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a b s t r a c t

The scarcity of information regarding dynamics and full-state feedback increases the demand for
a model-free control technique that can cope with partial observability. To deal with the absence
of prior knowledge of system dynamics and perfect measurements, this paper develops a novel
intelligent control scheme by combining global dual heuristic programming with an incremental
model-based identifier. An augmented system consisting of the unknown nonlinear plant and unknown
varying references is identified online using a locally linear regression technique. The actor–critic is
implemented using artificial neural networks, and the actuator saturation constraint is addressed by
exploiting a symmetrical sigmoid activation function in the output layer of the actor network. Numer-
ical experiments are conducted by applying the proposed method to online adaptive optimal control
tasks of an aerospace system. The results reveal that the developed method can deal with partial
observability with performance comparable to the full-state feedback control, while outperforming
the global model-based method in stability and adaptability.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Conventional controller design for aerospace systems is com-
only based on the known linearized models at different equilib-

ium or trimmed conditions and on PID controllers with human-
cheduled gains to cover the complete operating envelope [1].
owever, more complex demands such as optimization and adap-
ation have emerged recently, which cannot be tackled within
his traditional scheme. The demand for optimization involves
ptimal control, in which the dynamic programming (DP) prin-
iple plays a fundamental role [2], and the Hamilton–Jacobi–
ellman (HJB) equation is often involved [3]. However, as a
artial differential equation, the HJB equation is arduous to be
olved analytically due to its nonlinear nature. Besides, DP-based
pproaches are by nature offline planning approaches in a
ackwards-in-time way and generally require the full knowledge
f the system dynamics [4]. However, for complex systems, some-
imes not only the internal dynamics, but also the information to
nfer its internal states can be unaccessible, i.e., full-state feedback
FSF) is no longer available [5–7]. These factors prevent tradi-
ional optimal control methods from further applications. On the
ther hand, adaptive control is another focal point of aerospace
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systems control [1,8], which is generally considered a separate
paradigm from optimal control [9]. Adaptive control concentrates
on how the controller can adapt to uncertain system dynamics,
and changing environments and tasks, and does not feature opti-
mality as its paramount target. Both optimal control and adaptive
control can be significant for aerospace systems. Therefore, the
purpose of this paper is to develop an adaptive optimal control
approach so as to improve the optimal tracking performance
without known system dynamics and perfect measurements.

Reinforcement learning (RL) is a class of bio-inspired artificial
intelligence techniques, by which the agent improves its pol-
icy to maximize the received reward (or minimize the penalty)
during interaction with the environment [10]. From a theoret-
ical point of view, RL is closely linked with adaptive optimal
control methods [11,12]. A fruitful cross fertilization of RL and
control theory produces adaptive/approximate dynamic program-
ming (ADP), whose essential goal lies in approximating the so-
lutions of DP [13,14]. With two essential ingredients of tem-
poral difference (TD) error and value function approximation
(VFA) [12], ADP is a class of effective approaches to deal with
adaptive optimal control problems. ADP divides the learning pro-
cess into two parts, namely policy evaluation and policy im-
provement, which, in comparison to conventional DP, enables
the controller to be computed forward in time and makes on-
line computation feasible. Linear ADP (LADP) is a widely used
technique to deal with linear optimal control problems with a
quadratic performance index function [5,6,15,16], and an explicit
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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olution can be constructed [17]. Nevertheless, relying on the
ssumption that the dynamic system is linear time-invariant
LTI), LADP is not suitable for dealing with nonlinear or time-
arying systems [6]. What is more, LADP is constricted to only
mploy a linear quadratic form cost, i.e., xTQx + uTRu, where
is a positive semi-definite weight matrix and R is a positive

efinite weight matrix. This prevents LADP from further applica-
ions with different demands, such as addressing input saturation
onstraints [18–22], or releasing the input constraints [7,23–25],
.e., R is positive semi-definite.

As an expansion of LADP, adaptive critic designs (ACDs) break
he linear quadratic constraints that exists in LADP, and have
emonstrated impressive success in adaptive optimal control
roblems [26,27]. ACDs normally exploit artificial neural net-
orks (ANNs) to approximate evaluation (critic) and improve-
ent (actor) of the control policy, and consequently they can be
pplied to nonlinear system control problems with complicated
ewards. Based on the information utilized by the critic network,
CDs are generally categorized as heuristic dynamic program-
ing (HDP), dual heuristic programming (DHP), and global dual
euristic programming (GDHP) [28]. Among them, GDHP com-
ines the information used by HDP and DHP and thus takes
dvantage of the two methods [24,25,29–31]. There are several
tructures of the critic network for GDHP [28] and the most
idely used structure is the straightforward form that approx-

mates the performance index function and its derivatives simul-
aneously [24,30,31]. However, this structure can introduce unde-
ired inconsistent errors, so this paper employs explicit analytical
alculations derived in [25] to eliminate these inconsistent errors.
Directly learning from unknown real systems usually requires
lot of trials or episodes [27] and may even cause disasters

uch as misconvergence or even divergence in some extreme
ases [32]. Therefore, for complex and delicate systems, such
s aerospace systems, information about state transition is re-
uired. For instance, for a time-invariant affine system, given
he explicit information of control effectiveness, a convergent
ontrol policy can be generated based some assumptions [21,33].
owever, sometimes system dynamics are completely unknown.
onsequently, an extra structure, such as an ANN, is introduced
o approximate the system model in some literature [29,31,34–
6]. Because training ANNs requires some efforts before the
arameters converge, the model network is trained offline and
ept unchanged for online application in [29,31,35], which lacks
apability to adapt if the system is changed, whereas in [34,36],
he information of partial system dynamics is still required for
nline identification.
To tackle the limits of learning global system models and to

chieve online fast adaptation, an incremental model is intro-
uced in this paper. According to a local linear regression (LLR)
echnique [37], the incremental model only approximates the
ocal dynamics of the original nonlinear system instead of the
lobal model, on the assumption of sufficiently high sampling
requency [25]. The incremental technique has been successfully
ombined with various classic control methods to obtain adaptive
onlinear control approaches, such as incremental nonlinear dy-
amic inversion (INDI) [38] and incremental sliding mode control
ISMC) [39,40]. These approaches have shown success in reduc-
ion of the model dependency and fault tolerant, but have still
ot addressed the optimality. On the other hand, the synthesis
f incremental techniques and ACDs leads to the incremental
odel-based adaptive critic designs (IACDs) [23–25]. These ap-
roaches have been applied to several flight control problems and
erformed well to generate adaptive optimal controllers with FSF.
evertheless, real applications are often more complex and FSF
an be unrealistic, which results in a partial observability (PO)
roblem. According to [6,41], the methods coping with deter-
inistic systems and measurements are often regarded as output
2

feedback methods [5,7,9,16,36,42,43], whereas if stochastic time-
varying dynamics are involved, the control problems are linked
with partially observable Markov decision processes (POMDPs) [6,
41,44,45]. PO often occurs in aerospace systems, whose internal
dynamics can be difficult to obtain and may be time-varying or
stochastic, such as liquid sloshing in spacecraft with fuel tanks,
infrared camera tracking with unpredictable target maneuvering,
and unforeseen damages to aircraft structures changing system
dynamics suddenly [6,41]. In [6], the incremental model is for the
first time applied to a flight control problem with only tracking
errors directly measurable by improving LADP, and extends the
approach by combining the HDP approach in [41]. However, HDP
has shown inferiority in convergence speed and control precision
compared to DHP and GDHP [23,25]. In addition, the convergence
of the identification technique is not analyzed in all existing
literature adopting the incremental model.

The main contribution of this paper is dealing with the PO con-
dition in adaptive optimal tracking control of unknown nonlinear
systems by introducing an augmented incremental model into the
GDHP algorithm, such that an incremental model-based GDHP
(IGDHP) approach is developed. The principal advantage of the
IGDHP approach lies in that the incremental model accelerates
the online policy learning without knowing global system dynam-
ics or offline training a model network, which allows for quick
adaptation to system changes. Although some previous works are
based on the incremental model [5–7,23–25,29,41], this paper
discusses the convergence of the identification technique and
achieves the highest 100% success ratio for the first time. The
output layer of the actor network exploits a symmetrical sigmoid
activation function, to satisfy the demands for tackling input satu-
ration constraints, by multiplying an additive determined weight
vector. Different from [25], this paper focuses on the PO situation,
and improves the previous IGDHP approach by an augmented
incremental model so as to deal with the unavailability of the
information referring to inner system states and the unknown
time-varying reference. The present research aims at bridging the
gap between the discussed algorithms and real world systems, by
taking more realistic application scenarios into consideration for
verification, including sensor noises, fault-tolerant tasks, param-
eter variations, load disturbances, and combination with other
controllers in higher level control.

The remainder of this paper is structured as follows. Section 2
presents the basic formulation of the continuous optimal tracking
control problem subject to input constraints. In Section 3, the
incremental technique is introduced for online identification in
both FSF and PO conditions. Section 4 presents the IGDHP al-
gorithm with explicit analytical calculations and addresses the
input constraints via the actor network. Then Section 5 verifies
the developed IGDHP method by applying it to various control
problems of an aerospace system. Finally, the conclusion and
future research are presented in Section 6.

2. Problem statement

Consider a nonlinear continuous system described by:

ẋ = f [x(t),u(t)], (1)

where x(t) ∈ Rn, and u(t) ∈ Rm are the state vector and
control vector, respectively, and f [x(t),u(t)] ∈ Rn provides the
hysical evaluation of the state vector over time. Assume that f

is Lipschitz continuous on a set Ωs ⊂ Rn and that the system (1)
is controllable on Ωs.

