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Eduardo Barbaro
ING Bank & TU Delft
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TU Delft

Abstract—More than three decades after its introduction,
Role-Based Access Control (RBAC) continues to be one of the
most widely used access control models in organizations. This
popularity stems from its simplicity, the reduced risk of errors,
and its clear alignment with business processes. However, the
primarily manual nature of data management in RBAC systems,
coupled with a lack of oversight, can lead to various inefficiencies
over time. These may include roles that are not assigned to
any users or roles that have identical sets of permissions. Such
issues can slow down systems that rely on these data and, more
critically, complicate auditing processes, increasing the risk of
security gaps and compliance violations.

In this paper, we present a taxonomy of inefficiencies that
can arise in RBAC data over time and propose a framework
for detecting these inefficiencies. We specifically focus on the
most resource-intensive inefficiencies, namely roles that share
the same or similar users or permissions. To address these
issues, we propose three detection methods, including a custom
algorithm we developed. We evaluate these methods using syn-
thetic datasets, demonstrating that our algorithm significantly
outperforms baseline approaches. Its efficiency allows us to
identify these inefficiencies even on a standard laptop used by
large organizations. Furthermore, we applied our framework to
real RBAC data from a large organization with over 60,000
employees and uncovered a substantial number of inefficiencies,
highlighting its practical value in real-world scenarios.

Index Terms—RBAC, inefficiencies, detection.

I. INTRODUCTION

Role-Based Access Control (RBAC) is a method of access
control that restricts system access to authorized users based
on their roles within an organization. In RBAC, permissions
(or entitlements) are assigned to roles rather than individual
users. Users are then assigned roles based on their job re-
sponsibilities or other criteria. This allows for more efficient
access control management since permissions can be assigned
to roles rather than to each user. First introduced by Ferraiolo
and Kuhn [1], the RBAC model has become widely adopted
in various systems due to its simplicity, reduced risk of errors,
and clear connection with the business processes [2], [3]. After
three decades, the market of RBAC systems is considerable
and continues to grow [4]. Moreover, researchers continue
improving the model and propose new extensions [5], [6].

Although RBAC considerably simplifies access control
management, it still does not remove all concerns related
to this process. Particularly, developed policies may contain
various issues, such as redundant roles or contradicting per-
missions [7]. Researchers have been consistently proposing

methods to fix these issues [8] and extensions, such as Ad-
ministrative Role-Based Access Control (ARBAC) [9], [10],
albeit with limited industry application. In addition, several
approaches have been developed to eliminate them by suggest-
ing what roles should be created [11] given different objective
functions, e.g., minimal number of roles [12], similar permis-
sions in groups [13], or semantically meaningful roles [14].

While all these approaches are available, most organizations
still manage their access policies using simpler out-of-the-
box RBAC commercial tooling [10]. However, those access
policies tend to be siloed per department, causing several inef-
ficiencies, such as repeated roles having the same permissions,
e.g. in different departments or countries. That is especially
important for global enterprises, as those inefficiencies slow
down their operations because authorization checks persist
throughout the year. In addition, in practice, most RBAC com-
mercial platforms tend to have their performance hampered
by these repeated, empty, or ill-defined roles, making the
management and – critically – auditing those roles a complex
and prone-to-error process. Therefore, it is highly beneficial
for enterprises to minimize such inefficiencies.

Modern large organizations employ tens of thousands of
people, likely having several hundred complex departments
worldwide, each typically with their structure and set of roles,
making identifying RBAC inefficiencies manually a nearly
impossible task [6], [15]. For instance, according to [16],
Dresdner Bank has over 50 thousand employees with over
1,300 roles created manually. The resulting access policy
might contain millions of entries, making its management
inefficient.

