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Abstract 
 

Despite its environmental benefits, the development of a European high-speed rail network has faced many 

challenges, such as cost overruns and disappointing demand, resulting in unprofitability. Countries tend to 

prioritise national interests over international cooperation, resulting in unconnected and smaller networks, 

being suboptimal. This study focuses on the optimal foundation of the network: it’s topology, lines, and 

their operated frequencies. On the basis of extensive literature analysis, a demand forecasting model is built, 

in which trip generation and modal distribution are forecasted. Realistic data regarding travel alternatives, 

gathered through web scraping, serve as input. Optimal arc-specific HSR fares that maximise revenue are 

determined, while taking elastic demand into account. 

Further literature analysis provides an overview of HSR cash-flows and their impacts on profitability, 

in which the demand forecasting model serves as input. The Transportation Network Design & Frequency 

Setting Problem (TNDFSP) is solved for optimal profitability over the network’s lifetime. A new formulation 

of this problem is set up to optimise network and line design simultaneously for a large number of OD pairs 

while accounting for demand elasticity, addressing a crucial gap in current literature. The formulation is 

based on the Multi-Commodity Flow Problem (MCFP) but adapted in order to take OD pair flow routes 

into account. Our formulation is implemented, considering up to 111 cities and all their OD pairs, optimised 

within a few hours. The results show that high-speed rail can be profitable in Europe, having an optimal 

profit of €222.8 bn over a 40-year lifetime. The network is largely concentrated around a selected group of 

the largest cities in the north-western regions of the continent, and crucially relies on significant initial 

investments. 
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𝑘𝑋 unit train operation and maintenance cost [€ / 𝑠𝑒𝑎𝑡𝑘𝑚] 

𝑘𝑝𝑒𝑎𝑘ℎ𝑟  peak hour factor [−] 
𝑘𝑇,𝑖𝑛𝑓𝑟𝑎  unit time-based infrastructure costs  [€ / 𝑘𝑚/ 𝑦𝑒𝑎𝑟] 
𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 unit time-based rolling stock costs  [€ / 𝑠𝑒𝑎𝑡𝑘𝑚/ 𝑦𝑒𝑎𝑟] 

𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  transfer penalty [€] 
𝑘𝑋,𝑖𝑛𝑓𝑟𝑎  unit fixed infrastructure costs between  [€ / 𝑘𝑚] 
𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 unit fixed rolling stock costs between city  [€ / 𝑡𝑟𝑎𝑖𝑛] 

𝐿 line length (Belal et al., 2020) [𝑘𝑚] 
𝑙𝑚𝑖𝑛 minimum arc length, minimum distance between stops [𝑘𝑚] 

𝑙𝑟  Whether route 𝑟 is a valid operating line [−] 
𝑙𝑖𝑗  line length between city 𝑖 and 𝑗 [𝑘𝑚] 
𝑀 arbitrary large constant [−] 

𝑚𝑘  market share of travel mode alternative 𝑘 [−] 
𝑁 number of train seats (Belal et al., 2020) [𝑝𝑎𝑥] 

𝑛𝑖𝑗  number of trains between city 𝑖 and 𝑗 [𝑡𝑟𝑎𝑖𝑛𝑠] 
𝑛𝑙  number of trains on line 𝑙 [𝑡𝑟𝑎𝑖𝑛𝑠] 

𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑠 number of trains (Belal et al., 2020) [𝑡𝑟𝑎𝑖𝑛𝑠] 
𝑛𝑟

𝑡𝑟𝑎𝑖𝑛𝑠 number of trains on route 𝑟 [𝑡𝑟𝑎𝑖𝑛𝑠] 
𝑛𝑝

𝑑𝑒𝑠𝑡  destination node of OD pair 𝑝 [−] 
𝑛𝑝

𝑜𝑟𝑔  origin node of OD pair 𝑝 [−] 
𝑝𝑖𝑗 minimum country-level economic growth rate, among city 𝑖 and 𝑗 [%/𝑦𝑒𝑎𝑟] 
𝑃𝑖 population of city 𝑖 [𝑝𝑒𝑜𝑝𝑙𝑒] 
𝑃𝑖𝑗

𝑇  HSR operational profitability between city 𝑖 and 𝑗 [€] 
𝑃𝑖𝑗

𝑋 HSR justifiability between city 𝑖 and 𝑗 [€] 
𝑃𝑖𝑡  population catchment of city 𝑖 within 𝑡 minutes [𝑝𝑒𝑜𝑝𝑙𝑒] 

𝑄𝑝𝑒𝑎𝑘  peak hour demand/flow [𝑝𝑎𝑥 / 𝑡𝑖𝑚𝑒] 
𝑄𝑎  demand/flow for arc 𝑎 [𝑝𝑎𝑥 / 𝑡𝑖𝑚𝑒] 

𝑞𝑟
𝑝𝑒𝑎𝑘  peak hour demand for route 𝑟 [𝑝𝑎𝑥] 

𝑞𝑟
𝑦𝑒𝑎𝑟  yearly demand for route 𝑟 [𝑝𝑎𝑥] 
𝑅2 R-squared correlation fit (OLS) [−] 
𝑅𝑖𝑗  revenue for connection between city 𝑖 and 𝑗  [€] 
𝑠 travel distance, train seat capacity [𝑘𝑚], [𝑝𝑎𝑥] 
𝑡 travel time [ℎ] 

𝑡𝑎𝑐𝑐𝑒𝑠𝑠  access time per station [ℎ] 
𝑡𝑒𝑔𝑟𝑒𝑠𝑠  egress time per station [ℎ] 
𝑡𝑑𝑤𝑒𝑙𝑙  dwelling time per station [ℎ] 



 

xv 
 

𝑇𝑙𝑖𝑓𝑒  lifespan [𝑦𝑒𝑎𝑟𝑠] 
𝑡𝑎  travel time of arc 𝑎 [ℎ] 
𝑡𝑖𝑗  travel time between city 𝑖 and 𝑗 [ℎ] 
𝑡𝑙  travel time along length of line 𝑙 [ℎ] 
𝑡𝑝 travel time along of OD pair 𝑝 [ℎ] 
𝑡𝑟  travel time along route 𝑟 [ℎ] 

𝑇𝐶𝑘,𝑖𝑗  travel cost for travel alternative 𝑘 between city 𝑖 and 𝑗 [€] 
𝑇𝑇𝑘,𝑖𝑗  travel time for travel alternative 𝑘 between city 𝑖 and 𝑗 [ℎ] 

𝑈𝑘  utility of travel alternative 𝑘 (MNL) [−] 
𝑢𝑝 whether OD pair 𝑝 is served [−] 
𝑉 maximum operating speed (Belal et al., 2020) [𝑘𝑚 / ℎ] 
�̅� average operating speed [𝑘𝑚 / ℎ] 

𝑣𝑚𝑎𝑥  maximum operating speed [𝑘𝑚 / ℎ] 
𝑉𝑘  observed utility of travel alternative 𝑘 (MNL) [−] 

𝑉𝑘,𝑖𝑗  observed utility of travel alternative 𝑘 between city 𝑖 and 𝑗 (MNL) [−] 
𝑣𝑝 whether OD pair 𝑝 is served without transfer [−] 
𝑤𝑟  frequency of route 𝑟 [−] 

𝑊𝑚𝑎𝑥  Maximum allowed frequency [𝑡𝑟𝑎𝑖𝑛𝑠 / ℎ] 
𝑥 slope of linear function (bias elimination) [−] 

𝑥𝑎𝑘  number of commodities 𝑘 transported over arc 𝑎 (MCFP) [−] 
𝑥𝑘𝑚  value of travel attribute 𝑚 for travel mode alternative 𝑘 (MNL) [−] 
𝑥𝑚  value of travel attribute 𝑚 (MNL) [−] 
𝑥𝑟  whether OD flow route 𝑟 is selected [−] 
𝑦 Intercept of linear function (bias elimination) [−] 
𝑦𝑎  whether arc 𝑎 is selected [−] 

𝑦𝑛𝑒𝑤 new value of predicted demand (after bias elimination) [𝑝𝑎𝑥 / 𝑡𝑖𝑚𝑒] 
𝑦𝑜𝑙𝑑 old value of predicted demand (before bias elimination) [𝑝𝑎𝑥 / 𝑡𝑖𝑚𝑒] 

𝑍 value of a graph [−] 
𝑧𝑛  whether node 𝑛 is selected [−] 

𝑧𝑘,𝑖𝑗  whether travel alternative 𝑘 is present between city 𝑖 and 𝑗 [−] 
𝛼 parameter for population (gravity), intercept coefficient (OLS) [−] 

𝛼𝑝, 𝛼𝑟  demand model linearisation coefficient: intercept [−] 
𝛽 parameter for GDP (gravity), slope coefficient (OLS) [−] 

𝛽0 constant taste parameter (MNL) [−] 
𝛽𝑇𝐶  travel costs taste parameter (MNL) [𝑢𝑡𝑖𝑙𝑖𝑡𝑦 / €] 
𝛽𝑇𝑇  travel time taste parameter (MNL) [𝑢𝑡𝑖𝑙𝑖𝑡𝑦 / ℎ] 
𝛽𝑚  taste parameter of travel mode attribute 𝑚 (MNL) [−] 

𝛽𝑝 , 𝛽𝑟  demand model linearisation coefficient: travel time [−] 
𝛾 parameter for distance (gravity) [−] 

𝛾𝑝, 𝛾𝑟  demand model linearisation coefficient: travel cost [−] 
𝜀𝑘  unobserved utility of travel mode alternative 𝑘 (MNL) [−] 
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1 Introduction 
This first chapter functions to introduce high-speed rail within its travel market, as well as the 

importance to shift more towards it (in section 1.1). It then proceeds to define the problems on 

the way to this shift (section 1.2) and the research questions that would arise when aiming to 

solve them (section 1.3). Section 1.4 provides a short methodological overview of the project, 

bridging to an outline for the rest of the report, presented in section 1.6. Section 1.5 provides 

the project’s scope. 

 

 

1.1 Background and Context 
Breakfast in Stockholm, lunch in Berlin and dinner in Rome. For European travellers aware of the travel 

options between these cities, this will sound impracticable, as it would imply spending most of your day 

waiting inside an airport or transport vehicle. Even though the distances between large cities in Europe are 

on average much smaller than in other continents, it remains highly impractical to work in one city and live 

in another, a few hundred kilometres away. It is indicative for the lack of interconnectivity between 

European cities and the travel market potential that remains unserved. This section explores the 

possibilities and attempts of Europe to bring life to its long-distance travel market. 

 

1.1.1 Long-Distance Travel Market 
In Europe, generally speaking, four means of transport exist for travelling long-distance. In this paragraph, 

high-speed rail and its main competitors are addressed. Figure 1.1 below shows the popularity of each of 

the modes at various travel distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given the marginal contribution of bus travel at all distances, the mode is taken out of consideration here. 

The other three modes will be addressed below.  

 

(1) Airplane 

To this day, airplanes are able to fulfil long-distance travel demand the most, most often without a significant 

competitor. Airplanes dominate the European travel market for distances over 700 km. Increase the 

distance to 900 km, and in many cases their market share reaches near 100%, as travelling via air is most 

often the only practical option (Bleijenberg, 2020). Overall, travelling by air is a very popular travel 

alternative within the continent. In the European Union, aviation fuel is legally exempt from taxes (EU, 

Figure 1.1 Modal shares in European long-distance travel (UIC, 2018) 
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2024), which further benefits the aviation industry by allowing prices to remain lower. Up until a year before 

the pandemic, the EU member states showed continuous growth in air passenger numbers of 6.0% yearly 

on average, with the total number of passengers travelling intra-Europe exceeding 1.1 billion (Eurostat, 

2019). This is indicative for the increased popularity of travelling long-distance. The airline industry has 

been recovering rapidly from the pandemic and is expected to do so fully by 2024. Projections indicate a 

continuous increase for the future as well (IATA, 2023), with passenger numbers expected to double within 

the next 20 years (Timperley, 2020), indicating the resilience and strength of the air travel market. 

Despite being a popular travel option for many, flying comes with many downsides. Most prominent 

are environmental concerns: flights within Europe emit at least five to six times more CO2 per passenger-

kilometre than trains. Shorter flights emit higher levels of CO2 per km (Bleijenberg, 2020) and per passenger-

km (BBC, 2019; Figure 1.2) than longer flights. Even though the aviation industry has made significant 

strides regarding fuel efficiency (European Commission, 2021), the growth in air traffic has led to an 

increase in the contribution to climate change, expected to triple before 2050 (ICAO, 2019). Most airlines 

will rely upon traditional engines until then (Hepher & Frost, 2021), making it incompatible with the Paris 

climate agreements (Gössling & Humpe, 2020; Bleijenberg, 2020). As shown in Figure 1.2, travelling by air, 

car or bus is much more polluting than other modes of transport. Other disadvantages of air travel include 

accidents, aircraft noise, delays and congestion (Janić, 1999). These are all well-documented, but the 

growing concerns regarding emissions and climate change has forced the European Union to look for other 

alternatives and opting for High-Speed Rail (HSR) development (European Court of Auditors, 2018). Section 

1.1.2 further elaborates on this. 

 

 

 

 

 

 

 

 

 

 

 

 

(2) High-speed rail (HSR) 

As shown in Figure 1.2, high-speed trains emit only a fraction of other air and road alternatives: on average 

seven times less per passenger-km (Strauss et al., 2021). Therefore, HSR is often raised as a more 

sustainable alternative for medium to long-

distance travel between urban centres (López-Pita 

& Robusté, 2004). Trains are considered high-

speed when exceeding 250 km per hour. 

Commercial speeds reach 350 km/h. For travel 

times up to two hours, HSR often is able to fully 

dominate the market, regularly leading to airlines 

giving up operating these trips. Even though the 

maximum speeds of high-speed trains are 

significantly lower than those of airplanes, it can be 

a competitive means of transport for travel times 

up to approximately four hours (UIC, 2018). This is 

due to smaller waiting times and the fact that HSR 

stations often can be placed in city centres, 

increasing its accessibility (Martín et al., 2014).  

Figure 1.2 Total emissions per passenger-km for medium to long-distance intra-European travel (BBC, 2019) 

Figure 1.3 Competitive advantage of HSR over other modes 
(Barrón et al., 2012) 
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HSR technology has been in development and used in practice for decades. There are numerous 

advantages of high-speed trains over airplanes. Firstly, the use of clean and renewable energy, which 

commercial airplanes do not use at large scale - with no foreseeable use in the near future. Other advantages 

of HSR include much lower operating costs, potentially lower fares, better accessibility to urban and rural 

areas and more passenger comfort (Rajendran & Popfinger, 2022).  

The benefits over air travel have made multiple countries in the world constructing high-speed rail lines. 

China can be seen as a world leader in this field, having a nation-wide network connecting all major cities, 

serving 74% of the country’s inhabitants within a two-hour drive (Wang et al., 2015). In fact, two thirds of 

the world-wide HSR track length can be found in China’s network (Chen, 2020). The fast growth of the 

network has been the consequence of heavy governmental subsidies and policy. High-speed rail has been 

very successful in China. The network served 2.4 billion passengers in 2019 (Zhang, 2024) and served twice 

the passenger number of domestic flights already back in 2013 (Bradsher, 2013). 

 

(3) Car 

In Europe, most long-distance trips are made by car (UIC, 2018). As can be seen in Figure 1.1, it remains 

the most popular way to travel for trips up to 1,000 km in general. Cars are more pollutive per passenger-

km than all other competing modes (see Figure 1.2), contributing to 61% of all emitted CO2 in the EU 

transport sector. Speeds reach far lower than those of (high-speed) rail and airplanes, but this is 

compensated by the ability of cars to also cover the distance directly to the origin and destination – the so-

called first and last mile (Lu et al., 2023). Cars provide direct access to much more destinations than public 

transport, while having an increased level of comfort (Hiscock et al., 2002). Even though significant strides 

are made into making it a less polluting mode of travel, the EU aims to shift users more to rail, as it can play 

an important role into meeting set climate goals (European Parliament, 2019). 

It is clear that high-speed rail is a viable alternative to environmentally unfriendly travel modes, and an 

urgent need for more sustainable medium- to long-distance travel options exists. 

 

1.1.2 High-Speed Rail Policy 
Following the example of China and all beforementioned benefits over air travel, it comes as no surprise 

that the EU has been pushing governments to develop international high-speed rail connections. Even 

though Europe has an extensive regular rail network, it was developed with national focus, complicating 

interoperability and efficiency when travelling internationally. This can be seen in Figure 1.4. Since the 

1990s, the EU has set the end goal of 

developing an “efficient and competitive EU-

wide railway network”; the so-called Single 

European Railway Area (SERA) (European 

Council, 2024). This vision has effected in 

policy by means of four railway packages, 

adapted by the European Council between 

2001 and 2016, the last one coming into 

effect by 2021. These legislative packages 

are meant to allow and push for development 

of cross-border connections and 

interoperability among the different national 

rail systems. Sustainability of travelling rose 

to prominence with the development of plans 

for the Trans-European Travel Network 

(TEN-T) (European Commission, 2013), 

which supports the transition to more 

sustainable transport, connecting railway 

lines internationally with roads, ports and 

Figure 1.4 European HSR lines, either built or planned (UIC, 2018) 
A larger version of this figure is provided in Appendix G  
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airports. As part of the European Green Deal, the EU has set the goal to double the length of HSR-lines by 

2030, while also reserving the majority of a €25 billion budget for rail development (European Council, 

2024). This is on top of the €23.7 billion already invested into high-speed rail infrastructure since 2000 

(European Court of Auditors, 2018). In total, it aims to play a big part in further shifting travellers to climate-

friendlier modes of transport, as the EU has set an objective to reduce the transport sector’s greenhouse 

gas emissions by 90% between 1990 and 2050 (EEA, 2024). 

 

1.1.3 European High-Speed Rail Network 
As stated by European Court of Auditors (2018), there is no European high-speed rail network. It consists 

out of a set of rather smaller and nationally oriented networks, while cross-border connections are rare. 

This is further illustrated by Figure 1.4. Spain, France and Italy have national networks providing 

connections between their largest cities. Spain and France opted to have their capital serving as a HSR-hub, 

with radial lines traversing outwards to the other few largest cities. Italy’s network more follows a line 

structure from Rome up to the northern cities. Germany operates a relatively large set of connections 

between the country’s biggest cities but has no real nation-wide fully connected HSR network. Cross-border 

connections only exist via the Channel tunnel between France and the UK, and at the connections between 

the capitals of France, Belgium and The Netherlands. 

 

 

Thus, only three countries in Europe have a national fully-fledged network, and none of these countries are 

connected. There is no real EU-wide network, it mainly consists out of national-focussed isolated smaller 

networks. The result of this is also shown in passenger travel behaviour: only 1 % of Europeans travel 

internationally at least once a month. 78 % never travels internationally by HSR. For national or regional 

trips, these percentages are more HSR-favourable, but not by much. Only 5% of Europeans travel by HSR 

at least once a week. Figure 1.5 shows an overview. 

 

1.2 Problem Definition 
Building upon the context explained in section 1.1, three main problems can be identified, that complicate 

or prohibit the development of a Europe-wide high-speed rail network. In this paragraph, each of these are 

explained in detail. 

1.2.1 Uncertainty of Justifiability and Operational Profitability  
Even though the total Chinese HSR network has reported net profits (MarcoPolo, 2024), not all of its lines 

are operationally profitable. This mainly accounts for lines in the more sparsely populated mid-west, 

operating at lower speeds (Want China Times, 2013). The Chinese government solves this problem by 

subsidising heavily, which raises concerns about the justifiability among HSR experts. 

This is not the only concern raised when it comes to high-speed rail. Critiques also exist regarding 

(construction) cost overruns, which can be substantial. This can be illustrated by the HS2-projects in the 

UK. Originally budgeted at £37.5 billion in 2009, the figure of expected construction costs has been 

Figure 1.5 National and international HSR usage patterns, EU-28 excluding Malta and Cyprus (EC, 2018) 
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increased multiple times, reaching £135 billion in 2020. These changes highly influence the profitability and 

justifiability of the project, even when adjusted for inflation. In the case of HS2, it has resulted in parts being 

cut off from the project entirely, while the benefit-cost ratio has decreased substantially. Concerns are now 

raised whether the line’s revenue will ever justify the large initial investments (Tetlow & Pattison, 2023).  

Even though the cost overruns of the HS2 project are exceptionally large, they are very common among 

(European) HSR projects. The same holds for delays in construction. These insecurities also occur in other 

HSR cash flows, and the expected demand. In Europe, three out of seven lines fail to have a sufficient 

number of passengers, while nine of out fourteen do not even have the potential number of passengers in 

the area to ever reach a sufficient amount (European Court of Auditors, 2018). The viability of these lines 

thus relies on subsidies. The uncertainties in (operational) profitability and justifiability are a main critique 

against HSR. These two terms concerns different parties and therefore they may not be used 

interchangeably:  

• Operational profitability regards all operational revenues and costs, and therefore concerns the 

operator. If an HSR line is not operationally profitable, no company will be interested in operating 

the line, unless subsidies are able to compensate for this operational loss. 

• Justifiability regards the extent in which the operational profitability is able to make up for the 

initial investments, and therefore concerns the party ordering construction of the line, which often 

are governmental bodies). If the construction of a HSR line is not justifiable, authorities will not be 

interested in building it.  

An economically justifiable and operationally profitable Europe-wide HSR network as desired by the 

European Commission therefore remains a very complex research project. Thorough research on 

predicting justifiability and profitability of hypothetical lines accurately, with the beforementioned 

uncertainties in mind, is therefore a much-needed tool. It could then be used to design a European high-

speed rail network, to demonstrate its profitability potential, while remaining economically justifiable. The 

result could function as a mean to check whether the main critique against high-speed rail is plausible. If 

not, it would show the conservatively calculated potential of HSR. This would potentially help pave the way 

for network development, changing the way continent is travelled across and significantly help battling 

climate change. 

1.2.2 Ineffectiveness of European Policy 
As already discussed in section 1.1.3 and displayed in Figure 1.4, there is still no European high-speed rail 

network. Also, it is expected that it will not be existent in the future soon. The most recent and prominent 

agreement concerns the European Green Deal, which aims to reduce transport-related emissions by 90% 

and triple HSR’s traffic volume between 1990 and 2050 (European Council, 2024). As the total transport-

related greenhouse gas emissions have only increased since 1990 (EEA, 2023), it can be concluded that the 

EU is not on track to meet its climate goals. Therefore, it can be concluded that the policies as designed by 

the EU have not reached their desired goals and effects. This is caused by multiple factors, as mentioned 

by European Court of Auditors (2018): 

• There is no strategical EU-wide approach. EU member states still have a rather national focus when 

it comes to constructing high-speed rail lines. This is caused by the national rules that still exist 

and act as technical and administrative barriers when it comes to construction of cross-border 

connections. 

• The European Union has no legal powers in forcing EU member states to construct the 

international rail connections as envisioned. This holds as well for an enormity of national rules 

still active in 2018, despite the European Commission attempting to mitigate them a decade ago. 

• Countries might have adopted a more cautious position towards high-speed rail development, 

considering the uncertainties mentioned regarding profitability and justifiability, as well as recent 

inflation. 
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1.2.3 Knowledge Gap in HSR Network Design 
As pointed out by Grolle et al. (2024), no HSR network design methods are currently available. This is a 

crucial research gap, since gaining information on selecting good or optimal configurations of connections 

directly influences the earlier mentioned justifiability and operational profitability of the networks as a whole. 

The problem needed to solve here can be generally captured as the “Transit Network Design Problem (TNDP)”  

and the “Frequency Setting Problem (FSP)”, as they are described by Ibarra-Rojas et al. (2015), and applied 

to an European HSR network design by Grolle et al. (2024).  

 

The Transit Network Design Problem (TNDP) is recognised as one of the hardest transportation 

problems to solve (Gao et al., 2005). It considers finding the optimal selection of arcs, able to accommodate 

the demand between then selected origin-destination (OD)-pairs (Costa, 2005). The inclusion of realistic 

travel behaviour following the choice of arcs selected, known as ‘elastic demand’ (Cascetta & Coppola, 

2012), is the main contribution to the problem’s complexity. Often, the goal is to maximise the flow served 

or minimise network costs. Pazour et al. (2010) are able to adopt a TNDP formulation to design a national 

high-speed rail network, for freight. The model itself is uncapacitated, meaning that the capacity of links is 

not taken into account. This is not constrained in the model itself but assessed by post-processing the results 

of the model. The problem has been studied as early as by Lampkin & Saalmans (1967), with increasing 

interest since the start of this millennium. 

 

The Frequency Setting Problem (FSP) concerns the frequencies at which (specific) lines must be 

operated. It can be made more complicated by taking into account different planning periods. The line 

design has a large influence on the optimal frequencies, since it determines what trips require transfers and 

how demand flows over the network (Ibarra-Rojas et al., 2015). The author states the two problems 

mentioned above can be combined, into a Transit Network Design Problem & Frequency Setting 

Problem (TNDFSP). The problem has been studied as early as by Patz (1925), also with increasing interest 

over the last two decades. 

 

Extensive overviews of studies using different network design problems are provided by Guihaire & Hao 

(2008), Ibarra-Rojas et al. (2015), Chen et al. (2011) and Farahani et al. (2013). The authors conclude that 

while the problems are applicable to other modes, in practice they are applied to urban public transport 

only. In total, 21 TNDP and 23 TNDFSP- related works were found with some relation to this work, which 

are listed in Appendix A. These have been filtered to a selection of seven works with a closely related focus 

or approach and are shown in Table 1.1 below. 

 

Table 1.1 Overview of strongly related network design problem solving works 

Reference Problem Related focus Solution 
method 

Real 
case 

ND FS E N A 
Hasselström (1979, 1981) ✓ ✓ Number of transfers ✓    
Bielli et al. (2002) ✓ ✓ Pre-defined lines   ✓ ✓ 
Carrese & Gori (2002) ✓ ✓ Demand, route length, travel time, operator cost ✓  ✓ ✓ 
Fusco et al. (2002) ✓ ✓ Service level, demand, route length, overall cost ✓ ✓ ✓  
Chen et al. (2003, 2006) ✓  Expected profit ✓    
Chen & Subprasom (2007) ✓  Expected profit ✓    
Grolle et al. (2024) ✓ ✓ Line length, frequency   ✓ ✓ 
This work ✓ ✓ - ✓   ✓ 
Problem: ND (Transit Network Design), FS (Frequency Setting) 
Methods: E (Exact), N (Neighbourhood Search), A ((Evolutionary) Algorithm) 

 

Even though a similar number of TNDP- and TNDFSP-related works were found, it is noticeable that closely 

related TNDP works are rarer. The goal of maximising profit was only found in works by Chen et al. (2003, 

2006) and Chen & Subprasom (2007). In these works, the authors make use of a TNDP model under 
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uncertainty, meaning that they take the variances of variables into account. Ordinary models would only 

take the expected value into account, and therefore do not deal with uncertainty. For both works, this 

variable is demand. While Chen & Subprasom (2007) only take the expected value of demand into account, 

Chen et al. (2003, 2006) also include its variance. This allows for realistic fluctuations, which increases the 

model’s realism and scientific value of its outcome (Chen et al., 2011). 

Studies on TNDFSP are increasingly prevalent and have been applied to real-life cases involving a wide 

variety of constraints and objectives. The approach of Bielli et al. (2002) is particularly interesting, since it 

allows the problem to be split in two; a pre-defined set of lines can be applied to a network resulting from 

solving a TNDP. Hasselström (1979, 1981) minimises for the number of transfers, while mainly the objective 

of costs minimisation is popular among TNDFSP applications – however in different fields. While Carrese 

& Gori (2002) minimise for the operator cost, Fusco et al. (2002) do so for the overall cost. 

 

1.3 Research Goals 
A high-speed rail masterplan is needed to fulfil its potential (Preston, 2023). This project aims to provide 

just that. The goal of this research can be formulated by means of a main research question. To answer this 

question, answers must first be found to a number of sub-questions.  

 

1.3.1 Main Research Question 
The main research question of this project is stated as: 

“Which European cities must be connected via High-Speed Rail, and how should these connections be served in 

order to lead to an (optimally) profitable network?” 

The expected end result is a list of directly connected cities, and the different operating lines serving them, 

along with their frequency. 

1.3.2 Sub-Questions 
In order to answer the main research question, the project’s methodology is split into three sections: 

demand forecasting, profitability estimation and network design. Section 1.4 provides more insights on 

them. The main research question can only be addressed after answering the following sub-questions. 

Demand forecasting 

1. What can be learned from completed high-speed rail projects, regarding their demand? 

2. What models and impact factors can be used to forecast high-speed rail demand? 

 

Profitability estimation 

3. What can be learned from completed high-speed rail projects, regarding their profitability? 

4. Into what cash-flows does high-speed rail profitability break down? 

5. What factors influence these cash-flows and how can this relationship be captured? 

6. What model can be developed to forecast high-speed profitability? 

7. How do the cash-flows of ‘profitability’ translate into ‘operational profitability’ and ‘justifiability’? 

Network design 

8. What can be learned from completed high-speed rail projects, regarding the requirements cities 

and connections need to fulfil? 

9. How can linear programs be formulated in order to solve a realistic TNDFSP formulation to 

optimality within reasonable computation times? 

10. What would an optimal high-speed rail network look like, with respect to its topology, operating 

lines and associated frequencies?  

11. What are the policy implications from this optimal design? 
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1.4 Methodological Overview 
Following the research goals and questions as listed in section 1.3, a short overview of the methodology 

can be formulated. This will be done in this paragraph. The general process followed in this project is split 

into three parts, as shown in Figure 1.6. Each of the parts mentioned here is a problem in itself, each 

requiring research and a methodology on its own, as they will be solved sequentially. 

 

 

 

It starts with a demand forecasting model, where demand is predicted for a hypothetical high-speed rail 

connection. The demand forecasting model functions as input for the profit forecasting model, which 

predicts the values of the different HSR cash-flows. From this, the justifiability and operational profitability 

can be assessed. The profit forecasting model is used to calculate the profitability of HSR connections. It 

also serves as the objective function for the network design model, since the goal is to maximise profit over 

the project’s lifetime, while being justifiable. The network design problem considers optimisation, aiming 

to build and solve a problem-related TNDFSP (section 1.2.3). The expected end result is a list of built arcs, 

along with a list of operating lines serving them and their frequencies. 

 

1.5 Research Scope 
To have a solution of the highest scientifical value, the aim is to have all data in the models as close as 

possible to reality. The following scoping rules are set out. 

 

Level of detail 

The design encompasses decision making at the strategical level only. The two strategical decisions 

considered here are: 

• What cities must be connected directly? 

• What lines should operate these direct connections, and at what frequencies? 

 

Time scope 

The network should be designed to be built and completed as soon as possible, which means that it adheres 

to current demands and constraints. A logical building time frame would be in the order of 40 years, closely 

representing the lifetime of high-speed rail projects (European Court of Auditors, 2018). The aim of this 

project is to demonstrate how a optimally profitable network should be designed, and what it would look 

like. Forecasting of demand 40+ years into the future very accurately is a completely different science this 

project will not dive into. This way, it will be ensured that the scope will not become too large, sticking to 

the essence of the problem. 

 

Area scope 

Building and planning new tunnels takes decades. Their costs are hard to predict, and their benefits reach 

much further than only for passenger high-speed rail. This means that considering the building of tunnels 

to serve high-speed rail connections needs different expertise and its own research project. Therefore, for 

this project, the time frame enforces that connections can only be made on Continental Europe. This way, 

it will be ensured that the scope will not become too large, sticking to the essence of the problem to solve 

only.  

  

Figure 1.6 Schematic overview of methodology 
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Figure 1.7 provides the definition of the projects’ area of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In total, the scope encompasses 39 countries. For a full list and underlying rationale, see Appendix C. 

 

1.6 Report Structure 
Now that the logical steps towards the end goal of this research are explained, an outline of the rest of the 

report is presented here. It follows the methodological overview as described in section 1.4. 

Chapter 2 collects all necessary knowledge regarding the defined three problems in the form of literature 

review. Founded on the garnered knowledge, a methodology to answer the main research question is 

determined in chapter 3. Thereafter, chapter 4 reports the results found after implementation of the 

methodology, while chapter 5 focuses on the policy implications resulting from this. At last, chapter 6 

finalises the project by drawing conclusions, discussing the results and making recommendations.  

