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Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian

behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been

devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible

Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential

infection time (while still assuming an exponential curing time) on the epidemic threshold by considering

Weibullean infection times with the same mean, but different power exponent �. For three basic classes of

graphs, the Erdős-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of

infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the

epidemic threshold significantly increases with the power exponents �. Hence, real epidemics that violate

the exponential or Markovian assumption can behave seriously differently than anticipated based on

Markov theory.
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The epidemic threshold of a network distinguishes
between the overall-healthy network regime and the effec-
tive infection regimewhere permanently a nonzero fraction
of the nodes is infected. The epidemic threshold reflects
the effectivity of an epidemic in a particular network
and is a major indicator or tool to protect the nodes
(people, computers, etc.) and to take preventive measures
(governmental immunization strategies, antivirus software
protection).

Recently (see, e.g., Refs. [1–7]) much effort has been
devoted to the precise computation of the epidemic thresh-
old in the continuous-time susceptible-infected-susceptible
(SIS) Markov model in networks. In that simple SIS model,
the viral state of a node i at time t is specified by a
Bernoulli random variable XiðtÞ 2 f0; 1g: XiðtÞ ¼ 0 for a
healthy node and XiðtÞ ¼ 1 for an infected node. A node i
at time t can be in one of two states: infected, with
probability viðtÞ ¼ Pr½XiðtÞ ¼ 1� or healthy, with proba-
bility 1� viðtÞ, but susceptible to the infection. The curing
process per node i is a Poisson process with rate � and the
infection rate per link is a Poisson process with rate �.
Obviously, only when a node is infected, can it infect its
direct neighbors that are still healthy. Both the curing and
infection Poisson processes are independent. The network
is represented by an adjacency matrix A, where aij ¼ 1 if

there is a link from node i to node j, otherwise aij ¼ 0. A

major complication in the SISMarkov model is the absorb-
ing state to which the epidemic SIS process always
converges after a sufficiently long time in any network
G with a finite number N of nodes and L
of links. Hence, the steady state is the overall-healthy
(absorbing) state. Since the exact steady state is physically
less meaningful, the epidemic threshold refers to the

metastable or quasistationary state which is observed in
practice. However, the metastable state needs to be defined
(see, e.g., Refs. [4,8]).
Since Xi is a Bernoulli random variable with the nice

property that E½Xi� ¼ Pr½Xi ¼ 1�, the exact SIS governing
equation [3] for node i equals

dE½XiðtÞ�
dt

¼ E

�
��XiðtÞ þ �ð1� XiðtÞÞ

XN
k¼1

akiXkðtÞ
�

¼ E

�
��XiðtÞ þ �

XN
k¼1

akiXkðtÞ

� �
XN
k¼1

akiXiðtÞXkðtÞ
�
; (1)

where (1) also holds for asymmetric adjacency matrices.
In some of our previously published work, where undir-
ected graphs (i.e., A ¼ AT) were assumed, A must in some
cases be replaced by its transpose AT in the equations in
order to be valid for directed graphs. Directly from (1), we
deduce that

dE½XiðtÞ�
dt

� ��E½XiðtÞ� þ �
XN
k¼1

akiE½XkðtÞ�:

When written for all nodes i with wi ¼ E½XiðtÞ� and the
vector W ¼ ðw1; w2; . . . ; wNÞ, we obtain the matrix
inequality

dWðtÞ
dt

� ð�AT � �IÞWðtÞ (2)

from which

WðtÞ � eð�AT��IÞtWð0Þ ¼ eð�AT�IÞt�Wð0Þ;
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where the effective infection rate � ¼ �
� and the normalized

time t� ¼ �t is measured in units of the curing rate �.
The upper bound is dominated by the fastest growth in t�,
which is due to the largest eigenvalue of �AT � I.
The exponential factor is dominated by ��1ðAÞ � 1, where
�1ðAÞ is the real, largest eigenvalue of the non-negative
matrix A (by the Perron-Frobenius theorem; see Ref. [9]).

