<]
TUDelft

Delft University of Technology

Gait Symmetry Analysis with FMCW MIMO Radar

Lopez-Delgado, Ignacio E.; Wang, Dingyang; Fioranelli, Francesco; Grajal, Jesus

DOI
10.1109/TMTT.2025.3542183

Publication date
2025

Document Version
Final published version

Published in
IEEE Transactions on Microwave Theory and Techniques

Citation (APA)

Lopez-Delgado, I. E., Wang, D., Fioranelli, F., & Grajal, J. (2025). Gait Symmetry Analysis with FMCW
MIMO Radar. IEEE Transactions on Microwave Theory and Techniques.
https://doi.org/10.1109/TMTT.2025.3542183

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TMTT.2025.3542183
https://doi.org/10.1109/TMTT.2025.3542183

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Gait Symmetry Analysis With FMCW MIMO Radar

Ignacio E. Lépez-Delgado™, Student Member, IEEE, Dingyang Wang~, Member, IEEFE,
Francesco Fioranelli™, Senior Member, IEEE, and Jests Grajal™, Senior Member, IEEE

Abstract— Monitoring gait symmetry reliably is crucial, as it
is an early indicator of Parkinson’s disease (PD). In this
work, a method is presented to analyze gait asymmetries
using a 24-GHz frequency-modulated continuous-wave (FMCW)
multiple-input-multiple-output (MIMO) radar in a nonclinical
environment. The proposed method is validated by analyzing
the gait of 60 people recorded in an environment that presents
multiple challenges such as multipath, gait interruption events,
and different trajectories, which cause aspect angle variability.
This article presents algorithms to address these challenges to
extract useful gait information from the radar data and discusses
the performance of the proposed system, analyzing the ratio of
correct feet identifications and the accuracy of the asymmetry gait
parameters. It achieved a mean absolute error of the symmetry
ratio below 8% for all gait parameters. This shows that the
proposed system and algorithms are robust for both clinical and
in-home implementations.

Index Terms— Frequency-modulated continuous-wave
(FMCW) radar, gait analysis, gait symmetry, multiple-input—
multiple-output (MIMO) radar, Parkinson’s disease (PD).

I. INTRODUCTION

ARKINSON’S disease (PD) is a serious neurodegenera-

tive disorder that has no cure since it is diagnosed when
the degree of affection is too high to stop it with current
treatments [1]. Therefore, the early detection of PD is critical
to apply suitable medications and treatment and, thus, increase
the quality of life of patients [2].

Currently, the diagnosis of PD is based on a clinical
evaluation carried out by doctors [3]. This evaluation analyzes
various biomarkers, such as gait, tremors, or voice changes.
Among all the gait biomarkers related to PD, gait asymmetry
appears in the early stages of the disease, even before patients
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seek medical attention [1]. Therefore, the analysis of gait
symmetry can greatly help the early detection of PD [4],
[5], [6].

It is important to acknowledge that gait analysis should be
carried out at home because clinical evaluations are expensive,
inevitably sporadic, and time-limited, and people are usually
biased during these examinations, i.e., their movements may
not be natural [7], [8]. Thus, clinical examinations do not allow
a continuous analysis of the progression of the patient. On the
contrary, analyzing gait at home can provide a continuous
evaluation of each patient.

Among the technological solutions available to analyze gait
at home, radar technology is the strongest candidate because
it is capable of doing the following [8].

1) Contactless Analysis: It is comfortable for the patient,

and it does not modify gait, unlike wearable sensors.

2) Continuous Monitoring: It is not limited by batteries,
unlike wearables. It is not limited by light conditions,
unlike video cameras.

3) Privacy-Preserving Analysis: Radars do not capture
plain images of the subjects analyzed, unlike video
cameras.

Considering these advantages, radar technology has been
already validated to analyze gait in multiple setups [8], [9],
[10], [11], [12], [13], [14], [15], tested in controlled environ-
ments [16], [17], [18], [19], [20], and even implemented at
home [7], [13], [21], [22]. However, these studies are usually
limited to gait paths in the more favorable radial direction with
respect to the radar or are focused on gait parameters unrelated
to gait symmetry.

Specifically, gait symmetry has not usually been analyzed
with radar because of the complexity of feet identification [10],
i.e., assigning the different gait parameters to the right and left
feet. Even though it is possible to analyze gait symmetry with-
out feet identification [9], [20], the most used and clinically
relevant symmetry metrics require this identification. More-
over, analyzing the relationship between the gait symmetry
and the foot of dominance is relevant to detect PD [23].

In the existing literature, Wang et al. [10] were the first to
propose a method to identify and track the feet to quantify
gait asymmetry. However, their method was constrained to a
treadmill, where the patient is near the radar, and the feet are
the only targets in the field of view.

Hadjipanayi et al. [15] have recently reported symmetry
metrics, which use the feet information deploying a three-node
radar network. However, they do not provide information on
the technique used to associate each cycle with the right and
left feet, and it is unclear whether their technique offers enough
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resolution to fully differentiate them [15]. Moreover, their gait
paths are constrained to straight paths radial to the line of sight
of the nodes in their radar network.

