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ABSTRACT

The S-lay pipeline installation method is characterised by its fast installation process and its appli-
cation in all water depths. Offshore standards and design codes provide local buckling checks for
combined loading criteria for load controlled and displacement controlled conditions, where a load
controlled condition is defined as a case in which the structural response is primarily governed by
the imposed loads and a displacement controlled condition is defined as a case in which the struc-
tural response is primarily governed by imposed geometric displacements. It is recognised by the
offshore pipelaying industry that the condition with the pipeline on a rigid stinger in S-lay is not
fully displacement controlled. Using the methods by DNV only allows for situations that are either
100% load controlled or 100% displacement controlled to be checked. In order to account for par-
tially displacement controlled conditions, a method is needed to calculate the level of displacement
control in a specific situation and to translate this to a partially displacement controlled buckling
check.

This graduation thesis proposes a method to calculate the level of partial displacement control of an
S-lay pipeline installation situation using pipe stiffness variations in beam elements. First, a static
pipelaying configuration is modelled using beam elements. Next, the same situation is modelled
with a different pipe stiffness over the stinger section. The changes in moment and curvature at the
rollerbox locations between the base case and the modified model give an indication of the level of
displacement control on the stinger. An approach to translate the calculated level of displacement
control to a modification of the displacement controlled buckling check by DNV is presented.

Detailed finite element models composed of shell type elements are created to validate the pro-
posed method. A first step towards validation of the proposed method has been taken with satis-
factory results. The calculated levels of displacement control with the proposed method are within
2% of the calculated level of displacement control in the detailed partially displacement controlled
model using shell elements. The use of the proposed method allows the calculation of the level of
displacement control using Euler-Bernoulli beam element models and with reduced computational
time.

A parametric study is performed using the proposed method to study the effect of most relevant
variables in the S-lay configuration on the degree of partial displacement control. The effects of the
stinger radius; rollerbox spacing; rollerbox load; lay tension; pipe diameter; and pipe diameter to
wall thickness ratio have been studied, giving greater understanding of the partially displacement
controlled behaviour.

The research done in this thesis provides an engineering approach to determine the partially dis-
placement controlled conditions in the S-lay configuration using stiffness variations in Euler-Bernoulli
beam element models. First steps have been taken to validate this engineering approach with satis-
factory results. A method for modifying the displacement controlled local buckling check to account
for partially displacement controlled conditions is presented, as well as an understanding of the in-
fluence of most relevant pipelaying variables on the partially displacement controlled condition.
The findings in this research have proposed a step forward in designing with partially displacement
controlled conditions in the overbend during pipeline installation.
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DEFINITIONS

A lot of the terms used in this report are exclusive to the offshore pipelaying industry. This section
aims to take away misunderstandings that can occur as a result of this. This section is not required
to be read, but can help if there is anything unclear regarding definitions.

• Stinger: Frame structure hanging from the pipelaying vessel. Its function is to prevent the
pipeline from buckling when it is bending from a nearly horizontal position on the vessel
through the first bend of an S-curve towards the seabed.

• Rollerbox: Pipe supports consisting of a set of rollers in pairs. Its function is to support the
pipeline vertically and allow the pipe string to travel in longitudinal direction of the vessel.

• Tensioner: Tracks that exert a controlled pressure on the pipe. It is a central element in most
pipelay systems and its function is to hold the pipe in suspension between the end of the
stinger and the seabed.

• Overbend: The overbend is the section of the pipeline where the pipeline is curved concave-
down.

• Sagbend: The sagbend is the pipeline section where the pipeline is curved concave-upward.

• Stinger radius: The stinger radius is the radius of a circle formed by the pipe supports on the
stinger.

• Lift-off angle: The lift-off angle (or departure angle) is the angle, relative to the horizontal
plane, of the pipeline at the point where the pipeline is no longer in contact with the rollers
on the stinger.

• Firing line: The firing line is the complete line of work stations and equipment from the line
up station to the last station on the vessel.

• Load controlled: A load controlled condition is one in which the structural response is pri-
marily governed by the imposed loads.

• Displacement controlled: A displacement controlled condition is one in which the structural
response is primarily governed by imposed geometric displacements.

• Partially displacement controlled: A condition in which the structural response is governed
by a combination of imposed loads and imposed geometric displacements.

xvii





1
INTRODUCTION

1.1. ALLSEAS

Allseas Group S.A. is a Swiss-based company founded by Edward Heerema in 1985. The company
is a global leader in offshore pipeline installation, heavy lift and subsea construction. Worldwide
Allseas has executed more than 275 projects and installed over 20.000 kilometres of subsea pipeline.
The company employs approximately 3000 people worldwide and operates a fleet of six vessels. The
fleet consists of the dynamically positioned (DP) pipelay vessels Solitaire, Audacia, and Lorelay, the
shallow water/multi-purpose work barge Tog Mor, the DP support vessel Calamity Jane and the DP
platform installation/decommissioning and pipelay vessel Pioneering Spirit.

1.2. PIPELINE INSTALLATION METHODS

1.2.1. S-LAY METHOD

The installation method used by Allseas is the S-lay method and is characterised by its ability to lay
a wide variety of pipe diameters quickly over a large range of water depths. With the S-lay method,
the pipeline starts with pipeline sections in a horizontal position on the vessel. On board the vessel
the pipeline sections are welded together and given corrosion protection in the firing line. Due to
this horizontal work method, the line leaves the vessel in a horizontal orientation and is then guided
along a long boom-like structure called the stinger.

The stinger is a frame structure hanging from the stern of the vessel that supports the line intermit-
tently on v-shaped rollers, providing a controlled curvature of the pipeline from the horizontal to
the suspended section. Modern stingers are articulated, consisting of several segments connected
by hinges. This allows the stinger shape to be set to a prescribed curvature by setting the segments
at chosen angles. The suspended section of pipeline is held by tensioners located at the end of the
firing line.

The upper part of the pipeline that is supported by the stinger is known as the overbend and the sec-
tion of the pipeline bending towards the seabed is known as the sagbend. The shape of the pipeline
as it is being installed resembles the shape of the letter S, giving this lay method its characteristic
name. A schematic of this lay method is shown in figure 1.1.

1



2 1. INTRODUCTION

Figure 1.1: Schematic representation of S-lay pipeline installation and associated pipeline loadings. [1]

1.2.2. OTHER METHODS

Other lay methods used in the industry are J-lay, reeling and towing. With the J-lay method, pipe
sections are welded together and inspected vertically. This method is slower than S-lay because
usually there is only one workstation for welding the pipe sections. The benefit of this method is
that the pipeline leaves the vessel near vertically, which means that the vessel does not need large
thrusters to be able to deliver the required horizontal tension. This method is also easier to apply to
deeper waters.

Figure 1.2: Schematic representation of J-lay pipeline installation and associated pipeline loadings. [1]
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Reeling is one of the most efficient methods for laying subsea pipelines. In this method a section
of pipeline, usually several kilometres long, is wound onto a reel that is mounted on a vessel. With
the pipeline on the reel the vessel travels to the installation site and installs the pipe by unspooling
the pipeline and pulling it through a straightener to get rid of any residual curvature caused by
the reeling process. High installation speeds can be achieved but the method is limited to smaller
diameter pipelines.

Figure 1.3: Schematic representation of reeling pipeline installation. [1]

The last method of installation is towing. When using the towing method a section of pipeline is
welded and inspected onshore and then towed to the installation site. This technique is ideal for
shorter pipelines. The pipeline is transported to the installation location by a tugboat, while either
a second tugboat keeps the line taut or the free end of the pipeline drags across the bottom. Once
at location the line is lowered by flooding buoys in a controlled manner.

(a)

(b)

Figure 1.4: Schematics of (a) surface tow and (b) bottom tow. [1]



4 1. INTRODUCTION

1.3. THESIS OBJECTIVES

S-lay is characterised by its fast installation process and its application in all water depths. Allseas
has installed over 20,000 km of subsea pipeline worldwide using S-lay technology, with diameters
ranging from 2” to 48”, without a single overbend buckle during normal installation conditions. The
vast majority of this pipe has been installed in accordance with DNV-OS-F101 [2] while applying
displacement controlled overbend buckling checks.

It is recognised that the condition with the pipeline on a rigid stinger in S-lay is not a 100% dis-
placement controlled condition. On a large scale the configuration of the pipeline has to conform
to the rollers, and in that sense is displacement controlled. On a local scale however, bending of
the pipe between rollers is determined by the interaction between weight and tension and is closer
to load controlled. For a 100% displacement controlled condition, the stinger would have to con-
sist of a more or less continuous ramp with a constant radius whereas stingers are equipped with
rollerboxes and as such intermittently support the pipe.

DNV-OS-F101 provides buckling checks for load controlled and displacement controlled conditions
(Section 5 D600). Initially, this means that either 100% load controlled or 100% displacement con-
trolled conditions can be checked. JIP report DNVGL 2014-0185 [3] recommends the use of load
controlled conditions while applying a reduced γc of 0.8 for overbend conditions in order to ac-
count for a certain extent in terms of being partially displacement controlled (PDC). It should be
noted that this reduced γc is not project or case dependent.

1.3.1. THESIS GOAL

This master thesis aims at developing and implementing a method to determine the (project spe-
cific) level of partial displacement control, and to apply this PDC percentage to the buckling checks
in DNV-OS-F101 such that the current load controlled and displacement controlled formulations
can be used to include this project specific PDC condition.

1.3.2. THESIS RESEARCH QUESTIONS

The questions of this research project are defined as follows:

1. How can the level of displacement control in the stinger overbend situation be determined?

2. How can this level of displacement control be implemented in a buckling check?

3. How is the level of displacement control influenced by the pipe and stinger configuration?

1.4. APPROACH AND SCOPE OF WORK

The research subject is first approached by performing a literature study on partially displacement
controlled conditions in situations found during and after the pipelaying process. From this liter-
ature study a general method for determining the level of displacement control is found. With the
findings from the literature study a modification of the found general method is proposed to make it
applicable to the stinger overbend situation. Next, steps are taken to validate the proposed modified
method using detailed finite element models in the Abaqus software. Lastly, the modified method is
used for parametric analyses to determine the effect of pipe and stinger configurations on the level
of displacement control.

The scope of this research is limited to the partially displacement controlled conditions on the
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stinger overbend during S-lay pipeline installation. For the development of a method for deter-
mining the level of displacement control and its validation only homogeneous, continuous pipeline
is considered. This means that the effect of discontinuities in the pipeline such as inline structures
or welds fall outside the scope. Furthermore, only bare pipelines without concrete coating are in-
vestigated. Finally, all analyses in this thesis are taken as static situations.

1.5. STRUCTURE OF WORK

Chapter 2, DNV codes and standards, covers the current local buckling checks by DNV for pipeline
installation. The definitions of load control and displacement control and its implications on pipeline
design are explained. The buckling checks are explained step by step and all relevant equations and
factors are explained in detail. In the next chapter past publications on partial displacement con-
trol in pipelaying are discussed. The weak link method for determining the level of displacement
control is explained and the elaborations by various authors on this method are described.

With the background from the DNV codes and standards and the findings from the literature review
a method is proposed in chapter 4. A modification is proposed to make the method suitable for
analysis in the stinger overbend region. The steps necessary to compute the degree of displacement
control, to calculate the partial displacement buckling limit, and to determine the new case-specific
partial displacement control buckling check are explained. Also, the implementation of this method
in the software package used at Allseas is briefly touched upon. In chapter 5 the method proposed
in the previous chapter is validated using the Abaqus FE software. Buckling in detailed shell element
models is compared to the calculated buckling limit in less detailed beam element models. Lastly,
the results from the Abaqus models are compared to results from an OFFWIN model. Using the
validated method in OFFWIN, several models with varying parameters are analysed to study the
effect of pipeline, stinger, and laying characteristics on the level of displacement control in chapter
6.

In the final chapter the results of the research are commented upon. Recommendations are given
for future research and for the practical implementation of the designed method and obtained re-
sults in future engineering projects.

In the appendices several mathematical calculations and derivations are explained in detail.





2
DNV CODES AND STANDARDS

The Submarine Pipeline Systems Offshore Standard by Det Norske Veritas (DNV) gives criteria and
recommendations on concept development, construction, operation and abandonment of subma-
rine pipeline systems. In the past DNV used an Allowable Stress Design (ASD) method for pipelines,
meaning that the stress in the pipeline should stay below a predetermined fraction (based on safety
factors) of the yield stress. The stress has to stay below the yield stress, which means that using this
method one can only design in the elastic region of your material. The DNV submarine pipelines
standard was a pioneer code that introduced the Limit-State Design (LSD), also known as Load and
Resistance Factor Design (LRFD), to replace the ASD method. This method focuses on the condi-
tions that threaten the safety and operability of the structure. The basis of this design method is that
it compares the load effects to the design capacities. The load effects consists of all the characteris-
tic functional, interference, environmental and accidental loads, multiplied by their corresponding
load effect factors. The design capacity is determined from the resistance capacity divided by the
corresponding material and safety class factors. The philosophy behind the LSD method is illus-
trated in figure 2.1. For some cases, the stresses may be allowed to exceed the limits from ASD. Be-
sides limits on stress, limits on strains may also be determined to protect the structure from failure
due to buckling or rupture.

load effect resistance

probability

density

small probability that load will 

be greater than the resistance

Figure 2.1: Limit state design
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2.1. DEFINITIONS

For the limit state criteria for local buckling with combined loading a differentiation is made be-
tween checks for Load Controlled conditions (LC) and Displacement Controlled conditions (DC).
Different limit states apply to these two conditions. The definitions DNV [2] gives for load controlled
and displacement controlled conditions are as follows:

• A load controlled condition is one in which the structural response is primarily governed by
the imposed loads.

• A displacement controlled condition is one in which the structural response is primarily gov-
erned by imposed geometric displacements.

