSO, 
time-varying accelerated coefficient PSO, and so on.

Zidane et al. [305] proposed the optimum size of PV 
modules, including crystalline silicon and thin-film cad-
mium telluride and inverters based on the various candidates 
in GWO, WOA, and so forth for large-scale PVs. Flexibility, 
robustness, and simplicity of application are GWO advan-
tages for the resolution of PV design problems.

Long et al. [40] developed GWOCS hybrid to estimate 
the parameters of the PV cell model under various operating 
conditions. The GWOCS proposes a strategy based on OBL 
to improve the diversity of the GWO for decision-makers 
individuals (i.e., α, β, and μ). The method has the advantage 
of being able to balance exploration and exploitation.

Stonier et  al. [306] proposed the GWO and DE for 
improvement of inverter power quality by relying on reduc-
tion or control of the symmetrical multilevel inverter (MLI) 
harmonics effects. The result showed that GWO reduces 
harmonic distortions and improves power quality by setting 
the modulation index and switching angle.

Atici et al. [307] presented the single-ended primary-
inductor converter along with GWO-based MPPT for PV 
systems. The GWO consists of two inputs and two outputs. 
The PV module’s current and voltage is as input. The first 
output is the GWO-calculated alpha power value, and the 
second is the pulse-width modulation signal to the system’s 
MPP. The results demonstrated that the method is faster and 
that the oscillation of the MPP is lower than conventional 
methods.

In a study investigated by Chauhan et al. [308], GWO-
based MPPT was used in a uniform and varying radiation 

environment to obtain maximum power from the PV system. 
Results indicated that the designed controller performed bet-
ter under variable environmental conditions.

Colak et al. [309] integrated multi-layer perceptron algo-
rithm into GWO to predict the total horizontal solar radia-
tion on a day-to-day basis. Multi-layer perceptron models 
are free from extrapolation and oscillatory interpolation 
drawbacks. The results indicated that the GWO model is 
suited to predict overall horizontal solar radiation every day 
efficiently.

Debnath et al. [310] used parallel GWO and OBL named 
Improved GWO to trace the MPPT of PV systems. In paral-
lel GWO, the wolves are initially divided into two or sev-
eral sub-groups. Afterward, each sub-group is implemented 
independently based on the main algorithm structure and 
each iteration time. It was found from the results that the 
improved GWO-based MPPT performance is enhanced than 
the Perturb and Observe (P&O) and PSO in terms of speed 
of tracking, steady-state oscillation under partial shading 
conditions, and accuracy.

Swief and Abdel-Salam [311] employed the GWO to size 
PV by considering the uncertainty of solar radiation and 
wind speed and using a probabilistic optimal load flow to 
formulate appropriate penetration levels to improve the VP. 
The results proved an improvement in GWO for GAs and 
HS.

3.8.2  Wind Energy

Wind power is one of the most significant alternative energy 
sources and one of the world’s fastest-developing clean 
energy innovations. One of the most essential elements of 
wind energy systems is the WECS [262]. The WECS is pow-
ered by wind and creates mechanical energy that transfers 
electricity to an electricity generator for electricity produc-
tion. A PMSG, double-fed induction generator, induction 
generator, synchronous generator, and so forth can be the 
generator of the WT. A pulse width modulation converter 
regulates the generator’s rotational speed to achieve full 
power from the WECS. Onshore, offshore, seashore, or hilly 
areas may be spread like wind farms. The WECS is assessed 
using GWO in several works.

Kahla et al. [312] introduced MOGWO as a fuzzy sliding 
mode controller to optimize the power collected by wind tur-
bines. In the research, the sliding mode control based on FL 
theory was generated by gathering the sliding surface data 
to reduce the chattering effect induced by the sliding mode 
control. Then, the GWO was added to solve WECS MO 
functions. The proposed process can ensure better dynamic 
behavior of the WECS.

Qais et  al. [313] proposed an augmentation for the 
GWO (AGWO) for better hunting performance to increase 
the MPPT and low voltage ride through the output of 
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grid-connected PMSG powered by variable speed WT. 
Updating the position of the search agents by the average 
position of alphas (first best position) and betas (second best 
position) was used to develop manipulation. Based on the 
reported optimization results, the proposed AGWO sub-
stantially improved the performance of the standard GWO. 
Table 11 shows the main features of the papers on GWO 
applications in wind energy.