This article presents a novel method to analyze gait symme-
try using a 24-GHz multiple-input-multiple-output (MIMO)
radar. To validate this technique, 60 people are monitored
while walking in an indoor setup resembling a home with
pieces of furniture and clutter. The participants were asked to
perform different tasks, which involved walking with different
aspect angles with respect to the radar line of sight. Moreover,
the room setup includes the effect of multipath from walls and
furniture. The robustness of the technique is comprehensively
analyzed as a function of the number of virtual channels of
the MIMO radar, the aspect angle, and the multipath impact.
Moreover, its performance is compared with other state-of-
the-art techniques.

A feet identification accuracy of 94% is achieved in the
regions with less significant multipath effect using 15 MIMO
channels. This accuracy drops to 70% in the regions with more
intense multipath. Moreover, the symmetry ratio of different
gait parameters is calculated in all the room regions with
an error below 8%, which makes it promising for potential
clinical and in-home implementations. In addition, as a fur-
ther contribution, the recorded radar data are made publicly
available online [24].

The rest of this article is structured as follows. Section II
introduces the radar used for data collection and the meth-
ods implemented to identify the feet from the radar data.
In Section III, the experimental setup and protocol, and the
validation techniques are presented. Section IV analyzes the
results obtained, considering the feet detection accuracy and
the gait asymmetry error. Finally, the conclusion of this work
is drawn in Section V.

II. PROPOSED METHODS

In this section, the radar used and its configuration are
presented (see Section II-A). Moreover, the proposed tech-
niques to analyze gait asymmetry are introduced. First,
in Section II-B, the gait parameter extraction is explained.
Then, Sections II-C and II-D present two new algorithms
to assign each step to the right or left feet. It is important
to clarify that the algorithms in Sections II-B-II-D must
be executed sequentially. Finally, Section II-E presents the
proposed strategies to handle gait interruption events.

A. Radar Device

The 24-GHz MIMO radar Inras Radarbook 2 [25] is selected
for this work. The radar operational range and configuration
are summarized in Table I. This radar features two transmitters
and eight receivers in its MIMO array. Both transmitters
operate in frequency-modulated continuous-wave (FMCW)
mode in the frequency range of 24-24.25 GHz. They are
multiplexed in the time domain, generating frequency bursts of
300 ws in frames of 620 us (slow time, denoted by 7). This
allows capturing velocities below 5 m/s [26], the maximum
velocity expected for a human walking.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

TABLE I
RADAR OPERATIONAL PARAMETERS AND CONFIGURATION

Parameter Operational range  Config.
Number of transmitters 1-2 2
Number of receivers 1-8 8
Number of virtual channels, IV, 15 4,8, 15
Central frequency fo (GHz) 24 24
Bandwidth B (MHz) 0-250 250
Range resolution AR (m) > 0.6 0.6
Transmitted power Prx (dBm) (-20)-(10) 10
Antenna gain G (dB) 13.5 13.5
Sing. elem. elevation beamwidth (°) 10 10
Sing. elem. azimuth beamwidth (°) 80 80
Phased array azimuth beamwidth (°) >17 7
Interrogation time 77 (us) 20-9000 620
Max. radial velocity v22d (m/s) 0.35-150 5
Chirp time Tt (us) 20-9000 300
Radar-PC commun. interval (s) 0.02-5 5
Sampling rate fs (ksps) 300-1800 500
Samples per chirp, N 90-540 152
Range (m) 0-35 0-10

The combination of each transmitter—receiver pair leads to a
15-element virtual phased array whose elements are spaced by
A/2 (at 24 GHz).! When all 15 channels are used, a broadside
azimuth resolution of 7° is achieved. As a consequence of the
radar’s narrow beam in elevation, the radar is located on the
ground to analyze the motion of the lower limbs.

Each receiver samples the data at f; = 500 ks/s to explore
the area ranging in the first 10 m away from the radar. The
sampled data are arranged into a 3-D tensor/cube s(z, 7, x),
whose dimensions are the fast time (¢), slow time (7), and the
number of channels (). This type of radar data is the starting
point for the subsequent developed processing pipeline.

It is important to clarify that the following algorithms can
be applied to other MIMO radar modules. In fact, their per-
formance can be improved by moving to higher frequencies,
where it is possible to use a wider bandwidth and achieve
greater distance resolution.

B. Gait Parameter Extraction

The sampled data, arranged into the aforementioned 3-D
cube s(t, 7, x), are processed, as shown in Fig. 1, and then
explained in detail in the following steps.

1) The range information is extracted performing an FFT

on s(t, 7, x) along the fast-time dimension, achieving
S(R, 7, x), where R is the range. Previous to the FFT,
s(t, T, x) is windowed along the fast-time dimension
with a Hann window. The FFT has a length of 4N
samples.

2) S(R,t, x) is high-pass filtered along the slow-time
dimension to eliminate the static clutter. A cutoff fre-
quency of 5 Hz is used in this work.

