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ABSTRACT

In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is sys-

tematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds

modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may

differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with

different frequencies and amplitudes and study the response of the boundary layer in terms of transfer

functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used;

the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs

generally quite well for slow changes in the surface heat flux and provides analytical understanding of the

transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface

fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to

account for the time it takes for the information to travel from the surface to higher levels of the boundary

layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional

convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the

issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux

and its history.

1. Introduction

Real planetary boundary layers (PBLs) are often in a

state of transition, adapting to changing boundary con-

ditions or large-scale forcings. Examples are sunset and

sunrise, modulation of solar irradiance by clouds, and

large-scale advection of air with different properties.

Knowledge of the behavior of transitional atmospheric

boundary layers is therefore as relevant as knowledge

about their steady-state counterparts.

A number of observational and modeling studies have

addressed the morning transition (e.g., Angevine et al.

2001; Lapworth 2006; Beare 2008) and the evening

transition (e.g., Mahrt 1981; Acevedo and Fitzjarrald

2001; Lapworth 2003; Beare et al. 2006; Grant 1997).

Apart from the early and late evening transitions, it is

useful to also distinguish the so-called late afternoon

transition (e.g., Pino et al. 2010; Sorbjan 2007) during which

the surface heat flux is declining but is still nonnegative.

This situation of decaying convective turbulence was

studied by Nieuwstadt and Brost (1986) using a large-

eddy simulation (LES) model. Treating the transition in

a simple way by abruptly switching of the surface heat

flux, they found the turbulence kinetic energy to decay

according to a power law k ; t2n, with n close to 1.2. Pino

et al. (2006) extended this work by studying the influence

of wind shear during the convective decay. In addition

they analyzed the characteristic length scales of the velocity

fields during the decay and showed that the characteristic

length scale of horizontal length scales significantly in-

creases during the transition, as opposed to the typical

length scale of the vertical velocity, which remains bounded

by the boundary layer depth. The increasing length scales

were shown to be responsible for the relatively slow decay

already observed by Nieuwstadt and Brost (1986)—that

is, the fact that the exponent n in the decay law k ; t2n is

close to 1 rather than 2, where the latter value is to be

expected if the dominant length scales were confined to

the PBL depth.

Instead of an abrupt change in the surface heat flux,

Sorbjan (1997) considered the more common situation

of a gradually decreasing surface flux following a cosine

shape and pointed out that this has a pronounced impact
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on the decay law and also that the convective velocity

scale based on the actual surface flux was a poor pre-

dictor of the actual velocity variances and turbulence

kinetic energy. This scaling issue has also been ad-

dressed in a study of observations during a full diurnal

cycle (Kumar et al. 2006). In addition, there have been

studies on the effects of a solar eclipse (Dolas et al. 2002;

Girard-Ardhuin et al. 2003) and also the turbulence

decay during an eclipse (Anfossi et al. 2004). A theo-

retical approach was conducted by Goulart et al. (2003).

The problem of scaling during the diurnal cycle and

especially the sunset phase forms the motivation of this

research. We focus on the response of a convective

boundary layer to changes in the surface heat flux. This

is relevant not only during sunrise and sunset but also

when, for example, clouds disturb the incoming solar

radiation. But because the time scale of the associated

change in surface heat fluxes may differ from case to

case—sunrise/sunset rate, for example, is latitude and

season dependent, and modulation of sunlight by clouds

can occur on a variety of time scales—we consider below

the generic situation of oscillatory surface heat fluxes

with different frequencies and amplitudes and study the

response of the boundary layer characteristics, in par-

ticular PBL depth and inversion strength, in terms of

transfer functions (amplitude and phase difference). We

employ both a large-eddy simulation and a mixed layer

model (MLM) (e.g., Tennekes 1973; Vilà-Guerau de

Arellano et al. 2004); the LES is used to evaluate the

predictive quality of the mixed layer model, whereas the

mixed layer model helps to provide fundamental insight

into the characteristics of the boundary layer system.