3.8.3  Hybrid Renewable Energy System

Due to the different problems of depleting fossil fuels, 
greenhouse gas emissions, climate change, and so forth, 
there has been a dramatic increase in the use of RES [314]. 
Therefore, the proper sizing of the hybrid model based 
on the RES is critical, as the energy generated from RES 
fluctuates. Optimizing the renewable hybrid systems is 
essential with the high current cost of an HRES, which 
can significantly affect the long-standing economic per-
formance of the hybrid system [315]. The complexity of 
optimal HRES design and drawbacks of classical methods 
also have led to the use of Meta-heuristics for sizing the 
HRES in many studies such as ABC [316], WCA [317], 
TLBO [318], and PSO [319]. In this regard, some works 
used the GWO to size HRES.

Anand et al. [320] utilized the GWO for the optimal 
sizing of the HRES based on PV, biomass, biogas and 
battery units providing electricity continuously to the vari-
ous households of Haryana State Indian village clusters. 
Compared with HS and PSO, the results showed better 
model performance.

Geleta et  al. [321] and Hadidian-Moghaddam et al. 
[322] measured the optimum PV, WT, and battery-based 
HRES sizing and the optimum number of solar panels, 
WTs, and batteries to minimize TAC by meeting the 
requested demand. The results showed that the reliabil-
ity of the studied systems is improved by increasing the 
inverter power and decreasing the TAC.

Tabak et  al. [323] used the GWO, GA, and SA to 
achieve the lowest costs and reliable system by optimal 
sizing HRES with PV/WT/biomass based sources. Also, 
Yahiaoui et  al. [324] proposed the GWO for sizing of 
HRES based on PV, Battery, and diesel generator in an iso-
lated rural village in South Algeria named “Djanet”. The 
results of the GWO for PSO, GAs, and SA confirmed the 
GWO’s improved problem-solving results. Table 9 rep-
resents the important attributes of the papers on GWO 
applications for renewable energies.

3.9  Smart Grid

Mahdad and Srairi et al. [325] introduced a hybrid called 
GWPS to resolve a security problem of smart grid man-
agement and prevent blackouts caused by faults occur-
ring in generating units or significant transmission lines of 
the practical electricity system. The results demonstrated 
the efficiency of the proposed security strategy in critical 
situations.

In research performed by Singh and Mahajan [326], 
the advanced GWO was proposed to detect and propagate 
the cyberattack to avoid a failure in the smart grid sub-
stations. This method uses graph theory to model every 
wireless sensor node. This method takes nodes as wolves 
and classifies those considering trust values during cyber 
interference. The findings demonstrated the efficiency of 
the proposed method in reducing data losses for GA and 
FA [327]. Table 10 illustrates the main paper’s attributes 
related to the GWO applications for smart grids in detail.

3.10  Microgrids

MGs have emerged to remove the necessity of investment in 
long transmission lines and prevent the huge loss in trans-
mission lines [328–331]. They commonly include small-
scale renewable or non-renewable generation units, storage 
systems and responsive demands [171, 332–338]. MGs may 
be connected to an upstream grid or operate as an isolated 
network [338–344]. Due to their merits, large electric power 
systems are being replaced by MGs [345, 346]. The optimi-
zation problems in MGs can be classified into three main 
categories. The first category of problems, referred to as 
UC, minimizes the operation cost of MG with optimal com-
mitment of generation units and optimal charge/discharge 
of electric storage systems. MG operation cost typically 
includes GC of DG units, start-up and shut-down cost of 
generation units, and degradation cost of storage systems 
[170, 347]. The second category of problems is planning 
problems, which aim to find the best planning decisions in 
terms of the size and/or location of facilities, and the third 
category includes problems that aim to find the optimal con-
troller parameters for MG.

Sharma et al. [348] used GWO for optimal battery sizing 
in a grid-connected MG with MT, FCs, PV, and wind units. 
The achieved results indicated the superiority of GWO over 
GA, PSO, BA, and TLBO [349]. El-Bidairi et al. [350] uti-
lized GWO for optimal sizing of battery in an isolated MG 
with diesel generators, WT, PV, and tidal power units, while 
emissions and cost of electricity were considered as objec-
tives, and a minimum reserve constraint was considered at 
each time.

Zhang et  al. [351] incorporated logistic chaotic map 
function into GWO, and the resulting chaotic GWO was 
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used to determine the parameters of the PID controller of 
the pumped storage unit in an isolated MG. In the study, 
controller parameters are found in a way to have an optimal 

frequency response in MG. The results implied the outper-
formance of the proposed chaotic GWO over others.