3) The azimuth information is extracted from the FFT of
S(R, 7, x) along the channel direction x, achieving the
range—time—azimuth cube: S(R, t, 8), where 6 denotes

ISince there are two transmitters and eight receivers, their combination
leads to a 16-element virtual phased array. However, two of these elements
overlap for motion compensation purposes, remaining 15 nonoverlapping
elements [25].



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LOPEZ-DELGADO et al.: GAIT SYMMETRY ANALYSIS WITH FMCW MIMO RADAR 3

Steering

Range-time

Doppler-time matrix: S(fp, 7)

vector matrix: S(R, T) HS events
. Clutter' filter Target ijt%sgration: ’5\ O SIZE gimStZI(lzse)
. FFTint FFTin = Step velocity
™) =) Track target ~ Sz(7) = Z S(R,7) =>4 Feet velocity
T d = T = 0,(7), Ry(7) Rp() Foot max. velocity
" P STFTin 7 ()

Fig. 1.
which is then used to extract the HS events and gait parameters.

the azimuth. Previous to the FFT, S(R, 7, x) is win-
dowed with a Hann window along the virtual channel
dimension x. The FFT has in this case a length of 8N,
samples.

4) The range and azimuth location of the target, R,(z) and
0,(t), are extracted from each time frame of the range—
time—azimuth cube implementing a peak detector and a
low-pass filter in the slow-time dimension. Multiperson
scenarios would require determining first the number
of targets and tracking them during this stage. The
subsequent algorithms should then be applied for each
detected person [27].

5) The range-time matrix, S(R, 7), is extracted by mul-
tiplying each slow-time frame of S(R, t, x) by the
steering vector v(t), given by

v(t) = exp{—jn sin(@,,(r))[O, 1,...,N, — 1]}. @))

The steering vector is windowed with a Hann window
to reduce the sidelobe level.

6) The range bins containing the target signature, R,(7),
are coherently integrated to extract Sy (1)

Sx(t) = > S(R.7T). (2)

Ry(7)

7) The Doppler—time matrix, S(fp, ), is extracted per-
forming a short-time Fourier transform (STFT) on Sx (7)
with a temporal shift of one sample and a 50-ms Hann
window. During this time, it is assumed that the motion
of the target does not change. The Doppler axis can be
transformed to a radial-velocity axis, v,, by

_<h
fo~

8) The step time, t;, is the interval between two consecutive
heel-strike (HS) events, which are the local minima of
the foot velocity [9]. The feet are easily isolated from
the Doppler—time matrix because they present the largest
velocities [9], as shown in Fig. 1.

9) The step distance is the distance traveled during the
step time, both extracted from the range—time—azimuth
cube [7]. The step velocity is the step distance divided
by the step time.

10) The foot maximum velocity, vp,x, of each step is finally

extracted as

3)

s

v rad

max (4)
cos o

Vmax =

where v/ is the maximum of the foot’s radial velocity

of each step, extracted in Step 8 from the Doppler—time

Proposed algorithms implemented to extract the spatiotemporal gait parameters. The radar signal is processed to extract the Doppler—time matrix,

matrix, and « is the aspect angle, i.e., the angle between
the radar line of sight and the gait trajectory, both
depending on the measurement geometry. For further
information, refer to Section III.

This signal processing pipeline extracts the gait parame-
ters used to evaluate gait symmetry: step time, distance and
velocity, and foot maximum velocity. Furthermore, the range
and azimuth position of the target and the foot velocity are
obtained. These parameters are then used to identify the feet
as explained in Section II-C.

C. 3SF Feet Identification Algorithm

In this section, the proposed algorithm to identify the feet
during gait is presented. The algorithm proposed is based on
the fact that during the mid-swing stage, one foot experiences
the maximum radial velocity, while the other is still on the
ground. This algorithm extracts the range and azimuth of the
target with maximum radial velocity during the mid-swing
stage, i.e., the footprint of the moving foot. The evolution
of these footprints is then analyzed to identify the feet.

The steps carried out to locate the footprints are summarized
in Fig. 2 and explained in the following steps. This algorithm
is performed for each step interval 7y, extracted in Step 8 of
Section II-B.

1) Extract the Doppler—time—azimuth cube S(fp, 7, 8): the
range bins containing the person signature R,(z) in
the range-time—azimuth cube S(R, t,0) (extracted in
Step 3 of Section II-B) are added; these are seven bins
in this case to achieve a span of about 1 m. Then,
an STFT is performed along the slow-time domain with
a temporal shift of one sample and a 50-ms Hann
window.