2. Case and model description

a. Case description

We consider a dry convective boundary layer in ab-

sence of mean wind and Coriolis force (e.g., Jonker et al.

1999). The free atmosphere is stably stratified with lapse

rate G. Turbulence is driven by a positive surface heat

flux fs, initially taken as constant (5f0), which causes

a well-mixed layer that deepens by entrainment. This

growth is counteracted by the presence of subsidence ws,

which for simplicity is taken as constant with height, ex-

cept for the lowest part of the PBL. To ensure a steady

situation in the overlaying layer (free troposphere), we

have also introduced a constant radiative cooling term R:

R 5 w
s
G. (1)

The profiles of (initial) potential temperature, sub-

sidence and radiation are shown in Fig. 1. Other settings

are listed in Table 1. The LES model employed here is

the Dutch Atmospheric Large-Eddy Simulation (DALES)

model described in detail in Heus et al. (2010).

b. Mixed layer model for stationary fluxes

The graphical interpretation of the case within the

context of a mixed layer model is shown in Fig. 2. Taking

subsidence and radiative cooling into account, we arrive

at the following equations for the mixed layer model:

›u

›t
5

f
s
� f

e

z
i

� R, (2)

›D

›t
5 Gw

e
� ›u

›t
� R, and (3)

›z
i

›t
5 w

e
� w

s
, (4)

where fe is the entrainment flux, we is the entrainment

velocity, and R is the radiative forcing in the mixed layer

and the free atmosphere. Note our convention to define

ws as positive while incorporating it with a minus sign

in Eq. (4) to account for the downward motion that it

FIG. 1. Vertical profiles used in the LES: (left) initial potential

temperature, (middle) subsidence, and (right) radiative cooling

terms.

TABLE 1. LES and MLM settings.

Domain size (Lx 3 Ly 3 Lz) 5120 3 5120 3 1920 m3

Grid size (dx 3 dy 3 dz) 40 3 40 3 20 m3

No. of grid points 128 3 128 3 96

Lapse rate (G) 0.005 K m21

Subsidence (ws) 0.015 m s21

Surface heat flux (steady; f0) 0.06 K m s21

Initial inversion height (zi0) 1000 m

Initial inversion strength (D0) 1.0 K
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represents. The same convention is used for the radia-

tive cooling tendency. Using a zero-order model (Lilly

1968), the entrainment flux can be expressed in terms of

the entrainment velocity and inversion strength D:

f
e
5�w

e
D. (5)

To close the model, the entrainment flux is assumed to

be a constant fraction of the surface flux (e.g., Ball 1960;

Tennekes 1973):

f
e
5�Af

s
, (6)

where A is the entrainment ratio with a typical value of

0.2–0.3. This results in a system governed by the fol-

lowing equations:

›D

›t
5

Af
s
G

D
�

(1 1 A)f
s

z
i

5 f (D, z
i
, f

s
) and (7)

›z
i

›t
5

Af
s

D
� w

s
5 g(D, z

i
, f

s
). (8)

c. Fixed points and stability in the case of a
stationary heat flux

With a uniform (i.e., height independent) subsidence

profile, it is a priori unclear whether in general a steady

state can be reached. This question can be conveniently

addressed by analyzing the mixed layer model equations

(i.e., by finding the fixed points and classifying their

stability). In addition, this provides information on the

inherent time scales of the system. Assuming a station-

ary fs 5 f0, the fixed points of the system (7) and (8) can

be determined by setting ›D/›t 5 ›zi/›t 5 0. This results

in only one fixed-point solution (D0, zi0):

D
0

5
Af

0

w
s

and

z
i0

5
(1 1 A)f

0

Gw
s

. (9)

We note in passing that these values together with Eq.

(1) imply also that ›u/›t 5 0.