In this paper, we identify five common types of ineffi-
ciencies observed in RBAC data – (i) standalone nodes, (ii)
roles that are not connected to users or permissions, (iii)
roles connected to only a single user or permission, (iv) roles
sharing the same users or permissions, and (v) roles sharing
similar users or permissions – and propose a framework for
their detection. We test three distinct clustering approaches –
exact, approximate, and our algorithm – to address the issue
identified in (iv) and (v), where roles have the same or similar
users or permissions, as those are the most time-consuming
inefficiencies. We evaluate these approaches on synthetic data,
and the results show that our custom algorithm significantly
outperforms baseline methods that rely on exact or approxi-
mate clustering techniques. For example, our algorithm takes
only 2.27 seconds to detect roles sharing the same users in
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a dataset with 10,000 roles and 1,000 users. In contrast, the
same task requires 496.41 seconds with exact clustering and
327.85 seconds with approximate clustering.

We also applied our framework to a real-life dataset from a
large international organization with over 60,000 employees.
The framework detected a large number of inefficiencies. For
instance, it showed that only by consolidating the roles sharing
the same users or permissions, it is possible to remove about
10% of all roles.

Thus, we make the following contributions in this paper:

• Identified the most common inefficiencies in RBAC data,
proposing a taxonomy of their types;

• Developed a framework to detect all identified types of
inefficiencies;

• Proposed three different methods, including our own
algorithm, to identify the most resources-consuming in-
efficiency types – roles sharing same or similar users or
permissions – and showed significant time savings offered
by our algorithm;

• Applied the framework to a real RBAC dataset, demon-
strating its viability in real-world scenarios.

II. RELATED WORK

Reducing or ideally eliminating unnecessary privileges, i.e.
the least privilege principle, is the primary goal of RBAC [7],
[13]. In recent years, extensive research has been done on
addressing the issue of policy redundancies and inconsisten-
cies [6], [8], [9], [16], [17]. Stoller et.al. [9] showed that
understanding a system’s policies and their interactions is
critical to its security. Despite its importance and the fact that
the individual rules are – in isolation – simple, it is often
impossible to capture all their relations and interactions. To
solve that, they propose creating classes of policies instead of
analyzing them individually. They also demonstrate that role
bloat remains challenging even analytically, typically yielding
complex algorithms [13], [14]. Interestingly, [14] proposed
using formal concept analysis to find meaningful roles. They
discouraged utilizing any type of clustering technique, e.g.,
bi-clustering or co-clustering. To mine roles, i.e., find roles
from existing permissions, they developed a hierarchical miner
achieving good results, albeit on artificial datasets. In contrast,
Vaidya et.al. [13] proposed an unsupervised approach (role
miner) that mines roles from existing user-permission assign-
ments using clustering techniques. The key difference from
traditional clustering methods is that roles have overlapping
permissions, making it a unique problem. Here, we are not
proposing a top-down or a bottom-up algorithm to create new
roles, but rather a simple algorithm that combines existing
roles (without granting extra permissions), yielding an exact
solution that can be scaled to real-world enterprises with
hundreds of thousands of employees. Li and Tripunitara [15]
argued that the only way to maintain a large and complex sys-
tem of permissions and users is to combine security analysis
techniques to uphold basic properties with the decentralization
and delegation of privileges.

Focusing on reducing permissions, D’Antoni et. al. [18]
discussed the concept of automatic least-permissive RBAC,
focusing on policies and access logs. They showed that re-
fining current policies is better (or at least as effective) than
generating new ones from scratch. We utilize a similar concept
applied for roles and claim it is possible to obtain a much-
reduced set of roles and permissions starting from an initial
(potentially incorrect) set of roles/permissions. In a similar
fashion, Huang et.al. [8] proposed an algorithm to check for
redundancies and inconsistencies in roles based on a given
policy definition. While a successful approach, the algorithm’s
scalability remained a challenge, and its use in real-world
large-scale corporations requires further investigation.