It is important to distinguish between these two loading conditions when analysing the response
of a structure to a certain loading situation. The difference in structure response to the two load-
ing conditions can be illustrated with a material stress-strain curve such as in figure 2.2. In the
elastic (linear) region the increase in stress is proportional to the increase in strain. In the plastic
(non-linear) region a small increase in stress leads to a large increase in strain and vice versa a large
increase in strain leads to a small increase in stress. If the loading condition is load controlled (i.e.
travelling along the vertical axis), it can be seen that after the yield point the strain rapidly increases
for increasing stress. The stress can be increased up until the Ultimate Tensile Stress (UTS) point.
When the stress increases further the material will fail. If the loading condition is displacement con-
trolled the material can be utilised beyond the UTS point, up to the fracture stress point. In essence
this means that for a situation where the stress and strains are just before the UTS point, a load
controlled condition will be very close to failure and caution is needed while for a displacement
controlled condition the point of failure is still far away.
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Engineering strain

Yield stress

UTS

Fracture stress

Figure 2.2: Stress-strain curve

The design capacities for LC and DC conditions follow from the characteristic capacity of the pipe.
In figure 2.3 a moment-curvature curve is shown, which is similar in shape as a stress-strain curve.
It can be seen that when determining the LC and DC capacities with comparable safety factors,
the DC limit allows higher utilisation than the LC limit. DNV notes that if there are uncertainties
about the loading condition, a load controlled design criterion can always be applied in place of a
displacement controlled design criterion.
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Figure 2.3: Moment-curvature design capacity [4]

2.2. PARTIAL DISPLACEMENT CONTROL

The design criteria given by DNV are for either a fully load controlled condition or a fully displace-
ment controlled condition. An example of a fully load controlled condition would be a cantilever
beam with a weight hanging from the end. A fully displacement controlled condition is a cantilever
beam with a screwjack deforming the end of the beam. During pipelaying most, if not all, situations
fall in between load and displacement control. And as such, strictly speaking, only the load con-
trolled criterion should be used. Using this conservative approach will lead to increased costs and
engineering challenges as the allowable utilisation of the pipe is reduced. It is therefore desirable to
determine a new design capacity for situations in-between full load control and full displacement
control. DNV states that: “The answer to the question on if a condition is load controlled or dis-
placement controlled is impossible since the question is wrong, the question should be; how can
one take partial benefit of that a condition is partially displacement controlled?”

2.3. LOCAL BUCKLING CHECKS – COMBINED LOADING CRITERIA

The DNV-OS-F101 Offshore Standard gives four local buckling checks for combined loading crite-
ria. There are checks for load controlled conditions with either internal or external overpressure and
checks for displacement controlled conditions with either internal or external overpressure. For a
pipeline installation with an empty pipe, only the checks for external overpressure are of impor-
tance. In this section the background and derivation of the buckling checks are covered, as well as
one proposed method by DNV to deal with partially displacement controlled conditions.

2.3.1. LOAD CONTROLLED CONDITION

Pipe members subjected to bending moment, effective axial force and external overpressure shall
be designed to satisfy the following criterion at all cross sections:

(
γm ·γSC · |MSd |

αc ·Mp (t2)
+

(
γm +γSC ·SSd

αc ·Sp (t2)

)2)2

+
(
γm ·γSC · pe −pmi n

pc (t2)

)2

≤ 1 (2.1)

The background and derivation of the load controlled buckling check is given by Collberg and Lev-
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old [5].

Where: MSd is the design moment
SSd is the design effective axial force
pe is the external pressure
pmi n is the minimum internal pressure that can be sustained
pc is the characteristic collapse pressure
Mp is the plastic moment capacity
Sp is the plastic effective axial force capacity
γm is the material resistance factor
γSC is the safety class resistance factor
αc is the flow stress parameter

The plastic capacities of the pipe are given by the two following equations:

Mp (t ) = fy · (D − t )2 · t (2.2)

Sp (t ) = fy ·π · (D − t ) · t (2.3)

Where: D is the nominal outer diameter
t is the nominal wall thickness of the pipe
fy is the characteristic yield stress to be used in design

The characteristic yield stress to be used in design is determined as:

fy =
(
SMY S − fy,temp

) ·αU (2.4)

Where: SMY S is the specified minimum yield stress
fy,temp is the de-rating value due to the temperature of the yield stress
αU is the material strength factor

The values for the material strength factor αU are given in table 2.1. The normal value must be used
for materials with a normal degree of variability. Supplementary requirement U may be used when
there is increased confidence in yield strength.

Table 2.1: Material strength factor

Factor Normally Supplementary requirement U

αU 0.96 1.00

The flow stress parameter αc is calculated as:

αc =
(
1−β

)+β · fu

fy
(2.5)
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with

β= 60− D/t

90
(2.6)

And

fu = (
SMT S − fu,temp

) ·αU (2.7)

Where: fu is the characteristic tensile strength to be used in design
SMT S is the specified minimum tensile strength
fu,temp is the de-rating value due to temperature of the tensile strength

The characteristic collapse pressure is calculated as:

(
pc (t )−pel (t )

) · (pc (t )2 −pp (t )2)= pc (t ) ·pp (t ) · fo · D

t
(2.8)

With

pel (t ) = 2 ·E · ( t
D

)3

1−ν2 (2.9)

pp (t ) = fy ·α f ab ·
2 · t

D
(2.10)

fo = Dmax −Dmi n

D
(2.11)

Where: pel is the elastic collapse pressure
E is the Young’s modulus
ν is the Poisson’s ratio
pp is the plastic collapse pressure
α f ab is the fabrication factor
fo is the ovality
Dmax is the greatest measured inside or outside diameter
Dmi n is the smallest measured inside or outside diameter

The fabrication factor depends on the fabrication process of the pipe. The fabrication factor for
specific processes are given in table 2.2.

Table 2.2: Fabrication factor

Pipe Seamless UO & TRB & ERW UOE

α f ab 1.00 0.93 0.85

The design moment and effective axial force are calculated as:
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MSd = MF ·γF ·γc +ME ·γE +MI ·γF ·γc +MA ·γA ·γc (2.12)

SSd = SF ·γF ·γc +SE ·γE +S I ·γF ·γc +S A ·γA ·γc (2.13)

Where: Subscript F indicates a functional load
Subscript E indicates an environmental load
Subscript I indicates an interference load
Subscript A indicates an accidental load
γc is the condition load effect factor

For pipeline installation the Ultimate Limit State is checked, the corresponding load effect factor
combinations are shown in table 2.3.

Table 2.3: Load effect factors

Limit state/ Load effect Functional Environmental Interference Accidental
Load combination combination loads loads loads loads

γF γE γF γA

ULS a: System check 1.2 0.7 - -
b: Local check 1.1 1.3 1.1 -

The condition load effect factor γc applies to the functional, interference, and accidental loads but
not the environmental loads and is dependent on the condition. The factors for several conditions
are given in table 2.4.

Table 2.4: Condition load effect factor

Condition γc

Pipeline resting on uneven seabed 1.07
Reeling on and J-tube pull-in 0.82
System pressure test 0.93
Otherwise 1.00

Finally, the material resistance factor γm and the safety class factor γSC are given in tables 2.5 and 2.6
respectively. The material resistance factor is dependent on the limit state category. The safety class
factor is dependent on the potential failure consequences of the pipeline and the situation.

Table 2.5: Material resistance factor

Limit state category SLS/ULS/ALS FLS

γm 1.15 1.00
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Table 2.6: Safety class factor

γSC

Safety class Low Medium High

Pressure containment 1.046 1.138 1.308
Other 1.04 1.14 1.26

2.3.2. DISPLACEMENT CONTROLLED CONDITION

Pipe members subjected to longitudinal compressive strain (bending moment and axial force) and
external overpressure shall be designed to satisfy the following criterion at all cross sections:

 εSd
εc (t ,0)
γε

0.8

+ pe −pmi n
pc (t )
γm ·γSC

≤ 1 (2.14)

Where: εSd is the design compressive strain
εc is the characteristic bending strain resistance
γε is the strain resistance factor

The design compressive strain is calculated as:

εSd = εF ·γF ·γc +εE ·γE +εI ·γF ·γc +εA ·γA ·γc (2.15)

The characteristic bending strain resistance is given by

εc (t , pmi n −pe ) = 0.78 ·
(

t

D
−0.01

)
·
(
1+5.75 · pmi n −pe

pb(t )

)
·α−1.5

h ·αg w (2.16)

Which for the displacement controlled buckling check reduces to

εc (t ,0) = 0.78 ·
(

t

D
−0.01

)
·α−1.5

h ·αg w (2.17)

Where: pb is the pressure containment resistance
αh is the strain hardening factor
αg w is the girth weld factor

The strain resistance factor γε is dependent on the potential failure consequences and is shown in
table 2.7.

Table 2.7: Strain resistance factor

Safety class
Low Medium High

γε 2.0 2.5 3.3
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The strain hardening factor is given as

αh =
(

Rt0,5

Rm

)
max

(2.18)

Where: Rt0,5 is the yield strength
Rm is the tensile strength(

Rt0,5

Rm

)
has a maximum value of 0.93

The girth weld has a detrimental effect on the compressive strain capacity of a pipe. If no other
information exists about the girth weld effect of the specific pipe, the girth weld factor in the figure
2.4 is proposed by DNV.
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Figure 2.4: Girth weld factor

Or in equation form:

αg w =
{

1, if D/t ≤ 20

1− D/t−20
100 , if 20 ≤ D/t ≤ 60

(2.19)

2.3.3. LOCAL BUCKLING CHECK IN THE OVERBEND

DNVGL-ST-F101 [6] gives two alternatives to check for local buckling in the overbend, acknowledg-
ing the partially displacement controlled conditions of the situation. The first option is to use the
load controlled buckling check of equation 2.1 with a modified condition load effect γc of 0.8, al-
lowing for a higher utilisation. This modified condition load effect is not case-dependant or project
specific, and such will not take the wide differences between stingers into account. The second
option is to use the displacement controlled buckling check of equation 2.14 with modified safety
factors. The modification of the safety factors is still to be determined considering the effect of point
load and varying stiffness.

2.3.4. COMPARISON OF LOCAL BUCKLING CHECKS

To illustrate the difference in local buckling limits that the different local buckling checks give, the
limiting moments for a 30 inch diameter pipe with diameter to wall thickness (D/t) ratios between 15
and 45 on the stinger overbend are calculated. The material used in this example is an X65 steel.As
this example focusses on the stinger overbend, the pressure component in equations 2.1 and 2.14
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can be taken as 0. For the sake of simplicity a static situation is considered, meaning that the dy-
namic environmental loads in equations 2.12, 2.13, and 2.15 are 0. For this example the ULS system
check load effect combination (table 2.3) and a medium safety class are used. The top lay tension
is taken as 2000 kN. All relevant input for the calculation of the limiting moments is shown in table
2.8.

Table 2.8: Input data for buckling check comparison

Description Variable Value Unit Source

Outer diameter D 0.762 m
Wall thickness t 0.0169 - 0.0508 m
Yield stress SMY S 448 MPa
Tensile strength SMT S 530 MPa
Functional axial force SF 2000 kN
Material strength factor αU 0.96 − table 2.1
Functional load factor γF 1.2 − table 2.3
Safety class factor γSC 1.14 − table 2.6
Strain resistance factor γε 2.5 − table 2.7
Strain hardening factor αh 0.85 − equation 2.18

The three buckling checks that are compared are a load controlled buckling check with a γc of 1.0,
a load controlled buckling check with a γc of 0.8, and a displacement controlled buckling check
with a γc of 1.0. With the pressure component removed from the buckling check and the dynamic
environmental loads at 0, the limiting functional moment for the load controlled buckling checks
can be calculated as follows:

MF =
(
1−

(
γm ·γSC ·SF ·γF ·γc

αc ·Sp

)2)
· αc ·Mp

γm ·γSC ·γF ·γc
(2.20)

Where: MF is the functional moment

With the pressure component removed from the buckling check and the dynamic environmental
loads at 0, the limiting functional strain for the displacement controlled buckling check can be cal-
culated as follows:

εF = εc

γε ·γF ·γc
(2.21)

Where: εF is the functional strain

The functional strain calculated with equation 2.21 is converted to a curvature using the following
relation:

K = ε

r
(2.22)
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Where: K is the curvature
ε is the bending strain
r is the pipe radius

The resulting functional curvatures are converted to functional moments using the moment-curvature
relations of the various pipe diameter and wall thickness combinations.

The resulting limiting functional moments versus the diameter to wall thickness ratio for the two
load controlled buckling checks and the displacement controlled buckling check are shown in fig-
ure 2.5. As can be seen the displacement controlled buckling check consistently gives a higher al-
lowable utilisation of the pipeline than the two load controlled buckling checks. The load controlled
buckling check with a γc of 0.8, to account for partially displacement controlled conditions, allows
a higher utilisation of the pipeline compared to the standard load controlled buckling check.
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Figure 2.5: Maximum allowable moments per buckling check



3
LITERATURE REVIEW

Ever since DNV introduced the LRFD method and made a distinction between load controlled and
displacement controlled situations in the local buckling check, there has been discussion on what
is load controlled versus displacement controlled. The lack of significant progress in this discussion
is believed by Collberg, Aronson, Palmer and Hahn [4] to be due to the focus on the difference be-
tween load and displacement controlled situations with the implicit assumption that the situation
must be one or the other. In reality many conditions are neither purely load controlled nor purely
displacement controlled. In the past years several authors have published papers looking into the
situations in-between purely load controlled and purely displacement controlled, the so-called par-
tially displacement controlled situations. The focus of the majority of these papers has been on the
sagbend part of pipeline installation, a situation traditionally looked at as purely load controlled.
The goal being to create a method to determine how partially displacement controlled a situation is
and to prove that the sagbend region is not purely load controlled. Using displacement controlled
limits, loads on the structure can exceed the loads associated with load controlled limits without the
system failing, thus allowing further utilisation of the pipe in the design (Hahn, Palmer, and Collberg
[7]).

Collberg et al have proposed a concept to analyse the level of partial displacement control in the
sagbend when the pipeline deformation stays in the elastic region. This concept is based on the be-
lief that the most likely cause of failure in the sagbend is varying properties of the pipeline, meaning
that failure will occur when a weak section of pipe is located at the most exposed pipeline sec-
tion. This principle is referred to as the weak link principle. Their proposed concept is based on
this principle and can be considered as an extended version of limit state based design philosophy.
This concept will be referred to as the weak link method and will be explained in detail in the next
section. Karjadi, Walker, and El-Gebaly [8] expand on the method by Collberg by adding a way of
calculating the level of partial displacement control and resulting buckling limit in the non-linear
moment-curvature region. Christensen [9] applied the method of Collberg to the lateral buckling of
submarine pipelines and analysed the effect that the degree of stiffness reduction in the weak joint
has on the calculated level of partial displacement control.