When ��1ðAÞ � 1 � 0 or � � 1
�1ðAÞ ¼ �ð1Þc , where �ð1Þc is

the first-order mean-field epidemic threshold [10], wi ¼
E½XiðtÞ� decreases exponentially in t�. Hence, the epidemic
will die out fast. By definition of the epidemic threshold �c
as the border between exponential die out and a nonzero
fraction of infected nodes in the metastable state, we con-

clude that the exact epidemic threshold is �c � �ð1Þc in any

finite sized network. The lower bound �ð1Þc ¼ 1
�1ðAÞ is of

great practical use: if the effective infection rate � can be

controlled such that � � �ð1Þc , then the network is safe-
guarded from long-term, massive infection.

A basic property of a continuous-time Markov SIS
process is the exponentially distributed infection time
([11], p. 184): a node i infects its neighbors at an expo-
nential time T with mean 1

� . Only the exponential distri-

bution possesses the memoryless property which enables
us to reduce the process history to only the previous event
to compute the current one. Hence, all events in the past
before the previous event are uncoupled as if the process
restarts in the state at the previous event ([11], 349–351).
Thus, the memoryless property of the exponential
distribution makes Markovian processes attractive and
analytically tractable. When a stochastic process is not
Markovian, its mathematical description and analysis is
considerably more complex. For example, the relatively
simple and intuitive equation (1) and, more generally, the
Chapman-Kolmogorov basic equations ([11], p. 180) that
characterize Markov processes do not apply anymore. The
(non-Markovian) time-dependent branching process [12],
that is still tractable, exemplifies the increased mathemati-
cal complexity, while a non-Markovian epidemic model is
analyzed in Ref. [13]. Hinrichsen [14] has surveyed the
recent progress in the field of non-equilibrium phase tran-
sitions into absorbing states with long-range interactions
and non-Markovian effects. In many non-Markovian pro-
cesses on networks, computer simulation or measurement
is often the only means to investigate its behavior and
properties.

Here, we report the rather dramatic effect of a nonexpo-
nential infection time on the average steady-state fraction
of infected nodes in networks. While the curing process is
still Poissonian with rate �, the infection process at each
node infects direct neighbors in a time T that is Weibullean
([11], p. 56), with probability density function

fTðxÞ ¼ �

b

�
x

b

�
��1

e�ðx=bÞ� (3)

and mean E½T� ¼ b�ð1þ 1
�Þ. In order to compare the

Weibull with the exponential distribution, we fix the
average infection time to 1

� , so that

b ¼
�
�

�
1þ 1

�

�
�

��1
:

Thus, the parameter � in (3) tunes the power-law start and
the tail of the Weibull distributions that all have the same
mean infection time E½T� ¼ 1

� , but variance equal to

Var½T� ¼ 1

�2

 
�ð1þ 2

�Þ
�2ð1þ 1

�Þ
� 1

!
:

When � ¼ 1, the Weibull distribution reduces to the expo-
nential distribution. For �< 1, the tail decreases slower,
but the probability of small infection times increases as a
power law, proportional to x��1. In the extreme limit for
� ! 0, the Weibull distribution tends to the Zipf distribu-
tion. In addition to the natural generalization of the expo-
nential distribution, the Weibull distribution also recently
appeared in epidemic studies [15].
The SIS process with Weibullean infection times is

simulated as explained in Refs. [4,8]: the complicating
absorbing state is removed so that the infection always
remains in the network. When only one node is infected,
the process restarts. At the precise moment that the last
infected node is cured, that same node is reinfected. In
order to determine the steady state of the fraction of
infected nodes we run two simultaneous, but independent
simulations on the same network. One simulation is ini-
tialized with a fraction of infected nodes equal to 10%,
whereas the second simulation starts with all nodes
infected. During the simulation the time averaged number
of infected nodes is measured. After running for 100000
state changes (or events) per simulation, we start compar-
ing the average number of infected nodes in the two
simulations and conclude that the steady state is reached

when j �y1ðtÞ� �y2ðtÞj
�y1ðtÞþ �y2ðtÞ < 10�4, where �y1ðtÞ is the average fraction

of infected nodes in the first simulation as a function of
time and �y2ðtÞ that of the second. The steady-state fraction
of infected nodes is taken to be �y1ðtÞþ �y2ðtÞ

2 .

