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Abstract 
A location choice model explains how travellers choose their trip destinations especially for 

those activities which are flexible in space and time. The model is usually estimated using 

travel survey data; however, little is known about how to use smart card data (SCD) for this 

purpose in a public transport network. Our study extracted trip information from SCD to 

model location choice of after-work activities. We newly defined the metrics of travel 

impedance in this case. Moreover, since socio-demographic information is missing in such 

anonymous data, we used observable proxy indicators, including commuting distance and 

the characteristics of one’s home and workplace stations, to capture some interpersonal 

heterogeneity. Such heterogeneity is expected to distinguish the population and better 

explain the difference of their location choice behaviour. The approach was applied to metro 

travellers in the city of Shanghai, China. As a result, the model performs well in explaining 

the choices. Our new metrics of travel impedance to access an after-work activity result in a 

better model fit than the existing metrics and add additional interpretability to the results. 

Moreover, the proxy variables distinguishing the population seem to influence the choice 

behaviour and thus improve the model performance. 

Keywords:  Public transport; smart card data; location choice modelling; discrete choice 

model; demand forecast; transport planning. 

1. Introduction 
Travel behaviour is becoming more diverse and complex especially in large metropolitan 

areas. One of the most significant changes is that non-commuting travel demand takes a 

larger share than ever before (e.g., Lu and Gu, 2011). Therefore, the task of observing and 

analysing non-commuting travel demand is becoming important today. This task is not only 

relevant for transport planners to better understand movements of travellers, but also for 

service and retail business planners to understand where people would like to consume and 

where their customers come from (Sivakumar and Bhat, 2007). Moreover, economists 

regard the accessibility to non-commuting activities as an important indicator to reflect 
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quality of life (Nakamura et al., 2016; Suriñach et al., 2000). These relevant perspectives 

have led the transportation research field to expand its scope to topics like accessibility 

(Dong et al., 2006), social exclusion (Schönfelder and Axhausen, 2003), subjective well-being 

(De Vos et al., 2013), etc., in addition to traditional transport problems particularly focusing 

on network levels of service. 

To cope with the increasing non-commuting demand, the usage of public transport (PT) to 

access retail and service facilities has been encouraged in many cities due to the 

concentration of people (Castillo-Manzano and López-Valpuesta, 2009; Ibrahim and 

McGoldrick, 2003). Urban decision makers need to know where large recreational centres 

should be located and how PT network should be planned to meet the considered objectives. 

Answering these questions requires the prediction of non-commuting OD matrices in many 

“what-if” scenarios, based on the understanding of people’s activity-travel behaviour 

including, but not limited to, location choice. A relevant and interesting perspective is the 

activity-based travel demand modelling, which focuses on individuals and regards travelling 

as the result of the need to participate in activities (Rasouli and Timmermans, 2014). 

However, few studies have adopted this methodology focused on PT network. In this paper, 

we aim to fill this gap by using new available travel demand data sources, namely, smart 

card data (SCD). We focus on travel demand of after-work activities since it is a significant 

part of non-commuting travel demand especially on weekdays (Demerouti et al., 2009). Our 

research can also be regarded as a complement to the existing research that uses SCD to 

study commuting patterns (Ma et al., 2017; Zhou et al., 2014). 

Compared to traditional mobility survey data, SCD have several advantages and 

disadvantages to reveal how people travel by PT (Bagchi and White, 2005; Pelletier et al., 

2011). Firstly, collecting such data is more efficient, saving both time and money, compared 

to large-scale surveys. Secondly, SCD usually correspond to a larger sample and the 

observations can be longitudinal in time (Morency et al., 2007). On the other hand, trip 

purpose is difficult to obtain in SCD and needs to be estimated using other methods 

(Devillaine et al., 2013; Kuhlman, 2015; Long et al., 2012). In some cases, destination 

information needs to be estimated as well because some PT networks do not request a 

check-out (Trépanier et al., 2007). The very relevant personal socio-demographic 

information is most of the times not available for confidentiality reasons which decreases 

the possibility to do a more thorough analysis of particular behavioural traits of the 

population (Pelletier et al., 2011). 

