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Abstract. Solving discrete boundary value problems with the help of an appro-
priate multigrid method [1, 4, 5, 6] necessitates the construction of a sequence
of coarse grids with corresponding coarse grid approximations for the given fine
grid discretization. Popular choices in this context are the Galerkin coarse grid
approximation (GCA) and the use of the same discretization on the coarser grids
as on the fine grid with properly adjusted mesh sizes (DCA).

In this paper we propose an alternative strategy to select the required coarse
grid discretizations within a multigrid solution method. It can be applied to fine
grid operators that can be locally represented by a stencil. The coarse grid approx-
imations are constructed by minimizing a certain low-frequency L2-norm. More
precisely, a coarse grid discretization is chosen in such a way, that its Fourier
symbol is a best approximation (w.r.t. low frequencies) of the Fourier symbol of
the fine grid operator. This strategy is abbreviated by FCA since the design of
coarse grid approximations is based on local Fourier analysis [5, 7]. The entries
of the coarse grid stencils are simply given by linear combinations of the fine
grid entries. As a consequence, FCA can be considered as a black-box method
to construct coarse grid operators. This method has been successfully applied to
(anisotropic) diffusion equations, operators with mixed derivatives, problems with
dominant convection, and operators involving jumping coefficients. For nicely
elliptic examples, FCA resembles the DCA approach, whereas for more difficult
applications (w.r.t. an efficient multigrid treatment) it behaves similarly to GCA
based on operator-dependent transfers.

1 INTRODUCTION

We consider a two-dimensional discrete (elliptic) boundary value problem with
eliminated boundary conditions

Lhuh(x) = fh(x) (x ∈ Ωh) (1)
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resulting from a vertex-centered discretization of its continuous counterpart. The
discrete domain is given as the intersection Ωh = Ω ∩Gh of the problem domain
Ω ∈ IR2 with a vertex-centered infinite grid of mesh size h

Gh :=
{

x = (x, y)T = h (kx, ky)
T | kx, ky ∈ ZZ

}
. (2)

Suppose that Lh can be locally represented by a stencil
[
`h
κ(x)

]
h
, i.e.,

Lhuh(x) =
∑
κ∈Jh

`h
κ(x) uh(x + κh) with x ∈ Ωh,

stencil entries `h
κ(x) ∈ IR, and a certain index set Jh ∈ ZZ2 containing (0, 0).

Multigrid methods for the solution of (1) are based on two main principles:

1. Many classical iterative methods have a strong smoothing effect on the error
if they are applied to an elliptic boundary value problem like (1).

2. A smooth error term can be well approximated on a discrete domain with
coarser resolution H > h.

These two principles suggest the following well-known structure of a two-grid
method [1, 4, 5, 6]: Perform ν1 steps of an iterative relaxation method Sh on the
fine grid, compute the defect of the current fine grid approximation, restrict the
defect to the coarse grid using a restriction operator RH

h , solve the coarse grid de-
fect equation, interpolate the correction using a prolongation operator P h

H to the
fine grid, add the interpolated correction to the current fine grid approximation,
perform ν2 steps of an iterative relaxation method on the fine grid. The resulting
two-grid operator Mh,H is given by

Mh,H := Sν2
h

(
Ih − P h

HL−1
H RH

h Lh

)
Sν1

h .

Instead of explicitly inverting LH , the coarse grid defect equation can be solved
by a recursive application of an appropriate two-grid method yielding a multigrid
method. Hence we need a sequence of discrete domains with coarser resolution
and corresponding coarse grid approximations of the fine grid discretization Lh.
Here we only consider standard coarsening, where a sequence of coarse grids is
obtained by doubling the mesh size in each space direction, giving us ΩH = Ω2h =
Ω ∩G2h, Ω4h = Ω ∩G4h, and so forth.