Figure 1 shows the average steady-state fraction
y1ð�Þ ¼ limt!1 1

N E½
PN

j¼1 XjðtÞ� of infected nodes in an

Erdős-Rényi (ER) random graph GpðNÞ with N ¼ 500

nodes and with link density p ¼ 2pc, where the discon-

nectivity threshold ([11], p. 338) equals pc � logN
N , versus

the effective infection rate � for various �, both larger and
smaller than 1. The curves y1ð�Þ clearly shift to the right
with increasing �. More dramatically, when � decreases,
the epidemic threshold also decreases. Not only does the
threshold decrease, the smaller � the quicker the steady-
state fraction of infected nodes increases when the epi-
demic threshold is passed. In other words, the derivative
d
d� y1ð�Þ increases with decreasing � for � above the
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epidemic threshold: the epidemic infects a larger number
of nodes for a same average strength �. Hence, in non-
Markovian SIS epidemics with the same mean infection
time (and same effective infection rate �), the sensitivity of
the power law for values of � smaller than 1 on the
epidemic threshold is large. A similar tendency is found
in other types of graphs, for example, a scale-free (SF)
graph (Fig. 2) and a rectangular grid (Fig. 3). As SF graph,
we have simulated a Barabási-Albert graph, whose initial
topology is a ring withm nodes and wherem is the number
of links added per newly added node and chosen in such a
way that the resulting SF graph has approximately the
same number of links as G2pc

ðNÞ.
In the case of the grid (Fig. 3), the curves for succes-

sively smaller values of � are spaced further apart, while
for larger values of � the opposite holds.

For small values of�< 1, theWeibull pdf fTðtÞ in Fig. 4
shows that small infection times are more likely to occur,
implying that many short infection attempts are fired to
neighboring nodes, interchanged with a relatively long
inactive time (because the mean E½T� is constant). The
exponential curing process is less effective to counteract
the fast infection attempts leading to more infected nodes
[higher y1ð�Þ at a same �], but can clearly cope with the
long inactive times, during which the neighbors cure and
become healthy. Similarly, when�> 1, a quick succession
of curing events takes place more frequently than infection
attempts, thereby shifting y1ð�Þ to larger effective infec-
tion rates �. Figure 4 draws the measured probability
density function of the infection time T for various values
of the exponent �. The infection time is only logged if it
leads to a spreading action, that is, if it is smaller than the
current curing time of the infected node. In all simulations
the curing time is exponentially distributed with a mean of
1 (i.e., � ¼ 1 and � ¼ �). As the infection time cannot be

FIG. 2 (color online). Steady-state fraction of infected indi-
viduals as a function of the effective infection rate for various
Weibull exponents on SF networks (N ¼ 500, L ¼ 2970,
da ¼ 11:8).

FIG. 3 (color online). Steady-state fraction of infected indi-
viduals as a function of the effective infection rate for various
Weibull exponents on a rectangular grid (N ¼ 484, L ¼ 924,
da ¼ 3:8).

FIG. 1 (color online). Steady-state fraction of infected indi-
viduals as a function of the effective infection rate for various
Weibull exponents on ER networks (N ¼ 500, p ¼ 2pc,
da ¼ 12:4).

FIG. 4 (color online). The effectively simulated probability
density function fTðtÞ of the infection T for various �.
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larger than the cure time of the infected node, the infection
time distribution is cut off for larger values by the expo-
nential distribution of the cure time. Since the area below
the curves equals one, by definition of a probability density
function, each curve for � � 1 intersects with the expo-
nential distribution (� ¼ 1) twice. If �< 1, then small as
well as very long infection times are more probable than
for the exponential distribution, while the opposite holds
for �> 1 as can be seen from Fig. 4. The thick line in
Fig. 4 depicts the exponential case of � ¼ 1. For each
value of � approximately 7:5� 106 infection times are
logged.