The advantages of using SCD have allowed researchers to obtain more accurate estimates of 

transit demand, which have led to many applications. Using the data collected during 277 

consecutive days, Morency et al. (2007) examined the variability of transit use. Some studies 

proposed to cluster and classify the regularity of transit travel patterns by mining SCD 

(Goulet Langlois et al., 2016; Ma et al., 2013). Estimating origin-destination (OD) transit trip 

matrices is a usual application of SCD (Munizaga and Palma, 2012). It can further serve as a 

fixed input to passenger flow assignment (Sun et al., 2015), OD flow visualization (Liu et al., 

2009; Long et al., 2012) and any other post hoc analysis, such as commuting efficiency 

assessment (Zhou et al., 2014). However, only a few attempts have been made to use SCD to 

build explanatory trip distribution or location choice models, in order to predict the OD 
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matrices as a result of the changes made to transport systems and land use. One example is 

the gravity model developed by Goh et al. (2012) to understand aggregate commuting OD 

flows by metro. We believe that not only the characteristics of SCD but also the research 

objective in our study is a better fit for a disaggregate activity-based travel demand 

modelling framework.  

In this study, we use SCD to model location choice of after-work activities. The innovation of 

our approach firstly lies in the creation of new metrics to model travel impedance in location 

choice of after-work activities. Secondly, this is the first time that proxy variables, which can 

be observed in anonymous SCD, are used to capture some interpersonal heterogeneity in 

order to explain the difference of their location choice behaviour. Thanks to the Shanghai 

Open Data Apps (SODA) contest1, a full-population dataset of one-month PT smart card 

transaction records for the city of Shanghai (China) was made available, allowing us to 

explore this methodology in a large-size real-world case scenario. 

This paper is organized as follows. First, the methodology is described. Then, the data of 

Shanghai is further explained. Following that, we present the application of our method. In 

the final section, we take conclusions and point out directions for future research. 

2. Methodology 
We start by defining the scope to which our methodology can be applied. The method can 

be applied in a metro network composed of stations with services connecting them, where 

the automated fare collection system forces travellers to check in and check out at the 

stations where they board and alight respectively. Therefore, the following information of 

each trip is available through SCD: anonymous identity (ID) of the user, IDs of boarding and 

alighting stations and timestamp. A trip is defined to start from an origin station near which 

the previous activity has been finished, and end at a destination station where the next 

activity will take place. In our case, the recorded boarding and alighting stations are not 

necessarily an origin or a destination station of a trip. In other words, a trip including any 

transfers should not be regarded as two separate ones. Moreover, a daily trip chain is the 

ordered set of trips done by an individual within one day. 

2.1 Detecting commuters 
Several studies have been performed on the detection of commuters as well as their home 

and workplace stations from SCD (Chakirov and Erath, 2012; Long and Thill, 2015). By 

recurring to travel survey data, researchers have either predefined the rules or trained the 

models to predict if a smart card user is a commuter and if the purpose of a PT trip recorded 

in SCD is home, work or other, based on several observed factors, such as activity start time. 

In our method, we used a similar principle for activity identification, but due to the 

unavailability of travel survey data, we predefined the rules with the parameters identified 

in the literature.    

We used the following rule applied by Long et al. (2012) to determine one’s home station: 

any boarding station of the first trip done by an individual on a weekday was defined as a so-

                                                           
1
 http://soda.datashanghai.gov.cn/ (retrieved date: November 21

st
, 2015) 
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called candidate home station of this individual, and the station appearing most frequently 

as a candidate home station during the observed period was defined as the definitive home 

station of this individual. There could be more than one station appearing most frequently. 

In such cases, Long et al. (2012) compared the land use around the stations and assigned the 

station in a more residential environment to be the definitive home station. 

In SCD, activity duration can approximately be regarded as the time gap between a check-

out and the subsequent check-in at the same station when the access and egress mode is 

walking. If the activity duration of visiting a station was longer than 6 hours on a weekday, 

we identified the station as a so-called candidate workplace station. Long et al. (2012) 

selected this parameter based on the travel survey data from Beijing, China, and thus we 

think that it is the best reference for our study of Shanghai despite the differences between 

the two cities. Next, the station appearing most frequently as a candidate workplace station 

during the observed period was defined as the definitive workplace station. If there were 

more than one station appearing most frequently, we calculated for each station the 

distance from home multiplied by the frequency of visits during the observed period, as 

suggested by Alexander et al. (2015), and the station with the largest product was defined as 

the definitive workplace station. 

Commuters were defined as those who had both detected definitive home and workplace 

stations. Due to access and egress, home and workplace stations are not, in many cases, the 

real locations of home and workplace but can be regarded as proxies for those, especially 

when the access and egress mode is walking. 

One drawback of our method is that those commuters who have multiple home or 

workplace stations or have flexible working hours are difficult to detect. If necessary and 

possible, we recommend a more flexible approach relying on travel survey data. However, 

this step is not the main focus of our work, and our current method using the parameters 

identified in the literature is sufficient to detect a great number of commuters whom we can 

study regarding their after-work station choice behaviour.   