Figure 1.7 Area of interest; own adaptation of Maix (2007) 
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2 Literature Review 
This chapter will function as a guideline, containing all necessary information needed to be able 

to formulate the project’s methodology in chapter 3. The three problems defined in section 1.4 

are addressed by sections 2.1-4, 2.5 and 2.6-7, respectively. Overviews are created of HSR 

demand-impacting factors (section 2.1), forecasting models (section 2.2) and their combinations 

(section 2.3). Demand dynamics are researched in section 2.4. Together, these sections aid the 

formulation of a forecasting model. Then, section 2.5 breaks down HSR profitability into cash-

flows. Section 2.6 and 2.7 focus on network design and line design, respectively. Section 2.8 

summarises the gaps found in literature, and bridges to the goals and methodology of this 

project. 

 

2.1 Demand Impact Factors 
Typically, demand for high-speed rail is forecasted by means of a specialised demand forecasting model. 

Castillo-Manzano et al. (2015) state that an accurate demand forecast is vital in order to verify the 

justification of proposed HSR lines. To be able to create such a model, this section identifies a complete list 

of factors influencing high-speed rail demand, according to academic sources. This serves as a starting 

point for understanding the concept of HSR demand, which will enhance the capability to build a demand 

forecasting model. The methodology building upon this can be found in section 3.2. 

In order to collect a complete set of demand-influencing factors, a large literature review is required. 

The web was searched for papers attempting to forecast exclusively long-distance high-speed rail demand, 

involving high-speed rail as travel mode. Zhang et al. (2012), Börjesson (2014) and Nurhidayat et al. (2023) 

provide extensive overviews of long-distance travel demand studies, which serves as a starting point for 

our search. Further snowballing from these studies (combined with keywords “high-speed rail”, “demand”, 

“forecast” and “model”) within academic platforms ScienceDirect and Scopus, and Google Scholar found 100 

studies meeting the mentioned requirements. An overview of all these papers can be found in Appendix B. 

 

2.1.1 Descriptive Statistics of Found Papers 
Research was published in a span of forty years, between 1982 and 2023. Figure 2.1 shows the distribution 

of publication year among the studies. It can be noted that the interest for high-speed rail demand research 

and long-distance travel models has increased significantly over the years. 

 

 

 

 

 

 

 

 

 

 

 

All studies apply their models to case studies, considering a total of eighteen different countries separately, 

while some studies consider (parts of) continents such as Europe (6), East Asia (1) or the entire world (2). 

China is the most considered country by far (30 studies), which shows that the HSR culture also permeates 

the country's academic spheres. Mainly the western world is considered here, including almost every 

western European country. For each study, the assumed demand-impacting factors are listed. A full list per 
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study can also be found in Appendix B. Factors with the same meaning (e.g. “fare” and “ticket price”) are 

treated as one. After this processing step, 38 factors of influence remain (a full list is provided in Table 2.1), 

which are divided in eight groups in Figure 2.2 below. Only a small number of factors are mentioned often, 

while 28 out of 38 are mentioned in less than 10% of the studies. It is indicative for the academic state-of-

the-art of HSR demand forecasting: a small number of impact factors are obvious, while the set of non-

obvious impact factors is large and requires attention in studies as well. 

 

 

 

 

 

 

 

 

 

 

 

The groups as mentioned in Figure 2.2 are presented one by one, each in their own paragraph, in order of 

their popularity in studies. The individual factors in each group are highlighted in bold. 

 

2.1.2 Travel Time 
For studies, this is the most obvious impact factor to think of, being thought of by 88% of them. Most of 

these studies use the notion of ‘total travel time’, which consists of multiple components.  

 

Total travel time 

For most travel modes, the in-vehicle time will represent the largest portion of the trip. Sometimes, a 

transfer between the transport vehicle is required, which would then add a transfer time, also related to 

the number of transfers. Some trips include waiting time at a transport hub before the transport vehicle 

departs, which applies to flight-based trips especially. For rail- and flight-based trips, passengers also have 

to travel to the airport or station, which adds an access time. The same holds when passengers exit the 

plane or train and have to travel to their actual destination (egress time). These last two are of great 

influence on determining the total door-to-door time (Moyano et al., 2018). For the same trip distance, it 

most often holds that in-vehicle times are shorter for flight-based trips. Waiting, access and egress times 

are most often shorter for rail-based trips, due to the closer proximity of rail stations to city centres. Brons 

et al. (2023) illustrate this in Figure 2.3. 

For simplicity, most studies working with a demand forecasting model consider only the total travel 

time and do not break it down in each of its components. Some studies however, do (e.g. Cascetta & Cartenì 

(2014)) and find that all components on their own are statistically significant to be taken into account. 

Studies mostly focus on access time (22 studies), followed by egress time (13), in-vehicle time (8), waiting 

time (8), the number of transfers (4) and transfer time (1).  

 

Relationship with HSR demand 

All studies agree that higher travel times correspond with lower HSR demand. E.H. Michell (2024) provides 

the insights to this relationship. He compared train’s travel time with the market share of high-speed rail 

(on the HSR-air market), from actual reported passenger data. With this information, the author was able 

to produce Figure 2.4 with a reasonably good fit, highlighting the substantial influence of travel time on 

high-speed rail demand. Nelldal & Jansson (2010) and Jorritsma (2009) conclude that travel time is the 

Figure 2.2 Most commonly mentioned HSR demand-impacting factors 
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most important impact factor of high-speed rail demand. The graph shows a non-linear relationship, while 

indicating HSR dominance for travel times up to four hours. 

 

The variability around the figure’s trendline also shows that total travel time is not the only explanatory 

variable determining high-speed rail demand. An important cause of this might be differences between how 

people from different countries value time; often indicated by the Value of Time (VOT). This is taken into 

account by a limited number of only five studies (e.g. Hsu & Chung (1997), Outwater et al. (2010), Yang & 

Zhang (2012)). The authors show that it is a statistically significant parameter to consider. Also mentioned 

by studies are travel distance (by 34) and speed (5). Although these factors correlate with demand, they 

first and foremost directly influence the travel time. 

 

2.1.3 Travel Cost 
The second-most common thought of impact factor, considered by 72% of studies from this literature 

review. The total travel cost mostly comprises of the ticket price (in case of rail or air) but also fuel cost 

(car). For this reason, studies including car travel often opt for simply the travel cost, making comparisons 

easier. Recalling section 2.1.2, the total trip length often exists out of multiple parts, including access and 

egress. This pre- and post-travelling often add costs, which is also considered by travellers. For this reason 

and in order to make comparisons between different travel modes easier, the term “travel cost” will be used 

here. 

In literature, the relationship between demand and its impact factor is often indicated by an elasticity 

value 𝑒, denoting the demand change with the value of the impact factor increases by 1% (in this context, 

a 1% increase of travel cost). However, it should be noted that these elasticities only hold for small changes 

in the pricing system, and can differ based on multiple other factors, such as the economic growth, travel 

time but also the VOT or price itself (de Bok et al., 2010). For this reason, elasticities should be treated as 

indicative. 

 

2.1.4 Economy 
It should be noted that the leap in popularity after travel time (88%) and travel cost (72%) is large: only 44% 

of studies include economic factors as demand-impacting factor. More studies look into the population’s 

wealth, rather than the population figure itself (44% vs 34%), suggesting a greater importance. A city might 

have a large number of inhabitants, but that does not tell the complete story. They should also have a certain 

amount of wealth, since a wealthier population spends more money and is more likely to travel. This 

accounts for HSR as well. Cabanne (2003) shows that GDP elasticity in France lies somewhere between 0.3 

and 0.5. The author also pointed out that the demand is much less sensitive to GDP rise than other long-

distance travel modes such as air (elasticity 1.5) and car (1.3). Studies consider different ways to include 

the population’s wealth into HSR demand-predicting models: 

Figure 2.3 Composition of travel time components for different 
types of city-to-city trips within Europe (Brons et al., 2023) 

Figure 2.4 Relationship between travel time and HSR 
market share (E.H. Michell, 2024) 
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• GDP (Gross Domestic Product) is most commonly used (by 26% of studies), in different forms. 

The term stands for the total value of goods and services created within a certain period and is 

considered the standard way to measure an area’s economic activity (OECD, 2022). For demand 

forecasting, most often the total GDP of the city is used (e.g. Albalate et al. (2015)), while a minority 

of studies (3%) choose to use GDP/capita (e.g. Couto & Graham (2007)). This term makes it easier 

to draw comparisons between cities. Barrón et al. (2012) estimated demand purely based on GDP 

growth and assumes an elasticity of 1.25. Travel data analysis over an 70-year period by Swedish 

operator Trafikverket (2021) concludes with a more conservative estimate of 0.70.  

• Average income more accurately describes the actual spending power that the average inhabitant 

of a city has, and therefore is a more accurately demand impact factor than GDP. Data on income 

is much harder to find, which partly explains why it is less used in studies (19% vs 26%). Together 

with ticket fares, it is able to predict demand, as demonstrated by Bergantino & Capozza (2015). 

The income can also be aggregated to average levels per household, as executed by Ashiabor et 

al. (2007). 

• Welfare as a whole is rarely found in studies, since it is rather hard to quantify in units, but Gu & 

Wan (2020) implement it in their demand model. 

 

2.1.5 Service Frequency 
In airline competition, the flight frequency share is the main market share determining factor when all other 

factors are equal (Hansen & Liu, 2015), thus a crucial factor to take into account. The frequency remains a 

prominent factor for studies, but less so for high-speed rail, which is illustrated by its appearance in HSR 

demand forecasting studies (only 43%). 

The service frequency is determined by the number of departing high-speed trains per hour, within 

operating hours. Some of the reviewed studies call it “headway”, which refers to the same concept, which 

is the average time between two consecutive departures. 

Since the operated frequency has great influence on demand, it is often considered as a strategic design 

criterium. Recalling section 1.2.3: for this reason, Grolle et al. (2024) search for a European network by 

means of having the frequency per line as decision variable. 

 

2.1.6 Population 
This factor is mentioned by 34% of studies as demand-influencing factor. It is considered a constant value, 

as it cannot be changed due to design choices. Of course, higher population figures near HSR station 

locations generally correspond with higher HSR demand. Studies use different ways to include the 

population as a mean to predict high-speed rail demand: 

• Area population, meaning they include the total population of the city, agglomeration or another 

administrative boundary. Since this data is often easy to find, it is a fast, cheap and popular way to 

include populations into demand models. Using the area’s population has its flaws, since a HSR 

station in a city may also attract passengers from outside of the boundary or may not be accessible 

to all parts of the city uniformly. 

• Working population¸ which is similar to the area population when considering its benefits and 

drawbacks. However, it is more an accurate representation of the number of people that would use 

high-speed rail regularly. It requires more extensive research, since data is harder to find. Yao & 

Morikawa (2005) manage to include it. 

• Number of households, which is similar to the working population when considering its benefits 

and drawbacks, but data is much harder to find. Outwater et al. (2010) is an example of a study to 

include it, while also including the (local) unemployment rate. 

• Catchment area population is by far the most accurate method to include population into the 

model, as it takes accessibility into account. HSR stations might attract travellers from outside the 

city in which it is located (Martínez et al., 2016). The size of the catchment area is determined by 
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a chosen origin-to-station travel time (Harnish, 2023). Martínez et al. (2016) showed that sizes of 

catchment areas vary among cities, while people living at closer proximity to stations have a higher 

chance of using the HSR service. The chance of people making use of the HSR line decreases with 

the distance: Martínez et al. (2016) find that 80% of HSR users lives in a catchment area of no more 

than 30 minutes. Informed by surveys, the authors apply catchment areas of 90-110 minutes in car 

travel time into their research. 

 

The benefit of using catchment area population rather than city population can be illustrated by comparing 

the following two cities in Germany: Berlin (3.43 million inhabitants) and Wuppertal (0.36 million) (WPR, 

2024), which have 60-minute catchments of 4.4 and 10.5 million people (Smappen, 2024). Even though 

Wuppertal is ten times smaller than Berlin, its population catchment is more than twice as large. This can 

be illustrated by Figure 2.5, which shows the catchment areas of both HSR stations over a population 

density map. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While Berlin is a large and dense city, the population density directly outside of it is very low. On the other 

hand, Wuppertal lies in the middle of the Ruhr area, Europe’s third most populous conurbation, behind only 

London and Paris (Eurocities, 2020). For that reason, density is included into the demand model by Clewlow 

et al. (2014), as denser cities generally lead to higher populations in catchment areas.  

 

2.1.7 Travel Comfort 
Passengers do not only want a frequent, fast and cheap service. When they travel, they except a certain 

level of comfort. 22% of reviewed studies take any of the following comfort-related factors into account: 

• Overall comfort or convenience (10% of studies) of travelling, has proven to be a statistically 

significant dealbreaker to passengers when multiple long-distance travel modes are available, 

especially when it comes to high-speed rail (Pagliara et al., 2015). 

• Passengers expect a reasonably punctual and reliable service (ARUP & OXERA, 2010). The 

authors find that, in the UK, a minute increase in delay decreases demand by 2%. However, 

punctuality and reliability is included by 3% and 6% of studies in this review, respectively. 

• Safety (5% of studies) is taken for granted by most studies, and therefore one would expect that 

the influence on demand is not significant. It is indeed less significant than comfort, but as pointed 

out by Pagliara et al. (2015), it can be a dealbreaker for some, and higher safety levels do indeed 

correlate with higher demand. 

Figure 2.5 One-hour-drive population catchment areas for two German cities, plotted on a 
population density map, for Berlin (left) and Wuppertal (right) (Smappen, 2024) 
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• Passengers expect to be able to find a seat; this especially applies to rail modes. Busy routes where 

low capacity leads to seat availability issues decrease the popularity of that travel mode. For 

this reason, four studies take these impact factors into account. 

• Service or hospitality is taken into account by three studies. It relates to operator personnel 

services in the transport vehicle itself. 

• Most transport companies tend to make sure their operating hours are as customer-friendly as 

possible, as they achieve to maximise their passenger numbers and operating profit. But it remains 

an important factor to take into consideration. Yang & Zhang (2012) is the only study in this 

literature review to do just that. 

 

2.1.8 Destination Attractiveness 
The demand between two cities is determined by the willingness of people to bridge the distance. In models, 

travelling is seen as a disutility (as it requires time and money), thus it is important that the destination has 

something to offer, which makes the trip worthwhile (Mokhtarian & Salomon, 2001):  

• Work. HSR-connected cities with fairly small travel times allow passengers to travel back and forth 

on the same day. In China, this has led to the development of a new commuting market (Ollivier 

et al., 2014). The number of commuting passengers logically depends on the city attractiveness 

and industrial structure. Only a few studies look into these factors when forecasting HSR 

demand: city attractiveness by Cartenì et al. (2017) and Chen (2017), industrial structure by Yu et 

al. (2021). Both are taken into account by Yao & Morikawa (2005). 

• Non-work reasons usually refers to tourism or day trippers. For day trippers, again a relatively 

small travel time is required. Tourists are generally willing to spend more time travelling, which 

indicates that these are the kind of people travelling long distances. Therefore, Jiménez & Betancor 

(2012), Wang et al. (2018) and Zhang et al. (2020) include tourism status.  

2.1.9 Other Impact Factors 
The factors mentioned previously in this chapter fully cover 89% of all studies reviewed. The last five factors 

are described briefly in this section: 

• The number of air passengers is a very direct way to predict the demand for high-speed rail. 

This data has great benefits: it is easily accessible, and an accurate representation of actual long-

distance travel demand. For multiple studies, e.g. Grolle et al. (2024), it therefore functions as a 

starting point for forecasting high-speed rail demand.  

• Li & Sheng (2016) and Nurhidayat et al. (2018) incorporate trip purpose as one of the factors to 

forecast demand. The latter hereby makes a distinction between ‘travel reasons’ as indicated in 

section 2.1.8. 

• Travel attitude is incorporated in demand models by Pan & Truong (2020). Their reasoning is 

that travel demand might depend on the number of people actually willing to travel via a certain 

mode in the first place, which can be based on a general aversion or prejudices. 

• Climate-aware passengers are more likely to choose climate-friendlier travel options. Therefore, 

pollution can influence travel demand. Implemented as a demand-impacting factor into a 

forecasting model by Chai et al. (2018). 

• Cities with lower internet usage might generate less HSR demand. A model implementing this 

relationship is set up by Li et al. (2019). 
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2.1.10 Overview  
An overview of all mentioned impact factors in demand forecasting studies is shown in Table 2.1 below. 

 

Table 2.1 Overview of HSR demand-impacting factors reported in HSR demand studies, and the (expected) elastic relation 

Impact group 
Studies 
(%) Factor Unit Relation Studies 

Travel time 88 Travel time [h] - 59 
  Travel distance [km] - 34 
  Access time [h] - 22 
  Egress time [h] - 13 
  In-vehicle time [h] - 8 
  Wait time [h] - 8 
  Value of Time (VOT) [€/h] - 5 
  Speed [km/h] + 5 
  Number of transfers [-] - 4 
  Transfer time [h] - 1 
Travel cost 72 Ticket price [€] - 43 
  Travel cost [€] - 30 
Economy 44 GDP [€] + 26 
  Income [€/yr] + 19 
  Welfare [0-10] + 1 
Service frequency 43 Frequency [h-1] + 43 
Population 34 Population [-] + 33 
  Unemployment rate [%] - 3 
  Households [-] + 1 
  Density [km-2] + 2 
Travel comfort 29 Overall comfort [0-10] + 8 
  Reliability [0-10] + 6 
  Safety [0-10] + 5 
  Punctuality [%] + 3 
  Convenience [0-10] + 2 
  Capacity [-] + 2 
  Seat availability [%] + 2 
  Service [0-10] + 2 
  Hospitality [0-10] + 1 
  Operating hours [h/day] + 1 
Destination attractiveness 7 General [0-10] + 3 
  Touristic [0-10] + 3 
  Industrial [0-10] + 2 
Other 11 Air passengers [-] + 6 
  Purpose [-] + 2 
  Attitude [-] + 1 
  Pollution [CO2] - 1 
  Internet usage [%] + 1 
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2.2 Demand Forecasting Models 
As all 100 studies from the previous literature review implement their factors into forecasting models, their 

models will be analysed here. An overview of studies can be found in Appendix B. This literature review 

will provide a body of knowledge to choose the best suitable model in the methodology in section 3.2.  

The studies use a relatively small number of model types, but within each type often a large variety of 

implementations exist. Only three different models were found in at least 5% of studies reviewed: logistic 

or linear regression, and gravity models. Demand forecasting models generally estimate either the total 

demand of all modes combined, or the market share of each single travel mode. The next four sections will 

provide insights to the usage of these demand-forecasting models in literature. After that, a more brief 

section is reserved for addressing model calibration (section 2.2.5) and an overview of models in section 

2.2.6.  

2.2.1 Logistic Regression Models 
Logistic regression models, often called “logit models” are the most used model in demand forecasting, 

appear in 47% of studies from this review. In travel behaviour research, they are used to calculate market 

shares among different travel alternatives. Logit models are built upon the premise that to travellers, each 

travel alternative has a “utility”, which states the satisfaction or value that a traveller derives from choosing 

that alternative (Arentze & Molin, 2013; Ben-Akiva & Lerman, 1985). In ordinary logit models, the utility of 

an alternative is a function of its attributes, as indicated by equation (2.1): 

 

𝑈𝑘 = 𝑉𝑘 + 𝜀𝑘 (2.1) 

 

Here, 𝑈𝑘 is the utility of travel alternative 𝑘, which is the sum of the observed utility 𝑉𝑘 and the unobserved 

utility 𝜀𝑘. The latter term takes errors and deviations of behaviour into account, since the effective utility 

often does not match the observed utility. It is assumed to be independently and identically distributed 

(Ben-Akiva & Lerman, 1985). The observed utility for ordinary logit models is calculated by equation (2.2): 

 

𝑉𝑘 = ∑ 𝛽𝑚

𝑚

∙ 𝑥𝑘𝑚 (2.2)  

 

Here, 𝑥𝑘𝑚  is the value of attribute 𝑚 for travel alternative 𝑘. 𝛽𝑚  is a ‘taste’-parameter, representing the 

importance of attribute 𝑚  when it comes to determining the utility of travel alternative 𝑘 . The taste 

parameters are the values to be calibrated, as they are unknown at first (Mandel et al. 1994). Travellers are 

seen as “utility optimisers”: the higher the utility of a travel alternative, the more likely they are to choose 

that option, thus the higher the market share 𝑚𝑘, which can be calculated by using equation (2.3): 

 

𝑚𝑘 =
exp (𝑉𝑘)

∑ exp (𝑉𝑗)𝑗
 (2.3)  

 

These market shares are then often calibrated on the basis of real-life data (most often large-scale survey 

outcomes), by calculating maximum-likelihood estimates for the taste parameters (Fiig et al., 2014). The 

logistic function ensures that the predicted probabilities fall between 0 and 1. Logit models therefore are 

often used to forecast market shares in widely varying business sectors (Geurts & Whitlark, 1992). A wide 

range of logit models exist, listed below. An overview is shown in Table 2.2. 

• Multinomial logit (MNL) takes more than two travel modes into account, thus applicable to this 

case as indicated in section 1.1.1. Of the 47 studies reviewed, 19 used MNL. Their popularity can 

be attributed to their simplicity of implementation and ease of interpretation of results. The major 

drawback of MNL is the Independence of Irrelevant Alternatives (IIA) property, which means that 

the relative preference between two alternatives remains constant, regardless of the presence or 
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absence of other alternatives (Lee et al., 2016). Therefore, it over- or underestimates market shares 

of alike travel modes (such as HSR and rail). 

• Binomial or binary logit (BNL) is similar to MNL but only takes two options in account. Studies 

have implemented it in different fashions. Danapour et al. (2018), Nurhidayat et al. (2018) and 

Nurhidayat et al. (2019) only consider HSR and air transport as the two travel options. Another 

way to look at it, is the choice to travel (via HSR) or not (Cartenì et al., 2017) or choose between 

HSR or conventional rail (Cascetta & Cartenì, 2014); (Ren et al., 2020). In the reviewed studies, 

BNL is used half as frequent as MNL. 

 

In literature, MNL and BNL are seen as ordinary logit models, in the sense that their observed utility 

function is linear (as in equation (2.2)). Numerous adaptations to this have been made to be able to produce 

more accurate, however more complex models: 

• Nested logit (NL) takes alike travel modes such as HSR and conventional rail into account, to 

capture higher degrees of substitutions (Ben-Akiva et al., 2010). This eliminates the IIA property, 

making NL more accurate than MNL (de Palma et al., 2019). Together with MNL, NL is the most 

used logit model according to Fiig et al. (2014), which is reflected in the results of this literature 

review. The model is more complex than MNL, requiring more computing power. Its idea is to 

look at travelling as a multi-question decision-making process, making consecutive decisions about 

the travel mode and options within that class. For example, Outwater et al. (2010) and Inoue et al. 

(2015) put alike travel options in the same ‘nest’. The nested structure of the latter is shown in 

Figure 2.6.  
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• Mixed logit (ML) allows the previously defined taste parameters to be distributed randomly, just 

like the 𝜀𝑘-values, which makes it a more generalised and flexible version of the ordinary logit 

model (Lee et al., 2016). Therefore, this model is more realistic, as a taste parameter usually is not 

assumed constant for an entire population. However, it requires more computation power to solve. 

Behrens & Pels (2012) applied both MNL and ML models in the London-Paris HSR/air market and 

statistically proved the ML model outperforms the MNL model. The ML model generally is more 

accurate than MNL, since the high flexibility tackles the IIA problem (Lee et al., 2016). 

• Box-Cox allows for non-linearity in the model. In ordinary logit models, as can be viewed in 

equation (2.2), the observed value is calculated in a linear fashion. But in some cases, this might 

not be realistic. For this reason, Box-Cox logit models transform one or more variables into non-

linear variables (Mandel et al. 1994). In transport demand modelling, Box-Cox logit models have 

shown to outperform ordinary logit models, as for example by last-mentioned study. This is mainly 

due to the fact that Box-Cox is able to capture the effects of diminishing returns: the impact of a 

price or travel time change decreases as the initial value is higher. The major drawback of Box-

Cox is its complexity, as illustrated by Chirania (2012) and Gaudry (2008). Below, an overview of 

the different logistic model’s characteristics is shown. 

  

Figure 2.6 Nested decision-making structure in NL-model applied 
by Inoue et al. (2015) 
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Table 2.2 Overview of different logit models in HSR demand forecasting literature 

Model type Properties Benefits Drawbacks 
Alt. Utility function 𝜷-value  IIA Complexity 

Multinomial (MNL) 2+ linear constant high simplicity yes low 
Binomial (BNL) 2 linear constant high simplicity yes low 
Nested (NL) 2+ flexible flexible increased flexibility no medium 
Mixed (ML) 2+ flexible distribution higher realism no high 
Box-Cox 2+ non-linear flexible diminishing returns yes very high 
Alt. = number of alternatives applicable to model 

 

2.2.2 Linear Regression Models 
These models represent the simplest type of demand forecasting, when it applies to the actual passenger 

numbers instead of market shares. The models assume that the relationship between demand and its 

impacting factors is linear. Equation (2.4) shows a general example of such a formulation for the demand 

𝐷, which is a simplification of the version applied by Castillo-Manzano et al. (2015). 

  

𝐷 =  𝛽0 + ∑ 𝛽𝑚

𝑚

∙ 𝑥𝑚 (2.4) 

 

It should be noted that the right-hand side of the equation above closely matches 𝑉𝑘 in equation (2.2), as it 

still is a linear additive function of attribute values and attribute weights. A constant 𝛽0  is added and 

represents the demand when the value of all demand-impacting factors equal zero.  

As mentioned, linear regression models assume linear relationships between demand and its impact 

factors. In the case of demand forecasting this does not always lead to accurate forecasts, since some of 

the demand-impacting factors are not necessarily linear. This makes the model less popular than logistic 

regression (32% vs 47%), but its simplicity partly compensates for the mentioned drawbacks. Therefore, 

linear regression models remain relatively popular among demand forecasters. Of the 32 reviewed linear 

regression models, eleven were of the ordinary kind as described above. 

Similar to logit models, multiple variations in linear regression models exist. In line with the literature 

reviewed, this section will discuss model types that have been mentioned multiple times. An overview of 

their distinguishing characteristics is provided in Table 2.3. 

 

• Panel linear regression takes in data from multiple time instances over the same population. For 

example, Yu, Zhang, et al. (2021) use panel data from 2008-2015 to provide insights of HSR’s 

influence on economic development. A panel linear regression model does not only forecast HSR 

demand, but also forecasts it for specific time instances. Therefore, it captures the trend as well as 

the relationship between HSR demand and its impact factors (Arellano & Honoré, 2001). The 

model is much more complex than ordinary linear regressions, since it requires estimating time-

specific taste parameters. Panel linear regression models are used when the trend or development 

of HSR demand must be forecasted as well, and are performed by Chen (2017), Li et al. (2019) and 

Liu et al., 2019). The former writes the formula in a log-linear form, adding complexity while 

allowing to capture effects of diminishing returns. 

• DID (Differences-In-Differences) linear regression also requires panel data but examines it 

differently. It allows to divide the population into groups, some exposed to a variable of interest 

and some not. By not changing the other variables among, the effect of the variable of interest can 

be examined. Mizutani & Sakai (2021) and Wan et al. (2016) investigate travellers using a certain 

flight route, while the variable of interest is the introduction of a HSR connection. Over a multi-

year period, the effect of HSR on the air demand can be measured. 

• Multiple linear regression is used when multiple dependent variables are of interest (Sinharay, 

2010). In most reviewed studies, demand studies would only incorporate the passenger numbers 

of the mode of interest, therefore only having one dependent variable. Yang, Dobruszkes, et al. 
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(2018) break down the popularity of HSR links into two factors, city centrality and link connectivity, 

and incorporate both as dependent variables in their model. Zhang et al. (2017) estimate airlines 

passenger-kilometres in models with different independent variables. 

• Dynamic linear regression is used when the relationships between HSR demand and its impact 

factors are assumed to be changing over time. This makes the model much more complex than 

panel linear regression, which is reflected in its popularity. Applications are scarce: both Dargay & 

Clark (2012) and Castillo-Manzano et al. (2015) use the model, accompanied by an ordinary linear 

regression model. This allows for verification of the dynamic relationship among variables. Applied 

in Spain, it finds that the dynamic model is superior. 

• Random effects models include an error term 𝜀𝑘. Recalling section 2.2.1, it was also used in 

multiple logit models. When calibrated, the error term captures parts of the unobserved 

relationships and variation in the data. Typically, the values of parameters are calculated by means 

of 2-stage Generalised Least Squares (2GLS), which calculates the error term’s variance before the 

other parameters (Gerdtham & Jönsson, 2000). This makes the model computationally more 

difficult to solve, which partly explains the scarcity of studies using this model. Albalate et al. (2015) 

apply a 2GLS-random effects model with Spanish data, and finds that the HSR effect on airlines is 

a reduced number of offered seats, while the flight frequency is insensitive. Bergantino & Capozza 

(2015) use it to investigate the effect of HSR’s presence on airline’s pricing strategies and find that 

the effect strongly exists. 

 

Below, Table 2.3 shows an overview of all mentioned regression models and their characteristics. 

 

Table 2.3 Overview of different regression models in HSR demand-forecasting literature 

Model type Dependent 
variables 

Temporal 
data 

Grouping structure Computation 
difficulty 

HSR demand 
suitability 

Ordinary 1 no no low limited 
Panel 1 (2D) yes flexible high good 
DID 1 yes yes (treatment & control) moderate interventions 
Multiple 2 or more no no manageable limited 
Dynamic 1 or more yes no high good 
Random effects 1 yes yes very high advanced 

 

2.2.3 Gravity Models 
These models are considered the most suitable method to estimate demand for new transit connections, 

especially when currently no direct service is available (Grosche et al., 2007). The model is built based on 

the concept of Newton’s law of universal gravitation, which states the gravitational pull (the attractiveness 

of travelling) between two objects depends on their masses, distance and a scalar (Newton, 1687). In HSR 

demand forecasting studies, gravity models are used for calculating passenger flows rather than market 

shares. A standard gravity model takes only the populations of the two cities, the distance between them 

and a scalar into account (Wheeler, 2005). Its formula is presented by equation (2.5). 

 

𝐷𝑖𝑗 = 𝑘 ∙
(𝑃𝑖 ∙ 𝑃𝑗)

𝛼

(𝑑𝑖𝑗)
𝛾  (2.5) 

 

Here, 𝐷𝑖𝑗 is the flow between city 𝑖 and 𝑗, separated by distance 𝑑𝑖𝑗 , with respective populations 𝑃𝑖  and 𝑃𝑗. 

The distance is raised to a power distant-exponent 𝛾 to account for diminishing effects. Calibrating a gravity 

model requires estimating 𝛾 and scalar 𝑘. As common with other forecasting models, multiple adaptations 

to the original exist, seeking for a better model fit and better explanatory models. Sometimes, the distance 

𝑑𝑖𝑗  between the cities is denoted by other inconveniences of travelling, such as travel time or travel costs 

(Wheeler, 2005). 
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In literature, the gravity model has been implemented in various adaptations to forecast high-speed rail 

demand. An overview of different types and their characteristics is provided in Table 2.4.  

 

Table 2.4 Overview of different gravity models in HSR demand-forecasting literature 

Model type Dependent 
variables 

Temporal 
data 

Computation 
difficulty 

HSR demand 
suitability 

Ordinary 1 no medium good 
Dynamic multiple yes very high very good 

 

Shilton (1982) uses the basic model as stated in equation (2.5), but adds exponents to the population 

parameters, allowing for a better model fit. Martín & Nombela (2007) use the basic model but add capital 

stock (value of all transport infrastructure capital) as an measure of transport activity in the cities, along 

with the population. Leng et al. (2015) use it to forecast economic growth in a HSR-demand related study 

and includes GDP as an activity measure. It also raises the 𝑃𝑖 ∙ 𝐺𝐷𝑃𝑖  -factors to exponents, which have to 

be estimated by calibration. Grolle et al. (2024) use a gravity model to forecast air demand, fitted to 

observed travel data. Yu et al. (2021) have made significant efforts in creating a ‘dynamic’ gravity model, 

which means that all parameters except 𝛾 and 𝑘 attain an extra subscript for time 𝑡. For their research it 

was needed, since they wanted to account for changes in operating speeds over a four-year period. Instead 

of population numbers, the authors use GDP only. 

 

2.2.4 Alternative Models 
Vertical differentiation aims to understand how people weigh off different travel options, considering 

different characteristics that distinguish different transport modes, often in terms of quality of service 

attributes. It helps predicting the impact of a change in these attributes’ values on consumer preferences, 

and thus demand. For example, Xia & Zhang (2017) use the model to calculate competition effects on fares, 

traffic volumes and social welfare, resulting in interesting policy implications. Wang, Sun et al. (2020) 

investigate the effect of fare changes on the competition between long-distance travel modes and uses the 

result to find mode-specific optimal pricing policies. Both studies prove that the model can provide accurate 

results, but it remains unpopular, which is reflected in the scarcity of studies applying it. This is likely caused 

by its complexity to use and interpret results. 