The local stability of the fixed point can be studied by

perturbing it slightly:

D(t) 5 D
0

1 D9(t) with D9 � D
0
, and

z
i
(t) 5 z

i0
1 z9

i
(t) with z9

i
� z

i0
. (10)

Neglecting higher-order terms of the perturbations, one

arrives at the following form:

›

›t

D9

z9
i

� �
5 J(D9

0
, z

i0
)

D9

z9
i

� �
, (11)

where J is the Jacobian

J 5

›f

›D

› f

›z
i

›g

›D

›g

›z
i

0
BB@

1
CCA (12)

and J(D0, zi0) denotes the Jacobian in the fixed point,

which is given by

J(D
0
, z

i0
) 5

�w2
s G

Af
0

G2w2
s

(1 1 A)f
0

� w2
s

Af
0

0

0
BBB@

1
CCCA. (13)

The eigenvalues of the Jacobian, which reveal the sta-

bility of the fixed point, are found to be

l
1,2

5�1 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 3A)/(1 1 A)

p
2A

Gw2
s

f
0

. (14)

Clearly the real parts of the eigenvalues are always

negative, which implies that the fixed point is un-

conditionally stable. The eigenvalues are complex val-

ued when A . 1/3, indicative of (damped) oscillatory

behavior. The eigenvalues also give insight into the in-

herent time scales of the system. When 0 , A , 1/3 there

FIG. 2. The mixed layer model setup in this research: (left) the

vertical profile of the potential temperature and (right) the vertical

profile of the turbulent heat flux.
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are two time scales given by the negative reciprocal

value of the eigenvalues:

t6 5
2A

1 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 3A)/(1 1 A)

p f
0

Gw2
s

. (15)

When 1/3 # A , 1 the eigenvalues are complex valued

and the response time scale follows from the real part:

t 5
2Af

0

Gw2
s

. (16)

d. Fixed points and stability in the case of a
nonstationary heat flux

Similar calculations can be performed for the case of

a nonstationary surface heat flux fs(t) 5 f0 1 f9(t) when

we assume that amplitude of the fluctuations are small.

The fixed point of the system is the same as in the case of

a stationary flux (9), but the (linearized) perturbed sys-

tem now reads

›

›t

D9

z9
i

� �
5 J(D

0
, z

i0
, f

0
)

D9

z9
i

� �
1

› f

›f
s

›g

›f
s

0
BB@

1
CCAf9, (17)

where J(D0, zi0, f0) is again the Jacobian in the fixed

point. The driver of the system is f9; D9 and z9i respond to

this driver. Taking

f9 5 f̂eiwt,

D9 5 D̂eiwt,

z9
i
5 ẑ

i
eiwt, (18)

the system (17) becomes

iv
D̂

ẑ
i

 !
5 J(D

0
, z

i0
, f

0
)

D̂

ẑ
i

 !
1

0

w
s

f
0

0
@

1
Af̂. (19)

This can be written as

D̂

ẑ
i

 !
5 ivI� J(D

0
, z

i0
, f

0
)

� ��1
1

0

w
s

f
0

0
@

1
Af̂, (20)

where I is the unit matrix. Solving Eq. (20) gives the

responses D̂ and ẑ
i

as a function of v:

D̂ 5
w3

s G2Af̂

f2
0v2A(1 1 A)� G2w4

s � if
0
vGw2

s (1 1 A)
and

(21)

ẑ
i
5

w
s
(ivAf

0
1 Gw2

s )(1 1 A)f̂

f2
0v2A(1 1 A)� G2w4

s � if
0
vGw2

s (1 1 A)
. (22)

Without loss of generality we can set f̂ 5 1. Furthermore,

it is convenient to express the response ẑi in an amplitude

Z(v) 5 jẑij and phase difference C(v):

ẑ
i
5 Z(v)e iC(v). (23)

We emphasize that the above expressions for the re-

sponse of the mixed layer to nonstationary fluxes are

derived for very small fluctuations around the basic

state. Since the original system is nonlinear, one cannot

directly generalize this behavior for larger-amplitude

variations. In the next section both the LES and the

mixed layer model will be subjected to finite surface flux

variations of the form

f
s
(t) 5 f

0
1 a sin(vt) 5 f

0
1 a sin

2p

T
t

� �
, (24)

where a is the amplitude, v is the frequency of the sur-

face heat flux, T is the period of the surface heat flux, and

f0 is the average surface heat flux; a will be taken as large

as f0. The resulting response of the PBL will be com-

pared to the predictions of the linearized response (22).

