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Abstract

Fiber-optic distributed acoustic sensing (DAS) excels in high-quality seismic signal acquisi-
tion and detection but is often hindered by noise, significantly reducing signal-to-noise ratio
(SNR) and impeding microseismic event detection. Moreover, continuous seismic monitoring
campaigns generates huge data volumes. While numerous denoising approaches exist, they
often demand substantial computational resources, hindering real-time implementation. We
propose an unsupervised neural network to suppress random noise without requiring noise-
free ground truth or prior noise characteristics. The network learns to extract features by
masking random input traces and reconstructing the target using long-term coherence from
neighboring traces. We explore hyperparameter optimization by varying input sample gener-
ation, activation functions, scaling methods, and the number of input traces. We evaluate the
model by running a detection algorithm on FORGE data and achieve a 43% increase in event
detection. We further exploit our algorithm in real-time experiments and achieved within a
90% processing time compared to the data acquisition rate with denoising implemented . Our
approaches can be incorporated real-time data acquisition, effectively facilitate the screening
and storing the data timeframe with useful information.

August 1, 2024



viii Abstract

August 1, 2024



Acknowledgements

I would like to express my sincere gratitude to the following individuals for their invaluable
contributions to this research:

Dr. Boris Boullenger, my supervisor at TNO, for his patient guidance and insightful
contributions throughout the project. His expertise in DAS and machine learning was
instrumental to the success of this project;

Drs. V.P. (Vincent) Vandeweijer MSc, my second supervisor at TNO, for his expertise in
real-time acquisition and experimental setup, and his continuous encouragement throughout
the project.;

Dr. Ir. D.S. (Deyan) Draganov, my academic supervisor at TU Delft, for providing in-depth
theoretical guidance and support, and his unwavering enthusiasm for the project’s progress,
coupled with his valuable feedback on thesis drafts;

The Geophysics Team at TNO, the Geological Survey of the Netherlands for their generous
provision of resources and and their insightful guidance in integrating the results with
state-of-the-art methodologies;

Special thanks to my friends, Rhea, Ryan, Sargun, Karla, Kilian and Yuan for the
peer mental and technical support throughout the challenging phases of this thesis..

Delft University of Technology LongSang Ma
August 1, 2024



X Acknowledgements

August 1, 2024



Table of Contents

Abstract vii
Acknowledgements ix
Nomenclature XXi
Acronyms xxi
Introduction 1
Methodology 3
2-1 Blind Denoising Machine Learning Model . . . . . . . ... .. ... ... ... 3
2-1-1 Convolutional Neural Network (CNN) . . . ... ... ... ... ... .. 3
Activation Function . . . . . . . ... 4

Pooling Layers . . . . . . . . .. 5

Loss Function . . . . . . . . ... 5)
Backpropagation . . . . .. ..o 6
Optimisation Algorithm . . . . . . . . ... ... 7
Unsupervised Learning . . . . . . . . . ... 8

2-1-2  U-Net Architecture . . . . . . . . . . ... 9
2-1-3  Mathematical Concepts of Blind Denoising . . . . . .. ... ... ... 10
2-1-4 Related Study - jDAS . . . . . . 12

2-2 Training Strategy . . . . . . . .. 12
2-2-1 Masking . . . . .. 13
2-2-2  Machine Learning Glossary and Values . . . . . . .. .. .. ... .... 13

2-3 Data Preparation . . . . . . . ... 14
2-3-1 Distributed Acoustic Sensing Data (DAS) . . . . ... ... ... .... 14

August 1, 2024



xii Table of Contents
2-3-2 FORGE Data . . . . . . . . . . 15

2-3-3 Data Pre-processing . . . . . . . . . ... 16
Percentile Clipping . . . . . . . . . . . ... .. .. 17

Scaling Methods . . . . . . . . . ... 17

2-3-4  Input Samples Generation . . . . . . . .. ..o 19

Time Slice Windows . . . . . . . . . . .. ... 19

Time Flipping . . . . . . . . . 19

Data Expansion . . . . . . . . 20

2-3-5 Hyperparameter Testing . . . . . . . . . . ... 20

2-4  Microseismic-event Detection . . . . . . . . . .. ... oo 21
2-4-1 STA/LTA Method . . . . . . . . . . . 21

2-4-2  Coherence-based Earthquake Detector (HECTOR) . . . . . .. ... .. 21

3 Results 25
3-1 Machine Learning Analysis . . . . . . . ... 25
Influence of Data Augmentation . . . . . .. .. .. ... ... ..... 26

Influence of Scaling Methods . . . . . . .. .. .. ... .. ....... 27

Influence of Activation Layer . . . . . . .. .. .. ... ... ...... 27

Influence of Input Traces . . . . . . .. .. .. .. ... ... ...... 28

3-2 Denoising Test Results . . . . . . . . . . .. . .. 29
3-2-1 Performance Metrics . . . . . . . .. . 29

3-2-2 Experimental Design . . . . . . .. .. 29

3-2-3  Strong Microseismic Events Analysis . . . . . . ... .. ... ... ... 29

3-2-4  Weak Microseismic Events Analysis . . . . . . ... .. ... ... ... 33

3-3 Microseismic Detection Analysis . . . . . . . .. ... L L 42

4 Real-Time Denoising Experiment 47
Screening Experiment . . . . . . ... oL 48

5 Discussion and Outlook 51
5-1 Model Comparison . . . . . . . . . .. 51
5-2 Real-Time Detection Feasibility . . . . . . . . .. . ... ... ... ... .... 53
5-3 Limitations . . . . . . .. 54
Data Chunk Constraints . . . . . . . . . . ... .. ... ... . 54

Amplitude Distortion . . . . . . ... ... 55

Correlated Noise Mitigation . . . . . . . . . . . ... ... ... ..... 55

5-4 Future Outlook . . . . . . . . . 56

6 Conclusion 59
A Data Management Plan 65
B U NET Model Summary 67
B-1 Base Strategy . . . . . . . .. 67

August 1, 2024



2-3

2-5

2-6

List of Figures

CNN Architecture: By given an input of a fox image, the algorithm would analyse
the features in the hidden layers by doing convolutional layers and pooling to
summarise the local features. In classification phase, the model will study the
weights and perform a decision making with the results. . . . . . . .. ... ...

Graphical lllustration of ReLU (blue line), Swish (green line), and Tanh (red line).
ReLu will turn all the negative value into zero, Swish performs as an exponential
function with limited tolerance to negative value. TanH shows a curve similar to
a Sigmoid function but shifted to result in a zero centered tendency in loss from
both positive and negative value. . . . . . . . ... Lo

Mathematical illustration of a 2x2 max pooling (selecting the maximum value in a
block) and average pooling (averaging the value in the region) . . . . . . . . ..

Illustration of backpropagation: The above figures show the sequence of an algo-
rithm to learn the features of "2" with propagation. For each data, the computer
will create a latent space where it compress the data and extract the key features
to cluster the hidden patterns. With a new data input, the algorithm will recalcu-
late the weight and update the latent space so that it represents the data pattern
better, which the red points represent the update from data input. In the end, the
latent space will have the skeleton shape "2" and remove all the incoherent data
in reconstruction problems. . . . . .. ... Lo

Clustering in unsupervised learning: the algorithm goes through the data set and
categorising pattern with similar features. In the figure, three clusters are identified
with demarcations trends based on the given centroid of the subsets . . . . . . .

(a) An overview of U-Net Structure figure from [Kuijpers, 2020]. The blue rep-
resents the data used in downsampling, the grey represents the data used for
upsampling and the green represent the fully constructed data. The number on
top of each layer states the number of features represented and the more towards
the bottom, the heavier the weights of data. (b) A synthetic illustration of the con-
tracting path with ReLU, Normalisation and Maxpooling. A detailed explanation
would be found in the main text. . . . . . . ... ... L

August 1, 2024



xXiv

List of Figures

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

[llustration of the blind denoising. (a) The illustration of a conceptual profile.
Signal J represents a subject within this profile. Function f, a J-invariant function,
maps inputs to outputs which if we calculate the results of it (i.e, f(x)) would be
restricted with the results with f(J), and they would not produce the same results
and reconstruct things from the results of f(Jc). (b) An example of reconstruction.
There would be two independent variable, J which has a high coherent value and
Jc which is incoherent signal. With long-range coherent contents as shown in the
red blurred block in the right picture, the algorithm should able to interpolate
accurately with the missing data in the surroundings of J. However, for the blue
blurred block, the details cannot be predicted but only the average value (light
grey) could be predicted in the region. Therefore, the output of the function f
to reformulate the red block region would not depend on the contents in the Jc,
which is the J-invariance. . . . . . .. .o

Impact of jDAS on Raw Microseismic Data. (a) Rescaled raw microseismic event.
The detail description of the data would be provided in section 3.2. (b) Denoised
event using jDAS. The white block highlights an undesirable artifact preceding the
first arrival, which hinder subsequent data processing. . . . . . . . . .. ... ..

Illustration of the Masking: For each learning, we provide an input y with n neigh-
bouring traces (where n = 11 in this cases), and we randomly blank one of the

input traces and try to reconstruct the blanked one from the rest neighbouring
Traces. . . .. L

Principles of DAS and a synthetic demonstration. (a) A DAS unit is connected
to one end of a long optical fiber cable. It sends laser pulses (either harmonic or
chirp) into the fiber and analyses the Rayleigh backscattered light from the fiber's
inherent defects. Data processing and storage are performed in real time within
the DAS unit. Figure from [Zhan, 2019] . . . . . . ... .. ... ... .....

Illustrations of the directional sensitivity of DAS in a synthetic example along the
horizontal axis (the black line). Blue line represent the incoming wave directions
and red line represents the reaction from DAS. The solid line and dashed line
represent the positive value and negative value respectively as a scalar. (a) is the
situation when receiving signal horizontally. It reproduces the same waveform. (b)
is the situation when receiving signal in a perpendicular directions and it distorts
significantly. Figure from [Zhan, 2019] . . . . . .. ... ... ... ... ....

FORGE Site Plan. (a): The aerial photo of the site. 3 wells are drilled: 58-32 is
the stimulation well, 78-32 is the monitoring well with installed DAS and 68-32 is
instrumented with traditional geophones. (b) The cross-section of the subsurface
area in the Utah. Two isotherm surfaces (green — 175°C, red — 225°C) and the
granite contact (black) are plotted. Figure adapted from [Moore et al., 2023] and
[Lellouch et al., 2021] . . . . . . . . . ..

(a) Examples of strong microseismic events with SNR > 10 recorded on April 22,
2022. Such events are are used in training. (b) Examples of the weak microseismic
events SNR < 3. Such events are are hard to detect without proper denoising.

Using various scaling methods on the same microseismic data. (a) is min-max
normalisation. Values that are more negative will be scaled towards 0, while values
that are more positive will be scaled towards 1. (b) is max absolute normalisation.
Smaller values will be scaled towards 0, while larger values will be scaled towards
1. (c) is standardisation. Data are scaled with mean y and standard deviation o.

Illustration of the time slice windows. The left panel is the raw data while the
right panels show a patch of input traces (11 traces) after doing a min-max scaling
per trace. The red window demonstrates an earlier start of the sampling windows
while the blue window demonstrates a later start. . . . . . . .. ... ... ...

August 1, 2024

11

12

13

15

15

16

17

18

19



List of Figures

XV

2-16

2-17

2-18

3-1
3-2
3-3

34

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

Illustration of the time flipping, with the same dataset as in figure 2-15 The blue
window demonstrates an example along the time sequence while the green window
demonstrates a time-flipped case. . . . . . . . . ... ...

Different masking applied on one input data (top). Data enlarged by a factor of 3
while we select randomly a different trace as a missing trace (middle) and thus as
the target to be reconstructed (bottom). . . . . . . ... ...

Illustration of the semblance-based detection method, figure from
[Porras et al., 2024].  (a) Coherence time series obtained from the wave-
form data allowing detection of long-term and strong coherence. The detection
time would always be assigned at the first arrival. (b) Example 2-D semblance
matrices based on equation 2-15 in time domain and the vertical axis is the
relative distance. (c) The geometrical hyperbola (coefficient C; to Cy) at each
X; the hyperbolic trajectories that do not follow the seismic wavefield will have a
low semblance value (close to 0) while the presence of a hyperbolic event along a
finite-width data window would imply a seismic event. . . . . . . . . . ... ...

The training and validation loss with 1,2, and 3 masking applied in retraining. . .
The training and validation loss with or without random flipping. . . . . . . . ..

The training and validation loss with 3 different scaler: MinMax normalisation,
MaxAbs normalisation, and StandardScaler. The left y-axis (black colour) indicates
the loss with regards to MinMax and MaxAbs, while the right y-axis (green colour)
indicates the loss with regards to StandardScaler . . . . . . ... ... ... ..

The training and validation loss with 3 different activation layer on both minmax
scaler and standardscaler, which are ReLu, Swish, and Tanh. The left y-axis (black
colour) indicates the loss with regards to MinMax, while the right y-axis (green
colour) indicates the loss with regards to StandardScaler . . . . . ... ... ..

The training and validation loss with 11, 31, and 51 input traces . . . . . . . ..

(a)Example of a raw FORGE microseimsic event with SNR ratio = 9.77. (b)
Rescaled version of (a) with normalisation by the amplitude of the first P-wave
arrivals. The red block, green block and yellow block represent the part extracting
the P-wave signal, Noise and S-wave Signal respectively. (c) Absolute value of the
data in (b) used to facilitate qualitative assessment . . . . . . . . ... ... ..

Test case with Strategy A: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . . .

Test case with Strategy B: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢c. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . . .

Test case with Strategy C: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . . .

Test case with Strategy D: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6c. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . ..