The output of the nonlinear system is represented as:

y(t) = h[x(t)], (2)

where y(t) ∈ Rp, and h[x(t)] ∈ Rp is the Lipschitz continuous
output function. The system is also assumed to be observable.
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The problem investigated in this study is in the framework
of optimal tracking control problem, so the objective of the con-
troller is to minimize the tracking error between system output
y(t) and reference trajectory yref(t), which is defined as:

e(t) = y(t) − yref(t), (3)

where e(t) ∈ Rp and yref(t) ∈ Rp.
In the ADP scheme, the performance index function, also

called cost-to-go, of optimal tracking control problem is usually
presented as the cumulative sum of future costs from any initial
time t:

J(e(t),u(t : ∞)) =

∫
∞

t
γ τ−t r(e(τ ),u(τ ))dτ , (4)

here u(t : ∞) = {u(τ ) : t ≤ τ < ∞} denotes the system
control produced by control law µ(e(τ )) ∈ Rm from time instant
t to ∞, r(e(t),u(t)) ∈ R denotes the cost at the time instant t ,
and γ ∈ (0, 1] is the discount factor that indicates the extent
to which the short-term cost or long-term cost is concerned. For
simplicity, J(e(t),u(t : ∞)) is denoted by J(t) and r(e(t),u(t)) is
denoted by r(t) in the following part.

Input constraints are taken into account in this paper, which
cannot be tackled merely by the linear quadratic cost. A non-
quadratic functional is employed in [18,20,22] for regulation op-
timal control problems with input constraints. Nevertheless, this
non-quadratic functional can relatively improve the complexity
of the GDHP technique, in that the backpropagation processes
need to compute partial derivatives. Moreover, in the existing
standard solution to the optimal tracking control problems, a
transformation is conducted with the aid of a desired control
input ud(t) to build a regulation optimal control formation con-
cerning the tracking error e(t) and the feedback input ue(t) =

(t) − ud(t). However, as claimed in [19], it is impossible to en-
ode the input constraints into this new control problem simply
y a non-quadratic functional, since only feedback part of the
ontrol input ue(t) can be directly obtained by minimizing the
erformance function. Therefore, a saturation function is directly
mposed upon the control commands to satisfy the input con-
traints, which will be addressed by modifying the structure of
he actor network in Section 4. In this way, the tracking problem
s transformed into a regular optimal control problem subject to
nput constraints.

Based on TD technique [12], the cost-to-go can also be repre-
ented as:

(t) =

∫ t+T

t
r(τ )dτ + γ J(t + T ), (5)

where T > 0 is a time horizon. According to Bellman’s optimality
principle, the optimal cost-to-go is given as:

J∗(t) = min
u(t:t+T )

{

∫ t+T

t
r(τ )dτ + γ J∗(t + T )}, (6)

where •
∗ stands for the optimal value of •. Therefore, the optimal

ontrol law can be expressed as:

∗(e(t)) = arg min
u(t:t+T )

J∗(t) = arg min
u(t:t+T )

{

∫ t+T

t
r(τ )dτ+γ J∗(t+T )}.

(7)

For nonlinear systems, the solution of Eq. (6) is usually in-
tractable to be obtained analytically. Therefore, an IGDHP al-
gorithm is introduced to iteratively solve this optimal control
problem.

3. Incremental model implementation

The IGDHP algorithm requires the information of the cost at
next time instant, so the predictability of the system states is
 c

3

significant. This paper considers a PO situation, where although
the system is observable, the only measurement is the tracking
error and even the reference can be unknown and changing.
This scenario can happen in real applications in the aerospace
systems control problems. For instance, the docking sensors for
automated transfer vehicle and International Space Station are
infrared cameras, which only measure the relative distance and
angles between them as the navigation information [6]. There-
fore, it is desired to build a new module to provide a mapping
from the system input to the observation, which will be dealt
with using the incremental model in this section.

3.1. Incremental model with FSF

The derivation of the incremental model starts from the FSF
condition while for all incremental techniques, the following
assumption is a prerequisite:

Assumption 1. The sampling frequency is sufficiently high,
i.e., the sampling time ∆t is sufficiently small, and the system
dynamics are relatively slow time-varying.

Remark 1. There are two important parts referring to Assump-
tion 1. Firstly, a discrete incremental model can be introduced to
represent a continuous nonlinear plant and retain high enough
precision. Secondly, the discrete model does not change the prop-
erties of the original system, including controllability and observ-
ability.

It is assumed that the system is first-order continuous with
respect to time at around time instant t − ∆t (denoted by t0).
Then, taking the first order Taylor series expansion and omitting
higher-order terms, the system dynamics of Eq. (1) at around time
instant t0 can approximately be linearized as follows:

ẋ(t) = ẋ(t0) + F[x(t0),u(t0)][x(t) − x(t0)]

+ G[x(t0),u(t0)][u(t) − u(t0)] + O((∆x(t))2, (∆u(t))2), (8)

here F[x(t0),u(t0)] =
∂ f T[x(t),u(t)]

∂x(t) |x(t0),u(t0) ∈ Rn×n denotes the

system transition matrix and G[x(t0),u(t0)] =
∂ f T[x(t),u(t)]

∂u(t) |x(t0),u(t0)

∈ Rn×m denotes the control effectiveness matrix. F[x(t0),u(t0)]
and G[x(t0),u(t0)] are bounded due to the Lipschitz continuity of
f in Eq. (1).

For ADP-based methods, the control policy cannot be de-
termined in advance, and therefore the higher-order term can
behave as a perturbation term to affect the closed-loop perfor-
mance. Nevertheless, as claimed in [39,46], the higher-order term,
O((∆x(t))2, (∆u(t))2) satisfies:

lim
∆t→0

∥O((∆x(t))2, (∆u(t))2)∥2 = 0, ∀x ∈ Rn, ∀u ∈ Rm, (9)

which means the norm value of the higher-order term is neg-
ligible given sufficiently high sampling frequency. Eq. (9) also
indicates that ∀Ō > 0, ∃∆t > 0, satisfies that for all 0 < ∆t ≤ ∆t ,
x ∈ Rn, ∀u ∈ Rm, ∀t ≥ t0, ∥O((∆x(t))2, (∆u(t))2)∥2 ≤ Ō,
.e., there exists a ∆t that guarantees the boundedness of the
igher-order term and the bound can be further diminished with
he increase of the sampling frequency. Besides, the LLR tech-
ique is adopted and the linearization errors will not accumulate
ut only affect the local system identification. Furthermore, the
eal-world experiments, including the ground robot [38] and
erospace systems [40,47], have been successfully carried out
ased on this linearization process. Therefore, in the following
art, the higher-order term is omitted for the convenience of
ontroller design.
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Assuming the states and state derivatives of the system are
measurable, i.e., ∆ẋ(t), ∆x(t), ∆u(t) are measurable, an incre-
mental model can be utilized to describe the system (8):

∆ẋ(t) ≈ F[x(t0),u(t0)]∆x(t) + G[x(t0),u(t0)]∆u(t). (10)

Despite the fact that physical systems are usually continuous,
modern processors work in a discrete way, leading to discrete
measurements and computations [24,25]. Consequently, given a
sufficiently small sampling time ∆t , based on Assumption 1, the
plant model (10) can be represented approximately in a discrete
form:
xt+1 − xt

∆t
−

xt − xt−1

∆t
≈ Ft−1(xt − xt−1) + Gt−1(ut − ut−1), (11)

in which the subscript t stands for the current sampling time in-
stant, Ft−1 =

∂ f T(x,u)
∂x |xt−1,ut−1∈ Rn×n and Gt−1 =

∂ f T(x,u)
∂u |xt−1,ut−1∈

n×m denote the system transition matrix and the input distri-
ution matrix at time instant t − 1 for the discretized systems,
espectively. From Eq. (11), the following incremental form of the
ew discrete system can be obtained:

xt+1 ≈ (In + Ft−1∆t)∆xt + Gt−1∆t∆ut , (12)

here In denotes an identity matrix and subscript n shows its
dimension.

In the FSF situation, matrices Ft−1 and Gt−1 can be identified
online with a recursive least square (RLS) algorithm [25] and each
update only requires the latest data.

3.2. Augmented incremental model

This subsection will focus on the construction of the locally
incremental model using tracking error and input measurements
based on the augmented state.

Considering Eq. (2), the output of the system around time
instant t0 can be linearized with Taylor expansion:

y(t) ≈ y(t0) + H[x(t0)][x(t) − x(t0)], (13)

where H[x(t0)] =
∂hT[x(t)]

∂x(t) |x(t0)∈ Rp×n denotes the observation

matrix. Given a sampling time ∆t , the incremental dynamics of
the system output can be written as:

∆yt+1 ≈ Ht∆xt+1, (14)

in which Ht =
∂hT(x)

∂x |xt ∈ Rp×n denotes the discrete observa-
ion matrix. It has been examined that, if a nonlinear system is
ompletely observable with its output, then the system can still
e regarded as deterministic [5,6], suggesting that the unmea-
urable internal states can be reconstructed with the adequate
bservations to provide transition information [7].

emma 1. Given the measured input/output data over a long-
nough time horizon, [t −N + 1, t], N ≥ n/p, the output increment
yt+1 can uniquely be determined as follows:

yt+1 ≈ Ft∆yt,N + Gt∆ut,N , (15)

here Ft ∈ Rp×Np denotes the extended discrete system transition
matrix, Gt ∈ Rp×Nm denotes the extended discrete input distribution
atrix, and ∆ut,N = [∆uT

t , ∆uT
t−1, . . . , ∆uT

t−N+1]
T

∈ RNm and
∆yt,N = [∆yTt , ∆yTt−1, . . . , ∆yTt−N+1]

T
∈ RNp are the measured

nput/output data of N previous steps, respectively.

roof. Based on Assumption 1, the new discrete system de-
cribed by Eqs. (12) and (14) is observable. Then the detailed
roof can be found in [5,15] and is omitted here.
4

If the reference signal is slow-varying in comparison to the
system dynamics, then in the time horizon [t − N + 1, t], the
increment of the reference signal can be ignored. Accordingly,
considering Eqs. (3) and (15), the output tracking error at the next
time instant can be written as:

et+1 = yt+1 − yreft+1

≈ yt + Ft∆yt,N + Gt∆ut,N − (yreft + ∆yreft+1)

≈ et + Ft∆yt,N + Gt∆ut,N

≈ et + Ft∆et,N + Gt∆ut,N ,

(16)

here et+1 ∈ Rp and yreft+1 ∈ Rp. However, it is impossible to di-
ectly identify Matrices Ft and Gt since the reference is unknown,
and put another way, the system output cannot be measured
separately. Furthermore, the last approximation in Eq. (16) relies
on the assumption that the reference remains constant within the
time horizon [t − N + 1, t], which can be invalid in numerous
scenarios.