3.1. WEAK LINK METHOD

In this section the weak link method as proposed by Collberg et al and elaborated by various authors
will be explained in detail.

17
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To determine the level of partial displacement control, two analyses are performed. First, a global
analysis with nominal pipe properties will give the location of maximum moment in the sagbend
configuration. A second analysis with a weak link joint located at this point of maximum moment is
performed next, giving different values for the moment and curvature at the location of maximum
moment than the first analysis. Figure 3.1 shows a sketch made for the DNV JIP Report [3] which
gives an exaggerated example of the effect of the weak link on the analysis. According to Collberg et
al the weak link joint should represent the likely maximum stiffness difference of the pipeline. For
the analysis this means a weak link will have a reduced wall thickness and yield stress compared
to the nominal pipeline. The difference in moment and curvature between the first and second
analysis indicates the level of partial displacement control.

Figure 3.1: Sketch of sagbend performance with and without weak link. [3]

The maximum moments and corresponding curvatures from the first and second analysis can be
plotted on the moment-curvature curves. The curve for the second analysis will differ from the first
analysis due to the weaker pipe section. The moment-curvature curves for the first (named nominal
joint) and second (named weak joint) analysis are shown in figure 3.2. The maximum moment
and corresponding curvature of the global analysis is denoted by 0 and the maximum moment and
curvature of the second analysis is denoted by C.
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Figure 3.2: Illustration of the maximum moment for the nominal and weak link analysis [4]

Considering the definitions of load and displacement control as given in section 2.1, the expected
shift in moment and curvature for fully load controlled and fully displacement controlled situations
can easily be determined.

• In a totally load controlled condition the structural response is governed by the imposed
loads, meaning that the moment is fixed. The only possible shift in moment and curvature
in the weak link analysis is along a horizontal line to point B, as shown in figure 3.3.

• In a totally displacement controlled condition the structural response is governed by imposed
geometric deformation, meaning that the curvature is fixed. The only possible shift in mo-
ment and curvature in the weak link analysis is along a vertical line to point A, as shown in
figure 3.3.

• For a partially displacement controlled situation the point of moment and curvature (denoted
by C) is expected to lie in-between the points for full load or displacement control. If the
increase in curvature is limited, the condition can be identified as mainly DC. If the moment
is mostly maintained over the weak link section, it is mainly LC.

Figure 3.3: Illustration of load controlled and displacement controlled behaviour [4]

Collberg et al introduce the factor z to represent the degree of displacement control, defined as:

z = BC

B A
(3.1)

For the linear moment-curvature region, considered in Collberg, this can be calculated by taking
the moments at points A, C, and 0.



20 3. LITERATURE REVIEW

z = M0 −MC

M0 −MA
(3.2)

Equation 3.2 gives z = 0 for a fully load controlled condition and z = 1 for a fully displacement
controlled condition.

The new maximum allowable moment belonging to the partially displacement controlled situation
is calculated by linear interpolation between the load controlled and displacement controlled buck-
ling limit moment:

Mpdc = Ml c + (Mdc −Mlc ) · z (3.3)

Where: Mpdc is the allowable moment for the partially displacement controlled situation
Mlc is the allowable moment for the load controlled situation
Mdc is the allowable moment for the displacement controlled situation

Calculating the z-value by comparing moments or by comparing curvatures would lead to different
results in the non-linear region. To account for the non-linearity in the moment-curvature relation
the method presented by Karjadi et al [8]. should be considered. The factor z is calculated as:

z = Lw

Ldc
(3.4)

Where: Lw is the arc length between points C and B
Ldc is the arc length between points A and B

The new buckling limit for the partially displacement controlled condition is determined by Karjadi
et al as a strain capacity, given as:

εpdc = εl c + z · (εdc −εlc ) (3.5)

Where: εpdc is the strain capacity for the partially displacement controlled situation
εl c is the strain capacity for a load controlled situation
εdc is the strain capacity for a displacement controlled situation

Due to the hogging shape of the non-linear moment-curvature relation, linear interpolation along
the moment axis will result in a more conservative estimate of a PDC buckling limit compared to
linear interpolation along the strain axis.

Christensen [9] applied the method proposed by collberg et al to the lateral buckling of pipelines
on the seabed. Christensen noted that the pipe stiffness can be reduced by any arbitrary value for
the weak link analysis as long as it is close to the base stiffness. However, if the stiffness is reduced
too much, the load control line (0−B) in figure 3.3 may never intersect the reduced stiffness curve
(point B would not exist). Furthermore, even though the stiffness may be reduced by any value, the
chosen value has an impact on the calculated level of displacement control. Reducing the stiffness
too much may result in an over prediction of the percentage displacement control. Therefore it is
important to keep the variations in stiffness close to the base case.
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In this chapter a modification and elaboration of the weak link method, as described in the previous
chapter, to make it suitable for the overbend stinger region is proposed. First, the proposed method
for determining the degree of displacement control is explained. Next, a way of determining the
new partial displacement buckling limit is proposed. Thirdly, the method and necessary steps are
summarised. Finally, the implementation of the proposed method in the software used by Allseas is
covered.

4.1. DEGREE OF DISPLACEMENT CONTROL

The weak link method discussed in the previous chapter has been designed with the installation of
pipe using J-lay mode in mind. Christensen has already shown that the method can be applied in a
different case, namely the lateral buckling of pipes on the seabed. The original method proposed by
Collberg, combined with the findings by other authors, will be adapted for the overbend region of
S-lay installation. One of the obvious differences between the S-lay overbend and the J-lay sagbend
(or S-lay sagbend for that matter), is that in the sagbend there is a single location where the moment
and curvature is maximum. In the overbend region there are several local maxima and minima of
bending and curvature along the stinger section. Figure 4.1 sketches how the moment is distributed
along the stinger. During pipeline installation the pipe experiences local peaks in moment and
bending on top of the rollerboxes. In the sagbend region the weak link method gives a single z-value,
a single level of partial displacement control, for the entire sagbend based on the peak moment and
bending. Using this method in the overbend region will consequently result in multiple z-values,
one for each rollerbox, and thus multiple levels of displacement control along the stinger. The z-
values are calculated for the rollerbox locations because these are the locations where the moment
and bending of the pipe is the largest, and thus the pipeline is most susceptible to local buckling
at these locations. To determine the z-value for each rollerbox, the weak link must span the entire
stinger length.
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Figure 4.1: Moment distribution over the stinger [10]

To capture the effect of the magnitude of variation in stiffness, multiple variations in stiffness are
used in the analysis. Two variations in pipe stiffness are modelled, one where the pipe stiffness is
slightly lower than the nominal pipe, and one where the pipe stiffness is slightly higher than the
nominal pipe. This will give for each rollerbox a range of the z-value, showing the sensitivity to stiff-
ness variations. Following the findings by Christensen, it is expected that the weaker pipe variation
will give a higher z-value estimation than the stronger pipe variation.

For calculating the z-value the method proposed by Karjadi (equation 3.2) will be used. The benefits
of this method compared to the method proposed by Collberg (equation 3.4), is that it can be used in
both the linear and non-linear region, whereas the method by Collberg will only give correct results
in the linear region.

4.2. PDC BUCKLING CHECK

4.2.1. PDC BUCKLING LIMIT

The new buckling limit for the partially displacement controlled condition follows from the z-value,
the load controlled buckling limit, and the displacement controlled buckling limit. For a given pipe
geometry, material properties, and installation conditions a buckling limit can be calculated using
the DNV equations (equation 2.1 and 2.14). For the load controlled limit the effect of pressure on the
pipe buckling is assumed to be negligible due to the small water depth the pipe experiences while
on the stinger. This reduces equation 2.1 to the following:

(
γm ·γSC · |MSd |

αc ·Mp (t2)
+

(
γm +γSC ·SSd

αc ·Sp (t2)

)2)2

≤ 1 (4.1)

The design effective axial force Ssd follows from the installation conditions. The safety factors fol-
low from the material and installation conditions. The only unknown is the design moment Msd .
Solving equation 4.1 for 1 gives the maximum allowable design moment for a load controlled con-
dition.

For the displacement controlled limit the effect of pressure is also assumed to be negligible. Equa-
tion 2.14 is thus reduced to:

 εSd
εc (t2,0)
γε

0.8

≤ 1 (4.2)

The only unknown in this equation is the design strain. Solving equation 4.2 for 1 gives the maxi-
mum allowable design strain for a displacement controlled condition. Dividing the design strain by
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the pipe radius gives the design curvature.

εSd

r
= KSd (4.3)

Where: εSd is the design strain
r is the pipe radius
KSd is the design curvature

When the z-value is calculated and the LC and DC buckling limits are known, the partially displace-
ment controlled buckling limit can be found. The methods proposed by Collberg et al (equation
3.3) and Karjadi et al (equation 3.5) will give different results if the buckling limits lie in the non-
linear region of the moment-curvature relation. An example is given in figure 4.2, for a hypothetical
situation where a PDC buckling limit of 50% displacement control is found.

M
o
m

en
t

Curvature

DC

LC

PDC-M
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Figure 4.2: Methods of calculating partial displacement buckling limit

Where: LC is the load controlled buckling limit
DC is the displacement controlled buckling limit
PDC − M is the partially displacement controlled buckling limit calculated along the
moment axis
PDC −k is the partially displacement controlled buckling limit calculated along the cur-
vature axis

As can be seen, due to the hogging shape of the moment-curvature relation the method of Karjadi
et al, where the new limit is calculated along the curvature (or strain) axis always gives an equal or
higher limit than by using Collberg et al method and calculating the limit along the moment axis.
The PDC buckling limit calculated along the curvature axis (Karjadi’s method) is denoted by PDC-
k. The buckling limit calculated along the moment axis (Collberg’s method) is denoted by PDC-M.
A third method is proposed to calculate the PDC buckling limit using curve lengths, similar to the
method by Karjadi to calculate the z-value (equation 3.4). An illustration of this method is shown in
figure 4.3.
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Figure 4.3: Methods of calculating partial displacement buckling limit using curve lengths

Where: PDC − cl is the partially displacement controlled buckling limit calculated using curve
lengths

Using the ratio between curve lengths to calculate the new PDC limit location the discussion on
whether to calculate the partially displacement controlled buckling limit along the moment or cur-
vature axis can be avoided. If all points lie in the elastic region all three methods will give the same
result. Using the curve length method in the non-linear region will result in a PDC location in be-
tween the Collberg and Karjadi method. Considering that the z-value has also been calculated using
curve lengths, also using curve lengths for the determination of the PDC buckling limit is a more
consistent approach. In equation form this would be:

z = ||PDC LC ||
||DC LC || (4.4)

Where: ||PDC LC || is the curve length between the PDC and LC points
||DC LC || is the curve length between the DC and LC points

With the z-value and the locations of LC and DC known, the location of PDC can be calculated.

4.2.2. PDC BUCKLING CHECK FACTOR

To implement this newly found PDC buckling limit in the design phase of pipeline installation it
should be translated to a buckling check. As the assumption is that most partially displacement
controlled conditions on the stinger will be closer to displacement controlled than load controlled,
a modification of the displacement controlled (equation 2.14) buckling check is proposed.

From the calculated location of the PDC limit follows the maximum allowable curvature and strain.
The DC location in figure 4.3 has a design strain for which the displacement controlled buckling
check equals 1. To create the PDC buckling check, the DC buckling check should be modified such
that it equals 1 at the design strain corresponding to the PDC-cl point in figure 4.3. To modify the
buckling equation a partial displacement control factor, γpdc , is introduced. The modified DC buck-
ling check has the following form:
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γpdc ·εSd

εc (t2,0)
γε

0.8

+ pe −pmi n
pc (t2)
γm ·γSC

≤ 1 (4.5)

with

γpdc =
εpdc

εdc
(4.6)

Where: εpdc is the strain belonging to the PDC limit
εdc is the strain belonging to the DC limit

4.3. METHOD SUMMARY

In summary, the steps needed to determine the partial displacement control buckling limit are as
follows:

• First, a finite element model composed of Euler-Bernoulli beam type elements of the given
installation situation is created. Nominal pipe geometry and material properties, stinger con-
figuration, water depth, and laying tension are used as input. Pipe stiffness variations are cre-
ated for the weak link method. The output needed for the weak link method are the moments
and strains at the rollerboxes, and the moment-curvature relations of the pipes.

• Using the methods described in this chapter and the output from the finite element model,
the z-values per rollerbox are calculated. The moment and curvature shifts at the rollerboxes
of the pipe stiffness variations are compared to the moment and curvature of the nominal
pipe. The expected responses for fully load controlled and fully displacement controlled con-
ditions are calculated (figure 3.3). From this data the level of partial displacement control per
rollerbox is calculated.

• With the nominal pipe geometry and material properties in combination with the DNV guide-
lines, the local buckling limits for load controlled and displacement controlled situations are
determined.

• With the z-value and the LC and DC limits from the two previous steps, the PDC limit is cal-
culated.

• With the PDC limit known, the γpdc is calculated and the buckling check is modified for the
PDC situation.

• Finally, the original installation situation can be checked with the newly calculated PDC buck-
ling limit. If the model passes the PDC check the configuration is acceptable. If not, the con-
figuration must be modified and the previous steps taken again.
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Figure 4.4: PDC assessment for specific pipeline installation

4.4. IMPLEMENTATION

4.4.1. FE PACKAGE

At Allseas most general S-lay installation analyses are created using the fit-for-purpose program
OFFPIPE. OFFPIPE is a finite element method program specifically created for the modelling and
analysis of non-linear structural problems encountered in the installation of offshore pipelines.
OFFPIPE uses a beam element model and can model the pipeline in both two and three dimensions.
The finite element method considers both geometric (large displacement) and material (nonlinear
stress-strain curve) non-linearities. In a static analysis OFFPIPE calculates the pipe stresses and
deformed geometry at every point along the pipeline.