Different studies try to predict demand through logic: Fröidh (2005) does exactly that for the Svealand 

line in Sweden, Dobruszkes (2011) for five European city-pairs and Diez-Pisonero (2012) for Spanish HSR 

lines. These studies are not meant to invent the wheel but can be used to confirm or explain findings from 

statistical methods. Time series models to forecast demand are developed by Cabanne (2003) and Li & 

Schmöcker (2014). The model assumes that explanatory variables for a phenomenon change over time. A 

wide variety of time series exist (Profillidis & Botzoris, 2019), but the method is very scarcely applied in 

HSR demand forecasting. Cabanne estimates demand by taking data from over a 20-year period. However, 

as is pointed out by the author: during this time, GDP, transport network development and fares have 

significantly changed. The time series model is applied for this reason. 

Some studies design their own (non-linear and non-logistic) formulas and fit these to data, as for 

example done by Ben-Akiva et al. (2010) and Miyoshi & Givoni (2012), resulting in reasonable model fits. 

Data analysis and other statistical procedures are performed by Martínez et al. (2016) and Zhong et al. 

(2014). Sweden has designed their own demand forecasting model named Sampers; it is applied to a case 

study by Nelldal & Jansson (2010). Stated preference choice models are used by Burge et al. (2010) and 

Hsu & Chung (1997), while the latter study invents its own rendition. Inventing new methods specifically 

for a study occurs regularly. Kroes & Savelberg (2019) design and use a new so-called ‘substitution model’, 

Yang & Zhang (2012) a ‘competition model’, Wang, Jiang et al. (2020) a ‘connectivity utility model and 

Sánchez-Borràs et al. (2010) a new econometric model. Building further upon economic influences, Zhang 

et al. (2014) use the Lerner index. This number was originally meant as a measure of market power but is 

here used to calibrate a panel linear regression model. 
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2.2.5 Model Calibration 
In demand forecasting, typically two methods are used commonly to estimate the model parameters. 

Both will be briefly addressed here. 

• Ordinary Least Squares (OLS) minimises the squared difference between the observed and 

predicted values by the model. It does so by changing the values of the model’s parameters, until 

an optimal set is reached. It typically works well with non-complex models and is the most popular 

in use due to its simplicity, while still providing accurate results (Petropoulos et al., 2022). More 

about the method is explained in Appendix B. 

• Maximum Likelihood Estimation (MLE) is much more complex, maximising a likelihood 

function, which measures the quality of the data fit. It works well with both linear and non-linear 

models but requires more computation power as it assumes the model parameters follow a 

probability distribution. Unique optimal solutions are not guaranteed (Petropoulos et al., 2022).  

2.2.6 Overview 
This paragraph functions to show an overview of all mentioned high-speed rail demand forecasting models, 

and their rate of occurrence in related demand studies. This is shown in Table 2.5 below. 

 

Table 2.5 Overview of models applied in HSR demand studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model Focus Studies (%) Model type Studies 
 MS PF    
Logistic regression ✓  47 Multinomial (MNL) 19 
    Nested (NL) 18 
    Binomial (BNL) 9 
    Mixed (ML) 5 
    Box-Cox 3 
Linear regression  ✓ 32 Ordinary 11 
    Panel 7 
    DID 4 
    Multiple 2 
    Dynamic 2 
    Random effects 2 
Gravity  ✓ 6 Ordinary 5 
    Dynamic 1 
Alternative  ✓ 21 New models 5 
    Vertical differentiation 4 
    Case studies 3 
    Time series 2 
    Other formula fitting 2 
    Data analysis 2 
    Choice model 2 
    Sampers 1 
Focus: MS = Market Share, PF = Passenger Flow 
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2.3 Model-Specific Demand Impact Factors  
Now the HSR demand forecasting practice has been explored regarding applied impact factors (section 2.1) 

and models (section 2.2), their combinations can be analysed. The latter section showed that only three 

models are used commonly; this section will therefore consider only these models. 

Only studies that use one type of model are included for this analysis, as to focus on how each factor 

is used specifically for each model. Then, for each factor, the occurrence was measured in each model type. 

The results of this analysis are presented in Figure 2.7. The goal of this analysis is to help choosing demand-

impact factors once the demand forecasting model type is chosen (section 3.2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows that some factors are very common to use some model types, but not in others. The best 

example for this is ‘population’, which is commonly used in linear regression and gravity models, but 

practically never in logit models. Travel time is the only factor popular among all model types. Travel costs 

are implemented in almost all logit models, but for other model types it is much less common. The 

‘economy’ factors are mostly used in linear models. The analysis also shows that gravity models often are 

kept very simple: comfort-related and ‘other’ factors are not implemented.  
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Figure 2.7 Impact factors usage in commonly used HSR demand forecasting models 
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2.4 Demand Evolution 
The forecasting models evaluated in section 2.2 pointed out an extra interest of importance: the relationship 

demand and its impact factors could change over time. This dynamic dimension of demand will be 

addressed in this section - HSR demand forecasts must be accurate for the present and should retain this 

accuracy in the future.  

High-speed rail demand can be divided into multiple parts, as is common practice in related literature 

(see works by e.g. Cascetta & Coppola (2011), Ben-Akiva et al. (2010), Russo et al. (2023)). This is presented 

in Table 2.6. 

 

Table 2.6 HSR demand broken down into different flows (Cascetta & Coppola, 2011) 

 

 

2.4.1 Endogenous Effects 
After opening of a new HSR line between two cities, it will immediately attract passengers that used to 

travel with other modes, such as flights, cars or other train services. This is called diverted demand. It will 

also attract new demand of people that were not travelling between the cities before. This phenomenon is 

called induced demand and can be caused by a change of any combination of factors reported in section 

2.1. Well-reported in literature is a reduction in cost, increasing the demand. This follows the economic 

theory of supply and demand, reported from the perspective of travel demand by Noland (2001). The author 

provides a visualisation of this phenomenon, which is depicted here in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Induced demand has been a reported often as an important factor of travel demand (Yao & Morikawa, 

2005). It has a direct effect, but also indirect. Together, the diverted demand and direct induced demand 

determines the actual demand directly after opening a new HSR connection. Most demand models are not 

able to capture this kind of travel demand growth, since their estimated number of trips is inelastic to the 

quality of the travel environment (e.g. the level of service offered). According to Yao & Morikawa (2005), 

the level of induced demand is dependent on these factors especially.  

  

Type Demand part Cause example 

Endogenous 
Diverted demand from other travel modes e.g. shift from air / car / intercity 

Induced demand 
direct e.g. changes of travel characteristics 

Exogenous  
indirect 

e.g. increase of mobility due to 
changes in lifestyles and land use 

Demand growth economy-based e.g. increase of mobility due to 
economic growth 

Figure 2.8 Induced demand (Noland, 2001) 
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2.4.2 Exogenous Effects 
Induced demand, as mentioned in the previous section, also has an indirect effect since the opening of a 

HSR line can cause lifestyle and land use changes. This can be illustrated by the following example: 

• A new high-speed rail station in a city makes the city more attractive to travel to, something which 

companies can respond to by settling there (land use change).  

• A fast HSR connection to that city could then convince people to start working there (lifestyle 

changes), and thus increase the demand.  

It explains why this part of induced demand is called ‘indirect’: these changes can take multiple years to 

gain momentum. But they can have great effects on the total travel demand (Yao & Morikawa, 2005). The 

authors report that indirect induced demand is caused by income and population growth, as well as 

differences in travel time, travel cost, access time and frequencies of modes offered. 

Induced demand often is not considered by demand forecasting models, which typically underestimate 

demand by considerable margins. The level of induced demand has been reported to be significantly high; 

e.g. 35% of the original demand in France and Japan and even up to 40% in the UK (King, 1996). 

The change of peoples travel behaviour is also caused by economic growth. As mentioned in section 

2.1 and section 2.2, multiple models include this by means of GDP. A higher city GDP correlates with more 

generation of travel demand from that city, as it indicates a higher level of economic activity. In increase of 

GDP is considered a strong and popularly used indicator of economic growth and is typically expressed in 

a percentage point. For Europe, this percentage has been relatively stable up until the pandemic, indicating 

exponential growth (OECD, 2023). 

The forecasting models evaluated in section 2.2 often only take the directly occurring effects in account, 

which are called endogenous. Cascetta & Coppola (2011) advise to also look at exogenous (indirect) factors, 

since they can have a large impact on (future) demand. This can be illustrated by the passenger numbers 

of the Eurostar service on the London-Brussels/Paris travel market over the years, in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.9 Passenger numbers for Eurostar and air services on the London-
Brussels/Paris travel market, 1994-2010 (Behrens & Pels, 2012) 
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2.5 Profitability Breakdown 
This paragraph dives into the second problem as mentioned in section 1.4: profitability forecasting. This 

will be the term used in this chapter, but it relates to the operational profitability and justification 

simultaneously. The next sections will each address one of the cash-flows, preceded by an overview. 

 

2.5.1 Overview 
Literature providing overviews of high-speed rail cash flows are scarce. Barrón et al. (2012) provide insights 

into this subject with great detail, applied to real European cases. This helps constructing a table of 

significant cash-flows that come into play during the lifetime of HSR projects. They are listed in Table 2.7. 

The obtained values are obtained from later-mentioned sources. 

 

Table 2.7 Overview of HSR cash-flows (in 2024 euros) (Barrón et al., 2012) 

Part Types Examples 
Indicative value 
(low-high) 

Infrastructure Construction costs Planning and land costs €26.5 million / km 
(6.9 – 96.5) Infrastructure building costs 

Superstructure costs 
Operating & maintenance costs Tracks €100 thousand / km / year 

(45 – 110) Electrification 
Signalling 
Telecommunications 

Rolling stock  Acquisition costs Rolling stock €37.5 million / train 
(20 – 107) 

Operating costs Train operations 

€0.03 / seat-km 
Energy 
Sales & administration 

Maintenance costs Rolling stock & equipment 
Passengers Revenue Tickets  

 

From the table, it follows that the costs can be split in two parts, often regarded as track (infrastructure) 

and train (rolling stock). Each of these has a direct investment component (building or acquisition) and one 

running over the operation stage (operating and maintenance). It should be noted that with high-speed rail, 

also external costs emerge. Examples of these are land take, noise, air pollution, visual intrusion and barrier 

effects (Barrón et al., 2012). These costs cannot be measured and do not end up on the operator’s balance 

sheet, and therefore do not count regarding operational profitability or (economical) justifiability. For this 

reason, these costs are here left out of the scope. The cash-flows in Table 2.7 can be attributed to two 

phases: 

• The construction phase: here, all initial investments are made. It includes construction of the 

infrastructure and acquisition of the rolling stock.  

• The operational phase relates to all costs regarding operation and maintenance, and revenue. 

A thorough explanation of all cash-flows, an indication of their size and potential impact factors (if any) are 

provided in the next sections. Note: all monetary amounts have been adjusted for inflation, in order to be 

able to draw fair comparisons and predictions. 

 

2.5.2 Infrastructure Costs 
Infrastructure costs relate to any cost made in the lifetime of high-speed rail infrastructure. Initially when 

the infrastructure is built, there will be construction costs. After that, the infrastructure will be used, resulting 

in operating costs and maintenance costs, which are often referred to under the same heading in literature. 
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Construction costs 

Among all initial expenses, these generally are by far the largest and therefore immediately have a large 

impact on the justifiability of the entire project. Barrón et al. (2012) investigated 45 constructed European 

projects and found that the total cost depends on the length and location. The authors report varying costs 

between 6.9 and 96.5 million euros, with an average of 26.5 million euros per kilometre. The results of their 

study are displayed in Figure 2.10 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the figure, it can be seen that construction costs vary wildly between countries, and less within the 

same country. This implies that the construction costs are heavily influenced by the country considered. 

UIC (2018) found that, in European practice, 1 km of new high-speed rail line costs between €18 and 48 

million, a range that Belal et al. (2020) also find themselves in. Nash (2010) finds values between €18 and 

60 million. France and Spain have the lowest construction costs, but these countries are also renowned for 

their very low population density in between cities. Trabo et al. (2013) indeed list population density as a 

main cost driver, along with elevation differences in terrain and the economic price level. UIC (2002) 

investigates the same subject and list four main cost drivers: 

1. Maximum design speed. Faster high-speed rail connections require larger curve radii and 

therefore the amount of earthworks and civil structures such as bridges and tunnels increases. This 

effects massively in terms of costs, but not in terms of profitability. Higher design speeds result in 

more profitable HSR connections, with diminishing returns (Barrón et al. (2012),  Belal et al. (2020) 

and Zhang (2024)).  

2. Infrastructure capacity. By this, the purpose of the line is meant. HSR lines can also serve 

conventional rail of freight trains. More differences in use purposes and speeds among trains 

increase the construction costs, as mixed lines require extra safety measures. Normally, lines will 

be built double-track. Construction costs are likely to increase for mixed usage, along with the need 

for more tracks. For these reasons, the cost of HSR dedicated solely to passenger traffic is 20% 

lower than mixed lines (UIC, 2002). 

3. Power supply. Most often, high-speed trains are powered electrically. Compared to alternative 

ways (e.g. diesel trains), this adds roughly 10% of costs due to investments in catenary and power 

supply (UIC, 2002). 

4. Exceeding scheduled time also adds extra costs to the project. The construction time largely 

depends on the length of the longest tunnel and the environment (geology and population density). 

 

Figure 2.10 Building costs per kilometre for European HSR projects (adaptation of Barrón et al. (2012))  
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The construction costs can be split into three components, following the definitions of UIC (2005): 

planning/land costs, infrastructure building costs and superstructure costs. 

 

• Planning and land costs involve expenses made in the time frame between the birth of the 

projects’ idea and the start of its construction. These costs thus include feasibility studies and 

technical designs but also land acquisition and other legal paperwork such as licenses and permits. 

The costs made here are represent a small but relatively constant 5-10% share of the total initial 

investment. The total planning and land costs typically depend on the size of the project (the length 

of line). More densely populated areas are generally harder to acquire as the land is more valuable, 

thus increasing the costs of the land acquisition part.  In Europe, the earth works represent roughly 

25% of total construction costs (Trabo et al., 2013).  

• Infrastructure building costs: building a HSR line starts with terrain preparation and platform 

building. For clarity, this does not include the tracks, as they are part of superstructure. The 

infrastructure as described here is everything beneath the tracks. The costs of this part largely 

depend on the length of the line. In most cases, it represents 10-25% of the total building costs. 

The difficulty of terrain (see Figure 2.11) are known to increase costs, easily doubling the 

contribution to 40-50%. The civil structures contribute to 25% of the total construction costs (Trabo 

et al., 2013). 

• Superstructure costs include the rails, and everything else built upon the prepared foundations: 

sidings, signalling systems, electrification mechanisms but also less conspicuous components such 

as communication and safety systems. In total, these costs usually represent 5-10% of the total 

costs (Barrón et al., 2012). The previously mentioned projects analysed by Trabo et al. (2013) 

accounted for €0.3 to 3.1 million in signalling costs (2-3%). Track construction costs between €1.3 

and 6.2 million (8-10%). 

 

Building new stations logically also induces costs. However, for this project it is taken as premise that new 

HSR infrastructure will be connected to existing stations in urban areas. Construction costs related to 

stations are therefore taken out of consideration for this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The works by Trabo et al. (2013) and UIC (2002) show that the infrastructure costs largely depend on the 

project’s length and environmental factors, but also point out that a number of design choices must be made 

up front. For this reason, the methodology in chapter 3 will start with making these decisions.  

 

Figure 2.11 Construction costs of projects in different countries, showing their tunnelling 
percentage (Transit Costs Project, 2024) 
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Operating & maintenance costs 

Several of items mentioned in the previous section have to be operated: tracks and the electrification, 

signalling and communication systems. As opposed to the construction costs, the costs described here are 

not one-time investments, but expenses made on a day-to-day basis during the entire life span of the HSR 

line. All mentioned monetary values mentioned in this paragraph are yearly costs.  

Most of the previously mentioned HSR components operated also require maintenance. Barrón et al. 

(2012) split these costs into five parts: maintenance of tracks, electrification, signalling, communication 

systems and other maintenance costs. The authors assess the costs in each of these categories for four 

European countries with an (extensive) high-speed rail network, as they are also mentioned in section 1.1.3: 

Spain, France, Italy and Belgium. Most of the operating and maintenance spending is done on tracks (40-

67%), followed by the electrification system (8-19%), signalling system (10-35%) and telecommunications 

(4-17%). The most important takeaway from the authors research is that the total sum of operating and 

maintenance costs (per km) is very predictable. Nash (2010), UIC (2018), de Rus et al. (2020) and Railtech 

(2024) independently find values ranging between €100,000 and €110,000 per year, providing a more 

accurate representation of all costs.  

Unlike construction costs, operating & maintenance costs are much less dependent on the location, or 

other factors of influence mentioned in the previous paragraph. This makes forecasting much easier. 

 

2.5.3 Rolling Stock Costs 
These costs represent a smaller share of the initial investment. Initially, the rolling stock must be bought 

(acquisition costs). During their lifetime, these trains must be operated and maintained, leading to extra 

costs. Both acquisition and operating/maintenance costs are addressed in the next two sections. 

 

Acquisition costs 

These are the most straightforward to determine, as they do not depend on numerous external factors and 

uncertainties such as found in construction costs. The acquisition costs simply depend on the choice of 

rolling stock. Janić (2017) makes an educated estimate of €55,000 per seat, which is a preferable unit to be 

able to compare different projects. Almujibah & Preston (2019) conclude that anywhere between €55,000 

and €65,000 per seat is a realistic estimate to work with. 

Even though faster trains are generally more expensive to buy, their acquisition cost is determined by 

numerous other factors (de Rus et al., 2020). These estimated costs per train are in line with estimations by 

last-mentioned work, who set a value of roughly €35 to €40 million, for a 350-seat train with an “economic 

life” of 30 years, based upon empirical research by UIC (2018). Trains reaching operating speeds of 350 

km/h are even more expensive. Belal et al. (2020) found a range between €49 and €107 million per train 

set, based on different scenarios.  

An important note to make here, is that the choice of rolling stock depends on the desired design speed 

and capacity, which relates back to the points made about these in section 2.5.2. This again stresses the 

fact that thoughtful decision making should be performed regarding this at the beginning of the related 

methodology part in chapter 3. Belal et al. (2020) dived deeper into the subject and found that a higher 

design speed increases the profitability of the high-speed rail line, despite the higher acquisition costs. This 

is in line with the findings of a HSR costs prediction model made by Barrón et al. (2012).  

Another obvious indicator of the total acquisition costs is the number of trains bought. Seeking to find 

a good prediction of this, Belal et al. (2020) found a formula that fits real life data remarkably accurately. 

During validation, the maximum deviation from observed data was only one train, reaching a determination 

factor (R2) of 98%. The formula is displayed in equation (2.6): 

 

𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑠 =  
63.287 ∙ 𝐴𝐴𝑁𝑃 ∙ (6𝐿 + 𝑉)

𝑁 ∙ 𝑉
 (2.6) 
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Here, 𝐴𝐴𝑁𝑃 is the annual average number of passengers (in million) for both directions combined, 𝐿 is the 

line length (in km), 𝑉 is the maximum operating speed (in km/h) and 𝑁 is the number of train seats. Their 

model was validated for a wide range of its parameters. 

It should be noted that equation (2.6) is statistically fitted to data regarding single lines instead of lines 

in a network. Also, it allows for less control since it simply takes the maximum operating speed, instead of 

an average, which tells much more about how the network is operated. Lastly, the number of passengers 

on a line is not easy to calculate in a network, as it encompasses flows from a great variety of OD pairs, 

while it remains unknown how many people use a certain line if multiple lines serve the same connection. 

In cases like these, it is much more convenient and straightforward to calculate the number of trains based 

on the operated frequency, as it leaves out complex estimations of demand and (average) operating speeds. 

Therefore, equation (2.6) is rewritten and simplified: 

 

𝑛𝑙 ≥  2 ∙ 𝑓𝑙 ∙ 𝑡𝑙 (2.7)  

 

In Appendix E, the steps required to deduce this are specified. In equation (2.7), 𝑓𝑙 is the operated frequency 

of the line in [trains / hour] on line 𝑙, and 𝑡𝑙 is the travel time along the entire length of line 𝑙 in [hours]. The 

value is multiplied by two in order to capture the full round-trip travel time as trains travel back and forth 

along the entire length of the line. The outcome is the number of trains 𝑛𝑙 for line 𝑙. 

 

Operating & maintenance costs 

The total costs regarding this cash-flow depend on the number of trains bought. In literature, boundaries 

between operating and maintenance costs are not always defined clearly, resulting in great differences 

when comparing different sources directly. For example, Railtech (2024) uses ‘operating cost’ as an 

umbrella term that also include maintenance costs. Another research for a Californian high-speed railway 

estimated the full operating and maintenance costs per trainset per year at €11.3 million (Levinson et al., 

1997). 

Operating costs of trains largely depends on the energy required, which is specified for each train 

(Barrón et al., 2012). The authors find yearly operation costs in Europe varying between €20.5 -67 million, 

and yearly maintenance costs between €2.5-6.3 million, per train. In a more optimistic estimate, UIC (2018) 

estimates €1.2 million as yearly maintenance costs per train, based on the assumption that it travels 500,000 

km each year. Nash (2010) finds values close to that of approximately €1.35 million. 

As operating & maintenance costs for rolling stock mainly depend on the level of usage, a common 

unit of expression is the ‘cost per seat-km’, which Fröidh (2006) assess with great depth, finding strong 

relationships with operating speed and the number of seats.  

Together, operating and maintenance costs directly depends on the number of seats displaced and the 

distance over which this is done, and is therefore typically estimated in units of euros per seat-km 

(Doomernik, 2017; Janić, 2017). Economies of speed apply: for faster operating speeds, the unit cost 

becomes lower (Kanafani et al., 2012). The same is true for economies of scale regarding the number of 

seats or seat density (Fröidh, 2006), who shows the dependency of unit costs for various factors of influence.  

 

2.5.4 Ticket Revenue 
Due to the complexity of predicting this figure, the literature review in section 2.1 provides special attention 

to this matter. For the sake of completeness to section 2.5, it is shortly addressed here. Revenue in high-

speed rail is collected through ticket sales, simply depending on the demand and the price of a ticket (e.g. 

the ‘fare’). As literature review pointed out these two factors are interrelated, operators generally set a price 

that maximises their passenger revenue; at least when the operator is not a governmental organisation (Qin 

et al., 2019).  

Demand is inversely proportional to fares, as can be recalled from section 2.1.3. This means that setting 

a higher fare results in lower demand. However, the people that would still travel despite the higher price, 

pay more. Since revenue is determined as demand multiplied by the fare, this could result in higher or lower 
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revenue. As mentioned, the primary goal of a rail operating company is to make and maximise profit. It is 

evident that fares and demand are two counteracting forces that need to be quantified in order to 

understand how the revenue can be optimised. Figure 2.12 describes the inner workings of this mechanism. 

For the sake of simplicity, the relationship between demand and price in the figure is considered linear. In 

the lower graph, the price can be set, influencing the demand. The revenue can be visualised; as it is the 

product of demand and price, it is represented as the area of this square. When plotting all price-revenue 

combinations, the upper graph will be attained, showing a parabola with optimum. This optimum represents 

the price-revenue combination with the highest revenue and is indicated with a red dot. The values of the 

optimal price and revenue can then be read from the axes. 

 

2.5.5 Dynamic Component 
As already indicated by section 2.4, it is crucial to take 

dynamic components into account – every factor or 

variable can change over time. For this reason, works by 

Belal et al. (2020) and Barrón et al. (2012) take evolving 

costs over the entire lifespan of a high-speed rail project 

into account. This lifespan takes the evolution of HSR 

technology into account; after a certain amount of time, 

the technology used in a built line will be outdated, and 

then there will be a demand for other, new lines that are 

up-to-date with the contemporary technology at that time. 

For example, the oldest HSR line in the world, Japan’s 

Shinkansen lines, were built in 1964 and have been largely 

improved at least twice (Hood, 2006). Thus, when 

assessing the profitability or justifiability of a HSR line, it 

should only look at cash flows within its lifespan. 

Therefore, a project’s planned lifespan must be set prior 

to any feasibility study. 

The exact length of this is debated in literature, since 

it is hard to predict the evolution of HSR technology. Here, 

Belal et al. (2020) are inspired by Barrón et al. (2012) and 

both use a lifespan of 40 years. This roughly matches the 

life expectancy of rolling stock, which lies between 30 and 

50 years (EEA, 2020).  

Figure 2.12 Maximisation of revenue by changing fares 
(adaptation of May et al. (2022)) 
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2.6 Transport Network Design Problem 
This literature review will provide insights into the Transport Network Design Problem (TNDP) and its 

related state-of-the-art. It can be seen as a more in-depth version of section 1.2.3, which already partly 

looked at related studies regarding this very problem. The general philosophy and an introduction of the 

TNDP will be given in section 2.6.1, after which a look is taken into the different ways that related problem 

formulations are applied in literature. 

 

2.6.1 Introduction 
The definition of the Network Design Problem (NDP) is provided by Feremans et al. (2003): it comes down 

to “finding the optimal subgraph of a graph, subject to side constraints”. The meaning of these terms will 

be clarified later on in this section. Well-known variations of the problem are finding the shortest path from 

A to B (Shortest Path Problem) or finding the shortest round-trip along a pre-defined set of locations 

(Travelling Salesman Problem). The problem is applied in a wide range of scientific fields, ranging from 

biology to telecommunications. In the field of transportation, this concept is well-studied and is referred to 

as the Transport Network Design Problem (TNDP). It is applied to solve different transport-related 

problems such as optimal allocation of increased link capacity or optimal scheduling of maintenance in 

combination with link closures. Applications vary from road networks to public transportation (Dixit & Niu, 

2023). In this project, the focus lies on one certain application of the TNDP: finding the optimal configuration 

of (new) links. Figure 2.13 illustrates the nature of this design problem. 

 

 

 

 

 

 

 

 

 

The figure above shows three different solutions of a problem with 35 city-pairs, each arc represented by a 

line between two dots. Referring to the original definition of the NDP by Feremans et al. (2003): the subgraph 

is formed by the set of selected city-pairs (solid lines) and associated cities (solid dots), while the graph 

encompasses all city-pairs (dotted and solid lines combined) and all cities. 

It can be observed that there is a large number of possible subgraphs. The supply is determined by the 

choice of links, which on its term influences the demand. For example, compared to a direct connection, 

an indirect connection between two cities will still serve a certain level of demand, but most likely lower 

due to increased travel time and costs. In the most extreme case, a city-pair may not be connected at all, 

thus setting its effective demand to zero. The feedback between demand and service level is another well-

known factor (‘elastic demand’, section 1.2.3), extremely complicating the problem (Dixit & Niu, 2023). 

 

2.6.2 Mathematical Definition 
The TNDP related to this project considers an undirected graph 𝐺 = (𝑁, 𝐴), where 𝑁 represents the set of 

cities and 𝐴 represents the set of connections between them. Each arc 𝑎 ∈ 𝐴 has certain attributes, such as 

the travel time or cost related to traversing it. For each arc, the decision can be made about whether it must 

be built or not. For this reason, a binary decision variable 𝑦𝑎 is included. If the arc is built, 𝑦𝑎 is set to 1 and 

zero otherwise. Most often, the selection of arcs is not an entirely free choice – it usually comes with a 

number of constraints. Section 2.6.4 provides a broader focus on this. One may think of a maximum number 

(or length) of selected arcs. 

Figure 2.13 Three different solutions of a Transport Network Design Problem (Erkut & Gzara, 2008) 
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The selection of arcs 𝑎 form a new set 𝐴𝑠𝑒𝑙 ⊆ 𝐴. The nodes associated with the arcs 𝑎 ∈ 𝐴𝑠𝑒𝑙 also form a 

new set 𝑁𝑠𝑒𝑙 ⊆ 𝑁. Together, they form a new graph 𝐺𝑠𝑒𝑙 = (𝑁𝑠𝑒𝑙 , 𝐴𝑠𝑒𝑙), which then logically is a subgraph 

of the original graph 𝐺 = (𝑁, 𝐴). Each possible subgraph 𝐺𝑠𝑒𝑙 ⊆ 𝐺  has an associated ‘value’ 𝑍 which is 

driven by specific objective function of the mathematical model. The goal of the problem is to find the 

optimal subgraph, while adhering to all constraints. In this project, the goal is to maximise the network’s 

lifetime profit, but numerous other objectives can be used. Section 2.6.3 provides a broader focus on this. 

Generally, the input of the model is a demand matrix stating the demand from every node to every 

other node and an original graph 𝐺, where it is assumed that every passenger chooses the shortest route 

while only taking in-vehicle times into account (Durán-Micco & Vansteenwegen, 2021). 

A promising recent development regarding optimal TNDP solving is the adaption of the Multi-

Commodity Flow Problem (MCFP) formulation. Marín & García-Ródenas (2009) already observed that this 

approach is required when considering passenger flows for each OD pair. The OD pairs are then seen as 

commodities, which leads to an “efficient formulation” to handle “city-scale transit networks” (Ng et al., 

2024). However with current practice, the formulation suits small instances of the problem only, due to the 

added complexity by OD pair specific flows (Gutiérrez-Jarpa et al., 2017), a problem overcome by last-

mentioned authors by splitting the problem in two. First, they optimise for the network’s topology only, 

based on the OD pair flows. Then, they optimise for the design of lines over this topology. 

 

2.6.3 Objectives 
Objective functions take various forms in applications of the TNDP. Based on their perspective, they can 

be split into two groups: user or operator. They both value the quality of a solution differently. Extensive 

reviews on TNDP studies are provided by Kepaptsoglou & Karlaftis (2009), encompassing 62 studies 

published between 1967 and 2007, and by Durán-Micco & Vansteenwegen (2021), for 30 studies ranging 

from 2009 to 2021. Analysis of these review papers shows that more recently, the focus has shifted towards 

optimisation from a user perspective rather than the operator’s point of view. The following two sections 

will briefly address each of them. 

 

User perspective 

As found in literature review in section 2.1, travel time is the most important demand-influencing factor. 

This is reflected in the choice of objective. Durán-Micco & Vansteenwegen (2021) investigated thirty studies 

where TNDP was applied. Among them, twenty-seven (90%) opt for total travel time, which is the travel time 

summed over every individual passenger, in line with the user-oriented focus that TNDP studies generally 

have currently. A much alike metric used is total travel time savings, for example by Gutiérrez-Jarpa et al. 

(2017). Adapting the operators cost-focus to users, Iliopoulou et al. (2019) minimise the total user costs. 

Cadarso & Marín (2016) and Cadarso et al. (2017) minimise the maximum negative effects caused by a 

single disruption, thus finding the best worst-case scenario. In an attempt to maximise user-friendliness, 

Suman & Bolia (2019) maximise directness (in their context: the share of passengers not having to transfer). 

While most studies choose to serve all demand as a constraint, Yoon & Chow (2020) try to maximise the 

demand served. 

 

Operator perspective 

Among the studies investigated by last-mentioned authors, an operator perspective is much less popular. 

When chosen, the objective from this perspective is to maximise profit (Guihaire & Hao, 2008). This is in 

line with the findings of literature review in section 2.5: operators generally want to satisfy the demand 

while spending a minimum amount. The line length was found to be the most influential factor affecting 

costs. Speaking of which, multiple studies choose to minimise costs (Iliopoulou et al., 2019; Heyken Soares 

et al., 2020), construction costs (Gutiérrez-Jarpa et al., 2017) or operating costs (Yoon & Chow, 2020). 
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2.6.4 Constraints 
Constraints are related to either the network’s performance or limited resources (Fan & Machemehl, 2006a); 

(Guihaire & Hao, 2008). Due to the complexity of the problem, studies attempting to find solutions generally 

include a low number of non-complex constraints. For this same reason, most studies assign a fixed number 

of passengers to the shortest route (the so-called ‘All-Or-Nothing-approach’). This leads to overestimation 

of passenger numbers as in reality, demand depends heavily on the level of service (e.g. travel time, travel 

costs, see section 2.1). Recall that this is ‘elastic demand’. There are two types, as defined by Lee & Vuchic 

(2005); either the total demand for all modes together is kept constant while the demand per mode is elastic, 

or a varying total demand is considered. 

Including any of the two types into TNDP solving further complexifies an already very complex 

problem, thus the vast majority of studies choose to work with a fixed demand ((Kepaptsoglou & Karlaftis, 

2009); (Durán-Micco & Vansteenwegen, 2021)). 