A straight-forward way to obtain coarse grid discretizations L2h, L4h, etc. is
to apply the same discretization technique as on the fine grid Ωh but to replace h
by 2h, 4h, etc. Following [6], we call this approach discretization coarse grid ap-
proximation (DCA). It yields proper coarse grid approximations for nicely elliptic
operators like the Laplacian. For more difficult applications (for example prob-
lems involving dominant convection or jumping coefficients) one usually has to
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switch to more sophisticated coarse grid operators [4, 5, 6]. The most prominent
choice in this context is the Galerkin approach, setting L2h = R2h

h LhP
h
2h and so

forth. Note that in the vertex-centered case one often needs operator-dependent
restriction and prolongation in order to obtain proper coarse grid approximations,
compare with [2, 3, 5, 6, 9]. A drawback of the Galerkin coarse grid approxima-
tion (GCA) is that the computation of the coarse grid operators is often quite
costly and the size of the corresponding stencils might increase on coarser grids.

We propose an alternative strategy abbreviated by FCA to automatically se-
lect coarse grid discretizations within a multigrid solution method with the help
of local Fourier analysis [1, 5, 7]. The coarse grid operators are constructed in
such a way that the related Fourier symbols (compare with (3)) are best ap-
proximations w.r.t. smooth error components of the Fourier symbol of the fine
grid discretization. The corresponding stencil entries `2h

κ , `4h
κ , etc. can be easily

computed as they are simply given by linear combinations of the fine grid sten-
cil entries `h

κ. Moreover, the quality of the coarse grid approximations and the
computational work for determining the coarse grid stencils can be controlled by
prescribing the stencil patterns J2h, J4h, etc. Following this approach, we recover
well-established coarse grid operators based on DCA whenever they lead to ef-
ficient multigrid solvers like, e.g., for the Laplace operator. Considering more
difficult applications, FCA yields improved operators compared to DCA and be-
haves similarly to the GCA approach based on operator-dependent prolongation
and restriction [2, 3, 9].

The explicit construction of coarse grid approximations governed by local
Fourier analysis (FCA) is detailed in section 2. Several examples of resulting
coarse grid operators are discussed in section 3. Finally, some conclusions are
drawn in section 4.

2 CONSTRUCTION OF COARSE GRID OPERATORS

2.1 Basic principles of local Fourier analysis

For the application of local Fourier analysis it is necessary to consider locally

frozen operators with constant coefficients (Lh
∧
=

[
`h
κ

]
h
) which are extended to

an infinite grid Gh. The corresponding eigenfunctions (or Fourier components)
and the related eigenvalues (or Fourier symbols) read

ϕh(x, θ) := ei θx/h (θ ∈ [−π, π]2), L̃h(θ) :=
∑
κ∈Jh

`h
κei θκ. (3)

The Fourier symbols for L2h
∧
=

[
`2h
κ

]
2h

are obviously given by

L̃2h(θ) :=
∑

κ∈J2h

`2h
κ ei θ2κ.

Hence, Fourier components ϕh(x,θ) with θ /∈ Θlow := [−π/2, π/2]2 can not be
represented on G2h as they coincide with certain Fourier components ϕh(x,θ∗)
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with θ∗ ∈ Θlow due to the periodicity of the exponential function. This observa-
tion is known as aliasing and frequencies θ ∈ Θlow are called low frequencies.

2.2 Optimal coarse grid operator w.r.t. smooth error components

For ease of presentation we assume that the stencil elements of the fine grid
operator sum up to zero, i.e.,

∑
κ∈Jh

`h
κ = 0 ⇔ `h

(0,0) = −
∑

κ∈Jh,κ6=(0,0)

`h
κ. (4)

Note that (4) holds for consistent discretizations of those differential operators
L on an infinite grid which contain only derivatives of u. If this assumption is
violated (for example for partial differential equations involving not only deriv-
atives of u but u itself like the Helmholtz equation) the presented approach can
be easily modified.

Due to the aliasing of Fourier components, the coarse grid discretizations
should be good approximations of Lh especially w.r.t. the (very) low frequen-
cies. In order to satisfy this requirement, the coarse grid approximations are con-
structed by the minimization of a certain low-frequency L2-norm. More precisely,
the coarse grid discretization LFCA

2h is derived in such a way that its Fourier symbol

L̃FCA
2h is a best approximation (w.r.t. low frequencies) of the Fourier symbol L̃h of

the fine grid operator. For the mathematical formulation of this approximation
problem we consider the function space

L2
low :=



v : Θlow → C with

(∫

Θlow
|v(θ)|2 dθ

)1/2

< ∞




with corresponding inner product and norm, respectively:

〈v, w〉low :=

∫

Θlow
v(θ)w(θ) dθ, ‖v‖low :=

√
〈v, v〉low

(
v, w ∈ L2

low
)
.