Consequently, a more general situation corresponding to
POMDP is taken into account, and the following assumption is
given:

Assumption 2. The bandwidth of the reference signal is compa-
rable with that of the system dynamics, and the dynamics of the
reference signal can be represented as:

ẏref = f ref(yref(t), y(t)), (17)

where f ref is Lipschitz continuous on a set Ωr ⊂ Rp, and differen-
tiable almost everywhere except for finite isolated points.

The reference signal is often independent of the system out-
put, while in some other cases the reference can partially be de-
termined by the system output, such as moving targets equipped
with anti-tracking systems [6]. Eq. (17) provides a general ref-
erence description that can also be expressed by the time-based
function, as long as the reference signal is continuous and piece-
wise differentiable. Similar to Eq. (12), the reference signal can be
represented as a discrete incremental form by Taylor expansion
and discretization:

∆yreft+1 ≈ (Ip + Freft−1∆t)∆yreft + Gref
t−1∆t∆yt , (18)

where Freft−1 =
∂ f ref T(yref,y)

yref |yreft
∈ Rp×p, and Gref

t−1 =
∂ f ref T(yref,y)

y |yt ∈

Rp×p. Freft−1 and Gref
t−1 can be time-varying and since f ref is Lips-

chitz continuous, Freft−1 and Gref
t−1 are bounded. If the reference is

independent of the controlled system, the matrix Gref
t−1 is a zero

atrix.
Accordingly, an augmented system that consists of the system

tate and reference dynamics can be constructed by combining
ystem representation Eqs. (12) and (14) and reference repre-
entation Eq. (18) [16]. Define zt = [xT

t , yref T
t ]

T and ∆zt =

[∆xT
t , ∆yref T

t ]
T, and then the following augmented system can be

obtained:

∆zt+1 ≈ Ft−1∆zt + Gt−1∆ut , (19)

and

∆et+1 ≈ Ht∆zt+1, (20)

where Ft−1 =

[
In + Ft−1∆t 0
Gref
t−1Ht−1∆t Ip + Freft−1∆t

]
∈ R(n+p)×(n+p), Gt−1

[GT
t−1∆t, 0]T ∈ R(n+p)×m, and Ht = [Ht , −Ip] ∈ Rp×(n+p).

Hence, given the current time instant t , the increment of
ystem state and output reference can uniquely be represented
y the historical data as an augmented state equation:

z ≈ F̃ ∆z + U ∆u , (21)
t+1 t−1,t−M t−M+1 M t,M
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here F̃t−a,t−b =
∏t−b

i=t−a Fi, and UM = [Gt−1, Ft−1Gt−2, . . . ,

˜t−1,t−M+1Gt−M ] ∈ R(n+p)×mM . Similarly, the tracking error can be
epresented by previous data:

∆et,M ≈ V̄M∆zt−M+1 + T̄M∆ut,M , (22)

here ∆et,M = [∆eTt , ∆eTt−1, . . . , ∆eTt−M+1]
T

∈ RpM , V̄M =

(Ht−1F̃t−2,t−M )T, (Ht−2F̃t−3,t−M )T, . . . , H T
t−M ]

T
∈ RpM×(n+p) and

T̄M =

⎡⎢⎢⎢⎢⎢⎣
0 Ht−1Gt−2 Ht−1Ft−2Gt−3 · · · Ht−1F̃t−2,t−M+1 · Gt−M
0 0 Ht−2Gt−3 · · · Ht−2F̃t−3,t−M+1 · Gt−M
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · Ht−M+1 · Gt−M
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦
∈ RpM×mM .

Vectors ∆et,M and ∆ut,M are the increments of observation and
input sequences over the time interval [t − M + 1, t], which
epresent the available measured data. Then the following lemma
s given:

emma 2. Let the augmented system described by Eqs. (19) and
20) be observable. Then the increment of the system state and
utput reference are determined uniquely in terms of the previous
ata sequences over a sufficiently long time horizon [t − M + 1, t],

M ≥ (n + p)/p.

Proof. Since the augmented system is observable, there exists a
K , the observability index, such that rank(V̄M ) < n+p for M < K ,
and that rank(V̄M ) = n + p for M ≥ K . Note that K ≥ (n + p)/p.
Therefore, let M ≥ K , and there exists a matrix M̄ ∈ R(n+p)×pM

such that:

F̃t−1,t−M = M̄V̄M . (23)

Since V̄M has a full column rank, and its left inverse V̄ left
M is given

by:

V̄ left
M =

(
V̄ T
M V̄M

)−1
V̄ T
M , (24)

then

M̄ = F̃t−1,t−M V̄ left
M + Z(In+p − V̄M V̄ left

M ) ≡ M̄0 + M̄1 (25)

holds for any matrix Z, with M̄0 denoting the minimum norm
operator and P(R⊥(V̄M )) = In+p − V̄M V̄ left

M being the projection
onto a range perpendicular to V̄M [15].

Note that F̃t−1,t−M∆zt−M+1 = M̄V̄M∆zt−M+1 so that, according
to Eq. (22),

F̃t−1,t−M∆zt−M+1 = M̄V̄M∆zt−M+1 ≈ M̄∆et,M − M̄T̄M∆ut,M , (26)

(M̄0 + M̄1)V̄M∆zt−M+1 ≈ (M̄0 + M̄1)∆et,M − (M̄0 + M̄1)T̄M∆ut,M .

(27)

Note, however, that M̄1V̄M = 0 so that M̄V̄M∆zt−M+1 =

M̄0V̄M∆zt−M+1, and apply M̄1 to Eq. (22), then

M̄1∆et,M − M̄1T̄M∆ut,M ≈ 0. (28)

herefore,

˜t−1,t−M∆zt−M+1 = M̄0V̄M∆zt−M+1 ≈ M̄0∆et,M − M̄0T̄M∆ut,M

(29)

ndependently of M̄1. Then from Eq. (21), it can be obtained that:

∆zt+1 ≈ M̄0∆et,M + (UM − M̄0T̄M )∆ut,M . (30)

his result expresses the increment of the system state and
eference ∆zt+1 in terms of the inputs and observations from
ime instant t − N + 1 to time instant t , which ends the proof.
5

Lemma 2 provides a deterministic relationship between the
historical data and future states. To build a direct mapping from
the historical observations and inputs to the future observations
regardless of the inner states, the following theorem is presented
based on Lemma 2:

Theorem 1. Let the augmented system described by Eqs. (19)
and (20) be observable. The tracking error increment ∆et+1 can be
etermined uniquely from the observations and control inputs over
sufficiently long time horizon, [t − M + 1, t], M ≥ (n + p)/p:

et+1 ≈ F t∆et,M + G
t
∆ut,M , (31)

here F t = Ht F̃t−1,t−M V̄ left
M ∈ Rp×Mp is the augmented transition

matrix, and G
t

= (HtUM − Ht F̃t−1,t−M V̄ left
M T̄M ) ∈ Rp×Mm is the

augmented input distribution matrix.

Proof. Substitute Eq. (30) into Eq. (20) and the dynamics of the
measurement can directly be obtained:

∆et+1 ≈ Ht F̃t−1,t−M V̄ left
M ∆et,M + (HtUM − Ht F̃t−1,t−M V̄ left

M T̄M )∆ut,M . (32)

This completes the proof.

Theorem 1 has a similar form to Lemma 1 but includes the ref-
erence signal in its representation, which enables the incremental
model predict tracking error without knowing the reference func-
tion. Matrices F t and G

t
in Eq. (31) can be identified using the RLS

algorithm and then the one-step prediction of the tracking error
can be made as:

êt+1 = et + F̂ 11,t∆et + F̂ 12,t∆et−1,M−1 + Ĝ
11,t

∆ut + Ĝ
12,t

∆ut−1,M−1, (33)

here •̂ stands for the estimated or approximated value, F̂ 11,t ∈

Rp×p and F̂ 12,t ∈ Rp×(M−1)p are partitioned matrices from F̂ t , and
Ĝ
11,t

∈ Rp×m and Ĝ
12,t

∈ Rp×(M−1)m are partitioned matrices from
Ĝ
t
.
In this way, the original continuous non-affine system is trans-

formed approximately into a new discrete affine system, based
on which, the IGHDP algorithm can design the control increment
∆ut .

3.3. Online identification with RLS algorithm

A RLS algorithm is applied to the pending matrices F t and G
t

online [6,25]. For convenience, Eq. (31) is represented a row-by-
row form as follows:

∆eTt+1 ≈

[
∆eTt,M ∆uT

t,M

]
·

[
F T

t

GT
t

]
. (34)

Define xt = [∆eTt,M , ∆uT
t,M ]

T
∈ RM(p+m)×1 as the input infor-

mation of the augmented incremental model identification, and
Θ t = [F t , G

t
]
T

∈ RM(p+m)×p as the pending augmented matrix to

be determined using the RLS algorithm.
A sliding window technique is employed to store sufficient

historical data for online identification [7,37]. Considering the
demands for fast computation, identification and adaptation, the
width of data window should be as small as possible with guar-
anteed accuracy. Consequently, according to Lemma 2 and Theo-
rem 1, let M = (n + p)/p.