Test case with Strategy E: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . ..

Test case with Strategy F: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6c. A darker background
in the noise distribution plot indicates more effective noise removal. . . . . . ..

19

20

23

26
26

27

28
28

30

31

32

32

32

33

August 1, 2024



xvi

List of Figures

3-13

3-14

3-15

3-16

3-17

3-18

3-19

3-20

(a) and (b) are the profile of a weak FORGE microseimsic event with white random
noise added which the corresponding SNR ratio is 0.8 (Case I) and 0.02 (Case II)
respectively. (c) and (d) are the rescaled versions of Case | and Case Il with
normalisation by the amplitude of the first P-wave arrivals. The red block, green
block and yellow block represent the part extracting the P-wave signal, Noise and
S-wave Signal respectively. (e) and (f) are the absolute value of the data in (c)
and (d) used to facilitate qualitative assessment. In (f) it shows that this test case
it is a completely hidden signal with respect to first arrival amplitude. . . . . . .

Test cases | and |l with respect to Strategy A: (a) and (b) are the denoised profile
with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute
profile with respect to 3-13e and 3-13f. Note that the white rectangular block with
dotted line shows undesirable artifact in denoising. (e) and (f) are the post-filtered
profile with range 10 to 150 Hz with respect to (a) and (b). (f) and (g) are the
post-filtered absolute profile with respect to (e) and (f). . . .. ... ... ...

Test cases | and |l with respect to Strategy B: (a) and (b) are the denoised profile
with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute
profile with respect to 3-13e and 3-13f. Note that the white rectangular block with
dotted line shows undesirable artifact in denoising. (e) and (f) are the post-filtered
profile with range 10 to 150 Hz with respect to (a) and (b). (f) and (g) are the
post-filtered absolute profile with respect to (e) and (f). . . .. ... ... ...

Test cases | and Il with respect to Strategy C: (a) and (b) are the denoised profile
with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute
profile with respect to 3-13e and 3-13f. Note that the white rectangular block with
dotted line shows undesirable artifact in denoising. (e) and (f) are the post-filtered
profile with range 10 to 150 Hz with respect to (a) and (b). (f) and (g) are the
post-filtered absolute profile with respect to (e) and (f). . . . .. ... ... ..

Test cases | and Il with respect to Strategy D:
with respect to 3-13c and 3-13d respectively. (c
profile with respect to 3-13e and 3-13f. (e) and (f) are the post-filtered profile with
range 10 to 150 Hz with respect to (a) and (b). (f) and (g) are the post-filtered
absolute profile with respect to (e) and (f). . . . ... ... ... ... ... ..

—~

a) and (b) are the denoised profile
and (d) are the denoised absolute

~— ~—

Test cases | and Il with respect to Strategy F: (a) and (b) are the denoised profile
with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute
profile with respect to 3-13e and 3-13f. Note that the white rectangular block with
dotted line shows undesirable artifact in denoising. (e) and (f) are the post-filtered
profile with range 10 to 150 Hz with respect to (a) and (b). (f) and (g) are the
post-filtered absolute profile with respect to (e) and (f). . . . .. ... ... ..

[llustration of a microseismic detection. (a) The STA/LTA algorithm which the
top panel represents the trace amplitude and the following two panels show the
detection from trace 520 and 720 respectively. Detection starts at 10s after the
LTA can be constructed. A strong event is detected with the trigger on at 25s,
as the amplitude level is stronger than the threshold over 2.0. (b) The detection
from HECTOR between relative time 15s to 30s, which detects the same event
with a strong coherence matrix. The green box marks the time location for the
weak microseismic events, where the HECTOR could able to detect with coherence
matrix, while the STA/LTA could only see a small spike but the amplitude level is
not strong enough to detect it. . . . . . . . .. .. ...

Microseismic detections for Strategy F and Strategy B: The green boxes highlight
weak microseismic events which can be detected by both methods. The strong
microseismic events (red boxes) remain to be detected. . . . . . . ... ... ..

August 1, 2024

34

37

38

39

40

41

42

43



List of Figures

xvii

3-21

3-22

4-1

5-1

Microseismic detections for (a) Strategy A, (b) Strategy C and (c) Strategy D: The
green boxes highlight weak microseismic events only detectable by the Strategy A.
Yellow boxes in Strategy A and Strategy C indicate edge effects that negatively
impact detection. Additionally, blue boxes in Strategy A and Strategy D show areas
with false detections. Notably, all strategies successfully detect strong microseismic
events (red boxes). . . . . ...

Microseismic Event Detection Comparison. (a) Cumulative number of detected
events within a 10-minute interval using three methods. (b) Performance metrics
comparing the three approaches. . . . . . . . .. .. ... L.

Real-Time Denoising Profile: The upper profile shows the raw data collected and
the lower profile shows the denoised results. Note that only data logged with
relative distance Om to 0.1m are denoised. (a) shows the profile with raw data
while (b) to (f) shows the profile with synthetic microseismic data happening at
random time. . . . . . ...

(a)Steam Data Logging Profile: the message queue was requested at time 11.27
seconds and was sent in 11.98 seconds. The red block indicates the message sent
in time for each request and the time interval would be between 1s to 2s. (b)
Single Data Packet processing Time: the processing is plotted with the relative
processing time at each requests. The computational time with denoising only is
plotted in orange while denoising and detection is plotted in blue. Note that none
of the request for doing denoising exceed 90% of the processing time. . . . . . .

Example of a false positive in real-time experiment: (a) demonstrates a scenario
with real-time denoising, and the trace location where STA/LTA is applied in 2
different case. (b) demonstrates the event can be detected if traces are selected
in the blue region. (c) demonstrates the event cannot be detected if traces are
selected in the red region. . . . . . . ...

Real-Time Denoising Profile and Single Trace Analysis: (a) The raw microseismic
events. (b)The denoised profile when the input file is more than 2048 time samples,
and an edge effect would be created at the boundary of each denoising windows
(i,e, multiple of 2048) as shown in the red block. (c) The single trace comparison
among the raw data, Strategy B and Strategy C at trace 140, 540 and 740. As
shown the amplitude is distorted among all denoised profile, and the edge effect as
circled in red is more obvious among weaker traces (a spike in the orange profile).
For MaxAbs scaling, it tends to reconstruct the amplitude in single polarity as circle
in orange block in trace 540, which hinders the extraction of phase information
afterwards . . . . . L

(a)Conceptual ideas of overlapping examples and the data demonstration: We
would expand our data with an 50% overlapping windows before computing de-
noising, and then recombine the data without selecting the edge from each data
drunk. (b)The denoised profile. (c) The denoised profile with overlapping windows.
The edge effect would be gone as shown in the red block. . . . . . .. ... ...

(a) False detection caused by surface-correlated noise (marked in red) in the mi-
croseismic event detection experiment (Section 3.3). (b) Denoised profile with
surface-correlated noise remained. . . . . . ...

44

44

48

49

93

54

95

August 1, 2024



xviii List of Figures

August 1, 2024



List of Tables

2-1 Fixed parameters used in the training process . . . . . . . . . .. ... ... .. 14
2-2  Varying hyperparameters in the training process, (* represents the chosen value

for baseline model) . . . . .. 20
3-1 The varying variables in different retraining strategy . . . . . . . .. .. ... .. 29
3-2  Comparison of P-wave and S-wave SNR values for different processing strategies. 31
3-3 Comparison of P-wave and S-wave SNR values for different processing strategies. 35
4-1 Confusion Matrix for the STA/LTA running in the raw data profile . . . . . . . . 50
4-2  Confusion Matrix for the STA/LTA running in the denoised profile . . . . . . .. 50

August 1, 2024



XX List of Tables

August 1, 2024



Acronyms

CCS Carbon Capture Storage

CNN Convolutional neural network

DAS Distributed Acoustic Sensing

HECTOR Coherence-based Earthquake Detector

FORGE the Utah Frontier Observatory for Research in Geothermal Energy
ReLu rectified linear unit

RMSE Root Mean Square Error

SNR Signal-to-Noise Ratio

STA /LTA Short-Term Average/Long-Term Average

TanH Hyperbolic Tangen

August 1, 2024



xxii Acronyms

August 1, 2024



Chapter 1

Introduction

Initially designed for signal recording, Distributed Optical Fiber Acoustic Sensing (DAS)
has emerged as a powerful tool for seismic signal detection (In Section 2.3.1, we provide a
detailed explanation of the characteristics and concepts underlying DAS). Compared with
conventional seismic geophones, DAS provide an advantage in having high spatial resolution,
covering large distance, strong resistance to harsh environments, and most importantly,
provides the possibility for continuous monitoring along the entire length of the fiber optic
cable [Yang et al., 2022]. Therefore, DAS has been widely adopted in the geophysical sector,
with the ability of doing hydraulic-fracture monitoring, microseismicity detection, downhole
surveillance and flow monitoring, fault characterisation and other near surface seismological
applications [Li et al., 2021].

Due to the inherent high resolution of fiber optic data, seismic data acquired by DAS
typically contains a complex mixture of signals. Often, our target signals would be obscured
by various types of noise. Ambient noise such as wind, ocean waves that are heterogeneous
in space and non stationary in time will contribute to the seismic signals coherently
[Correa et al., 2017] while random noise or coda waves can be appearing in a total trace
with unpredictable format [Ma, 2024]. The noise would create a low signal-to-noise ratio
(SNR) for the DAS seismic data, leading to challenges in doing imaging, inversion and
interpretation, or even a false detection of microseismic events.

To tackle the noise problem, many denoising methods have been developed and used
to suppress noise in seismic data and yet there is still limitations for DAS data.
For example, bandpass filtering can remove stationary noise at a specific frequency
[Hudson et al., 2021], but it cannot tackle coherent noise with overlapping frequency in
the signal [van den Ende et al., 2023a]. Deconvolution is aimed at making data sparser
but it fails when the reverberations have comparable velocity to the first arrivals and are
spatially not separated from the direct arrival [Zhu et al., 2023a]. Median filtering and dip
filtering can tackle optical abnormal noise and horizontal noise respectively, but achieving
unsatisfactory results in a mixed scenario [Binder and Tura, 2020]. Therefore, methods for
suppressing complex noise and improving SNR in geophysical data obtained from DAS are
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2 Introduction

desired.

Machine learning, especially in deep learning where the algorithm has the ability to
execute feature engineering on its own, has been showing great potential in building a flexible
modular architecture which can learn complex relationships and predict outputs fast with
the high inference speed. For example, convolutional neural network (CNN) which learns
features by filters optimisation has proved to be applicable in various geophysical fields,
including seismic event detection, first-arrival picking, seismic inversion, and earthquake
early warning [Wang et al., 2023]. Studies also show that CNN are capable of suppressing
noise blindly and revealing the hidden signals. [Yang et al., 2022]

With all the findings, there is always an interesting gap to look for the use of deep
learning approaches together for DAS data, particularly in microseimsic monitoring when
we have data with high resolution. The approach and applications are generally similar to
earthquake monitoring, but microseismic monitoring mainly deals with weak seismic signal
with the absence of visible signals in individual receivers [Foulger et al., 2018]. Despite extra
steps in data processing, clear microseismic events can allow scientists to monitor the progress
and safety of subsurface projects like oil and gas production, carbon capture storage projects
and geothermal energy, or the storage of water in dams [Anikiev et al., 2023]. A denoised
seismic profile would provide a more precise detection of microseismic events. Moreover,
the fast usage of the denoised model drives the possibility of applying as a screening of
incoming real-time data. The successful implementation can highly reduce the manual
effort in incorrect detections and inaccurate locations of the weak events as mentioned by
[Igbal et al., 2018] during data processing.

This study focuses on implementing the U-Net architecture (proposed by
[Ronneberger et al., 2015]) for the blind denoising of DAS data acquired from the FORGE
geothermal site at the University of Utah. For the FORGE Project, 1.3 TB of DAS data is
collected per day which highlights the problem of data storage and the huge manual effort
for data interpretation in months long seismic minoring campaigns [Porras et al., 2024]. The
outline of the thesis as follow:

1. A review of the structure of the selected U-Net algorithm and the mathematical concepts
behind blind denoising;

2. A methodology focusing on data processing, including data augmentation, scaling meth-
ods, and the detection algorithm for microseismic events;

3. A detailed explanation of the training phases, with a structured massing strategy, input
samples generation and a list of tuning parameters;

4. A real-time DAS monitoring experiment with the implementation of the denoising al-
gorithm in TNO Utrecht;

5. A quantitative result analysis with regards to the output models such as SNR compar-
ison, training, validation loss, detection accuracy;

In the end, this study evaluates a denoising algorithm’s performance on strong and weak
microseismic events, and explores its potential for real-time implementation.
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Chapter 2

Methodology

2-1 Blind Denoising Machine Learning Model

2-1-1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a feed-forward neural network that learns the feature
engineering (process of designing informative attributes from raw data for an algorithm to
learn from) by the kernel optimisation. CNNs are widely adopted due to their ability in
learning critical features directly from data without any human supervision. Convolution, a
core concept in image processing, involves sliding a small kernel over an image. By calculating
the weighted sum of overlapping pixels, it captures how image features are influenced by
their neighbours, enabling sharpening effects which is particularly crucial in denoising.

Figure 2-1 shows a general examples of CNNs Architecture. The first layer would be
convolutional layer, where it applies multiple filters slides over the images to extract the
features. In the following activation layer, the moving filters would use an activation map
which distinguishes the discriminative region of the image and influence the model to make
the decision. To reduce the spatial size of the representation and the required amount of
computation and weighs, a pooling layer would be adopted after each convolutional layer to
summarise the statistics locally with nearby outputs.