L2
low equipped with 〈 , 〉low yields a Hilbert space. For the derivation of LFCA

2h we

are looking for the optimal (w.r.t. ‖ . ‖low) approximation of L̃h ∈ L2
low in the

following subspace

F2h := span
{
ei 2θκ − 1 : κ ∈ J2h \ {(0, 0)}} ⊂ L2

low. (5)

This is a classical approximation problem which can be easily solved yielding the
optimal (w.r.t. ‖ . ‖low) coarse grid stencil entries `2h

κ (κ ∈ J2h \ {(0, 0)}). Note
that all basis functions share the summand -1 which ensures a consistent coarse
grid discretization, i.e.,

`2h
(0,0) = −

∑

κ∈J2h,κ6=(0,0)

`2h
κ .
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2.3 A simple example

To illustrate the presented procedure we consider the construction of a coarse
grid discretization given by a compact 5-point stencil:

LFCA
2h

∧
=




`2h
(0,1)

`2h
(−1,0) −∑

κ6=(0,0) `2h
κ `2h

(1,0)

`2h
(0,−1)




2h

, F2h := span {φ1, φ2, φ3, φ4}

with φ1(θ) := ei 2θ(−1,0) − 1, φ2(θ) := ei 2θ(1,0) − 1,

φ3(θ) := ei 2θ(0,−1) − 1, φ4(θ) := ei 2θ(0,1) − 1 (θ ∈ Θlow).

The optimal coarse grid stencil is then given by the solution of a small linear
system:

(〈φi, φj〉low)i,j=1,...,4




`2h
(−1,0)

`2h
(1,0)

`2h
(0,−1)

`2h
(0,1)


 =

(
〈L̃h, φi〉low

)
i=1,...,4

.

We would like to emphasize that each inner product occurring in the above linear
system is a linear combination of the following integrals which can be explicitly
calculated

∫

Θlow
ei (θ1µ1+θ2µ2) dθ =





4π2/n2 for µ1 = µ2 = 0

4π sin (πµ2/n) /(µ2n) for µ1 = 0, µ2 6= 0

4π sin (πµ1/n) /(µ1n) for µ1 6= 0, µ2 = 0

−2[cos (π (µ1 + µ2) /n) for µ1, µ2 6= 0

− cos (π (µ1 − µ2) /n)]/ (µ1µ2)

with Θlow := [−π/n, π/n]2. This means that the matrix (〈φi, φj〉low)i,j=1,...,m with
m = #J2h − 1 can be precomputed for a given coarse grid pattern J2h. Hence,
general formulas for the stencil entries `2h

κ can be calculated in terms of `h
κ. The

complete sequence of coarse grid operators (LFCA
2h , LFCA

4h , LFCA
6h , . . . ) is obtained

by a repeated application of this strategy.

2.4 Choosing Θlow

Analyzing this approach we made the following important observation: Choos-
ing Θlow = [−π/2, π/2]2 – which seems natural in connection with standard coars-
ening – yields bad coarse grid approximations whereas considering only very low
frequencies (i.e., Θlow = [−π/n, π/n] with n → ∞) yields excellent coarse grid
approximations. Moreover, the analytical formulas for the coarse grid stencil
entries converge to fixed expressions for n → ∞. For example, one obtains the
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following formulas for a 5-point coarse grid operator assuming a consistent 5-point
fine grid stencil:

`2h
(−1,0) =

3

8
`h
(−1,0) −

1

8
`h
(1,0), `2h

(1,0) = −1

8
`h
(−1,0) +

3

8
`h
(1,0),

`2h
(0,−1) =

3

8
`h
(0,−1) −

1

8
`h
(0,1), `2h

(0,1) = −1

8
`h
(0,−1) +

3

8
`h
(0,1) (6)

and hence `2h
(0,0) = −1

4

(
`h
(−1,0) + `h

(1,0) + `h
(0,−1) + `h

(0,1)

)
.