The main procedure of the RLS algorithm is presented as
follows [24,48]:

∆êTt+1 = xT
t Θ̂ t−1, (35)

ϵ = ∆eT − ∆êT , (36)
t t+1 t+1
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Θ̂ t = Θ̂ t−1 +
Covt−1xt

γRLS + xT
t Covt−1xt

ϵt , (37)

ovt =
1

γRLS

(
Covt−1 −

Covt−1xtx
T
t Covt−1

γRLS + xT
t Covt−1xt

)
, (38)

here ϵt ∈ Rp denotes the prediction error, Covt ∈

R(p+m)M×(p+m)M stands for the estimation covariance matrix,
which is symmetric and positive definite, and γRLS ∈ (0, 1] is the
forgetting factor in the RLS algorithm. It is noted that ∆êt+1 is
approximated by Θ̂ t−1 during the implementation because Θ̂ t is
obtained by the RLS algorithm after ∆et+1 is observed.

Assumption 1 implies that in a certain horizon A = [1, t],
M ≤ t ≤ P , M ≪ P < ∞, the slowly varying augmented system
dynamics can be regarded as a linear plant with constant pending
parameters. Hence, based on the following assumption [48], the
locally approximate convergence of the RLS algorithm is analyzed.

Assumption 3. For the locally linear system (33), in the local
domain A , the observed vectors xM , . . ., xt constitute the samples
of an ergodic process, such that the time averages can be utilized.
The unmodeled dynamics noises within one sliding window are
formulated as a zero-mean white noise vector as:

∆eTt+1 = xT
t Θ + eo,t , (39)

here eo,t is the equivalent plant noise independent of the sam-
ples xt .

heorem 2. If Assumptions 1–3 hold, and the RLS algorithm is im-
lemented using Eqs. (35)–(38), the approximate augmented matrix
ˆ
t has the trend of converging to the locally optimal matrix Θ .

Proof. Because the optimal augmented matrix Θ is valid over A ,
he previous observations can uniformly be written as:

ET
t+1 = X

T
t Θ + Eo,t , (40)

here ∆Et+1 = [∆eM+1, . . . , ∆et+1], Xt = [xM , . . . , xt ], and
Eo,t = [eo,M , . . . , eo,t ]. The PE condition is indispensable for
convergence analysis, which guarantees XtX

T
t is positive definite.

According to [48], it can be obtained that Cov−1
t = XtΓtX

T
t , where

t = diag([γ t−M
RLS , γ t−M−1

RLS , . . . , 1]), and diag(•) reshapes the vec-
or to a diagonal matrix. Therefore, the approximate augmented
atrix Θ̂ t can be represented as:

ˆ
t = Θ + Θ̃ t = Θ + CovtXtΓtEo,t , (41)

here Θ̃ t is the approximate error vector.
Define the approximate error correlation matrix as:

ˆt = E(Θ̃ tΘ̃
T
t ), (42)

here E(•) is the expectation operation. Substituting Eq. (41) into
Eq. (42), and noticing both Covt and Γt are symmetrical matrices,
e can obtain that:

ˆt = E(CovtXtΓtEo,tET
o,tΓtX

T
t Covt ). (43)

ecalling the independence of eo,t and xt , and the weight noise
property of eo,t yields:

L̂t = E(CovtXtΓtE(Eo,tET
o,t )ΓtX

T
t Covt ) = σ 2

o E(CovtCov
−1
2,tCovt ),

(44)

where σ 2
o is the variance of eo,t , and Cov−1

2,t = XtΓ
2
t X

T
t .

Rigorous evaluation of Eq. (44) is intractable. Hence, Assump-
ion 3 is utilized to facilitate an approximate evaluation of L̂ [48].
t

6

t can be found that Cov−1
t is a weighted sum of the outer

products xtxT
t , · · ·, xMxT

M . Therefore, based on Assumption 3, the
following approximation holds:

Cov−1
t ≈

1 − γ t−M+1
RLS

1 − γRLS
Eo, (45)

here Eo = E(xtxT
t ) is the correlation matrix of observations. If

the PE condition is satisfied, xtxT
t is positive definite and E−1

o can
be expected.

Substituting Eq. (45) into Eq. (44) yields:

L̂t = σ 2
o

(
1 − γRLS

1 − γ t−M+1
RLS

)2

·
1 − γ

2(t−M+1)
RLS

1 − γ 2
RLS

E−1
o = σ 2

o
1 − γRLS

1 + γRLS
·
1 + γ t−M+1

RLS

1 − γ t−M+1
RLS

E−1
o .

(46)

n the steady state, i.e., t → P → ∞, the following equation
holds:

L̂P = σ 2
o
1 − γRLS

1 + γRLS
E−1
o . (47)

It can be found that if γRLS is very close to 1, then L̂P → 0,
which means the approximate augmented matrix converges to
the optimal matrix. This completes the proof.

4. The IGDHP algorithm

Since the incremental model discretely identifies the system
dynamics, it is also necessary to design the controller in a discrete
manner. It can be found that the optimal cost-to-go (6) and
optimal control law (7), which are presented in the continuous
domain, have similar forms of discrete representation [12]. Let-
ting the time horizon in Eqs. (6) and (7) be equivalent to the
sampling time, i.e., T = ∆t , we can discretize Eqs. (6) and (7)
s:
∗

t = min
ut

{rt + γ J∗t+1}, (48)

nd
∗(e(t)) = argmin

ut
J∗t = argmin

ut
{rt + γ J∗t+1}, (49)

here rt is the one-step cost function of the discrete-time design
nd can still be formulated as a linear quadratic form:

t = e(t)TQe(t) + u(t)TRu(t), (50)

here both Q ∈ Rn×n and R ∈ Rm×m are positive semi-definite.
he weight matrix R is used to control the energy cost and
ote that it does not have to be positive definite. With the in-
remental model technique, the IGDHP algorithm can iteratively
olve this discrete-time optimal control problem with an actor–
ritic scheme. Based on current information, the actor network
enerates control inputs for both real system and plant model.
he incremental model predicts the tracking errors at the next
ime instant, which are utilized by the critic network to approx-
mate cost-to-go, whose derivatives are computed analytically.
he structure of the IGDHP algorithm is illustrated in Fig. 1.
For simplicity, the introduced ANNs in both the critic and

ctor networks are fully connected and feedforward, and consist
f only three layers of nodes: an input layer, a hidden layer
nd an output layer. The activation function employed in the
nput layer is a unit-proportion linear function and in the hidden
ayer is a symmetrical sigmoid function, which is denoted by
. In the following detailed implementations, the variables or
athways corresponding to the critic and actor networks and the
ncremental model are denoted by the subscripts c , a, and m,
espectively.
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Fig. 1. The architecture of the IGDHP algorithm with PO taken into consideration, where solid lines represent the feedforward flow of signals, dashed lines are
backpropagation pathways, and the thick arrow represents the weight transmission.
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4.1. The critic network

Although the one-step cost function consists of et and ut , only
et is set to be the input of the critic network. The main reason
is that introducing ut as an input will significantly improve the
complexity of the backpropagation. Besides, ut is also derived
from et by the actor network, and can still affect the approxi-
mation in an indirect way through the cost function. There is no
bias term in the critic input, because the critic output is desired
to be 0 when et is a zero vector in this case.

In the structure with explicit analytical calculations, the critic
network only directly outputs the approximated cost-to-go Ĵt ,
and its output layer utilizes a unit-proportion linear activation
function:

Ĵt = wT
c2,tσ (wT

c1,tet ), (51)

where wc1,t and wc2,t denote the critic weights between input
layer and hidden layer, and the weights between hidden layer and
output layer, respectively, and σ (•) denotes the activation func-
ion of the hidden layer. Then explicit analytical calculations [25]
re carried out to compute λ̂t directly using Ĵt :

ˆ t =
∂ Ĵt
∂et

= wc1,t (wc2,t ⊙ σ ′(wT
c1,tet )), (52)

here ⊙ is the Hadamard product, and σ ′(•) denotes the first
rder derivative of function σ (•).
A TD method is introduced to iteratively update the critic net-

ork [10], whose principle is trying to minimize the TD error, the
rror between the current and successive estimates of the state
alue. Similar to the transformation of the optimal cost-to-go,
q. (5) can also be transformed into a discrete form:

t = rt + γ Jt+1, (53)

herefore the TD errors produced by the critic network are given
s follows:

= Ĵ − r − γ Ĵ , (54)
c1,t t t t+1

7

and

ec2,t =
∂[Ĵt − rt − γ Ĵt+1]

∂et
= λ̂t −

∂rt
∂et

− γ
∂ êt+1

∂et
λ̂t+1, (55)

here ec1,t denotes the TD error of the estimated cost-to-go Ĵt
ith current network weights, ec2,t denotes the TD error of the
omputed derivatives λ̂t with current network weights. It is noted
hat Ĵt+1 and λ̂t+1 are predicted using the weights at time instant
.