3. Results

a. LES and the standard mixed layer model

Figure 3 shows an example of a periodically oscillating

heat flux using Eq. (24) with a 5 f0 and T 5 4 h; below

we have shown the evolution of zi as simulated with the

LES, where zi was determined by locating the maximum

gradient1 in the mean profile of u (Sullivan et al. 1998).

One can notice a significant delay tL ’ 1 h between zi

and fs, which expressed in terms of C reads

t
L

5
CT

2p
, (25)

showing that the corresponding phase difference amounts

to C ’ p/2. We will study the phase lag as well as the

amplitude of the response in more detail below, but first

we show the mean profiles of the LES at different stages

in Fig. 4. These are so-called phase-conditioned

1 An alternative for determining zi is to locate the height of the

minimum buoyancy flux, but this method proved to be rather

cumbersome for varying surface buoyancy fluxes, mainly because

the buoyancy flux profiles no longer display the universal (linear)

shape (e.g., Sorbjan 1997).
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averages, or phase averages for short, and are obtained

by conditionally averaging the profiles based on the

phase of the surface heat flux (i.e., by averaging the

profiles every time when the phase of the surface heat

flux has a specific value). The advantage of phase-aver-

aged profiles over instantaneous profiles is that one can

exploit the periodicity of the system and run the simu-

lation for a very long time, covering many periods, so as

to collect a large number of samples. This greatly aids the

statistical quality of the averages without losing infor-

mation on the nonstationary aspects of the data.

The top left graph in Fig. 4 shows the potential tem-

perature. One can see that the inversion height and the

mixed layer temperature change with the phase of the

surface heat flux. The top middle graph shows the buoy-

ancy flux; the solid gray and solid black lines correspond

to the same instantaneous surface heat flux but reveal

a different minimum buoyancy flux. The bottom row

shows the vertical velocity variance and temperature

variance, which also clearly show the time lag in the

system; without history effects, the solid gray and black

lines would be on top of each other.

On the basis of the heat flux profile of a constant heat

flux simulation [fs(t) 5 f0] we have estimated the value

of A, which we determined by extrapolating the linear

part of the flux observed at z , 2zi/3 to the inversion

height zi. A value of A ’ 0.34 was found in this way and

was subsequently used in the mixed layer model. This

FIG. 3. (top) Example of a nonstationary surface heat flux os-

cillating with T 5 4 h. (middle) Time series of the inversion height

as simulated by the LES with an indication of the time lag tL and

amplitude of transfer Z(v). (bottom) Time series of zi as resulting

from the mixed layer model (7) and (8).

FIG. 4. Phase-conditioned averages of LES data for a nonstationary surface heat flux oscil-

lating with T 5 4 h. (top left) Potential temperature u, (top middle) buoyancy flux w9u9, var-

iance profiles (bottom left) w92 and (bottom middle) u92, and (bottom right) the phase of the

surface heat flux fs.
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value for the entrainment ratio may seem somewhat

high (e.g., Fedorovich et al. 2004). This is largely due to

the method of extrapolating the heat flux to the in-

version height, which provides values considerably big-

ger than the value of the minimum heat flux, in particular

for weak inversions where the flux gets smeared out along

the inversion zone. Another reason is that the resolution

used in this study is still rather coarse. Increasing the

vertical resolution to 10 m using a 256 3 256 3 192 grid

resulted in a decrease of A by 12% and, consistent with

Eq. (9), a corresponding decrease of the inversion height

by 4%. In this study, however, rather than changing the

resolution, the available computing time was invested in

extending the total integration time as far as possible in

order to be able to simulate many oscillations of the

surface heat flux. Since apart from a modest quantitative

effect there appears to be no difference in the essence of

the behavior between the fine and coarse resolution, all

subsequent simulations are conducted on the coarse grid

as reported in Table 1. Note that by setting A 5 0.34 in the

mixed layer model we effectively tune the model to the

coarse-resolution LES.