Multiple functions can be performed by CNNs, including clustering, classification, object
detection. In Figure 2-1 it demonstrates the classification ability in CNN. In classification
phase, algorithm would connect the weights, build a model and adopt backpropagation to
compute the gradient of a loss function with respect to weights to look for the optimal output
of the model. As a result, with different figures, the algorithm could be able to classify the
input figures into different categories, which would be ”fox” in Figure 2-1.

CNNs can be utilised in both supervised and unsupervised learning contexts. In su-
pervised learning, the model is trained with labelled data, providing a ’ground truth’ for the
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desired output. In contrast, unsupervised learning does not use labelled data; the model
identifies patterns and structures without prior knowledge. The idea of unsupervised learning
will be discussed in further detail.

- O’:r\\‘
O=igm0—Tom |
og
O O—P Fox
O O—b‘ Cat ‘
O
O
Input Canvolufion = Pooling Weights Output

Activation Layer

Figure 2-1: CNN Architecture: By given an input of a fox image, the algorithm would analyse
the features in the hidden layers by doing convolutional layers and pooling to summarise the local
features. In classification phase, the model will study the weights and perform a decision making
with the results.

Activation Function

Activation functions play an important role in finding relationships in datasets by deter-
mining a neuron should be activated based on the input of the network. The functions will
activate the neuron when the input is important for prediction and it is commonly defined by
binary steps, linear and non-linear mathematical formulas. In practice, non-linear activations
are used to add additional complexity to the problem as real-world data mostly cannot be
addressed in linear operations [Szandala, 2021]

Figure 2-2 shows three non-linear activations used in this project, namely rectified lin-

RelU, Swish, and Tanh Activation Functions

44— ReLU
—— Swish
— Tanh

flx)

Figure 2-2: Graphical lllustration of ReLU (blue line), Swish (green line), and Tanh (red line).
ReLu will turn all the negative value into zero, Swish performs as an exponential function with
limited tolerance to negative value. TanH shows a curve similar to a Sigmoid function but shifted
to result in a zero centered tendency in loss from both positive and negative value.
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ear unit (ReLU), Swish, and Hyperbolic Tangent (TanH). ReLU turns all the negative values
to 0 while the positive values remain unchanged so that it avoids gradient issues during
backpropagation and speeds up the computation. Swish is a smooth, non-monotonic curve
that could learn complex models. It addresses the undefined derivative if the maximum
positive value is also 0 and avoids the occurrence of dead neurons in the training when they
face negative values. It provides more complexity of the models with negative inputs. TanH
tends to turn input function to become very small (close to -1) or very large (close to +1),
leading to a certain desire of output. Note that Swish and TanH are more computationally
expensive than ReLU. TanH would also suffer from vanishing gradient problems, which the
weights in the earlier layer struggle to update and learn representative features from input
data.

Pooling Layers

Pooling layers or downsampling layers are essential for reducing the spatial dimensions of
the input data, while retaining the most important information for the programme to learn.
Figure 2-3 shows two common pooling techniques, namely max pooling and average pooling.
Max pooling selects the maximum value within a region as the output, while average pooling
calculates the mean of a region. Both techniques could reduce overfitting, but max pooling
may neglect some small-valued features and thus result in information loss while average
pooling cannot preserve fine details and results in a resolution reduction and image blurring
[Gholamalinezhad and Khosravi, 2020].

2x2 9 12
MaxPool
10 8
6 1 8 12
3 9 2 5
5 10 8 2
4.75 6.75
7 0 ® ! 55 425
2x2 )
Average Pool

Figure 2-3: Mathematical illustration of a 2x2 max pooling (selecting the maximum value in a
block) and average pooling (averaging the value in the region)

Loss Function

The loss function quantifies the difference between the actual target values with the predicted
outputs in the deep learning algorithm. In a regression problem, we aim to minimise the loss
with the gradient of the loss function to effectively improve the model’s performance on the
input data. In general, we would use the root mean square error (RMSE) and Mean Absolute
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Error (MAE), as defined as:

RMSE =, | > (i — i) (2-1)
=1
1< .
MAE = —~ > Ly — il (2-2)
=1

where:

e n is the number of data points,
e y; is the actual value,

e ¢; is the predicted value.

In this study, we adopted RMSE for the loss calculation. RMSE would be more sensitive to
outliers when comparing with MAE [Li et al., 2022]. Therefore, in our data pre-processing,
outlier removal would be performed by percentile clipping.

Backpropagation

In a training, forward propagation would compute the loss from the predicted model, while
backpropagation will use the loss function and feed the neural network layers to fine-tune the

weights. Mathematically,
ok

Awgj = =1 Ow.s
ij

(2-3)
where:

e Awj; is the change in weight from neuron j to neuron ¢,
e 7) is the learning rate,

e F is the error function or loss function,

° % is the partial derivative of F with respect to the weight.
As stated in the formula, Weight updates in backpropagation rely on both the learning rate
and the loss function. During each iteration, the error between the output layer’s predictions
and the ground truth labels is calculated. Additionally, gradients of this error with respect
to each weight in the network are determined. The learning rate, typically a value between
1 to 107%, controls the magnitude of these updates (how rapidly or slowly the model learns).
By subtracting the product of the learning rate and the computed gradient from each weight,
the network iteratively refines its internal parameters to minimise the loss function. Figure 2-
4 shows a graphical demonstration on how backpropagation works in reconstruction problems.

In general, backpropagation is a supervised learning method that updates the weights
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Figure 2-4: lllustration of backpropagation: The above figures show the sequence of an algorithm
to learn the features of "2" with propagation. For each data, the computer will create a latent
space where it compress the data and extract the key features to cluster the hidden patterns.
With a new data input, the algorithm will recalculate the weight and update the latent space so
that it represents the data pattern better, which the red points represent the update from data
input. In the end, the latent space will have the skeleton shape "2" and remove all the incoherent
data in reconstruction problems.

of neural networks to reduce the discrepancy between predicted and observed results. In
unsupervised learning, input data would be compressed by an auto encoder neural network
which has a smaller latent space, and the reconstruct the full latent space by a decoder
network which aims at minimising the reconstruction error between the input and output
data.

Optimisation Algorithm

Optimisation algorithms are crucial in keeping the neural networks to learn efficiently and
converge to an optimal results. In our cases, Adaptive Moment Estimation (Adam) Optimiser
proposed by Kingma and Ba, (2017) were used and it was proven to achieve good results for
image denoising [Tian et al., 2019] [Ilesanmi, 2021]. Mathematically, the parameter 6 will be
updated as follows:

Op =01 —« (2-4)

my
Vor+e€
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L. iy = 7255 and my = Bime—1 + (1 = B1)gs,

2. 0 = 1?6; and v; = Bovy_1 + (1 — B2)g7,

3. « denotes as the step-size and € denotes as the numerical stability.

In the above equations, m; represent the moving average of the gradient from previous
update with am exponential decay rates 51 between 0 and 1, and v; represent the moving
average of the squares of the recent gradients with another rate [y with same properties
as [1. In practice, we get the gradients g; with respect to the objective at timestep t, and
update the estimation m; and ©; with bias and our parameter 6 in the end.

With Adam, we would have adaptive learning rates such that each parameter would
have an individual learning rate, leading to a convergence speed up and a better quality of
the final results. Adam can stabilise the training process by applying bias correction during
the early iterations of training, and it is memory-efficient with only 2 additional variables for
each parameters.

Unsupervised Learning

In unsupervised learning, CNNs based approaches do not depend on human knowledge of
image priors. One typical usage of the unsupervised learning algorithm would be organising
the large datasets into clusters, which identify the undetected patterns in data and study
the features shown in figure 2-5. It is an example of exclusive clustering method called
K-means clustering, which a data points closet to a given centroid will be identified as the
same category and K represent the distance from each group centroid. To achieve a better

Parameter Y
A

[

»*

Parameter X

Parameter '
A

Cluster 1

: Clusterz -

Parameter X

Figure 2-5: Clustering in unsupervised learning: the algorithm goes through the data set and
categorising pattern with similar features. In the figure, three clusters are identified with demar-
cations trends based on the given centroid of the subsets
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performance by reducing the complexity of a model, dimensionality reduction would be used
to reduce the number of features while retaining as much information as possible.

With similar approach, unsupervised learning can be applied to blind denoising by as-
suming the underlying clean signal and different noise components form distinct clusters. By
strategically selecting the desired cluster(s), the denoised signal can potentially be recovered.
In practice, the algorithm designs by projecting the noisy input onto a low-dimensional
sub-place which concentrates with plausible signal content and eliminating the orthogonal
complement of the subspace which mostly identified as noise [Mohan et al., 2020]. For
known noise like Gaussian noise, the algorithm can fully exploit the capability of network
architecture to learn from the data and results in a huge improvements of performance when
we have limitations in understanding the source and pattern of noise [Chen et al., 2018].

2-1-2 U-Net Architecture

U-Net, a CNN architecture which was first proposed in the use of biomedical image
segmentation [Ronneberger et al., 2015], and afterwards developed for a wide range of uses
in the geophysical field, including but not limited to multiple removal in seismic data
[Durall et al., 2024], resistivity data feature engineering and inversion [Zhang et al., 2022],
seismic data reconstruction [Zhu et al., 2023b]. U-Net shows a great potential in identifying
noise and signal and provides promising results in signal reconstruction.

U-Net architecture consists of two main parts: the contracting path (encoder) and the
expansive path (decoder). The contracting path aims at capturing the main features of the
input image, reduce spatial dimensions, and increases the depth of the feature maps, while
the decoder path is used to recover the spatial resolution of the input image. One important
feature of U-Net are the skipping connections, which directly connect the corresponding
layers in the encoder and decoder for preservation of spatial dimensionality. This leads
to more accurate segmentation results by leveraging both global context and local details
[Xu et al., 2024].

Figure 2-6 shows the structure U-Net Algorithm in our applications. It consists of four
pooling blocks that computes 3 x 3 convolutions in both contracting and expansive paths.
In the contracting path, several concepts are used including Rel.u, instance Normalisation,
and max pooling. An example is demonstrated as figure 2-6b. ReLu drops out the negative
value, introduce non-linearity to the network. Instance Normalisation would be applied to
transform features into a similar scale for the sake of training stability. Afterwards, a max
pooling is applied so that the local maxima are kept and assembled to form the input for the
next later. In the first block, 64 features will be extracted and max pooling applied to extract
the maximum of 2 x 2 neighbouring pixels across the spatial dimension. As a results, the
data input size to the second layer is halved and we double the features parameters for learn-
ing. The above steps would go on until we reach the layer in which 1024 features are extracted.

Afterwards, we reconstruct the output (i.e, X) by expansion from the bottom convo-
lutional layer. We also use an overlap-tile strategy with which we bypass part of the data

from the layer above (i.e, the grey area) with a smaller amount of features extraction and
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Figure 2-6: (a) An overview of U-Net Structure figure from [Kuijpers, 2020]. The blue represents
the data used in downsampling, the grey represents the data used for upsampling and the green
represent the fully constructed data. The number on top of each layer states the number of
features represented and the more towards the bottom, the heavier the weights of data. (b)
A synthetic illustration of the contracting path with ReLU, Normalisation and Maxpooling. A
detailed explanation would be found in the main text.

extrapolate the missing input. The above processes continue until the full data is being
constructed as X which has the same size as the input Y. In total, the network has 23
convolutional layers.

2-1-3 Mathematical Concepts of Blind Denoising

In self-supervised blind denoising approaches [van den Ende et al., 2023b]
[Batson and Royer, 2019], J-invariance functions are calculated to identify the long-
range coherence and the results would be independent with the proportion of incoherent
data. We start with an arbitrary feature measurements x as shown in figure 2-7, where we
have two subsets of elements, J characterised by long-range coherence and thus allowing
interpolation even with we are missing the data, and Jc characterised by incoherent data
and thus it is not reproducible when data are missing. The loss in the clustering can be
calculated and should be minimised using:

L(f) =E|f(z) - =], (2-5)

where E[-] denotes the expectation operator and f is the J-invariant functions. It is important
to note that the J-invariant function cannot be an identity matrix as it has nothing to predict
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Figure 2-7: lllustration of the blind denoising. (a) The illustration of a conceptual profile. Signal
J represents a subject within this profile. Function f, a J-invariant function, maps inputs to
outputs which if we calculate the results of it (i.e, f(x)) would be restricted with the results with
f(J), and they would not produce the same results and reconstruct things from the results of f(Jc).
(b) An example of reconstruction. There would be two independent variable, J which has a high
coherent value and Jc which is incoherent signal. With long-range coherent contents as shown in
the red blurred block in the right picture, the algorithm should able to interpolate accurately with
the missing data in the surroundings of J. However, for the blue blurred block, the details cannot
be predicted but only the average value (light grey) could be predicted in the region. Therefore,
the output of the function f to reformulate the red block region would not depend on the contents
in the Jc, which is the J-invariance.

while blinding the information.

Assume x is an unbiased operator of y (i.e, the average of the values of the estimates
determined from all possible random samples equals the parameter we are trying to
estimate):

Elz [y] =y, (2-6)

In other words, for an image (x) as input and our posterior distribution (y) (i,e, the denoised
output), we can build the J-invariant function which identify the long-term coherence as:

f1(@) s =Elys [ 2], (2-7)

and the self-supervised losses can be expressed as the the sum of the ordinary supervised loss
and the variance of the noise:

E|f(z) - 2|* = Ellf(z) — y|* + Ellz — y]%, (2-8)

Loss can be reduced when there is more features in J can be correlated. The closer the f}(x)s
and E[y|x], the better estimation of y. In the end, it can be optimised as:

Elly — f(@)I* < Elly — /7 ()|, (2-9)

where we would stop updating when we estimate that our current covariance matrix is per-

forming better than the current covariance matrix with Gaussian random variables x©.
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In machine learning, the set of J-invariant functions g is explored with a neural network fjy
with 6 denoting a parameter, which is defined as:

9() = > T(fo(Iye(-))), (2-10)

JeJ

where II; is the project operator that keeps the elements representing J (coherent signal)
and set elements representing Jc (incoherent signal) into zero. In the end, we minimise
llg(y) — y||* with respect to 6 to achieve an efficient performance by training with limited
amount of parameters.