The computation of items in Eq. (55) is worth analyzing.
onsidering Eq. (50), the second item on the right hand side of
q. (55) can be computed by:
∂rt
∂et

= (QT
+ Q)et +

∂ut

∂et
· ((RT

+ R)ut ), (56)

here ∂ut/∂et goes through the actor network, which will be
ntroduced in the next subsection. Then ∂ êt+1/∂et requires to
e handled with care since there exist two pathways for et to

influence êt+1. As shown in Fig. 1, one pathway goes through the
incremental model directly (pathway 3.a), while another pathway
firstly passes through the actor network and then goes through
the incremental model (pathway 3.b):

∂ êt+1

∂et
=

∂ êt+1

∂et
|m  

pathway (3.a)

+
∂ut

∂et
|a·

∂ êt+1

∂ut
|m  

pathway (3.b)

, (57)

Based on the Markov theory, the states at the time instant t + 1
only have the relationship with the states at the time instant t .
herefore, according to Eq. (33), Eq. (57) can be simplified by the
ncremental model as:
∂ êt+1

∂et
= (Ip + F̂

T
11,t ) +

∂ut

∂et
· Ĝ

T

11,t
, (58)

Then, IGDHP combines both kinds of TD errors in an overall
error function Ec,t :

Ec,t = β
1
e2 + (1 − β)

1
eT ec2,t , (59)
2 c1,t 2 c2,t
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here β is a scalar within a range of [0, 1]. If β = 1, then
t becomes pure IHDP. If β = 0, then the tuning of weights
erely depends on the TD error of computed derivatives λ̂t , and
onsequently it is equivalent to IDHP.
Given a learning rate ηc , the critic weights wci, where i = 1, 2,

are updated with a gradient-descent algorithm to minimize the
overall error Ec,t :

wci,t+1 = wci,t − ηc ·
∂Ec,t
∂wci,t

, (60)

here

∂Ec,t
∂wci,t

=
∂ Ĵt

∂wci,t
·
∂Ec,t
∂ Ĵt

+
∂λ̂t

∂wci,t
·
∂Ec,t
∂λ̂t

= β
∂ Ĵt

∂wci,t
· ec1,t + (1 − β)

∂λ̂t

∂wci,t
· ec2,t , (61)

in which, ∂λ̂t/∂wci,t represents the second-order mixed gradient
of the estimated cost-to-go Ĵt , and how to compute it is given
without derivation [25] as follows:

If i = 2, then

∂λ̂t

∂wc2,t
= diag(σ ′(wT

c1,tet ))(I1 ⊗ wT
c1,t ), (62)

here ⊗ is the Kronecker product; and if i = 1, denote nc as the
umber of neurons in the hidden layer, and then

∂λ̂t

∂wc1,t
= (wc2,t ⊙ σ ′(wT

c1,tet )) ⊗ Ip − KT(et ⊗ Inc )

× diag(σ ′(wT
c1,tet ))diag(σ (wT

c1,tet ))

× diag(vec(wc2,t ))(I1 ⊗ wT
c1,t ), (63)

here K is a commutation matrix of wc1,t , and vec(•) is a vector
eshaping function. Note that the tensor operation can reduce the
imensionality of a matrix, and therefore dimensionality analysis
s involved to reshape the results after computing ∂λ̂t/∂wci,t .

.2. The actor network

Although in [35] a single critic network structure is utilized,
ince the IGDHP algorithm is actually implemented in a discrete
ay, an actor network is required for approximating the optimal
ontrol. Safety is vital for real physical systems and thus some
estrictions are usually added to system control. In this paper,
he output layer of the actor network employs a symmetrical
igmoid activation function, and is multiplied by an additive
nchanged weight vector ub = [ub1, . . . , ubm]

T, where ubi ≥ 0,
or i = 1, . . . ,m, so that the system control ut = [u1,t , . . . , um,t ]

T

utputted by the actor network is bounded by ub, i.e., |ui,t | < ubi
or i = 1, . . . ,m, as shown in Fig. 2. Consequently, the actor
etwork is presented as:

t = ub ⊙ σ (wT
a2,tσ (wT

a1,t [e
T
t , ba]

T)), (64)

here ba is a constant bias term, which is introduced because the
ystem control may not be a zero vector given zero tracking error,
a1,t and wa2,t are the weights of the actor network, and the way
o define them is similar to that of wc1,t and wc2,t .

The purpose of the actor network is to generate a near optimal
ontrol policy to minimize the future approximated cost-to-go

ˆt+1:

∗

t = argmin
ut

Ea,t = argmin
ut

1
2
e2a,t , (65)

here Ea,t denotes the overall error and ea,t stands for the error
etween the approximated future cost-to-go Ĵt+1 and the target
cost-to-go, i.e., e = Ĵ .
a,t t+1

8

Fig. 2. The structure of the actor network, where the input layer employs a
unit-proportion linear activation function while the hidden and output layer
exploit a symmetrical sigmoid activation function.

The system control ut is also an input of the incremental
model, so even though ut does not appear in the reward function,
i.e., R is zero, it has an influence on the critic output at the
next time instant. Therefore, a gradient-descent algorithm can
be implemented to iteratively solve Eq. (65) by the 4th path-
way starting from Ĵt+1 through êt+1 to ut . Different from the
straightforward form, whose back-propagation pathways of the
actor network can start from either Ĵt+1 or λ̂t+1, there is only one
back-propagation pathway for IGDHP with explicit analytical cal-
culations to update the actor weights. Nevertheless, this explains
exactly why the structure with explicit analytical calculations
surpasses the straightforward structure, in that it releases the
restriction of scalar β of being 0 or 1. Specifically, for the straight-
forward form, if β = 0, then the elements in wc2 linked to Ĵt+1
ill never be updated, and if the actor network is trained through
he pathway leading from Ĵt+1, the back-propagation cannot be
arried out. Similarly, if the back-propagation channel of the actor
etwork starts from λ̂t+1, then β ̸= 1 is mandatory for the
traightforward form. On the contrary, the structure with explicit
nalytical calculations has no such limitations on β , because even
hough β = 0, the critic network can still be trained.

As presented in Fig. 1, the actor weights are updated along the
th back-propagation pathway with a learning rate ηa:

ai,t+1 = wai,t − ηa ·
∂Ea,t
∂wai,t

, (66)

here i = 1, 2, and

∂Ea,t
∂wai,t

=
∂ut

∂wai,t
·
∂ êt+1

∂ut
·

∂ Ĵt+1

∂ êt+1
·
∂Ea,t
∂ Ĵt+1

=
∂ut

∂wai,t
· Ĝ

T

11,t
· λ̂t+1 · Ĵt+1.

(67)

So far the implementation of the proposed IGDHP with PO
ontrol scheme has been introduced. The procedure is briefly
ummarized in the following Algorithm 1, where line 6 is the
ividing line between the current time instant and the next time
tep.

emark 2. The convergence analysis of the online identification
as been presented in Section 3.3, and the convergence analysis
f the ADP scheme has been investigated in [29,30]. However,
s stated in [25], it is currently unfeasible to theoretically prove
he closed-loop stability of the IGDHP algorithm due to its com-
letely online implementation. Accordingly, repeating numerical
xperiments are carried out in the next section for verification.
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Algorithm 1: Design procedure of the IGDHP with PO control
scheme.
1 Initialization: initialize system states, and parameters of
the identifier, the critic network and the actor network;

2 while terminal condition is not triggered do
3 compute the control input ut using the actor network

(Eq. (64)) with the current observation;
4 predict the one-step observation êt+1 using the

identifier (Eq. (32)) with the stored data;
5 evaluate the current control policy using the critic

network (Eqs. (51) and (52));
6 sample the real one-step observation et+1 by applying

ut to the real plant;
7 update the weights of the actor and critic networks via

the backpropagation technique (Eqs. (60) and (66));
8 if sufficient samples are stored in the sliding window then
9 update the identifier using the RLS algorithm (Eqs.

(36)–(38));
10 else
11 continue;
12 end
13 update the stored data in the sliding window;
14 end

5. Numerical experiments

This section assesses the developed IGDHP algorithm on a
ractical aerospace application. Firstly, traditional GDHP with
O (GDHP-PO), IGDHP with FSF (IGDHP-FSF) and IGDHP with
O (IGDHP-PO) are compared by applying them on an attitude
racking control task. Then the IGDHP-PO algorithm is adopted
or an altitude control problem in combination with a hierarchy
echnique and PID controller.

.1. Aerospace system model

A nonlinear model of aircraft is set up utilizing the public
ata [49] and only the longitudinal dynamics are taken into
onsideration. All parameters without special explanation in this
aper are determined by trimming the aerodynamic model in a
teady wings-level flight condition at 15000 ft and 600 ft/s, which
ill be referred to as the benchmark condition.
In this longitudinal control problem, there are 6 states, namely

ltitude h, airspeed v, pitch angle θ , angle of attack (AOA) α, flight
ath angle γF and pitch rate q. Nevertheless, for a specific task, it
s feasible to select only some main states to reduce computation.
or instance, for the AOA tracking task, which is an attitude
ontrol problem, only pitch rate q, the basic state in the rate loop,
s chosen as the additional feature state in [25], while other states
re considered as parts of the black box to be identified.
For the longitudinal aerodynamic model, there are 3 control

nputs, namely leading edge flap deflection δlef , engine thrust T
nd elevator deflection δe. The control surface of leading edge
lap cannot be directly changed by the pilot [49], and therefore
s regarded as inner unknown dynamics. Out of simplicity for
mplementation and convenience for analysis, a simple PID thrust
ontrol to maintain the airspeed is designed in a separate control
oop [39], such that only one control input, elevator deflection
e, is taken into concern and a mapping between one control
nput and one final output can be constructed. Before the el-
vator deflection is practically adjusted, the system control ut
enerated by the actor, or called elevator deflection command
c in this aerospace application, has to go through the actuator,
e

9

Fig. 3. The dynamics of actuator, a first-order system with rate and position
limits [25].

Table 1
Magnitude of the noises having impacts on controller design.
Source: Adapted from [50].

h [m] θ , α, γF [deg] q [deg/s] δe [deg]

Mean 1 2.2 × 10−1 1.7 × 10−3 2.6 × 10−1

Standard deviation 8 × 10−2 1.8 × 10−3 3 × 10−2 4 × 10−2

which is modeled as a first-order system with rate and posi-
tion constraints, as illustrated in Fig. 3 [25]. The bandwidth of
actuator is 20.2 rad/s, deflection cannot exceed the range of
[−25 deg, 25 deg] and its changing rate is bounded in the range
of [−90 deg/s, 90 deg/s] [39,49].