Allseas uses an in-house developed shell over the OFFPIPE program, called OFFWIN. OFFWIN is a
pre- and post-processor for OFFPIPE and is created to provide a more user friendly and consistent
Windows interface. Figure 4.5 illustrates the difference between a traditional OFFPIPE user interface
and an OFFWIN user interface.
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(a) OFFPIPE user interface [11]

(b) OFFWIN user interface

Figure 4.5: Comparison of user interfaces

4.4.2. PIPELINE MODEL

The material and geometric properties of the pipeline in OFFPIPE are modelled using a Ramberg-
Osgood [12] material model. OFFPIPE defines the properties using the moment-curvature relation,
which is expressed as follows:

K

Ky
= M

My
+ A

(
M

My

)B

(4.7)
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Where: K is the pipeline curvature
M is the pipeline bending moment
Ky is the yield curvature
My is the yield moment
E is the Young’s modulus
A and B are Ramberg-Osgood equation coefficients

The moment-curvature relation used in OFFPIPE is normalised by the yield moment and yield cur-
vature. The yield moment is defined as the moment for which the outer fibres of the pipe reach
the yield stress in pure bending. The yield curvature is the corresponding curvature. The stress dis-
tribution in the pipe is illustrated in figure 4.6. The yield moment and curvature are calculated as
follows:

My =
2 · Ic ·σy

D
(4.8)

Ky =
2 ·σy

E ·D
(4.9)

Where: Ic is the cross-sectional moment of inertia
σy is the yield stress
D is the pipe diameter
E is the Young’s modulus

The cross-sectional moment of inertia for a pipe is given by:

Ic = π

64

(
D4 − (D −2 · t )4) (4.10)

Where: t is the pipe wall thickness

σy

Figure 4.6: Stress distribution at yield moment

The nominal pipe properties and its variations are specified in OFFPIPE, as such the moment-
curvature relation equation for each pipe is known. The curve length is calculated using the nor-
malised data in order to not get conditioned by features with wider range of possible values when
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computing distances. The curve lengths along the moment-curvature line can be calculated with
equation ??. See appendix A for the derivation of this equation.

s =
∫ b

a

√√√√1+
(

1+ A ·B ·
(

M

My

)(B−1)
)2

d
M

My
(4.11)

Where: s is the curve length
a and b are the points on the curve in between which the curve length is calculated

4.4.3. ANALYSIS

To allow the weak link method to be used efficiently, a Matlab script is created to automatise the
calculation steps of the analysis. The script consists of three parts:

• importing OFFWIN output

• z-value calculation

• visualising results

After running the models in OFFWIN, the output can be exported in *.OUT files, which is in text for-
mat. In the first part of the script the text files are parsed and the relevant data is placed in matrices
for further manipulation.

The complete script is shown in Appendix D.





5
METHOD VALIDATION

To test and validate the method described in the previous chapter, several FE models are created in
the FEM software Abaqus. Four different models are made:

• Model to determine buckling limit for fully load controlled situation. Pipe with moments
applied to ends.

• Model to determine buckling limit for fully displacement controlled situation. Pipe bent over
continuous support with constant curvature.

• Model to determine buckling limit for a specific partially displacement controlled situation.
Pipe bent over discrete rollerboxes in a configuration of constant radius.

• Model of same specific partially displacement controlled situation with beam elements. Weak
link method is applied to this model to determine the level of displacement control.

After validation of the method, the use of the OFFWIN FE package is validated. The beam element
model from Abaqus is recreated as closely as possible in OFFWIN and the weak link method is ap-
plied to the model to determine the level of displacement control.

5.1. ABAQUS

Abaqus is a software package by Dassault Systèmes for finite element analysis and computer-aided
engineering. The software package consists of several modules. The Abaqus/CAE (Complete Abaqus
Environment) module is used for both modelling and analysis of mechanical components and as-
semblies. The Abaqus/Standard module is a general-purpose finite element analyzer that uses the
traditional implicit integration scheme. The Abaqus/Explicit module is a special-purpose finite el-
ement analyzer that can solve highly non-linear systems by using an explicit integration scheme.
Lastly, there are two additional modules for computational fluid dynamics and computational elec-
tromagnetics. Abaqus allows the analysis of highly non-linear situations with complex materials
and impact and dynamic events. With the package comes a sophisticated element library of shells,
beams, pipes, solids, and more. The Abaqus software suite is used by a wide range of companies in
the offshore sector.
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5.2. MODELS SETUP

In this section the set-up of the four models is explained.

5.2.1. PIPE PROPERTIES

The properties of the pipe used in the following models correspond to the pipeline characteristics
of the pipe used in the deepest parts of the Nord Stream project by Allseas.

The nominal pipe characteristics are shown in table 5.1.

Table 5.1: Pipe properties

Characteristic value

Outer diameter 1214.8 mm
Wall thickness 30.9 mm
Material grade SAWL 485 FD
SMYS 485 N /mm2

SMTS 570 N /mm2

Density 7850 kg /m3

Young’s modulus 207000 MPa
Poisson’s ratio 0.3
Ramberg-Osgood coefficients:
N 27.3484
S0 0.00266

5.2.2. TRUE STRAIN - ENGINEERING STRAIN

The steel used in the Nord Stream pipe is of the SAWL 485 FD grade, which has a yield stress of 485
MPa (at 0.5% strain) and a tensile stress of 570 MPa (at 22% strain). The Ramberg-Osgood model is
used to characterize the non-linear stress-strain relationship of the material. The Ramberg-Osgood
equation used for stress-strain is:

ε= σ

E
+S0

(
σ

σy

)N

(5.1)

Where: ε is the total uniaxial strain
σ is the uniaxial stress
E is the Young’s modulus
σy is the yield stress
S0 and N are material constants

The stresses and corresponding strains given by equation 5.1 above are engineering stresses and
engineering strains, meaning that it correlates the current state of a steel specimen with its original
undeformed state (initial cross section and initial length). Abaqus requires the stress-strain data to
be true stress and true strain, meaning that it correlates the current deformed state of a steel speci-
men with the history of previously deformed states. The engineering stress/strain can be converted
to true stress/strain with the following equations:

σtr ue =σeng i neer i ng ·
(
1+εeng i neer i ng

)
(5.2)
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εtr ue = ln
(
1+εeng i neer i ng

)
(5.3)

Where: σtr ue is the true stress
σeng i neer i ng is the engineering stress
εtr ue is the true strain
εeng i neer i ng is the engineering strain

A comparison between the true and engineering stress-strain curves is shown in figure 5.1.
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Figure 5.1: Comparison of true and engineering stress-strain curves

5.2.3. AXES

The labelling convention for displacement and rotational degrees of freedom used in Abaqus is
shown in figure 5.2. For an axis-system with the labels x,y, and z, U 1 would correspond with the
displacement along the x-axis, U 2 with displacement along the y-axis, and U 3 with displacement
along the z-axis.

Figure 5.2: degrees of freedom labelling conventions [13]
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5.3. LOAD CONTROLLED SITUATION

To determine the buckling point for a load controlled condition, a finite element model of a pipe
section subjected to bending moments applied to the ends is developed. The length of the mod-
elled pipe section is 10 outer diameters long, which according to literature ([14–20]) is more than
sufficient to negate any influence of end-effects on the buckling region. To reduce the model size
and make efficient use of computing time only a quarter of the pipe is modelled. Symmetry condi-
tions are applied on the bending plane and the mid span cross section.

The mesh consists of the shell type element S4, which is a 4-node, quadrilateral, stress/displace-
ment shell element. Shell elements are preferred when the structure has one dimension much
smaller than the other two dimensions, in this case the pipe wall thickness versus the area. Analyses
by Mohareb, Elwi, Kulak, and Murray [21] have shown that this element agrees well with experi-
mental tests on pipe buckling. Along half the pipe circumference 24 elements are placed and 80
elements are placed along the pipe length. A total of 1920 elements are used.

5.3.1. BOUNDARY CONDITIONS

• Kinematic coupling. The edge of the free end is coupled to a reference node placed at the
center of the pipe end. The constrained degrees of freedom relative to the reference node are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Roller support. The reference node has a displacement/rotation boundary condition. The
constrained degrees of freedom are:
U 1 =U 2 =U R2 =U R3 = 0

• Bending plane symmetry. The symmetry constraints are that displacements in the U1 direc-
tion and rotation about the U 2 and U 3 axis are fixed.
U 1 =U R2 =U R3 = 0

• Mid-section symmetry. The symmetry constraints are that displacements in the U 3 direction
and rotation about the U 1 and U 2 axis are fixed.
U 3 =U R1 =U R2 = 0

Figure 5.3: Model setup for load controlled situation
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5.3.2. LOADING

At the free end a bending moment along the U1 axis is placed at the reference node. This moment is
then transferred through the coupling condition to the pipe shell elements. The total applied refer-
ence moment for a whole pipe is put at 10000 kNm, which means that for a half pipe circumference
the applied reference moment input must be 5000 kNm.

5.3.3. ANALYSIS PROCEDURE

The analysis procedure type is a static Riks analysis with accounting for geometric nonlinearity.
Abaqus offers an analysis method called the “modified Riks method”, this method can be used to
find the static equilibrium states during the unstable phase of a response. For simple cases a lin-
ear eigenvalue analysis might be sufficient to predict the buckling behaviour, but if there is concern
about material non-linearity, geometric non-linearity prior to buckling, or unstable postbuckling
response, a load-deflection analysis (Riks) must be performed. The Riks method takes the load
magnitude as an additional unknown. It solves simultaneously for loads and displacements. Dur-
ing the Riks analysis the load proportionality factor is gradually increased, i.e. the load magnitude
increases, as long as an equilibrium can be found. If no equilibrium can be found with an increase
in load magnitude, the load proportionality factor decreases gradually to analyse the post-buckling
response of the structure. To measure the progress of the solution Abaqus uses the arc length l along
the static equilibrium path in load-displacement space. Any loads defined in a step before the Riks
step are treated as “dead” loads with constant magnitude and do not change during the Riks step.
Loads defined in the Riks step are treated as “reference” loads with varying magnitudes. The current
load magnitude in a certain increment step is defined by:

Ptot al = P0 +λ
(
Pr e f −P0

)
(5.4)

Where: P0 is the dead load
Pr e f is the reference load
λ is the load proportionality factor

The load proportionality factor (LPF) is found as part of the solution. To determine the maximum
moment the pipe can handle before buckling, the maximum LPF found in the solution and the
reference moment are used in equation 5.4. As there is no loading prior to the Riks step in this
model, the equation reduces to:

Mbuckl i ng =λ ·Mr e f (5.5)

Where: Mbuckl i ng is the buckling moment
Mr e f is the reference moment

The resulting buckling moment is for the modelled half pipe circumference, to determine the buck-
ling moment for a complete pipe this value must be doubled.
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5.3.4. RESULTS

The result of the analysis shows the deformation the pipe experiences during the moment increase
and subsequent decrease. Figures 5.4 and 5.5 show the deformation of the pipe at maximum mo-
ment before buckling and the post-buckling shape respectively.

Figure 5.4: Pipe deformation at maximum moment

Figure 5.5: Pipe deformation after buckling

The load proportionality factor versus the arc length is plotted in figure 5.6. To determine the mo-
ment at point of buckling, the maximum load proportionality factor is of interest.
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Figure 5.6: Load proportionality factor vs. arc length

The maximum LPF found in the analysis is 2.1828. Placing this value and the reference moment of
5000 kNm in equation 5.5 gives a buckling moment for half the pipe circumference of 10914 kNm
and thus a buckling moment of 21828 kNm for the whole pipe circumference.

The moment-curvature relationship for this pipe is determined from the pipe deformation prior to
buckling. The moment follows from the reference moment and LPF. The global curvature of the
pipe is calculated by the coordinates of the nodes along the centreline of the pipe as shown in figure
5.7.

Figure 5.7: Nodes on the neutral axis of the pipe

The global curvature is determined by calculating all the Menger curvatures of three subsequent
nodes and taking the average value of this. The Menger curvature is defined by:

c(x, y, z) = 1

R
= 4A

|x − y ||y − z||z −x| (5.6)

Where: c is the curvature belonging to points x, y , and z
R is the radius of curvature
A is the area of the triangle spanned by x, y , and z

The area of a triangle spanned by three points is given by:

A(x, y, z) = 1

2

∣∣(y1 −x1)(z2 −x2)− (z1 −x1)(y2 −x2)
∣∣ (5.7)
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Where: Subscript 1 denotes coordinates along axis 1
Subscript 2 denotes coordinates along axis 2

With the moment and curvature calculated the resulting moment-curvature relation is plotted in
figure 5.8. The point of buckling corresponding to the fully load controlled situation is shown in the
figure and denoted by LC.
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Figure 5.8: Moment-curvature relation

5.4. DISPLACEMENT CONTROLLED SITUATION

To determine the buckling point for a displacement controlled condition, a finite element model
of a pipe section bent over a fixed shape with constant curvature is developed. The length of the
modelled pipe section is 60m with the fixed shape placed in the middle. The mesh consists of the
same S4 shell type elements as the load control model. To reduce the number of elements in the
analysis, a coarser mesh is used in the regions not in contact with the fixed shape and a finer mesh
is used where the pipe contacts the fixed shape.

An initial imperfection is created in a 0.5m long section in the middle of the pipe by placing an
upward vertical line load of 40 kN in this section. It is necessary to create a small imperfection in
the model to facilitate the buckling of the pipe. Without any imperfections or discontinuities in the
pipe, the pipe will not ‘know’ where to buckle once the conditions for buckling have been met and
will thus not buckle. This will wrongly give a much higher buckling limit.
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Figure 5.9: Model setup for displacement controlled situation

5.4.1. BOUNDARY CONDITIONS

• Kinematic coupling. At both pipe ends a reference node is placed at the center of the pipe
end. The edges of the free ends are coupled to the reference nodes placed at that pipe end.
The constrained degrees of freedom relative to the reference node are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Fixed support. The reference node at the right end of the pipe has a displacement/rotation
boundary condition. The constrained degrees of freedom are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Free end. The reference node at the left end of the pipe has a displacement/rotation boundary
condition. The constrained degrees of freedom are:
U 1 =U R2 =U R3 = 0

5.4.2. LOADING

The loading of the pipeline is split into two steps. In the first step an upward (U 2) line load of
40kN is applied to a 0.5m long section in the middle of the pipe. This loading is shown in figure
5.10. In the second step a downward (U 2) displacement is imposed at the reference node at the free
(left) end of the pipe. This applied displacement causes the pipeline to drape over the fixed rigid
curvature.
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Figure 5.10: Line load applied to pipe section

5.4.3. ANALYSIS PROCEDURE

To determine the exact curvature at which the pipe shows the onset of local buckling, a range of
curvatures is modelled. The pipeline is draped over curves with an increasing curvature until the
first symptoms of buckling appear. A selection of curves can be seen in figure 5.9. The onset of
local buckling in this case is defined as the moment where the pipe loses local contact with the rigid
curve, i.e. the pipeline does not follow the shape of the curve completely. The buckling curvature is
defined as the reciprocal of the largest radius for which onset of buckling happens:

kbuckl i ng = 1

Rbuckl i ng ;max
(5.8)

5.4.4. RESULTS

The result of the analysis shows that the onset of buckling first happens at a curve radius of 32.5m,
corresponding to a curvature of 0.03077. Figure 5.11 shows the initial small onset of local buckling
where the pipeline first loses contact with the rigid curve and figure 5.12 shows the buckled pipeline
after further bending. The buckling limit for the fully displacement controlled condition is plotted
in the moment-curvature relation in figure 5.13 and is denoted by DC.