2-1-4 Related Study - jDAS

Van der Dende et al., (2023) introduced jDAS, a self-supervised deep learning method
utilising U-Net and J-invariance for waveform coherence enhancement and blind denoising in
DAS data. By distinguishing between incoherent (noise) and coherent (earthquake) signals,
jDAS recovers signals at low SNR. Trained on synthetic data for 300 epochs and further
fine-tuned on two earthquake datasets, the model demonstrated the ability to separate
signals within a common frequency band.

While effectively demonstrating the theoretical concepts applicable to blind denoising,
the pre-trained jDAS model produced undesirable artifacts preceding the first arrival when
applied to microseismic data, as illustrated in Figure 2-8. jDAS was specifically trained on
strong seismic data characterised by significantly higher magnitude and distinct noise profiles
compared to microseismic data. This discrepancy between the two datasets highlights the
need for a model retraining to effectively address the characteristics of microseismic data.

Rescaled Raw Microseismic Event Denoised - jDAS Model Lo
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Distance to the well [m
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Figure 2-8: Impact of jDAS on Raw Microseismic Data. (a) Rescaled raw microseismic event.
The detail description of the data would be provided in section 3.2. (b) Denoised event using
JjDAS. The white block highlights an undesirable artifact preceding the first arrival, which hinder
subsequent data processing.

2-2 Training Strategy

To adopt the J-invariance filtering in machine learning, we aims to train a neural network
that can reconstruct the coherent signal from a noisy input. The following subsections would
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reveal the training strategy in this project.

2-2-1 Masking

Masking is a technique that informs sequence processing layers that certain input elements
are absent, and thus would be reproduced when the computer process the data. As illus-
trated in Figure 2-9, a blank trace and its adjacent traces are fed into a U-Net encoder to
extract relevant features. The reconstructed trace is then compared to the original blank
trace to compute a loss function. In synthetic clean DAS data, the original trace serves as the
ground truth. The U-Net’s contraction path effectively preserves strong coherent signals while
suppressing random noise, resulting in a reconstructed trace devoid of noise components.
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Figure 2-9: lllustration of the Masking: For each learning, we provide an input y with n neigh-
bouring traces (where n = 11 in this cases), and we randomly blank one of the input traces and
try to reconstruct the blanked one from the rest neighbouring traces.

2-2-2 Machine Learning Glossary and Values

Table 2-1 summarise the use of parameters in the training processes.
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Parameter

Description

Value

Batch Size

the number of traces used for updating one
step during network training. The number is
determined by the balance between available
computational resources and the dataset size .

32

Dropout Rate

A fraction in a layer that randomly sets some
nodes to zero during the update step in
training, which avoid overfitting. The chosen
value is a standard practice

0.1

Epochs

The number of cycles for the model to learn all
the training data. The chosen value is a
standard practice

50

Learning Rate

The rate at which the model learns - controls
the step size in the gradient descent update.
The chosen value is a standard practice

0.0005

Loss Function

The function to penalise the model for being
overly confident and the model should
minimise it during training. Binary
cross-entropy are used to measure the
dissimilarity between the predicted probability
distribution and the true binary labels of a
dataset. It is defined as — log(likelihood)

Binary
Cross-
entropy

Optimiser

The algorithm used to update weights during
training. Details in section 2.1.1

Adam

Training Split

Percentage of input data used in training. The
chosen value is a standard practice

80 %

Validation Split

Percentage of input data used in validation.
The chosen value is a standard practice

20 %

Table 2-1: Fixed parameters used in the training process

2-3 Data Preparation

2-3-1 Distributed Acoustic Sensing Data (DAS)

DAS is a technology built on fiber optic sensing, which treats the glass fibers as the sensors
and based on the photons interactions with the fluctuations of refractive index in the
glass [Zhan, 2019]. As shown in figure 2-10, DAS uses Rayleigh backscattering to infer the
longitudinal strain (i.e., €;, with  along the cable) or strain change over time (é,,) every
few meters along the fiber [Li et al., 2021]. When there is a disturbance from seismic waves
or other vibrations, the strain in each fiber section would change accordingly and carry the
signals in return. With numerous scattering points along the fiber, it creates a high spatial
resolution with the ability to measure any tiny extension or compression as the fiber alters
the change in distances. As shown in figure 2-11, it is highly sensitive when P-wave travelling
along the fiber and S-wave coming perpendicular.
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Figure 2-10: Principles of DAS and a synthetic demonstration. (a) A DAS unit is connected to
one end of a long optical fiber cable. It sends laser pulses (either harmonic or chirp) into the fiber
and analyses the Rayleigh backscattered light from the fiber's inherent defects. Data processing
and storage are performed in real time within the DAS unit. Figure from [Zhan, 2019]

Figure 2-11: lllustrations of the directional sensitivity of DAS in a synthetic example along the
horizontal axis (the black line). Blue line represent the incoming wave directions and red line
represents the reaction from DAS. The solid line and dashed line represent the positive value and
negative value respectively as a scalar. (a) is the situation when receiving signal horizontally.
It reproduces the same waveform. (b) is the situation when receiving signal in a perpendicular
directions and it distorts significantly. Figure from [Zhan, 2019]

Since 2010s, DAS has been used widely adopted in the field of in geophysics and
seismology including in the multichannel channel analysis of shear-wave velocity in real-
time [Dou S, 2017], industrial monitoring of microseismicity and hydraulic fracturing
[Li et al., 2021] and surface imaging [Lapins et al., 2023], yet showing a high sensitivity to
ambient noise, local and internal disturbances from the interrogators [Lindsey et al., 2020].

2-3-2 FORGE Data

In 2018, Frontier Observatory for Research in Geothermal Energy (FORGE) was established
by the US Department of Energy (DOE) in south-central Utah to study the potential devel-
opment of reservoir and geothermal energy. The Utah FORGE Site covers the surrounding 5
km? with a wind farm, solar field, and 38 MWe Blundell geothermal plant at Roosevelt Hot
Springs. As shown in figure 2-12, the DAS was installed in monitoring well 78-32 from the
surface down to around 1000 m depth. The main objective of the DAS data is to monitor
the occurrence of injection-related microseimsic events which provides information about the
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fracture growth [Moore et al., 2023].

Acquisition has been quasi-continuously active from April 23rd, 2019, to May 3rd,
2019, and a single day acquisition on April 22, 2022 [Martin, 2022]. In this project we only
focus on the data collected on April 22, 2022. DAS data have been recorded with a 1-m
channel spacing, 10-m gauge length at a sampling frequency of 2000 Hz (2000 data points
per second) after a 16-fold internal stacking of the laser sampling rate before writing to the
disk [Lellouch et al., 2021].

Figure 2-13 will show some of the examples of the FORGE Data, which contains some
strong microseismic events with SNR larger than 10 and weak microseimsic events with SNR
smaller than 3. A dataset of 45 strong microseismic events, each consisting of 1029 channels
and 4096 time samples, is used for both training and validation. The weak microseismic
events would be used as evaluating the performance of the denoised algorithm, as they are
hard to detect and reveal without proper data processing.

(a)

Monitor Well 78-32: DAS
Data [from surface to
around 1km depth)
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Figure 2-12: FORGE Site Plan. (a): The aerial photo of the site. 3 wells are drilled: 58-32 is the
stimulation well, 78-32 is the monitoring well with installed DAS and 68-32 is instrumented with
traditional geophones. (b) The cross-section of the subsurface area in the Utah. Two isotherm
surfaces (green — 175°C, red — 225°C) and the granite contact (black) are plotted. Figure adapted
from [Moore et al., 2023] and [Lellouch et al., 2021]

2-3-3 Data Pre-processing

Before the data are put in training process, the raw data undergoes several preprocessing
steps to be transformed into a structured format suitable for machine learning.
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a) Strong Microseismic Events (SNR >10) b) Weak Microseismic Events (SNR < 3)
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Figure 2-13: (a) Examples of strong microseismic events with SNR > 10 recorded on April
22, 2022. Such events are are used in training. (b) Examples of the weak microseismic events
SNR < 3. Such events are are hard to detect without proper denoising.

Percentile Clipping

As stated in the chapter ” Activation Layer” under subsection 2-1-1, the outlier (i.e, extreme
value in strain rate amplitude) should be removed by percentile clipping for better training
when using activation layers like Swish or Relu. We use the 99.7th percentile and 92610 data
points which containing the extreme value will be set to zero for each profile (one profile
contains 1029 channels, with 30000 points collected per channels per 15 second). Strong mi-
croseismic events are trimmed within the data, and their corresponding 4096-sample segments
extracted for each channel which mostly include a full period of the events (with primary-
waves,secondary waves and coda waves).

Scaling Methods

Feature scaling is a crucial step to build accurate and effective machine learning models as it
makes easier for algorithms to find the optimal solution, and results in a faster convergence
speed. We investigate three types of scaling methods would be investigated, namely min-max
normalisation, max-absolute normalisation and standardisation.

Figure 2-14 shows the concepts of the three scaling methods and effects on the data.
Min-max normalisation would take the maximum value as 1 and minimum value as 0. With
generally symmetric amplitude distribution of seismic waves, background noise tends to
cluster around zero would be normalised with value close to 0.5. Max-absolute takes the
absolute value of the amplitude, which all data would also fall between 0 and 1. Background
noise, initially centered around zero, remains concentrated near this lower bound within the
transformed data. For Standardisation, The standardised value is given by the formula:
Standardised value = %,
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where X is the data, u represents the mean and o represents the standard deviation. The value
would not have a fixed boundary of maximum and minimum, and the directional property of
seismic waves are maintained with positive and negative value.

Freguency

Random Data Distribution

0 1

Min Max Scaling 10,11

Normalized Noisy data example

Data Values

Random Data Distribution

Frequency

|
120

Frequency

1 1
Max Abs Scaling [0:1]

Normalized Noisy data example

Data Values

Random Data Distribution

p+o p+20

Standardization

Normalized Noisy data example

Data Values

Figure 2-14: Using various scaling methods on the same microseismic data. (a) is min-max
normalisation. Values that are more negative will be scaled towards 0, while values that are more
positive will be scaled towards 1. (b) is max absolute normalisation. Smaller values will be scaled
towards 0, while larger values will be scaled towards 1. (c) is standardisation. Data are scaled
with mean p and standard deviation o.
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2-3 Data Preparation 19

2-3-4 Input Samples Generation
Time Slice Windows

To create a more diverse dataset, we extract different time-slice windows raw data. As shown
in figure 2-15, for the creation of each input data, we create a random starting point between
time sample point 500 and 2000 and extract a window slice from that point with a length of
2048 points to prevent profiles with only noise or only signals. As a result, for each training
data, we would have a first arrival with different start time for each input to generate a
comprehensive training dataset from only one event. In the figure 2-15 to 2-17, for the sake
of maintaining the continuity of the explanation, we demonstrated the process using input
traces that had undergone min-max scaling with 11 traces as a patch which is .

1o
08
06
04
02
0.0

Input sample e
08
06
04
02
00

Figure 2-15: lllustration of the time slice windows. The left panel is the raw data while the
right panels show a patch of input traces (11 traces) after doing a min-max scaling per trace.
The red window demonstrates an earlier start of the sampling windows while the blue window
demonstrates a later start.

Input sample

Microseismic events 2022-04-21 14:20:25 951

[l
'S

Time Flipping

A model trained on both original and time-flipped data can learn to recognise patterns more
robustly, regardless of their temporal orientation. Therefore, we create an extra condition for
the algorithm to decide whether to flip a dataset randomly as shown in figure 2-16.

Input sample

Microseismic events 2022-04-21 14:20:25.951

Input sample

inp,
08
oo
04
02
00

Figure 2-16: lllustration of the time flipping, with the same dataset as in figure 2-15 The blue
window demonstrates an example along the time sequence while the green window demonstrates
a time-flipped case.

00 000 3500 4000
Time Sample
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Data Expansion

To expand the dataset, we generate additional masks for each data input. This involves
creating variations by blanking out traces randomly from the same input, effectively enlarging
the dataset. Figure 2-17 shows how we create three pairs of input samples and targets based

on one patch of input data.
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Figure 2-17: Different masking applied on one input data (top). Data enlarged by a factor of 3
while we select randomly a different trace as a missing trace (middle) and thus as the target to
be reconstructed (bottom).

2-3-5 Hyperparameter Testing

Table 2-1 reveals the fixed parameter used in the model training, while the table 2-2 details
the hyperparameters subjected to optimisation. To enhance model performance, a series

Hyperparameter | Description Variables
Activation The function applied to the output of a | *ReLu, Swish,
Function layer to introduce non-linearity. Tanh

Number of Input The quantity of seismic traces *11, 31, 51

Traces processed simultaneously in a single
masking operation..

Mask Generation The number of masks generated per 1,2, *3

Rate input data which determines the the
overall size of the augmented dataset.

Scaling Methods Features are scaled to be governed in a | *Min-max
particular range and perform faster normalisation,
convergence. Max-abs

normalisation,

Standardisation
Time Flipping Whether time flipping is applied during | Yes or *No
Activation input data generation.

Table 2-2: Varying hyperparameters in the training process, (* represents the chosen value for

baseline model)
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of retraining experiments would be conducted. Hyperparameters including input sample
generation techniques (e.g., additional mask generation, time flipping), activation functions,
scaling methods, and the number of input traces would systematically varied.