In real-word applications, noise is unavoidable, and unfore-
seen changes of system dynamics or even sudden failures might
be encountered. Consequently, there is need to approximately
model these uncertainties for verification of the developed
method. Non-zero mean white measurement noise acting on
the feedback signals and actuator is taken into account, and the
magnitude of real-world phenomena utilized for simulation is
given in Table 1 [50]. This noise can have impacts on the per-
formance of the controller, but can also act as exploration noise
to better satisfy the persistent excitation (PE) condition [25]. It is
noted that only PO methods requires to consider measurement
noise, while in the FSF condition, the acquired data is assumed
noise-free.

Sudden structural damages may be encountered during flight,
which require fault-tolerant control (FTC) [14]. Fault diagnosis
is a significant part of FTC, but will not be discussed in this
paper. Several kinds of sudden faults and their aftermath have
been scrutinized in [39]. It has been investigated that moving
mechanisms, such as actuators, are more likely to be affected by
unexpected faults. There are four faults taken into consideration,
namely reduction of bandwidth, strengthening of rate limitation,
output deviation and reduction of control effectiveness, while the
last situation can also be triggered by the structural damages
changing aerodynamics [25]. As to the faults of static structure,
damage of the horizontal stabilizer is selected to be investigated.
This damage has significant impact on both static and dynamic
stability for longitudinal dynamics, and mass loss is often en-
countered simultaneously, which will instantaneously change the
center of gravity.

5.2. Simulation results

An AOA tracking problem is firstly taken into consideration.
How to implement the GDHP method can be found in [25] and
is omitted here. For better comparison, the settings in IGDHP-
FSF, IGDHP-PO and GDHP-PO are as consistent as possible and
the best possible parameters are ascertained by repeating the
experiment. The actor, critic and model networks are all fully
connected and consist of three layers of nodes. For balancing the
accuracy with the computational efficiency, we experimentally
set the number of hidden layer neurons in all three networks as
25 and a sigmoid function is adopted as the activation function.
Both actor network and model network introduce a bias term
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arameters about the descending learning rates.

ηa ηc1 ηc2 ηm

Initial value 2 1 0.2 1
Descending coefficient 0.999995 0.9995 0.995 0.999995
Lower bound 10−2 10−4 10−4 10−2

as an input, and ba = bm = 0.01. Large random initial weights
an significantly affect learning performance, whereas small ones
ill decrease initial exploration efficiency. Therefore, as a trade
ff, All weights are randomly initialized within a small range of
−0.1, 0.1], and bounded within the range of [−20, 20]. With the
information of derivatives, the DHP technique generally surpasses
HDP in tracking precision, convergence speed and success rate [6]
and therefore β is chosen to be 0.1 to take advantage of the
derivative information. We experimentally choose Q = 8, R = 1
and γ = 0.99995 to formulate the critic network. It should be
noted that R can also be 0, but for the purpose of decreasing
nergy cost, it is set positive definite. As mentioned above, the
ystem state only includes AOA and pitch angle, and therefore
he minimum width of the sliding window is 3. To enhance the
tability, the window width is set to 4 for IGDHP-PO and IGDHP-
SF, and 5 sets of data are utilized by GDHP-PO to ensure the
ame level of data use, in that both IGDHP-PO and IGDHP-FSF
mploy the increment information, which is acquired from 5 time
nstants. F̂ t is initialized to be composed by 4 identity matrices
and Ĝ

t
starts from a zero matrix. γRLS is chosen to be 0.99995. Covt

riginally is a diagonal matrix with all main diagonal elements
hosen to be 107 [48], since the trace of Covt indicates the
agnitude of the estimated errors, which can initially be infinite
ue to insufficient or incorrect knowledge of the system [51].
esides, a descending method is applied to guarantee effective
earning, which suggests that the learning rates are initially set
o be large numbers and gradually decrease at each time step
y being multiplied by a descending coefficient until bound is
eached, and the corresponding parameters are given in Table 2.
ll experiments are carried out with a sampling frequency of
kHz and computed using Euler’s method. In order to achieve
he PE condition, a probing signal is introduced at the initial
xploration stage. How to design a good probing signal is still
n open problem, but for this paper a 3211 disturbance signal
hat changes its sign over time as a particular proportion [5,25]
s introduced to excite the system modes.

Firstly, the system is supposed to track a human-designed AOA
eference signal online using IGDHP-FSF, IGDHP-PO and GDHP-
O, respectively. The AOA reference signal varies around the
rimmed condition, namely 2.6638 deg. The comparison of the
erformance is given in Fig. 4, where the system is initialized
o be at the benchmark condition. If successfully implemented,
ll three methods can complete the tracking task. Among them,
GDHP-FSF shows the best performance, with a control policy
hat converges fast. In the PO condition, both IGDHP-PO and
DHP-PO methods can track the reference after a small period
f vibration and get similar performances. The settling time of
GDHP-PO is slightly smaller than that of GDHP-PO method but it
an be ignored in the practical applications. Due to the influence
f measurement noises, the tracking precision of these PO-based
ethods is lower than IGDHP-FSF. As presented in subfigure (b),

he tracking errors (denoted by ∆α) of IGDHP-PO and GDHP-PO
eep oscillating around the mean value of the AOA sensor noise,
hile the tracking error of IGDHP-FSF is approximately 0 at the
table stage.
Fig. 5 illustrates the elevator deflection command produced by

he IGDHP-PO method starting from the benchmark condition.
rom the inset, it can be seen that a 3211 disturbance signal,
10
Fig. 4. Online AOA tracking control with initially benchmark condition.

Fig. 5. Elevator deflection command produced by the IGDHP-PO method starting
from the benchmark condition.

Fig. 6. Convergence of the actor weights using the IGDHP-PO approach with
initially benchmark condition.

is applied to kick off the learning process. The control input
command turns to be nearly 0 after the probing signal vanishes
since the initial weights of the actor network are tiny random
values, as presented in Fig. 6. Then both critic and actor networks
are excited and the actor–critic scheme behaves as a high-gain
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Fig. 7. Online AOA tracking control with different initial states using the IGDHP-PO approach.
T
S
C

ontroller during the exploration stage until the weights con-
erge. The learning process is performed totally online and will
ontinue even after the policy has converged.
In addition, the initial condition can have an impact on the

ontroller while the proposed IGDHP-PO approach can deal with a
ide range of initial states within [−10 deg, 15 deg] without loss
f precision. As presented in Fig. 7, the AOA can track the given
eference signal αref in less than 2 s for all initial conditions using
he IGDHP-PO approach, which is indicative of its competent
daptability and robustness.
Nevertheless, only when the task is successfully carried out,

an the results presented above make sense. Random factors,
uch as initial weights of ANNs and measurement noises, can
ave impact on the performance and occasionally even trigger
ivergence and failure. To compare the robustness of these algo-
ithms to various aspects, a concept of success ratio is introduced
s a performance index. For a successful implementation, the
mplitude of the AOA trajectory cannot transcend a range of
−15 deg, 20 deg] over the whole control period, the system is
upposed to be able to track the reference signal after 2π seconds,
nd the tracking errors will not exceed 1 deg hereafter. Remaining
ll parameters unchanged except for probing signal, 1000 Monte
arlo simulations are implemented to assess the performance of
hese approaches.

The experiment are executed with 7 different initial AOAs and
qual reference to evaluate the robustness of these approaches
owards initial tracking errors and the results regarding success
atio are illustrated in Table 3. Both IGDHP-FSF and IGDHP-PO
ave a success ratio of 100% in the benchmark condition, which
mplies these approaches are stable for this tracking control prob-
em. On the other hand, the success ratio of GDHP-PO in the
enchmark condition is merely 51.2% and for all initial states,
he success ratios of IGDHP-FSF and IGDHP-PO outclass those of
DHP-PO, demonstrating the incremental technique can signifi-
antly improve system identification compared to the traditional
lobal ANN-based model in this online application. The success
atios of IGDHP-PO are generally smaller than those of IGDHP-
SF, which is intuitively predictable, while the differences are
ess than 1% for more than half initial states and this shows that
he IGDHP-PO can cope with PO situations. It is shown that the
uccess ratios with α0 = −5 deg and α0 = 0 deg decrease
y 35.5% and 21.5% for IGDHP-FSF and by 53.7% and 26.5% for
GDHP-PO compared to the benchmark condition, respectively.
esides the algorithms themselves, this reduction of success ra-
io can also be caused by the collective effect of the nominal
11
able 3
uccess ratio comparison for different initial states with 1000 times of Monte
arlo simulation.
α0[deg] −10 −5 0 2.6638a 5 10 15

IGDHP-FSF 100% 64.5% 78.5% 100% 100% 99.1% 99.4%
IGDHP-PO 92.7% 46.3% 73.5% 100% 99.3% 99.2% 99.6%
GDHP-PO 25.7% 38.2% 45.3% 51.2% 44.3% 41.4% 50.5%

aAOA value in the benchmark condition.

reference signal and inherent dynamics of the system. Besides,
it should also be noted that in multiple cases the success ratio
is not 100%, which is owing to the fact that it is arduous to
accomplish optimal PE condition due to the circular argument
between PE condition, accurate system information and stable
control policy [25]. Although some cases can achieve a success
ratio of 100%, random factors prevent the controller from consis-
tent perfect tracking. Nevertheless, there is still prospect of full
success and the results presented in Table 3 are obtained based on
current settings. The development of various aspects can benefit
the stability and improve success ratio, such as sensor precision,
probing signal, parameter initialization and learning rates. It is
still an open problem to improve these factors and therefore
this paper concentrates on the assessment of robustness between
IGHDP-FSF, IGDHP-PO and GDHP-PO.