Jayaraman et.al. [10] explored one of the most common
– but potentially catastrophic – side effects of role bloat,
which happens when an incorrect policy grants users privileges
they should not have. They showed that an effective access-
control policy should be accomplished by various techniques,
where more traditional verification is combined with automatic
access-control techniques. In our research, we aim to reduce
the role bloat by using analytics to combine roles effectively,
thus minimizing the risk of incorrect policy assignment as
fewer roles are available.

Parkinson and Khan [7] highlighted several interesting
points in their survey study, most notably that synthetically
generated datasets might not represent real-world conditions
both in terms of size and complexity. Oftentimes, “issues” are
artificially introduced a-posteriori following a pre-determined
pattern. Therefore, in our work, we also utilize a real-world
dataset from a large international organization with over
60,000 employees.

III. OUR APPROACH

In its simplest form, the RBAC data can be represented as a
tripartite graph. The network in the left part of Figure 1 shows
an example of such graph. There are three sets of nodes that
correspond to users (marked as U01...U04), roles (R01...R05),
and permissions (P01...P06). The edges in this graph represent
the assignment of users to roles and permissions to roles.

A. Identified Inefficiencies

Our analysis identified five groups of inefficiencies that may
appear in the RBAC data due to poor management (we show
examples of each case in Figure 1):
1) Standalone nodes. The stand-alone nodes appear due to

the removal of the corresponding edges. For instance, a
user who is not longer working in an organization should
not be assigned to any role, and the corresponding entry in
the system should be removed. The P01 permission is an
example of such a node.

2) Roles not connected to users/permissions. The RBAC
data may contain roles not connected to users/permissions.
So, as these roles do not have any links with per-
missions/users, they and the corresponding edges to
users/permissions can probably be removed. For instance,
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1
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2

RUAM

RPAM

Fig. 1: Approach High-Level Overview (Users are Marked as U01...U04, Roles as R01...R05, and Permissions P1...P6. Edges
Represent Assignments of Users to Roles and Permissions to Roles)

role R02 is not connected to any permission node, and role
R03 is not linked to any user node.

3) Roles connected to a single user/permission. While this
might be a legitimate case, it is likely a sign of inefficiency.
For instance, the R01 and R05 roles have a single user
assigned.

4) Roles sharing the same users/permissions. Roles that
share the same set of users/permissions are probably re-
dundant and could be combined. For instance, roles R04
and R05, sharing the same set of permissions, might be
alike, as well as roles R02 and R04, connected to identical
users.

5) Roles sharing a similar set of users/permissions. Sim-
ilarly to the previous case, it may be worth considering
roles that share a similar set of users/permissions. For
instance, an administrator might decide to consider and
merge the roles that have all but one identical permissions.
Note that the approach should be generalizable over an
arbitrary number of differences set by an administrator.

These inefficiencies must not be fixed automatically as they
may correspond to legitimate corner cases. For instance, a role
might be connected only to a single user if it is assigned to
the CEO. Therefore, the administrator must carefully consider
and approve every instance of inefficiency detected.

B. Idea Description
To find the instances of the inefficiencies described in

Section III-A, we represent (Step 1 in Figure 1) our tripartite
graph as an adjacency matrix. An adjacency matrix is a square
matrix where the rows and columns of the matrix correspond
to the vertices of the graph, and the entries of the matrix
indicate whether there is an edge between two vertices. For
instance, if an edge exists between vertices i and j, the (i, j)
entry is 1. Otherwise, the entry is 0.

Due to the properties of the tripartite graph, i.e., edges
can exist only between different sets of nodes, storing the
full adjacency matrix is not required. Instead, we can rebuild
the whole matrix using two sub-matrices: Role-Permission
Assignment Matrix (RPAM) and Role-User Assignment Matrix
(RUAM). RPAM, highlighted with a brown box, is built by
selecting the rows matching role nodes and columns corre-
sponding to permission nodes (see Step 2 in Figure 1). RUAM,

highlighted with a blue box, is created by selecting the rows
related to role nodes and columns matching to user nodes (see
Step 3 in Figure 1). Thus, if the total number of roles is r,
permissions p and users u, we will need r ∗ (p+u) instead of
(r + p + u)2 memory space to store the data. Note that it is
possible to further optimize required memory space by using
a sparse matrix representation; however, the type of sparse
matrix should be chosen considering other factors, such as
conversion time, based on the experimental evaluation.