The derivation of such formulas (in particular the evaluation of the limit case
n →∞) is a tedious task but can be very easily done with the help of a symbolic
math package like Maple.

3 APPLICATIONS

In this section, we evaluate the quality of the FCA approach by comparing the
resulting coarse grid operators with those operators based on DCA (and GCA).

3.1 Laplace operator

We start with the Laplace operator Lu = −∆u = −uxx − uyy. A second and
fourth order discretization of the Laplacian is given by

L2o
h

∧
=

1

h2




−1
−1 4 −1

−1




h

and L4o
h

∧
=

1

12h2




1
−16

1 −16 60 −16 1
−16
1




h

, (7)

with stencil patterns

J5 = {(0, 0), (±1, 0), (0,±1)} and J9 = {(0, 0), (±1, 0), (0,±1), (±2, 0), (0,±2)} ,

respectively. Employing (6) to construct a 5-point coarse grid approximation for
L2o

h yields

LFCA
2h

∧
=

1

h2




−1/4
−1/4 1 −1/4

−1/4




2h

=
1

(2h)2




−1
−1 4 −1

−1




2h

∧
= LDCA

2h ,

i.e., FCA and DCA lead to the same coarse grid operators, which are known to
be reasonable in the multigrid context.

For a 9-point fine grid operator Lh with Jh = J9, FCA yields the following
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9-point coarse grid operator assuming the same stencil pattern, i.e., J2h = J9:

`2h
(−1,0) =

15

32
`h
(−1,0) −

5

32
`h
(1,0) + `h

(−2,0), `2h
(1,0) = − 5

32
`h
(−1,0) +

15

32
`h
(1,0) + `h

(2,0),

`2h
(0,−1) =

15

32
`h
(0,−1) −

5

32
`h
(0,1) + `h

(0,−2), `2h
(0,1) = − 5

32
`h
(0,−1) +

15

32
`h
(0,1) + `h

(0,2),

`2h
(−2,0) = − 5

128
`h
(−1,0) +

3

128
`h
(1,0), `2h

(2,0) =
3

128
`h
(−1,0) −

5

128
`h
(1,0),

`2h
(0,−2) = − 5

128
`h
(0,−1) +

3

128
`h
(0,1), `2h

(0,2) =
3

128
`h
(0,−1) −

5

128
`h
(0,1),

`2h
(0,0) = −19

64

(
`h
(−1,0) + `(1,0) + `h

(0,−1) + `h
(0,1)

)− `h
(−2,0) − `(2,0) − `h

(0,−2) − `h
(0,2).

Using these formulas to construct a coarse grid operator for L4o
h , we find – as

for the second order approximation – LFCA
2h = LDCA

2h , which is again a reasonable
choice w.r.t. an efficient multigrid treatment, see [5].

One major advantage of the FCA strategy is that the size and pattern of the
coarse grid stencil can be varied. For example, one could try to approximate
the fourth order discretization of the Laplacian based on the long stencil L4o

h by
a compact 5-point stencil on the coarse grids. Especially on very coarse grids
this is advantageous because at grid points adjacent to boundary points the long
stencil cannot be applied since it has entries which lie outside the discrete domain,
whereas a compact 5-point stencil can be applied throughout the domain. For a
given fine grid 9-point stencil with stencil pattern Jh = J9 we obtain the following
coarse grid compact 5-point stencil (J2h = J5) by the FCA strategy:

`2h
(−1,0) =

3

8
`h
(−1,0) −

1

8
`h
(1,0) + `h

(−2,0), `2h
(1,0) = −1

8
`h
(−1,0) +

3

8
`h
(1,0) + `h

(2,0),

`2h
(0,−1) =

3

8
`h
(0,−1) −

1

8
`h
(0,1) + `h

(0,−2), `2h
(0,1) = −1

8
`h
(0,−1) +

3

8
`h
(0,1) + `h

(0,2), (8)

`2h
(0,0) = −1

4

(
`h
(−1,0) + `h

(1,0) + `h
(0,−1) + `h

(0,1)

)− `h
(−2,0) − `(2,0) − `h

(0,−2) − `h
(0,2).