2) Extract the azimuth of the moving foot, 6(z,,): The ten
azimuth bins surrounding the person, 8, the mid-swing
frames, t,, and the ten Doppler frequency bins sur-
rounding the foot’s Doppler fp s are selected from the
Doppler—time—azimuth cube to obtain S(fp, ¢, T, 6)),
where the mid-swing frames are the ones in which the
foot velocity is above the 95% of its maximum. The foot
azimuth estimates 67(t,) are the power peaks of each
time frame of S(fp, s, T, 0p)-

3) Extract the range of the moving foot, Ry (t,): the range
bins of the person R, are selected from the range—time
matrix (known from Step 5 of Section II-B). An STFT
is then performed along the time domain to extract the
range—Doppler—time cube, applying a temporal shift of
one sample and a 50-ms Hann window. The mid-swing
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Fig. 2. Proposed algorithms implemented to locate the feet during the mid-swing stage. The range—time matrix and the range—time—azimuth 3-D cube are
extracted from Section II-B. The feet are detected from the range—Doppler and the Doppler-azimuth matrices simultaneously.
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Fig. 3. Proposed 3SF algorithm to identify left and right feet. (a) Footprints corresponding to each step, F,fad, are estimated from the x ¢, ys estimates, being
F,{“d the footprint of the kth step. (b) Triangle is formed out of each of three consecutive footprints to identify the feet.

frames, t,,, are selected from the range—Doppler—time
cube, extracting S(R,, fp, 7). For each time frame
of S(Ry, fp, Tw), it is selected the foot’s Doppler fre-
quency bin fp r. The foot range estimates Ry(7,,) are
the peaks of each time frame of S(R,, fp, 7, Tw).

As a result of the proposed algorithm, a range-azimuth
estimate is extracted for each mid-swing time frame, denoted
by R¢(ty), 07 (tm), respectively. The x¢, y; coordinates of the
moving foot can be obtained as

Xfp = Rf Cos (Qf)

Y= Rf sin(ef). (5)

These estimates are represented in Fig. 3 with dots. The
location of each footprint is the centroid of each step’s
estimates, represented in Fig. 3 as a colored circle with the
reference label F/*, where F{* is a column vector with
the x, y coordinates of the footprint of the kth step, where

e[0,1,..., K —1, K], with K being the number of strides.

A triangle is then shaped from each of three consecutive
footprints, as shown in Fig. 3(b). For each footprint F,f‘d,
where 0 < k < K, it is calculated the distance between Fj*

and (Frd

e} Fkral) computed as [28]

0 1
d (kad - Fkridl)T ) (—l 0) (Fkrifl Fkrfjl)
dra (6)
| £ — F |

where ||| is the norm operator. This distance basically repre-
sents the separation from the foot k and the walking trajectory,
and it is used to assign the steps to the left and right feet:
if d,gad > 0, the step k is carried out with the right foot.
Otherwise, it is carried out with the left foot, as in the example
of Fig. 3.

The initial and final steps k = 0 and k = K are classified
as left or right based on the steps 1 and K — 1, respectively.
For instance, if step K — 1 is a left step, K is a right step.

The reliability of the three-step-footprint (3SF) algorithm is
based on the unlikeliness of committing an assignment error
since three footprints are used for every decision. Moreover,
the algorithm is robust for all gait directions and against erratic
paths, as shown in Fig. 3. Still, the 3SF algorithm is limited by
the number of steps needed (at least 3) and does not guarantee
alternation between the right and left, as normally observed in
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Fig. 4. Proposed AA algorithm, applied for each gait sequence without
alternation at the output of the 3SF algorithm. d represents the distance
between each alternate option and the 3SF output.

human gait. In Section II-D, a very simple solution to this
issue is proposed and explored.

D. AA Feet Identification Algorithm

This section presents an algorithm to correct possible
assignment errors of the 3SF algorithm. This approach is based
on the fact that human gait normally alternates the foot that
carries out each step, i.e., if step k is carried out with the
left leg, steps k — 1 and k + 1 are carried out with the
right leg. The always alternate (AA) algorithm, summarized
in Fig. 4, forces to have feet alternation at the output of the
3SF algorithm.

The AA algorithm is applied for every gait sequence (time
comprised between the beginning and the end of the gait)
without left and right alternations at the output of the 3SF
algorithm. An example is shown at the bottom of Fig. 4. The
steps of the AA algorithm are given as follows.

1) Compare the two possible alternate options with the 3SF

output. The closest alternate option is the output of the
AA algorithm.

2) If both alternate options are equally close to the 3SF
output, an iterative process is started, checking each step
from closest to farthest from the radar. The first step
reporting alternation is used to propagate it to the other
steps of the considered gait sequence.

3) In the unlikely case that there are no alternations at all,
the closest step to the radar is selected, and the other
steps of the gait sequence are forced to alternate using
this as a reference.

Notably, to apply the AA algorithm, it is critical to isolate
gait sequences, as foot alternation is not guaranteed between
the last step of a gait sequence and the first step of the
following gait sequence. For this reason, an approach for gait
interruption detection is needed, as explained in Section II-E.

Velocity (m/s)
Velocity (m/s)

Fig. 5. Example of signatures for short gait interruptions. (a) Foot maximum
velocity decay. (b) Gait velocity decay. The gait velocity is represented in
black as a reference.

E. Gait Interruption Detection for Gait Sequence Separation

In this section, we present three developed techniques to
detect gait interruption events because foot alternation is not
guaranteed between gait sequences. The techniques presented
in this section are effective at separating the gait sequences in
Section IIT but can be applied to other environments.