Figure 5.11: Onset of buckling
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Figure 5.12: Buckled shape in a displacement controlled condition
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Figure 5.13: Moment-curvature relation

5.5. PARTIALLY DISPLACEMENT CONTROLLED SITUATION

To determine the buckling point for a specific partially displacement controlled condition, a finite
element model of a pipe section bent over a stinger section with constant curvature is developed.
The length of the modelled pipe section is 80m with the fixed shape placed in the middle. The mesh
consists of the same S4 shell type elements as the two previous models. To reduce the number of
elements in the analysis, a coarser mesh is used in the regions not in contact with the fixed shape
and a finer mesh is used where the pipe contacts the stinger section. An overview of the assembly
of the model is shown in figure 5.14.
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Figure 5.14: Overview of partially displacement controlled model

The stinger section is modelled to have a constant radius. The rollerboxes are modelled to the like-
ness of the rollerboxes aboard of the Solitaire vessel. The dimensions of the rollerbox is shown in fig-
ure 5.15. The center to center spacing of the rollerboxes is 8.5m, combined with a rollerbox length of
close to 4m this results in a stinger section where approximately 50% of the pipe is supported.

Figure 5.15: Dimensions of rollerbox

5.5.1. BOUNDARY CONDITIONS

• Kinematic coupling. At both pipe ends a reference node is placed at the center of the pipe
end. The edges of the free ends are coupled to the reference nodes placed at that pipe end.
The constrained degrees of freedom relative to the reference node are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Fixed support. The reference node at the right end of the pipe has a displacement/rotation
boundary condition. The constrained degrees of freedom are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Free end. The reference node at the left end of the pipe has a displacement/rotation boundary
condition. The constrained degrees of freedom are:
U 1 =U R2 =U R3 = 0

5.5.2. LOADING

In the analysis step a downward (U 2) displacement is imposed at the reference node at the free
(left) end of the pipe. This applied displacement causes the pipeline to drape over the stinger sec-
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tion.

5.5.3. ANALYSIS PROCEDURE

To determine the exact curvature at which the pipe shows the onset of local buckling, a range of
stinger sections is modelled. The pipeline is draped over stingers with a decreasing radius until
local buckling appears. The local buckling is characterised by a sudden loss of stiffness and a gross
deformation of the pipeline. The buckling curvature is defined as the reciprocal of the largest radius
for which local buckling happens.

5.5.4. RESULTS

The result of the analysis shows that for this partially displacement controlled situation local buck-
ling first happens at a slightly smaller curvature compared to the fully displacement controlled con-
dition. Local buckling of the pipeline first happens at a stinger section with a radius of 33m, corre-
sponding to a curvature of 0.0303. Figure 5.16 shows the location and shape of the local buckle. As
expected, the buckling occurs on top of one of the rollerboxes. The buckling limit for this partially
displacement controlled condition is plotted in the moment-curvature relation in figure 5.17 and is
denoted by PDC.

At the timestep where the local buckling first appears, the coordinates of the displaced pipe end are
noted. These coordinates will be used as an input in the beam models of the next section.

Figure 5.16: Buckled shape in a partially displacement controlled condition
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Figure 5.17: Moment-curvature relation

The resulting moments, curvatures, and strains for the onset of local buckling for the three shell-
type element models are summarised in table 5.2.

Table 5.2: Onset of local buckling for shell FE models

moment curvature strain
kN m m−1 −

Load controlled 21828 0.0217 0.0132
Partially displacement controlled 22023 0.0303 0.0184
Displacement controlled 22033 0.0313 0.0190

5.6. BEAM MODELS

To validate the weak link method, the specific partially displacement controlled situation of the
model in section 5.5 is recreated using a beam model such that the weak link method can be applied
to it. The model setup largely corresponds to the setup of the shell model. The configuration of
the rollerboxes is kept the same at a constant radius of 33m. The shell element pipeline part is
replaced by a beam element pipeline part. The length of the modelled pipe section is 80m. The mesh
consists of the PIPE31 beam type element. The PIPE31 element is a 2-node linear pipe in space with
6 degrees of freedom. Thin-walled pipe formulations are selected in the section properties. The
pipe is equally divided into 400 elements, resulting in an element length of 200mm. An overview of
the assembly of the model is shown in figure 5.18.
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Figure 5.18: Overview of partially displacement controlled beam model

Three variations of the beam model are made, each with different pipe properties. The pipe property
variations are as follows:

• Nominal. The pipe properties match those from table 5.1 and those used in the shell element
models.

• Weaker. The yield stress, tensile strength, and wall thickness are both reduced by 2%.

• Stronger. The yield stress, tensile strength, and wall thickness are both increased by 2%.

The resulting changes in pipe properties are summarised in table 5.3.

Table 5.3: Variations in pipe properties

Yield stress [MPa] Tensile strength [MPa] Wall thickness [mm]

Nominal 485 570 30.9
Weaker 475.3 558.6 30.282
Stronger 494.7 581.4 31.518

5.6.1. BOUNDARY CONDITIONS

• Fixed support. The end node at the right end of the pipe has a displacement/rotation bound-
ary condition. The constrained degrees of freedom are:
U 1 =U 2 =U 3 =U R1 =U R2 =U R3 = 0

• Free end. The end node at the left end of the pipe has a displacement/rotation boundary
condition. The constrained degrees of freedom are:
U 1 =U R2 =U R3 = 0

5.6.2. LOADING

In the analysis step a downward (U 2) displacement is imposed at the reference node at the free (left)
end of the pipe. This applied displacement causes the pipeline to drape over the stinger section.
The displacement is chosen such that it matches the coordinates of the free pipe end in the partially
displacement controlled shell element model at the first point of buckling. For this configuration
a required vertical displacement of 33.94m is found. By forcing the end displacements to be the
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same, the general shape of the pipeline over the stinger is also the same between the shell and beam
element models.

5.6.3. ANALYSIS PROCEDURE

Once the end of the displacement step has been reached and the end displacement matches the
pipe end coordinates of the shell model, the local moment and curvature of the beam element at
the location of buckling is noted. Figure 5.19 shows the exact location where the moment and cur-
vature is measured. Beam elements are incapable of modelling the local buckling because the pipe
profile is fixed and cannot deform. As such, there will not appear any signs of local buckling in this
model.

Figure 5.19: Measurement location in beam model

5.6.4. RESULTS

Once the moments and curvatures at the location of buckling have been noted for each of the
three variations, they can be plotted in their respective moment-curvature relations. The moment-
curvature relations for the three pipe variations are produced by measuring the changes in moments
and curvatures during the analysis. This relation will differ slightly from the moment-curvature line
shown in figures 5.8, 5.13, and 5.17. This is due to the fact that beam elements cannot take the
ovalisation of the pipe during bending into account. The three moment-curvature relations and the
corresponding buckling points are shown in figure 5.20, normalised by the yield moment (equation
4.8) and yield curvature (equation 4.9).
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Figure 5.20: Moment-curvature relation

5.7. COMPARISON OF MODELS

To validate the weak link method, a level of partial displacement control is calculated for the shell
element models and is then compared to the z-factor calculated with the weak link method on the
beam models. If these separately calculated levels of partial displacement control agree, the weak
link method is considered validated.

First, the level of partial displacement control in the shell element models is calculated. The curva-
tures at which buckling begins for the load controlled, displacement controlled, and partially dis-
placement controlled situation are shown in table 5.4. As can be seen in figure 5.17, the three buck-
ling points all lie in an almost linear region of the moment-curvature curve. For simplicity’s sake the
level of partial displacement control is calculated by comparing the linear distance between the LC
and DC points with the linear distance between the PDC and DC points.

Table 5.4: Buckling curvatures of shell element models

Condition Buckling curvature [m−1]

Load control 0.02173
Partial displacement control 0.03030
Displacement control 0.03077

In equation form the calculation of the level of displacement control is:

z = DC −PDC

DC −LC
= 0.03077−0.03030

0.03077−0.02173
= 0.95 (5.9)

Which indicates that this particular partially displacement controlled situation is 95% displacement
controlled and 5% load controlled.
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Next, the level of partial displacement control is calculated for the beam models using the weak
link method. Using the method as described in chapter 4, the expected responses for fully load
controlled and fully displacement controlled conditions can be plotted in the graph of figure 5.20.
Figure 5.21 shows a zoomed in part of figure 5.20 with the LC and DC responses shown by the dotted
line. The measured buckling points are denoted by the triangles.
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Figure 5.21: LC and DC responses for beam models

As the buckling points are in the non-linear part of the curve, a linear calculation of the z-factor
is not exact. Instead the z-factor is calculated by comparing the curve lengths (see equation 3.4).
The calculated curve lengths and corresponding z-factor for the weaker and stronger variations are
shown in table 5.5. As noted by Christensen [9], a weaker variation gives a slightly higher prediction
of the level of displacement control compared to a stronger variation. Using the weak link method
a level of partial displacement control in the range of 95% to 97% is found.

Table 5.5: Curve lengths for weak link method

Variation Lw Ldc z

Weaker 4.02 4.13 0.97
Stronger 2.97 3.11 0.95

As the z-factor values calculated with the weak link method are within 2% of the z-factor calcu-
lated with the more detailed shell element models, the first step towards validation of the proposed
method has been taken with satisfactory results.

5.8. COMPARISON OF FEM PROGRAMS

To validate the use of OFFWIN in combination with the weak link method, the beam models as de-
scribed in section 5.6 are recreated as closely as possible in OFFWIN. OFFWIN is a FE package devel-
oped specifically for situations that occur in the offshore pipelaying industry, as such its modelling
capabilities are a lot more limited than a general FE package such as Abaqus. Therefore creating
a 1:1 copy of the Abaqus model in OFFWIN is impossible. However, by identifying the important
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parameters of the pipeline configuration on the stinger and keeping those similar, it is possible to
create a close approximation of the Abaqus model in OFFWIN.

5.8.1. MODEL SET-UP

The stinger model created in OFFWIN corresponds with the rollerbox configuration in the Abaqus
models. As the rollerboxes in OFFWIN are not modelled explicitly, only the coordinates and angles
of the rollerboxes are used.

In OFFWIN the pipe supports are modelled as frictionless point supports. Each pipe support con-
sists of two sets of independent rollers, as shown in figure 5.22. One pair of rollers, referred to as the
bottom rollers, is approximately horizontal and used primarily to support the weight of the pipeline.
The second set of rollers, referred to as the side rollers, are approximately vertical and are primarily
used to restrain the lateral or transverse displacements of the pipeline.

Figure 5.22: The standard pipe support model used by OFFPIPE [11]

To recreate the rollerbox model of figure 5.15 the pipe support properties shown in table 5.6 are
used. The side roller offset is sufficiently large that the pipe is not in contact with the side roller. The
rollerboxes in the Abaqus model are completely rigid. In OFFWIN the pipe supports are standard
modelled as spring supports. By using a very large stiffness the rollerboxes can be considered as
rigids.

Table 5.6: Pipe support properties

Property value units

Vertical stiffness 1000000 kN/m
Lateral stiffness 1000000 kN/m
Bottom roller angle 30 deg
Side roller angle 0 deg
Side roller offset 0.992 m
Roller bed length 3.985 m

The moment-curvature relation of the pipeline is modelled using the Ramberg-Osgood material
model (equation 4.7) in OFFWIN. The moment-curvature relations found during the analyses of the
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beam models in Abaqus (see figure 5.20) thus need to be converted to Ramberg-Osgood parame-
ters. The method for converting the moment-curvature relations to Ramberg-Osgood parameters
is explained in detail in appendix B. The resulting Ramberg-Osgood parameters for the pipelines in
table 5.3 are summarised in table 5.7.

Table 5.7: Ramberg-Osgood parameters for variations in pipe properties

Yield stress Tensile strength Wall thickness Ramberg-Osgood
[MPa] [MPa] [mm] A [-] B [-]

Nominal 485 570 30.9 0.008461 23.61311
Weaker 475.3 558.6 30.282 0.008782 23.61946
Stronger 494.7 581.4 31.518 0.007971 23.68074

To recreate the same shape of the pipeline on the stinger model, the departure angle of the pipeline
is kept the same between Abaqus and OFFWIN. The departure angle is determined by pipe char-
acteristics, water depth and lay tension. The focus of this model is the stinger section, thus what
happens in the sagbend or bottom touchdown is not of interest and is ignored. The water depth
needs to be specified to run the model and is taken as 200m, but is not of further interest. The
departure angle of the pipeline in the Abaqus model is approximately 47 degrees. A lay top ten-
sion of 3700kN is used in the OFFWIN model, resulting in a departure angle of 47.07 degrees. The
model configuration is shown in figure 5.23. The end of section point indicates where the edge of
the Abaqus model would be.