2-4 Microseismic-event Detection

Microseismic event detection is a key step in the analysis of monitoring data. Two primary
methods for this task are the Short-Term Average/Long-Term Average (STA/LTA) and the
Coherence-based Earthquake Detector ( HECTOR). STA/LTA offers rapid computation but is
susceptible to noise interference. Conversely, HECTOR exhibits superior noise resilience and
accuracy but demands significantly higher computational resources, rendering real-time im-
plementation impractical. This study will evaluate the performance of STA /LTA on denoised
data and employ HECTOR as a benchmark for validating detection results, distinguishing
between true and false positives.

2-4-1 STA/LTA Method

The STA/LTA method is often considered as the most popular method for (micro)seismic-
event picking and detection. It is applied by continuously calculating the ratio between two
running windows with different lengths [Vaezi and Van der Baan, 2015]. Mathematically, the

ratio R is defined as:
STA

i 2-11
R=1on (2-11)
where
1 s
STA = — s 2-12
Ne ;yk (2-12)
and
1 0
LTA = — - 2-13
N 2w 213)

The ratio is the amplitude y calculated continuously at each time moment corresponding to
time sample n=0 for every kth data channel, and Ng and Ny, is the number of time samples
used for the average in a short and long window. In general, long-term average windows would
be representing the ambient noise and an event should have a sufficiently higher amplitude
than the background noise. Combining the studies of [LLC, 2022] and [Trnkoczy, 2009], 1309
microseismic events were detected on the 22nd April 2022, with Ng defined as 0.5 second and
Ny, defined as 10 seconds so that the STA can capture rapid amplitude variations while LTA
tcan represent a window longer than several seismic wave periods. Only SNR which is larger
than 1.9 after a simple bandpass filtering 10Hz to 150Hz was able to detected in their studies.

2-4-2 Coherence-based Earthquake Detector (HECTOR)

HECTOR exploits the dense spatial sampling of DAS for real-time microseismic monitoring
by evaluating the coherence of seismic waveforms along hyperbolic trajectories on a linear
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segment of the optical fiber using the Semblance function [Porras et al., 2024]. Begin with
the equation of the coherence hyperbola:

(T, X,C) = \/ T2 + (QC;QXP (2-14)

where t; is the time of the trace recorded at position z7, X is the spatial offset with respect to
the vertex of the hyperbola, T is the time offset, and C is the velocity. We can then formulate
the Semblance function used for the coherence analysis:

PO (Zf\g A(tz’j))2
MY S Altig)?

S(T,X,C) = with  ¢;; = t(T, X,C) + jdt, (2-15)

where

e M is the total number of seismic traces
e N is the length of the sample window

e A is the amplitude of the itraces at time ij.

Figure 2-18 shows the sketch of the HECTOR Method. In short, seismic noise is less likely to
follow a hyperbolic trend like the seismic signals and will have a low coherence value, which is
a similar concept to the denoising approach. With the HECTOR Method we find 1018 extra
detections on the same day with an even lower percentage of ”false detection” (i.e, 5.6 % for
HECTOR while 6.0 % for STA/LTA). While covariance matrix creation is computationally
demanding, requiring 250% of acquisition time with with an Intel quad- core i7 processor and
16 GB of Random Access Memory (RAM) as reported by Porreas et al., (2024), it remains a
valuable tool for validating denoised algorithms in conjunction with STA/LTA analysis.
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Figure 2-18: [llustration of the semblance-based detection method, figure from

[Porras et al., 2024]. (a) Coherence time series obtained from the waveform data allowing de-
tection of long-term and strong coherence. The detection time would always be assigned at the
first arrival. (b) Example 2-D semblance matrices based on equation 2-15 in time domain and
the vertical axis is the relative distance. (c) The geometrical hyperbola (coefficient Cy to Ci)
at each X; the hyperbolic trajectories that do not follow the seismic wavefield will have a low
semblance value (close to 0) while the presence of a hyperbolic event along a finite-width data
window would imply a seismic event.
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Chapter 3

Results

3-1 Machine Learning Analysis

Based on the discussed training strategy, we perform a series of retraining experiments to
optimise model performance. Model performances are evaluated using RMSE calculated for
both training and validation datasets, which is called training loss and validation loss. The
training loss can indicate how well the model is fitting with the training data, while the
validation loss can indicate how well the model fits unseen data.

Figure 3-1 to 3-5 shows the comparison of training loss and validation loss among dif-
ferent hyperparameter testing. As mentioned in Table 2-2, a baseline model is established
using 11 input traces, min-max scaling applied independently to each trace, 3-mask imple-
mentation, time-slice windows, and the Swish activation function. Hyperparameter tuning is
conducted by systematically varying one parameter at a time. The baseline model generates
12555 samples, divided into 313 training mini-batches and 104 validation mini-batches
(80% to 20% training and validation data split), each mini-batch containing 32 samples.
To prevent overfitting, an early stopping criterion is implemented. Training is terminated
after 10 consecutive epochs without a significant reduction in loss. The model parameters
corresponding to the epoch with the lowest validation loss is retained.

The detailed model architecture for the baseline model is provided in the appendix.
The U-Net comprises a total of nine layers, evenly divided into four downsampling and four
upsampling stages. The model contains 204,729 trainable parameters. For an input of size 11
x 2048, the network undergoes four levels of downsampling and upsampling, each reducing
or expanding spatial dimensions by a factor of four. Concurrently, the number of parameters
per layer doubles and halves, respectively, across these stages. The bottleneck layer reduces
the data to a shape of 11 x 8 with 61504 parameters tunning based on these 88 data samples.
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Influence of Data Augmentation

We investigate the efficiency of masking within the data augmentation pipeline for model
training. To assess the impact of the masking extent, we apply varying numbers of masks
(1, 2, or 3) to each data point. This results in the creation of mini-batches with sizes
corresponding to the masking scheme (99, 209, and 313 for training and 26, 52, and 104
for validation). As anticipated, computational cost per epoch increases with the number of
applied masks (53, 100, and 152 seconds for 1, 2, and 3 masks, respectively).

As shown in Figure 3-1, both training and validation performance show significant
improvement with a general trend of decreasing loss when employing 3 masks compared to
a single mask. when using 3 masks, the model achieves a minimum loss of around 0.0030
with higher stability and reduced fluctuations compared to other masking approaches.
This observation holds true with the adopted evaluation metric, Root Mean Squared Error
(RMSE), emphasising average error and not explicitly accounting for data size. Based on
these findings, we select the 3-masking strategy to optimise the training process.

We further investigate the effect of introducing random flips (reverse flipping) during
data augmentation. Flipping is applied randomly to approximately half the data (49.6% with

Training Loss Comparison - Number of Mask Validation Loss Comparison - Number of Mask
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Figure 3-1: The training and validation loss with 1,2, and 3 masking applied in retraining.
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Figure 3-2: The training and validation loss with or without random flipping.
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4968 out of 10016 data patches for the 3-masks strategy). As shown in figure 3-2, the flipped
datasets introduce greater data diversity, leading to a significant increase in both training
and validation loss, with factors of 7.5 and 20.5, respectively, and reduce stability. Despite
the higher loss, we see that the training and validation curves demonstrate overall improved
learning in some cases. This suggests the model learns long-range coherence independent of
data orientation, enhancing its applicability to general blind denoising.

Influence of Scaling Methods

In Figure 3-3, we find that both scaling methods that map data to the range of 0 to 1 (Min-
MaxScaler, MaxAbsScaler), and exhibit smooth convergence and achieve a loss magnitude
of 107*. Both MinMaxScaler and MaxAbsScaler demonstrate high learning stability, with
MinMaxScaler attaining the minimum loss for both training and validation at 2.87*10~* and
2.94*10~* respectively. Conversely, training with StandardScaler, which typically scales data
to a range of -2 to 2, results in oscillatory convergence and low stability, characterised by the
wriggles along the learning curve. Both training and validation loss reach a minimum around
0.114, triggering early stopping at approximately 20 epochs.

DSTralnmg Loss Comparison - Scaling Method —— mMinMaxscaler Loss Dé-’alidatlon Loss Comparison - Scaling Method — Minmaxscaler Loss

—— MaxAbsScaler Loss 00 —— MaxAbsScaler Loss
—— StandardScaler Loss —— StandardScaler Loss
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0.003

0.003
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Loss (MinMax, MaxAbs)
Loss [MinMax, MaxAbs)
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Figure 3-3: The training and validation loss with 3 different scaler: MinMax normalisation,
MaxAbs normalisation, and StandardScaler. The left y-axis (black colour) indicates the loss with
regards to MinMax and MaxAbs, while the right y-axis (green colour) indicates the loss with
regards to StandardScaler

Influence of Activation Layer

As shown in Figure 3-4, the choice of activation layers (ReLU, Swish, and Tanh) minimally
impacts overall convergence and learning process. With MinMax scaling, all activation func-
tions achieve convergence. Standardising the data (StandardScaler) leads to oscillatory con-
vergence and early stopping activation in all cases. An interesting phenomenon observed
with StandardScaler combining with Tanh activation is a longer learning period and delayed
early stopping, suggesting a higher initial convergence level in the first few epochs before
oscillations commence.

August 1, 2024



28 Results
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Figure 3-4: The training and validation loss with 3 different activation layer on both minmax
scaler and standardscaler, which are RelLu, Swish, and Tanh. The left y-axis (black colour)
indicates the loss with regards to MinMax, while the right y-axis (green colour) indicates the loss
with regards to StandardScaler

Influence of Input Traces

As shown in Figure 3-5, We investigate the influence of different numbers of input traces (11,
31, 51 traces) on the number of samples considered (10, 30, and 50 neighbouring traces) for
reconstructing the blanked target. In all cases (11, 31, and 51 input traces), the model achieves
promising convergence during training. Employing more input traces (31 and 51) leads to a
greater decrease in both training and validation loss compared to using only 11 traces and
results in a lower minimum loss. Interestingly, while both 31 and 51 traces achieve similar loss,
the model with 31 traces demonstrates higher stability in convergence during both training
and validation with less oscillatory behaviour, indicating a good balance between accuracy
and stability.
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Figure 3-5: The training and validation loss with 11, 31, and 51 input traces
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3-2 Denoising Test Results

3-2-1 Performance Metrics

To begin with, we define our relative SNR with the following steps.
1. Extract the top 10% of the signal data.

2. Calculate the signal power:

1
Psignal = A7 Z (‘TZ)2 ) (3_1)
i=1
where x; represents the top 10% of the signal data, and N is the number of data points in
the top 10%.

3. Calculate the noise power:
M

1

Pnoise = M Z (nj)2 ’ (3'2)
j=1

where n; represents the noise data, and M is the number of noise data points.

4. Calculate the relative SNR:
Psignal

SNR =
Pnoise

3-2-2 Experimental Design

Table 3-1 outlines the retraining process employed in this study. To evaluate the denoising
performance, the listed models are applied to both strong and weak microseismic events.

Retraining Mask Input Scaling Time
Strategy Genera- Trace Methods Flipping
tion Number

A (Baseline) 3 masks 11 traces Min-max No

B 3 masks 11 traces Min-max Yes

C 3 masks 11 traces Max-abs No

D 3 masks 11 traces Standardisation No

E 3 masks 31 traces Min-max No

F 3 masks 51 traces Min-max No

Table 3-1: The varying variables in different retraining strategy

3-2-3 Strong Microseismic Events Analysis

Figure 3-6 presents an example of a recorded testing event with a high SNR of 9.77. To
differentiate information carried by different seismic wave types, the analysis defines two
SNR categories: P-wave SNR and S-wave SNR. P-wave SNR reflects signal strength relative
to the first arrival (P-wave), crucial for microseismic detection. Conversely, S-wave SNR
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a ] 600
200 400
E
= 200
£ aoo
-
:q; o
o 600 4
3 200
5]
9 aon 4
—400
1000 4 J S0
1 2
Relative time [s]
h] o Moise Data: Rescaled w.rt First Arrival as 1 100 C} o Raw Signal:Noise Ratio o
| ! aih ! B ::F‘waurmgnﬂl.
| e T Molse L ors
200 1 & s L i S-wave Signal | . 200 0.4
T | E
2 2 aon 0.6
2 ¥
2 2
" 2 #00 0.4
5 =
) 5
a a
anon 0.3
1000 an
1 2
Relative time [s] Redative time |s)

Figure 3-6: (a)Example of a raw FORGE microseimsic event with SNR ratio = 9.77. (b) Rescaled
version of (a) with normalisation by the amplitude of the first P-wave arrivals. The red block,
green block and yellow block represent the part extracting the P-wave signal, Noise and S-wave
Signal respectively. (c) Absolute value of the data in (b) used to facilitate qualitative assessment

indicates potential for retrieving information for full-waveform inversion based on shear wave
strength. For comparison, Figure 3-6b and 3-6¢ display the same data rescaled and with
absolute amplitude calculated, both referenced to the first arrival.

The listed six denoising methods in Table 3-1 are evaluated (Figures 3-7 to 3-10).
The corresponding P-wave and S-wave SNR values for each method are presented in Table
3-2. Combining results, the Strategy B and Strategy F demonstrate the most promising
performance, achieving P-wave and S-wave SNR values exceeding 10 in both cases. Figures
3-8b and 3-12b reveal effective preservation of high amplitudes, particularly at greater depths
(beyond channel 500), with clear identification of first arrival and shear waves. Interestingly,
Strategy B demonstrates superior denoising performance before the arrival of seismic events,
while Strategy F excels better in post-shear wave denoising.