The first situation analyzes a person who stops for a long
period of time (>1 s). This causes a strong power decay in
the range—time and Doppler—time matrices since the clutter-
removal filter eliminates the presence of static objects. Under
these scenarios, there is no target detected. The first and last
time frames in which the target is detected determine the first
and last frames of a gait sequence, respectively.

However, when a person interrupts the gait during a short
period of time (<1 s), this power decay is not observed. These
short gait interruptions can be identified by analyzing the foot
maximum velocity and the gait velocity, as shown in Fig. 5.

1) The last and first steps of two consecutive gait sequences
sometimes display a smaller foot maximum velocity,
as shown in Fig. 5(a). This happens when the last step
of a gait sequence ends with both feet under the trunk.
These stops are recognized when the maximum velocity
of two consecutive gait cycles drops below 70% of the
mean foot maximum velocity.

2) When the last step of a gait sequence ends with the feet
separated, all gait cycles resemble the normal situation,
as shown in Fig. 5(b). Still, the gait velocity drops as
a consequence of the gait interruption. These stops are
recognized when the gait velocity drops below 60% of
the mean gait velocity.

It is more convenient to separate gait sequences by ana-
lyzing the foot maximum velocity because a gait cycle is
sometimes missed when gait sequences are separated based
on the gait velocity.

III. EXPERIMENTAL SETUP

This article validates the algorithms presented in Section II
by analyzing human gait in a scenario that emulates a home
setup with clutter and furniture, as shown in Fig. 6. Each
participant is asked to recreate the situation in which they are
sitting in their living room when they remember they forgot
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Fig. 6. Experimental setup with the route walked by the participants and the
obstacles present in the room. The radar is located on the floor. The Kinect
sensor is 1 m above the floor. (a) Map. (b) Picture.

to lock the door. Thus, they stand up, walk to the side table
where the key is, take the key, walk to the door to lock it, and
walk back to the chair where they sit down again, as shown
in Fig. 6.

The chosen setup presents several challenges.

1) Aspect Angle Effect: The radar location is selected to
analyze different aspect angles o during the different
gait sequences, as shown in Fig. 7.

2) Multipath Effect: The gait is recorded in a closed
room with the presence of multiple static targets and
nearby walls, which increases the complexity of tracking
targets.

3) Gait Interruption Events: Two different gait interruption
situations are forced: a short interruption when taking
the key, and a second one, longer, when locking the
door.

Examples of the range-time and Doppler—time matrices
captured are shown in Fig. 8, where it is possible to observe
the phenomena previously described.

1) There is a strong multipath component beyond 6 m
caused by the wall at the bottom of the room. This
complicates the target detection, especially in the second
gait sequence.

2) There are short and long gait interruption events at
T =8 s and T = 12 — 14 s, respectively.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
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Fig. 7. Aspect angle between the radar and the gait of the person during the
route shown in Fig. 6. An example of the aspect calculation is also shown.
The discontinuities are caused by the change in the gait directions.

Multipath 1 I

Velocity (m/s)

10 12 14 16 18

Fig. 8. Example of radar captures of a person performing the experiment
presented in this section. Range—time matrix (top). Doppler—time matrix
(bottom).

A. Microsoft Kinect Sensor as Ground Truth

The gait recorded with the radar is compared with an Azure
Kinect DK camera [29] used as ground truth, which captures
image and depth information at 30 ft/s. The Kinect captures
are processed with the Azure body tracking SDK implemented
through a dedicated Python library [30]. The outputs of this
processing pipeline are the xyz location of 32 body parts.

The location of the 32 body parts extracted with the Kinect
is low-pass filtered to reduce the noise. The torso location is
extracted averaging the pelvis, right hip, left hip, naval spine,
chest spine, neck, right clavicle, and left clavicle; the feet
locations are extracted averaging the ankles and feet.

The maximum between the left and right foot velocities is
selected to extract the foot velocity, which is processed to
extract the HS events and the step time and foot maximum
velocity, as was done with the radar data. The Kinect torso
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Fig. 9. Comparison of the foot velocity and HS events estimated with the
radar and the Kinect. The radar signal is represented only in the time frames
where gait is detected.

velocity is combined with the step time to extract the step
distance and velocity.

The foot velocity and HS events extracted with the radar
and the Kinect are shown in Fig. 9. As shown, there is a high
correlation between data from both devices.

Velocity discrepancies are caused by the fact that the radar
measures the radial velocity, which decreases for high aspect
angles, and the Kinect measures the speed, which is filtered to
reduce noise. An undesired effect of this filtering is a reduction
in the foot velocity obtained.

Fig. 9 shows that in Gait Sequence 1 (namely, Gait 1 in
Fig. 9), where the aspect angle is moderate and the radial
velocity measured by the radar is similar to the filtered speed
obtained from the Kinect. In Sequence 2, where the aspect
angle is higher, the radial velocity is less than the filtered
speed. In Sequence 3, where the aspect angle is very small,
the radial velocity is larger than the filtered speed.