The adaptability is one of the most significant aspects through
which ACD approaches show their superiority over other con-
ventional optimal control methods. Sound polices can be learned
automatically by updating the weights of the networks, which
enables ACDs be applied to FTC problems. Therefore, the follow-
ing part investigates and compares the capability to adapt of
IGDHP-FSF, IGDHP-PO and GDHP-PO by applying them to two
fault scenarios, where the system is supposed to track a sinusoidal
reference signal. Considering the moment when the faults happen
can have an influence to the results, the faults are designed
to take place at the instants of 4π seconds and 5π seconds,
respectively.

The first fault scenario examined is that the elevator actuator
is partially damaged. Specifically, the elevator suddenly loses 30%
of its effectiveness and 50% of its bandwidth, and the bound of
deflection rate degrades by 1/3 to [−60 deg/s, 60 deg/s]. Besides,
there is a constant disturbance acting on the actuator, making
the real deflection 2 deg larger than the produced commands.
The results are illustrated in Figs. 8 and 9, where the malfunction
of the actuator does not exceedingly affect the performance of
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Fig. 8. Online AOA tracking control with a malfunction of the actuator occurring
at the 4π seconds.

Fig. 9. Online AOA tracking control with a malfunction of the actuator occurring
at the 5π seconds.

these adaptive controllers, especially for IGDHP-FSF, which acts
completely to normal after a small oscillation, without significant
increase of tracking errors. The impacts of the sudden damage on
IGDHP-PO and GDHP-PO are more obvious, which escalate their
tracking errors in varying degrees. It can be seen that the tracking
errors of both approaches increase after encountering instanta-
neous damage, while IGDHP-PO relatively surpasses GDHP-PO
since the latter has larger errors. Nevertheless, all approaches are
capable of handling this fault scenario.

The second fault scenario investigated is the damage of the left
horizontal stabilizer. With an intact right horizontal stabilizer, the
center of gravity inevitably shifts from the normal position, which
will lead to an increment of pitching moment. This structural
damage can also affect the closed-loop performance by degrad-
ing longitudinal damping and stability margin. As presented in
Figs. 10 and 11, the static structural fault caused by damage of
the horizontal stabilizer demonstrates a bigger impact compared
to the considered actuator fault. At large positive values of AOA,
the tracking performance of all three approaches significantly
degrades to different extents. On the whole, all approaches can
adapt to this sudden fault in that their performance is improving
with the time. IGDHP-PO still outperforms GDHP-PO in adapta-
tion since after one period of reference signal, the tracking errors
of IGDHP-PO has declined to less than 1.5 deg while tracking er-
rors of GDHP are beyond 2 deg. Synthesizing two fault scenarios,
12
Fig. 10. Online AOA tracking control with the left horizontal stabilizer damaged
at the 4π seconds.

Fig. 11. Online AOA tracking control with the left horizontal stabilizer damaged
at the 5π seconds.

Fig. 12. Altitude and pitch angle control loops used to generate AOA reference
signal.

it can be concluded that incremental technique has an advantage
of quick adaptation over conventional ANN-based global model.

Then, more practical application scenarios are investigated,
where the altitude control loop assisted with PID controller is
introduced to generate a more realistic reference signal. The pitch
angle of the system is selected as the controlled variable of the
intermediate loop, i.e., from outer loop to inner loop, the con-
trolled variables are altitude, pitch angle and AOA, respectively,
as illustrated in Fig. 12. Other system states are regarded as
the unmeasured inner states. Although flight path angle is more
widely used as the intermediate variable, in this experiment,
choosing pitch angle show a better performance, which is also
feasible in the real world. In practice, proportional control is often
applied alone, and in this paper, kh = 3, kθ = 5, while all other
parameters are kept unchanged.
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Fig. 13. Altitude and pitch angle control loops used to generate AOA reference
ignal.

Fig. 14. Online AOA tracking control with the reference provided by altitude
tracking control task.

Parameter variations can affect the dynamic response of con-
trol system. Hence, different discounting factors are examined
to further verify the robustness of the developed IGDHP-PO al-
gorithm. Figs. 13 and 14 demonstrate the tracking performance
with different discounting factors, where the subscript 1, 2, and 3
respectively stands for the case of γ = 0.99995, γ = 0.9, and γ =

.85. As can be seen, if successfully implemented, comparable
erformance can be obtained with different discounting factors.
ecause of initially random policy and totally online learning,
he tracking performance at the beginning is also imperfect. Due
o the measurement uncertainties and proportional controllers,
he generated AOA reference oscillates over the altitude control
ask. Despite this, the developed approach manages to keep the
racking errors mostly within 1 deg and controls the system
o track the designed altitude reference. Nevertheless, it is also
bserved that with other parameters unchanged, different dis-
ounting factors can lead to different success ratios, specifically
9.1% for γ = 0.99995, 97.3% for γ = 0.9, and 70.7% for γ =

.85. This shows that the developed IGDHP-PO approach is robust
o the forgetting factor to a certain extent.

In addition, load disturbance is often encountered in flight
ontrol due to turbulence. Therefore, the tracking performance
ith the presence of sudden load disturbance is examined. Al-
hough the turbulence can act on the whole aircraft, out of the
 r

13
Fig. 15. Online AOA tracking control with the presence of sudden load
disturbance.

Fig. 16. Evolution of the elevator deflection command and the sudden load
disturbance.

purpose of simplicity and reproducibility, the considered load dis-
turbance is set as an equivalent square wave disturbance acting
on the real elevator deflection, i.e. δe. As presented in Figs. 15
and 16, although sudden disturbance has an impact on tracking
performance, the proposed IGHDP-PO approach can adapt with a
fast changing deflection command. The largest impact happens
at the instant when the disturbance load appears for the first
time. When an equivalent 5 deg deflection disturbance is en-
countered, the controller tries to generate an opposite action to
stabilize it. Due to the overshoot, oscillations are initiated, but the
AOA signal manages to track the reference. After the onset, the
subsequent changing disturbance becomes less influential, which
demonstrates the robustness and the online learning property of
the proposed method.

6. Conclusion

This paper develops an incremental model-based global dual
heuristic programming (IGDHP) approach by combining global
dual heuristic programming (GDHP) and augmented incremen-
tal techniques, which solves the partial observability problem.
Moreover, the input saturation constraint is overcome by utilizing
a symmetrical sigmoid function as the output layer activation
function of the actor network, which frees the matrix R in the
eward from having to be positive definite.
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Various numerical simulation studies are conducted with an
aerospace system, including attitude control problems with dif-
ferent initial states and sudden structural changes, and an altitude
control problem combined with PID controller and hierarchy
technique. The results uniformly demonstrate that the developed
IGDHP algorithm can effectively deal with partial observability
and surpass conventional GDHP in online stability, robustness to
different initial states, and adaptability when encountering un-
foreseen faults. The applications to altitude control demonstrate
that the developed IGDHP algorithm is robust to parameter vari-
ations and load disturbance, and has the potential to be applied
to realistic complex scenarios combined with other techniques.

Future research should continue working on bridging the gap
between the algorithms and real world systems, and approaches
and skills to better satisfy the persistence excitation (PE) condi-
tion are specially recommended.

CRediT authorship contribution statement

Bo Sun: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Writing - original draft, Visualization, Fund-
ing acquisition. Erik-Jan van Kampen: Investigation, Resources,
Writing - review & editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] S. Suresh, N. Kannan, Direct adaptive neural flight control system for an
unstable unmanned aircraft, Appl. Soft Comput. 8 (2008) 937–948.

[2] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1, Athena
scientific Belmont, MA, 1995.

[3] H.J. Kappen, Optimal Control Theory and the Linear Bellman Equation,
Cambridge University Press, 2011.

[4] W.B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality, Vol. 703, John Wiley & Sons, 2007.

[5] Y. Zhou, E.-J. van Kampen, Q.P. Chu, Nonlinear adaptive flight control using
incremental approximate dynamic programming and output feedback, J.
Guid. Control Dyn. 40 (2016) 493–496.

[6] Y. Zhou, E.-J. van Kampen, Q.P. Chu, Incremental approximate dy-
namic programming for nonlinear adaptive tracking control with partial
observability, J. Guid. Control Dyn. 41 (2018) 2554–2567.

[7] B. Sun, E.-J. van Kampen, Incremental model-based heuristic dynamic
programming with output feedback applied to aerospace system identi-
fication and control, in: 2020 IEEE Conference on Control Technology and
Applications (CCTA), IEEE, 2020, pp. 366–371.

[8] P. Hušek, K. Narenathreyas, Aircraft longitudinal motion control based on
takagi–sugeno fuzzy model, Appl. Soft Comput. 49 (2016) 269–278.

[9] S.A.A. Rizvi, Z. Lin, Output feedback q-learning control for the discrete-time
linear quadratic regulator problem, IEEE Trans. neural Netw. Learn. Syst.
30 (2018) 1523–1536.

[10] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT press,
2018.

[11] R.S. Sutton, A.G. Barto, R.J. Williams, Reinforcement learning is direct
adaptive optimal control, IEEE Control Syst. Mag. 12 (1992) 19–22.

[12] F.L. Lewis, D. Vrabie, Reinforcement learning and adaptive dynamic
programming for feedback control, IEEE Circuits Syst. Mag. 9 (2009) 32–50.

[13] D. Wang, H. He, D. Liu, Adaptive critic nonlinear robust control: A survey,
IEEE Trans. Cybern. 47 (2017) 3429–3451.

[14] X. Liu, B. Zhao, D. Liu, Fault tolerant tracking control for nonlinear systems
with actuator failures through particle swarm optimization-based adaptive
dynamic programming, Appl. Soft Comput. 97 (2020) 106766.