Gazijahani and Salehi [352] employed GWO for optimal 
planning of grid-connected MGs with reconfiguration. The 

Table 9  The GWO applications for renewable energy resources

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of 
Hybrid/Modified)

Solar energy
[304] Estimating PV Root Mean Squared 

Error (RMSE), Maxi-
mum Absolute Error 
(MAE)

MGGWO efficiency to 
GWO in terms of con-
vergence rate, RMSE, 
and MAE

Modified Using clans/packs of 
wolves are finding prey

[305] Estimating PV Levelized cost of elec-
tricity (LCOE)

Efficiency of GWO in 
terms of convergence 
rate and avoidance of 
local optima

Standard –

[40] Estimating PV RMSE The better performance 
of GWOCS in terms of 
convergence rate

Hybrid GWO with CS

[306] Design of an MLI Switching angle Modu-
lation index

Achieving optimal 
values

Standard –

[307] Design of PV systems PV module current
PV module voltage

Good performance of 
GWO

Standard –

[308] Design of PV systems PV module current
PV module voltage

better performance 
of GWO than other 
method

Standard –

[309] Forecasting of Solar 
Radiation

Mean Absolute Percent-
age Error (MAPE)

MAE
Coefficient of determi-

nation (R2) measures

Efficiency of the pro-
posed method

Hybrid GWO with Multilayer 
perceptron models

[310] Tracing MPPT in PV 
system

PV power Good performance of 
the method

Hybrid Parallel GWO with OBL

[311] Estimating PV PLes The superiority of GWO 
over others

Standard –

Wind energy
[312] MPPT of WECS Extracting the maximum 

power
Effectiveness of the pro-

posed method
Modified MOGWO

[313] Grid-connected
PMSG-based WECS

Integral-squared error 
(ISE)

Root mean square volt-
age

Efficiency of AGWO 
than GWO and PSO

Modified An improvement based on 
an Augmentation

Hybrid renewable energy system
[320] Sizing of HRES The net present cost 

(NPC)
The efficiency of 

the algorithm in 
achieving optimal 
value

Standard –

[321] Sizing of HRES TAC Fast convergence and 
lower cost

Standard –

[322] Sizing of HRES TAC Fast convergence and 
lower cost

Standard –

[323] Sizing of HRES TAC 
PL

Efficiency of algorithm Standard –

[324] Sizing of HRES TAC Fast convergence and 
lower cost

Standard –
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network constraints were considered, and uncertainties of 
demands, renewable power, and electricity prices were dealt 
with through robust optimization. The reliability of the MG 
is included in the planning objectives. The results for an MG 
with PV, electric storage system, PV, and WT indicated the 
outperformance of GWO over others.

Kumar and Sinha [353] utilized GWO to tune a controller 
for voltage stability of a DC MG with a battery, permanent 
magnet DC generator, and solar thermal dish Stirling engine. 
The controller aims to keep the voltage of the common DC 
bus at the desired level. The effect of different controllers, 
such as fractional order PID and PID controllers, on MG 
was investigated. Mohseni et al. [354] used GWO to plan 
an isolated MG, which includes FCs and super-capacitors. 
However, the results achieved by the moth flame optimiza-
tion algorithm are better than those of the GWO results. 
Table 11 provides the GWO applications for the MG.

3.11  Home Energy Systems

In DR programs, electric utilities set the prices or incen-
tives in a way that the stress on utilities is reduced, so the 
consumers experience time-varying prices or are rewarded 
incentives for curtailment at specific time slots [355]. In 
TOU DR programs, typically, a day is categorized into off-
peak times, mid-peak times, and peak times, and the con-
sumers are charged based on the consumption time zone; 
in the RTP DR program, the price is different at different 
time periods and in incentive-based DR, the consumers 
are rewarded incentive for curtailment at specific periods 
[355].

Smart homes have HEMS that aim to minimize 
the house’s electricity bill, while the comfort of residents, 
PAR, and emissions may also be considered [356]. Home 
appliances are commonly categorized into three categories: 
must-in appliances that cannot be controlled, shiftable but 
non-interruptible appliances such as rice cookers, and shift-
able and interruptible appliances such as electric vehicles. In 
some cases, the home has its own renewable or non-renew-
able power generation units, commonly diesel generators 
or PV modules. Each appliance has a pre-specified allowed 

operating range and a certain energy that must be delivered 
to it during its operation.

On a day-ahead basis, HEMS determines the optimal 
schedule of appliances and dispatchable generation units in 
a way that the electricity bill is minimized and consumers’ 
comfort, PAR as well as emissions are considered [357]. In 
cases where consumers’ comfort is a concern, a base-line 
schedule is defined for appliances, and a discomfort index is 
determined based on the difference between a schedule and 
a base-line schedule [358]. The HEMS shifts the consump-
tion of controllable appliances from high-priced time slots 
to low-priced time slots. For non-interruptible appliances, 
it is easier to take the starting time of appliances as deci-
sion variables, as the number of decision variables would be 
lower in the resulting integer optimization problem [358]; 
however, in the case of interruptible appliances, the status 
of appliances at different time slots form the decision vector, 
and a mixed-binary optimization problem is a more difficult 
result [359].