2.2 Extracting individual daily metro trip chains 
We assume that within one day, travellers do an activity between every two consecutive 

trips, and the purpose of this activity can be estimated based on the check-out station of the 

former trip and the check-in station of the latter. If they are the same one, the purpose can 

be classified into home, work or secondary activity dependent on whether the station is the 

home station, the workplace station or neither for that individual; if they are different due to 

the interim unobservable movement by using other modes, we do not classify any activity 

purpose. Note that the first activity on one day is dependent only on the check-in station of 

the first trip, and the last activity is dependent only on the check-out station of the last trip. 

The diagram of an individual daily metro trip chain starts in the first activity within a day, 

represented as a node, connected by an edge representing the trip to the second activity, 

connected sequentially until the last activity. An example is shown in Figure 1, where each 

activity is labelled with its type and the grey box indicates where the chain starts. The 

commuter first travels from the home station to the workplace station at 8:00 and stays at 
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the workplace station until 17:30. After staying at another station for 90 minutes, this 

person checks out there and travels back home.  

 
Figure 1 An example of an individual daily PT trip chain 

2.3 Modelling station choices for after-work activities 
In this paper, we focus on modelling station choice of metro commuters for after-work 

activities. Location choice involves a trade-off between attractiveness and travel impedance. 

We assumed that the attractiveness of a station for after-work activities is time-invariant. 

Travel impedance is a function of PT travel time, PT network distance, PT costs and number 

of PT transfers. In existing location choice models, there were three ways to model travel 

impedance to perform a secondary activity in a trip chain. The traditional way was to 

consider only the impedance of travelling between the activity location and home (Arentze 

and Timmermans, 2004). However, Arentze and Timmermans (2007) found that this 

measurement would result in the overestimation of the impedance between locations of 

activities within trip chains, and they proposed the concept of detour travel impedance: 

 ( , ) ( , ) ( , )s s s s sDT d O s d s D d O D      (1) 

In this equation, sO  is the origin of the trip to a candidate location s  for the secondary 

activity, and sD  is the destination of the trip from s . ( , )d x y  is the travel impedance from 

x  to y . 

Despite the wide use of this concept in existing travel demand models, such as MATSim 

(Horni, 2013), a disadvantage of this method is that it is not very sensitive in differentiating 

between distance from workplace or to home. Thus, while the previous definitions were 

adequate in the specific contexts of those studies, for our problem, it may be better to 

account for the effect of proximity to workplace vs. home. We defined the new metrics by 

complementing the detour impedance sDT  with a new variable sR : 

 ( , ) ( , )s s sR d s D d O s    (2) 

Table 1 summarizes the three possible ways to model travel impedances to perform an 

after-work activity in a trip chain. h , w  and s  represent home station, workplace station 

and candidate station for an after-work activity respectively, and the former two are 

respectively equivalent to the succeeding activity location sD  and the preceding activity 

location sO  in our specific case. 
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Table 1 Three ways to consider travel impedance in the choice of a location for an after-work activity 

 Existing metrics New metrics 

Measurement Home-based 
impedance ( , )d s h   

Detour impedance sDT  Detour impedance sDT  

and proximity to 

workplace vs. home sR   

Reference Arentze and 
Timmermans  (2004) 

Arentze and 
Timmermans (2007); 
Horni (2013) 

The approach in this 
study 

Diagram 

 

Although we focus on a metro network, attention should be paid to other modes like the 

access and egress to trips made in the metro network. In this study, we only model the trips 

to perform after-work activities with walking as access and egress, and we assume that the 

generalized travel cost of walking access and egress is minor compared to the main part of 

the metro trip. 

The characteristics of activities (i.e., activity start time and activity duration) can be inserted 

in the model to describe contexts of choice occasions. The underlying assumption, in line 

with existing travel demand models (Balmer et al., 2008), is that people have already 

generated their activity schedules before making location choices. Attributes related to 

individuals are generally missing in SCD; however, in our study, we proposed to use 

commuting distance and characteristics of home and workplace stations as proxies for the 

attributes of the travellers. Aggregating the number of people living and working near each 

station can help identify whether a station is categorized into a mainly residential area or a 

mainly commercial area (Liu et al., 2009). This can serve as a way to characterize each 

traveller’s home and workplace stations. 