It is important to take into account that albeit affordable
and easy to use, the Kinect is less accurate than other
technologies such as infrared cameras or force platforms [8]:
Kinect has reported accuracies between 10.4 and 36.7 cm
when the person is moving [31], which are worse than radar
accuracy metrics [8], [14]. Nonetheless, the experimental
conditions required a configurable space with multipath, which
is rarely found in laboratories with more accurate benchmarks
and ground-truth sensors. Therefore, the Kinect was deemed
the most suitable and practical technology despite its lower
accuracy.

B. Proposed Algorithm Validation

Besides the proposed algorithms described in Section II, the
algorithm proposed by Wang et al. [10] is also implemented
in this study to compare the results. In [10], gait asymmetries
were analyzed by identifying left and right feet with subjects
walking on a treadmill. An eight-virtual channel MIMO radar
was placed at one end of the treadmill, facing the participant.

The detections at each time frame were -clustered
using the range—velocity—azimuth coordinates. The
expectation—maximization (EM) clustering algorithm [32],
[33] was implemented, as done in [10]: the number of clusters
is forced to two, with random initial assignments.

-4 3 2 -1 0 1 2 3 4
Velocity (m/s)

Fig. 10. Example of a range—velocity frame of a person performing the
walking experiment shown in Fig. 6. After applying the algorithms proposed
in [10], one foot is correctly identified (C1), whereas the other foot is confused
with a ghost target (C2).

There are some aspects to be considered when applying [10,
Algorithms] to the experimental room environment of this
article, as shown in Fig. 6.

1) In [10], the radar had only two targets in its field of
view: the feet. In this work, there are many targets
in the field of view, including ghost targets arising
from multipath. Thus, the two clusters are hardly going
to correspond directly to the feet. Fig. 10 shows, for
example, the targets detected in the range—velocity map
using the algorithm presented in [10] and implemented
and applied in the setup of Fig. 6. The detections
are caused by the feet, knees, and ghost targets. After
applying the clustering algorithm, one cluster is located
at the moving foot, but the other corresponds to the ghost
target.

2) For the implementation of the algorithm proposed by
Wang et al. [10], we have decided to assign left or
right based on the gait direction. In their proposal,
the assignment was done in a simpler way based on
azimuth because the gait direction did not change in
their experiment, i.e., straight walk on the treadmill.

It is important to take into account that the method proposed
by Wang et al. [10] is limited by the measurement setup.
Thus, it is expected that the techniques proposed in this
work outperform the methods in [10] because the former is
specifically designed for an unconstrained environment.

With respect to the work of Hadjipanayi et al. [15], they also
analyzed gait asymmetry based on feet identification. Nonethe-
less, they used a three-node radar network. Since we only use
one radar, in this work, their method is not implemented as it
would lead to unfair comparisons. Nonetheless, the figures of
merit of both techniques are compared.

C. Experimental Protocol

Sixty healthy participants of varying genders, ages, and
body types participated in the experiment to validate the
proposed algorithms. A summary of the demographics of the
participants is shown in Table II.

All the measurements presented in this article are recorded
with the approval of the ethics committee of TU Delft. The
subjects were informed of the conditions of the experiment
and voluntarily agreed to participate. After the experiment,
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TABLE II
DEMOGRAPHICS OF THE PEOPLE RECORDED
Gender Age Weight (kg) Height (cm) Shoe size
F M <30 3050 >50 <70 70-80 >80 <170 170-180 > 180 <40 40-43 > 44 Total
25 35 31 18 11 20 18 22 15 21 24 19 16 25 60
TABLE III

RMSE OF |g4] ( cm) FOR THE DIFFERENT GAIT SEQUENCES
AND THE NUMBER OF VIRTUAL CHANNELS

Ny 15 8 4
Gait land3 17 19 35
Gait 2 27 30 47

the data was anonymized, and each participant was assigned
to a code.

The participants were asked to repeat three times the
protocol shown in Fig. 6, walking as naturally as possible.
Consequently, even though all the participants perform the
same tasks, each one carries them out uniquely.

The data recorded with the radar, the joint information
extracted with the Kinect, and the physiological information
of each subject are available online together with the scripts
needed to interpret them [24]. The identity of the subjects and
the Kinect images are not available for privacy reasons.

IV. RESULTS

The results are analyzed as a function of the number of
MIMO virtual channels for azimuth resolution (i.e., 15, eight,
and four virtual channels are evaluated) and as a function of
the presence of multipath. Specifically, as multipath causes a
larger impact on Gait Sequence 2, as shown in Fig. 8, Gait
Sequences 1 and 3 are evaluated separately from Sequence 2.

A. Feet Identification Accuracy

First, the reliability of each assignment in the proposed 3SF
algorithm is analyzed. Each 3SF triangle is extracted using the
radar and the Kinect data separately to compare the distance
between the footprint and the gait path extracted with the
radar dj* and the Kinect d}'" (as summarized in Fig. 3 for
reference). The resulting error is defined as follows:

leal = |4 = df.

(7

The RMSE of |g,4| is then extracted for the different number
of virtual channels and gait sequences. The results are shown
in Table III. As a reference, the typical separation between
feet is below 30 cm [34]. Thus, an RMSE below this value is
needed. From Table III, it can be concluded that the following
holds.