In some research in the  literature, the GWO variants 
have been used to schedule home appliances in HEMS 
(Ayub et al. [360] provided an improved BGWO for opti-
mal scheduling of home appliances under the TOU tariff. 
A baseline schedule has been pre-specified for appliances, 
the discomfort index has been defined based on the baseline 
schedule, and the discomfort is minimized for a maximum 
budget limit. In the proposed improved GWO, a random 
walk enhances alpha, beta, and gamma wolves. The results 
showed the outperformance of the proposed method over 
others. The effect of budget limits on the comfort of consum-
ers has been investigated.

Molla et al. [361] used GWO for optimal scheduling 
of appliances in a home with a PV unit under TOU tariff. 
The electricity bills of the home and PAR have been mini-
mized, while the discomfort index of consumers has been 
considered. The scheduling problem has been formulated 
as a mixed-binary nonlinear problem. The results indicated 
better performance of GWO to PSO. The PV effect on the 
scheduling appliances, bill, and PAR has been investigated.

Waseem et al. [362] used a hybrid of GWO and CSA 
for optimal scheduling of appliances in smart homes under 

Table 10  The GWO applications for smart grid

References Appl Obj. fun(s) Main findings Variants of GWO (Stand-
ard/Hybrid/Modified)

Modification (Type 
of Hybrid/Modi-
fied)

[325] Security smart 
grid manage-
ment

Cost PL VD GWPS efficiency to GWO and PS Hybrid GWO and PS

[326] Cyber failure 
detection in 
smart grid

Data loss Effectiveness of method Modified Using graph theory
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RTP tariffs, while electricity bills and consumers’ discom-
fort have been minimized. As per the results, the proposed 
algorithm outperforms other methods in all terms of bill, 
PAR, and comfort.

Makhadmeh et al. [363] employed GWO to schedule 
home appliances optimally under the RTP tariff, while the 
scheduling problem was formulated with bill, comfort and 
PAR as objectives as the multiple objective optimization 
issue. Linear weighted sum has been used to convert the MO 
problem into a single-objective problem, and the schedul-
ing was done with a 5-min time resolution. Seven different 
load profiles and RTP prices have validated the proposed 
scheduling method.

In a research performed by Jordehi et al. [364], GWO was 
used for optimal scheduling of shiftable, non-interruptible 
home appliances to minimize the home’s electricity bill. As 
the appliances are non-interruptible, their starting time has 
been used as a decision variable, resulting in an optimization 
problem with integer decision variables. The planning was 
done using a combination of RTP tariff and incentive-based 
DR in the first scenario and a combination of TOU tariff and 
DR based on incentive in the second scenario.

ul Hassan et al. [365] assessed the HEMS performance 
using the BFA/GWO. To this end, home appliances are 
divided into two classes based on their power consumption 
pattern. The CPP pattern is used to calculate the electricity 
account. To reduce costs and PAR and manage electricity 
consumption, the load is balanced by scheduling appliances 
at peak hours and off-peak hours.

Javaid et al. [366] utilized the FPA, GWO, and hybrid 
FPA and GWO (FGWO) based HEMS along with the load 

shifting strategy of DSM in a smart grid, which has been 
used to reduce PAR at an affordable cost and improve user 
comfort. Simulations for a single home were conducted with 
15 appliances, and the CPP Tariff was used to compute con-
sumer electrical payment. The results demonstrated that the 
load was successfully transferred with FGWO to low-price 
times, ultimately leading to a 50.425 percent reduction in 
PAR, a waiting time of 24.148 h, and a reasonable 54.654 
percent cost reduction. Many cases of the advantages of 
DSM in energy systems have been reported [367]. The pri-
mary highlights of the GWO applications for HES may be 
shown in Table 12.

3.12  Water Sources

The most critical resource challenge faced by humanity in 
the twenty-first century is the lack of water supplies [368]. 
Furthermore, in future decades, under the impact of climate 
change, the water crisis is ranked as the highest global con-
cern [369]. Population growth, industrial and agricultural 
production operations, rapid urbanization expansion, and 
climate mutation have significantly affected limited water 
supplies and have steadily degraded the ecosystem, thereby 
threatening human well-being [370]. Therefore, optimizing 
water supply problems has received much attention, particu-
larly in recent years. In this respect, the GWO algorithm has 
been used in some works to maximize water supplies.