Some TNDP formulations already consider lines (a series of connected arcs and nodes) and logically 

set a minimum and maximum bound regarding what the number of connected stations in one line may be 

(Durán-Micco & Vansteenwegen, 2021). The authors note that literature makes use of varying constraints, 

which makes it hard to compare the quality of solutions. In the most basic formulation of the TNDP, it is 

constrained that lines can visit each node at most once and that all demand must be served (Kepaptsoglou 

& Karlaftis, 2009); (Guihaire & Hao, 2008). As stated before, the user-perspective has become more popular, 

meaning that operator-related metrics are used as constraints. Examples are related to fleet size, operator 

costs and other operator-related budgets, maximum line length (for one connection or the full network), 

capacity on lines and other constraints on the network’s topology (Durán-Micco & Vansteenwegen, 2021). 

An older, more extensive review by last-mentioned authors finds even more variations, such as the 

number of connections and lines, load factors, fleet availability, demand characteristics and related patterns, 

travel times for individual lines or the total travel time of all passengers and connectivity of nodes.  

 

2.6.5 Solving Methods 
As mentioned before, the TNDP is considered to be a very complex problem. Therefore, it is typically 

solved by means of (meta)heuristic methods (Durán-Micco & Vansteenwegen, 2021), which do not 

necessarily find the optimal solution, but an acceptable solution in relatively short time.  

 

Exact methods  

Only 10% of studies reviewed by the authors use an exact method. This method provides the optimal 

solution but can be very time-consuming. These studies often simplify the problem significantly by consider 

only a limited number of cities and connections and leaving out demand elasticity. Cadarso & Marín (2016) 

consider a very small, fictive network of 9 nodes, 30 arcs and 1,044 passengers. They define a TNDP 

formulation which minimises the maximum negative effects caused by a single disruption, finding the best 

worst-case scenario. They are able to produce exact results, which allows them to compare the results of 

different model formulations as their findings are optimal. The work of Cadarso et al. (2017) is a follow-up 

of this, based upon the same network, also focussing on risk management in a finite set of possible 

disruptions. They however compare even more exact models to calculate the optimal value, while their 

objective function considers a sum of different weighted costs. Their method finds optimal solutions within 

several seconds on an average personal computer. Remarkably, the studies working with exact methods 

do not use popular factors such as ‘total travel time’ or ‘network length’ as objective. Apparently these 

standard objectives do not work well with exact solving methods. 

Compared to these first two studies, the work of Gutiérrez-Jarpa et al. (2017) is much more complex. 

It solves for three different objectives simultaneously: it minimises construction cost (an operator 

perspective), maximises time savings of the passenger flows (user perspective) and maximises patronage. 

The network is more complex: it encompasses 108 nodes, 3,789 arcs and 360,000 passengers. Solving the 

problem requires much more time but remains executable: several hours. Borndörfer et al. (2007) and a 

very recent work by Ng et al. (2024) transform a multi-commodity flow problem formulation into a TNDP, 
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which allows them to efficiently optimise the choice of added links, while ensuring that all demand flows 

optimally over the network’s links, while all demand is satisfied. Their model incorporates TNDP with the 

choice of operated lines (train routes) and solves to optimality fast, for relatively small problems. With some 

major simplifications, Borndörfer et al. (2007) are able to solve for a network with 410 nodes. 

 

(Meta)heuristic methods 

Other methods found by the authors in studies are most often metaheuristics: these are known for finding 

a reasonably good solution relatively fast, while not being designed for a specific model - hence their 

popularity over exact approaches. Guihaire & Hao (2008) classify applied (meta)heuristics into four ‘big 

families’: neighbourhood search, evolutionary search, hybrid search and greedy metaheuristics. The most 

popular are evolutionary algorithms, applied by 37% of studies. Even within this group, the exact approach 

varies from study to study. Feng et al. (2019), Heyken Soares et al. (2019) and Yang & Jiang (2020) for 

example, make use of a genetic algorithm where the bus routes are viewed as ‘chromosomes’. The 

algorithm iteratively mutates and swaps the chromosomes, seeking for the lowest total travel time. For the 

latter work, the method is adapted to take two objectives into account simultaneously: optimising from both 

the operators’ and user’s perspective. Oliker & Bekhor (2020) pre-define a set of passenger routes for each 

OD pair, allowing to solve a network of 903 nodes, 2975 arcs and 5394 OD pairs with an bi-level 

optimisation algorithm, solving for the same network much faster than existing formulations. 

Other studies employ a wide variety of solving methods; there is more experimentation with solving 

methods than objectives. Some studies use population-based algorithms inspired by natural phenomena, 

which are becoming increasingly more popular in TNDP solving (Iliopoulou et al., 2019). For example, 

Nikolić & Teodorović (2013) find the best selection of arcs by Bee Colony Optimisation (BCO), a technique 

that converges to the best solution by iteratively trying new solutions while making choices based on the 

increasing knowledge of the population. It owes its name to the process of bees searching for food. The 

authors show that the solutions can be of high quality and competitive with other algorithms. 

Kechagiopoulos & Beligiannis (2014) use the Particle Swarn Optimisation (PSO) technique, which is based 

upon the behaviour of social behaviour of bird flocks or fish schools. Both BCO and PSO are algorithms 

inspired by natural phenomena, but while a BCO solution learns from every decision made in the past, a 

PSO solution only does so from its own and nearby solutions. Fan et al. (2019) make use of an improved 

Flower Pollination Algorithm (FPA). Unlike BCO and PSO, FPA does not involve communication among 

solutions, but more attractive solutions are more likely to exchange information to improve. This is based 

upon the natural phenomena that flowers with attractive features are more likely to attract pollinators. 

Metaheuristics applied in studies vary substantially. Other examples are: simulated annealing and the 

hill-climbing algorithm (Fan & Mumford, 2010), tabuu search algorithm (Yao et al., 2014), hyper-heuristics 

(Ahmed et al., 2019; Heyken Soares et al., 2020), stochastic beam algorithm (Islam et al., 2019) and learning-

based route generation (Yoon & Chow, 2020).  
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2.7 Frequency Setting Problem 
This literature review section will provide insights into the Frequency Setting Problem (FSP) and its related 

state-of-the-art. It can be seen as a more in-depth version of section 1.2.3, which already partly looked at 

related studies regarding this very problem. This section starts off by introducing the lines and frequencies, 

before stating their definition in section 2.7.2 in order to understand the nature of the problem the FSP 

solves. Section 2.7.3 then uses the definitions to mathematically define the problem. The next three sections 

then provide insights into how the problem is solved in literature; stating objectives (section 2.7.4), 

constraints (section 2.7.5) and solving methods (section 2.7.6). 

 

2.7.1 Introduction 
The TNDP introduced in section 2.6 only looks at which direct connections to be built between cities. 

However, this does not address how the network must be operated in order to sufficiently handle the 

demand. Generally speaking, transport networks are served by lines, each having their own designed 

frequency. The optimal incorporation these two factors into a transit network design is known as the 

Frequency Setting Problem. As denoted by Ceder & Wilson (1986) and Guihaire & Hao (2008), setting 

frequencies forms the second step of the overall public transport planning process. As they crucially impact 

operator costs, it is evident that they must be taken into account when evaluating candidate networks. For 

this reason, the FSP and TNDP are often solved simultaneously, in a so-called Transport Network Design 

& Frequency Setting Problem (TNDFSP) (Durán-Micco & Vansteenwegen, 2021). Below, Figure 2.14 

illustrates the difference between ordinary network design, and when line design is added. 

 

 

 

 

 

 

 

 

 

 

2.7.2 Lines and Frequencies 
As explained, the Frequency Setting Problem involves making decisions about two aspects: lines and their 

operated frequencies. Both are defined as follows: 

 

Line 

A transit line is a set of connections and stations, which are visited in order by one specific train. Thus, they 

describe the routes trains will travel over when serving the network. On metro maps, they are generally 

indicated by a coloured line running through a number of stations. A station can be served by multiple lines, 

which often is the case for stations at central or other important locations. However, all stations of the 

network must be served by at least one line, otherwise they cannot be served. On a line, trains generally 

run from one terminus to the other before returning. In some cases, they run a circular path. Whether 

passengers need to transfer depends on whether their origin and destination are both on a transit line. 

 

Line frequency 

Each transit line comes with a designed frequency. This is an integer number, in this case often denoted as 

the number of trains departing from a station as part of that line, per hour. The interval between these 

passing trains most often is constant and an integer amount of minutes, called the headway. For this reason, 

Figure 2.14 Visualised results of a TNDP (left) and TNDFSP  
with frequencies in terms of trains per hour (right) for a simple network 



38  |  2. Literature Review 

 

 
 

not all possible frequencies are used in practice (Gallo et al., 2011). The frequency 𝑓𝑙 in trains per hour thus 

depends on the headway ℎ𝑙 in hours and is specific for line 𝑙. 

 

𝑓𝑙 =
1

ℎ𝑙
 (2.8) 

 

Like any transit network, a high-speed rail system is designed to be able to serve all demand. Since the 

peak hour is normative for the system load, the line frequencies are calculated accordingly. Therefore, the 

minimum needed frequency 𝑓𝑚𝑖𝑛 in trains per hour is determined by the peak hour passenger flow during 

the day 𝑄𝑝𝑒𝑎𝑘 and a train’s passenger capacity 𝑠 following the equation: 

 

𝑓𝑚𝑖𝑛 = ⌈
𝑄𝑝𝑒𝑎𝑘

𝑠
⌉ (2.9) 

 

Here, both 𝑄𝑝𝑒𝑎𝑘 and 𝑓𝑚𝑖𝑛 consider passenger traffic in one direction only. Note that the right-hand side 

has to be rounded up, as frequencies are integer numbers and a lower frequency would not serve all demand. 

Hence the ceiling brackets on the right-hand side of the equation. 

While the number of seats is simply dependent on the choice of train set, the peak hour passenger flow 

is harder to determine. Literature often makes use of a conversion ratio between peak hour and average 

flow. This ratio depends on numerous factors, but generally lies between 1.6 and 2.0 (Yue et al., 2023).  

 

2.7.3 Mathematical Definition 
The definition of the FSP is provided by Martínez et al. (2014). Similar to the TNDP definition, the frequency 

setting problem considers a directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 represents the set of nodes (or vertices, in 

this context: cities) and 𝐴 represents the set of arcs (or links, in this context: HSR connections) connecting 

these nodes. These schematically represent the potential movement of trains. 

Now, the frequency setting problem adds a set of lines 𝐿 to this. Each line 𝑙 ∈ 𝐿 consists of a set of 

adjacent arcs. Each arc has a passenger flow 𝑄𝑎, defined for all 𝑎 ∈ 𝐴, originating from the solution of the 

TNDP. The set 𝐿 encompasses many lines, much more than eventually chosen, as the goal is to select the 

optimal subset 𝐿𝑠𝑒𝑙 ⊂ 𝐿 . For this reason, an integer decision variable 𝑓𝑙  is included which denotes the 

frequency, defined for each line 𝑙 ∈ 𝐿. If the line is not chosen, 𝑓𝑙 is simply set to zero. 

 

2.7.4 Objectives 
An extensive FSP literature review is provided by Durán-Micco & Vansteenwegen (2021), for thirty studies 

ranging from 2009 to 2021. Analysis of these show objectives vary much less for FSPs than for TNDPs. 

Most commonly, frequency setting problems optimise operator’s and/or user’s costs, as they are highly 

influenced by the set frequency (Durán-Micco & Vansteenwegen, 2021). Higher frequencies indicate a 

greater fleet size, which this on its turn directly imposes operating and maintenance costs for both 

infrastructure and rolling stock, thus increasing operator’s costs significantly. On the other hand, higher 

frequencies indicate lower waiting and transfer times for passengers, which reduces user’s costs. Thus, 

user’s and operator’s costs are in conflict (Kepaptsoglou & Karlaftis, 2009). For this reason, most studies 

formulate an objective function that includes factors representing both sides and call it ‘social welfare’, as 

a one-sided optimal solution is not socially desirable. The few studies that choose one side in the objective 

function, generally address the wishes of the other in the formulation’s constraints. 

User’s costs are typically addressed in the form of (total) travel time - thus including in-vehicle, waiting, 

transfer, egress and access time (see section 2.1.2). In some studies, (the number of) transfers are also 

penalised. Studies implement this into their objective function by expressing it in a monetary value. Their 

reasoning is that a transfer adds travel time, as perceived by the passenger. Then, the Value of Time (section 

2.1.2) allows to attach a monetary value to penalise for the increase in perceived travel time. Based on a 

stated preference analysis, de Keizer et al. (2015) conclude this increase depends on numerous factors. 



 2. Literature Review  |  39   

 
 

They set a value of 22.63 minutes in extra perceived travel time if a trip is not without transfer. The real 

transfer time is included in this value as well, allowing for calculation of monetary valued penalties for every 

passenger who has to transfer. 

The operator’s costs are usually represented by simply the number of train sets needed to cover the 

designed network, along with its lines and their frequencies. 

 

2.7.5 Constraints 
In literature, frequency setting problem formulations impose a wide variation of constraints. But most 

prominently, all demand on the network must be served, as otherwise it would not be regarded as a valuable 

solution (Canca et al., 2018). The design of lines and setting of their associated frequencies is namely guided 

by the flow of passengers over the network (Kepaptsoglou & Karlaftis, 2009). 

 

Lines 

The selection of lines generally is the first step. As the number of potential lines would otherwise become 

very large, most studies predetermine lines (e.g. Asadi Bagloee & Ceder (2011)), and subject them to 

numerous constraints to decrease the size of the set. The whole set of lines could be predetermined, or in 

some cases only the terminal nodes, or only the total number of lines (Durán-Micco & Vansteenwegen, 

2021). The terminal nodes of the line can be constrained to be located on end points or transfer points 

within the topology of the network only (e.g. the left side of Figure 2.14), which last-mentioned author 

considers a more innovative approach, and this is implemented by Gutiérrez-Jarpa et al. (2017). Ordinary 

models cannot solve for realistically large networks due to the complexity of accounting for competition 

for every OD-flow. However, last-mentioned authors overcome this by first optimising the network’s 

topology, then optimising the design of lines and their frequencies on this topology. 

 

Constraints can also be imposed on the shape of the route in between the terminal nodes, for example: 

• a minimum and/or maximum length/duration of the line (practical guideline), 

• a minimum and/or maximum number of stops (practical guideline), 

• a certain level of route directness, meaning that the routes are as straight or short as possible 

between the terminal nodes, 

• and the degree of overlapping with other lines. 

 

Frequencies 

To constraint that the network must serve all demand, minimum frequencies are imposed for each 

connection, depending on the peak hour flow on that connection. Another constraint in this regard often 

imposed is a minimum frequency for all arcs, as it could be desirable in case the peak flow is relatively low, 

since waiting times would otherwise become intolerable. Equation (2.9) already addressed this interaction. 

Frequencies have upper boundaries as well, which depends on the minimum headway between successive 

trains allowable in operation (see equation (2.8)). As already discussed in section 2.7.2, line frequencies are 

constrained to be integer and nonnegative. 
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2.7.6 Solving Methods 
In literature, TNDFSPs are solved by either exact methods or metaheuristics. Similarly to TNDPs, the exact 

approach is uncommon and used in 1 out of every 10 studies. Durán-Micco & Vansteenwegen (2021) 

analysed 48 studies; only five solve the problem by using an exact approach. The reason for this 

unpopularity remains the complexity of the problem, which is even more pronounced for TNDFSPs than 

TNDPs. Nowadays, metaheuristics are perfectly capable of finding a good solution fast. This section will 

show some examples of studies opting for either one of the solution approaches. 

 

Exact 

Even though the number of exact approaches in literature is small, they differ in approach. Zhang, Yang, 

Wu, et al. (2014) optimise a multi-modal network that optimises an integrated bus- and car network. To do 

so, they formulate the problem as a TNDFSP while optimising for both the operator and user’s costs. They 

solve it efficiently by implementation of the Genetic Algorithm (see section 2.6.5) within a few seconds, 

attaining improved solutions compared to previous methods. Cancela et al. (2015) finds a new Mixed-

Integer Linear Programming (MILP) formulation for a bus network and solves the problem successfully for 

relatively small networks. The authors emphasise that research on larger networks would benefit from 

solving with algorithms instead, as their network of 84 nodes and 143 arcs takes over four hours to solve. 

Liang et al. (2019) optimise a model under uncertainty (for travel preferences, travel times and demand) in 

two steps: first, they apply a column generation algorithm to identify passenger paths and transit lines. Then, 

they optimise for line frequencies and passenger flows by use of a linear program. Ranjbari et al. (2020) 

solve a full TNDFSP by use of pre-defining candidate lines and stations. Their research involves a sensitivity 

analysis, which finds that the ratio in which demand is met impacts the objective function’s value the most. 

Zhou et al. (2021) use the very uncommon approach of formulating a non-linear model for an already 

complex problem, but linearise it by approximation. Despite this, they are able to produce sensible results 

with room for improvement.  

In conclusion, it can be said that exact approaches can solve the problem, as long as the formulation is 

kept linear and the size of the problem is kept relatively small. 

 

(Meta)heuristic methods 

The same metaheuristic methods used for solving TNDPs can be found in TNDFSP-related literature. 

Durán-Micco & Vansteenwegen (2021) analysed 48 studies. More than half of these (54%) used 

evolutionary algorithms to solve. The most commonly used type falling under this is the Genetic Algorithm, 

as used by Asadi Bagloee & Ceder (2011) and Bourbonnais et al. (2019), who were able to optimise for 

medium sized urban transport networks. Building upon this, Cipriani et al. (2012) use a Parallel Genetic 

Algorithm (PGA), meaning that they implement two genetic algorithms at the same time, making optimal 

use of computation power. The authors conclude that the method is “robust and effective in producing 

reasonable solutions”, with room for further decrease of computational times. 

Nature-inspired metaheuristics are just as popular for solving TNDFSPs as they are for TNDPs. The 

same kinds can be found in TNDFSP literature. Common examples are ant colony optimisation (Yu et al., 

2012), bee colony optimisation (Nikolić & Teodorović, 2014), fish swarm optimisation (Liu et al., 2020), 

swarm optimisation without (Iliopoulou, Tassopoulos, et al., 2019) or with multiple search strategies (Jha 

et al., 2019), intelligent water drops (Capali & Ceylan, 2020) and cuckoo search (Sadeghi et al., 2020). 
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2.8 Literature Gaps 
This section will summarise the main research gaps found in literature, which need to be bridged for this 

project. This will be done in the shape of three paragraphs, one for every problem listed in section 1.3.2. 

These paragraphs summarise the findings in the respective sections. 

 

Demand forecasting (section 2.1, 2.2, 2.3 and 2.4) 

This field is well-researched. In order to predict the level of demand, a wide variety of models and factors 

are implemented. Due to the fact that opinions are so much divided about accurate demand forecasting, it 

can be considered a gap in literature on what method works best in general, but this is a whole thesis topic 

on its own and is therefore considered out of this project’s scope. This project therefore aims to attain 

reasonably accurate demand forecasts, as it does lie within the core of what this project hopes to offer 

scientifically. 

 

Profitability estimation (section 2.5) 

As pointed out by section 2.5, the profitability of a HSR connection depends on numerous cash-flows, with 

each their own influence factors. Some of their values rely on simple rules of thumb, with accurate results 

(e.g. acquisition costs). Other factors, such as infrastructure construction costs, depend on numerous other 

factors and can be unpredictable (see section 1.2.1). This can be considered an important gap in literature, 

as the reporting on this is scarce, similarly to the accurate prediction of HSR profitability. For this reason, 

profitability is only scarcely included into network design LP formulations. Network optimisation while 

taking profitability into account is therefore considered an important research gap. This project will pay 

attention to by breaking down profitability, in order to fill this gap. Also, it aims to attain reasonably accurate 

profitability assessments, as it does lie within the core of what this project hopes to offer scientifically.  

 

Network design (section 2.6 and 2.7) 

Regarded as one of the most complex transportation problems to solve, the TNDP and TNDFSP are 

typically solved using heuristic methods (Guihaire & Hao, 2008), finding good but not optimal solutions 

within a reasonable time frame (section 1.2.3). Due to the problem’s complexity, exact optimisation 

techniques are rarely used (Reeves, 1995). Studies that despite this still opt to face the challenge, make 

various compromises to keep their solving times within reasonable bounds. Section 2.6.5 pointed out they 

keep the number of nodes, arcs, passengers and/or OD pairs low. Also, they assume a fixed (inelastic) 

demand, despite it being identified as a crucial factor in order to design sound transport networks (Guihaire 

& Hao, 2008). Demand elasticity is considered one of the main factors complexifying the problem (Jiang et 

al., 2014), and therefore not accounted for by studies when applying an exact mathematical approach to a 

medium-to-large sized network (Kepaptsoglou & Karlaftis, 2009; Durán-Micco & Vansteenwegen, 2021). 

This puts the scientific value of optimal transport network designs, found through mathematical 

optimisation, under scrutiny. 

In recent developments by Yan & Chen (2002) and Borndörfer et al. (2007), the Multi-Commodity Flow 

Problem (MCFP) formulation was able to produce optimal solutions to larger instances of the problem. It 

was found that a MCFP-based formulation is required to assess the values of individual OD pair flows, and 

to incorporate elastic demand (Marín & García-Ródenas, 2009). This is seen as inspiration and starting point 

for the formulation this project will build to bridge the literature gap. 

It is evident that with current practices in literature, medium- to large-sized realistic and optimal 

transport networks cannot be designed with exact methods (Murray, 2003); (Guan et al., 2003), which is 

also evidenced by the literature review of Guihaire & Hao (2008). This project will attempt to bridge this 

gap, and account for demand elasticity in linear programming in larger instances of the problem. This can 

be linked back to the goals of this research as described in section 1.2.3, and is considered as the core of 

what this project hopes to offer scientifically.
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3 Methodology 
This chapter provides details the three problems mentioned in section 1.4, and therefore paves 

the road to provide answers to the research questions mentioned in section 1.3.2. As 

recommended by the literature review in section 2.5, it should start off by making some 

important design decisions, which have a great impacts on the design’s nature. This is done in 

section 3.1. Then, each of the problems are addressed here separately in their own section, 

chronologically: demand forecasting (section 3.2), profitability estimation (section 3.3) and 

network design (section 3.4). 

 

 

3.1 Foundational Premises 
Decisions regarding any of the key points that arose in chapter 1 will be made here, accompanied by the 

necessary substantiation. These are foundational decisions that shape the overall framework and nature of 

the methodology. They serve as guiding principles or initial conditions upon which the design is based. 

 

Lifetime 

As indicated by section 2.5.5, the exact length is debated in literature, since it is hard to predict the evolution 

of HSR technology. Here, Belal et al. (2020) are inspired by Barrón et al. (2012) and both use a lifespan of 

40 years. This roughly matches the life expectancy of railway vehicles, which is between 30 and 50 years 

(EEA, 2020). 

 

Design speed 

Section 2.5.2 indicated higher design speeds result in more profitable HSR connection, with diminishing 

effects. This has been shown in theory by Barrón et al. (2012) and Belal et al. (2020) as well as in real life 

data (Zhang, 2024; Want China Times, 2013). For these reasons, researchers opt for a design speed of 350 

km/h, which matches the current maximum speed achieved by high-speed trains in commercial operation 

(Belal et al., 2020) and thus reflects the true profitability potential of high-speed rail.  

 

Tracks and infrastructure capacity 

Most high-speed rail lines in the world are double-track, which has the main benefit of being able to serve 

two directions simultaneously without conflicts. This project will follow the standard from practice, but it 

must be checked afterwards whether this is enough to cope with the train traffic needed to serve all demand.  

 

Traffic type served 

Literature review in section 2.5.2 found out that costs HSR dedicated solely to passenger traffic on average 

is 20% lower than mixed lines. As this project aims to find the potential of high-speed rail, the proposed 

network will be designed for solely passenger traffic. This also helps with verification of the infrastructure 

capacity, as explained in the previous paragraph. 

 

Power supply 

Even though literature review in section 2.5.2 found out that it adds roughly 10% to the total costs, the 

network designed will follow the standard of electric power supply, as it is common with most high-

speed rail lines. This choice is made deliberately following the environmental context described in section 

1.1.1. 
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Rolling stock 

A train set fulfilling the design criteria must be chosen. Following from the earlier mentioned points in this 

section, these are a maximum speed of at least 350 km/h and electrical power supply. UIC High-Speed 

(2018) provides an overview of all active high-speed rolling stock in commercial operation, allowing for 

compilation of a complete list of trainsets fulfilling the design criteria, in Table 3.1 below.  

  

Table 3.1 Candidate train sets 

Name Manufacturer In service 
Vmax 
(km/h) Cars Seats 

Operating 
country 

Acquisition 
Cost (2024) Source 

CRH380A 
CRH380AL CRRC Sifang 2010 350 

8 
16 

480 
1,061 China 

€ 37,866,000 
€ 75,773,000 IRJ (2010) 

CRH380B 
CRH380BL 
CRH380CL 

Siemens 
CNR Tangshan 
CNR Changchun 

2011 350 
8 

16 
16 

551 
1,043 
1,053 

China 
€ 39,350,000 
€ 78,700,000 
€ 62,536,000 

CD (2009) 

CRH380D 
Bombardier 
CSR Sifang 2012 350 8 518 China € 31,483,000 BBD (2015) 

CR400AF-A  
CR400AF-B CRRC Sifang 2017 350 

16 
17 

1,193 
1,283 China 

€ 70,633,000 
€ 88,292,000 GRR (2021) 

CR400BF-A 
CR400BF-B 

CRRC Tangshan 
CRRC Changchun 2017 350 

16 
17 

1,193 
1,283 China 

€ 70,633,000 
€ 88,292,000 CD (2017) 

KCIC400AF  CRRC Sifang 2023 350 8 576 Indonesia € 39,756,000 RSW (2022) 

 

These trains are mostly produced by Chinese companies and/or active in China only, within the last fifteen 

years. The Jakarta-Bandung HSR line (Indonesia, opened in 2023) is currently the only place outside of 

China where 350 km/h trainsets are in operation. Their trains again are of Chinese manufacture. Trainsets 

are produced most often in 8-car (approx. 550 seats, €35 million per train) or 16-car configuration (approx. 

1100 seats, €70 million per train). As for high-speed trains, the acquisition is considered the normative 

expense, the choice of trainset will purely be based on the acquisition costs. It can be derived that type 

CRH380CL provides the best cost-per-seat ratio. To reduce the complexity of the problem, the premise is 

to consider CRH380CL homogeneously operating the network. 

 

Stations 

As mentioned in literature review section 2.5.2, it is taken as premise that new HSR infrastructure will be 

connected to existing stations in urban areas. Construction costs related to stations are therefore taken out 

of consideration for this project. Thus, it is assumed that all stations can already meet regulations regarding 

e.g. platform lengths in order to serve the chosen rolling stock. 

 

Separation of network design and frequency setting 

The scientific environment of these two design 

stages, whether integrated or not, is explained by 

(Guihaire & Hao, 2008) in the figure on the right: 

 

Even though Gutiérrez-Jarpa et al. (2017) 

innovatively split two problem in two parts, network 

design and frequency setting commonly are handled 

integrated by means of a TNDFSP. An integrated 

formulation however produces higher-valued 

solutions, as it considers the interaction between 

network- and line design. Therefore, it is opted for to 

aim for an integrated solution.  

Figure 3.1 Schematic representation of integrated and 
separated approaches for network and line design (Guihaire 

& Hao, 2008) 
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3.2 Demand Forecasting 
This section aims to outline the methodology for forecasting the demand of a hypothetical line connecting 

two cities.  

 

3.2.1 Problem Definition 
To be able to design an operationally profitable and economically justifiable high-speed rail network, 

demand is a crucial factor of influence. HSR connections with too low demand will never be profitable. 

High-speed rail requires substantial investments (see section 2.5). Therefore, adequate forecasts of demand 

are vital into guaranteeing that these investments are well-spent. These statements can be underpinned 

with the work of European Court of Auditors (2018). The authors concluded that nine out of fourteen 

assessed European HSR lines failed to generate sufficient demand in order to be successful. The total 

construction costs of these lines were €10.6 billion. These examples emphasise the importance of accurate 

demand forecasting.  

The problem is much bigger and long-standing than this example alone. Flyvbjerg et al. (2005) 

investigated 210 transportation projects in 14 countries and concluded demand is overestimated for 90% 

of rail projects, with the average overestimation equalling 106%. Despite claims of forecasters that their 

methods have become more accurate, the author is able to show forecasting knowledge has grown, but not 

the accuracy of forecasting models. This can be attributed to political causes, which have a substantial 

influence on rail projects: decision-makers generally ignore or downplay financial risks under the guise of 

social welfare or other variables that are impossible to measure accurately (Flyvbjerg et al., 2005).  

Passenger forecasts for rail projects can be accurate if done in a scientific and independent manner 

(Börjesson, 2014). The author concludes that models assuming linear relationships can predict HSR demand 

‘reasonably well’, while identifying three arising problems that complexifies HSR passenger forecasting 

which must be addressed in order to produce realistic forecasts: 

1. It depends on more factors than regional travel models.  

2. The non-linear relationship between demand and travel time. 

3. HSR models are harder to calibrate than regional travel models, due to scarcer data. 

 

3.2.2 Model Definition 
Demand for high-speed rail is forecasted by means of dedicated models (section 2.2), including multiple 

impact factors (section 2.1), in which the combination of model and impact factors (section 2.3) is also 

important. As shown in section 2.2 and Table 2.5, established models most often do not estimate HSR 

demand directly. In practice, they focus on estimating either market shares or total passenger flow. These 

models are referred to as modal share models and trip generation models, respectively. This project 

exclusively relies on established models due to their well-documented benefits and drawbacks, providing 

greater insight into the functioning and reliability of the model. 

 

Preliminary modelling choices 

As the most popular model in literature, a logit model (section 2.2.1) is used in our model. A direct 

consequence of this choice is that the HSR demand for OD pair 𝑝; 𝐷𝐻𝑆𝑅,𝑝 has to be estimated via its market 

share 𝑚𝐻𝑆𝑅,𝑝. The most straightforward way to achieve this, is formulated in equation (3.1). The inspiration 

for this is drawn by the work of Sánchez-Borràs et al. (2010) and Leng et al. (2015). 

 

𝐷𝐻𝑆𝑅,𝑝 = 𝑚𝐻𝑆𝑅,𝑝 ∙ 𝐷𝑝
𝑇𝑂𝑇 (3.1) 

 

The consequence of previous choices suggests a model must be found to forecast the total travel demand 

between the two cities 𝐷𝑝
𝑇𝑂𝑇. Section 2.2 showed two established models dedicated to this purpose exist: 

linear regression and gravity models. The latter is considered the most suitable method to estimate demand 

for new transit connections, especially when currently no direct service is available (Grosche et al., 2007), 
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which is a key point for this project. For this reason, multiple long-distance travel demand related studies 

(e.g. Boelrijk, 2019; Grolle et al., 2024) opted for the gravity model as well.  

Some factors impact market share but not the total demand, or vice versa (see the literature review of 

section 2.2). Literature summarised in Figure 2.7 showed that gravity models and logit models complement 

each other in terms of demand-impacting factors considered, allowing for an all-encompassing forecasting 

method when these two models are combined. The logit model will act as modal share model, the gravity 

model as trip generation model. 

 

Model definition 

The goal is not to understand the variation of preferences among the population, only to find the general 

preferences, which is needed to forecast demand. Therefore, an MNL is considered sufficient. Altogether, 

the model should consider a connection between city 𝑖 and city 𝑗, incorporating prominently used and 

quantifiable impact factors. An overview of commonly used model-factor combinations was provided by 

Figure 2.7. Based on that figure, it is decided that the logit part covers travel time 𝑇𝑇𝑘,𝑖𝑗 and travel cost 

𝑇𝐶𝑘,𝑖𝑗 , while the gravity part takes in the city’s population 𝑃𝑖 , GDP values 𝐺𝐷𝑃𝑖 , and a distance 𝑑𝑖𝑗  in 

between, raised to parameter 𝛾, to take distance decay and diminishing returns into account. The same is 

done for the populations and GDP measures by parameters 𝛼 and 𝛽, respectively, inspired by the work of 

Leng et al. (2015). Finally, 𝑘 represents a scaling factor. This formulation provides a solution to all three 

complexing factors in HSR demand forecasting (see section 3.2.1): it encompasses more factors of influence 

than analysed studies, the non-linearity between demand and travel time is addressed by the logit part and 

𝛾-parameter, and it is calibrated on widely available flight demand data rather than scarce HSR data. Also, 

the model includes the five most popular demand impacting factors from studies (Table 2.1, Figure 2.7), 

excluding ‘frequency’, which is addressed separately as the ‘frequency setting problem’ in section 3.4.6.  