Figure 5 illustrates how the epidemic threshold varies as
a function of �. For the ER and SF graph, the epidemic
threshold is approximately linear for �> 1 and convex for
�< 1, while the grid exhibits an opposite trend (linear for
�< 1 and concave for �> 1). In addition to the larger
effect of � on the epidemic threshold in lattices, the SIS
epidemics in grids or lattices behaves, indeed, different
from that of the denser graphs (in which the average degree
increases with N). Also, mean-field approximations are
less accurate for lattices than for the other two classes
[8]. Finally, Fig. 6 shows that the epidemic threshold �c
for ER and SF graphs as a function of the inverse spectral
radius �1 (for various sizes of N ranging from N ¼ 103 up
to 64� 103) are all power laws, suggesting that

�cð�Þ ¼ qð�Þ
�rð�Þ
1

: (4)

For the simulated � 2 ½0:5; 1:5� and for both ER and
SF graphs, we found that the exponent in (4) is approxi-
mately rð�Þ � 1

� , but that qð�Þ is less accurate and not

monotonic in �. For � ¼ 1, qð1Þ ’ 1:2 indicating that the
N-intertwined mean-field approximation (NIMFA, [10])

lower bound �ð1Þc ¼ 1
�1

is about 20% smaller (for the

considered graphs). The corresponding scaling of the grid
with N is different: all considered sizes (above N ¼ 1000)
have the same epidemic threshold �cð�Þ (because �1 is
about 4 for all N � 1000 and nearly independent of N),
but �cð�Þ depends on �: �cð0:5Þ ’ 0:11, �cð1Þ ’ 0:41
and �cð1:5Þ ’ 0:56. Based on the general bound [9],
maxðdav;

ffiffiffiffiffiffiffiffiffiffi
dmax

p Þ � �1 � dmax, where dav and dmax are
the average and maximum degree in a graph, respectively,
Chung et al. [16] have proved for SF graphs with

degree distribution Pr½D � x� � x�� that �1 �
ffiffiffiffiffiffiffiffiffiffi
dmax

p ¼
OðNð1=2�ÞÞ and Krivelevich and Sudakov [17] that
�1 ¼ OðlnNÞ for Gpc

ðNÞ. Combining these exact scaling

laws with the law for �cð�Þ in (4) suggests to us to con-
clude that the epidemic threshold in non-Markovian SIS
epidemics will vanish with N as a power law in SF graphs

and as Oðln�ð1=�ÞNÞ in ER networks.
In conclusion, the significant effect of a nonexponential

infection time on the average steady-state fraction y1ð�Þ of
infected nodes and, thus on the epidemic threshold, ques-
tions the huge efforts to precisely compute the epidemic
threshold in Markovean SIS epidemics in networks if
viruses in real epidemics (or in computer networks) do
not infect in an exponential time. Unfortunately, it appears
exceedingly difficult to measure accurately the infection
time in real epidemics to verify the exponential assumption
made in almost all earlier SIS computations. From inter-
actions with epidemiologists, rare measurements [18], and
email activity [19], it seems quite likely that the infection
time is not exponentially distributed, so that our observa-
tions here may point to a complete revision of SIS epi-
demics on networks. If real epidemics are not infecting
direct neighbors in an exponential time, the study of the
dependence of the epidemic threshold with the specifics of
the measured infected time for various network classes and

FIG. 5 (color online). The epidemic threshold, deduced from
Figs. 1–3, versus the parameter � for the three types of graphs
with approximately the same number of nodes N. The full
markers correspond to the first-order mean-field epidemic

threshold �ð1Þc ¼ 1
�1ðAÞ for � ¼ 1.
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FIG. 6 (color online). The epidemic threshold in ER and SF
graphs for various sizes (N ¼ 2k103, 0 � k � 6) and value of
� ¼ ð0:5; 1:0; 1:0Þ versus the inverse of the spectral radius of the
graph.

PRL 110, 108701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 MARCH 2013

108701-4



sizes stands on the agenda for future research. Our figures
present initial results, but a more in-depth analysis is
needed that covers more types of graphs and other
heavy-tailed distributions for both infection and curing.
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