Sweidan et  al. [371] used CBR, GWO, and K case 
retrieval parameters to test water contamination. The data-
sets in their study used true sample microscopic photographs 
of fish gills exposed to copper and water pH at various 

Table 11  The main GWO applications for the MG

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of 
Hybrid/Modified)

[348] MG planning (battery 
sizing)

Planning cost The superiority of GWO 
over GAs, DE, etc

Standard –

[350] MG planning (battery 
sizing)

Planning cost The effect of reserve 
constraint on planning 
decisions in MG has 
been investigated

Standard –

[351] Tuning PID controller 
in MG

Overshoot of frequency 
response

Outperformance of the 
proposed chaotic GWO 
over PSO and GWO

Modified Using Chaotic mapping

[352] MG planning Planning costs, including 
reliability

Outperformance of GWO 
over GA, PSO, and 
ABC

Standard –

[353] Tuning PID controller for 
voltage stability

Frequency response The outperformance of 
GWO over mine blast 
algorithm and PSO

Standard –

[354] MG planning Planning cost The moth flame opti-
mization algorithm 
outperforms GWO

Standard –
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histopathological stages. Considering the variety of water 
contaminants, findings showed that the average accuracy 
reached by the GWO-CBR classification model exceeded 
97.2 percent.

Sankaranarayanan et al. [372] presented an HGWO along 
with Kalman Bucy’s correction mechanism to adjust the 
solution obtained by the GWO. In addition, the shuttling 
back-and-forth mitigation algorithm was applied to a local 
search technique. For two separate WDN case studies, the 
HGWO has achieved cost-optimal results.

Rathore et al. [373] suggested a PID controller tuned 
using the GWO for water treatment plants in Doha. The 
proposed approach should minimize the error criteria so 
that intense flux and conductivity transient responses can 
be produced.

Yu and Lu [369] introduced an integrated water resource 
optimization distribution model in a transboundary river 

basin that was implemented into the PPMGWO. The results 
indicated that the PPMGWO model’s average variance was 
the lowest, and its optimization allocation outcome was clos-
est to reality, further showing the PPMGWO model’s reason-
ability, viability, and precision.

Liu et al. [374] suggested a general optimization routine 
combined with the hydraulic simulation model to achieve 
the optimal dispatching and operation schedule of cascade 
pumping stations. The GWO was developed to limit the fea-
sible area of the ideal problem of cascade pumping stations 
dispatching and running. The model’s results, which com-
prised six pumping stations, showed that the GWO could 
achieve a better solution regarding both robustness and accu-
racy regarding the PSO. The GWO applications for water 
sources are shown in Table 13.

Table 12  Summary of the papers on the GWO applications in HES

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modification (Type of 
Hybrid/Modified)

[360] HEMS (optimal 
scheduling of home 
appliances)

Discomfort index The outperformance of 
the improved GWO 
over binary GA, binary 
PSO, and BGWO

Modified GWO enhanced with 
random walk operator

[361] HEMS Bill and PAR Better performance of 
GWO to PSO for bill 
and PAR

Standard –

[362] HEMS Bill and discomfort index The proposed algorithm 
outperforms GA, 
GWO, FA, PSOGWO, 
and others in terms of 
bill, PAR, and comfort

Hybrid The hybrid of GWO and 
CSA

[363] HEMS Bill, comfort, and PAR The outperformance of 
GWO concerning PSO, 
GAs, and GAWDO

Standard –

[364] HEMS Bill Outperformance of GWO 
to PSO

Standard –

[384] HEMS Bill, comfort, and PAR The outperformance of 
GWO concerning GAs

Standard –

[385] HEMS bill, comfort, and PAR The scheduling has been 
done for RTP DR and 
critical peak pricing 
DR

Hybrid The hybrid of GWO 
and DE

[365] HEMS TC The superiority of GWO 
to BFA in terms of 
cost reduction and fast 
convergence

Standard –

[366] HEMS PAR and TC FGWO performed well 
compared to GWO and 
FPA in terms of PAR 
and waiting time. How-
ever, in terms of cost, 
FPA outperformed the 
other techniques

Hybrid The hybrid of FPA and 
GWO called FGWO
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3.13  Heat Exchanger

Heat exchangers are an effective tool used to propose the 
conversion of thermal energy between different liquids at 
different temperatures, such as the transfer of heat from a hot 
liquid to a cold liquid [375]. Different forms of heat trans-
fers operate in many industries, and one of the popular heat 
transfers is compact heat exchangers, which may be plate-fin 
or tube-fin style structures [376]. In certain heat transfers, 
the liquids are isolated by a heat transfer plane, and they 
do not interact or escape supremely. A direct transfer form 
protects them. Shell and tube exchangers, vehicle radiators, 
condensers, evaporators, air preheaters, and cooling towers 
are some of the central heat transfers [377].

Shell-and-tube heat transfer, which is primarily used with 
a wide variety of usable temperatures and pressures, is the 
most used worldwide. For refrigerators, power generators, 
heating and air conditioners, chemical processes, indus-
trialized applications, and medical applications, it mainly 

provides the required control action on the control valve to 
maintain constant outlet temperature [378].