Strategy A shows a good performance especially with locating the first arrival of events
as evident in Figure 3-7. A clear first arrival and shear wave are identified, supported by
a fivefold increase in P-wave SNR compared to raw data. A common observation among
all strategies using 11 input traces (Strategy A to D) is their effectiveness in retrieving
the first arrival. However, these methods also exhibit some signal loss within the middle
portion of the signal, which is further proven by the insignificant improvement or even a
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decrease in SNR in S-Wave SNR calculation. Additionally, Strategy C and Strategy D
struggle with parallel noise, as shown in Figures 3-9b and 3-10b. These methods tended
to retain a significant amount of noise, particularly when encountering parallel noise patterns.

Strategy E demonstrates poor performance, amplifying noise instead of the desired
signal (Figure 3-11). Corresponding SNR values in Table 3-2 confirm this, with P-wave SNR
comparable to raw data and decreased S-wave SNR. Consequently, Strategy E is excluded
from further analysis.

In conclusion, all denoising methods achieve improvement in retrieving the first arrival
of seismic events. However, only Strategy B and Strategy F demonstrated a significant
ability to preserve the original signal integrity.

Strategy P-wave SNR S-wave SNR
Raw Data 9.776 16.501

A (Baseline) 32.511 17.253

B 93.280 203.815

C 15.275 7.699

D 14.715 17.107

E 10.265 8.741

F 133.348 264.136

Table 3-2: Comparison of P-wave and S-wave SNR values for different processing strategies.
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Figure 3-7: Test case with Strategy A: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.
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Figure 3-8: Test case with Strategy B: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.
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Figure 3-9: Test case with Strategy C: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.
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Figure 3-10: Test case with Strategy D: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.
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Figure 3-11: Test case with Strategy E: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.
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Figure 3-12: Test case with Strategy F: (a) The denoised Profile with respect to 3-6b and (b)
the denoised absolute amplitude profile with respect to 3-6¢. A darker background in the noise
distribution plot indicates more effective noise removal.

3-2-4 Weak Microseismic Events Analysis

To address the limitations of the STA/LTA method in detecting weak microseismic events
with low SNR, we focus on enhancing events with SNR below 1.9. To simulate this challenge,
Figure 3-13 presents two scenarios with strong white Gaussian noise (150-500 Hz) added to
the original profile, resulting in SNRs of 0.8 and 0.02. Figure 3-13e and f show corresponding
signal-to-noise ratios with first arrival intensity as reference (value 1). Compared to Figure
3-6¢, background noise approaches 1 in Figure 3-13e and the signal is completely obscured
in Figure 3-13f. This noise is added to assess algorithm robustness, followed by post-filtering
(10-150 Hz) to remove artificial noise and evaluate signal coherence preservation which the
inherent coherence within the signal should be preserved, even if it is weak.
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Figure 3-13: (a) and (b) are the profile of a weak FORGE microseimsic event with white random
noise added which the corresponding SNR ratio is 0.8 (Case |) and 0.02 (Case 1) respectively. (c)
and (d) are the rescaled versions of Case | and Case Il with normalisation by the amplitude of the
first P-wave arrivals. The red block, green block and yellow block represent the part extracting
the P-wave signal, Noise and S-wave Signal respectively. (e) and (f) are the absolute value of the
data in (c) and (d) used to facilitate qualitative assessment. In (f) it shows that this test case it
is a completely hidden signal with respect to first arrival amplitude.

Table 3-3 summaries SNRs before post-filtering. Strategy B remains as the best per-
formance in enhancing SNR ratio in both cases, with an increased of SNR ratio from 0.0853
to 23.664 and 1.436 to 45.622 in P-wave SNR and S-wave SNR respectively in case 1. In case
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II, it improves by a factor of 1000, reaching 14.948 and 32.373, respectively. The second best
performance is Strategy C, showing an improvement at a factor around 6 in case I and a
factor around 60 in case II for both P-wave SNR and S-wave SNR respectively. The Strategy
A and Strategy D show slight improvement in case I and greater improvement in case II.
Strategy F decreases P-wave SNR and shows insignificant S-wave SNR improvement in both
cases. Compared to Table 3-2, Strategy F performs better on strong events, while Strategy
C excels on weak events. Other strategies show similar performance across both event types.

Strategy case I case 1 case II case II
P-wave S-wave P-wave S-wave
SNR SNR SNR SNR

Raw Data 0.853 1.436 0.028 0.0485

A (Baseline) 1.436 2.151 0.436 0.641

B 23.664 45.622 14.948 32.373

C 6.027 8.990 1.704 3.158

D 1.275 1.634 0.908 0.874

F 0.254 1.887 0.0176 0.084

Table 3-3: Comparison of P-wave and S-wave SNR values for different processing strategies.

Figures 3-14 to 3-17 present denoised and post-filtered results for both weak microseismic
events. For case I, all methods preserve the main signal, with clear P-wave and S-wave first
arrivals shown in Strategy A, Strategy B and Strategy C. Strategy F shows a clear P-wave
first arrival, particularly between channels 500 and 900 (Figure 3-18a), but S-wave arrival is
less distinct due to noise interference. Strategy D is able to detect all the arrivals, but the
amplitude is distorted and it is widely covered by noise.

For case II, only Strategy B is able to capture a clear P and S wave arrival with high
amplitude, as shown in Figure 3-15d. Strategy A, Strategy B and Strategy F partially
recover the signal, with less clear P-wave arrival in Strategy F. Strategy D fails to recover
the signal.

Post-filtering is applied to all methods to evaluate the effectiveness of random noise
removal, as noise was manually introduced at a specific frequency. Strategy B shows an
excellent performance in capturing the long-range coherence value. This method effectively
denoises the data while preserves the signal, as evident in Figures 3-15e and f for both case
I and case II. Strategy A and Strategy C perform well for case I but tend to remove very
weak microseismic events, as shown in 3-14h and 3-16h respectively. Similarly, Strategy F
performs well in case I but misses the P-wave first arrival in case II(see Figures 3-18f and h.
Strategy D completely misses case II (Figure 3-17f) and preserved a weaker signal compared
to other methods in case I (Figure 3-17e).

A common artifact, circled in white dotted lines in Figures 3-14c, d, 3-18c,d, and 3-
16¢, d, is observed in the results of Strategy A, Strategy C, and Strategy F. These artifacts
are more pronounced for events with lower SNRs and exhibit varying temporal occurrences
across methods. While Strategy A and Strategy C tend to produce artifacts before and
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after the signal, Strategy F exhibits artifacts around the 1.0-1.5 second mark, potentially
obscuring the S-wave arrival.

Interestingly, artifacts observed in Strategy A and Strategy C are successfully miti-
gated by the post-filtering step (Figures 3-14g and h and 3-16g and h. In contrast, artifacts
persist in Strategy F even after post-filtering (Figure 3-18g and h). This suggests that
artifacts in Strategy F are not solely caused by introduced noise but may indicate an
underlying algorithmic issue.

In conclusion, Strategy B shows the best results among the all methods, while the
Strategy D demonstrates the poorest performance in blind denoising. The presence of
artifacts in certain methods, particularly Strategy F, significantly impacts the ability to
calculate SNR accurately. These artifacts, unlike those in Strategy A and Strategy C
remain after post-filtering, raising concerns about their algorithmic origin and hindering the
reliability of Strategy F as a denoising strategy.
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Figure 3-14: Test cases | and Il with respect to Strategy A: (a) and (b) are the denoised
profile with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute profile
with respect to 3-13e and 3-13f. Note that the white rectangular block with dotted line shows
undesirable artifact in denoising. (e) and (f) are the post-filtered profile with range 10 to 150 Hz
with respect to (a) and (b). (f) and (g) are the post-filtered absolute profile with respect to (e)

and (f).
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Figure 3-15: Test cases | and Il with respect to Strategy B: (a) and (b) are the denoised
profile with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute profile
with respect to 3-13e and 3-13f. Note that the white rectangular block with dotted line shows
undesirable artifact in denoising. (e) and (f) are the post-filtered profile with range 10 to 150 Hz
with respect to (a) and (b). (f) and (g) are the post-filtered absolute profile with respect to (e)

and (f).
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Figure 3-17: Test cases | and |l with respect to Strategy D: (a) and (b) are the denoised profile
with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute profile with
respect to 3-13e and 3-13f. (e) and (f) are the post-filtered profile with range 10 to 150 Hz with
respect to (a) and (b). (f) and (g) are the post-filtered absolute profile with respect to (e) and

(f)-
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Figure 3-18: Test cases | and Il with respect to Strategy F: (a) and (b) are the denoised
profile with respect to 3-13c and 3-13d respectively. (c) and (d) are the denoised absolute profile
with respect to 3-13e and 3-13f. Note that the white rectangular block with dotted line shows
undesirable artifact in denoising. (e) and (f) are the post-filtered profile with range 10 to 150 Hz
with respect to (a) and (b). (f) and (g) are the post-filtered absolute profile with respect to (e)

and (f).
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3-3 Microseismic Detection Analysis

To demonstrate the impact of denoising on microseismic detection, we reprocess a 10-minute
FORGE dataset from 16:00:00 to 16:10:00 UTC on April 22, 2022. We compare STA/LTA
detections from raw and denoised data, using the HECTOR algorithm for validation.

We present a microseismic detection example using FORGE data from 16:00:09.398 to
16:00:39.398, with a 30-second interval. We set the short-term moving window to 0.5 seconds
and the long-term moving window to 10 seconds, following criteria in [Trnkoczy, 2009] for
local earthquake detection and seismic ambient noise representation. A limitation of the
STA/LTA algorithm is that they cannot perform before the LTA is constructed, therefore
the real STA/LTA detection starts after 10 seconds.

According to Porras et al., (2024), a common detection occurs between HECTOR and
Silixa (using STA/LTA) [LLC, 2022] at 16:00:34.323 with an SNR ratio of 3.013, while a
weak event detected solely by HECTOR appears at 16:00:30.691. We set the event detection
threshold at 2.8 (STA amplitude twice LTA amplitude) and the off-threshold value at 1.9 to
mark event endings.

Figure 3-19 presents the re-stimulation of both STA/LTA and Hector methods applied

to the raw data. This analysis focuses on seven traces (numbered 520, 570, 670, 720, 770,
820, and 870). An event is considered real if detected by at least four of these traces. Both
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Figure 3-19: lllustration of a microseismic detection. (a) The STA/LTA algorithm which the top
panel represents the trace amplitude and the following two panels show the detection from trace
520 and 720 respectively. Detection starts at 10s after the LTA can be constructed. A strong
event is detected with the trigger on at 25s, as the amplitude level is stronger than the threshold
over 2.0. (b) The detection from HECTOR between relative time 15s to 30s, which detects the
same event with a strong coherence matrix. The green box marks the time location for the weak
microseismic events, where the HECTOR could able to detect with coherence matrix, while the
STA/LTA could only see a small spike but the amplitude level is not strong enough to detect it.
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methods detect strong events around a relative time of 25 seconds. STA/LTA achieves a
peak amplitude factor of 2.5 at trace 720, while Hector shows a coherence matrix value
exceeding 0.005. However, for the weak event between 21 and 23 seconds, Hector exhibits a
peak coherence matrix value of only 0.0025, while STA/LTA shows a small amplitude spike,
insufficient for event classification.

Microseismic detections are conducted using various denoising strategies outlined in
Section 3.2. These strategies generally amplify signal amplitude levels. Consequently, the
on-threshold is adjusted to 4.0 and the off-threshold to 3.8 to minimise false positives.
Figure 3-20 presents detection results for the Strategy F (left panels) and Strategy B (right
panels) strategies. Focusing on the 20s to 25s timeframe, both strategies successfully detect
both strong and weak events across different traces. Notably, both approaches effectively
remove random noise surrounding weak microseismic signals and enhance their amplitude
levels, making them comparable to strong signals. This aligns with observations from Section
3.2.
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Figure 3-20: Microseismic detections for Strategy F and Strategy B: The green boxes highlight
weak microseismic events which can be detected by both methods. The strong microseismic
events (red boxes) remain to be detected.

Figure 3-21 demonstrates detections with the remaining strategies. Selecting the trace
with the best microseismic detection performance for each method, the Strategy A detects
both weak and strong events but introduces significant edge effects when denoising large
data chunks. This results in false detections, as shown by the blue region in the Figure
3-21a. The edge effect is even more pronounced with the Strategy C strategy, leading to an
artificial increase in both short-term and long-term amplitude levels. Consequently, weak
microseismic events become hidden. The Strategy D shows false detections between 16 and
18 seconds while also failing to detect weak events.
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Figure 3-21: Microseismic detections for (a) Strategy A, (b) Strategy C and (c) Strategy D: The
green boxes highlight weak microseismic events only detectable by the Strategy A. Yellow boxes
in Strategy A and Strategy C indicate edge effects that negatively impact detection. Additionally,
blue boxes in Strategy A and Strategy D show areas with false detections. Notably, all strategies
successfully detect strong microseismic events (red boxes).

Based on the above results, the Strategy F exhibits a smoother amplitude level curve across
different traces when there is no signal. This characteristic indicates a lower likelihood of
false detections compared to other strategies. Therefore, it would be the chosen denoised
strategy for running the 10 minutes detection stimulation.

Figure 3-22 presents the detection results and a statistical comparison among three

studies:

Silixa (raw data & STA/LTA), HECTOR, and our method (denoised data &

STA/LTA). In general, our study follows a similar trend as HECTOR in microseismic
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Figure 3-22: Microseismic Event Detection Comparison. (a) Cumulative number of detected
events within a 10-minute interval using three methods. (b) Performance metrics comparing the

three approaches.