 

The complete, to be calibrated model is presented as: 

 

𝐷𝐴𝐼𝑅,𝑖𝑗 =
exp (𝑉𝑝𝑙𝑎𝑛𝑒,𝑖𝑗)

∑ 𝑧𝑘,𝑖𝑗 ∙ exp (𝑉𝑘,𝑖𝑗)𝑘∈𝑲
∙ 𝑘 ∙

(𝑃𝑖 ∙ 𝑃𝑗)
𝛼

∙ (𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)
𝛽

(𝑑𝑖𝑗)
𝛾  (3.2) 

 

In equation (3.2), 𝑲  is the set of available travel modes; 𝑘 ∈ {𝐻𝑆𝑅, 𝑝𝑙𝑎𝑛𝑒, 𝑡𝑟𝑎𝑖𝑛, 𝑐𝑎𝑟} . The logit part 

calculates the air market share, following the explanation in section 2.2.1. 𝑧𝑘,𝑖𝑗 is a binary value referring to 

the presence of travel mode 𝑘  for city pair 𝑖𝑗  (consisting out of city 𝑖  and 𝑗 , where 𝑖 ≠ 𝑗 ). The utility 

functions 𝑉𝑘,𝑖𝑗 are defined for each mode 𝑘 ∈ 𝑲, and depend on the city pair 𝑖𝑗 of interest: 

 

𝑉𝑘,𝑖𝑗 = 𝛽𝑇𝑇 ∙ 𝑇𝑇𝑘,𝑖𝑗 + 𝛽𝑇𝐶 ∙ 𝑇𝐶𝑘,𝑖𝑗 (3.3) 

 

where: 

• The coefficients 𝛽𝑇𝑇 and 𝛽𝑇𝐶 represent the influence of travel time and travel costs. Their units are 

[utility / h] and [utility / €], respectively. 

• 𝑇𝑇𝑘,𝑖𝑗 and 𝑇𝐶𝑘,𝑖𝑗 are the travel time and travel costs, respectively for mode 𝑘 and city pair 𝑖𝑗. 

 

3.2.3 Data Collection 
The model as defined in section 3.2.2 requires multiple parameters as input. How each of these will be 

gathered is explained below. Referring to the different demand flows described by Table 2.6, the model 

addresses diverted demand only, which is the estimated demand for the first year. Later, section 3.2.6 will 

leverage the model even further to also account for demand estimations in later years, which accounts for 

economic demand growth and induced demand (again, see Table 2.6). Inspiration for this is drawn from 

Leng et al. (2015). 
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Airports & air demand 

Like all forecasting models, the one produced in this paragraph has to be calibrated to a significant amount 

of observed data, which enhances the model accuracy and precision (Morgan et al., 2003). The reporting 

of data on observed high-speed rail demand is limited. Therefore, a HSR demand forecasting model cannot 

be calibrated with observed HSR demand; here, it is calibrated with air passenger data. 

Arguably the most comprehensive data set on long-distance travel passenger data currently accessible 

is provided by Eurostat, the statistical office of the European Union. Eurostat operates monthly-updated 

country-based databases, named ‘avia_par_xx: detailed air passenger transport between the main airports of 

[country] and their main partner airports’ (Eurostat, 2024a). Here, ‘xx’ refers to the alpha-2 country code. An 

overview of databases is provided in Appendix C. From the scope as defined in section 1.5, six countries 

are not represented by the Eurostat databases, of which only Albania is the only country with an airport 

(ICAO, 2023). These passengers are captured from the other end of their routes.  

Seasonal trends will be neglected, since this is considered outside of the scope. 2019 is the chosen year 

of interest, being the latest available year of normal operations before the pandemic. Airports will be 

identified by their respective unique IATA code, gathered through FlightsFrom (2024), their coordinates 

through ODS (2024). 

 The following five steps should be undertaken chronologically to preprocess the data, in order to create 

an eligible set of airports and associated pairs for model calibration, accompanied by air passenger data: 

1. Combining: all country-specific data (Appendix C) is combined into one large data set.  

2. Time scoping: filtering for only 2019 data. 

3. Area scoping: only airports located within the scope (section 1.5) were kept.  

4. Airport combining: In order to capture ‘city-pair’ demand instead of ‘airport-pair’ demand, 

airports serving the same city (full list: Appendix C) are treated as one airport.  

5. Directional combining: To find the total travel potential between two cities, the number of 

passengers from the outward and return flights have to be combined. If the return flight is not 

present in the data, the total travel potential is calculated as twice the outward passenger number. 

It has to be checked with the data set whether this assumption can be made. 

 

The five steps above form the air demand data set. However, for model calibration, the next step must be 

taken as well: 

 

6. Adaption to competition: As the size of the catchment area is largely influenced by airport and 

city size (Lieshout, 2012; Grosche et al., 2007), forecasting studies opt to only include a sample of 

medium-to-large international airports that have non-overlapping catchment areas. As airports 

serving less than 1 million passengers per year are classified as ‘small’ by the currently active legal 

act of the European Commission (2014), they are excluded from the calibration data set. Also, only 

flight distances of over 1000 km should be considered here, as gravity models do not take 

competition from other modes into account (see Figure 1.1). This project’s methodology will follow 

the philosophy of the author’s work: only the largest airports per country, as long as their 2h-driving 

catchment area does not overlap with other airports, ensuring that each considered airport does 

not capture passengers from other large airports considered (Marcucci & Gatta, 2011). The size of 

airports is calculated by their total passenger movement (arrivals and departures) from the full data 

set considering all flights.  
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Population 

Following from literature review, catchment area population is deemed the most accurate representation 

of population. Its size is determined by the chosen travel time, of which the figure has been debated in 

literature. The related literature review in section 2.1.6 showed maximum catchment areas of 90-110 

minutes in travel time by car, with variations among cities. This research opts for to gather data for a 

maximum of 120 minutes, matching the maximum allowed access time of most studies (Marcucci & Gatta, 

2011). The model will be estimated for every increment of 15 minutes in travel time catchment area at first, 

seeking the best model fit. The catchment area populations are gathered with use of Smappen (2024), which 

allows to choose a starting point and a travel time of various travel modes. Since section 2.1.6 showed that 

car travel time captures the distance decay well, this methodology will be followed here as well. The 

catchment area for each airport found by air demand data collection will be centred around the city centre. 

Gross Domestic Product (GDP) 

As population data was attained in the previous section, the model will be calibrated on GDP and 

GDP/capita, as we seek for the best fit. For model calibration, the data will be acquired by the following 

three databases from Eurostat: 

1. met_10r_3gdp: Gross domestic product (GDP) at current market prices by metropolitan regions 

(Eurostat, 2024b) 

2. tgs00003: Regional gross domestic product by NUTS 2 regions - million EUR (Eurostat, 2024d) 

3. demo_r_d2jan: Population on 1 January by age, sex and NUTS 2 region (Eurostat, 2024c) 

If the city is included, data set 1 finds us the city’s total GDP directly. If not, is deducted by scaling the 

region’s GDP (data set 2) down, based on the population of the region (data set 3) and the city itself. To 

find GDP per capita, population data from a data set by Florczyk et al. (2020) is used, which was created in 

name of the European Commission and reports the population for all European urban centres. 

 

Distance 

It is not allowed to use the distance travelled in any of the possible travel modes, as it would favour and/or 

disfavour the other travel modes. Instead, the great circle distance is used, which is calculated by the 

Haversine formula (Agramanisti Azdy & Darnis, 2020), allowing us to estimate with an error of 0.5% at 

maximum (Great Britain Navy Dept., 1987). Using this formula is much less time-consuming than manually 

looking up distances, without sacrificing much in terms of accuracy. 

 

Travel cost & travel time (non-HSR) 

Rome2Rio (2024) provides great insights into all travel options from origin to destination, for ‘plane, train, 

bus, ferry and car’. For each travel mode (no matter how likely it is to be chosen by passengers), it provides 

the total door-to-door travel time and travel costs. For the latter, it also looks at minimum and maximum 

values for travelling the route indicated, taking into account periodical price variations. The benefit of using 

this source is the fact it shows realistic data that people weighing off their travel options would also use, 

preventing us from making any generalising assumptions. The major drawback: collecting data manually 

takes a long time. Therefore, the data will be collected via web scraping. By Python code, aided by web 

scraping package selenium, a computer can be assigned to surf the web, continuously inputting thousands 

of search queries and copying the data into an Microsoft Excel spreadsheet, for further analysis. Coordinates 

of the city centres are used as origin and destination for each search query, to represent realistic door-to-

door trips.  

 

  



 3. Methodology  |  49   

 
 

The following processing steps will be undertaken before the travel costs and travel times of various travel 

alternatives are ready to serve as input for the demand forecasting model: 

 

• Step 1: mode simplification; Road2Rio considers ten different travel modes: bus, bus ferry, car, 

car ferry, ferry, plane, rideshare, taxi, town car and train. Often, a combination of these travel 

modes are used in a sequence. The following mode changes were applied for simplification of 

analysis in later steps:  

o The modes ‘car ferry’, ‘taxi’ and ‘town car’ are changed to ‘car’, as they are in essence all 

car-based. 

o The mode ‘bus ferry’ is changed to ‘bus’, as it is assumed to be only accessible by bus. 

o The mode ‘rideshare’ is deleted, as all trips should already have a ‘car’ alternative. 

This brings the number of different modes down to five: plane, train, car, bus and ferry. 

 

• Step 2: mode sequence characterisation; Each sequence should be translated to a 

characterisation: a base-mode. The scope of this project only considers plane-, train- and car-based 

trips. The following rules will be followed in order: 

 

Table 3.2 Mode characterisation rules 

 

 

 

 

 

 

 

 

• Step 3: travel time & costs; Travel times are rewritten to the number of hours. The source 

provides lower and upper limits for the travel costs. Since the model defined in section 3.2.1 allows 

only one travel cost input per city pair, the travels cost acquired from the data is averaged. In case 

a city pair has multiple reported travel options for the same base, the one with the shortest travel 

time is reported. This is done for multiple reasons: 

o Section 2.1 pointed out it is the most important decision factor among travellers. 

o The model defined in section 3.2.1 allows only one travel time input per city pair.  

 

• Step 4: handling of missing data; Rome2Rio (2024) always reports travel times but in some 

cases, if made use of special operators, travel costs are missing. Missing travel costs will be attained 

using an average cost per km for trips of only that mode, from the data set used for model 

calibration. The results of this are reported in section 4.1.1.  

 

HSR travel cost 

This is a design choice and refers to the fare setting. Section 3.3.1 will explain the related methodology. 

 

  

# Characterisation Rules applicable to sequence In scope 

1 Bus-based ‘bus’ only no 
2 Ferry-based ‘ferry’ only no 
3 Car-based ‘car’ only yes 
4 Unusual car use ‘car’ (in)directly after non-car mode no 
5 Plane-based ‘plane’ uninterrupted  yes 
6 Train-based ‘train’ uninterrupted yes 
7 - none of the above no 
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HSR travel time 

For new infrastructure, Rome2Rio (2024) does not provide any information. The maximum design speed 

𝑣𝑚𝑎𝑥  of 350 km/h set in section 3.1 cannot be reached for the entire duration – in Europe, the average 

speed is only 45% of the design speed (European Court of Auditors, 2018). Similarly to design speeds, the 

current peak efficiency of 90% is reached in China (Zhang & Zhang, 2021), considering connections without 

intermediate stops. As this project will try to find the potential of HSR in Europe, the maximum potential of 

current HSR practice is assumed. Therefore, this 90% efficiency 𝑘𝑒𝑓𝑓 will be used in calculating travel times: 

 

𝑇𝑇𝐻𝑆𝑅,𝑖𝑗 =
𝑙𝑖𝑗

𝑘𝑒𝑓𝑓 ∙ 𝑣𝑚𝑎𝑥 + 𝑡𝑑𝑤𝑒𝑙𝑙 + 𝑡𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑡𝑒𝑔𝑟𝑒𝑠𝑠 (3.4) 

 

Here, 𝑙𝑖𝑗  is the line length between station 𝑖  and 𝑗, not to be confused with the (straight-line) distance 

between them, 𝑑𝑖𝑗 , which is generally shorter (Brons et al., 2023). 𝑘𝑒𝑓𝑓 is the earlier mentioned efficiency, 

thus set to 0.9 here. 𝑡𝑑𝑤𝑒𝑙𝑙  is set to 1/12th of an hour (5 minutes, based on Grolle et al. (2024)). The value of 

𝑙𝑖𝑗  should be written in terms of [km] and 𝑣𝑚𝑎𝑥 in [km/h]. The travel time 𝑇𝑇𝐻𝑆𝑅,𝑖𝑗 will then be calculated in 

terms of [h]. The line length is acquired by finding the shortest distance over land. As Rome2Rio (2024) 

provides no option to avoid ferries (thus stay on land), Google Maps is web scraped instead.  

Since all other travel data is considered door-to-door, and HSR is not yet, 𝑡𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑡𝑒𝑔𝑟𝑒𝑠𝑠 represents 

the total access and egress time (section 2.1.2), and is set to 30 minutes, which is also used by Prov. N-

Holland & Hardt (2020) and Sane (2020). It will be left out of equation (3.4) when calculating travel distances 

between HSR stations but left in when it considers OD travel times in order to calculate the travel 

alternatives’ market shares and demand. 

 

3.2.4 Model Calibration 
For calibration, the model will be split in two. First, solely the gravity part of the model will be calibrated 

on the Eurostat data.  

 

Gravity part 

To calibrate our gravity model (eq. (3.2)), it is usually written in a log-linear form (Grosche et al., 2007).  

 

log(𝐷𝐻𝑆𝑅,𝑖𝑗) = log(𝑘) + 𝛼 log(𝑃𝑖𝑃𝑗) + 𝛽 log(𝐺𝐷𝑃𝑖𝐺𝐷𝑃𝑗) − 𝛾 log(𝑑𝑖𝑗) (3.5) 

 

Calibration methods are briefly explained in section 2.2.5. The complexity of using MLE for this model has 

led to the decision to initially adapt the model to be fitted for the OLS solving technique. OLS is a well-

established way in literature which can be used to calibrate (log-)linear functions. For this reason, it will be 

applied for calibration of the model. Detailed explanation of the method’s workings and means to display 

results can be found in Appendix B. 

 

Bias elimination 

Even though Lieshout (2012) and Grosche et al. (2007) showed catchment area size varies along with city 

and airport size, it is kept constant in our model for simplicity. This might induce a bias in the calibrated 

model, as the number of potential passengers is overestimated for small airports and underestimated for 

large airports. For this reason, it will be investigated whether the calibrated model shows these biases.  

When plotting the log of predicted demand 𝑦 versus the log of observed demand 𝑥, its trendline is 

described by 𝑦 = 𝑎𝑥 + 𝑏. For an unbiased model, 𝑎 = 1 and 𝑏 = 0, which simplifies to 𝑦 = 𝑥. In any other 

case, the model is biased and therefore lacks accuracy. This bias can be eliminated by transforming the 

𝑦𝑜𝑙𝑑  value, following the following formula: 

 

𝑦𝑛𝑒𝑤 =
𝑦𝑜𝑙𝑑 − 𝑏

𝑎
  (3.6)  
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The benefits of an unbiased model are increased accuracy, while not harming the statistical significance of 

its parameters.  

 

Logit part 

Logit models usually are calibrated to large scale surveys data (see section 2.2.1). As conducting a survey 

is considered far outside the scope of this project, being time-expensive and performed in literature many 

times in the past. As an extensive overview of long-distance travel studies was compiled already in the 

literature reviews of section 2.1 and 2.2, it is opted for here to recall these studies, but now only considering 

the ones that use our model type MNL. The 𝛽𝑇𝑇 and 𝛽𝑇𝐶-parameters can be estimated easily by statistical 

analysis of the results from these studies. 

As was already shown in Table 2.5, 19 MNL-studies related to this field were found. Fifteen of them 

publish parameter estimates fitting to model defined in section 3.2.1. Their methodologies underline the 

necessity of choosing not to calibrate this project’s MNL model to actual data: these studies use extensive 

surveys to estimate parameters, with the number of reported observations summing up to almost half a 

million. It is indicative of the complexity involved that estimating these parameters constitutes a distinct 

scientific discipline in its own right. Studies were applied in the UK, France, Germany, Spain, Portugal, 

Sweden and a few other countries outside of Europe, with the number of observations ranging from 40 to 

63,000, and the r-squared model fit ranging between 0.075 and 0.822. 

As the majority of these studies forecast demand by means of multiple model definitions, the number 

of models considered in this literature analysis reaches 57. An overview of them is shown in Appendix B. It 

is important to note that some studies calibrate models, each addressing different travel groups as they 

value travel time differently. These are commuting, business and leisure travellers.  

 

Travel time 

Almost all models defined by the studies included total travel time as a parameter. Some opt to split this 

term into separate parameters to quantify the influence of access and egress times, which is not considered 

here. Both hours and minutes are commonly used as units of travel time with equal frequency. For 

comparison, all reported estimates are converted to utility per hour. All reported parameter estimates were 

of the expected negative sign and are valued between -3.6 and -0.0054. The median is used here, it equals 

-0.4606. 

 

 

 

 

 

 

 

 

 

Travel cost 

Also estimated travel cost parameters were found in almost all investigated studies. The unit reported varies 

much more, as it considers different currencies from different years. The value of the currency at the time 

of study is converted to 2024 €, to be able to make valid comparisons. The boxplot’s shape closely in Figure 

3.2 resembles the travel times, however vertically approximately ten times smaller. Again, all reported 

parameter estimates were of the expected sign and lie between -0.30413 and -0.000072. The median is 

used here, it equals -0.03111. Boxplots of both parameters are plotted in Figure 3.2 above. 

 

Figure 3.2 Reported values for travel time (N=53) and travel cost (N=47) parameters in MNL models 
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3.2.5 Model Validation 
To validate our demand model, we need to ensure it is able to accurately predict air demand using data 

that differs from the calibration data. In order to do so, we use the data points that were removed during 

the last step of data collection in section 3.2.3 for the sake of erasing effects of competition among airports, 

which was needed to correctly calibrate the model’s parameters. This selection is chosen for as it 

encompasses data from the same scope (area, time), though being different from the calibration data. Recall 

that the calibrated part of the demand model serves the purpose of predicting the total passenger flow, not 

that of solely high-speed rail (section 3.2.4). Therefore, for validation, again a minimum threshold of 1,000 

km in travel distance was imposed to eliminate the effects of competition among travel modes. The 

validation approach as taken by Belal et al. (2020) will be used here: we take five interesting connections 

and calculate how closely the model approaches the observed demand.  

 

3.2.6 Demand Evolution 
As mentioned before in sections 2.4 and 3.2.2 and Table 2.6, estimating demand for later years depends on 

the level of economic growth and induced demand. These factors are left out for calibration on purpose, as 

the demand model is calibrated to today’s level of medium- to long distance travel demand. The following 

adaption to the forecasted first-year demand 𝐷𝐻𝑆𝑅,𝑖𝑗 by equation (3.2) is made to forecast future demand: 

 

𝐷𝐻𝑆𝑅,𝑖𝑗
𝐿𝑇 = 𝐷𝐻𝑆𝑅,𝑖𝑗 ∙ 𝑘𝑖𝑗

𝑒𝑐𝑜 ∙ 𝑘𝑖𝑗
𝑖𝑛𝑑  (3.7)  

 

Here, 𝐷𝐻𝑆𝑅,𝑖𝑗
𝐿𝑇  equals the average yearly HSR demand between city 𝑖 and 𝑗 over the project’s lifetime. The 

scaling between these two factors is determined by factors 𝑘𝑖𝑗
𝑒𝑐𝑜 and 𝑘𝑖𝑗

𝑖𝑛𝑑 , representing economy-related 

demand growth and induced demand growth, respectively. These depend on the chosen city pair 𝑖𝑗. Below, 

the computation of each of these two factors will be explained. 

 

Economic growth 

Trafikverket (2021) estimated a GDP elasticity with respect to demand of 0.7, which is a conservative 

estimate when drawing comparisons with other figures mentioned in section 2.1.4. To limit the chances of 

demand overestimation, this value is chosen to work with. World Bank (2023) reports yearly GDP growth 

for every country between 1961 and 2023. For this project, the mean yearly growth rate 𝑝 from the last 40 

years is taken into account for each country within the scope, as the data is not available at city-level. For 

a connection 𝑖𝑗  between two countries, the minimum yearly growth rate among them is considered 

normative for economy-based demand growth. This value 𝑝 is used to compute the factor 𝑘𝑖𝑗
𝑒𝑐𝑜 as follows: 

 

𝑘𝑖𝑗
𝑒𝑐𝑜 =

1

𝑇𝑙𝑖𝑓𝑒 + 1
∑ (1 +

𝑝𝑖𝑗 ∙ 𝑒𝐺𝐷𝑃

100
)

𝑡
𝑇𝑙𝑖𝑓𝑒

𝑡=0

 (3.8)  

 

Here, 𝑇𝑙𝑖𝑓𝑒 is the project’s lifetime in years, with 𝑡 ∈ {0,1,2, … , 𝑇𝑙𝑖𝑓𝑒}. 𝑝𝑖𝑗  is the minimum economic growth 

rate among the two countries related to city pair 𝑖𝑗 as a percentage, and 𝑒𝐺𝐷𝑃  represents the demand-

related GDP elasticity. 

 

Induced demand 

Preston (2013) mentions the level of induced demand for multiple European high-speed rail projects which 

are in operation. From these numbers, it can be concluded that the amount varies between 11% and 50% 

of the total demand. However, most of the reported values are around and above 20%. To mitigate the risk 

of overestimation (which is something that more forecasting studies should do, see section 3.2.1), 𝑘𝑖𝑗
𝑖𝑛𝑑 is 

set to 1.20. As the level of induced HSR demand depends on the quality of the current rail connection (Leng 

et al., 2015), it will be halved if the new HSR infrastructure is an upgrade of an existing line. The rationale 

behind this, and the scenario itself will be further explained in section 3.3.2.  
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3.2.7 List of Assumptions 
The following table will list the assumptions made during the demand forecasting methodology.  

 

Table 3.3 Assumptions made in demand forecasting 

Assumption Impact Reasoning 

Bus not considered as travel mode Very small 
Bus market share is marginally small for full spectrum of 
long-distance trip lengths 
Excluded for model simplicity 

Symmetrical passenger flow Very small 
Return flight passenger data is not always available, data 
set shows that assumption can be made safely as errors 
are very small. Also: it provides more data 

All passengers travel via air for trips longer 
than 1000 km 

Small 
Gravity model must be calibrated to total passenger flow 
but the only data available is air passenger flow. 
Therefore, a lower distance bound must be chosen. 

No preference variability among population Medium MNL implied simplicity 
Mode choice is based on travel time and costs 
only, no base preference for modes 

Medium MNL simplicity 

2024 travel attributes can be coupled to 2019 
travel flows in demand forecasting 

Medium 
No workaround since annual 2024 passenger flow data 
and 2019 travel attribute data is not readily available  
Also, 2024 air demand is at approx. 2019 level 

Conventional rail and HSR uncorrelated in 
demand forecasting (IIA property) 

Medium MNL implied simplicity  

Flight passengers do not transfer  Medium 
No workaround method found as flight data is captured 
based on flight legs, not OD pair 

Constant catchment area size  Large Gravity model implied simplicity  
 

These assumptions are discussed in section 6.2.1.  
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3.3 Profitability Estimation 
This section aims to outline the methodology for estimating the probability and justifiability of an high-

speed rail line. Two important inputs are required here: the foundational premises in section 3.1 as they 

form the base environment for profitability estimations, and the demand forecasting in section 3.2 for 

allowing revenue to be estimated (in section 3.3.1). Section 3.3.2 provides estimations for the total costs, 

by summation of its earlier mentioned components. The third section put the found formulas into the 

context of operational profitability and justifiability. The last section lists the assumptions made. 

 

3.3.1 Revenue & Fare Setting 
Fares are set based on maximisation of revenue. Therefore, this section first deduces the revenue function, 

then optimises it to find the optimal fare. 

 

Deducing the revenue function 

Section 2.5.4 mentions that operators generally set a price that maximises their passenger revenue, and 

provides the general interplay existing between price, demand and revenue. This general approach will 

here be applied to the demand forecasting model defined in section 3.2.1.  

While the number of air passengers was the centre of attention for demand model calibration, it must 

be centred around the number of HSR passengers to be able to calculate HSR revenue. From the model 

formulation, it can be seen that fare setting directly affects the travel cost of high-speed rail 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 . The 

gravity part of the formulation is unaffected in this formulation. The value of 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗  however does affect 

the logit part – the utility of HSR decreases, while the utilities of all other modes remain unaffected. As the 

utility of HSR is divided by those of all modes together, the market share of HSR decreases. This matches 

realistic effects.  

However, as the revenue equals the demand multiplied with the fare, increasing fares also can work in 

favour of the total revenue 𝑅𝑖𝑗. To find the optimal fare setting, that maximises the revenue, the maximum 

value of this equation must be found, by setting the derivate of the formula with respect to 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 to zero: 

 

𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 = max
𝑇𝐶𝐻𝑆𝑅,𝑖𝑗

(𝐷𝐻𝑆𝑅,𝑖𝑗 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗) = max
𝑇𝐶𝐻𝑆𝑅,𝑖𝑗

(𝑅𝑖𝑗) ⟹
𝑑

𝑑𝑇𝐶𝐻𝑆𝑅,𝑖𝑗
[𝑅𝑖𝑗] = 0 (3.9) 

 

This equation always has one unique optimal solution in our field of interest, corresponding with maximum 

revenue. The mathematical proof of this can be found in Appendix D. 

 

Implementation 

Python offers packages to find optima of sophisticated formulas. For this project, the fsolve package from 

the scipy.optimize library will be used, which is instructed to not only calculate the optimal fare setting, but 

also the related revenue and demand. 

 

 

3.3.2 Costs 
As stated in section 2.5, high-speed rail comes with a number of cash-flows related to cost. The results of 

Table 2.7 are split into the initial investments (construction stage) and recurring payments (operational 

stage). Both will be mentioned here with their impact factors and relationships, setting up a formula to 

estimate the total costs related to this cash-flow. The formulas of all cash-flows individually will be 

combined to create a formula to estimate the total costs. The literature review in section 2.5 will serve as a 

starting point.  
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Construction stage 

In literature, these are split into fixed costs regarding infrastructure (construction costs) and rolling stock 

(acquisition costs). These expenses are made once, in the initial stages before operation. 

 

Infrastructure 

The base cost driver of infrastructure was found to be the length. For this reason, construction costs 

generally are reported in terms of [€ / km]. The base equation to calculate 𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 can therefore be written 

as: 

𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑋,𝑖𝑛𝑓𝑟𝑎 ∙ 𝑙𝑖𝑗  (3.10) 

 

Here, 𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 represents the total fixed infrastructure cost between city pair 𝑖𝑗, the length of the line is 𝑙𝑖𝑗  

and 𝑘𝑋,𝑖𝑛𝑓𝑟𝑎  is the construction cost per km. In section 2.5.2 (Figure 2.10), it was found that unit 

construction costs vary wildly from location to location, as it depends on the local population density, GDP 

and the economic price level. Borgogno (2023) quantifies these relationships and produces unit 

construction costs per km, for surface (𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ) and tunnelling (𝐶𝑡𝑢𝑛𝑛𝑒𝑙 ) separately, for 28 European 

countries. If data is missing regarding countries for this project, we calculate it as the average of its reported 

neighbours. It is assumed that when the difference in elevation between cities is greater, the connection 

between them requires more tunnelling, resulting in higher construction costs. Firstly, a height-index 𝐻𝐼𝑖  

will be attributed to every city. Linear interpolation between the lowest and highest city elevations (ℎ𝑚𝑖𝑛 

and ℎ𝑚𝑎𝑥, respectively) will be used to attribute height-indexes to all other cities: 

 

𝐻𝐼𝑖 = (ℎ𝑖 − ℎ𝑚𝑖𝑛)/(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛) (3.11)  

 

The choice of data set to determine the elevations per city will be made in section 3.4.8, as the selection of 

cities is to be determined there as well. The construction cost per km will be calculated as a linear 

interpolation between surface and tunnelling costs, averaging the involved cities and countries:  

 

𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

= |𝐻𝐼𝑖 − 𝐻𝐼𝑗| ∙ (
𝐶𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑖)

𝑡𝑢𝑛𝑛𝑒𝑙 + 𝐶𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑗)
𝑡𝑢𝑛𝑛𝑒𝑙

2
) + (1 − |𝐻𝐼𝑖 − 𝐻𝐼𝑗|) ∙ (

𝐶𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑖)
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

+ 𝐶𝑐𝑜𝑢𝑛𝑡𝑟𝑦(𝑗)
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

2
) (3.12)  

 

The monetary values reported by Borgogno (2023) are 2017-based and will be adjusted for inflation. When 

rail infrastructure is already present between a city pair, one may also opt to upgrade the existing line rather 

than building a new one from scratch, as it could reduce costs significantly (European Court of Auditors, 

2018). Conventional rail lines can only be upgraded to a design speed of 220 km/h at maximum (UIC, 2018). 

This means they are not interesting for this project. Instead, the authors state that only dedicated lines 

having maximum design speeds of at least 250 km/h could be upgraded. The construction of 350 km/h 

HSR infrastructure is roughly twice as expensive as for 250 km/h (Preston, 2013). Therefore, a 50% 

construction cost discount is applied, if the connection already provides a rail connection with an average 

travel speed exceeding 200 km/h. This can be calculated through Rome2Rio (2024) web scraping, 

performed in section 3.2.3. The threshold is lowered to account for stopping times, and to accurately 

capture the current network’s performance limitations. A 250 km/h HSR line is not truly 250 km/h if the 

realised operating speeds are significantly lower. Recalling European Court of Auditors (2018), this problem 

is common among HSR lines. If this scenario applies, the current fastest rail alternative becomes the new 

HSR alternative, while the current second fastest rail alternative (if it exists) becomes the new rail alternative 

in the model of equation (3.2). 
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Rolling stock 

The total acquisition costs is perhaps the most straightforward cash-flow to calculate. It simply amounts to 

the unit cost of a train, multiplied by the number of trains needed. The base equation to calculate 𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 

can therefore be written as: 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 ∙ 𝑛𝑖𝑗  (3.13) 

 

Here, 𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 represents the total fixed rolling stock cost between city pair 𝑖𝑗, the number of trains needed 

to be ordered to serve this city pair equals 𝑛𝑖𝑗. Parameter 𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 is the acquisition cost per train set. As 

reported in section 3.1, it equals € 62.54 million. The number of trains is calculated by the earlier introduced 

equation (2.7): 

𝑛𝑖𝑗 =  2 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗 (3.14) 

 

Here, 𝑓𝑖𝑗 is the frequency considered in one way (in trains per hour) and 𝑡𝑖𝑗 is the travel time required to 

cross the entire length of the line (in hours). Equation (3.13) and (3.14) can be combined: 

 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 ∙ ⌈2 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗⌉ (3.15) 

 

Note that the formula for 𝑛𝑖𝑗 now stands between ceiling brackets. This means that the number between 

these brackets is rounded up, as acquisition costs are based on an integer number of trains. 

 

Recurring payments 

As followed from Table 2.7, these costs refer to expenses made during operation and maintenance. These 

are costs made after the initial stages during the actual operation stages, continuously across the years. The 

costs listed here are based on yearly amounts. 

 

Infrastructure 

In literature, the operation and maintenance costs are commonly taken together as some consider the latter 

term as covered by the former. Often, they are reported in terms of [€ / km], indicating the line length as 

the most important impact factor. Therefore, their nature is alike the infrastructure construction costs: 

 

𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 ∙ 𝑙𝑖𝑗  (3.16) 

 

Here, the yearly infrastructure time-based costs 𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

 are calculated by a simple multiplication of the unit 

cost per kilometre 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 and the total line length 𝑙𝑖𝑗 , all specific for the connection between city pair 𝑖𝑗. 

Literature review in section 2.5 showed that the dedicated HSR lines designed for speeds above 300 km/h 

require around €100,000 in maintenance and operation costs, yearly and per kilometre.  

 

Rolling stock 

The yearly rolling stock operation and maintenance costs cannot be expressed in a simple [€ / km], as it 

directly depends on the level of usage. Therefore, most educated guesses are presented in units of [€ / 

seat-km]. Therefore, the yearly time-based rolling stock costs 𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 will be directly calculated from that 

unit: 

𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙

𝑛𝑖𝑗 ∙ 𝑙𝑖𝑗

𝑡𝑖𝑗
 (3.17) 

 

The hourly travelled distance by all trains on city pair 𝑖𝑗  is calculated by (𝑛𝑖𝑗 ∙ 𝑑𝑖𝑗)/𝑡𝑖𝑗 . This then is 

multiplied with the number of operating hours per year (𝐻 ∙ 𝐷), in order to find the total travelled distance 

per year, and multiplied by the number of seats 𝑠 in order to find the yearly total seat-km. This is multiplied 

with the unit cost 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛, in order to find the yearly rolling stock-related operation and maintenance costs. 
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Analysis of the work of Fröidh (2006), introduced in section 2.5.3, yields a value of € 0.03 per seat-km for 

an operating speed of 350 km/h and train capacity of 1,053 seats, matching the nature of our problem.  