Anbumani et al. [379] presented the tuning of the PID 
controller using the GWO for the first-order transfer func-
tion model of the heat exchanger. The performance indices 
showed that the GWO gives PSO a better heat exchanger 
process. Furthermore, Lara-Montaño and Gómez-Castro 
[380] employed the GWO to solve the optimization prob-
lem for a heat exchanger shell-and-tube, simulated by the 
Bell-Delaware model, attempting to minimize the overall 
annual expense, while Roy et al. [381] designed shell-and-
tube heat exchangers with the aid of GWO for obtaining 
optimal design parameters. Table 14 presents highlights of 
the papers on GWO applications for heat exchangers.

Table 13  The GWO applications for water sources

References Appl Obj. fun(s) Main findings Variants of GWO 
(Standard/Hybrid/
Modified)

Modifica-
tion (Type 
of Hybrid/
Modified)

[371] Assessing water quality Indicating water pollution High accuracy achieved by the 
GWO-CBR

Standard –

[372] WDN Cost minimization of WDN The superiority of method to 
PSO and GWO

Hybrid GWO 
is equipped 
with a 
correction 
mechanism

[373] Doha water treatment plant Minimize the error and tun-
ing PID parameters

The superiority of GWO to 
others

Standard –

[369] Water resources Optimal allocation Good performance of 
PPMGWO

Standard –

[374] Pumping stations Optimal dispatching and 
economic operation of 
cascade

Efficiency of GWO Standard –

Table 14  The characteristics of the GWO applications for water sources

References Appl Obj. fun(s) Results Variants of GWO 
(Standard/Hybrid/
Modified)

[379] Design of controller in exchanger Finding optimum PID parameters The performance improvement of 
the system

Standard

[380] Optimal design of exchanger Obtaining optimum total annual 
cost

Low computing time and reduced 
cost

Standard

[381] Designing of shell-and-tube heat 
exchangers

Finding optimal weights to predict 
the exergetic plant efficiency, 
energetic cycle efficiency, and 
electrical power

Low time and maximum error 
accuracy

Standard
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4  Discussions and Trends

The GWO is one of the well-known meta-heuristic opti-
mizers used in many research and commercial projects to 
solve optimization problems related to energy systems. 
Some of the benefits of this algorithm are simple struc-
ture and implementation, fewer computational require-
ments, high search precision, the ability to avoid local 
minimums and to adjust algorithm performance with two 
control parameters (i.e., a and C) and, therefore, more 
excellent stability and robustness, faster convergence, as 
search space is reduced and decision variables (i.e., α, β, 
and δ) are reduced.

Over 100 research papers were reviewed in this sur-
vey to provide a comprehensive reference for researchers 

interested in using the GWO algorithm. The papers were 
filtered and collected using Google Scholar with keywords 
(i.e., grey wolf optimizer, grey wolf optimization, GWO, 
and energy systems-based applications). There are exist-
ing review papers on GWO. In this review, however, we 
reviewed documents in which GWO was applied to diverse 
applications and areas of study to identify the ones on 
energy systems, which is the focus of this study. Results 
indicate that the usage of GWO in different research and 
studies is growing considerably year after year.

4.1  Variants of GWO

In the reviewed papers, different variants of the GWO algo-
rithm are used to strengthen its performance, including 
improved versions of the GWO algorithm, hybridization 
of GWO with other algorithms, and variants of GWO for 
handling MO optimization, the so-called MOGWO algo-
rithm. Figure 10 demonstrates the contribution percentage 
of GWO variants in the papers. Based on the statistical data 
in Fig. 10, the categories of “Standard GWO” and “Modified 
GWO” have more percentage of GWO variants.

Studies on the GWO’s performance and behavior indicate 
that it has proper capabilities in relation to the exploration 
and exploitation mechanisms. However, some researchers 
have modified the GWO to strengthen its efficiency in tack-
ling optimization problems.

Numerous papers have used the GWO and its variants 
because of their strengths and capabilities to improve the 
performance of engineering systems and tackle various engi-
neering issues. The following section represents the GWO 
modifications and hybridizations in the literature.