The response of the mixed layer model for a non-

stationary surface heat flux is shown in Fig. 3 together

with the LES results. Clearly the mixed layer model is

very well capable of predicting the evolution of the PBL

depth for an oscillating surface heat flux. To get in-

formation on the response of the PBL for other driving

frequencies v 5 2p/T and a, we have conducted a

comprehensive study to the corresponding amplitudes

Z(v) and phase differences C(v). Results of the LES are

presented in Figs. 5a and 5b together with the pre-

dictions (22) and (23) based on the linearized version of

the mixed layer model. One notices that the predictions

of the response work quite well for slow changes (i.e.,

v , 1024 s21 or T larger than approximately 17.5 h).

This is interesting because the predictions appear to

work well even for large a, well outside the intended

working range of small amplitudes (a � f0). Appar-

ently for slow changes the response of the essentially

nonlinear mixed layer model (7) and (8) can be well

approximated by the linearized version of the model

around the stationary state (D0, z0) given by Eq. (9).

Recall that this fixed point follows from the nonlinear

model. A second rather striking aspect is the appreciable

phase difference for small v. Even at v 5 1025 s21 (T’
175 h) the phase difference is about p /4, corresponding

to a time lag of tL ’ 22 h. Apparently the internal time

scale of the boundary layer system is quite large.

Mathematically this can be understood from the analysis

of the eigenvalues of the system’s Jacobian (14) and

related time scale(s) (15) or (16), which is proportional

to 2Af0 /(Gws
2) ’ 10 h. Physically this large time scale

can be understood by realizing that the (zi, D) dynamics

is governed by the entrainment velocity, leading to a

time scale estimate of zi/we. Steady-state considerations

give we 5 ws and zi0 ; f0 /(Gws), which leads to tL ; f0 /

(Gws
2). Both ws and G may differ somewhat from the

values we have used here, but not much since the order

of magnitude of ws is 1022 m s21, G is typically a few

kelvins per kilometer, and surface fluxes are in the range

of 0.01–0.1 K m s21. This implies that the dynamics that

govern zi and D are much slower than the time scale of

turbulence (’15 min) and even quite slow with respect

to the time scale of the diurnal cycle itself. This in turn

implies that the system will always be in a transient state,

hardly adapted to the new conditions set by sunrise,

sunset, or changed large-scale forcings.

Returning to Figs. 5a and 5b, one notices a discrep-

ancy between the MLM predictions and the LES results

FIG. 5. Transfer function of (a) zi amplitudes and (b) phase dif-

ference between zi(t) and fs(t). The analytical (linearized) solution

of the standard mixed layer model (dashed lines) and the results

with different amplitudes of the LES (open symbols) are shown.
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for fast changes, most clearly seen at the phase dif-

ferences of the LES, which are significantly larger than

the maximum phase difference of p/2 resulting from the

MLM. This is a natural consequence of the fact that

the mixed layer model assumes instantaneous mixing,

whereas in reality (and in LES) the mixing is governed

by the time scales of turbulence. When the surface heat

flux changes at a rate comparable to the time scale of

turbulence the situation becomes more intricate. This

issue is addressed in the next section.

b. Rapidly changing surface fluxes

For stationary surface heat fluxes the mixed layer aver-

aged vertical velocity variance, h(w9)2i, can be well pre-

dicted (scaled) by the Deardorff (e.g., Sullivan et al. 1998)

convective velocity scale:

w
DD
* 5

gz
i
(t)