In the equation presented above, 𝑡𝑖𝑗 is the travel distance between city pair 𝑖𝑗. In this example 𝐻 = 18 

and 𝐷 = 365. 

 

Total costs 

The formula for the total costs over lifetime 𝑇𝑙𝑖𝑓𝑒  is expressed as: 

 

𝐶𝑇𝑂𝑇 = 𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

+ 𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 + 𝑇𝑙𝑖𝑓𝑒 ∙ (𝐶𝑖𝑗

𝑇,𝑖𝑛𝑓𝑟𝑎
+ 𝐶𝑖𝑗

𝑇𝑡𝑟𝑎𝑖𝑛) (3.18) 

 

3.3.3 Operational Profitability & Justifiability 
Recalling the meaning of these terms when first introduced in section 1.2.1; a high-speed rail connection 

should only be built if it meets both of these two conditions. Their meanings can now be illustrated even 

more clearly, by using the formulas set up in section 3.3.1 and 3.3.2.  

 

Operational profitability 

In order for a high-speed rail line to be operationally profitable, all the operational costs should be lower 

than the operational benefits. The first term concerns the operation and maintenance costs regarding 

infrastructure 𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

 and rolling stock 𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 . Operational benefits concerns the ticket revenue  

𝑅𝑖𝑗. Thus, the operational profitability 𝑃𝑖𝑗
𝑇  for a connection between city pair 𝑖𝑗 can be written as follows: 

 

𝑃𝑖𝑗
𝑇 = 𝑅𝑖𝑗 − (𝐶𝑖𝑗

𝑇,𝑖𝑛𝑓𝑟𝑎
+ 𝐶𝑖𝑗

𝑇,𝑡𝑟𝑎𝑖𝑛) (3.19) 

 

Justifiability 

This concerns whether the operational profitability is able to pay back the initial investments, within its 

lifetime. The first term was illustrated in equation (3.19), the latter in equation (3.10). The justifiability for a 

connection between city pair 𝑖𝑗 is called 𝑃𝑖𝑗
𝑋 and can then be written as follows: 

 

𝑃𝑖𝑗
𝑋 = 𝑇𝑙𝑖𝑓𝑒  ∙ (𝑅𝑖𝑗 − 𝐶𝑖𝑗

𝑇,𝑖𝑛𝑓𝑟𝑎
− 𝐶𝑖𝑗

𝑇,𝑡𝑟𝑎𝑖𝑛) − (𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

+ 𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛) (3.20) 

 

 

3.3.4 List of Assumptions 
The following table will list the assumptions made during the profitability estimating methodology.  

 

Table 3.4 Assumptions made during profitability estimation 

Assumption Impact Reasoning 

No subsidy (scenarios) Large Simplicity  
No change in travel characteristics of 
competing modes 

Large Complexity of forecasting is out of project’s scope 

No inflation or deflation Large Complexity of forecasting is out of project’s scope 
No variability / risk management for all  Medium Simplicity 

 

These assumptions are discussed in section 6.2.2.  
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3.4 Network Design 
This section will provide a step-by-step manual on how the Transport Network Design and Frequency 

Setting Problem (TNDFSP) associated with this project will be solved. The network design was first 

introduced as the third problem in section 1.4 and related literature was reviewed in section 2.6 and 2.7, to 

provide a foundation of knowledge. Based on that, the solving method and related assumptions are 

presented in section 3.4.1 and section 3.4.2. Then, the model’s source of inspiration is introduced (section 

3.4.3), which forms the basis of the objective (section 3.4.4), leading up to the addition of TNDP (section 

3.4.5) and FSP (section 3.4.6) elements. Together they form the model’s formulation (section 3.4.7), after 

which the data sources are listed (section 3.4.8). Section 3.4.9 explains the model’s pre-processing. Section 

3.4.10 and 3.4.11 address how the linear program will be optimised and validated, respectively. 

 

3.4.1 Solving Approach 
Kepaptsoglou & Karlaftis (2009) classify the methodologies used to formulate and solve network design 

problems to optimality: analytical methods, which finds relationships between components of a small 

transport network, and mathematical programming, which finds an optimal solution for a greater variability 

of network sizes. The latter method therefore matches the goal of finding the potential of HSR, for a network 

potentially matching the size of Europe. Ceder (2001) summarises it nicely by stating that analytical models 

are not suited for network design, while mathematical programming models are. Therefore, the latter 

method will be used here. 

 

3.4.2 General Assumptions 
Section 2.6 listed a few general aspects of the TNDFSP which should be considered when implemented. 

These regard to assumptions that determine the nature of the formulation, and functions as a starting point 

when doing so. In this section, the choices regarding these aspects are made and substantiated. 

 

Demand elasticity 

As found in section 2.6, most studies assume fixed (inelastic) demand, ignoring how travel time and cost 

affect demand, despite its inherent elasticity. Since the goal of this study is to find the realistic potential of 

HSR, it becomes evident that the elasticity of demand cannot be neglected. Either the total demand flow 

between a city pair is kept constant, or it varies along with the performance level of all modes combined. 

To keep the model realistic, the latter option is opted for here. As the demand here is defined by a 

forecasting model, it is clear that it needs to be linearised in order to be implemented into the objective 

function.  

 

Passenger path assignment 

Literature review in section 2.6 found that most studies assign the passengers to the shortest path, as the 

model’s complexity would otherwise severely increase (Kepaptsoglou & Karlaftis (2009). The authors also 

report that deviating passenger assignments have their own underlying extensive literature, which is 

deemed outside of this project’s scope. Therefore, the common practice of assigning passengers to the 

shortest path will be followed here as well. 

 

3.4.3 Model Inspiration: Multi-Commodity Flow Problem 
The presence of model formulations in literature matching the nature of this project is limited – however, 

section 2.6 found a new development in TNDP formulation; the adaptation of the Multi-Commodity Flow 

Problem (MCFP), leading to an “efficient formulation” to handle “city-scale transit networks” (Ng et al., 

2024). The philosophy behind the MCFP applied to transit network design is explained by Magnanti & 

Wong (1984). The problem concerns finding the lowest cost of sending commodities (goods or people) 

through a network. The multi-commodity problem’s formulation will be adapted to the nature of this project, 

firstly to incorporate elements of network design (section 2.6), then of line design (section 2.7). 
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A general formulation is provided in the equations below: 

 

min ∑ ∑ 𝑐𝑎𝑘 ∙ 𝑥𝑎𝑘

𝑘∈𝑲𝑎∈𝑨

 (3.21) 

s. t.: ∑ 𝑥𝑎𝑘

𝑎∈𝑨𝒊
𝒐𝒖𝒕

− ∑ 𝑥𝑎𝑘

𝑎∈𝑨𝒊
𝒊𝒏

= {
𝐷𝑘 𝑖𝑓 𝑖 ∈ 𝑶(𝒌)

−𝐷𝑘 𝑖𝑓 𝑖 ∈ 𝑫(𝒌)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∀𝑖 ∈ 𝑵, 𝑎 ∈ 𝑨

 (3.22) 

 

The demand for commodity 𝑘 is named 𝐷𝑘. The unit cost and number of commodities 𝑘 transported over 

arc 𝑎 are defined as 𝑐𝑎𝑘 and 𝑥𝑎𝑘, respectively. The set of all arcs 𝑨 is split into 𝑨𝒊
𝒊𝒏 and 𝑨𝒊

𝒐𝒖𝒕, representing 

the arcs going in and out from node 𝑖 ∈ 𝑵. Equation (3.22) guarantees continuity at the nodes, which 

requires the definition of sets representing the origin and destination of commodity 𝑘 , 𝑶(𝒌) and 𝑫(𝒌) 

respectively. The same in the other direction holds for the destination of the commodity, defined by set 

𝑫(𝒌). Numerous extra constraints can be added to this model – e.g. the capacity constraint for each arc 

(Magnanti & Wong, 1984).  

 

3.4.4 Model Objective 
As defined in section 1.4, this is the network’s lifetime profitability, which is in line with the general approach 

in literature from the operator’s perspective (Guihaire & Hao, 2008). In section 2.5.1, profitability was 

dissected into seven cash flows, with each given their own equation in section 3.3.1 and 3.3.2. Here, they 

are recalled and divided across the network and line design part of our formulation. 

 

Table 3.5 Cash flow allocation to problems 

Problem Cash flow Symbol 
Related 
equation 

Network Design 
(TNDP) 

Ticket revenue 𝑅𝑖𝑗  (3.9) 
Infrastructure construction 𝐶𝑖𝑗

𝑋,𝑖𝑛𝑓𝑟𝑎  (3.10) 

Infrastructure operation & maintenance 𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎  (3.16) 

Line Design 
(FSP) 

Rolling stock acquisition 𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 (3.13) 

Rolling stock operation & maintenance 𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 (3.17) 

 

Following the equations defined listed in Table 3.5, it can be seen that rolling stock costs depend on the 

line design only, as they depend on the line’s frequencies and length. Infrastructure-related costs depend 

on the length of selected arcs only, and therefore fit the network design part. The same holds for ticket 

revenue. It can be seen that all found cash flows can be associated with one of the two problems, which the 

model will integrate by formulation of a TNDFSP. This allows for an all-inclusive evaluation of profitability 

for a HSR network. Below, section 3.4.5 will focus on the TNDP (network design) elements to be included 

in the TNDFSP formulation. After this, the model’s formulation will be extended by addition of FSP (line 

design) elements in section 3.4.6. 

 

3.4.5 Network Design Elements 
This section will reason its way towards implementation of TNDP elements into the optimisation model. 

 

• Nodes: We define the set of nodes 𝑵, equivalent to the MCFP set of nodes. To indicate if node 𝑛 

is selected for our final network, we define a binary decision variable 𝑧𝑛.  

• Arcs: We also define the set of undirected arcs 𝑨. Binary decision variables 𝑦𝑎  are defined to 

indicate if arc 𝑎 is selected for the final network. Each arc has been attributed with travel time 𝑡𝑎, 

travel cost 𝑐𝑎, length 𝑑𝑎, lifetime construction, operating and maintenance cost 𝑓𝑎
𝑐𝑜𝑠𝑡 . 

• OD pairs: The original MCFP set of commodities is translated to a set of OD pairs 𝑷, as their 

meaning is equivalent for this problem. 
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OD flow routes 

The main problem found with exact approaches was that they can only solve within reasonable running 

times for small to medium-sized networks (section 2.6.5 and 2.7.6). In the MCFP formulation, for each 

commodity 𝑘, decision variables are considered whether it is transported along arc 𝑎. Inspired by the 

earlier-mentioned work of Oliker & Bekhor (2020) and Liang et al. (2019), this can be reformulated without 

changing the intrinsic nature and optimal solution: for each commodity 𝑘, we can define a set of potential 

routes across the network instead. A route would then be defined as a valid sequence of arcs from origin 

to destination. The same is done for this project’s model; to do so, we define the set of OD flow routes 𝑹, 

inspired by the work of Arbex & da Cunha (2015). Each OD flow route 𝑟 can be selected (or not) for our 

final network, which can be indicated by binary decision variable 𝑥𝑟 . An algorithm must be written in order 

generate all possible OD flow routes. Details regarding this are presented in section 3.4.9. This idea roughly 

matches literature review in section 2.7.5, where it was advised to pre-determine potential lines instead in 

order to decrease model complexity. Parameters are introduced in order to couple each OD flow route 𝑟 

to nodes, arcs and OD pairs: 

• 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒 : whether OD flow route 𝑟 covers node 𝑛 (1) or not (0) 

• 𝑐𝑎𝑟
𝑎𝑟𝑐: whether OD flow route 𝑟 covers arc 𝑎 (1) or not (0) 

• 𝑐𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

: whether OD flow route 𝑟 covers OD pair 𝑝 (1) or not (0) 

• 𝑚𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

: whether OD flow route 𝑟 exactly matches OD pair 𝑝 (1) or not (0) 

 

Now, a number of attributes specific to each OD flow route 𝑟 can be defined: 

• The travel time 𝑡𝑟 = ∑  (𝑡𝑎 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)𝑎∈𝑨  

• The travel cost 𝑐𝑟 = ∑  (𝑐𝑎 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)𝑎∈𝑨  

• The length 𝑑𝑟 = ∑  (𝑑𝑎 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)𝑎∈𝑨  

 

Demand 

Since the relationship between travel time and demand was found to be non-linear by our model definition 

in equation (3.2), it has to be linearised for this mathematical programming model:  

 

𝐷𝐻𝑆𝑅,𝑝 =  𝛼𝑝 + 𝛽𝑝 ∙ 𝑡𝑝 + 𝛾𝑝 ∙ 𝑐𝑝 (3.23) 

 

Here, the demand 𝐷𝐻𝑆𝑅,𝑝 is estimated by a ‘maximum demand’ 𝛼𝑝 for OD pair 𝑝 ∈ 𝑷 (when travel time and 

costs are zero), an associated ‘time decay’ 𝛽𝑝 and ‘cost decay’ 𝛾𝑝, indicating by how much the demand 

would reduce for respectively one hour extra travel time 𝑡𝑝 , or one euro in extra travel cost 𝑐𝑝 . The 

coefficients 𝛼𝑝, 𝛽𝑝 and 𝛾𝑝 can be obtained by linearisation of the relationship between demand (from the 

demand forecasting model), travel time and costs. Making use of travel time 𝑡𝑟 and travel cost 𝑐𝑟, a yearly 

passenger flow 𝑞𝑟
𝑦𝑒𝑎𝑟

 specific to route 𝑟 can be calculated. In order to do this, the equation mentioned 

above must be rewritten in order to match the route-oriented nature of the problem. Therefore, we define 

the following: 

• Intercept 𝛼𝑟 = ∑  (𝛼𝑝 ∙ 𝑚𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

)𝑝∈𝑷  

• Travel time coefficient 𝛽𝑟 = ∑  (𝛽𝑝 ∙ 𝑚𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

)𝑝∈𝑷  

• Travel cost coefficient 𝛾𝑟 = ∑  (𝛾𝑝 ∙ 𝑚𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

)𝑝∈𝑷  

 

The values of travel time and travel cost itself retain same meaning: 𝑡𝑟 = 𝑡𝑝 and 𝑐𝑟 = 𝑐𝑝.  

We can now present the redefined linearised demand function: 

 

𝑞𝑟
𝑦𝑒𝑎𝑟

=  𝛼𝑟 + 𝛽𝑟 ∙ 𝑡𝑟 + 𝛾𝑟 ∙ 𝑐𝑟  (3.24) 
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The travel time 𝑡𝑟 is fixed for each route, while demand between origins and destinations depends on the 

effective travel time and cost, which are influenced by the network structure. To maintain a linear model, 

OD pair demand will be captured by coefficients from a trendline fitted to the demand forecasting model, 

based on travel time 𝑡𝑟 and costs 𝑐𝑟. The trendline is fitted for 𝑡𝑟 ∈ [𝑡𝑟 , 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 ∙ 𝑡𝑟]; 𝑐𝑟 ∈  [𝑐𝑟 , 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 ∙ 𝑐𝑟], 

with 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 = 1.25, the maximum allowed detour factor, as used by Grolle et al. (2024). The undirected 

graph 𝐺 = (𝑁, 𝐴) sums demand in both directions to simplify the model, without changing its intrinsic logic. 

 

Ticket revenue 

Recall that the objective of the formulation is a maximisation of lifetime profitability, and that revenue was 

found to be a component of that. We define the lifetime revenue 𝑓𝑟
𝑟𝑒𝑣  for route 𝑟 as the product of its 

demand per year 𝑞𝑟
𝑦𝑒𝑎𝑟

, fare price 𝑐𝑟  and the lifetime of the project 𝑇𝑙𝑖𝑓𝑒  in years. The fare price is 

determined by its own optimisation process in section 3.3.1. 

 

Constraints 

Now all variables and parameters are defined, the constraints can be constructed. 

(1) Node selection: A node 𝑛 is selected if a selected OD flow route 𝑟 flows over it (3.25). Also, a 

node 𝑛 cannot be selected if no selected OD flow route 𝑟 flows over it (3.26). 

 

𝑧𝑛 ≥ 𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒           ∀𝑛 ∈ 𝑵, ∀𝑟 ∈ 𝑹 (3.25) 

𝑧𝑛 ≤ ∑(𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒)

𝑟∈𝑹

          ∀𝑛 ∈ 𝑵 (3.26) 

 

(2) Arc selection: An arc 𝑎 must be selected if a selected OD flow route 𝑟 flows over it (3.27). As arc 

selection automatically induces costs, a constraint oriented to the opposite such as (3.26) can be 

disregarded. 

𝑦𝑎 ≥ 𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐           ∀𝑎 ∈ 𝑨, ∀𝑟 ∈ 𝑹 (3.27) 

 

(3) OD pair selection: An OD pair 𝑝 may be served by at most one selected OD flow route 𝑟 (3.28). 

 

∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

) ≤

𝑟∈𝑹

1          ∀𝑝 ∈ 𝑷 (3.28) 

 

(4) Minimum node separation: Having too short distances between selected nodes will undermine 

HSR’s rationale (Rodrigue, 2017). Therefore, a minimum distance 𝑙𝑚𝑖𝑛  between nodes is 

introduced, and a set of all node pairs (𝑖, 𝑗) ∈ 𝑵 that would violate 𝑙𝑚𝑖𝑛 is introduced: 𝑵𝒄𝒍𝒐𝒔𝒆. We 

define the following constraints to ensure the minimum distance between nodes is respected: 

 

𝑧𝑖 + 𝑧𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆 (3.29) 

 

(5) Non-crossing arcs: Selected arcs are not allowed to cross each other. To constrain this, we define 

the set of crossing arc pairs (𝑖, 𝑗) as 𝑨𝒄𝒓𝒐𝒔𝒔, with 𝑖, 𝑗 ∈ 𝑨 and 𝑖 ≠ 𝑗. The following constraints should 

hold: 

𝑦𝑖 + 𝑦𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 (3.30) 

 

(6) Decision variables: As stated before: 𝑥𝑟 , 𝑧𝑛 and 𝑦𝑎 are all binary: 

 

𝑥𝑟 ∈ {0, 1}          ∀𝑟 ∈ 𝑹 (3.31) 
𝑦𝑎 ∈ {0, 1}          ∀𝑎 ∈ 𝑨 (3.32) 
𝑧𝑛 ∈ {0, 1}          ∀𝑛 ∈ 𝑵 (3.33) 
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Objective function 

As stated in section 3.4.4, cash flows considered from the Network Design perspective are ticket revenue 

and infrastructure-related costs. The total ticket revenue can be calculated as the sum of 𝑓𝑟
𝑟𝑒𝑣, for selected 

routes 𝑟. For arc 𝑎, the total infrastructure-related costs were earlier defined in this section as 𝑓𝑎
𝑐𝑜𝑠𝑡 . In order 

to calculate the network’s total infrastructure-related costs, it must be summed over selected arcs 𝑎. The 

‘network design’-related profitability can be displayed as: 

 

∑(𝑥𝑟 ∙ 𝑓𝑟
𝑟𝑒𝑣)

𝑟∈𝑹

− ∑(𝑦𝑎 ∙ 𝑓𝑎
𝑐𝑜𝑠𝑡)

𝑎∈𝑨

 (3.34) 

 

The introduction of line design elements in the next chapter will further extend this objective function, as 

well as the rest of the model’s formulation. 

 

3.4.6 Line Design Elements 
This section will add line design elements to the formulation built in the previous section, completing the 

Transport Network Design & Frequency Setting Problem (TNDFSP). The line design parts assigns lines and 

frequencies to the network. Regarding the formulation of constraints, inspiration is drawn from the work of 

Baaj & Mahmassani (1991), who represent a very basic TNDFSP formulation. 

 

Operating frame 

We assume 18 operating hours per day (𝐻) and 365 operating days per year (𝐷). 

 

Valid operating lines 

Each route 𝑟 will be attributed a binary value 𝑙𝑟 , which equals 1 if it is a valid operating line and 0 if not. An 

OD flow route 𝑟 is considered an invalid operating line if the travel time between both end points is more 

than 9 hours, since then a train cannot make a full roundtrip within an operating day, resulting in planning 

difficulties. By imposing this limit, trains can always be returned to at least one of the line’s termini overnight. 

An OD flow route 𝑟 is considered a valid and selected operating line if 𝑥𝑟 ∙ 𝑙𝑟 = 1. 

 

Line frequencies 

Each route 𝑟 will be attributed an operating frequency in trains per hour, equalling zero for invalid operating 

lines (to be constrained later). A nonnegative integer decision variable 𝑤𝑟  is introduced, along with a 

universal maximum frequency 𝑊𝑚𝑎𝑥 , here set to 12 trains per hour, matching minimum headway rules for 

the same 350 km/h trains in the Chinese network (Tian & Zhang, 2024). 

 

Number of trains acquired 

This is related to the operated frequency 𝑤𝑟  on route 𝑟 . The associated nonnegative integer decision 

variable is defined as 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛. 

 

Seat capacity 

This is defined by parameter 𝑠, equalling the number of passengers one train can carry simultaneously. 

 

Peak hour demand per direction 

This is calculated by calculating the average demand per operating hour throughout the year, while 

multiplying with a peak hour factor 𝑘𝑝𝑒𝑎𝑘ℎ𝑟 , set to 1.25 (see section 2.7.2), which is a conversion factor 

between peak hour flow and average hourly flow. As the flow 𝑞𝑟
𝑦𝑒𝑎𝑟 combines flow in both directions, it is 

divided by two. The peak hour flow 𝑞𝑟
𝑝𝑒𝑎𝑘

 is then calculated as follows: 

 

𝑞𝑟
𝑝𝑒𝑎𝑘

=
𝑘𝑝𝑒𝑎𝑘ℎ𝑟

2 ∙ 𝐷 ∙ 𝐻
∙ 𝑞𝑟

𝑦𝑒𝑎𝑟
 (3.35)  
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Transfer penalties 

In order to address the user’s perspective in the objective function as well, as monetary penalty is added 

for every passenger who has to transfer. Literature review in section 2.7.4 provides an added perceived 

travel time for a transfer of 22.63 minutes, while Wardman et al. (2012) provides a common European VoT 

of €14.80 per hour, adjusted for inflation. The penalty transferring passenger equals (22.63/60) ∙ €14.80 ≈

€5.58. Given the definitions of this model, the following situations must both occur for an OD pair 𝑝 in order 

for a transfer penalty to be imposed: 

1. Passengers of OD pair 𝑝 must be travelling across the network. This means that any OD flow route 

𝑟 exactly matching the OD pair 𝑝 must be selected. We therefore introduce a binary decision 

variable 𝑢𝑝 indicating whether this statement is true (1) or false (0). 

2. The OD pair 𝑝 may not be served directly. This means that any OD flow route 𝑟 covering that 

OD pair 𝑝 may not be selected. We therefore introduce a binary decision variable 𝑣𝑝 indicating 

whether this statement is true (0) or false (1). 

We can verify the outcome of 𝑢𝑝 − 𝑣𝑝 only equals 1 if an OD pair 𝑝 is served, but not directly. As non-active 

OD pairs 𝑝 cannot be served by selected operating lines it is constrained that 𝑢𝑝 ≥ 𝑣𝑝, ∀𝑝 ∈ 𝑷.  

 

Constraints 

Now all variables and parameters are defined, the constraints can be constructed. 

 

(1) Frequency setting: An operating line 𝑟 cannot be selected if the corresponding OD flow route 𝑟 

is not selected, or when it is not considered a valid operating line. Also, maximum operating 

frequencies 𝑊𝑚𝑎𝑥 universally apply.  

 

𝑤𝑟 ≤ 𝑊𝑚𝑎𝑥 ∙ 𝑙𝑟 ∙ 𝑥𝑟           ∀𝑟 ∈ 𝑹 (3.36) 

 

(2) Serve all demand: The selected valid operating lines 𝑟 must serve all demand. 

 

𝑠 ∙ ∑(𝑤𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)

𝑟∈𝑹

≥ ∑(𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐 ∙ 𝑞𝑟

𝑝𝑒𝑎𝑘
)

𝑟∈𝑹

          ∀𝑎 ∈ 𝑨 (3.37) 

 

(3) Rolling stock acquisition: Acquire the correct number of trains 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 for each operating line 𝑟. 

Following equation (3.15), it should equal ⌈2 ∙ 𝑤𝑟 ∙ 𝑡𝑟⌉. This can be linearly defined: 

 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 − 1 ≤ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟           ∀𝑟 ∈ 𝑹 (3.38) 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ≥ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟           ∀𝑟 ∈ 𝑹 (3.39) 

 

 

(4) Served OD pairs: An OD pair 𝑝 is served if the OD flow route 𝑟 exactly matching that OD pair 𝑝 

is selected (3.41). If not selected, the OD pair is not served (3.40). 

 

𝑢𝑝 ≤ ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.40) 

𝑢𝑝 ≥ 𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

          ∀𝑝 ∈ 𝑷, ∀𝑟 ∈ 𝑹 (3.41) 
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(5) Served OD pairs, without transfer: An OD pair 𝑝 is served directly if any OD flow route 𝑟 

covering that OD pair 𝑝 is selected (3.43). If none of these routes 𝑟 are selected, the OD pair is not 

served directly (3.42). In the second constraint below, 𝑀 is an arbitrary large constant, it should be 

defined while satisfying 𝑀 ≥ ∑ (𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)𝑟∈𝑹 , ∀𝑝 ∈ 𝑷. 

 

𝑣𝑝 ≤ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.42) 

𝑀 ∙ 𝑣𝑝 ≥ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.43) 

 

(6) Decision variables: 𝑢𝑝 and 𝑣𝑝 are binary, while 𝑤𝑟 and 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 are nonnegative and integer: 

 

𝑤𝑟 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (3.44) 
𝑛𝑟

𝑡𝑟𝑎𝑖𝑛 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (3.45) 
𝑢𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (3.46) 

𝑣𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (3.47) 

 

Objective function 

As stated in section 3.4.4, cash flows considered from the Line Design perspective are rolling stock-related 

costs. Added to this are transfer penalties, which are not part of HSR profitability, but they are included into 

the objective function to also account for the user’s perspective. This way, the objective function becomes 

all-encompassing: it contains all factors of profitability, while also considering both sides of perspective. 

The equations listed below are added to equation (3.34). 

 

Rolling stock acquisition costs 

Equation (3.13) as defined in section 3.3.2 can be directly implemented into the objective function. The total 

rolling stock acquisition costs simply equal a unit cost factor 𝑘𝑋 (€ / train) and the total number of trains 

acquired for operation of the network: 

 

𝑘𝑋 ∙ ∑(𝑛𝑟
𝑡𝑟𝑎𝑖𝑛)

𝑟∈𝑹

 (3.48) 

 

Rolling stock operation and maintenance costs 

Equation (3.17) as defined in section 3.3.2 can be directly implemented into the objective function. The total 

rolling stock operation and maintenance costs simply equal a unit cost factor 𝑘𝑇 (€ / seat-km) and the total 

number of lifetime seat-km for all selected routes 𝑟 combined: 

 

𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑇 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙ ∑ (
𝑛𝑟

𝑡𝑟𝑎𝑖𝑛 ∙ 𝑑𝑟

𝑡𝑟
)

𝑟∈𝑹

 (3.49) 

Transfer penalties 

Earlier in this section, it was defined that transfer penalties are imposed for an OD pair 𝑝 if 𝑢𝑝 − 𝑣𝑝 = 1. 

The yearly demand not served directly is the product of the yearly flow over OD pairs for which 𝑢𝑝 − 𝑣𝑝 =

1. This should then be multiplied by the project’s lifetime in years 𝑇𝑙𝑖𝑓𝑒  and the penalty per passenger 

𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 : 

𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ ∑ [(𝑢𝑝 − 𝑣𝑝) ∙ ∑(𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

∙ 𝑞𝑟
𝑦𝑒𝑎𝑟

)

𝑟∈𝑹

]

𝑝∈𝑷

 (3.50) 
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3.4.7 Model Formulation 
This section presents the finalised mathematical programming model formulation for the TNDFSP of this 

project. It essentially presents an overview of section 3.4.5 and 3.4.6, in the form of a notation and a 

formulation. 

 

Notation 

Below, presents the notation used in the TNDFSP formulation, consisting out of 6 sets, 7 variables and 20 

parameters. 

Table 3.6 TNDFSP notation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The twenty-three equations below form a Mixed-Integer Linear Program (MILP). Equation (3.51) is the 

objective function, which maximises profit while also taking the user perspective into account. It consists 

out of three parts, here listed in the order of how they are presented above: 

1. Ticket revenue (see equation (3.9)) and infrastructure costs (see equation (3.10)) 

2. Rolling stock costs (see equation (3.48) and (3.49)) 

3. Transfer penalties (see equation (3.50)) 

 

  

Sets 
𝑵 Set of nodes 𝑛 ∈ 𝑵 
𝑨 Set of arcs 𝑎 ∈ 𝑨 
𝑷 Set of OD pairs 𝑝 ∈ 𝑷 
𝑹 Set of OD flow routes (and potential operating lines) 𝑟 ∈ 𝑹 

𝑵𝒄𝒍𝒐𝒔𝒆  Set of node pairs breaking the minimum distance boundary (𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆  
𝑨𝒄𝒓𝒐𝒔𝒔 Set of arc pairs crossing each other (𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 

Decision variables 
𝑥𝑟  Whether OD flow route 𝑟 ∈ 𝑹 is selected (1) or not (0) [−] 
𝑦𝑎  Whether arc 𝑎 ∈ 𝑨 is selected (1) or not (0) [−] 
𝑧𝑛  Whether node 𝑛 ∈ 𝑵 is selected (1) or not (0) [−] 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 Number of trains acquired to operate line 𝑟 ∈ 𝑹 [𝑡𝑟𝑎𝑖𝑛𝑠] 
𝑤𝑟  Operating frequency of line 𝑟 ∈ 𝑹 [𝑡𝑟𝑎𝑖𝑛𝑠 / ℎ𝑟] 
𝑢𝑝 Whether OD pair 𝑝 ∈ 𝑷 flows over the network (1) or not (0) [−] 
𝑣𝑝 Whether OD pair 𝑝 ∈ 𝑷 is served directly by a selected line (1) or not (0) [−] 

Parameters 
𝑓𝑟

𝑟𝑒𝑣  Lifetime revenue for OD flow route 𝑟 ∈ 𝑹 [€] 
𝑓𝑎

𝑐𝑜𝑠𝑡  Lifetime cost for arc 𝑎 ∈ 𝑨 [€] 
𝑘𝑇  Unit rolling stock operating and maintenance cost [€ / (𝑝𝑎𝑥 ∙ 𝑘𝑚)] 
𝑘𝑋 Unit rolling stock acquisition cost  [€ / 𝑡𝑟𝑎𝑖𝑛] 

𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  Unit transfer penalty [€ / 𝑝𝑎𝑥] 
𝑇𝑙𝑖𝑓𝑒  Project lifetime [𝑦𝑒𝑎𝑟𝑠] 

𝐻 Operating hours per day [ℎ𝑜𝑢𝑟𝑠 / 𝑑𝑎𝑦] 
𝐷 Operating days per year [𝑑𝑎𝑦𝑠 / 𝑦𝑒𝑎𝑟] 
𝑠 Seat capacity [𝑝𝑎𝑥 / 𝑡𝑟𝑎𝑖𝑛] 

𝑊𝑚𝑎𝑥  Maximum allowed frequency [𝑡𝑟𝑎𝑖𝑛𝑠 / ℎ𝑟] 
𝑐𝑛𝑟

𝑛𝑜𝑑𝑒  Whether OD flow route 𝑟 ∈ 𝑹 covers node 𝑛 ∈ 𝑵 (1) or not (0) [−] 
𝑐𝑎𝑟

𝑎𝑟𝑐  Whether OD flow route 𝑟 ∈ 𝑹 covers arc 𝑎 ∈ 𝑨 (1) or not (0) [−] 
𝑐𝑝𝑟

𝑂𝐷𝑝𝑎𝑖𝑟  Whether OD flow route 𝑟 ∈ 𝑹 covers OD pair 𝑝 ∈ 𝑷 (1) or not (0) [−] 

𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟  Whether OD flow route 𝑟 ∈ 𝑹 exactly matches OD pair 𝑝 ∈ 𝑷 (1) or not (0) [−] 

𝑞𝑟
𝑦𝑒𝑎𝑟  Yearly passenger flow for OD flow route 𝑟 ∈ 𝑹 (in both directions) [𝑝𝑎𝑥 / 𝑦𝑒𝑎𝑟] 

𝑞𝑟
𝑝𝑒𝑎𝑘  Peak hour passenger flow for OD flow route 𝑟 ∈ 𝑹 (per direction) [𝑝𝑎𝑥 / ℎ𝑟] 
𝑡𝑟  Travel time along route 𝑟 ∈ 𝑹 [ℎ𝑟] 
𝑑𝑟  Length of route 𝑟 ∈ 𝑹 [𝑘𝑚] 
𝑙𝑟  Whether OD flow route 𝑟 ∈ 𝑹 is a valid operating line (1) or not (0) [−] 
𝑀 Arbitrarily large constant [−] 
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Formulation 

The formulation of the linear program to solve this project’s TNDFSP are presented below: 

 

𝑚𝑎𝑥 ∑(𝑥𝑟 ∙ 𝑓𝑟
𝑟𝑒𝑣)

𝑟∈𝑹

− ∑(𝑦𝑎 ∙ 𝑓𝑎
𝑐𝑜𝑠𝑡)

𝑎∈𝑨

  

 − [𝑘𝑋 ∙ ∑(𝑛𝑟
𝑡𝑟𝑎𝑖𝑛)

𝑟∈𝑹

] − [𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑇 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙ ∑ (
𝑛𝑟

𝑡𝑟𝑎𝑖𝑛 ∙ 𝑑𝑟

𝑡𝑟
)

𝑟∈𝑹

]  

 − [𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ ∑ [(𝑢𝑝 − 𝑣𝑝) ∙ ∑(𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

∙ 𝑞𝑟
𝑦𝑒𝑎𝑟

)

𝑟∈𝑹

]

𝑝∈𝑷

] (3.51) 

𝑠. 𝑡. 𝑧𝑛 ≥ 𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒           ∀𝑛 ∈ 𝑵, ∀𝑟 ∈ 𝑹 (3.52) 

 𝑧𝑛 ≤ ∑(𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒)

𝑟∈𝑹

          ∀𝑛 ∈ 𝑵 (3.53) 

 𝑦𝑎 ≥ 𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐           ∀𝑎 ∈ 𝑨, ∀𝑟 ∈ 𝑹 (3.54) 

 ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟) ≤

𝑟∈𝑹

1          ∀𝑝 ∈ 𝑷 (3.55) 

 𝑧𝑖 + 𝑧𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆 (3.56) 

 𝑦𝑖 + 𝑦𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 (3.57) 

 𝑤𝑟 ≤ 𝑊𝑚𝑎𝑥 ∙ 𝑙𝑟 ∙ 𝑥𝑟          ∀𝑟 ∈ 𝑹 (3.58) 

 𝑠 ∙ ∑(𝑤𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)

𝑟∈𝑹

≥ ∑(𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐 ∙ 𝑞𝑟

𝑝𝑒𝑎𝑘)

𝑟∈𝑹

          ∀𝑎 ∈ 𝑨 (3.59) 

 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 − 1 ≤ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟           ∀𝑟 ∈ 𝑹 (3.60) 

 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ≥ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟          ∀𝑟 ∈ 𝑹 (3.61) 

 𝑢𝑝 ≤ ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.62) 

 𝑢𝑝 ≥ 𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

          ∀𝑝 ∈ 𝑷, ∀𝑟 ∈ 𝑹 (3.63) 

 𝑣𝑝 ≤ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.64)  

 𝑀 ∙ 𝑣𝑝 ≥ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (3.65)  

 𝑢𝑝 ≥ 𝑣𝑝          ∀𝑝 ∈ 𝑷 (3.66) 
 𝑥𝑟 ∈ {0, 1}          ∀𝑟 ∈ 𝑹 (3.67) 
 𝑦𝑎 ∈ {0, 1}          ∀𝑎 ∈ 𝑨 (3.68) 
 𝑧𝑛 ∈ {0, 1}          ∀𝑛 ∈ 𝑵 (3.69) 
 𝑤𝑟 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (3.70) 
 𝑛𝑟

𝑡𝑟𝑎𝑖𝑛 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (3.71) 
 𝑢𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (3.72) 
 𝑣𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (3.73) 

 

All constraints are mentioned and explained in section 3.4.5 and 3.4.6.  