Considering that choice making may also rely on the previously made choices, we include 

the effect of last choice feedback (i.e., first-order state dependence) in our model. Following 

the approach of Danalet et al. (2016), we estimate the model where the previous choice can 

be assumed to be strictly exogenous to the estimation. Danalet et al. (2016) also addressed a 

more advanced approach to deal with the initial conditions problem and related 

endogeneity bias in estimation. However, the consideration of these issues is beyond the 

scope of our paper. For the same reason, we do not consider time-variant attributes of 

alternatives and unobserved inter-individual and intra-individual response heterogeneity. 

We used a discrete choice model to explain the station choice for after-work activities with 

the referred impedance structures in our study. Consider that an individual user u  in the 

network of the study area is associated with the home station uh  and the workplace station 

uw , where ,u uh w N , and N  is the set of metro stations in an area. In addition, u is 

observed to have a set of choice occasions uJ  over time. The choice set of the destinations 

for after-work activities is denoted as , }u u\{h wuj ujS = R , where ujR  is the reachable subset 
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of N  for u  on choice occasion j . ujR  was calculated based on the following space-time 

constraints: (1) a commuter should not leave work earlier than the work schedule allows; (2) 

a commuter should not miss the last metro back home; (3) given the previous constraints, 

travel times to reach an after-work activity should not affect the activity start time and the 

activity duration. For each individual, we calculated the earliest time of departure from work 

during the observed period as the threshold to apply the first constraint. The timetables of 

the metro line were used to apply the second constraint. Travel time between every two 

stations can be calculated by averaging over the trips according to the SCD. 

The deterministic part of the utility function for an alternative s  ( s ujS ) on choice 

occasion j  ( j uJ ) of decision maker u  in one month is the following: 

 

[ ( ) ( )]

         { [ ( ) ( )]}

usj s m um n ujn

m n

usk k km um kn ujn usj

k m n

V Z X C

T X C SAME

  

   

  

   

 

  
  (3) 

The descriptions of all variables and parameters are presented in   
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Table 2. ( ) ( )m um n ujn

m n

X C      is a function representing the preference for station 

attractiveness sZ , and ( ) ( )k km um kn ujn

m n

X C      is a function representing the 

preference for reducing travel impedance uskT . Both functions incorporate the effects of 

user-specific attributes umX  and activity characteristics ujnC  on taste variation. Therefore, 

the preferences vary across individuals and choice occasions (Sivakumar and Bhat, 2007). 

The specific indicators of uskT , umX  and ujnC  are summarized in Table 3. The possible values 

of usjSAME  under different conditions are given in the following equation: 

 
1    if station  is chosen by individual  on choice occation 1

0 otherwise
usj

s u j
SAME


 


  (4) 
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Table 2 Variables and parameters in the deterministic utility function 

Parameters Variables 
  Preference for maintaining the previous 

choice 
usjSAME

 

Variable indicating the 
previous choice feedback 

  Baseline preference for attractiveness of 
station s  

sZ  Attractiveness of station s  

k  Baseline preference for reducing the 
type k  travel impedance 

uskT  The type k  travel impedance 
associated with home and 
workplace stations of 
individual u  and station s  

m  The extent of the preference for 
attractiveness of station s  that can be 
captured by the attribute m  of travelers  

umX  Variable for the attribute m  of 
individual u  

n  The extent of the preference for 
attractiveness of station s  that can be 
captured by the characteristic n  of 
activities 

ujnC  Variable for the characteristic 
n  of the activity performed by 
individual u  on choice 
occasion j  

km

 

The extent of the preference for 
reducing the type k  travel impedance 
that can be captured by the attribute m  

of travelers 

kn  The extent of the preference for 

reducing the type k  travel impedance 
that can be captured by the 
characteristic n  of activities 

  

 

Table 3 Indicators of travel impedance, user-specific attributes and activity characteristics in the utility 
function 

Variables Specific indicators 

Travel impedance 
variables 

Home-based impedance 1 ( , )usT d s h  

Detour impedance 1us sT DT  

Detour impedance and 
home vs. workplace 
proximity 

1us sT DT  

2us sT R  

User-specific attributes 

1uX : commuting distance 

2uX : characteristics of home station 

3uX : characteristics of workplace station 

Activity characteristics 
1ujC : activity duration 

2ujC : activity start time 

Regarding the random part of the utility function, we used the spatially correlated logit 

model proposed by Bhat and Guo (2004) to consider the effect of spatial correlation 

between adjacent stations on the metro network. This is a cross-nested logit model (Train, 

2009) with two characteristics: (1) it is a paired combinatorial logit model (Koppelman and 

Wen, 2000), and each paired nest includes a station and one of its adjacent station; (2) it 

defines the allocation parameters that reflect the degree to which each alternative belongs 
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to each nest. The probability of choosing an alternative can be calculated in a closed-form 

expression, where the dissimilarity parameter   ( 0 1  ) is designed to be equal across 

all paired nests and capture the general correlation between adjacent stations. There is no 

correlation between adjacent pairs of stations when 1  , and the correlation increases as 

  decreases. In addition to the parameters in the deterministic part of the utility function, 

we need to estimate   as well. More details about the spatially correlated logit model can 

be found in Bhat and Guo (2004). 