4.1.1  Modifications of GWO

In the majority of optimization algorithms, the primary con-
cern is the maintenance of the exploratory and exploitative 

60%

5%

27%

8%

Standard GWO Multi-objective GWO

Modified GWO Hybrid GWO

Fig. 10  Variants distribution of GWO algorithm in the reviewed 
papers

Fig. 11  The GWO modifica-
tions percentage in the reviewed 
papers 4%

14%

25%

21%

4%

21%

11%
Chaotic based GWO

Parameter tunning based GWO

Binary based GWO

Operators based GWO

Augmented Lagrangian based GWO

Other Modifications of WCA

Learning mechanisms based GWO
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balance in searching spaces and subsequently achieving the 
optimal solution [36]. The researchers have employed vari-
ous techniques in various fields in recent years to improve 
GWO performance. The variants of the original GWO in this 
respect have been proposed in the literature about improve-
ments, hybridizations, parameter set-up, the application of 
a set of evolutionary operators, and other methodologies. 
Moreover, Fig. 11 shows the percentage of GWO improve-
ments in the literature. Based on the statistical results in 
Fig. 11, the "binary-based GWO" category has a higher per-
centage of GWO enhancement papers.

In the problems related to the energy systems, the binary 
nature of the UC and PBUC problems obligates the use of 
binary transformation of the real-valued GWO. Since the 
BGWO improves the quality of the traditional GWO solu-
tions to solve the UC problem effectively, the binary version 
of the GWO has been utilized for solving the UC and PBUC 
problems in some research [185–190]. The binary number 
system, also known as the base-2 number system, represents 
numbers that count with a combination of only two numbers: 
0 and 1.

The UC consists of two sub-problems where, in the first 
step, the ON–OFF status of the generator is established, and 
the power/generation allocation for the committed units is 
provided. Binary codes with 0 and 1 may denote OFF and 
ON states, respectively, which can be the commitment or 
disengagement of thermal plants. Therefore, the position of 
wolves at any given time in the BGWO is either 0 or 1. Two 
BGWO models are presented to solve problems based on 
UC. First, wolf update processes are immediately binarized 
towards the best global solution(s), followed by crosso-
ver operation. In the second method, wolves continuously 
update to the best global solution(s) and follow the sigmoid 
transformation.

To improve the performance of such an algorithm, it is 
evident that tuning the original parameters and updating the 
positions of individuals is crucial. To this end, in order to 
ensure accurate settings and update the position of wolves 
in the GWO to achieve efficient performance, numerous dif-
ferent methods were introduced.

In some works, researchers have balanced the explora-
tion and exploitation processes by updating the parameters 
of GWO and providing different strategies for updating the 
individuals, resulting in efficiency improvement.

Paramguru and Barik [205] performed, tuning two param-
eters, a and A, using the exponential function to improve 
exploratory and exploitative search patterns of GWO. In 
the study, the parameters are reduced using the exponential 
function. In addition, Khandelwal [273] and [275] provided 
updating the position of the α, β, and δ parameters to find 
the best position and increase the frequency of updating the 
main solutions in GWO, which leads to higher search space 
awareness and is good for dynamic problems.

The OBL is one of the efficient tools of optimization to 
increase the convergence rate of different heuristic tech-
niques [382]. The OBL performance includes the assessment 
of the current and opposite population of the same genera-
tion to acquire the optimal solution to a problem. In several 
meta-heuristics, the OBL concept has been successfully used 
to improve the conversion speed [297, 383].

In some research, the OBL concept has been used to 
increase the coverage of search space by exploring the oppo-
site position of solutions in GWO and finally accelerating 
its convergence rate [198, 204, 238], and [310]. In several 
reviewed papers, researchers have incorporated new opera-
tors like mutation and crossover into the GWO or used a 
local search algorithm to improve the algorithm’s ability.

The crossover operator aims to make it easier for pack-
mates to share information. The aim of the mutation and 
local search method is to make small changes in the vari-
ables of each solution in GWO and to benefit from the 
high exploration and exploitation of evolutionary opera-
tors. Table 15 further describes the main attributes of the 
improved GWO versions in the reviewed papers.

4.1.2  Hybridizations of GWO

The hybridization of at least two or more optimization algo-
rithms usually refers to the simultaneous use of algorithms to 
overcome the limitations in the algorithm as well as to obtain 
optimal solutions for complicated optimization problems [36].

Studies on the GWO searching operators show that, in com-
bination with other optimizers, it will become a suitable, effec-
tive, beneficial, and powerful tool to address complex optimi-
zation problems. In addition, the hybridization of GWO with 
other optimizers compensates for its weaknesses and strength-
ens its advantages in achieving optimal solutions.

Therefore, various meta-heuristics were combined with 
GWO in recent years to tackle the complexity of the energy 
systems based problems and enhance its performance. 
Table 16 shows the hybridizations of GWO with other algo-
rithms in energy systems-based papers.

4.2  Energy Systems Based Applications

Following the introduction of GWO, the literature has reported 
many different applications. GWO has demonstrated the 
appropriate performance for the optimal solution of optimiza-
tion problems. In addition to its quick and mature convergence 
rate, good exploitation and exploration skills make GWO a 
suitable alternative for solving large-scale problems.