Standalone nodes. As it is clear from the definition, if a
node is not connected to any of the rest, then all values in
the row or column corresponding to it will have 0’s. Since
there are no edges between the permission and user nodes,
then to identify standalone permission and user nodes, it is
enough to find the columns containing all 0’s in RPAM and
RUAM correspondingly. Thus, we can sum all the values in
the RPAM and RUAM columns and find the ones whose sum
is equal to 0. For instance, in (see Figure 1), the RPAM
column corresponding to the P01 node (outlined with a red
vertical rectangle) exemplifies this case, showing that the
corresponding permission is not connected to any role. At
the same time, identifying standalone role nodes is trickier.
To achieve this goal, we need to sum all values in both
RPAM and RUAM matrices and find the row in both matrices
corresponding to the same role node where both sums are
equal to 0.

Roles connected only to users/permissions. During the pre-
vious step, we calculated the sum of row values in RPAM and
RUAM. It is possible to re-use the data obtained during this
step to identify the roles not connected to users/permissions –
the rows with 0-sum in RPAM and RUAM will correspond to
roles not connected to any permission or user, correspondingly
(see rows in RPAM and RUAM matrices, outlined with red
horizontal rectangular boxes).

Roles connected to a single user/permission. The same sum
values can also be used to identify the roles connected to a
single user/permission. In this case, though, we will need to
find the rows where the sum is equal to 1. For instance, in
RUAM, the rows for the R01 and R05 roles fall into this
category.
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Roles sharing the same users/permissions. It is clear that
roles that share the same users/permissions have the same
values in the corresponding cells, i.e., the vectors (row val-
ues) corresponding to the roles sharing the same users or
permissions should be equal in RUAM or RPAM matrices,
correspondingly. For instance, in Figure 1, the roles R04 and
R05 rows are equal in RPAM (outlined with a pink horizontal
rectangle), as the R02 and R04 roles rows in RUAM. A naı̈ve
approach would be to check all pairs of role vectors in RUAM
and RPAM matrices and check if they are equal. However,
this approach is largely inefficient and does not scale. Also,
generally, there could be multiple roles with the same vector.
Therefore, we need to find efficient approaches that allow one
to find all groups of the same vectors.
Roles sharing a similar set of users/permission. If two roles
share a similar set of users (or permissions), the corresponding
row vectors in the RUAM (or RPAM) will have identical
values of 1 in the columns associated with those users (or
permissions). At the same time, they will have different values
in the columns corresponding to distinctive users (or per-
missions). The number of columns with different values will
correspond to the number of distinct users (or permissions).
Thus, we need to find an efficient approach that allows one to
find all groups of similar vectors.

C. Approaches to Find Role Groups
Among all these inefficiencies, the most complex ones to

detect, in terms of computational complexity, are those related
to finding roles sharing the same or similar permissions/users.
All the rest of the inefficiencies can be found in linear time. In
this section, we propose three different approaches to finding
role groups: exact spatial clustering, approximate nearest
neighbors, and our custom algorithm. In the rest of the paper,
we consider only one matrix – RUAM – for finding groups
of roles sharing the same or similar users. However, the exact
same approach can be used to find groups of roles sharing
the same or similar permissions by feeding RPAM instead of
RUAM into them.
Exact Clustering. From the description of the problem, it is
apparent that we can apply a clustering algorithm to identify
groups of roles. Indeed, each role vector can be represented
as a point in a multidimensional space. Therefore, to find
the groups of roles, we need to find the clusters of these
points in space. We can apply spatial clustering approaches
to achieve this goal and find the groups of roles sharing the
same or similar users by considering the points in the identified
clusters.