1) The RMSE is kept below 30 cm with 15 and eight

virtual channels in Gait Sequences 1 and 3 and only
with 15 channels in Gait Sequence 2.

2) Gait Sequence 2 (the one with stronger multipath com-

ponents due to nearby walls) presents a larger error.

3) The error increases as the number of virtual channels

decreases, as a consequence of the range and azimuth
resolution loss.

Furthermore, the accuracy of the 3SF and AA algorithms
is quantified as the ratio between the number of correct
identifications and the total number of steps

Number of correct identifications

®)

£ Number of steps detected

Details of the feet identification accuracy for Gait Sequences
1 and 3 and for Gait Sequence 2 separately are shown in
Tables IV and V, respectively. Several conclusions can be
extracted from these results.

1) The algorithms proposed in this article outperform the
algorithms introduced by Wang et al. [10]. The accuracy
of the 3SF + AA algorithms with 15 virtual channels
is 0.94, while the accuracy of [10] is 0.53. It is still
important to highlight that the performance of [10] is
poor because the experiment presented in this article is
not conducted on a treadmill.

2) The algorithms proposed in this article are very
sensitive to multipath effects, as shown comparing
Tables IV and V: the feet detection accuracy drops
from 0.94 to 0.7 in the regions with stronger multipath.
A similar performance degradation would be expected in
multiperson scenarios during the time frames in which
different targets are very close to each other.

3) Forcing feet alternation with the proposed AA algorithm
improves the results of the 3SF algorithm for all cases
studied. This improvement increases with the perfor-
mance of the 3SF alone, as fewer corrections are needed.
For instance, Table IV shows that the overall system per-
formance increases from 0.84 to 0.94 using 15 channels
and only from 0.57 to 0.62 using four channels.

4) The algorithms presented are robust for all population
groups studied, as no trend can be extracted separating
the participants based on demographic information such
as age, gender, or body characteristics.

The results show that the radar performance is optimal using
all the available 15 MIMO channels. Thus, the gait parameters
and symmetry metrics presented in Sections IV-B and IV-C are
analyzed only using 15 virtual channels.

B. Gait Parameter Figures of Merit

Before analyzing the asymmetry metrics, it is important to
analyze the accuracy of the proposed approach concerning
the gait parameter estimation because the asymmetry metrics
are derived from the gait metrics. This section presents the
absolute value of the relative errors for the different gait
parameters |ef|, calculated as
prad _ pkin

pkin
where p is a gait parameter estimated with both the Kinect and
the radar. The gait parameters used to analyze symmetry are

9)

le,| =
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TABLE IV
FEET IDENTIFICATION ACCURACY (k) OF GAIT SEQUENCES 1 AND 3 (LESS SIGNIFICANT MULTIPATH)
Gender Age Weight (kg) Height (cm) Shoe size
Method N, F M <30 30-50 >50 <70 70-80 >80 <170 170-180 >180 <40 4043 >44 Total
15 085 084 0.85 0.84 0.83 0.85 0.86 0.82 0.84 0.85 0.84 0.86 0.83 0.84 0.84
3SF 8 079 076  0.79 0.76 0.73 0.78 0.82 0.73 0.80 0.79 0.74 0.79 0.79 0.75 0.77
4 0.60 056 0.8 0.57 0.53 0.58 0.63 0.52 0.58 0.61 0.53 0.60 0.59 0.54 0.57
15 094 095 0.95 0.94 0.91 0.93 0.95 0.95 0.96 0.93 0.94 0.95 0.93 0.95 0.94
3SF+AA 8 089 0.85 0.87 0.89 0.78 0.91 0.90 0.80 0.92 0.91 0.79 0.90 0.90 0.82 0.86
4 0.63 0.61 0.63 0.62 0.58 0.62 0.71 0.54 0.62 0.66 0.58 0.64 0.65 0.58 0.62
[10] 15 052 054 052 0.55 0.54 0.53 0.53 0.53 0.53 0.51 0.55 0.54 0.50 0.55 0.53
TABLE V
FEET IDENTIFICATION ACCURACY (k) OF GAIT SEQUENCE 2 (MORE SIGNIFICANT MULTIPATH)
Gender Age Weight (kg) Height (cm) Shoe size
Method N, F M <30 3050 >50 <70 70-80 >80 <170 170-180 >180 <40 4043 >44 Total
15 065 062 0.66 0.58 0.59 0.59 0.71 0.60 0.69 0.61 0.61 0.62 0.65 0.62 0.63
3SF 8 0.68 0.63  0.67 0.59 0.65 0.65 0.64 0.64 0.66 0.67 0.61 0.60 0.72 0.62 0.64
4 049 051 054 0.42 0.50 0.48 0.51 0.51 0.51 0.49 0.50 0.46 0.53 0.50 0.50
15 072 070 0.75 0.63 0.67 0.67 0.77 0.67 0.81 0.66 0.68 070 0.74 0.68 0.70
3SF+AA 8 0.66 0.68 0.73 0.58 0.66 0.66 0.71 0.66 0.66 0.71 0.66 0.57 0.76 0.67 0.68
4 055 049 057 0.37 0.50 0.48 0.52 0.52 0.51 0.49 0.52 0.48 0.53 0.51 0.51
[10] 15 051 053 051 0.53 0.53 0.51 0.49 0.56 0.52 0.54 0.50 0.51 0.53 0.52 0.52
TABLE VI TABLE VII
MEAN OF |g,| AS A FUNCTION OF THE ASPECT ANGLE MEAN OF |esr| OBTAINED IN THIS WORK COMPARED WITH [15]
0°-30°  30°-60°  60°-90° Parameter Gait seq. 1 and 3  Gaitseq2  All  [15]
Step time 0.05 0.06 0.08 Step time 0.07 0.10 0.06  0.05
Gait velocity 0.08 0.09 0.15 Gait velocity 0.06 0.11 0.07 -
Step distance 0.12 0.17 0.18 Stride distance 0.07 0.13 0.08 -
Foot velocity 0.23 0.17 0.19 Foot velocity 0.06 0.11 0.08 -
[CJoe-30° __J30%-60° 60°-90°