 

3.4.8 Model Input Data  
This section will list the various ways that the data regarding sets and parameters (as listed in the model 

formulation) are acquired. Some adaptations to the approach defined in section 3.2.3 were made: 

 

Set of nodes 𝑵 

As indicated in section 1.1.1, high-speed rail serves to connect urban centres (López-Pita & Robusté, 2004). 

For this reason, a complete overview of all urban centres within the scope defined in section 1.5 would 

serve as a starting point. Florczyk et al. (2020), on behalf of the European Commission, used satellite images 

to identify urban centres based on human settlements. Their method avoids man-made borders and 

arbitrary population thresholds, focusing instead on the interconnectedness of nearby cities, villages, and 

towns that function as a unified urban area. The associated data set provides data on 160 metrics for 13,135 

urban centres world-wide. The full set of urban centres (nodes) will be obtained as filtering out urban centres 

based on their coordinates, incompatible with the scope as defined by Figure 1.7 and Appendix C. The 

coordinates help with defining sets 𝑁𝑐𝑙𝑜𝑠𝑒  and 𝐴𝑐𝑟𝑜𝑠𝑠 . 
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Lifetime revenue per OD flow route 𝒇𝒓
𝒓𝒆𝒗 

This data is acquired by the demand forecasting model and its associated optimal fare setting. The data 

base made by Florczyk et al. (2020) provides information needed regarding the demand forecasting model 

(equation (3.2)). For this reason, it was deemed easier to make an adaptation in data acquisition when 

compared to the calibration stage (see section 3.2.3). This was done only for acquiring data on GDP per 

capita, since the dataset provides both sets of data needed: 

• Total Gross Domestic Product 𝐺𝐷𝑃𝑖 , which also allows us to calculate the GDP per capita. It is 

measured in 2011 USD and is adjusted for inflation. 

• Population 𝑃𝑖  within the defined urban centre boundaries (measured in 2015, which is deemed to 

be an accurate representation of today’s population). 

 

The demand database (see section 3.2.3) is based on air passenger numbers, and thus is reported per airport. 

As discussed in this section, it has to be translated to being UC-specific. For this reason, a matching is 

needed. To do this, each airport will be coupled the (main) city they serve. The coordinates and Haversine 

formula as introduced in section 3.2.3 are used here. In the section 3.2, two ways were mentioned in order 

to represent total trip generation: 

• The observed number of air passengers 𝐷𝐴𝐼𝑅,𝑖𝑗  

• The outcome of the gravity model 

 

Due to being a real-life observation, the number of air passengers is perceived as more accurate than the 

outcome of the gravity model, which is only an approximation. Therefore, this methodology opts to always 

use observed air demand for forecasting total trip generation, unless (1) air demand is unknown, or (2) the 

travel distance is shorter than 1000 km, as these OD pairs are subject to competition from other modes (see 

section 3.2.3). In the latter case, the observed air demand is only used if larger than the outcome of the 

gravity model. This is done in order to never exclude (the more accurate) observed passengers, while 

always keeping a realistic estimator in the back of mind. Below, Table 3.7 summarises the methodology 

used for all possible scenarios. 

 

Table 3.7 Used predictor of total trip generation 

 

 

 

 

 

3.4.9 Pre-processing 
In this section, the model’s pre-processing methodology will be described, which aims to reduce the sizes 

of sets that are input for the optimisation model. These are the set of nodes 𝑁, arcs 𝐴, OD pairs 𝑃 (‘network 

simplification’) and OD pair flow routes 𝑅 (‘route generation’). 

 

Network simplification 

Frei et al. (2010) cites multiple European long-distance travel studies, who all set 100 km as a minimum 

threshold regarding arc length. For this reason, Deutschel (2022) set the same distance as threshold when 

researching the potential mode shift to HSR in Europe.  

In Europe, the longest distance between two HSR stations is 253 km (European Court of Auditors, 

2018). Therefore, considering all potential arcs is unnecessary, as many of them are much longer than 253 

km. To have a safe margin, it is decided to set 500 km as the maximum allowed arc length. This also 

matches the maximum distance over which European high-speed rail generally is competitive with other 

transport modes, according to last-mentioned authors. The 100 km minimum bound by Frei et al. (2010) 

will be used for this project as well.  

Travel 
distance 

Air demand known 
Yes No 

< 1000 km max(gravity, airpax) gravity 
≥ 1000 km airpax gravity 
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Recall the work of Magnanti & Wong (1984): the TNDFSP is a NP-hard problem, meaning that its running 

time to solve increases exponentially with the number of nodes, arcs and OD-pairs considered. For this 

reason it is much more attractive to keep invalid arcs out of the model entirely, during the creation of the 

set of arcs 𝐴. Following up on this, the sets of nodes 𝑁 and OD pairs 𝑃 are updated as well. 

 

Route generation 

The goal of this algorithm is to find all valid routes for each OD pair’s passengers. What makes a route 

‘valid’ or ‘invalid’ will be described later in this section. 

Following the previously-mentioned reasoning of Magnanti & Wong (1984), the potential number of 

routes is extremely large, increasing exponentially with the size of the network. An efficient algorithm must 

be used in order to find all valid routes. The Python package ‘NetworkX’ will be used, known for efficiently 

analysing the structure of networks, and is the most commonly used package for this goal (Nvidia, 2024). 

Our algorithm will iterate over the OD pairs 𝑝 ∈ 𝑃, and follow the steps below for each 𝑝. 

 

(1) Potential network definition 

This comprises all nodes and arcs the passengers of OD pair 𝑝 are allowed to travel on. These sets are 

defined by the maximum detour factor 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 , earlier set at 1.25 in section 3.4.5. Recall the meaning of this 

factor: passengers will not travel over routes more than 25% longer than the length of the shortest possible 

route. Below, equation (3.74) will mathematically define its meaning. Let the origin node of OD pair 𝑝 be 

defined as 𝑛𝑝
𝑜𝑟𝑔

 and its destination node as 𝑛𝑝
𝑑𝑒𝑠𝑡 . Also, let the distance between two nodes 𝑎 and 𝑏 be 

defined as 𝑑(𝑎, 𝑏). Then, the set of nodes for OD pair 𝑝 is defined as 𝑁𝑝: 

 

𝑵𝒑 = {𝑛 ∈ 𝑵 | 𝑑(𝑛𝑝
𝑜𝑟𝑔

, 𝑛) + 𝑑(𝑛, 𝑛𝑝
𝑑𝑒𝑠𝑡) ≤ 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 ∙ 𝑑(𝑛𝑝

𝑜𝑟𝑔
, 𝑛𝑝

𝑑𝑒𝑠𝑡)} (3.74) 

 

The set of arcs for OD pair 𝑝 can then be defined as 𝑨𝒑, which consists only out of arcs for which both end 

nodes are in 𝑵𝒑 . Then, for OD pair 𝑝, the algorithm only considers graph 𝐺𝑝 = (𝑁𝑝, 𝐴𝑝), which can be 

considerably smaller than 𝐺 = (𝑁, 𝐴). 

 

(2) Path finding strategy 

The algorithm searches for all paths between the origin and destination nodes of the OD pair, stopping 

when the path exceeds the maximum detour. It uses a breadth-first search (BFS) strategy, which explores 

nodes progressively by distance, unlike depth-first search (DFS), which goes as deep as possible before 

backtracking. Since distance is a key constraint due to the maximum detour, BFS is preferred for our 

algorithm, as it is more efficient for finding shortest paths (Rocha & Ferreira, 2018). 

 

(3) Path constraints 

The algorithm will not explore paths any further if the maximum detour for that OD pair 𝑝 is exceeded. 

Four other criteria are defined to stop the algorithm from exploring redundant paths any further: 

1. If it visits a node for the second time 

2. If the added node moves further from the destination (or closer to the origin) of the OD pair 

3. Anti-zigzagging rules: the angle of deviation between two consecutive arcs may not be larger than 

90 degrees, and cumulative a maximum of 135 degrees is imposed 

4. If the route fails to generate a positive level of demand. following equation (3.23), it would then 

hold 𝛼𝑝 + 𝛽𝑝 ∙ 𝑡𝑝 + 𝛾𝑝 ∙ 𝑐𝑝 ≤ 0. 

 

The outcome for each OD pair 𝑝 is a list of routes, defined as sequences of arcs. The algorithm will be ran 

over all 𝑝 ∈ 𝑷 to produce a complete set of routes 𝑹. 
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3.4.10 Optimisation 
The focus of this section lies on explaining how the model formulation will be applied in order to solve. 

 

Hardware and software 

The model formulation for network and line design will be written in Python 3.7.13 code language, with a 

loaded in Gurobi Optimizer 9.5.2, which is one of the world’s fastest and most popular available commercial 

solvers for mathematical problems. It is well capable of solving various kinds of complex (non-)linear and 

other problems, such as transport network related formulations. For example, Air France uses it to design 

and optimise its flight schedule (Financial Post, 2019). 

The mathematical problem related to this project will be solved on a Lenovo laptop with 2.3GHz Intel 

i7-11800H CPU and 32GB of RAM, and 64-bit Windows 11 as OS. 

 

Strategy 

Since it will be unknown a priori how the running time of the optimisation depends on the number of cities 

taken into account, it is decided to rank them based on their population. At first, the top two cities in terms 

of population make up the set of nodes. One city will be added at a time, as long as the running time of the 

model stays within a reasonable duration of six hours. It is assumed that after some point, no new cities will 

be added to the optimal network as their population has become too small to make an impact on the 

objective value. As discussed earlier, the Chinese HSR network is considered a leading example in HSR 

network potential. This network aims to connect all cities with over 500,000 inhabitants (China Daily, 2020). 

It is aimed for to take all European cities meeting this criterion at the least. Literature review in section 3.2 

and 3.3 offered no findings of a ‘minimum population’. Therefore, we hope to include more cities, lowering 

this inhabitant bound by as much as possible, as it increases the result’s scientific value. 

 

3.4.11 Model Validation 
The workings of the model will be validated by means of a stability analysis and benchmarking. The 

methodologies for both are explained below. 

 

Model stability analysis 

Our model is used to inform important decisions. For this reason, it is important to assess if and how our 

optimal network design changes if we change the value of input parameters. This way, we can built our 

confidence in the model’s predictions. After inspection of the parameters in section 3.4.7, it was determined 

that only the fare settings (travel costs) are likely to vary significantly in reality.  

In order to assess how our model reacts to realistic fare variations, we multiply the fare of each potential 

connection with a randomly drawn value from a uniform distribution between 0.9 and 1.1, which simulates 

a random change deviating within 10% from the original fare. This test is ran six times, and possible changes 

from the original optimal solution will be assessed. Since our model must be ran a significant number of 

times, it was determined that the model should be able to find the optimal solution in approximately 30 

minutes. 

 

Benchmarking 

As stated in section 1.2.3, currently, no model has been developed in order to truly optimise a network 

design, for medium-to-large sized networks, with reasonable computation times. The only methods 

currently out there are (meta)heuristics. In order to close the loop, we will see how well our optimisation 

model measures up against other state-of-the art heuristic TNDFSP solving approaches, it will be 

benchmarked to the network of Mandl (1980), which is the most widely known benchmark problems 

(Kechagiopoulos & Beligiannis, 2014). Benchmarking comes down to validating the optimisation model. 
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The network encompasses 15 nodes and 21 arcs, 

resembling a number of cities in Switzerland. 

Similar to our problem, demand is exerted 

bidirectionally, with peak hour demand already 

provided. In total, this demand equals 15,570 

during peak hour. Each arc is attributed a travel 

time, which has no unit. A graph representation of 

the network is provided in Figure 3.3, while the 

demand matrix can be found in Appendix I.  

 

In order to correctly benchmark our model, we 

must adhere to the nature of Mandl’s network and 

the assumptions that comparable approaches 

made in order to address it. Only then, we can 

compare our results to other approaches in 

literature. The assumptions and adjustments by 

our model to address the network are listed below: 

 

• Set of nodes now consists out of 15 

unnamed nodes 

• Set of arcs only considers the arcs in Mandl’s graph, not all possible node-pair combinations 

• Set of OD pairs does consider all node-pair combinations 

• Given the fact that the network is already constructed, sets of close nodes and crossing arcs can 

be left out.  

• We only optimise the design for one peak hour, not for the entire lifetime, as no information is 

given regarding development of demand over time. Therefore, we can only optimise for 

operational profitability (equation (3.19)), not lifetime profitability. This means that infrastructure 

construction costs and rolling stock acquisition costs cannot be taken into account. 

• Infrastructure maintenance and operation costs are not taken into account either, since they 

depend solely on the total length of infrastructure, which is pre-determined for this network. 

• The seat capacity of transport vehicles is set to 40, matching the approach of Arbex & da Cunha 

(2015).  

• The demand is kept elastic. For the shortest possible route, the demand is set to the value provided 

by the demand matrix. In order to exert the same maximum detour factor of 1.25, demand will be 

linearly interpolated in between, with demand set to zero if this detour factor is reached. Fares are 

set equal to €0.15 per km, which roughly matches the value found from our database.  

• An average operating speed of 250 km/h is assumed, meaning the length of routes in km is equal 

to 250 times the travel time in h, and 
𝑑𝑟

𝑡𝑟
 in equation (3.51) is set to 250. 

Figure 3.3 Mandl's network (Arbex & da Cunha, 2015) 
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4 Results 
In this chapter, the methodology defined in the sections of chapter 3 is implemented. The 

sections of the results follow the same structure as the methodology in the previous chapter. 

Section 4.1 presents the results related to the demand forecasting model, section 4.2 does so for 

profitability estimation and section 4.3 for network design. 

 

4.1 Demand Forecasting  
As indicated in section 3.2.4, the gravity part of the model defined in equation (3.2) will be calibrated on air 

passenger data.  

 

4.1.1 Data Collection for Calibration 
This section presents the outcomes of the applied methodology described in section 3.2.3: an overview of 

the data gathered, which serves as input for calibration of the demand forecasting model. 

 

Airports & air demand 

The six pre-processing steps were followed. Table 4.1 presents a summary of the found results, with notable 

findings listed further below: 

 

Table 4.1 Summary of air demand data pre-processing 

Pre-processing step 
Airport  
pairs 

Unique 
airports 

Passengers  
(x106) 

Tracking 
years 

1. Data set combining 19,136 716 29,210 1993-2023 
2. Time scoping 9,751 680 1,898 2019 
3. Area scoping 5,338 294 1,082 2019 
4. Airport combining 4,320 268 1,082 2019 
5. Directional combining 2,656 268 1,136 2019 
6. Competition adaption 514 71 320 2019 

 

• Data set combining; The 36 country-specific air passenger data sets (Appendix C) were 

combined. Yearly passenger data was found over a 31-year tracking period (1993-2023).  

• Time scoping; In the year of interest (2019), 1.92 billion passengers were transported. Of the raw 

data, only 9,822 airport pairs (51.3%) contain nonnegative yearly passenger counts, and 71 (0.7%) 

were reported as ‘Unknown’. All countries in the scope are still represented, except for Bosnia and 

Herzegovina, for which only 2021 data is available (see Appendix C). 

• Area scoping; More than half (56.8%) of unique airports were deleted, as they were outside of the 

scope of the project. Their related airport pairs (and thus passengers) were deleted as well. The 

great majority of deleted airports are ‘the other ends’ of intercontinental flights, but also airports 

located on European islands were deleted.  

• Airport combining; As expected, in some cases multiple airports of the same origin city serve 

flights to the same destination city. In the database’s most extreme case, it contains passenger 

counts for nine different airport combinations from the city of London to the city of Milan. In fact, 

by transforming the airport-oriented into city-oriented data, the data set shrinks significantly in the 

number of airports and associated OD pairs.  

• Directional combining; For 23% of locations (5% of the passenger numbers), the return 

passenger count was missing. For these city pairs, the total travel potential was calculated as twice 

the outward passenger number. The available data shows that this assumption can be made. As 

seen from the mentioned percentages, the missing data mainly originates from smaller airports. In 
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total, 268 unique cities, and 2,656 unique city pairs were found when combining outward and return 

flights. Of these, Table 4.2 shows the five most popular city pairs for air passengers. Note the 

alphabetical ordering of city names in city pairs, which was chosen deliberately. 

 

Table 4.2 Top 5 most popular air connections (city-pairs) within scope 

# 
City 1 City 2 Passengers 

(2019) Name, Country Name, Country 
1  Amsterdam, Netherlands  London, England 9,847,961 
2  Barcelona, Spain  London, England 7,209,728 
3  Edinburgh, Scotland  London, England 6,746,995 
4  Paris, France  Toulouse, France 6,441,863 
5  Nice, France  Paris, France 6,364,516 

 

• Competition adaption; When adjusted for competition among airports, the data set attained 

after the previous five pre-processing steps serves as a starting point, as it encompasses all air 

passenger numbers that could be retrieved. 71 unique airports were found with 514 connections 

among them, serving 320 million passengers yearly. Even though only 19% of the full data set’s 

city pairs are considered for this sample, they represent 28% of the passengers. The figure below 

shows the selected airports for calibration. Figure 4.1 presents the eligible set of unique airports. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model-implied impact factors 

This section will first look into how missing data was handled. Then, a statistical summary of all impact 

factor data is presented. 

 

Missing data 

Travel cost data missing in Rome2Rio (2024) was found for a number of unforeseeable cases. Here, it is 

listed how these were solved. 

Figure 4.1 Airports in calibration data 



 4. Results  |  75   

 
 

• Special case 1: Non-reported travel costs for car-based, train-based or plane-based trips. They 

will be estimated by using: 

o The average driving cost / hour equals € 22.35 (calculated from data set) 

o The average train travel cost / hour equals € 14.85 (calculated from data set) 

o The average plane travel cost / hour equal € 46.93 (calculated from data set) 

 

• Special case 2: Trips making use of the Eurotunnel between the UK and France are classified as 

train-based trips, even though one may also board a car on the train. To allow car-based trips 

between the UK and France, their travel times and costs are estimated by adapting the found travel 

costs for trips through the Eurotunnel, using the following: 

o The Eurotunnel car travel time equals 35 minutes (Eurotunnel, 2024) 

o The average driving cost / hour equals € 22.35 (calculated from data set) 

o The Eurotunnel car fare price equals € 135 (Eurotunnel, 2024) 

 

The following formula is used to calculate the new car-based Eurotunnel trip’s travel cost 𝑇𝐶𝑛𝑒𝑤 , 

based on the reported travel time in hours 𝑇𝑇𝑜𝑙𝑑 : 

 

𝑇𝐶𝑛𝑒𝑤 = (𝑇𝑇𝑜𝑙𝑑 −
35

60
) ∙ 22.35 + 135 (4.1) 

 

• Special case 3: No car-based travel alternative found, even though all cities lie in continental 

Europe and connected by road.  

o The average speed of a car-based trip is 105.88 km/h (calculated from data set) 

o The travel distance by car can be found through web scraping (section 3.2.3) 

 

Statistical summary 

The data shows great variation among all variables, indicated by the standard deviation being larger than 

the mean value. This is great news, as the calibrated model should be able to cope with a wide range of 

population catchments 𝑃𝑖,𝑡. The same can be said about the other variable that relates to people: the number 

of air passengers 𝐷𝐴𝐼𝑅,𝑖𝑗. GDP (city total 𝐺𝐷𝑃𝑖  or per capita 𝐺𝐷𝑃𝐶𝐴𝑃𝑖) and distances 𝑑𝑖𝑗 vary much less, which 

does not impose a problem, since the choice of locations is spread well across the continent. The table 

below represents the key characteristics of the data used for model calibration. 

 

Table 4.3 Characteristics of calibration data 

Variable Unit N MIN Q1 MEDIAN Q3 MAX AVG STD 
𝑃𝑖,15 [pax] 71 923 129,989 253,994 636,786 2,342,971 442,383 474,620 
𝑃𝑖,30 [pax] 71 4,133 356,929 708,944 1,662,124 9,974,841 1,265,734 1,548,360 
𝑃𝑖,45 [pax] 71 12,388 520,215 1,113,145 2,490,703 13,417,545 1,916,266 2,332,799 
𝑃𝑖,60 [pax] 71 36,904 797,282 1,515,685 3,082,523 14,474,396 2,504,137 2,835,263 
𝑃𝑖,75 [pax] 71 43,916 1,060,284 1,952,954 3,722,006 15,108,562 3,121,031 3,270,876 
𝑃𝑖,90 [pax] 71 59,127 1,309,692 2,580,338 4,941,481 17,432,372 3,820,950 3,768,015 
𝑃𝑖,105  [pax] 71 68,970 1,628,828 3,298,628 5,920,694 20,158,470 4,618,074 4,424,464 
𝑃𝑖,120  [pax] 71 72,672 1,996,925 3,646,519 6,874,958 23,084,990 5,473,373 5,280,943 
𝐺𝐷𝑃𝑖 [M€] 71 1,178 15,344 35,447 98,136 757,630 84,055 127,604 
𝐺𝐷𝑃𝐶𝐴𝑃𝑖 [K€] 71 5.980 38.293 58.562 103.434 607.256 83.758 84.513 
𝑑𝑖𝑗  [km] 514 1,001 1,229 1,517 1,882 3,364 1,623 482 
𝐷𝐴𝐼𝑅,𝑖𝑗  [pax] 514 34,660 121,820 309,341 736,350 7,209,728 622,587 871,726 
N = number of values; MIN = minimum; Q1=first quartile; Q3=third quartile; MAX=maximum; AVG=average; STD=standard deviation 
K€ = thousand euros; M€ = million euros 
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4.1.2 Model Calibration 
This section describes the outcomes of the conducted methodology in section 3.2.4, which states the road 

to attributing values to each of the demand forecasting model’s parameters. In the mentioned section, it 

was determined that only the gravity part is calibrated to observed data.  

 

The gravity model was calibrated for various catchment area sizes, as well as for both total GDP and GDP 

per capita, to see what GDP indicator explains the data best. The 𝑅2  fit for both models at various 

catchment area sizes are plotted in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of 𝑅2, the GDP model outperforms the GDP/cap model for all catchment area sizes. However, this 

seems due to overfitting, as most calibrated parameters are not showing a decent statistical significancy, and 

some are of the wrong sign. The likely cause is the intercorrelation between two of the GDP model’s 

variables: population and total GDP. The GDP/cap model’s fit varies with the choice of catchment area size, 

with an optimal fit at 45 minutes. This aligns with the findings of Martínez et al. (2016) in section 2.1.6: 80% 

of HSR users live within a 30 min travel. Even though the GDP/cap model has a poorer fit than the total 

GDP model, most of its calibrated parameters show strong statistical significance and have the correct sign. 

Due to the significant parameters, the model is likely to represent true relationships in the data, making it 

easier to interpret and trust. This also enhances predictive power, as the model likely captures real effects. 

For these reasons, the GDP/cap model is chosen, as it balances a good fit with great parameter significance. 

Below, Table 4.4 shows the calibration results. 

The GDP/cap model also points out one could better underestimate than overestimate the catchment 

area size, as for smaller catchment areas the optimal model fit decreases rapidly. It indicates the significant 

role that large regional airports serve. Typically, 45 minutes is ample time to reach destinations situated 

reasonably far from the city and its centre. Trying all possibilities of combinations of catchment areas, as 

described in section 3.2.3, yielded no better results.  

 

Table 4.4 Chosen gravity model’s calibration results 

Parameter Coeff.  Std t-stat p-value 
𝑘 -2.524 ** 0.606 -4.16 3.74 x 10-5 

𝛼 0.564 ** 0.028 20.31 0 
𝛽 0.382 ** 0.046 8.22 1.55 x 10-15 
𝛾 0.139  0.130 1.03 3.02 x 10-1 
Est. = estimated value; Std = standard deviation; Significant at conf. level: 95% (*), 99% (**)  

 

All parameters’ estimates of the expected sign, and all but distance parameter 𝛾 are showing a great level 

of significance. This means that in the data, the relationship between distance and demand cannot be picked 

up as easily as for other model-assumed relationships. The parameter is still significant at a 70% confidence 

level.  

Figure 4.2 Model fit for varying catchments and GDP measures 
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Figure 4.3 shows the relationship between the observed and estimated total passenger flows for the 514 

city pairs used for calibration. In red, the line 𝑦 = 𝑥 is plotted. For a perfectly accurate demand forecasting 

model, all points should be on this line. However, it can be seen that popular routes are underestimated 

and unpopular routes are overestimated. The cause for this bias is already known; literature review in 

section 2.1.6 states that larger airports generally have larger catchment areas. Even though small airports 

are excluded, still a wide variety in passenger numbers per year exists among the airports (1-192 million). 

In this model however, popular airports are assumed to have the same catchment area size as small airports, 

leading to an underestimation of the potential number of passengers for large airports, and an 

overestimation for smaller airports. This fact is even more accentuated by the trend line of the data points, 

indicated in orange in Figure 4.3 below. The model fits the data reasonably well, reaching a 𝑅2 value of 

0.468. 

 

Bias elimination 

As described in section 3.2.4, the found bias will be removed by making use of the orange trendline, for 

which linear parameters 𝑎 = 0.4684 and 𝑏 = 2.9257 were found. This means all predicted flows should 

be adjusted by equation (3.6). When applied to the data points in Figure 4.3, it can be observed that the 

bias is indeed eliminated, while increasing the model fit significantly to 0.751: 

 

Figure 4.3 Left: observed vs. predicted total flow. Right: accompanying error histogram (N=514, R2=0.468) 

Figure 4.4 Left: observed vs. new predicted total flow. Right: accompanying new error histogram (N=514, R2=0.751) 
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4.1.3 Model Validation 
Section 3.2.5 described how the calibrated part of the demand forecasting model will be validated. It can 

be verified using Table 4.1 that taking the data erased by last pre-processing step yields a data set of 816 

million passengers, traversing 266 unique cities and 2,142 connections. After elimination of intermodal 

competition effects by removing connections with length under 1,000 km, a validation data set of 180 

million passengers, 187 cities and 890 connections remains. The relatively large share of small Scandinavian 

airports providing data for regional flights only is responsible for the significant loss of cities in the data set. 

A statistical summary of this data set is provided in the table below.  

 

Table 4.5 Characteristics of validation data  

Variable Unit N MIN Q1 MEDIAN Q3 MAX AVG STD 
𝑃𝑖,45 [pax] 187 4,191 1,797,283 4,129,149 7,798,901 29,518,637 6,225,502 6,358,880 
𝐺𝐷𝑃𝐶𝐴𝑃𝑖 [€] 187 5,980 33,844 48,534 93,859 607,256 72,364 68,010 
𝑑𝑖𝑗  [km] 890 1,000 1,225 1,473 1,741 3,120 1,527 377 
𝐷𝐴𝐼𝑅,𝑖𝑗  [pax] 890 20,114 67,137 99,356 214,235 3,195,192 202,426 293,041 
N = number of values; MIN = minimum; Q1=first quartile; Q3=third quartile; MAX=maximum; AVG=average; STD=standard deviation 
K€ = thousand euros 

 

Since the calibration stage determined the catchment area size and the GDP indicator, the table above 

contains much less rows than Table 4.1. Both the number of cities and connections are larger than they are 

in the calibration data set.  

The validation approach used by Belal et al. (2020) is adopted here. We select five 'interesting' air 

connections and compare the model's predictions against the observed demand for these routes. To 

identify ‘interesting’ connections, we filter the database for routes with an observed yearly demand of over 

500 thousand passengers, as the model specifically targets popular connections. To ensure variation in the 

thousand data, no city is selected more than once. The table below presents the model's accuracy in 

forecasting demand for these selected connections. 

 

Table 4.6 Validation results 

Connection Observed demand Predicted demand Difference  
(% in 10-log) Ordinary 

notation 
log Ordinary 

notation 
log 

London-Faro 3,195,192 6.50 54,448 4.74 -27.2 
Paris-Seville 945,180 5.98 851,616 5.93 -0.8 
Milan-Porto 780,703 5.89 843,851 5.93 +0.6 
Istanbul-Geneva 680,629 5.83 554,840 5.74 -1.5 
Málaga-Düsseldorf 555,346 5.74 509,695 5.71 -0.6 

 

The results show that the model predicts demand reasonably well, with the absolute deviation in terms of 

10-log staying within 2%. The only exception here is the London to Faro connection, which is severely 

underestimated by the model. This indicates that the model is not able to estimate trips that have a heavy 

touristic character. This comes as no surprise, since the model only takes population, GDP and distance 

into account. The correlation between observed and predicted demand in the table above, when expressed 

in base 10 logarithm, equals a R2 value of 0.773. Without taking connections with a touristic character into 

account, this value would reach 0.793. 
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4.1.4 Demand Evolution 
This section presents the results after implementation of the related methodology in section 3.2.6. 