August 1, 2024



3-3 Microseismic Detection Analysis 45

detections along the time profile, indicating that the proposed denoising method effectively
enhances the detectability of microseismic events. Our method has the highest detection by
identifying 82 events compared to the other methods. Compared to the original STA /LTA
algorithm, our method yields a 43% increase in the detection of real effective signals. Among
them, 35 out of 39 events are commonly detected by STA/LTA on denoised data, with an
additional 21 real events verified by the HECTOR method, indicating a 68 % accuracy in
real event detections with a significant improvement in weak event detection. Furthermore,
our approach offers data reduction. Considering the corresponding 4 seconds stored per
triggered event, our method saves 76.32% of data (2.7GB out of 11.4GB) while capturing
86.36% of the effective targets with reference to HECTOR’s detection of both strong and
weak events.
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Chapter 4

Real-Time Denoising Experiment

While seismic data processing packages like pyseistr [Chen et al., 2023] or DAS-N2N
[Lapins et al., 2023] offer denoising and interpolation capabilities for multichannel data, their
high computational requirements render them unsuitable for real-time applications. In this
experiment, we input our denoising algorithm with the Febus DAS interrogator which the
fiber optic are linked and implemented inside the building of TNO Utrecht, at Princetonlaan
6, 3584 CB Utrecht. It is a real-time measuring device and we run the workflow on 60
seconds of the data on 7th December, 2023 at time 13:48:02. 167 channels were implemented
and the operational frequency would 20kHz, and it would store 6.819 GiB raw data per day.

The denoising algorithm is implemented on a computer equipped with an NVIDIA
Quadro K420 graphics card, a 12-core CPU, 64 GB of memory, and 2 GB of dedicated
GPU memory. To facilitate real-time processing, the data is downsampled by a factor of
10, reducing the sampling frequency to 2.1 kHz. Data is logged every second. We adopt
our baseline model as the algorithm to denoise, emphasising the feasibility of real-time
processing, as different strategies can be implemented within the same computational time.
Figure 4-1a illustrates the original and denoised profiles of the raw data. To evaluate the
algorithm’s performance, synthetic DAS signals are embedded into the data at a random
time series. Figures 4-1b-f showcase comparisons of raw and denoised data at various time
samples.

Figure 4-2 shows the computational and logging results during the 60-second streaming
session. Data requests begin at 11.27 seconds, with an average interval of 1.07 seconds
between requests and subsequent data transmission. A total of 46 requests are made, with an
average processing time of 0.81 seconds for the basic denoising algorithm (without additional
functions). From figure 4-2b, none of the 46 requests require processing time more than 1
seconds, and it would reach the minimum of using 77.6 % of the processing time required
before the next message queue.
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Figure 4-1: Real-Time Denoising Profile: The upper profile shows the raw data collected and
the lower profile shows the denoised results. Note that only data logged with relative distance
Om to 0.1m are denoised. (a) shows the profile with raw data while (b) to (f) shows the profile
with synthetic microseismic data happening at random time.

Screening Experiment

We evaluate the feasibility of integrating the detection algorithm with real-time denoised
data. We achieve this by injecting synthetic data randomly into a real-time data stream.
A STA/LTA algorithm is employed based on the denoised data profile. To minimise
computational demands, the STA/LTA is implemented on a single trace, resulting in
an additional processing time of only 0.05 seconds per data point on average. However,
additional considerations impact real-time performance. Random synthetic data generation
and file saving introduce an additional 0.7 seconds of processing time, exceeding the real-time
limit in certain scenarios. The experiment processes 24 data patches at a time interval of 2
seconds. Twelve synthetic data points are randomly added to the dataset. We configure the
STA window as a factor of 20 compared to the LTA window, with an on-threshold of 1.9 and
an off-threshold of 1.0.

Table 4-1 presents the performance of pre-screening using the detection profile with-
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out denoising. As expected, all data is saved, offering no improvement in data storage
reduction. With the denoised algorithm applied (Table 4-2), we detect and save 11 out of
12 events. While one true event profile is missed, and two false detections occur, the overall
accuracy reaches 87.5% (calculated by summing true positives and true negatives). Addi-
tionally, the denoising algorithm achieves a 75% reduction in unnecessary data, significantly
improving storage efficiency. However, as illustrated in Figure 4-2, four out of 24 events
slightly exceed the target processing time of 100%. The maximum observed processing time
is 101.3%. This time constraint may result in some data being missed during the message
cue send and receive process.
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seconds and was sent in 11.98 seconds. The red block indicates the message sent in time for each
request and the time interval would be between 1s to 2s. (b) Single Data Packet processing Time:
the processing is plotted with the relative processing time at each requests. The computational
time with denoising only is plotted in orange while denoising and detection is plotted in blue.
Note that none of the request for doing denoising exceed 90% of the processing time.
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Real-Time Denoising Experiment

August 1, 2024

Actual

Predicted
Positive Negative
Positive | True Positive (12) | False Negative (0)
Negative | False Positive (12) | True Negative (0)

Table 4-1: Confusion Matrix for the STA/LTA running in the raw data profile

Actual

Predicted
Positive Negative
Positive | True Positive (11) | False Negative (1)
Negative | False Positive (2) | True Negative (10)

Table 4-2: Confusion Matrix for the STA/LTA running in the denoised profile




Chapter 5

Discussion and Outlook

5-1 Model Comparison

This study examines three primary scaling methods: MinMaxScaler, MaxAbsScaler, and
StandardScaler. MinMaxScaler achieves the lowest data loss and delivers the highest SNR,
particularly for strong microseismic events. Combined with ”flipping” training data, it
performs well in capturing sharp first arrivals, crucial for accurate signal start time deter-
mination in microseismic detection, as illustrated in Figures 3-7a and 3-14a. MaxAbsScaler
effectively scales data points near background noise to zero, benefiting weak microseismic
events. However, it suffers from information loss due to its focus on data magnitude,
hindering noise-signal distinction, especially in unsupervised learning. Figure 3-16a shows
all remaining data preserved in single polarity, complicating subsequent frequency analysis.
Single trace analysis in Figure 5-2 reveals a significant bias towards negative values with
MaxAbsScaler, particularly in trace 540. StandardScaler offers a gentler scaling approach,
effectively eliminating outliers under the assumption of Gaussian data distribution. Yet, it
retains significant noise in both strong and weak event scenarios, resulting in minimal SNR
improvement and near-complete loss of coherent signal in weak events.

Moreover, scaling approaches significantly influence activation layer performance. Our
study observes early stopping during training with StandardScaler, as shown in Figure 3-4.
This suggests a potential issue with negative values in the data and the activation function
used. In U-Nets, training with data containing negative values can lead to the ”dying ReLLU”
problem, which occurs because ReLLU neurons can learn a large negative bias, causing them
to become permanently inactive and always output zero for any input [Lu et al., 2020].
While our research observes similar behaviour with Swish, Tanh, and ReLU activation func-
tions, we recommend excluding negative values entirely before feeding the data into the U-Net.

An interesting counterintuitive observation emerges regarding the relationship between
loss and denoising effectiveness. Strategy B - "MinMax 11 traces with flipping” achieves the

best denoising results despite exhibiting a higher training and validation loss compared to
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Strategy A - "MinMax 11 traces” and Strategy C - "MaxAbs 11 traces.” This phenomenon
can be attributed to the nature of our unsupervised learning approach. Unlike supervised
learning where synthetic data with ground truth is used, we employ real data with inherent
noise, despite at an extremely smaller scale compared to the strong target signal introduced
for testing. In this context, a loss function approaching zero would theoretically imply perfect
reconstruction of the input traces, including the existing noise. Therefore, it is important
to minimise the loss for reconstructing similar traces while a relatively small loss would
imply an overfitting towards the model, results in a less accurate denoising algorithm. The
"flipping” step in Strategy B introduces a randomisation element. This prevents the data
from exhibiting a consistent pattern (e.g., P-wave, S-wave, coda waves) and promotes model
flexibility in capturing the long-term coherent value within the signal. As a result, flipping
helps the model generalise better and avoid overfitting to specific noise patterns.

Similar behaviour is found in the experiments of using different input patch sizes (11,
31, and 51 traces). While larger patches (31 and 51 traces) achieve lower loss values (as
shown in Figure 3-5), they exhibit limitations in denoising performance. Specifically, these
methods yield less sharp P-wave arrivals before channel 400 and retained noise, particularly
in dense signal areas (below channel 700, before and after the target signal) as seen in
Figures 3-11b and 3-12b. We hypothesise that smaller input patches (11 traces) capture a
more focused local trend compared to the global features captured by larger patches. This
focus benefits the denoising of weak microseismic events and the top channels, where the
SNR is generally lower compared to the bottom channels. Given our primary objective of
achieving accurate pre-screening results (identifying as many weak microseismic events as
possible to prevent data loss), prioritising 11 input traces offers a clear advantage for this
specific application.

Our findings align with observations from [van den Ende et al., 2023b], who reported
the creation of unexplained artifacts during denoising of data with strong noise (similar to
Figures 3-14 to 3-16¢ and d. They proposed introducing Gaussian random noise at 1-10
Hz followed by a post-filtering step with a low-cut frequency of 10 Hz. In our experiment,
we adopt a similar strategy, but with Gaussian random noise between 10-150 Hz and a
post-filtering range of 10-150 Hz. However, this approach failed to fully eliminate the
artifacts in the case of Strategy F, even leading to a decrease in the true SNR.

The detection performance is influenced by the denoising algorithm’s characteristics.
For instance, Strategy F excels in deeper channels but struggles with shallower depths, while
Strategy B achieves high SNR but requires a higher detection threshold to mitigate false
alarms. Strategies A and C which adopt 11 input traces, effectively enhance first arrivals at
shallower depths but it would suffer from surface-correlated noise-induced false detections as
shown in Figure 5-4. We need to balance the use of multiple traces at varying depths so as to
optimising detection accuracy, and also prioritising channels where the denoising algorithm
performs optimally.

August 1, 2024



5-2 Real-Time Detection Feasibility 53

5-2 Real-Time Detection Feasibility

Section 4 presents an experiment exploring real-time denoising capabilities. With the
equipment setup it could perform blind denoising and detection in the real-time, yet this
approach introduces additional processing time for data saving before the arrival of the next
data patch. Furthermore, data size constraints impose a maximum sampling frequency of
2100 Hz. Capturing higher resolution data per second would require creating additional
data chunks and doubling the denoising processing time. It’s important to note that these
limitations are specific to the current hardware configuration, and performance might vary
depending on programming language, which in our scenarios is python.

Our real-time detection algorithm utilises a single-trace STA/LTA implementation.
This is a simpler approach compared to the 7-trace detection employed in Section 3.3. While
the maximum trace analysis for this equipment setup might be 3 traces, this would signifi-
cantly increase processing time, leading to a more general scenarios in exceeding real-time
constraints and leading to missed data. Notably, even with the single-trace approach, the
algorithm achieves a remarkable accuracy of 87.5%. However, increasing the number of traces
analysed by the STA/LTA algorithm has the potential to reduce false positives caused by
instrument faults or poor channel coupling. Figure 5-1 exemplifies this concept. The red line
shows a false positive generated by the single-trace STA/LTA implementation. This occurs
because the issue is a localised phenomenon. On the other hand, the blue region exhibits
less correlated noise across channels which if we take more account of traces in detection the
events can be detected.
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Figure 5-1: Example of a false positive in real-time experiment: (a) demonstrates a scenario
with real-time denoising, and the trace location where STA/LTA is applied in 2 different case. (b)
demonstrates the event can be detected if traces are selected in the blue region. (c) demonstrates
the event cannot be detected if traces are selected in the red region.
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To potentially improve accuracy, one strategy could involve lowering the on-threshold
requirement. While this might increase false positives, it aligns with the screening purpose
of capturing as many potential microseismic events as possible to avoid missing critical data.
In this context, false alarms are acceptable as long as the algorithm avoids missing true
positives and offers a significant advantage over storing all raw data.

5-3 Limitations

Data Chunk Constraints

One harsh condition for using U-Net with blind denoising is the size of the data sample. It
could only process when the patch of the data is sufficient with 2048 time sample points,
and it would also process with the multiple of 2048. This limitation leads to edge effects
when the total data length exceeds this threshold, as shown in Figure 5-2. These effects
arise because the network reconstructs boundaries based on interpolations from adjacent
windows, resulting in data discontinuities. Depends on the chosen algorithm, edge effects
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Figure 5-2: Real-Time Denoising Profile and Single Trace Analysis: (a) The raw microseismic
events. (b)The denoised profile when the input file is more than 2048 time samples, and an edge
effect would be created at the boundary of each denoising windows (i,e, multiple of 2048) as
shown in the red block. (c) The single trace comparison among the raw data, Strategy B and
Strategy C at trace 140, 540 and 740. As shown the amplitude is distorted among all denoised
profile, and the edge effect as circled in red is more obvious among weaker traces (a spike in the
orange profile). For MaxAbs scaling, it tends to reconstruct the amplitude in single polarity as
circle in orange block in trace 540, which hinders the extraction of phase information afterwards
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(c) The denoised profile with overlapping windows. The edge effect would be gone as shown in
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are more significant in methods like Strategy A and Strategy C, while it was less when we
consider flipping and increase the side of the input traces. Yet. the edge effects can lead
to significant false detection rates, particularly when spurious spikes appear across multiple
individual traces.

One possible approach would be constructing overlapping windows during data pre-
processing, which the concepts and the examples are shown in Figure 5-3. This method
expands the data size and excludes edge points from the final reconstruction process, ensuring
the original data length is preserved. In our experiment, we implemented a 50% overlap
between windows, effectively eliminating edge effects. Yet, for n number of data patch, it
would create an additional of (n-1) set of data which significantly increase the processing
time for the data. Fortunately, edge effects are a predictable consequence of the U-Net
architecture and data processing limitations, which in detection algorithm we can exclude the
data that is sampled at the factor of 2048 manually, avoiding the creation of false detection.