[15] F.L. Lewis, K.G. Vamvoudakis, Reinforcement learning for partially observ-
able dynamic processes: Adaptive dynamic programming using measured
output data, IEEE Trans. Syst. Man Cybern. B 41 (2010) 14–25.

[16] B. Kiumarsi, F.L. Lewis, M.-B. Naghibi-Sistani, A. Karimpour, Optimal track-
ing control of unknown discrete-time linear systems using input–output
measured data, IEEE Trans. Cybern. 45 (2015) 2770–2779.
14
[17] A. Keshavarz, S. Boyd, Quadratic approximate dynamic programming for
input-affine systems, Internat. J. Robust Nonlinear Control 24 (2014)
432–449.

[18] D. Liu, X. Yang, D. Wang, Q. Wei, Reinforcement-learning-based robust
controller design for continuous-time uncertain nonlinear systems subject
to input constraints, IEEE Trans. Cybern. 45 (2015) 1372–1385.

[19] H. Modares, F.L. Lewis, Optimal tracking control of nonlinear partially-
unknown constrained-input systems using integral reinforcement learning,
Automatica 50 (2014) 1780–1792.

[20] H. Modares, F.L. Lewis, M.-B. Naghibi-Sistani, Integral reinforcement
learning and experience replay for adaptive optimal control of partially-
unknown constrained-input continuous-time systems, Automatica 50
(2014) 193–202.

[21] F.A. Yaghmaie, D.J. Braun, Reinforcement learning for a class of continuous-
time input constrained optimal control problems, Automatica 99 (2019)
221–227.

[22] K. Zhang, H. Zhang, X. Liang, Z. Wang, Neurodynamic programming
and tracking control scheme of constrained-input systems via a novel
event-triggered pi algorithm, Appl. Soft Comput. 83 (2019) 105629.

[23] Y. Zhou, E.-J. van Kampen, Q.P. Chu, Incremental model based online dual
heuristic programming for nonlinear adaptive control, Control Eng. Pract.
73 (2018) 13–25.

[24] B. Sun, E.-J. van Kampen, Incremental model-based global dual heuristic
programming for flight control, IFAC-PapersOnLine 52 (2019) 7–12.

[25] B. Sun, E.-J. van Kampen, Incremental model-based global dual heuristic
programming with explicit analytical calculations applied to flight control,
Eng. Appl. Artif. Intell. 89 (2020) 103425.

[26] B. Kiumarsi, K.G. Vamvoudakis, H. Modares, F.L. Lewis, Optimal and
autonomous control using reinforcement learning: A survey, IEEE Trans.
Neural Netw. Learn. Syst. 29 (2017) 2042–2062.

[27] B. Depraetere, M. Liu, G. Pinte, I. Grondman, R. Babuška, Comparison of
model-free and model-based methods for time optimal hit control of a
badminton robot, Mechatronics 24 (2014) 1021–1030.

[28] D.V. Prokhorov, D.C. Wunsch, Adaptive critic designs, IEEE Trans. Neural
Netw. 8 (1997) 997–1007.

[29] B. Sun, E.-J. van Kampen, Launch vehicle discrete-time optimal tracking
control using global dual heuristic programming, in: 2020 IEEE Conference
on Control Technology and Applications (CCTA), IEEE, 2020, pp. 162–167.

[30] D. Liu, D. Wang, D. Zhao, Q. Wei, N. Jin, Neural-network-based optimal
control for a class of unknown discrete-time nonlinear systems using
globalized dual heuristic programming, IEEE Trans. Autom. Sci. Eng. 9
(2012) 628–634.

[31] D. Wang, D. Liu, Q. Wei, D. Zhao, N. Jin, Optimal control of unknown
nonaffine nonlinear discrete-time systems based on adaptive dynamic
programming, Automatica 48 (2012) 1825–1832.

[32] E.-J. van Kampen, Q.P. Chu, J. Mulder, Continuous adaptive critic flight
control aided with approximated plant dynamics, in: AIAA Guidance,
Navigation, and Control Conference and Exhibit, 2006, p. 6429.

[33] D. Vrabie, F. Lewis, Neural network approach to continuous-time direct
adaptive optimal control for partially unknown nonlinear systems, Neural
Netw. 22 (2009) 237–246.

[34] S. Bhasin, R. Kamalapurkar, M. Johnson, K.G. Vamvoudakis, F.L. Lewis, W.E.
Dixon, A novel actor–critic–identifier architecture for approximate optimal
control of uncertain nonlinear systems, Automatica 49 (2013) 82–92.

[35] J. Na, G. Herrmann, Online adaptive approximate optimal tracking con-
trol with simplified dual approximation structure for continuous-time
unknown nonlinear systems, IEEE/CAA J. Autom. Sin. 1 (2014) 412–422.

[36] D. Liu, Y. Huang, D. Wang, Q. Wei, Neural-network-observer-based op-
timal control for unknown nonlinear systems using adaptive dynamic
programming, Internat. J. Control 86 (2013) 1554–1566.

[37] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, E. Schuitema, Efficient
model learning methods for actor–critic control, IEEE Trans. Syst. Man
Cybern. B 42 (2012) 591–602.

[38] Y. Huang, D.M. Pool, O. Stroosma, Q. Chu, Long-stroke hydraulic robot
motion control with incremental nonlinear dynamic inversion, IEEE/ASME
Trans. Mechatronics 24 (2019) 304–314.

[39] X. Wang, E.-J. van Kampen, Q.P. Chu, P. Lu, Incremental sliding-mode
fault-tolerant flight control, J. Guid. Control Dyn. 42 (2018) 244–259.

[40] X. Wang, S. Sun, E.-J. van Kampen, Q.P. Chu, Quadrotor fault tolerant
incremental sliding mode control driven by sliding mode disturbance
observers, Aerosp. Sci. Technol. 87 (2019) 417–430.

[41] Y. Zhou, E.-J. Van Kampen, Q. Chu, Incremental model based online
heuristic dynamic programming for nonlinear adaptive tracking control
with partial observability, Aerosp. Sci. Technol. 105 (2020) 106013.

[42] N. Szanto, V. Narayanan, S. Jagannathan, Event-sampled direct adaptive
NN output- and state-feedback control of uncertain strict-feedback system,
IEEE Trans. Neural Netw. Learn. Syst. 29 (2017) 1850–1863.

[43] Z. Wang, R. Lu, F. Gao, D. Liu, An indirect data-driven method for trajectory
tracking control of a class of nonlinear discrete-time systems, IEEE Trans.
Ind. Electron. 64 (2017) 4121–4129.

http://refhub.elsevier.com/S1568-4946(21)00076-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb1
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb2
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb3
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb4
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb5
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb6
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb7
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb8
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb9
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb10
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb11
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb12
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb13
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb14
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb15
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb16
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb17
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb18
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb19
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb20
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb21
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb21
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb21
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb21
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb21
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb22
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb22
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb22
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb22
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb22
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb23
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb24
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb25
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb26
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb27
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb28
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb29
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb30
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb31
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb32
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb33
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb34
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb34
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb34
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb34
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb34
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb35
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb35
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb35
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb35
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb35
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb36
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb37
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb38
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb39
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb39
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb39
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb40
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb40
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb40
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb40
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb40
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb41
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb41
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb41
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb41
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb41
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb42
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb42
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb42
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb42
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb42
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb43
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb43
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb43
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb43
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb43


B. Sun and E. van Kampen Applied Soft Computing 103 (2021) 107153
[44] S. Ragi, E.K. Chong, UAV path planning in a dynamic environment via
partially observable Markov decision process, IEEE Trans. Aerosp. Electron.
Syst. 49 (2013) 2397–2412.

[45] Y. Zhou, E.-J. van Kampen, Q.P. Chu, Hybrid hierarchical reinforcement
learning for online guidance and navigation with partial observability,
Neurocomputing 331 (2019) 443–457.

[46] X. Wang, E.-J. van Kampen, Q.P. Chu, P. Lu, Stability analysis for incremen-
tal nonlinear dynamic inversion control, J. Guid. Control Dyn. 42 (2019)
1116–1129.

[47] F. Grondman, G. Looye, R.O. Kuchar, Q.P. Chu, E.-J. van Kampen, Design and
flight testing of incremental nonlinear dynamic inversion-based control
laws for a passenger aircraft, in: 2018 AIAA Guidance, Navigation, and
Control Conference, 2018, p. 0385.
15
[48] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications, second
ed., John Wiley & Sons, 2013.

[49] L. Nguyen, M. Ogburn, W. Gilbert, K. Kibler, P. Brown, P. Deal, Nasa
Technical Paper 1538-Simulator Study of Stall/Post-Stall Characteristics of
a Fighter Airplane with Relaxed Longitudinal Static Stability, Tech. rep.
NASA, 1979.

[50] R. Van’t Veld, E.-J. van Kampen, Q.P. Chu, Stability and robustness analysis
and improvements for incremental nonlinear dynamic inversion control,
in: 2018 AIAA Guidance, Navigation, and Control Conference, 2018, p. 1127.

[51] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches, John Wiley & Sons, 2006.

http://refhub.elsevier.com/S1568-4946(21)00076-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb44
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb45
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb46
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb47
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb48
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb49
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb50
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb50
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb50
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb50
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb50
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb51
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb51
http://refhub.elsevier.com/S1568-4946(21)00076-4/sb51

	Intelligent adaptive optimal control using incremental model-based global dual heuristic programming subject to partial observability
	Introduction
	Problem statement
	Incremental model implementation
	Incremental model with FSF
	Augmented incremental model
	Online identification with RLS algorithm

	The IGDHP algorithm
	The critic network
	The actor network

	Numerical experiments
	Aerospace system model
	Simulation results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