3 bl

L adddebeRnTE

Step t. Step vel.  Step. dist. Max. foot vel.

Fig. 11. Distribution of || as a function of the aspect angle between the
gait trajectory and the radar line of sight. The mean of |e,| is represented
with black circles.

the step time, step velocity, step distance, and foot maximum
velocity.

The distribution of |¢,| for each gait parameter is shown in
Table VI and Fig. 11. Moreover, |¢,| is analyzed as a function
of the aspect angle between the radar and the gait direction,
which is calculated by analyzing the target location extracted
with the radar (see Fig. 7). Some conclusions can be drawn
from Table VI.

1) The mean |e,| for all gait parameters is below 20%,
being below 8% in step time. These errors are
above other state-of-the-art contributions [9], [11], [14],
probably as a consequence of using the Kinect as
reference [31]. Still, the system is accurate enough to
analyze gait.

The error increases with the aspect angle for all gait
parameters except the foot maximum velocity, but this
increase is very moderate, allowing gait analysis in all
gait directions. In the case of the foot maximum velocity,
the error decreases due to a discrepancy of the velocity

2)

captured by the Kinect and the radar, as explained in
Section III-A.

Multiperson scenarios can benefit from accurate gait
parameter extraction, as gait parameters can be used
to identify people and help separate and track them
accordingly [35].

3)

C. Figures of Merit for Gait Symmetry

The symmetry ratio is the relationship between each mean
left and right parameters (step time, step velocity, step dis-
tance, and foot maximum velocity), pref; and prign, for each
gait sequence, as follows:

Pleft
Pright

SR = (10)

This section reports the absolute error of the symmetry ratio
lesr| and the difference between the symmetry ratio extracted
with the radar and the Kinect as follows:

lesr| = |SR™ — SRk (11)

The distribution of |eggr]| is shown in Table VII and Fig. 12.
The errors reported are below 8% for all the gait parameters
considering all sequences.

For comparison, the step time symmetry error reported
in [15], comparing the radar metrics with a VICON system,
is lower than the one reported in this work. However, this
was the only asymmetry metric reported in [15], and it was
measured with people walking in an open space (without
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[C_—1Seq. 1 and 3 [__]Seq. 2 All
Stept.  Gaitvel. Str.dist. Foot vel.
Fig. 12. Distribution of |esr| for the different gait parameters considering

the multipath effect: small for Gait Sequences 1 and 3 and strong for Gait
Sequence 2. The mean of |esgr| is represented with black circles.

multipath) in the radar’s radial direction. The results presented
in this section show that the proposed system and algorithms
are capable of accurately computing symmetry gait parameters
in all room regions.

To meet the requirements for PD diagnosis, a mean |egg|
below 0.05 would be ideal [4], [5], [6]. While the results
shown in Table VII and Fig. 12 are close to meeting these
standards, they fall short of this threshold. Nonetheless, the
system accuracy may be underestimated due to the use of
the Kinect as a reference, suggesting that further validation
with more accurate reference systems could provide a clearer
understanding of the proposed system’s potential for PD
detection.

V. CONCLUSION

This article presents the development of novel algorithms
for gait symmetry analysis using a single MIMO radar oper-
ating in the 24-GHz band. The proposed algorithms have been
validated by analyzing the gait recordings of 60 participants.
These data have been collected in an indoor environment with
clutter and multipath and have been gathered into a database
publicly available online [24].

An azimuth angular resolution of 7°, achieved
with 15 MIMO virtual channels, is needed to obtain a
feet detection accuracy of 94% in the regions of less
significant multipath. This value drops to 70% in the regions
with stronger multipath due to nearby walls. Under this
configuration, the symmetry ratio errors fall below 8% for all
gait parameters.

Based on the results demonstrated in this work, it is shown
that MIMO radars are capable of analyzing gait symmetry in
a nonintrusive way and in realistic environments, which can
help toward technologies for early detection of PD.
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