Q
0

f
s
(t)

� �1/3

. (26)

However, for nonstationary surface heat fluxes the per-

formance of Eq. (26) is not ideal (Sorbjan 1997). This

aspect is shown in Fig. 6. When there is a good corre-

lation (as expected for a scaling quantity), the points

would lie on a line; for slowly changing fluxes (T 5 8 h)

this appears to be the case. However, for more rapidly

changing fluxes the graphs obtain a circular shape indica-

tive of the phase difference between the actual variance

and the actual surface flux fs. To improve the predictions

of the mixed layer model for rapidly changing surface

fluxes and to come up with a better prediction of the

turbulence kinetic energy levels and velocity variances, we

expand the mixed layer model with an extra equation that

accounts for production and dissipation (Nieuwstadt and

Brost 1986):

›k(t)

›t
5 P(t)� C

«

k(t)3/2

z
i

, (27)

where C« is a constant and where k and P represent mixed

layer averages of turbulence kinetic energy and buoyancy

production, respectively. The production term in this

equation is modeled by

P(t) 5
1

z
i

ðz
i

0

~P(z, t) dz, with (28)

~P(z, t) 5
g

Q
0

1� (1 1 A)
z

z
i

� �
f

s
t � x

zffiffiffi
k
p

� �
. (29)

In this equation the essential aspect resides in the term

�xz/
ffiffiffi
k
p

, which accounts for the time it takes for in-

formation to travel from the surface to height z, where

we have assumed that the corresponding speed scales

with
ffiffiffi
k
p

. When the turbulence kinetic energy is high,

information travels fast, but when k is low it will take

much longer before higher locations in the PBL can feel

the changed surface properties. The constant x can be

chosen freely (once). The effect of having the time delay

in Eq. (29) is that the vertical profiles of the production

can depart from the (quasi-steady) linear form and po-

tentially yield the S-shaped curves such as are observed

in LES (Sorbjan 1997). The curves following from

Eq. (29) at various instances are shown in Fig. 7. The

constant x in Eq. (29) was determined by comparing

the production calculated by LES with the production

FIG. 6. Phase diagram of h(w9)2i as obtained from the LES and the

convective velocity scale (26).

FIG. 7. Scaled w9u9 profiles for a surface heat flux period of 4 h,

following Eq. (29) with x 5 0.92. The effect of the time delay

produces the S-shaped curves.
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calculated by Eq. (28). In this case we determined x 5

0.92. The effect of having x in Eq. (28) is shown in Fig. 8.

There is a nice correlation between the results from LES

and the modeled production. For periodic functions fs

the integral in Eq. (28) can still be analytically solved

(see appendix). Now that there is a reasonable model for

the time-dependent buoyancy production, Eq. (27) can be

solved once the constant C« has been determined. This is

done by looking at the stationary state of Eq. (27), that is,

C
«

5
P

0
z

i0

k3/2
0

, (30)

where the subscript 0 refers to the stationary state of

the variable. Using LES values this resulted in a value

of 1.92 for C«. Equation (27) can now be solved, in

conjunction with the other mixed layer model equations.

The result of the extended MLM is shown in Fig. 9 with

respect to the turbulent kinetic energy (TKE) calculated

using LES. The correlation between the LES results and

Eq. (27) appears to be quite good. In Fig. 10 the result

is shown with respect to the vertical velocity variance

calculated using LES, which should be compared to

Fig. 6. This result shows that also for rapidly changing

surface fluxes the velocity variances can be anticipated

while still using a simple set of equations.

Since it is possible to accurately model the turbulence

kinetic energy k, we also used the prognostic value of k

in the parameterization of the entrainment velocity.