Inserting the particular stencil entries of L4o
h into (8) yields

`2h
(±1,0) = `2h

(0,±1) =
1

12h2

(−3 · 16

8
+

16

8
+ 1

)
= − 3

12h2
= − 1

(2h)2
, `2h

(0,0) =
4

(2h)2
,

recovering the second order approximation L2o
2h of −∆ on Ω2h, compare with (7).

In section 5.4.1 of [5] it has been shown, that this second order discretization is
a very good approximation of the fourth order discretization w.r.t. (very) low
frequencies (see figure 5.16 in [5]). Moreover, in section 4.1.2 of [7] it has been
demonstrated that a multigrid algorithm that applies the fourth order discretiza-
tion on the fine grid and the second order discretization an all coarser grids leads
to an improved V -cycle convergence compared to an algorithm that applies the
fourth order discretization on all grids. This means that the coarse grid operator
suggested by the FCA approach is a very good choice to be applied within a
multigrid solution method.
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3.2 Convection-diffusion

As a more difficult test case (w.r.t. an efficient multigrid treatment) we con-
sider the convection diffusion operator

Lu = −ε∆ + ux + uy

with dominant convection, i.e., 0 < ε ¿ 1. The diffusive part is dicretized by
second order differences whereas the convective part is discretized by first order
upwind differences yielding

Lcodi
h

∧
=

ε

h2




−1
−1 4 −1

−1




h

+
1

h




0
−1 2 0

−1




h

.

It is well-known that applying DCA leads to multigrid algorithms with a limited
two-grid convergence factor of 1/2 [5, 8] (unless a special smoothing method is
applied with a downstream numbering of grid points). This results in a further
deterioration of the convergence factor if more grids are involved. The coarse
grid correction difficulty is due to the fact that the leading truncation term of
the DCA coarse grid operator does not match the leading truncation term of the
fine grid operator [8]. We explain this observation in some more detail for the
one-dimensional case Lu = −εu′′+u′. Taylor expansion applied to the first order
upwind discretization Lupw

h of u′(x) and to the corresponding DCA operator on
Ω2h yields:

Lupw
h u(x) =

1

h
(u(x)− u(x− h)) = u′(x)− 1

2
hu′′(x) + O

(
h2

)
,

LDCA
2h u(x) =

1

2h
(u(x)− u(x− 2h)) = u′(x)− hu′′(x) + O(h2)

which immediately reveals the wrong scaling factor of the leading truncation term
of LDCA

2h . The straight-forward modification of (6) to the one-dimensional case
with Jh = J3 = {0,−1, 1} = J2h yields an improved coarse grid approximation
with the same leading truncation term as Lupw

h :

LFCA
2h u(x) =

1

h

(
−3

8
u(x− 2h) +

2

8
u(x) +

1

8
u(x + 2h)

)
= u′(x)−1

2
hu′′(x)+O(h2).

A recursive application of the FCA approach gives a sequence of coarse grid
stencils LFCA

k (k = 1, 2, ...) with stencil entries

`k
−1 =

3

8
`k−1
−1 − 1

8
`k−1
1 , `k

1 =
3

8
`k−1
1 − 1

8
`k−1
−1 , `k

0 = −1

2

(
`k−1
−1 + `k−1

1

)
(9)

where the sub- and superscript k refers to the sequence of coarser mesh sizes
hk = 2kh. Assuming

`h
−1 = `0

−1 = −1, `h
0 = `0

0 = 1, and `h
1 = `0

1 = 0,

8
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it can be easily shown that for k →∞ the related stencils LFCA
k tend to the limit

case
1

2hk

[−1 0 1
]
hk

(10)

which represents the well-known central second order approxiamtion of u′. This
is in good accordance with the observation from [8] that a proper coarse grid
approximation for Lupw

h must become a second order approximation of u′. Un-
fortunately, the central discretization is not stable and should not be applied (at
least not for dominant convection, see, for example, [5]). Since there is no other
second order approximation of u′ that can be represented by a 3-point stencil with
Jhk

= J3 one should switch to another stencil pattern. An obvious upwind-type
choice is to use a nonsymmetric stencil pattern like

J4 = {−2,−1, 0, 1} .