3. Background information and data of the case study 

3.1 Study area 
Shanghai is one of the most populated and fastest growing cities worldwide. The socio-

economic development has influenced people’s travel behaviour. Local travel surveys show 

that the trip generation rate of residents has increased in recent years. Meanwhile, the 

government invested in PT systems to mitigate traffic congestion led by the increasing 

private car ownership, resulting in an upward trend in the share of PT use (Lu and Gu, 2011). 

Among all PT modes, the Shanghai metro network is expanding the most in the last years. As 

shown in Figure 2, the metro system operates 14 metro lines, connecting 288 metro stations 

distributed in the region, among which there are 54 transfer stations (i.e., the stations where 

passengers can change from one line to another). 

A shortest path algorithm can be used to calculate the shortest network distance between 

every two stations and the number of transfers along each of those paths. The trip fare is set 

by the operator based on the shortest network distance, and thus they are almost perfectly 

correlated. The perfect correlation also exists between travel time and network distance, 

since we assume that the speeds of metro service do not vary between different OD pairs. 

These are the reasons why in this application we did not use fare and travel time as 

components of generalized travel costs. 

 
Figure 2 The metro network in Shanghai and number of POIs per station 
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On the website of Dianping2, which is one of the most popular Chinese location-review 

services, we mined information of points of interest (POI), in terms of total number of shops 

and restaurants within a 500-meter radius from each metro station, indicated by the depth 

of colour in Figure 2. This variable is regarded as a proxy for the attractiveness of each 

station for after-work activities in this study. It can be observed that the spatial distribution 

of POIs is concentrated towards the central part of the city, and it is also interesting to 

notice that in distant areas from the city centre, that distribution is concentrated in one or 

two stations, which can be interpreted as being city sub-centres.  

3.2 Smart card data 
One of the ways in which the government promoted PT in Shanghai was to introduce the 

automated fare collection system that automates the ticketing system for the entire PT 

network, including metro, bus, taxi, ferry and P+R. Travelers are allowed to pay these 

services by using a smart card not only for its convenience but also to get a discount. 

The SCD provided by the SODA contest contains the records of all transactions by all smart 

cards in April, 2015. In Shanghai, metro is the only PT system where card holders should 

both check in and check out. On the other hand, travellers are required to scan their cards 

only when boarding a bus or alighting a taxi, not to mention that the location information is 

missing on these modes. Therefore, we focused on the metro network for further analysis 

and modelling. 

In addition, we carefully dealt with those trips including transfers. In Shanghai, only a few 

metro stations require travellers to check out and then check in again to switch to another 

line. Such cases should not be seen as two separate trips. To distinguish them, we used a 

threshold of 30 minutes between check-out and check-in at those stations. The selection of 

this threshold is based on the policy by which after 30 minutes without checking in again, 

the system will regard the next check-in as the start of a new trip. We assume that travellers 

are aware of this fact, and if they stay at those stations for more than 30 minutes, they must 

have performed an activity whose utility can compensate for the loss. 

4. Results of the case study 

4.1 Detecting metro commuters 
After applying the method for detecting the commuters, there were about 0.8 million metro 

commuters filtered from the data. This number can be compared with the average daily 

number of unique card IDs scanned for metro trips, which was about 2 million. We did not 

include those commuters who had detected PT access and/or egress modes such as bus trips 

connecting with metro trips for commuting. Figure 3 shows the spatial distributions of home 

stations and workplace stations of all the detected metro commuters. By comparing the 

spatial distributions of home stations, workplace stations and POIs (shown in Figure 2 and 

Figure 3), we found that the spatial distribution of home stations was completely different 

from the ones of workplace stations and POIs, and the latter two were somehow similar to 

each other. 
                                                           
2
 http://dianping.com/ (retrieved date: November 21

st
, 2016) 

http://dianping.com/
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Figure 3 Number of metro commuters living near each station (left) and number of metro commuters working 
near each station (right) 

4.2 Extracting daily metro trip chains 
In our study, we focused on the metro commuters and extracted their daily metro trip 

chains which only consisted of metro trips. The ten most common types of the daily metro 

trip chains are plotted in Figure 4. Among the metro commuters on an average weekday, 

about 64.7% performed the home-work-home chain, which was the most common type of 

trip chains, and at least 13.5% performed the trip chains involving secondary activities. This 

shows that neglecting this kind of travel patterns may cause the distortion of travel demand 

prediction. 