In addition, the other GWO strength that makes it famous 
for programmers and researchers is its simplicity of con-
ceptualizing and coding, as shown in the literature. Because 
of its strengths and abilities, the GWO has been utilized to 
solve many problems related to energy systems such as UC, 
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ED, OPF, DG resources, etc. Figure 12 illustrates the opti-
mization problems related to the energy systems, which are 
evaluated using the GWO algorithm in the reviewed papers.

In addition, Fig. 13 demonstrates the percentage of the 
problems solved using GWO in the reviewed papers. Based 
on the statistical results displayed in Fig. 13, the categories 
of “ED,” “Renewable energy resources,” and “OPF” have 
higher percentages of problems solved using GWO in the 
reviewed papers.

Looking at Fig.  14, the distribution of GWO papers 
studied for each continent is demonstrated concerning the 
authors’ affiliation. As shown in Fig. 14, with the maxi-
mum number of documents from India and China, Asia 
has the most significant proportion of GWO contributions 
to energy system-based issues, and America and Australia 
have the lowest contributions. As for Asia, GWO can thus 
be expected to effectively solve engineering applications 
in the continents above by witnessing more applications in 
America, Australia, and Europe.

5  Conclusions and Future Directions

In this review paper, an exhaustive investigation has been 
carried out into GWO applications and their recent advances 
in literature in a broad and diverse field of research based 
on energy systems. Significant efforts have been devoted to 
constructing this article to give readers and interested schol-
ars a vital insight into this topic through the discussion and 
summary of the GWO findings in recent scientific papers 
while studying and analyzing many and various research 
papers relating to the GWO.

Because of the efficient attributes of the GWO between 
optimizers, the distinctive versions of the GWO were pre-
sented in a complete list of references in papers based on 
energy systems in terms of applications, improvements, 
hybridizations, and MO variants, the results obtained from 
studies and evaluations of these references support research-
ers’ finding it useful and valuable to address problems based 
on the energy system. This review paper is believed to be 
practical and appropriate for students, academic researchers, 
experts, and engineers. It may also be a beneficial and effec-
tive reference in academic papers and GWO-related books, 
energy systems, optimization methodologies, and meta-
heuristics. Furthermore, the following results can also be 
summarized as follows from the different analyses:

• According to the statistical results, from 2014 to the 
present, the number of articles published using the 
GWO has grown considerably each year, which demon-
strates its wide acceptance.
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Table 16  Hybridizations of GWO and their goals for solving energy systems-based problems in the reviewed papers

References Hybrid Goal

[195] Hybridization of GWO and bHC Improvement of convergence speed, exploration phase, and exploitation phase
[233] Hybridization of GWO and ICA To increase the exploration of GWO
[249] Hybridization of GWO and PSO To increase the number of leaders in GWO and the extensiveness of the search in GWO
[40] Hybridization of GWO and CS To incorporate the operators of CS in GWO and influence its search patterns
[325] Hybridization of GWO and PS To increase the balance of exploration and exploitation
[362] Hybridization of GWO and CSA To increase exploration of GWO
[385] Hybridization of GWO and DE To benefit from the diverse mutations of DE, which increase population diversity in GWO
[366] hybridization of GWO and FPA To increase the exploitation of GWO
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Fig. 12  The optimization problems solved using the GWO algorithm
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• Till now, the problems of the “ED,” “renewable energy 
resources,” and “OPF” are the pioneers of solving by 
using GWO among the energy systems-based problems.

• Till now, the citations and number of published arti-
cles related to GWO are the highest since proposing the 
GWO.

• So far, the standard GWO is used mainly for tackling 
problems based on energy systems, which shows the effi-
ciency and effectiveness of the algorithm.

• Asia has made the most outstanding GWO contribution, 
whereas the lowest countries are America, Australia, and 
Europe.

The GWO and its variants have been the subject of sev-
eral research projects as the future guideline until now. 
In the future, however, this meta-heuristic optimizer is 
expected to be applied, improved, and hybridized in lit-
erature more and more. Nonetheless, numerous EAs and 
swarm intelligence algorithms were unconnected with the 
GWO, and several MO strategies in the GWO were not 
used. Indeed, the GWO is not well developed in the MO 
aspect, and serious attention should be taken into account 
in future research despite the MO nature of most real opti-
mization problems. In addition, in future research, it would 
be necessary to consider more hybrid versions of GWO 
with efficient algorithms. The efficiency and ability of the 
algorithm to deal with various problems in the reviewed 
articles show that the algorithm can be used to solve other 
issues related to energy systems, such as optimal planning 
of energy hubs in energy systems, energy markets, etc.
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research, authorship, and/or publication.
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