Figure 5.23: Configuration of the OFFWIN model
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5.8.2. RESULTS

The weak link method is applied to the OFFWIN results using the Matlab script of appendix D.
The three normalised moment-curvature relations for the nominal, weaker, and stronger pipe are
shown in figure 5.24. The three buckling points calculated by Abaqus and OFFWIN are indicated in
the figure.
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Figure 5.24: Moment-curvature relation

Figure 5.25 shows a zoomed in part of figure 5.24. Only the buckling points calculated by OFFWIN
are shown and are denoted by the triangles. The LC and DC responses are shown by respectively the
horizontal and vertical dotted lines.
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Figure 5.25: LC and DC responses for OFFWIN beam models

The z-values calculated for the weaker and stronger pipe variation are shown in table 5.8. As ex-
pected, the weaker variation predicts a higher level of partial displacement control compared to the
stronger pipe variation.
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Table 5.8: Curve lengths for weak link method in OFFWIN and Abaqus

Program Variation Lw Ldc z

OFFWIN Weaker 7.80 8.21 0.95
Stronger 2.71 3.08 0.88

Abaqus Weaker 4.02 4.13 0.97
Stronger 2.97 3.11 0.95

Comparing the z-values calculated in OFFWIN to the z-values calculated with Abaqus, it can be seen
that the OFFWIN model gives a slightly lower estimate of the level of displacement control than the
Abaqus model. However, it should be kept in mind that the two models are not exact copies of
each other and that some difference in results is to be expected. Considering the slight differences
between the two models the 9% difference between the z-values calculated in OFFWIN and Abaqus
are not considered too large to invalidate the use of OFFWIN in combination with the weak link
method. To validate the use of OFFWIN in combination with the weak link method further studies
with more similar models is recommended.

5.8.3. COMPUTATIONAL TIME COMPARISON

The models described in this chapter all have different levels of detail. The shell element models
have a fully modelled pipeline which allows for local deformation of the pipe and the PDC model
has fully modelled rollerboxes. The Abaqus beam model has a lower level of detail as the pipeline
shell model is replaced by a beam model, removing the ability to model the local deformation of
the pipe. Finally the OFFWIN beam model has the lowest level of detail by replacing the modelled
rollerboxes with point supports. The level of detail has a large impact on the computational time
of the models and this is summarised in table 5.9. Considering that these models only compute
a single static situation and that for large pipelay projects it is typical to run thousands of these
situations, it is clear that the more detailed Abaqus models are not feasible.

Table 5.9: Runtimes for FE partial displacement control models

Model section computational time [seconds]

Abaqus shell element 5.5 668
Abaqus beam element 5.6 576
OFFWIN beam element 5.8 2

5.9. CHAPTER CONCLUSIONS

The detailed shell element models are capable of modelling the onset of local buckling and the
results agree with the expected difference in buckling limit for load, displacement, and partially
displacement controlled conditions. It is found that for the large diameter pipeline tested, the onset
of buckling in a partially displacement controlled condition is very close to the buckling limit for a
fully displacement controlled condition.

Modelling the same PDC situation with beam elements in Abaqus and using the weak link method
to compute the level of displacement control gives results that agree with the results from the shell
element models. Considering the closeness of the results in the investigated case, the weak link
method shows potential as a reliable tool to easily and efficiently determine the PDC conditions of
a situation without the need to create very detailed models. Further testing with different cases is
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recommended to substantiate this claim.

The comparison of the Abaqus beam model with the OFFWIN beam model is clouded by the fact
that the modelled situations are not exact copies of each other. Despite the difference in modelling
capabilities of the two programs, an approximation of the Abaqus model is made in OFFWIN. The
computed level of displacement control in the OFFWIN model lies lower than the computed level
in the Abaqus model. A possible explanation could be the introduction of a tension component in
the OFFWIN model, which has the effect of reducing the level of displacement control.

To obtain more confidence in the validation of the weak link method, it is recommended to perform
the same method of validation for more pipe properties. The currently tested pipe is a very large
and stiff pipe, so at least a pipe with a smaller diameter should be tested. For now, with the currently
available model results, the weak link method shows potential and will be used for the upcoming
parametric study.





6
PARAMETRIC STUDY

In this chapter the effect of several parameters in the pipeline installation configuration on the cal-
culated z-value are investigated. To efficiently design an installation configuration, it is essential to
understand how changes in the situation (e.g. stinger radius, rollerbox spacing, laying tension, etc.)
affect the level of partial displacement control.

The OFFWIN program is used to model an extensive collection of parametric variations. The pa-
rameters investigated are as follows:

• Stinger radius

• Rollerbox spacing

• Rollerbox load

• Tension

• Pipe diameter

• Pipe D/t ratio

Lastly, the effect of the level of displacement control on the local buckling limits is investigated.

6.1. OFFWIN MODEL SET-UP

The basis of the parametric studies will be S-lay situations with a ”perfect” stinger. This means that
the stinger shape follows the arc of a circle and thus has constant radius. By keeping the influence
of an irregular stinger shape to a minimum, the analyses will provide more reliable results. For
the parametric studies a static analysis will be used. In the following section, the model set-up in
OFFWIN is explained.

6.1.1. VESSEL MODEL

The pipelaying vessel is modelled as a rigid body. In the vessel model the coordinates of the pipe
supports and tensioners are defined. These elements have no degrees of freedom to the vessel
model. In static analyses, the position of the vessel and the coordinates of the pipe supports and
tensioners on the vessel are fixed. For this model, the horizontal and vertical positions (as calcu-
lated according to Appendix C) of each pipe support and tensioner are given explicitly in the input

55
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data. Figure 6.1 illustrates the vessel model used by OFFPIPE.

Figure 6.1: Vessel model as used by OFFPIPE [11]

6.1.2. STINGER MODEL

The stinger is modelled as a rigid extension of the vessel, meaning its curvature and position is fixed
relative to the vessel. Its position or geometry does not change in response to pipe loads or other
forces acting on the stinger. The positions of the pipe supports are explicitly defined similar to how
the positions of the pipe supports and tensioners on the vessel are defined. In a static analysis its
position is completely determined by the position of the vessel. Figure 6.2 illustrates how the vessel
and stinger are modelled.

Figure 6.2: Modelling of stinger as rigid extension of the vessel [11]

6.1.3. PIPE SUPPORT MODEL

The pipe supports on the vessel and stinger are modelled as frictionless point supports. Each pipe
support consists of two sets of independent rollers, as shown in figure 5.22. One pair of rollers, re-
ferred to as the bottom rollers, is approximately horizontal and used primarily to support the weight
of the pipeline. The second set of rollers, referred to as the side rollers, are approximately vertical
and are primarily used to restrain the lateral or transverse displacements of the pipeline.

The angles of the rollers, the stiffness of the pipe support and the roller bed length are specified in
table 6.1. The height of the side rollers is assumed to be infinite and the pipeline is not permitted to
climb above or over the top of the side rollers.
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Table 6.1: Pipe support properties

Property value units

Vertical stiffness 70000 kN/m
Lateral stiffness 70000 kN/m
Bottom roller angle 30 deg
Side roller angle 0 deg
Side roller offset 1.35 m
Roller bed length 4.8 m

Each of the four rollers is modelled independently by OFFPIPE. The pipe support rollers are as-
sumed to be cylindrical. The pipe support reactions act in the direction that is mutually perpen-
dicular to the longitudinal axes of the pipeline and each support roller. The pipeline is free to lift
off the support when appropriate. The pipe support element is illustrated in figure 6.3. The calcu-
lated support reactions are assumed to be proportional to the deformation of the rollers and is given
by:

Rs = δs ·Ks (6.1)

Where
Rs is the support reaction
δs is the roller deformation
Ks is the roller stiffness

Figure 6.3: Pipe support model stiffness [11]

6.1.4. SEABED MODEL

In OFFPIPE the seabed is modelled as a continuous elastic-frictional foundation using a specially
constructed soil element. In pipelaying analyses, the seabed is assumed to be linearly elastic respect
to deformations in the vertical direction. In the parametric analyses, the seabed is taken as a flat
surface with a depth of 1000m. As the focus of these analyses is the overbend region, no further
detail is placed in the seabed modelling.

6.1.5. PIPE PROPERTIES

In the parametric analyses, the X65 material will be used unless noted otherwise. The X65 material
is frequently used for pipelines laid offshore. The characteristics of the X65 material are specified
in table 6.2. OFFPIPE defines the constant bending stiffness of the pipe elements with a non-linear
moment-curvature relation given by a Ramberg-Osgood equation, as explained in detail in section
4.4.2. This non-linear moment-curvature relation is dependent on the material properties and the
pipe geometry; the diameter and wall thickness.
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Table 6.2: Properties of X65 material

Property value units

SMYS 448 MPa
SMTS 530 MPa
Young’s modulus 207 GPa
Yield strain 0.005 -
Ultimate strain 0.220 -
Density 7850 kg/m3

6.2. ANALYSES

In this section the sensitivity of the z-value to certain parameters is analysed. Each subsection will
cover the model set-up for that specific analysis and the results that follow from it.

6.2.1. PIPE DIAMETER AND PIPE DIAMETER TO THICKNESS RATIO

MODEL SET-UP

The pipe diameter and its pipe diameter to thickness (D/t) ratio are one of the governing properties
for the pipelaying configuration. These properties are often specified by the client and depend on,
for example, the operational capacity of the pipe and the installation depth. As such, in most design
there is not a lot of freedom in modifying these variables to increase the level of displacement con-
trol. Nevertheless it is important to investigate the effect the properties of the pipeline have on the
level of displacement control.

As the local buckling checks given by DNV (equations 2.1 and 2.14) are only validated for D/t ratios
between 15 and 45, the pipelines modelled will also have D/t ratios in this range. Three D/t ratios are
selected for this analysis, D/t ratios of 15, 30, and 45. The pipe diameters chosen for this analysis are
15 inch, 30 inch, and 45 inch. These diameters lie within the range of regularly used dimensions for
offshore pipelaying. In total 9 combinations of diameter and D/t ratio are modelled for the nominal
pipe. For the weak link method, two additional variations in pipeline stiffness are created, bringing
the total number of pipeline models to 27. Table 6.3 shows the characteristics of all the pipeline
models.

The stinger model used in this analysis is a stinger with a stinger radius of 150m and a center-to-
center rollerbox spacing of 15m. With a rollerbox length of 4.8m, this means that globally one third
of the pipeline is supported on the stinger.

The naming of the pipeline models uses the following naming convention Dxx_Dty y_zzz. Where
xx indicates the pipeline diameter in inches, y y indicates the D/t ratio, and zzz indicates the pipeline
variation (098 for minus 2% stiffness, 102 for plus 2% stiffness).

The lay top tension is chosen such that the lift-off angle, and thus the global configuration on the
stinger, of the pipeline is kept similar between the various diameters and D/t ratios. The lift-off
angle is kept close to 65 degrees. The top tensions used are summarised in table 6.4.
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Table 6.3: Pipeline model properties

Name Diameter Wall thickness SMYS SMTS Ramberg-Osgood
i n mm MPa MPa A B

D15_Dt15_nominal 15 25.400 448 530 0.0975 10.9413
D15_Dt15_098 15 24.892 439.04 519.4 0.1060 10.8414
D15_Dt15_102 15 25.908 456.96 540.6 0.0906 11.0015
D15_Dt30_nominal 15 12.700 448 530 0.5215 7.3355
D15_Dt30_098 15 12.446 439.04 519.4 0.5900 7.1677
D15_Dt30_102 15 12.954 456.96 540.6 0.4629 7.5034
D15_Dt45_nominal 15 8.470 448 530 1.8735 6.0126
D15_Dt45_098 15 8.297 439.04 519.4 2.2550 5.9323
D15_Dt45_102 15 8.636 456.96 540.6 1.5763 6.0826
D30_Dt15_nominal 30 50.800 448 530 0.0453 12.7228
D30_Dt15_098 30 49.784 439.04 519.4 0.0465 12.7760
D30_Dt15_102 30 51.816 456.96 540.6 0.0439 12.6858
D30_Dt30_nominal 30 25.400 448 530 0.0720 12.5870
D30_Dt30_098 30 24.892 439.04 519.4 0.0747 12.5894
D30_Dt30_102 30 25.908 456.96 540.6 0.0693 12.6022
D30_Dt45_nominal 30 16.930 448 530 0.1007 12.0873
D30_Dt45_098 30 16.595 439.04 519.4 0.1053 12.0824
D30_Dt45_102 30 17.272 456.96 540.6 0.0954 12.1522
D45_Dt15_nominal 45 76.200 448 530 0.0432 12.8242
D45_Dt15_098 45 74.676 439.04 519.4 0.0443 12.8703
D45_Dt15_102 45 77.724 456.96 540.6 0.0420 12.7820
D45_Dt30_nominal 45 38.100 448 530 0.0619 12.9371
D45_Dt30_098 45 37.338 439.04 519.4 0.0633 12.9734
D45_Dt30_102 45 38.862 456.96 540.6 0.0603 12.9061
D45_Dt45_nominal 45 25.400 448 530 0.0727 12.9006
D45_Dt45_098 45 24.892 439.04 519.4 0.0749 12.9051
D45_Dt45_102 45 25.908 456.96 540.6 0.0713 12.8321
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Table 6.4: Top tensions for diameter and D/t ratio analyses

Diameter D/t ratio Top tension
i n − kN

15 15 3860
15 30 2000
15 45 1350
30 15 15450
30 30 8000
30 45 5390
45 15 32850
45 30 17000
45 45 11460

RESULTS

The z-values for each pipe support on the stinger are calculated using the weak link method as
described in chapter 4. The average z-values of the stinger are presented in figure 6.4. As can be
seen, for the larger diameter pipelines, 30 inch and 45 inch, the D/t ratio of the pipeline only has
a marginal effect on the level of displacement control in a specific stinger configuration. For the
smaller diameter pipe of 15 inch the D/t ratio has larger influence on the level of displacement
control. No clear correlation between the increase of D/t ratio and the increase or decrease of z-
value follows from this analysis. What is clear however, is the link between pipe diameter and z-
value. The larger the diameter is, the greater the level of partial displacement control. And thus,
generally speaking, a greater stiffness of the pipe leads to a greater degree of displacement control,
as also described by Williams, Williams, and Walker [22].
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Figure 6.4: Effect of pipe diameter and D/t ratio on z-value

6.2.2. STINGER RADIUS AND ROLLERBOX SPACING

MODEL SET-UP

The stinger shape limits the maximum bending the pipeline can experience in the overbend section.
The maximum global bending follows from the stinger radius. During pipelaying the stinger radius
is often kept close to constant if possible, but may vary along the stinger due to the stinger shape
or limits in configuration of the rollerboxes. For these analyses the stinger radius is constant. The
local maximum bending follows from the combination of stinger radius and rollerbox spacing. If the
pipeline is continuously supported, meaning a rollerbox spacing of 0, the local maximum bending
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will be equal to the global maximum bending. If the rollerboxes are spaced further apart, the local
maximum bending will be greater than the global maximum bending.