Applying this pattern the FCA approach gives us the following sequence of stencil
entries:

`k
−2 = − 1

16
`k−1
−1 +

1

16
`k−1
1 , `k

−1 =
9

16
`k−1
−1 − 5

16
`k−1
1 + `k−1

−2 ,

`k
0 = −

(
7

16
`k−1
−1 +

1

16
`k−1
1 + `k−1

−2

)
, `k

1 = − 1

16
`k−1
−1 +

5

16
`k−1
1 .

First of all note that on Ω2h one obtains

LFCA
2h =

1

h

(
1

16
u(x− 4h)− 9

16
u(x− 2h) +

7

16
u(x) +

1

16
u(x + 2h)

)

= u′(x)− 1

2
hu′′(x) + O

(
h2

)

yielding the same leading truncation term as for Lupw
h . Secondly, for k →∞ the

limit stencil

LFCA
k

∧
=

1

hk

[
1/6 −1 1/2 1/3 0

]
hk

results which represents a second order upwind discretization of u′. From these
two observations we can conclude that the FCA strategy yields excellent and
stable coarse grid approximations for Lupw

h if the stencil pattern J4 is prescribed.
Moreover, for the one-dimensional diffusive part 1

h2

[−1 2− 1
]
h

one obtains

`2h
−2 = 0, `2h

−1 = `2h
1 = − 1

h2

4

16
= − 1

(2h)2
, `2h

0 =
1

h2

8

16
=

1

(2h)2
2,

i.e., LFCA
2h = LDCA

2h . This means that FCA with J2h = J4 (or with the straight-
forwardly modified pattern J7 in two dimensions) leads to appropriate coarse
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grid operators to be applied within a multigrid solver for convection-diffusion-
type problems with dominant convection.

The discussion of the convection-diffusion operator demonstrates another in-
teresting feature of the FCA approach. That is, it can be used to identify proper
coarse grid stencil patterns for a given fine grid discretization or to judge be-
tween coarsening strategies. Note that the character of the subspace F2h (5) is
governed by the prescribed stencil pattern and the coarsening strategy. Hence, if
it is not possible to find a good approximation for L̃h in this subspace it should
be usually due to the fact that the stencil pattern J2h or the coarsening strategy
is not appropriate.

3.3 Further applications

Similar analytical expressions for sequences of coarse grid stencil entries can
be obtained for other fine and coarse grid stencil patterns. Apart from the ex-
amples presented above the method has been successfully applied to anisotropic
diffusion equations, operators with mixed derivatives, and problems with jump-
ing coefficients. For jumping coefficients it is sometimes not sufficient to use the
fine grid stencil entries of the coarse (and fine) grid point under consideration
to construct the coarse grid stencil entries. Instead, one has to use averages of
fine grid stencil entries of neighboring fine grid points. Then the FCA approach
yields similar coarse grid stencils to GCA with operator-dependent transfers.

4 CONCLUSIONS

It has been shown that the FCA approach is an interesting alternative to con-
struct coarse grid approximations to be used within a multigrid solution method.
The sequence of coarse grid stencils can be computed by simple analytical formu-
las composed of the fine grid stencil entries. The size and pattern of the coarse
grid stencils can be varied which is a very useful feature. In this way it is possible
to control the accuracy of the coarse grid approximation and the computational
work. The FCA strategy automatically adapts to the fine grid operator under
consideration. That means, the suggested coarse grid operators are similar or
equal to those operators obtained by the DCA approach whenever they are an
adequate choice. If more accurate or sophisticated coarse grid operators are neces-
sary to obtain an efficient multigrid method, FCA resembles Galerkin-type coarse
grid approximations. In this way, FCA yields proper coarse grid operators in a
black-box fashion for various applications like (anisotropic) diffusion equations,
convection-diffusion with dominant convection, and problems involving mixed
derivatives or jumping coefficients. Moreover, the underlying minimization pro-
cedure for the design of coarse grid operators can even be used to judge between
coarsening strategies and different patterns of coarse grid stencils.

Finally, we would like to mention that the presented approach can be easily
modified for other regular coarsening strategies like semi or red-black coarsening
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and to three-dimensional applications.
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