This parameterization starts with the usual equation for

the entrainment velocity (Deardorff et al. 1980),

w
e

w*
5

A

Ri
, (31)

where Ri is the Richardson number given by

Ri 5

g

Q
0

Dz
i

w2
*

. (32)

Rearranging these equations, we have for the entrain-

ment velocity

w
e
5

Aw3
*

g

Q
0

z
i
D

. (33)

The term w
*
3 represents the scaling velocity and should

thus be replaced by (gk)3/2, where k is prognosticated

FIG. 8. The effect of x in the production equation (29) with re-

spect to the production of the LES results: (top) x 5 0 and (bottom)

x 5 0.92.

FIG. 9. TKE calculated using Eq. (27) vs TKE calculated by LES.
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from Eq. (27). The constant g can be calculated by com-

paring the scaling in steady state, which results in g 5 3.33.

To summarize this method, the following equations

are solved in the extended mixed layer model:

›D

›t
5 Gw

e
�

f
s
1 Dw

e

z
i

, (34)

›z
i

›t
5 w

e
� w

s
, (35)

›k

›t
5 P(t)� C

«

k3/2

z
i

, (36)

P(t) 5
g

Q
0

1

z
i

ðzi

0

1� (1 1 A)
z

z
i

� �
f

s
t � x

zffiffiffi
k
p

� �
dz, and

(37)

w
e
5

A(gk)3/2

g

Q
0

z
i
D

, (38)

with constants x 5 0.92, g 5 3.33, and C« 5 1.92. Note that

the entrainment velocity formulation (38) implies that the

effective entrainment flux ratio Aeff 5 2fe/fs 5 weD/fs is

no longer constant. By rearranging one can recast Aeff into

A
eff

5 A
gk(t)

w2
*

(t)

" #3/2

. (39)

For a slowly varying heat flux gk 5 w
*
2, so Aeff 5 A, but

for a rapidly changing flux Aeff will deviate from A and

be time dependent.

The performance of the extended MLM is shown

again in terms of transfer function and phase difference.

These are shown in Figs. 11a and 11b. The difference

between the result of the standard MLM and the ex-

tended MLM is not so prominent in Z(v) because the

amplitudes are small anyway, but there is a marked

difference in the predicted phase lag. The results of the

extended MLM give comparable results to the LES re-

sult in the sense that the phase lag becomes significantly

larger than p/2. The derivation of the analytical solution

of the extended MLM can be found in the appendix.

Apart from sinusoidal surface fluxes, the extended

MLM was put to the challenging test of a more exotic

surface heat flux given by a square wave

f
s
(t) 5 d 1 (0.12� d)H

t

T
mod 1� 1

2

� �
, (40)

where H is the Heaviside function and T is the period of

the square wave (in this case, the period is 4 h and d is

a small number; i.e., 0.001 K m s21). The sudden jumps

in surface heat flux can be compared with a total solar

eclipse or the modulation of the incoming solar radia-

tion by a (dark) cloud. The results of this surface heat

flux are shown in Fig. 12. Note the conspicuous bumps in

the production when the heat flux increases, which are

probably due to an absence of consumption by entrain-

ment, while at the bottom there is a lot of production

due to the sudden increase of the surface heat flux. On

the whole, the extended MLM is again able to reproduce

the turbulence kinetic energy and the production quite

well. The inversion height is slightly lower than in the

LES, but it is in phase and has the same amplitude as

the LES results.

4. Summary and conclusions

The standard MLM works well for slowly changing

surface fluxes. When the surface fluxes change with

small frequencies or large periods (i.e., v , 1024 s21 or

T . ;17.5 h), the standard MLM gives quite good

predictions. Both the transfer function and the phase

difference are comparable to the LES results. However,

for rapidly changing surface fluxes the standard MLM is

not able to give the right predictions.

The nonlinear mixed layer model can be very well

approximated by the linearized version of the model.

This is remarkable because the flux perturbations are

well outside the range of small amplitudes, a � f0, on

the basis of which the linearization is carried out. Ap-

parently the response for slow changes of the essentially

nonlinear mixed layer model can be well approximated

by the linearized version of the model around its sta-

tionary state, (D0, zi0).