To study the effect of the stinger radius and the rollerbox spacing on the degree of displacement
control, several variations in stinger models are created. Stinger radii of 100m, 150m, and 250m are
combined with rollerbox center-to-center spacing of 10m, 15m, and 20m. The stinger models are
created using the method described in appendix C. These 9 combinations are then used in combi-
nation with three different pipe diameters of 15 inch, 30 inch, and 45 inch, all with a d/t ratio of 30.
The pipeline properties can be found in table 6.3.

RESULTS

The z-values for each pipe support are calculated using the weak link method. The average z-values
of the various stingers are calculated. The results of the total of 21 models are ordered by pipe
diameter and shown in figures 6.5, 6.6, and 6.7. As can be seen in the figures, the effect of rollerbox
spacing on the degree of displacement control is obvious. The entire discussion whether a stinger
should be considered displacement or load controlled stems from the fact that the stinger does
not continuously support the pipeline. The effect of the spacing on the z-value completely agrees
with the notion that less support of the stinger leads to less displacement control. What should be
noted is that even with a very large rollerbox spacing of 20m, larger than you would typically find
on real stingers, the situation is still not fully load controlled. For the larger diameter pipelines of
30 inch and 45 inch the situation is still closer to displacement control than load control in this
case. An increase in stinger radius has a negative effect on the level of displacement control. With
a larger stinger radius the pipe will experience less bending and lower moments. A possible cause
could be that other parameters, such as lay tension, have a greater effect on the bending along
the pipeline compared to the stinger radius for larger stinger radii than for smaller radii, and thus
the pipeline bending conforms less to the global maximum bending. The results also show that
the larger diameter, and thus larger stiffness, pipes are less influenced by changes in stinger radius
or rollerbox spacing. This indicates that stiffer pipelines are less susceptible to behave in a load
controlled fashion, regardless of the stinger configuration.
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Figure 6.5: Effect of stinger radius and rollerbox spacing on z-value. Pipe diameter: 15 inch, D/t ratio of 30
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Figure 6.6: Effect of stinger radius and rollerbox spacing on z-value. Pipe diameter: 30 inch, D/t ratio of 30
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Figure 6.7: Effect of stinger radius and rollerbox spacing on z-value. Pipe diameter: 45 inch, D/t ratio of 30

6.2.3. TENSION

MODEL SET-UP

The effect of lay tension on the level of displacement control for three different pipe diameters is
investigated in this section. The stinger used in these analyses has a 150m radius and 15m rollerbox
spacing. The pipes used in these models have diameters of 15 inch, 30 inch, and 45 inch, and all have
a D/t ratio of 30. The properties of these pipes can be found in table 6.3. The basecase top tensions
used are listed in table 6.4. For the 15 inch pipe a basecase tension of 2000kN is used. For the 30
inch pipe a basecase tension of 8000kN, and for the 45 inch pipe a basecase tension of 17000kN is
used. To investigate the effect of tension on the z-value, three additional analyses are done for each
pipe diameter where the basecase tension is increased with 1000kN for each analysis.

RESULTS

The z-values per node are computed with the weak link method. Next, the average z-value for the
stinger is calculated. Figures 6.8, 6.9, and 6.10 show the resulting average z-values versus the lay
tension. As can clearly be seen from figures 6.8 and 6.9 an increase in lay tension in the pipelaying
situation has a negative effect on the level of displacement control of the situation. However, the ef-
fect of the lay tension diminishes with increasing pipe diameter. For the largest diameter of 45 inch,
the effect of lay tension is almost negligible. This corresponds with the findings in the two previous
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parametric analyses that the larger the diameter of the pipe is, the less the level of displacement
control is influenced by the laying configuration. The consequence of the tension effect on the level
of displacement control is that when determining the level of displacement control of the stinger in
a dynamic pipelay analysis the highest top tension found should be considered governing.
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Figure 6.8: Effect of tension on z-value. Pipe diameter of 15 inch
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Figure 6.9: Effect of tension on z-value. Pipe diameter of 30 inch
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Figure 6.10: Effect of tension on z-value. Pipe diameter of 45 inch

6.2.4. ROLLERBOX LOAD

MODEL SET-UP

Finally, the effect of changes in the rollerbox load on the level of displacement control are studied.
A stinger with a radius of 150m and a rollerbox spacing of 15m is taken as the basis for this analy-
sis. The pipe used has a diameter of 15 inch and a D/t ratio of 30. The top tension used is 2000kN.
To increase the load on a single rollerbox, the location of a rollerbox in the middle of the stinger is
adjusted. The rollerbox is adjusted by moving it higher, normal to the stinger curve, as illustrated in
figure 6.11. This effectively decreases the local radius at the adjusted rollerbox while simultaneously
increasing the local radii of the two neighbouring rollerboxes. For the basecase no rollerbox is ad-
justed, for the two following analyses the middle rollerbox is moved by 200mm and 400mm, leading
to respectively a local radius of 120m and 100m.

Figure 6.11: Adjustment of rollerbox node on stinger

RESULTS

The resulting rollerbox loads along the stinger are shown in figure 6.12. As can be seen, for the unad-
justed basecase the rollerbox load is constant for the entire stinger. In the two following analyses the
height of rollerbox number 5 is increased. Adjusting one rollerbox height leads to increased loads
at this rollerbox and reduced loads at the neighbouring rollerboxes. The local bending of the pipe
at the adjusted rollerbox also increases with increasing rollerbox height. The calculated z-value per
rollerbox node is shown in figure 6.13. As can clearly be seen when comparing figure 6.13 to figure
6.12 the increase and decrease in z-value follows the same relation as the rollerbox loads. The in-
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crease of level of displacement control at a higher rollerbox, and thus higher strain, agrees with the
findings in section 6.2.2. There the level of displacement control is higher for smaller stinger radii,
and thus for higher strain levels.
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Figure 6.12: Effect of rollerbox height on rollerbox load
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Figure 6.13: Effect of rollerbox load on z-value

6.3. EFFECT ON LOCAL BUCKLING LIMITS

To illustrate the effect of the level of partial displacement control on the maximum allowable mo-
ment and strain values in a pipeline, the local buckling limits are calculated for a 30 inch pipeline
of X65 steel. As can be seen in figure 6.4, the z-values for a 30 inch pipeline in that specific situation
fall in a range between 0.70 and 0.80. For this example an average z-value of 0.75 is chosen. All
safety factors and installation conditions are taken as the same as in section 2.3.4 and can be found
in table 2.8.

The load controlled and displacement controlled buckling limits are calculated using equations
2.20, 2.21, and 2.22. The partially displacement controlled limit is then calculated using equation
4.4 and the method described in section 4.2.1. The resulting limiting functional moments (MF ),
curvatures (KF ), and strains (εF ) are summarised in table 6.5. The positions of the limits belong-
ing to the load controlled, displacement controlled, and partially displacement controlled buckling
checks on the normalised moment-curvature relation are shown in figure 6.14.
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Table 6.5: Local buckling limits for 30 inch pipe

D/t ratio MF KF εF

− kN m m−1 −
15 load control 7641 0.005 0.0020

displacement control 12496 0.045 0.0171
partial displacement control 12197 0.035 0.0132

22 load control 5375 0.005 0.0019
displacement control 8536 0.028 0.0107
partial displacement control 8327 0.022 0.0085

30 load control 4013 0.005 0.0018
displacement control 6214 0.019 0.0072
partial displacement control 6033 0.015 0.0058

45 load control 2563 0.005 0.0017
displacement control 3721 0.010 0.0037
partial displacement control 3580 0.008 0.0032
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Figure 6.14: Local buckling limits for various D/t ratios

The limiting functional moments for the partially displacement controlled condition with a z-value
of 0.75 are combined with the local buckling limits of figure 2.5 and are shown in figure 6.15 to
illustrate the shift in allowable functional moment from a displacement controlled condition to a
partially displacement controlled condition.
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Figure 6.15: Maximum allowable moments per buckling check

Finally, the partial displacement control factor γpdc per D/t ratio is calculated using equation 4.6.
The resulting partial displacement factors are shown in figure 6.16.
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Figure 6.16: Partial displacement control factor per D/t ratio

As can be seen in figure 6.15, even with a level of displacement control of 75%, the allowable func-
tional moment is only slightly lower than the limiting moments for a fully displacement controlled
condition. Furthermore, the use of the weak link method and its case specific determination of the
level of displacement control allows for a higher utilisation of the pipeline than the non-case spe-
cific method of dealing with partially displacement controlled conditions using the load controlled
buckling check with a γc of 0.8.

6.4. CHAPTER CONCLUSIONS

The effect of several pipelaying parameters on the level of displacement control have been investi-
gated. The findings in this chapter will allow an engineer in the design phase of a S-lay project to
influence the level of displacement control when necessary. The effect of the pipe diameter on the
z-value is clear. The larger the diameter of the pipe, the greater the level of displacement control of
the situation is. Unfortunately no clear correlation between the D/t ratio and the z-value has been
found, further study with more diameters and D/t ratios is needed to get a clear picture of their re-
lations to the z-value. Variations in the stinger configuration have been investigated. As expected
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the spacing of the rollerboxes, and thus how often the stinger supports the pipe, is of great impact
on the level of displacement control. With longer free spanning pipe sections in between the roller-
boxes, the condition tends to move towards a more load controlled situation. The global radius of
the stinger, and thus also the global strain levels, appear to have an influence on the z-value. The
situation becomes more displacement controlled when the global strains are higher. This finding
is also confirmed by the effect of the rollerbox loads on the z-value. A local increase in strain also
increases the level of displacement control locally. This is positive, because a situation with high
strains is often also the situation where the buckling checks tend to become more critical. Finally,
the effect of tension on the z-value and its implications for dynamic analyses is studied. Higher
tensions lead to lower degrees of displacement control.



7
CONCLUSIONS AND RECOMMENDATIONS

At the beginning of this project the following goal was set:

To develop a method to determine the project specific level of partial displacement control,
and to apply this percentage to the current DNV load controlled and displacement con-
trolled formulations such that it can be used for future projects.

To achieve this goal, a method for determining the level of displacement control and modification
of the displacement controlled buckling check formulation is proposed. Subsequently the method
is validated and a parametric study is performed. In this chapter will be reflected on the goal set by
providing the conclusions in section 7.1 and recommendations in section 7.2.

7.1. CONCLUSIONS

At the start of this project three research questions were defined to achieve the project goal. These
three questions will be revisited in this section along with the findings of this research.

The first question is how the level of displacement control in the stinger overbend situation can
be determined. In this report a method for determining the level of displacement control using
pipe stiffness variations in the stinger overbend is proposed. This method is based on a method
for determining the level of displacement control in the sagbend region and is modified to allow its
application in the overbend region. A first step towards validation of the proposed method through
detailed FEM analyses has been taken with satisfactory results. Three detailed shell element models
are created for a load controlled, displacement controlled, and partially displacement controlled
situation. The onset of buckling for all three situations is determined. The partially displacement
controlled situation is recreated using a beam element model and the weak link method is applied.
The level of displacement control calculated with the weak link method is within a 2% difference
to the ratio of the onset of buckling in the partially displacement controlled shell element model to
the onsets of buckling in the load controlled and displacement controlled shell element models. In
conclusion, the use of the proposed weak link method shows potential and allows the calculation
of the level of displacement control using less detailed beam element models and with reduced
computational time.

The second research question is how the calculated level of displacement control can be imple-
mented in a local buckling check. In this thesis an approach to translate the calculated level of
displacement control to a usable buckling check equation is given. Using this approach the z-value
is converted to a new factor, γpdc , to be implemented in the displacement control buckling check.

69
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By using the original displacement control buckling check as the basis for the new partial displace-
ment control buckling check, the LRFD philosophy of DNV and the matching safety factors are kept
constant. Example calculations show the resulting γpdc for a partially displacement controlled con-
dition. Furthermore, the calculations show the increase in utilisation this method provides com-
pared to the non-case specific method for accounting the partially displacement controlled condi-
tion using a load controlled local buckling check with a γc of 0.8, illustrating that calculating the
case specific partially displacement controlled conditions can allow for a more optimised pipeline
design.

The final research question of the thesis is how the level of displacement control is influenced by
the pipe and stinger configuration. Different modifications were made to the pipe properties and
the stinger configuration and their effect on the level of displacement control was studied using
the proposed approach. The studied variants consist of change in stinger radius; change in roller-
box spacing; change in pipe diameter; change in pipe diameter to wall thickness ratio; change in
tension and change in rollerbox load. The variants were studied by analysing the average level of
displacement control on the stinger for each situation. Of greatest influence on the level of dis-
placement control are the pipe diameter and the spacing of the rollerboxes. Larger diameter pipes
behave in a more displacement controlled fashion compared to pipes with a smalled diameter. The
degree of displacement control of pipes with a large diameter is also less sensitive to changes in
the pipelaying configuration compared to smaller diameter pipes. The spacing of the rollerboxes
greatly affects the amount of displacement control in the situation. As expected, increasing the free
span of the pipe in between rollerboxes leads to a reduction in displacement control. The amount of
strain the pipeline experiences also appears to influence the degree of partial displacement control,
albeit to a lesser extent. The increase of tension has a negative effect on the level of displacement
control. The implication of this is that for dynamic analyses the highest expected tension should be
considered governing in the computation of the degree of partial displacement control.

In conclusion, the research done for this thesis provides an engineering approach to determine
the partial displacement conditions in the S-lay configuration as well as an understanding of the
influence of various pipelaying variables on the partial displacement condition.

7.2. RECOMMENDATIONS

Although this project gives more insight on the partially displacement controlled conditions in the
overbend, further work could increase its understanding. The scope of the research done in this
project was limited. The following topics are considered as interesting and valuable for further in-
vestigation.