 
Figure 4 The top 10 most common types of daily metro trip chains 

For chain type (3), (5) and (7) to (10), which involve secondary activities, the mean arrival-

departure hours of the day at the secondary activity are 18-NA (no departure), 18-20, 10-17, 

18-NA (no departure), 10-NA (no departure) and 13-14 respectively. It seems that type (10) 

is more likely to indicate a person who has a lunch break from work, and type (7) and (9) 

correspond more to business trips. The other three types are more related to the travel 

patterns of an individual performing an after-work activity. 

4.3 Model estimation 
We focused on the after-work activities which were performed after 16:00 in chain type (5). 

Considering the computational limits, we randomly selected 3,000 commuters who 

experienced the prescriptive choice situations in the month. To explain the revealed station 

choice behaviour, we used the model structure proposed in Section 2.3. The variable 
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specifications in the utility function formulated as Equation (3) should be updated in the 

context of the case study. The attractiveness of a station for after-work activities was 

defined as the number of POIs around the station. The features of travel impedance 

included metro network distance and number of metro transfers. As the characteristics of an 

after-work activity, activity duration was assumed to be the time gap between the arrival 

time and the departure time at the station for an after-work activity, and activity start time 

was quantified by the time gap between 16:00 and the arrival time at the station for the 

after-work activity. 

We have calculated the spatial distribution of home and workplace stations of all the metro 

commuters (See Figure 3). Based on that, we can calculate for each station the ratio of the 

number of commuters living there over the number of commuters working there, and this 

ratio is designated as the residents-to-jobs ratio (RJ ratio). For each commuter, we further 

calculated the RJ ratios for the home station and the workplace station respectively. It can 

be observed in Figure 3 that if the RJ ratio of one’s home station is higher, then this person is 

more likely to live in a mainly residential area, located in the peripheral area of Shanghai; 

Otherwise, this person is more likely to live in a mainly commercial area, located in the 

central area of Shanghai. The same applies to interpreting the RJ ratio of one’s workplace 

station. These two variables, along with the commuting network distance and the number of 

transfers along the commuting trip, can serve as proxies for some personal distinction 

among the travellers. For each choice occasion, we computed the choice set defined by the 

constraints specified in Section 2.3. Figure 5 shows the distribution of the size of the choice 

set, in terms of the number of reachable stations divided by the total number of stations in 

the network excluding the home and workplace. In about 78% of the choice occasions, there 

is a set of stations that a traveller cannot choose due to the constraints. 

 
Figure 5 The histogram of the size of the choice set 

The estimation results are compared under different model specifications. First, we tested 

how the different ways of defining travel impedance (See Table 1) would influence model fit. 

Second, we tested how the introduction of the last choice feedback variable would lead to 

different model estimates. 

The estimation results of the models using different travel impedances without considering 

last choice feedback are presented in Table 4, Table 5 and  
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Table 6, where only the statistically significant estimates are retained (p-value < 0.05). 

Biogeme (Bierlaire, 2003) is the software package we used for model estimation in this study. 

Table 4 The estimation results of the discrete choice model using home-based travel impedance without 
considering last choice feedback 

Variable Parameter Robust 
t-test 
value 

Number of POIs 4.28e-04 10.00 
Number of POIs × activity duration 3.98e-05 6.06 
Number of POIs × commuting network distance 3.32e-05 2.43 
Number of POIs × RJ ratio of home station 1.53e-05 2.51 
Number of POIs × RJ ratio of workplace station -1.10e-05 -2.27 

Network distance from home -0.255 -12.6 
Network distance from home × activity duration 0.0140 4.86 
Network distance from home × activity start time -0.00987 -3.19 
Network distance from home × commuting network distance 0.0592 9.14 
Network distance from home × commuting number of transfers -0.0223 -4.25 

Number of transfers from home -0.848 -4.62 
Number of transfers from home × activity duration 0.184 6.45 
Number of transfers from home × commuting network distance -0.293 -4.89 
Number of transfers from home × commuting number of transfers 0.544 9.63 
Number of transfers from home × RJ ratio of home station 0.0616 2.38 
Number of transfers from home × RJ ratio of workplace station 0.0702 3.29 