FIG. 10. TKE calculated using Eq. (27) vs h(w9)2i determined

from LES.
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Very large time scales dominate the (D, zi) dynamics.

The time scales range from several hours until a day or

more. This is surprising because usually the turbulence

time scale t* is used, which is roughly 15 min. For the

phase difference between the surface heat flux and the

inversion height, the time lag is even bigger. When im-

plementing a slowly changing surface heat flux the in-

version height always responds with a delay to the

surface heat flux. Only for extremely slowly varying

surface heat fluxes is there a vanishing phase difference.

The extended MLM performs well for both slowly and

rapidly changing surface fluxes. When the standard

MLM is extended with the equations for the turbulence

kinetic energy and the buoyancy production the model is

also able to give good predictions for rapidly changing

surface fluxes. Also, the vertical velocity variances ob-

served in LES could be scaled well using the TKE values

prognosticated by the extended MLM. When changing

the surface flux very fast (e.g., a square wave), the ex-

tended MLM is able to predict the turbulent kinetic

energy and the production comparable to the LES

results.

All in all the study shows that the behavior of a dry

convective boundary layer driven by nonstationary

surface heat fluxes can be understood well by invoking

the relatively simple concepts of the mixed layer model

and, as a consequence, that analytical solutions for

the system dynamics could be derived. The problem of

finding a suitable scaling relation for the vertical velocity

variance during rapid changes could be dealt with by

prognosticating the turbulence kinetic energy from

a rate equation that comprised dissipation and buoyancy

production. Also, this somewhat more involved model

appears amenable to analytical study. Obviously the

present study is extremely idealized and far from reality.

The next step would be to include mean wind (shear)

and the Coriolis force in the problem, which will change

the entrainment characteristics. Finally, the stable bound-

ary layer, as well as the transitions to and from it, should

be accounted for.
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APPENDIX

Transfer Function of the Extended MLM

Without loss of generality Eq. (24) can be changed to

fs 5 f0 1 a cos(vt). We can express this by fs 5 f0 1 a

exp(ivt) where it is understood that in the end we are

interested in the real part. The production equation as

given in Eq. (37) can now be written as

P 5
g

Q
0

1

z
i

ðz
i

0

1� (1 1 A)
z

z
i

� �
[f

0
1 aeiv(t�xz/

ffiffi
k
p

)] dz,

(A1)

which can be evaluated to

P 5
1�A

2

g

Q
0

f
0

1 aeivtg(b), (A2)

where g(b) is given by

g(b) 5
1

b2
[(A 1 1) (1� e�ib)� ib(1 1 Ae�ib)] (A3)

and b 5 b(v) by

b(v) 5
xvz

iffiffiffi
k
p . (A4)

Having the expression for the buoyancy production, it

is possible to apply the same method as outlined in

section 2d for the plain mixed layer model, but now

three equations have to be taken into account:

›D

›t
5 Gw

e
�

f
s
1 Dw

e

z
i

5 f (D, z
i
, k), (A5)
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i
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5 w

e
� w

s
5 g(D, z

i
, k), and (A6)

›k

›t
5 P� C

«

k3/2

z
i

5 h(D, z
i
, k), (A7)

where we is given by Eq. (38) and P is given by Eqs.

(A2)–(A4). Linearization then results in

›
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where J(D0, zi0, k0, f0) is the Jacobian in the fixed point.

The fixed point in this case is
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The driver of the system is f9 5 f̂ exp(ivt); D9, z9i, and k9

respond to this driver. Taking D9 5 D̂ exp(ivt), z9i 5

ẑi exp(ivt), and k9 5 k̂ exp(ivt), the system (A8) be-

comes

iv
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This can be written as
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s
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0
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f̂, (A11)

where I is the unit matrix. Solving Eq. (A11) gives an

expression for ẑi, among others.
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