For this study, we choose the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm for
spatial clustering. DBSCAN [19] is a popular exact clustering
algorithm that groups points that are closely packed together,
marking as outliers points that lie alone in low-density regions.
It is particularly useful for identifying clusters of arbitrary
shape and handling noise in the data. What is more important
in our case: it does not require specifying the number of
clusters.

This clustering approach requires one to specify the mini-
mum number of points in a cluster, what distance function to
use, and what is the maximum distance between two samples.
It is clear that in our case, the minimum number of points
in a cluster is equal to 2, because we want to find even
two akin roles. As for the other two parameters, we should
consider the cases of roles sharing the same and similar users
separately. In the case of roles sharing the same users, the
corresponding points have the same coordinates, i.e., they
coincide. According to the definition of the distance function,
a distance between them must be equal to 0 regardless of a
chosen metric. Thus, we can use any distance metric with the
maximum distance between points set to 0. At the same time,
in the case of a similar set of users, we cannot use any metric
and have to choose the right one for our purposes. The number
of different users corresponds to the number of columns, where
the values in the corresponding rows are distinct. So, as all
values in a matrix are 0’s and 1’s (bit-size values), we can use
the Hamming distance in this case. Thus, to find roles that
share the same but one set of permissions, we need to find all
pairs of vectors, the Hamming distance between which equals
1.

Approximate Clustering. The performance of exact spatial
clustering methods like DBSCAN can be slow on large,
high-dimensional datasets [20], [21]. Unfortunately, our case
belongs exactly to this category. To address this issue, we
consider employing approximate clustering approaches that
trade-off recall for increased speed. Note that, given that
the task of cleaning the RBAC database is expected to run
periodically, not being able to identify all roles in a group
does not hurt, as they will be identified during the next run. In
this work, we employ the approximate nearest neighbor search
approach described in the paper by Malkov and Yashunin [22].

Our Algorithm. Our custom algorithm leverages the specific
properties of the RBAC data to efficiently identify clusters of
roles sharing the same or similar (same users ± manually set
threshold) users.

Let Ri be a role, and |Ri| is its norm, i.e. the number of
users assigned to it. Define the function:

g(Ri, Rj) = gij : R ⇒ N

which is the number of user co-occurrences between roles Ri

and Rj . For our RUAM, the co-occurrences matrix C looks
as such:

R01 R02 R03 R04 R05
R01 1 0 0 0 0
R02 0 2 0 2 0
R03 0 0 0 0 0
R04 0 2 0 2 0
R05 0 0 0 0 1

Where we define the elements of the matrix as:

Cij =

{
gij , i ≠ j

|Ri|, i = j
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For our purposes, we define that roles Ri and Rj can be
combined if they contain the same users. For this, we define
an indicator function:

Iij :=

{
1 iff |Ri| = gij = |Rj |, i ̸= j

0 otherwise

Where the groups, we are interested in, are:

Iij = 1 ∀ i, j

D. Implementation

We implemented all the approaches for identifying role
groups, as described in Section III-C. To promote transparency
and reproducibility, we provide open access1 to our notebook,
which includes implementation and detailed documentation of
the developed code. These resources enable researchers and
practitioners to validate our methods, replicate our experi-
ments, and build upon our work.

For the DBSCAN approach, we employed the implementa-
tion from the scikit-learn [23] library. We set all its parameters
as described in Section III-C; however, we add a small ϵ value
to the maximum distance parameter to account for floating-
point comparison inaccuracies. The scikit-learn DBSCAN
fit_predict method returns a vector of integer labels, with
a size equal to the number of roles. The indices in this vector,
where the labels are equal, determine which roles belong to the
same group (the -1 special value is reserved for noise cases).
Thus, iterating over this vector, we can list all the groups of
roles.