Amplitude Distortion

Similarly finding as [van den Ende et al., 2023b], challenges remain in estimating the true
signal amplitudes accurately, especially if the noise and the signal are at similar level. As
shown in figure 5-2, in trace 140 where it contains mainly noise and in trace 740 where noise
are significantly before the first arrival, especially with Strategy B, the amplitude of signal are
diminished compared with the raw data. As in our experiment, this distortion appeared to be
more pronounced in cases with high initial SNR (raw data) compared to low SNR scenarios.

Correlated Noise Mitigation

The underlying principle of the blind denoising algorithm relies heavily on spatial-temporal
signal coherence, which is very useful for removing incoherent noise while coherent noise

August 1, 2024



56 Discussion and Outlook

like ocean gravity waves will be remained and these require separate denoising techniques.
Figure 5-4 illustrates a false detection resulting from surface-correlated noise, during the
microseismic event detection experiment outlined in Section 3.3. Despite denoising efforts,
the coherent nature of this noise prevents its complete removal.
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Figure 5-4: (a) False detection caused by surface-correlated noise (marked in red) in the mi-
croseismic event detection experiment (Section 3.3). (b) Denoised profile with surface-correlated
noise remained.

5-4 Future Qutlook

Machine learning algorithms for Distributed Acoustic Sensing (DAS) applications often
exhibit dataset and setup specificity. For example, jDAS [van den Ende et al., 2023a]
a is trained on earthquake events, making it unsuitable for microseismic monitoring.
Likewise, DAS-N2N [Lapins et al., 2023] requires specific data logging conditions, limiting
its applicability to single-direction data collection. Similarly, our algorithm demonstrates
effectiveness with microseismic events acquired using our specific equipment setup and
data logging approach. However, it would require retraining for other applications, such
as large-magnitude earthquakes or Distributed Temperature Sensing (DTS) data analysis.
The development of universally applicable blind denoising algorithms which is capable of
handling diverse datasets would be a desirable goal with less overfitting with specific dataset.

More advanced denoising algorithms exist, such as PySeis [Chen et al., 2023].  This
package offers structural denoising and interpolation of multi-channel seismic data, and it is
effective in removing both random and correlated noise. Yet with the current computational
power and time it could not be done in real time. Future advancements in computing power,
including the exponential speedup promised by quantum computing [Liu, 2021}, could enable
real-time utilisation of these advanced denoising methods.

While our algorithm primarily focuses on data screening, its applications could be ex-
tended to include a ”traffic light” system for deep geothermal well stimulation. This

system would automatically shut down operations when induced seismicity reaches pre-
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defined thresholds [Ader et al., 2020]. Additionally, the algorithm could be used in fluid
pressure monitoring and carbon injection for Carbon Capture and Storage (CCS) projects
[Grab et al., 2022].
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Chapter 6

Conclusion

This study investigates the application of unsupervised learning for blind denoising of DAS
data based on the concept of J-invariance. Unsupervised learning offers the advantage
of bypassing the need for prior noise knowledge and noise-free ground truth data. We
incorporated J-invariance principles into a U-Net CNN architecture by inputting a series of
seismic traces, masking one, and reconstructing it based on neighbouring traces.

Utilising field DAS data (i.e, FORGE data) containing strong microseismic events for
model training, we successfully captured long-term signal coherence and boosted SNR for
both strong and weak microseismic events. Hyperparameter analysis revealed that Min-Max
scaling generally outperforms Max-Abs scaling and standardisation in terms of SNR, while
preserving amplitude polarity. The number of input traces influenced feature extraction,
with fewer traces capturing local details effectively, particularly for the P-wave arrival in
shallower depths, and more traces capturing global trends and waveform characteristics
in deeper channels. Time flipping, although increasing training loss and validation loss,
enhanced data diversity and mitigated overfitting.

We evaluated our denoised data by implementing a microseismic event detection algo-
rithm. A data screening process triggered additional detections, resulting in a 43% increase
in identified real microseismic events while maintaining an overall detection accuracy of
68%. By implementing a data separation and saving function triggered by event detection,
we achieved a 75% reduction in data volume, effectively addressing the storage challenges
associated with continuous monitoring campaigns.

We further implemented the proposed method in a real-time demonstration. Despite
a data logging rate of one second, the denoising function was integrated into the workflow,
operating at a maximum sampling rate of 21 kHz without exceeding 90% of the processing
time before the next data input. While denoising and detection occasionally pushed process-
ing time to 101.3%, the rapid advancements in GPU and quantum computing technologies
offer promising potential to the exponentially accelerate computational speeds, enabling
higher real-time processing stability.
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Appendix A

Data Management Plan

1. Is TU Delft the lead institution for this project?

No - This project is in collaboration with TNO, the geophysical survey of the Nether-
lands and TU Delft. TNO is the leading institution. It is an independent statutory research
organization in the Netherlands that focuses on applied science. My main role in the project
is to develop an deep learning algorithm that can denoise the DAS and implemenet in various
TNO ongoing DAS Project.

2. If you leave TU Delft (or are unavailable), who is going to be responsi-
ble for the data resulting from this project?

My supervisor are Dr. Deyan Draganov, Boris Boullenger and Vincent Vandeweijer.
They will be responsible for the data resulting from the project.

3. Where will the data (and code, if applicable) be stored and backed-up
during the project lifetime?

TNO will have a secured dara server, on which the data will be stored.

You could find the scripts, retraining model, detection results, and the real-time de-
noising demo in my personal GitHub: LongSang-RealTimeDAS. All the materials will be
available since 12th August, 2024

4. How much data storage will you require during the project lifetime?

<2TB

It requires a full data storage of data for the model training, but it will require less data
storage on the final model and report.
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66 Data Management Plan

5. What data will be shared in a research data repository?

The data set (i,e FORGE) is open accessed and can be stored. The list of detections
from HECTOR and the comparison with the Silixa’s detections for the same period is freely
available in Bocchini et al. (2023 ).Moreover, the final trained model, the code and the final
master thesis report will be shared on the TU Delft research repository.

Due to confidentiality, the real-time data remains accessible only on the TNO server.
However, a demonstration video showcasing the results will be made available on my Git
account.

6. How much of your data will be shared in a research data repository?

<2TB

Only the open accessed FORGE data, the code, the demonstration video and the final thesis
report will be shared. The internal TNO data will not be stored.

7. How will you share your research data (and code)?

Data obtained by TNO will be stored on their secure server. I will upload my code
to Github.

8. Does your research involve human subjects? No

9. Will you process any personal data? No
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Appendix B

U NET Model Summary

B-1 Base Strategy

Model: "model_1”"
Layer (type) Output Shape Param # Connected to

input_4 (InputLayer) [(None, 11, 2048, 1)] 0 ]
input_3 (InputLayer) [(None, 11, 2048, 1)] 0 []

tf_op_layer_Mul_2 (TensorFlowOpLayerlowOpLayer) (None, 11, 2048, 1) 0 ['input_4[0][0]’, "in-
put-3[0][0]’]

conv2d_19 (Conv2D) (None, 11, 2048, 4) 64 ['tf_op_layer_Mul_2[0][0]’]
activation_18 (Activation) (None, 11, 2048, 4) 0 ["conv2d_19[0][0]’]
conv2d_20 (Conv2D) (None, 11, 2048, 4) 244 [activation_18[0][0]’]
activation_19 (Activation) (None, 11, 2048, 4) 0 ["conv2d_20[0][0]’]
max_pooling2d_4 (MaxPooling2D) (None, 11, 2045, 4) 0 ["activation_19[0][0]’]
tf_op_layer_Conv2D_21 TensorFlowOpLayer(None, 11, 512, 4) 0 ['max_pooling2d_4[0][0]’]
conv2d_21 (Conv2D) (None, 11, 512, 8) 488 ['tf_op_layer_Conv2D_21[0][0]’]

activation 20 (Activation) (None, 11, 512, 8) 0 ['conv2d_21[0][0]’]

conv2d_22 (Conv2D) (None, 11, 512, 8) 968 ['activation_20[0][0]’]

activation_21 (Activation) (None, 11, 512, 8) 0 ["conv2d_22[0][0]’]

max_pooling2d_5 (MaxPooling2D) (None, 11, 509, 8) 0 ['activation_21[0][0]’]
tf_op_layer_Conv2D_23 TensorFlowOpLayer(None, 11, 128, 8) 0 ['max_pooling2d_5[0][0]’]
conv2d_23 (Conv2D) (None, 11, 128, 16) 1936 ['tf_op_layer_Conv2D_23[0][0]’]
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activation_22 (Activation) (None, 11, 128, 16) 0 ["conv2d_23[0][0]’]

conv2d_24 (Conv2D) (None, 11, 128, 16) 3856 [activation_22[0][0]’]

activation_23 (Activation) (None, 11, 128, 16) 0 ["conv2d_24[0][0]’]

max_pooling2d_6 (MaxPooling2D) (None, 11, 125, 16) 0 ['activation_23[0][0]’]
tf_op_layer_Conv2D_25 (TensorFlowOpLayer)(None, 11, 32, 16) 0 ['max_pooling2d_6[0][0]’]
conv2d_25 (Conv2D) (None, 11, 32, 32) 7712 ['tf_op_layer_Conv2D _25[0][0]’]

activation 24 (Activation) (None, 11, 32, 32) 0 ['conv2d_25[0][0]’]

conv2d_26 (Conv2D) (None, 11, 32, 32) 15392 [activation_24[0][0]’]

activation_25 (Activation) (None, 11, 32, 32) 0 ['conv2d_26[0][0]’]

max_pooling2d_7 (MaxPooling2D) (None, 11, 29, 32) 0 ["activation_25[0][0]’]
tf_op_layer_Conv2D_27 (TensorFlowOpLayer) (None, 11, 8, 32) 0 ['max_pooling2d_7[0][0]’]
conv2d_27 (Conv2D) (None, 11, 8, 64) 30784 ['tf_op_layer_Conv2D_27[0][0]’]

activation_26 (Activation) (None, 11, 8, 64) 0 ["conv2d_27[0][0]’]

conv2d_28 (Conv2D) (None, 11, 8, 64) 61504 [activation_26[0][0]’]

activation_27 (Activation) (None, 11, 8, 64) 0 ['conv2d_28[0][0]’]

up_sampling2d_4 (UpSampling2D) (None, 11, 32, 64) 0 [activation_27[0][0]’]

concatenate4 (Concatenate) (None, 11, 32, 96) 0 [up-sampling2d_4[0][0]’, ’activa-
tion_25[0][0]’]

conv2d_29 (Conv2D) (None, 11, 32, 32) 46112 ['concatenate_4[0][0]’]
activation_28 (Activation) (None, 11, 32, 32) 0 ['conv2d_29[0][0]’]

conv2d_30 (Conv2D) (None, 11, 32, 32) 15392 [activation_28[0][0]’]
activation_29 (Activation) (None, 11, 32, 32) 0 ['conv2d_30[0][0]’]
up_sampling2d_5 (UpSampling2D) (None, 11, 128, 32) 0 [activation_29[0][0]’]

concatenate_b (Concatenate) (None, 11, 128, 48) 0 ['up_sampling2d_5[0][0]’, ’activa-
tion_23[0][0]’]

conv2d_31 (Conv2D) (None, 11, 128, 16) 11536 ['concatenate_5[0][0]’]
activation_30 (Activation) (None, 11, 128, 16) 0 ["conv2d_31[0][0]]

conv2d_32 (Conv2D) (None, 11, 128, 16) 3856 ['activation_30[0][0]
activation_31 (Activation) (None, 11, 128, 16) 0 ["conv2d_32[0][0]’]
up_sampling2d_6 (UpSampling2D) (None, 11, 512, 16) 0 [activation_31[0][0]’]

]

concatenate 6 (Concatenate) (None, 11, 512, 24) 0 ['up-sampling2d 6[0][0]’, ’activa-
tion_21[0][0]]

conv2d_33 (Conv2D) (None, 11, 512, 8) 2888 ['concatenate_6[0][0]’]
activation_32 (Activation) (None, 11, 512, 8) 0 ['conv2d_33[0][0]’]
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conv2d_34 (Conv2D) (None, 11, 512, 8) 968 [activation_32[0][0]’]

activation_33 (Activation) (None, 11, 512, 8) 0 ['conv2d_34[0][0]’]

up_sampling2d_7 (UpSampling2D) (None, 11, 2048, 8) 0 [activation_33[0][0]’]
0

concatenate_7 (Concatenate) (None, 11, 2048, 12)
tion_19[0][0]’]

conv2d_35 (Conv2D) (None, 11, 2048, 4) 724 ['concatenate_7[0][0

['up_sampling2d_7[0][0]’, ’activa-

IUN
activation_34 (Activation) (None, 11, 2048, 4) 0 ["conv2d_35[0][0]’]
conv2d_36 (Conv2D) (None, 11, 2048, 4) 244 [activation_34[0][0]’]
activation_35 (Activation) (None, 11, 2048, 4) 0 ["conv2d_36[0][0]’]
tf_op_layer_Sub_1 (TensorFlowOpLayer) (None, 11, 2048, 1) 0 ['input_4[0][0]’]
conv2d_37 (Conv2D) (None, 11, 2048, 1) 61 [activation_35[0][0]]

tf_op_layer Mul_3 (TensorFlowOpLayer) (None, 11, 2048, 1) 0 ['tf_op_layer_Sub_1[0][0]’,
"conv2d_37[0][0]’]

Total params: 204729 (799.72 KB)
Trainable params: 204729 (799.72 KB)
Non-trainable params: 0 (0.00 Byte)
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