Number of observations: 5107; Initial log likelihood: -26589.161; 
Final log likelihood: -21128.360; Adjusted rho-square: 0.205; Run time: 1’ 58’’ 

Table 5 The estimation results of the discrete choice model using detour travel impedance without considering 
last choice feedback 

Variable Parameter Robust t-
test value 

Number of POIs 4.44e-04 9.31 
Number of POIs × activity duration 6.80e-05 9.13 
Number of POIs × RJ ratio of home station 1.59e-05 2.34 
Number of POIs × RJ ratio of workplace station 3.03e-05 5.58 

Detour network distance -0.0579 -3.60 
Detour network distance × activity duration 0.00915 3.26 
Detour network distance × commuting network distance -0.0174 -3.43 
Detour network distance × commuting number of transfers -0.0134 -2.17 

Detour number of transfers -0.918 -7.58 
Detour number of transfers × activity duration 0.180 8.98 
Detour number of transfers × commuting network distance -0.0795 -2.08 
Detour number of transfers × RJ ratio of workplace station 0.0840 5.41 

Number of observations: 5107; Initial log likelihood: -26589.161; 
Final log likelihood: -20530.100; Adjusted rho-square: 0.227; Run time: 1’46’’ 
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Table 6 The estimation results of the discrete choice model using detour travel impedance and proximity to 
home vs. workplace without considering last choice feedback 

Variable Param. Robust 
t-test 
value 

Number of POIs 4.21e-04 8.73 
Number of POIs × activity duration 5.50e-05 7.30 
Number of POIs × RJ ratio of home station 2.00e-05 2.94 
Number of POIs × RJ ratio of workplace station 2.26e-05 3.98 

Detour network distance -0.0613 -3.84 
Detour network distance × activity duration 0.00688 2.47 
Detour network distance × commuting network distance -0.0152 -3.01 
Detour network distance × commuting number of transfers -0.0121 -2.00 
Detour network distance × RJ ratio of home station 0.00589 2.24 

Detour number of transfers -0.931 -7.59 
Detour number of transfers × activity duration 0.171 8.47 
Detour number of transfers × RJ ratio of workplace station 0.0802 5.10 

Home vs. workplace proximity in terms of network distance 
(Network distance from home – network distance from workplace) -0.0676 -3.78 
Home vs. workplace proximity (network distance) × activity duration 0.0131 5.32 
Home vs. workplace proximity (network distance) × activity start 
time -0.00717 -3.00 
Home vs. workplace proximity (network distance) × commuting 
network distance 0.0185 3.22 

Home vs. workplace proximity in terms of number of transfers 
(Number of transfers from home – number of transfers from 
workplace) 0.414 2.74 
Home vs. workplace proximity (number of transfers) × activity start 
time -0.0863 -3.12 
Home vs. workplace proximity (number of transfers) × commuting 
network distance -0.113 -2.29 

Number of observations: 5107; Initial log likelihood: -26589.161; 
Final log likelihood: -20404.619; Adjusted rho-square: 0.231; Run time: 3’ 10’’ 

First, the effects of spatial autocorrelation are found to be statistically insignificant in all 

cases as the estimated values of the dissimilarity parameter   are not significantly different 

from 1. Thus, the spatially correlated model structure actually collapses to the multinomial 

logit one, of which we present the results. Second, we see that the metro commuters 

significantly prefer to visit the stations where there are more POIs for performing after-work 

activities, which is not a surprise. Third, the model using both detour impedance and home 

vs. workplace proximity fits the data slightly better than the model using only detour 

impedance, and both of them outperform the one using home-based impedance. This result 

substantiates the research conclusion drawn by Arentze and Timmermans (2007) regarding 

the benefit of modelling detour travel impedance, and apart from that, it further shows that 

commuters do give different weights to travel impedance to access an after-work activity 

coming from home or from the workplace. It turns out that they generally prefer the 

stations which are closer from the workplace in terms of number of transfers but closer from 

home in terms of network distance, ceteris paribus. Fourth, the attributes related to 

activities are observed to have a considerable impact on station choices for after-work 
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activities. The results significantly show that people give a higher weight to the number of 

POIs and care less about all kinds of travel impedances if the activity duration is longer. In 

addition, an activity of longer duration is preferred to take place near the workplace station 

than near the home station in terms of network distance. The activity start time is an 

especially effective variable interacting with the home vs. workplace proximity. It can be 

observed that for a later activity, people’s preference for reducing travel impedance from 

home weighs more than reducing the one from workplace. Fifth, results seem to support the 

use of proxy variables to translate differences between travellers. Given that an individual 

has longer commuting distance, this person seems to be more reluctant to detour farther for 

after-work activities. A commuter whose home station has higher RJ ratio is more willing to 

visit a station with a greater number of POIs for after-work activities. 