For approximate clustering, we employed the Hierarchical
Navigable Small World (HNSW) algorithm implemented in
the datasketch [24] library. HNSW is among the fastest and
most accurate algorithms for approximate nearest neighbor
(ANN) search, which is currently widely used in many vector
databases. Using this library, we constructed an HNSW index
with the RUAM data, relying on default parameter settings
and using Manhattan distance as the distance metric. Then,
we queried the index to identify roles similar to the provided
one. It is worth noting that more efficient implementations of
HNSW and other ANN algorithms in general are available
and could be used to further optimize performance, e.g.,
implemented in native code. However, our focus in this work
is to illustrate the general trend.

Finally, for our custom algorithm, we employ standard data
science libraries, namely pandas [25] and numpy [26].

IV. EVALUATION

From the description of our framework for detecting the
inefficiencies (see Section III), it is evident that the most
time-consuming type of inefficiency to detect is identifying
roles with the same or similar sets of users or permissions.
Therefore, in this section, we concentrate on evaluating the
efficiency of the three proposed approaches for this task.
Notably, the process of finding roles that share the same or

1https://github.com/neo2478/rbac reduction paper

similar users is equivalent for the case of permissions, as both
cases utilize the same detection method. The only difference
lies in the input: for the former, we use RUAM, while for the
latter, we use RPAM.

We executed all our measurements on an Apple Macbook
Pro with a M1 Pro chip, with 32GB of integrated memory, on
macOS Sequoia 15.3.2, and Python 3.12.6.

A. Execution Time

To perform an execution time evaluation, we devel-
oped a generator function that creates a matrix resembling
RUAM/RPAM with predefined properties. Specifically, the
generator depends on several key parameters, including the
number of roles (rows in the matrix), the number of users
(columns in the matrix), the proportion of the number of
roles in clusters relative to the total number of roles, and the
maximum number of identical roles within a cluster.

We ran each experiment five times, recording the execution
duration, and calculated the average and standard deviation of
the measured variable. We fixed the proportion of the number
of roles in clusters relative to the total number of roles to 0.2
and the maximum number of identical roles within a cluster
to 10. For DBSCAN and HNSW clustering algorithms, we
used the default parameter values besides the ones described
in Section III.

During the first experiment, we fixed the number of roles to
1,000 (number of rows in the matrix) and varied the number
of users between 1,000 and 10,000 (number of columns in the
matrix). The experiment results can be found in Figure 2. We
observe that the time required to run the clustering process is
nearly constant. The approximate clustering approach takes the
longest time to complete the task, with the duration increasing
from approximately 16.36 seconds for 1,000 users to 23.07
seconds for 10,000 users. Building the index requires signifi-
cant time, and this method does not demonstrate its advantages
with a smaller number of entries, such as 1,000 rows. In
contrast, the exact clustering approach is considerably faster,
taking around 0.47 seconds for 10,000 users. Our algorithm,
however, exhibits the shortest processing time, detecting roles
shared by the same users in about 0.13 seconds.

In the second experiment, we fixed the number of users at
1,000 (i.e., the number of columns), changing the number of
roles from 1,000 to 10,000 (the number of rows in the matrix),
as shown in Figure 3.

Several conclusions can be drawn from this experiment.
First, for all approaches, execution time increases as the
number of roles grows. Therefore, reducing the number of
roles should be a primary optimization goal. Second, the
execution time for exact clustering increases at a faster rate
than for approximate clustering. In experiments with fewer
entries, a significant portion of the execution time for ap-
proximate clustering is spent on building the index, which
allows the exact clustering approach to perform better initially.
However, at around 7,000 rows, approximate clustering begins
to outperform exact clustering in terms of execution time. It
is important to note that approximate clustering may miss

130

Authorized licensed use limited to: TU Delft Library. Downloaded on October 16,2025 at 07:56:50 UTC from IEEE Xplore.  Restrictions apply. 