Validation of weak link method in combination with smaller diameter pipelines: First steps have
been taken to validate the proposed method in combination with the large diameter, thin walled
Nord Stream pipeline. To further validate and prove the robustness of the proposed method a vali-
dation with smaller diameter, thicker walled pipeline is suggested. The pipeline used in the Rota 3
project, which is 24 inch diameter with a wall thickness of 28.2mm, would be a good candidate for
this analysis. Care has to be taken in defining the onset of local buckling in these analyses. In con-
trast to the local buckling in thin walled pipes where denting of the pipeline can be observed, the
local buckling in thick walled pipelines happens more gradually over a longer section of pipeline.
Strict criteria to determine the start of local buckling must be defined to correctly determine the
local buckling limits in these analyses.
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Partially displacement controlled behaviour of concrete coated pipe: Large diameter pipelines are
often concrete coated to increase the weight of the pipe to combat the buoyancy and add stability
on the seabed. Due to the difference in bending stiffness between the concrete coated pipe and the
field joint coated pipe, stress and strain concentrations will occur at the location of the field joint.
It is recommended to investigate the effect of these stress and strain concentrations on the level of
displacement control. It is likely that for such a pipe the location of the field joint relative to the
rollerbox is of importance, and thus resulting in fluctuating z-values as the pipeline travels over the
stinger. it is suggested to start this research by creating detailed FE models of the concrete coated
and field joint coated pipe sections over a detailed stinger model in a software like Abaqus. When the
effect of concrete coating on the partially displacement controlled condition is understood, steps
can be taken to implement these findings in a beam element FE package such as OFFWIN.

Effect of local disturbances on level of displacement control: In most pipelaying projects not only
regular pipelines are installed, but also inline structures. Some of these structures can be installed
with the S-lay method. Often the structures are too complex too allow the use of the relatively sim-
ple DNV buckling checks and require more detailed analysis. However, the inline structures have
an effect on the connected pipe sections. As the inline structures are much stiffer than a regular
pipe section, the pipeline configuration when the inline structure passes the stinger is changed. To
understand the impact this has on the degree of partial displacement control of the pipeline fur-
ther study on this topic is recommended. It is expected that each time the inline structure passes
over a rollerbox the level of displacement control of the neighbouring pipeline sections is drastically
changed. Similar to the study on the effect of concrete coated pipe on the level of displacement con-
trol, it is suggested to first create detailed FE models in a software package such as Abaqus before
attempting to translate the findings to a simpler software such as OFFPIPE.

Further parametric studies: The parametric studies performed for this thesis research have found
several relations between parameters and computed levels of displacement control. Unfortunately
the exact relation of some parameters, such as the D/t ratio, to the calculated z-values have not
been found. For full understanding of the partial displacement conditions, further studies are rec-
ommended.

Applying the proposed method to an existing project: Now that the first steps to validate the pro-
posed method have been taken with satisfactory results and the effect of various pipelaying param-
eters on the level of displacement control have been studied, it would be interesting, especially for
Allseas, to apply the proposed method to one of the existing projects to study how the design of the
pipeline would have changed. Considering that the first steps of validation of the method have been
performed on Nord Stream pipeline, the Nord Stream project would make a logical first candidate
for this study. The Nord Stream project has been designed with displacement controlled local buck-
ling checks, as such applying the proposed method to this project will lead to a loss in workability.
Therefore it would be interesting to compare this loss in workability to the loss in workability that
would occur if the project was forced to account for the partially displacement controlled conditions
using the load controlled buckling check with a γc of 0.8. With this study the time and financial im-
pact of the proposed method can also be investigated.
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A
CURVE LENGTH

If a curve in R2 is defined by the equation y = f (x), and f is continuously differentiable the curve
length is given by:

s =
∫ b

a

√
1+

(
d y

d x

)2

d x (A.1)

The Ramberg-Osgood equation for the moment-curvature relationship is given by:

K

Ky
= M

My
+ A ·

(
M

My

)B

(A.2)

If K
Ky

= y and M
My

= x then the equation looks as follows:

y = x + A · xB (A.3)

leading to:

d y

d x
= 1+ A ·B · x(B−1) (A.4)

Substituting equation A.4 in equation A.1 we get:

s =
∫ b

a

√
1+ (

1+ A ·B · x(B−1)
)2d x (A.5)

Finally, substituting x = M
My

in equation A.5 gives:

s =
∫ b

a

√√√√1+
(

1+ A ·B ·
(

M

My

)(B−1)
)2

d
M

My
(A.6)
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B
RAMBERG-OSGOOD CURVE FIT OF

MOMENT-CURVATURE

If the moment-curvature relation is known but needs to be expressed in a Ramberg-Osgood relation
for OFFWIN the following method can be used. OFFWIN uses the normalised moment-curvature
relation in its calculations. Thus the known moment-curvature relation must first be normalised.
The general form of the Ramberg-Osgood moment-curvature relation used in OFFWIN is:

K ∗ = M∗+ A
(
M∗)B (B.1)

with:

K ∗ = K

Ky
(B.2)

M∗ = M

My
(B.3)

My =
2 ·σy · Ic

D
(B.4)

Ky =
2 ·σy

E ·D
(B.5)

Ic = π

64

(
D4 − (D −2 · t )4) (B.6)
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78 B. RAMBERG-OSGOOD CURVE FIT OF MOMENT-CURVATURE

Where: K ∗ is the normalised curvature
Ky is the yield curvature of the pipe
M∗ is the normalised bending moment
My is the yield moment of the main pipe
Ic is the pipe inertia
A is the Ramberg-Osgood coefficient
B is the Ramberg-Osgood exponent
D is the pipe steel outside diameter
t is the pipe steel wall thickness

The Ramberg-Osgood coefficient and exponent are calculated using curve-fitting with the following
equations [23]:

B =
− log

(
K ∗

2 −M∗
2

K ∗
1 −M∗

1

)
log

(
M∗

1
M∗

2

) (B.7)

A = (
K ∗

1 −M∗
1

)(
M∗

1

)−B (B.8)(
K ∗

1 , M∗
1

)
and

(
K ∗

2 , M∗
2

)
are two points on the normalised moment-curvature curve. Figure B.1 shows

two possible places for the sample locations.
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Figure B.1: Locations for the Ramberg-Osgood curve fit



C
STINGER COMPUTATION

In OFFPIPE the locations of the pipe supports on the vessel and stinger are explicitly defined by
their coordinates and angle. For the analyses in the parametric study, “perfect” stingers are used.
Meaning that they have a constant radius and consistent spacing between the rollerboxes. This
section will explain how the coordinates and angles of the rollerboxes are computed.

All coordinates of the pipe supports are defined in the local vessel coordinate system. In OFFPIPE it
is standard practice to place the origin of the vessel coordinate system at the stern of the vessel, as
shown in figure C.1.

Figure C.1: Vessel coordinate system [11]

The input for the stinger coordinates calculation are the global stinger radius, the rollerbox spacing,
and the coordinates for the start of the stinger. Before the pipeline moves over the stinger, it moves
over the firing line. This is modelled as a straight and horizontal region with pipe supports and a
tensioner at the beginning. The last pipe support of the firing line is taken as the start of the stinger.
The x-coordinates, y-coordinates, and angle of the pipe support are computed with the following
equations:

xn =−sin

(
n · d

R

)
·R +x0 (C.1)

yn = cos

(
n · d

R

)
·R + y0 −R (C.2)

αn = 1

2
π−n · d

R
(C.3)
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80 C. STINGER COMPUTATION

Where: R is the global stinger radius
d is the distance between two rollerboxes
x0 and y0 are the coordinates of the start of the stinger
n indicates the rollerbox number after the start of the stinger
αn is the rollerbox rotation at the nth rollerbox
xn and yn are the coordinates at the nth rollerbox

OFFPIPE requires the rollerbox angle input to be in degrees, soαn should be translated from radians
to degrees.



D
MATLAB CODE

clear;
clc;
dbstop if error;

dinfo = dir('*. out ');

%% Load Offpipe input

for N = 1 : length (dinfo)
thisfilename = dinfo(N).name;
fid = fopen( thisfilename );
tline = fgetl(fid);
[k1 ,k2 ,k3 ,k4 ,k5 ,k6 ,k7] = deal (1);

while ischar (tline)
colonLocation = strfind (tline , 'STEEL MODULUS OF ELASTICITY

....... ');
if ~ isempty ( colonLocation )
subString = tline (40:50) ;
modulus (N,k1) = str2double ( subString );
k1 = k1 + 1;
end
colonLocation = strfind (tline , 'STEEL OUTSIDE DIAMETER

............ ');
if ~ isempty ( colonLocation )
subString = tline (40:50) ;
OD(N,k2) = str2double ( subString );
k2 = k2 + 1;
end
colonLocation = strfind (tline , 'STEEL WALL THICKNESS

.............. ');
if ~ isempty ( colonLocation )
subString = tline (40:50) ;
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WT(N,k3) = str2double ( subString );
k3 = k3 + 1;
end
colonLocation = strfind (tline , 'YIELD STRESS

...................... ');
if ~ isempty ( colonLocation )
subString = tline (40:50) ;
YS(N,k4) = str2double ( subString );
k4 = k4 + 1;
end
colonLocation = strfind (tline , 'RAMBERG - OSGOOD COEFFICIENT

........ ');
if ~ isempty ( colonLocation )
subString = tline (40:49) ;
RC(N,k5) = str2double ( subString );
k5 = k5 + 1;
end
colonLocation = strfind (tline , 'RAMBERG - OSGOOD EXPONENT

........... ');
if ~ isempty ( colonLocation )
subString = tline (40:49) ;
ROE(N,k6) = str2double ( subString );
k6 = k6 + 1;
end
colonLocation = strfind (tline , 'PIPE SECTION LENGTH

............... ');
if ~ isempty ( colonLocation )
subString = tline (40:50) ;
SectionL (N,k7) = str2double ( subString );
k7 = k7 + 1;
end
tline = fgetl(fid);
end
fclose (fid);
end

%% Load Offpipe results

for N = 1 : length (dinfo)
thisfilename = dinfo(N).name;
fid = fopen( thisfilename );
linenumber = 1;
k = 1;
outputtog = [];
while ~feof(fid)
tline = fgetl(fid);
compare = strcmp (tline ,' NODE PIPE X Y

VERT PIPE SUPPORT SEPARA AXIAL BENDING
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TENSILE BENDING TOTAL PERCNT ');
if compare
linecmppos (N,k) = linenumber ;
k = k + 1;
end
linenumber = linenumber + 1;
end
fclose (fid);
for n = 1:k -1;
fid = fopen( thisfilename );
outputpart = cell2mat ( textscan (fid ,'%f %*s %f %f %f %f %f %f %f

%f %f %f %f %f','headerlines ',linecmppos (N,n)+3));
outputtog = vertcat (outputtog , outputpart );
fclose (fid);
end
output {N} = outputtog ;
end
clear k

%% Analysis part

Node = 32; %Node number for analysis
WL = 1; %Weak link section number

stinger_radius = 90;
stinger_K = 1/ stinger_radius ;
stinger_eps = (0.4572/2) / stinger_radius ;

Ic = pi /4*(( OD /2) .^4 -( OD/2-WT).^4) /10^8;
Ky = 2*YS ./( modulus .*OD) *100;
My = 2*Ic.*YS./OD *10^5;
%%
MMy = 0:0.00001:1.6;
for k = 1: size(RC ,1);
KKy(k ,:) = MMy + RC(k,WL)*MMy .^ ROE(k,WL);
end
%%
K = bsxfun (@ times ,KKy ,Ky(:,WL));
M = bsxfun (@ times ,MMy ,My(:,WL));

% pre - allocating for speed
BM = zeros( length ( output {1}) ,length ( output ));
BK = zeros( length ( output {1}) ,length ( output ));
Kalc = zeros( length ( output {1}) ,length ( output ));
Madc = zeros( length ( output {1}) ,length ( output ));
Lw = zeros( length ( output {1}) ,length ( output ));
Ldc = zeros( length ( output {1}) ,length ( output ));

for n = 1: length ( output );
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for N = 1: length ( output {n});
BM(N,n) = abs( output {n}(N ,9));
BK(N,n) = (BM(N,n) './My(n,WL) + RC(n,WL).*( BM(N,n) './My(n,WL)).^

ROE(n,WL)).*Ky(n,WL);
Kalc(N,n) = (BM(N ,1) './My(n,WL) + RC(n,WL).*( BM(N ,1) './My(n,WL))

.^ ROE(n,WL)).*Ky(n,WL);

error = 1;
error_prev = 1;
M_find = 0;
step = 100;
%steps = 0;
while abs(error) > 0.000000001
K_find = ( M_find /My(n,WL) + RC(n,WL)*( M_find /My(n,WL))^ROE(n,WL)

)*Ky(n,WL);
error = BK(N ,1) - K_find ;
Madc(N,n) = M_find ;
if sign(error)*sign( error_prev ) <0
step = step /2;
end
if error >0
M_find = M_find + step;
else
M_find = M_find - step;
end
error_prev = error;
end

ROc{n ,1} = @( MMyc) sqrt (1+(1+ RC(n,WL).* ROE(n,WL).* MMyc .^( ROE(n,
WL) -1)).^2);

Lw(N,n) = integral (ROc{n},BM(N,n)./My(n,WL),BM(N ,1) ./My(n,WL));
Ldc(N,n) = integral (ROc{n},Madc(N,n)./My(n,WL),BM(N ,1) ./My(n,WL)

);
end
end

z = Lw./ Ldc;

%% Visualising results

sections = [-2 2]; % Percentage variations in pipe stifness
stinger_start_node = 21;
stinger_end_node = 82;

for n = 1: length ( output );
stinger_start = find( output {n}(: ,1) == stinger_start_node );
stinger_end = find( output {n}(: ,1) == stinger_end_node );
end
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n = 1;
for k = stinger_start : stinger_end ;
if ~any(isnan(z(k ,:))) && output {1}(k ,6) > 0
z_nominal (n) = interp1 (sections ,z(k ,2: end) ,0,'spline ');
nodes(n) = output {1}(k ,1);
n = n+1;
end
end

figure ('Name ','z-value per node ')
hold on
plot(nodes , z_nominal );
title('z- value per node ')
xlabel ('Node number [-]')
ylabel ('z-value [-]')
ylim ([0 1])
hold off
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