We also estimated the model using detour travel impedance and home vs. workplace 

proximity after considering last choice feedback. The first choice of each traveller was not 

modelled since it was assumed to be exogenously given. The estimation results are shown in 

Table 7.  

Table 7 The estimation results of the discrete choice model using detour travel impedance and home vs. 
workplace proximity considering last choice feedback 

Variable Param. Robust 
t-test 
value 

Number of POIs 3.88e-04 2.84 
Number of POIs × activity duration 7.15e-05 3.28 
Number of POIs × commuting network distance -1.06e-04 -2.81 

Detour network distance -0.0734 -2.84 
Detour network distance × activity duration 0.0107 2.61 
Detour network distance × commuting network distance -0.0210 -2.94 

Detour number of transfers -0.851 -3.63 
Detour number of transfers × activity duration 0.141 4.26 
Detour number of transfers × RJ ratio of workplace station 0.0872 3.30 

Home vs. workplace proximity in terms of network distance -0.144 -6.14 
Home vs. workplace proximity (network distance) × activity duration 0.0108 3.22 
Home vs. workplace proximity (network distance) × commuting 
network distance 0.0439 6.24 

Home vs. workplace proximity in terms of number of transfers 0.689 2.24 
Home vs. workplace proximity (number of transfers) × commuting 
network distance -0.244 -2.69 

Last choice feedback 3.99 60.39 

Number of observations: 2127; Initial log likelihood: -11448.617; 
Final log likelihood: -6378.684; Adjusted rho-square: 0.440; Run time: 2’ 38’’ 

Again the effect of spatial correlation is not statistically significant in this model. It can be 

observed that travellers frequently chose the same station for after-work activities, leading 

to the overwhelmingly significant estimate of the preference for the last choice feedback 

variable which leads to a better model fit. Such a good fit does not necessarily lead to a good 

demand prediction in future scenarios, because the model relies heavily on the assumption 

that the previous choice is exogenously given. However, this model can still help us figure 

out whether we misestimate any parameters due to neglecting habitual effect. After 
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introducing the variable of last choice feedback, results indicate that travellers actually do 

not give as much weight to the number of POIs as was estimated previously. To make a 

choice among those stations which have not been visited previously, people seem to care 

less about detour number of transfers but care more about detour network distance, and 

they are more likely to choose a station even closer to home in terms of network distance. 

The effect of activity start time is no longer significant on the preference for home vs. 

workplace impedance, indicating that this effect estimated in the previous models might 

have been related with habitual behaviour. However, the effects of activity duration and 

commuting network distance on the preferences still exist.  

5. Conclusions and recommendations 
In this paper, after detecting metro commuters and extracting their trip chains from the SCD, 

we focused on modelling their station choices for after-work activities. The method was 

applied to the case study of metro travellers in Shanghai. The advantages of using SCD over 

travel survey data for this purpose include the cost efficiency of data collection, the full 

population of travellers, and the revealed panel effect. In addition, to overcome the 

drawback of such anonymous data, we proposed to use proxy variables to distinguish the 

travellers, which can help better explain the heterogeneity of location choice behaviour 

among the population. Moreover, different ways of modelling travel impedance were 

compared, and we found that the model using detour impedance and home vs. workplace 

proximity, which we created in this study to model the travel impedance to conduct after-

work activities, outperformed the others and improved the interpretation of behaviour. 

This work can still be improved in a few ways. First, a travel survey dataset is recommended 

to be complementarily used for validation and reference. It can help improve the accuracy of 

commuter detection and identify more specific activity purposes among after-work activities. 

Also, stated-preference data from travel survey can potentially help enhance the 

understanding of how travellers perceive travel impedance for after-work activities, further 

improving our proposed travel impedance metrics. For example, the preference for reducing 

travel impedance may be related to factors such as familiarity with a particular area, which is 

difficult to obtain using smart card data. Next, the discrete choice model can be further 

elaborated to take more factors into consideration. Finally, we only focused on the station 

choices for after-work activities conducted in a certain type of daily trip chain in this study; 

however, a more general framework can be built to model station choices for all secondary 

activities using SCD in future research. 
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