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

5

10

15

20

D
ur

at
io

n 
(s

) Approach
Exact Clustering
Approxiamate Clustering
Our Algorithm

Fig. 2: Duration of the Analysis Depending on User Number
(Number of Roles is Equal to 1000)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

100

200

300

400

500

D
ur

at
io

n 
(s

) Approach
Exact Clustering
Approxiamate Clustering
Our Algorithm

Fig. 3: Duration of the Analysis Depending on Role Number
(Number of Users is Equal to 1000)

some entries within clusters. Nevertheless, we assume that
the algorithm can be run periodically, enabling the results to
converge gradually to the optimal solution over time. Lastly,
our approach demonstrates superior performance compared
to the other two methods. Specifically, the exact clustering
approach takes approximately 0.47 seconds to process 1,000
entries and around 496.41 seconds for 10,000 entries. For
approximate clustering, execution time ranges from 15.48
seconds for 1,000 entries to 327.85 seconds for 10,000 entries.
In contrast, our algorithm completes the task in just 0.13
seconds for 1,000 rows and 2.27 seconds for 10,000 rows,
demonstrating significant performance gains over the baseline
approaches. Moreover, our algorithm is entirely deterministic,
which means it consistently identifies all clusters without fail.

B. Inefficiencies Detection in the Real Dataset

We applied our framework for detecting inefficiencies to a
real dataset from a large organization that employs more than
60,000 employees. To maintain anonymity, we do not disclose
exact figures but, instead, present results focused on a very
similar order of magnitude. It is important to note that the
same roles can be linked to multiple types of inefficiencies.

The analyzed version of the dataset, before any optimiza-
tion, consists of approximately 90,000 users and 350,000

permissions assigned to around 50,000 roles. Due to its large
size, this dataset is an excellent test case for assessing the
efficiency and scalability of our approach. We also tried
applying both methods to these data, but their execution was
halted after 24 hours, which is impractical for the real world.
In contrast, our method was able to process the real data in
just 2 minutes.

First, we identified standalone nodes, usually consisting of
new users and permissions, or permissions linked to decom-
missioned assets that had not been cleaned up. We detected
500 users who were not assigned to any role. Even more
strikingly, we found that nearly half of all permissions –
approximately 180,000 – were not linked to any role.

Next, we used the framework to identify disconnected roles,
which included newly created roles or those associated with
decommissioned assets. We discovered 12,000 roles that had
no users assigned to them; these roles were linked solely
to permissions. Additionally, we found 1,000 roles that were
assigned only to users without any associated permissions.

For the third type of inefficiency – which consists of
roles connected to a single user or a single permission –
we identified approximately 4,000 roles assigned to only one
user and around 21,000 roles linked to a single permission.
This latter figure indicates a misuse of the role structures and
highlights a significant opportunity for role consolidation.

While the approach for consolidating roles related to the
previous inefficiency still needs to be developed, the fourth
type of inefficiency – roles sharing the same users or permis-
sions – is addressed here. This issue arises from a fragmented
landscape of independent role owners and managers. We
identified 8,000 roles sharing the same users and 2,000 roles
sharing the same permissions. Even if each cluster contains
only two roles, these findings suggest that the total number
of roles can be reduced by approximately 4,000 and 1,000
respectively, accounting for about 10% of all roles.

Finally, we ran the framework to identify roles that share all
but one user or permission. We detected 6,000 roles that share
the same users, except for one, and 4,000 roles that share the
same permissions, except for one.

The data indicate a significant opportunity to reduce in-
efficiencies, which could result in notable enhancements to
role-based access control data management.

V. CONCLUSION

In this work, we examined the most common recurring
issues in RBAC data, which appear due to the predominantly
manual nature of data management and lack of oversight. We
proposed a taxonomy of inefficiencies along with a framework
for their detection. We introduced three detection methods for
the most resource-consuming inefficiency types, including our
custom algorithm, which outperformed baseline approaches on
several synthetic datasets of increasing complexity. Finally,
we also tested our framework on a real dataset from a large
organization, which outperformed the baseline approaches,
identified many inefficiencies and demonstrated its practical
value in real-world applications.
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