 

Economic demand growth 

Section 3.2.6 described how the economic growth-related demand factor 𝑘𝑖𝑗
𝑒𝑐𝑜 for a connection between 

city 𝑖  and city 𝑗 should be calculated. Regarding data collection, it applies to finding 𝑝𝑖𝑗 , which is the 

minimum economic growth rate among the two countries related to city pair 𝑖𝑗  as a percentage. As 

explained, for each country this value is found by taking the median yearly growth rate 𝑝 over the last 40 

years. The results of the data provided by World Bank (2023) are presented in the figure below: 

 

 

A significant variation exists among the 39 countries within this project’s scope, between 5.04% (Turkiye) 

and 1.38% (Greece). From the graph, one can confirm that the highest 𝑝𝑖𝑗 value belongs to connections 

between Turkiye and Kosovo, while the lowest value belongs to any connection made with or within Greece. 

When inserting the possible values into equation (3.8), it turns out that the factor 𝑘𝑖𝑗
𝑒𝑐𝑜 varies between 1.22 

and 2.17. 

 

Induced demand  

As described in section 3.2.6, the level of induced demand is the same for every connection, unless it already 

has an upgradeable high-speed rail line. Therefore, induced demand will come into play during the network 

design stage, and therefore the related results can be found in section 4.3. 

 

 

4.2 Profitability Estimation 
This section provides results related to the profitability model formulated in section 3.3, in which the values 

of all parameters were already determined. Only the unit construction cost per km (for surface and 

tunnelling) still has to be calculated. The steps taken to do so, along with the end results for each country 

are listed in Appendix F. 

  

Figure 4.5 Mean yearly GDP growth (1964-2023) 
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4.3 Network Design 
This section provides results related to the methodology introduced in section 3.4, which has been split 

into three parts here: data collection (section 4.3.1), pre-processing (section 4.3.2) optimisation (section 

4.3.3). The model is validated in section 4.3.4. Lastly, in section 4.3.5, experiments are conducted to identify 

secondary connections, meaning connections that may become relevant under certain HSR-beneficial 

conditions. 

4.3.1 Data Collection 
The process summarises the findings of the implementation of the methodology provided in section 3.4.8, 

which described how the model input data is gathered. As a starting point, the potential network is defined 

by the set of nodes 𝑁, arcs 𝐴 and OD pairs 𝑃. As highlighted previously in section 3.4.8, the definition of 

set 𝑁 fully determines the definition of the two other sets. 

 

Candidate cities 

The data set by Florczyk et al. (2020) provides data on 160 metrics for 13,135 urban centres (hereafter 

referred to as cities) from 184 unique countries. After analysis of Figure 1.7, it was found that the scope is 

covered by a rectangle bounded by 35 to 72 degrees latitude and -12 to 44 degrees longitude. 1,265 cities 

lie within this rectangle. The eventual selection of cities is presented in Figure 4.6, which has the exact same 

boundaries. The following two steps removed cities from the rectangle, for different reasons: 

• 391 cities are located in countries outside of the scope defined by Figure 1.7 and Appendix C 

• 148 cities are located in countries within the scope, but are not part of continental Europe due to 

being located on an island, or in the Asian part of Turkiye. 

 

Below, Figure 4.6 shows the remaining 726 cities, originating from 35 countries. Together, they form the 

set of potential nodes 𝑁, sharing 263,175 possible connections among them.  

 

 

  

Figure 4.6 Urban centres within scope 
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Below, Figure 4.7 shows the representation of every country:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By far, almost a fifth (19%) of all cities are from Great Britain (GBR). A clear top-8 exists, which also includes 

Germany (DEU), Italy (ITA), France (FRA), Spain (ESP), Poland (POL), the Netherlands (NLD) and Romania 

(ROU). A full translation of all other ISO codes can be found in Appendix C.  

Following the methodology described by section 3.4.8, the needed data was gathered regarding all 

potential 726 cities. Below, a statistical summary of the city-related model input data is given: 

 

Table 4.7 Statistical summary of potential nodes 

Characteristic Unit Min Q1 Med Q3 Max Mean Std 
Population [pax] 50,054 66,977 101,361 199,353 14,111,242 285,165 844,314 
Catchment [pax] 195,736 630,026 1,243,560 2,515,302 13,417,545 1,845,190 1,786,929 
GDP / capita [€] 84 11,919 15,772 20,096 51,478 16,105 6,749 
Mean elevation [m] -3 32 80 190 909 142 161 

 

It is clear that the 726 cities encompass a wide range of values in all characteristics. With all human 

settlements of population over 50,000 represented, there is confidence that the set encompasses all 

potential HSR stations. 

 

Matchings 

As stated by the methodology provided in section 3.4.8, airports are matched to cities in set 𝑁 in order to 

appropriately use the air demand data. Between the 268 airports from the air passenger demand data set, 

and the 726 cities, 200 matchings were found. For 198 of these cities, air passenger data is available to at 

least one other airport. A complete list of these urban centres and their allocated airport can be found in 

Appendix C. The original air passenger demand data set contains data for 2,656 airport pairs. When 

translated by use of the matchings with urban centres, it was found that 2,340 of them are connections 

between urban centres. The size of mentioned data sets are listed in the table below. 

 

Table 4.8 Data set sizes 

Data set Nodes Connections 
Potential network 726 263,175 
Demand data set (airports) 268 2,656 
Demand data set (urban centres) 198 2,340 

 

While only 74% of the airports could be matched to an urban center, 88% of their connections can. This is 

due to the fact that the missing airports are not associated with an urban centre. Therefore, these airports 

are generally small, and thus have a relatively low number of connections.  

Figure 4.7 Cities per country in potential network 
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Potential arcs: web scraping results 

Now the information regarding the set of nodes 𝑁 is gathered, it is used to find all necessary arc- and OD 

pair-related data by means of web scraping, following the methodology described in section 3.4.8. Web 

scraping Rome2Rio and Google Maps was firstly performed for all 31,125 city pairs for the 250 most 

populated cities, as this already took more than three days to complete. The task of performing such large 

amounts of searches regularly caused errors due to not being able to load web pages in time. The web 

scraping code had to be adapted to this, to automatically search arc-related data again if the load errors 

occurred. A complete database encompassing the needed data for all 31,125 city pairs was made 

successfully. Below, a statistical summary of this data base is given. Note that all characteristics are based 

on the direct arc between origin and destination. 

 

Table 4.9 Statistical summary of model input data 

Characteristic Unit Min Q1 Med Q3 Max Mean Std 

Demand forecasting         
Line length [km] 16 856 1,423 2,064 5,041 1,507 832 

Travel time (plane) [h] 0.0 5.5 6.6 7.9 26.9 6.6 2.3 
Travel time (train) [h] 0.0 8.3 15.4 24.7 100.0 17.9 12.7 

Travel time (car) [h] 0.2 8.3 13.5 19.7 59.6 14.5 8.1 
Travel time (HSR) [h] 0.1 2.8 4.6 6.6 16.1 4.9 2.6 

Travel cost (plane) [€] 0 184 220 268 1,355 228 90 
Travel cost (train) [€] 0 150 268 380 1,341 272 158 

Travel cost (car) [€] 4 205 336 484 1,453 355 196 
Travel cost (HSR) [€] 37 132 170 213 734 177 71 

1st year HSR demand [pax] 14 6,899 24,237 85,628 10,263,681 108,926 313,918 
Average train speed [km / h] 0 68 83 100 282 83 29 

Alpha-parameter [pax] 35 19,010 61,874 195,717 22,732,344 234,875 662,871 
Beta-parameter [pax / h] -974,438 -8,935 -2,515 -709 -1 -11,355 32,557 

Gamma-parameter [pax / €] -66,572 -610 -171 -48 0 -772 -2,213 
Model linear fit (R2) [-] 0.975 0.995 0.997 0.999 1.000 0.997 0.003 

         
Profitability estimation         

Unit construction cost [M€ / km] 7.0 37.8 47.6 57.7 116.1 48.9 16.7 
Lifetime revenue [M€] 0.1 43.0 139.6 423.7 64,577.4 521.5 1,540.6 

Lifetime infrastructural cost [B€] 0.8 44.4 71.5 100.9 314.4 75.7 42.6 
 

Since all cities are located in continental Europe, travelling between them by car or the potential new HSR 

line should always be possible. This is reflected in the data, as the minimum travel time of these modes is 

larger than zero. A relatively low share city pairs are not connected by plane (4.5%) or train (3.9%), 

indicating the existence of infrastructure related to all modes. Most of the city pairs can be traversed by 

plane within a day, while the median train travel time already exceeds 15 hours. A comparison to the 

median 4.6 hours of potential HSR infrastructure is indicative to the opportunity of HSR development in 

continental Europe. This is even further accentuated by comparing travel costs: when instructed to 

maximise revenue, high-speed rail can be significantly cheaper than competing modes. 

This does not mean that HSR infrastructure should be developed everywhere across the continent. As 

the data shows, in many cases the demand is low, also indicated by a median of only 24,000 passengers 

per year. Only 1.6% of all city pairs would be able to generate a first-year demand of more than 1 million. 

Considered solely, only eleven (0.03%) of them would be profitable. One should keep in mind that this only 

considers direct connections – in networks, most city pairs are not directly connected. It is already 

indicative to how the optimal network would look like: an optimal configuration centred around the biggest 

few European cities. The ’average train speed’ was calculated in order to find upgradeable infrastructure, 

for which the value must be at least 200 km/h. A total of 29 arcs met this criterion. An overview is provided 

in Appendix G. Linearisation of the demand forecasting model was needed in order to be suitable input for 

the optimisation model. For all arcs, the parameters are of the expected sign, showing a great variety 
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similarly to that of the estimated demand itself. It can be verified that the linearised demand model closely 

approaches the original model, as R2 values are close to one for all arcs. 

4.3.2 Pre-Processing 
This section presents the results of pre-processing, which aims to reduce the sizes of the set of nodes 𝑁, 

arcs 𝐴, OD pairs 𝑃 (‘network simplification’) and OD pair flow routes 𝑅 (‘route generation’) by removing 

their unrealistic elements, in hopes to significantly reduce the model complexity and solving times, while 

not affecting the optimal solution. The methodology for this section was described in section 3.4.9. The 

largest potential network size our laptop could solve for within six hours considers the 111 most populated 

cities within the scope, which are all cities with a population exceeding 315,000. 

 

Network simplification 

Without pre-processing, our optimisation model would consider 111 nodes, connected by 6,105 arcs and 

the same number of OD pairs. Following the steps described in section 3.4.9, the size of the network and 

mainly its related set 𝐴 was reduced significantly: only 109 nodes, 589 arcs and 5,886 OD pairs. This is due 

to the fact that our network simplification process primarily imposes constraints to arc lengths.  

 

Route generation 

The NetworkX route generating algorithm proved to be significantly faster than the optimisation process. 

Considering the final potential network size of 111 cities, it found 77,062 valid potential routes in 

approximately eight minutes. Even though the number of routes averages to 13 for each OD pair, the 

distribution of routes among the OD pairs is extremely uneven. Only 2,269 out of 5,886 OD pairs have at 

least one route, indicating that many city pairs cannot by connected by a valid demand-generating route. 

In fact, the top 10% OD pairs with the most routes account for over 90% of all routes found. This can be 

attributed to the fact that a relatively low number of city pairs are far apart and are able to generate demand, 

exponentially increasing their number of potential routes. For illustration, Cardiff-Munich has the highest 

number of routes: 1,722, which is 132 times higher than the average. On the other hand, many city pairs 

fail to generate demand, often caused by at least one of them having a low population while having a 

medium-to-long distance in between. Since the set of routes together make use of all 109 nodes and 589 

arcs in the potential network, the relatively low representation of OD pairs cannot be attributed to any 

disconnections in the network.  

4.3.3 Optimisation 
The methodology for this section was described in section 3.4.10. Optimising for a network of 111 cities 

(effectively: 109, as explained earlier), 589 arcs, 2,269 OD pairs and 77,067 routes resulted in construction 

of a model with 243,671 integer decision variables (of which 89,537 are binary) and 1,035,732 constraints. 

The optimal solution was found after a little under six hours, an optimal lifetime profitability of €222.8 bn 

was reported, which can be broken down into the cash-flows present in the objective function: 

  

Table 4.10 Profitability breakdown in optimal network (B€) 

Revenue Costs 
Ticket revenue € 655.413 Infrastructure construction € 193.809 
  Infrastructure maintenance & operation € 15.876 
  Rolling stock acquisition € 5.062 
  Rolling stock operation & maintenance € 194.134 
  Transfer penalty € 12.739 
Total revenue € 644.413 Total cost € 421.620 

Total profit: € 222.793 
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Topology 

The optimal topology is presented by 

Figure 4.8, consisting out of 15 cities, 

connected by 15 arcs. The yellow dots 

not connected by lines, are cities that 

the model considered, but did not add 

to the network. Most of the arcs will be 

newly built, as only two are currently in 

high-speed operation: Brussels-Paris 

(average speed: 229 km/h) and 

London-Paris (200 km/h). 

It heavily focuses on north-western 

Europe. Since our model accounts for 

already existent HSR infrastructure, it 

becomes evident that it’s not worth the 

investment of upgrading domestic lines 

in the networks of France, Spain and 

Italy, as their current quality and 

coverage is sufficient. Simultaneously, 

it shows that mainly Germany and 

Great Britain are in dire need of more 

border-crossing HSR infrastructure. 

The network avoids mountainous 

terrain, indicating that this might affect 

the viability of HSR operation. Some 

connections are drawn as if they would 

cross water, but HSR travel times are determined by the shortest distance over land. 

The network covers the largest cities in the remaining western countries: Great Britain, Germany, 

Belgium and the Netherlands. One can notice a clear triangle-structure, with extending arms in multiple 

directions to large cities such as Berlin, Amsterdam, Hamburg, Munich and Edinburgh, which all show great 

air demand with at least one of the cities in the triangle. Having one of the largest airports in the world, the 

city of Frankfurt is also part of the network. Some medium-to-large cities function as intermediate stops 

between larger cities, as they benefit from their location, while still adding a sufficient number of passengers 

to the network. Examples of these cities are Dusseldorf, Hannover, Stuttgart, Leeds, Nottingham and 

Nuremberg. Perhaps the most surprising addition to the network is the city of Southampton, which is 

located closely to London, and shows sufficient demand levels with the latter city and Paris. 

All in all, the found optimal topology underlines our expectations of being exclusively centred around 

Europe’s largest cities, while showing the currently unserved HSR demand potential in countries such as 

Great Britain and Germany. Below, an overview is given of the network’s nodes: 

 

Table 4.11 Stations in optimal network 

Country Selected node(s) 
Germany Berlin, Munich, Frankfurt, Nuremberg, Dusseldorf, Hamburg, Hannover 
Great Britain London, Leeds, Nottingham, Edinburgh, Southampton 
France Paris 
Netherlands Amsterdam 
Belgium Brussels 

 

 

Figure 4.8 Optimal network topology 
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It should be noted that several markets with high potential for HSR are neglected by the network, with 

Spain, Italy, and much of France being the most prominent examples. As previously discussed, these 

countries already possess extensive, well-functioning national HSR networks, reducing the incentive to 

develop new infrastructure or upgrade existing lines. In our model, international connections between these 

countries and our network (Figure 4.8) are significantly hindered by the so-called 'Empty Diagonal'—a vast 

rural area south of Paris that occupies roughly a third of France’s land area (Bopp & Douvinet, 2020), 

creating a barrier for HSR development. In Switzerland and Austria, despite the presence of several major 

cities, connections seem to be excluded by higher construction costs, largely due to the need for extensive 

tunnelling through challenging terrain. Though construction costs are more favourable in eastern European 

countries, the significantly lower GDP reduces travel potential, which likely explains why this region is 

excluded from our final network. 

The combined length of all arcs equals 3,969 km, with lengths of individual arcs varying between 120 

and 464 km. The network would serve close to 600 thousand passengers per day, on average over its 

lifetime. Focussing purely on ticket revenue and infrastructural costs, it appears that almost two-thirds 

(63%) of all profit originates from the London-Paris and London-Brussels arcs. Another remarkable finding 

is that for a maximally profitable network, not all individual arcs have to be profitable on their own: 5 out 

of 15 arcs are not. An example of this is the arc Hamburg-Hannover, which is expected to make a loss of 

€4.4 bn over its lifetime, when considered individually. However, many passengers originating from 

Hamburg have destinations reaching much further than Hannover, therefore increasing the profitability of 

other arcs, compensating for the loss on their ‘home’ arc. The same story can be told for the other four 

unprofitable arcs, as they all are situated at an end point of the network. The table below shows the 

profitability for each selected arc, only considering ticket revenue and infrastructural costs, as rolling stock-

related costs depend on the design of lines, which will be addressed in the next section. 

 

Table 4.12 Profitability and demand data of individual arcs 

Connection name Length 
[km] 

Unit cost 
[M€ / km] 

Flow 
[pax / day] 

Min. freq 
 [h-1] 

Revenue 
[B€] 

Costs 
[B€] 

Profitability 
[B€ / lifetime] 

Brussels-London 364 44.1 131,680 6.9 199.943 17.513 182.430 
London-Paris 464 52.1 42,105 2.2 106.965 13.023 93.941 
Brussels-Dusseldorf 201 45.2 67,474 3.5 54.182 9.890 44.292 
Amsterdam-Brussels 211 41.3 56,345 2.9 45.245 9.563 35.683 
Brussels-Paris 317 39.7 45,726 2.4 40.057 6.934 33.122 
Brussels-Frankfurt am Main 397 50.0 46,779 2.4 46.443 21.436 25.007 
London-Nottingham 206 55.4 42,771 2.2 33.721 12.233 21.488 
Dusseldorf-Hanover 280 58.0 33,654 1.7 26.042 17.371 8.671 
London-Southampton 123 55.5 13,021 0.6 9.125 7.323 1.803 
Edinburgh-Nottingham 449 53.9 17,155 0.9 26.800 26.017 0.783 
Leeds-Nottingham 120 59.7 11,931 0.6 7.490 7.646 -0.155 
Frankfurt am Main-Nuremberg 223 78.8 22,566 1.1 16.473 18.474 -2.000 
Munich-Nuremberg 172 80.6 16,618 0.8 12.131 14.557 -2.426 
Berlin-Hanover 290 57.6 20,093 1.0 14.375 17.865 -3.490 
Hamburg-Hanover 152 60.7 8,249 0.4 5.420 9.840 -4.420 
TOTAL 3,969  576,167  644.413 209.685 434.728 
 

One can verify that the total reported revenue and costs match the data of Table 4.10. 

 

OD pairs 

Of the 105 potential OD pairs in the network, 60 (57%) are currently served. OD pairs remain unserved 

when no valid route is selected between them, typically due to the shape and orientation of the chosen arcs 

or the OD pair's demand level, leading to a too high detour factor. Passengers on these unserved OD pairs 

can still travel across the network by making one transfer, but their detour exceeds the maximum allowable 

threshold. To achieve full coverage (100%), additional arcs would need to be selected to provide more 

direct connections for all OD pairs. While this would improve coverage, it would likely reduce the network's 
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profitability. Therefore, a balance must be found between OD pair coverage and profitability, with optimal 

profitability reached at 57% coverage, in this case. 

 

Travel times, costs and distances of selected OD pairs vary between 0.46 - 4.74 hours, €43 – 326 and 120 

– 1,362 km, respectively. First-year passenger demand (accounted for induced demand) varies from 36,000 

(Edinburgh-Southampton) to 20.2 million (Amsterdam-London). A statistical summary of the selected OD 

pairs is given below. HSR market share per served OD pair varies between 30 and 92%, with a mean of 

75% per OD pair. The market share of the entire network equals 79% (with a roughly equal share for the 

other modes). A complete overview of all served OD pairs is provided in Appendix H. 

 

Table 4.13 Statistical summary of selected OD pairs 

Characteristic Unit Min Q1 Med Q3 Max Mean Std 
Length [km] 120 445 663 903 1,362 673 321 
Travel time [h] 0.46 1.53 2.28 3.18 4.74 2.34 1.11 
Travel cost [€] 43 104 165 223 326 168 81 
First year demand [Mpax] 0.037 0.347 0.971 1.755 20.225 1.990 3.326 
Lifetime revenue [B€] 0.235 1.829 4.556 9.111 107.190 10.740 18.684 
HSR market share [-] 0.301 0.687 0.832 0.869 0.918 0.751 0.168 

 

Line design 

The topology displayed in Figure 4.8 will be served by eleven lines and a fleet of 81 trains. A complete 

overview is provided below. 

 

Table 4.14 Optimal lines 

# Stops Length 
[km] 

Travel 
time 
[h] 

Served 
freq 
[h-1] 

Fleet 
[-] 

1 (2): London, Paris 464 1.55 3 10 
2 (5): Berlin, Hannover, Dusseldorf, Brussels, Paris 1,088 3.78 1 8 
3 (3): Amsterdam, Brussels, Paris 528 1.84 1 4 
4 (3): Amsterdam, Brussels, London 575 1.99 2 8 
5 (5): Frankfurt am Main, Brussels, London, Nottingham, Leeds 1,087 3.78 1 8 
6 (3): Dusseldorf, Brussels, London 565 1.96 1 4 
7 (6): Hamburg, Hannover, Dusseldorf, Brussels, London, Nottingham 1,203 4.24 1 9 
8 (4): Nuremberg, Frankfurt am Main, Brussels, Paris 937 3.22 1 7 
9 (3): Edinburgh, Nottingham, London 655 2.25 1 5 

10 (6): Munich, Nuremberg, Frankfurt am Main, Brussels, London, Southampton 1,279 4.47 1 9 
11 (6): Berlin, Hannover, Dusseldorf, Brussels, London, Southampton 1,258 4.40 1 9 

TOTAL 9,639 - - 81 
 

Frequencies of lines are most often set to one, with the exception of two cases: London-Paris (3) and 

Amsterdam-London (2), which are two of the most busy and profitable corridors. The line design ensures 

direct connections for 52 out of 60 (87%) of OD pairs and 95% of passengers. All OD pairs are served with 

at most one transfer. Brussels can be considered a main hub, being associated with nine out of eleven lines, 

while having a direct connection with all but one of the other cities. 

Serving 95% of passengers directly, the inclusion of transfer penalties resulted in a well-balanced line 

design. This design considers the number of transfers passengers make but avoids the costly approach of 

serving each OD pair with a separate line. Together, the lines serve all arcs, most often with the minimum 

required frequency (see Table 4.12). 
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Below, Figure 4.9 shows the optimal line design. The numbers denote the joint frequency per arc. A legend 

of lines is provided by Table 4.14 above. 

 

 

Fares 

The table below illustrates the competitiveness of the HSR fare setting among available travel mode 

alternatives. In the table below, the cheapest travel cost for each connection is indicated in bold. 

 

Table 4.15 Fares of HSR and competing modes 

Connection name Length 
[km] 

Travel cost or fare [€] 
Plane Train Car HSR 

London-Paris 464 201 - 226 174 
Brussels-Paris 317 221 37 62 60 
London-Southampton 123 - 62 30 48 
Leeds-Nottingham 120 - 17 27 43 
Brussels-Düsseldorf 201 - 76 41 55 
Amsterdam-Brussels 211 205 62 47 55 
Brussels-London 364 206 127 212 104 
Hamburg-Hanover 152 - 40 29 45 
London-Nottingham 206 - 60 47 54 
Munich-Nuremberg 172 - 93 31 50 
Düsseldorf-Hanover 280 222 40 52 53 
Berlin-Hanover 290 258 37 53 49 
Frankfurt am Main-Nuremberg 223 168 47 41 50 
Brussels-Frankfurt am Main 397 157 70 81 68 
Edinburgh-Nottingham 449 184 308 95 107 

 

Even though the car most often is the cheapest alternative, high-speed rail outprices air travel on every 

arc by a significant margin. 

 

 

 

 

 

 

 

Figure 4.9 Optimal network; the numbers denote joint frequency per arc 
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4.3.4 Model Validation 
As described in section 3.4.11, our model will be validated through stability analysis and benchmarking. 

 

Model Stability Analysis 

Since our model must be ran a significant number of times, it was determined that the model should be able 

to find the optimal solution in approximately 30 minutes. Therefore, the variations are applied to an 

optimisation model version considering the 77 most populous cities in Europe.  

In total, our model was run six times, which generated the optimal network designs in running times 

varying between 1200 and 2300 seconds. This result already indicates that our fare variations created 

problems with a large variation in complexity. However, the six optimal networks look much alike: 

As can be seen from the figure above, the optimal network stayed exactly the same in three out of six 

simulations. The other half showed minor changes compared to the original network: in three cases, a 

connection London-Lille was added, and in one case Nottingham-Edinburgh was removed. 

Both these connections are considered non-stable, as their addition to the network for the original fare 

setting makes it slightly more (in the Edinburgh case) or slightly less profitable (in the Lille case), at a 

maximum deviation of 2.5% from the original value. The remainder of the network’s fifteen arcs remained 

in all six simulations. This shows that our model produces stable results, while the inclusion of only a very 

few number of arcs varies. Therefore, the results show that the inclusion of arcs often is insensitive to 

relatively small changes in fare setting, which builds confidence in our model’s predictions, which is 

important in order to be able to make trustworthy recommendations. The line design deviates from the 

original solution for every test run, indicating a much higher sensitivity to small changes in fare setting when 

compared to the network’s topology. The table below accentuates this statement: 

 

Table 4.16 Characteristics of model stability analysis solutions 

 

  

Characteristic Unit Original Lower Upper 
Revenue €bn 655,477 598,244 657,631 
Cost €bn 433,234 377,602 440,970 
Profit €bn 222,243 216,661 224,988 
Number of nodes / arcs - 15 / 15 15 / 15 15 / 15 
Network length km 3,966 3,801 4,250 
Fleet - 87 70 87 
Number of lines - 11 10 12 
Maximum frequency of line / arc h-1 3 / 7 2 / 7 3 / 8 

Figure 4.10 Large image on the left: optimal network without fare variations. Smaller images on the right: generated optimal 
networks for random variations in fare setting 
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Benchmarking 

The methodology for this section was described in section 3.4.11. The route generating algorithm finds 446 

valid routes, representing all 105 node pairs, while together covering all 15 nodes and 21 arcs. Altogether, 

it results in an optimisation model consisting of 1,443 decision variables (of which 551 are binary), and 782 

constraints.  

Our model finds an optimal solution consisting of 31 lines and a fleet of 134 vehicles, with the length of 

lines varying between two and eight nodes. The solving time of our model equals 20 seconds on average, 

which is considerably lower than algorithms proposed by Kechagiopoulos & Beligiannis (2014).  

We can verify that each OD pair is served (which is a constraint) with the correct fleet size and 

frequency. The line configuration is able to serve all arcs with just enough capacity (the surplus varies 

between 0 and 55), which is needed in order to maximise profitability. Even though demand is treated 

elastic here, all routes are the shortest path between their terminal nodes. We can now see how our results 

measure up against other studies who have benchmarked their model to same network, with help of the 

table below: 

 

Table 4.17 Mandl benchmark comparison with other studies. Table adapted from Asadi Bagloee & Ceder (2011) 

Study Fleet 
size 

No. of 
lines 

% of demand Time elements (min) 
No 
transfer 

One 
transfer 

Two 
transfers 

Total 
travel 
time 

Transfer 
penalty 

Mandl (1980) 99 4 69.6 29.9 0.1 219,094 23,500 
Baaj & Mahmassani (1991) 82 7 81.0 17.4 0.0 217,954 14,800 
Shih et al. (1998) 87 6 82.6 17.4 0.0 225,102 13,550 
Asadi Bagloee & Ceder (2011) 87 12 83.7 29.9 1.0 202,255 10,465 
Kechagiopoulos & Beligiannis (2014) N/A 8 97.5 2.5 0.0 158,357 1,946 
Jha et al. (2019) 80 12 99.7 0.3 0.0 156,945 2,336 
This work 134 31 100.0 0.0 0.0 77,895 0 

 

Various types of algorithms have been developed and applied to the Mandl network over the past decades. 

Among the studies listed in the table, the first three are considered important milestones regarding Mandl 

network benchmarking and were considered state-of-the-art at the time of publication (Kechagiopoulos & 

Beligiannis, 2014). Both the works of Asadi Bagloee & Ceder (2011) and Kechagiopoulos & Beligiannis 

(2014) are considered state-of-the art by Jha et al. (2019). One can clearly see the improvement of results 

over time, with decreasing total travel times and transfer penalties, and an increased level of service 

regarding the number of transfers. It also becomes evident that increasing the fleet size and the number of 

lines results in an increased level of service, with diminishing returns. 

Our solution clearly favours the user’s perspective, serving all OD pairs without transfers, which results 

in the passengers’ lower total travel time and zero minutes in transfer penalty. Compared to other studies 

mentioned in the table, and nine other studies compared by Kechagiopoulos & Beligiannis (2014), our 

approach is the only resulting in all OD pairs being served directly, and significantly faster to generate 

results. 

This however comes at the expense of operator costs, with a significantly larger fleet size and number 

of lines. The balance between operator and user costs is determined by the choice of parameters such as 

transfer penalty per passenger and unit maintenance & operating costs. Given the experimental character, 

addressing these parameters and their interaction regarding this network is considered outside of this 

project’s scope and saved for further research. However, we can conclude that our solution is much more 

realistic than the other heuristic approaches here, given the fact that it takes elastic demand into account.  
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4.3.5 Post-Optimisation Experiments 
Two experiments were conducted in order to map potentially interesting extensions to the optimal network 

as presented in Figure 4.8: a mapping of new connections under HSR-beneficial scenarios. 

 

HSR-beneficial scenarios 

Since the profitability of HSR connections and networks varies significantly based on the chosen principles, 

it is important to identify ‘secondary connections’: these are additions to the basic network (Figure 4.8), 

which are added to the optimal network in HSR-favourable scenarios only. The following three scenarios 

are universally applied to all considered connections: 

1. Lower costs. Since construction costs are the largest cash flow and the hardest to pin-point by far, 

it is likely that they could be lower in reality.  

2. Higher demand (growth). Currently, economic growth and induced demand are set to (country-

specific) percentages. As mentioned before, these percentages are hard to pin-point and in some 

cases can exceed expectations. 

3. Aviation fuel tax. In the EU, commercial aircraft fuel is tax exempt (EU, 2024). If a tax would be 

imposed, air travel costs rise, which impacts HSR demand positively, following our demand 

forecasting model. It is assumed that air travel costs increase proportionally with the tax. 

 

In all cases, the variables are adjusted by 0% to 50% (with increments of 5%) in the direction favourable to 

HSR. As mentioned previously, optimising the model for 111 cities takes approximately 6 hours. Given that 

the experiments described above require multiple re-runs of the model, we decided to reduce the number 

of cities. The number was set to 77, the smallest at which the optimal solution differs by only one connection 

compared to Figure 4.8. Optimising this reduced network takes roughly 1.5 hours. 

The results show identical ‘secondary connections’ in all three scenarios. The figure below shows these 

connections in white. 

 

  

Figure 4.11 Secondary connections 
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The most remarkable to note about the found ‘secondary connections’, is that they most often densify the 

existing network, instead of expanding it, indicating that increasing the profitability can be mainly found in 

reinforcement of the existing structure. Only for extremely HSR-beneficial scenarios (≥35%), our network 

would expand into new territories. This is further accentuated by Table 4.18 below. One may note that the 

Lille-London connection, which was the only new connection found in model stability analysis (section 

4.3.4), is the first new connection to arise here. 

 

Table 4.18 List of added secondary connections per HSR-beneficial scenario 

HSR-beneficial  
scenario 

Added secondary connections 

10% Lille-London 
25% Amsterdam-Dusseldorf  • Dusseldorf-Frankfurt am Main 
35% Brussels-Lille • Prague-Vienna • Nuremberg-Prague 
40% Frankfurt am Main-Hanover • Edinburgh-Leeds • Bristol-London • Frankfurt am Main-Stuttgart • 

Leeds-London • Birmingham-London 
50% Leeds-Liverpool • Lyon-Paris • Lyon-Marseille • Marseille-Nice 
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5 Policy Implications 
This chapter aims to bring the results presented by chapter 1 into perspective: what policy 

implications can we derive from it? Therefore, it closes the loop and provides answers to our 

last research sub-question as formulated in section 1.3.2, in order to advice and inform policy 

makers in a short note about the policy implications of our final and optimal network design. 

 

5.1 Introduction 
The subject of policy implications can be approached from several perspectives. The few most prominent 

are addressed in their respective sections below: international cooperation (section 5.2), funding and 

financing (section 5.3) and environmental sustainability (section 5.4).   

 

5.2 International Cooperation 
Despite the fact that our network design has multiple stations in the same countries – in particular the UK 

and Germany – 84.8% of all passengers travel internationally. Therefore, cross-border operations are vital 

for the vitality of our network. For this reason, it’s of crucial importance that national and regional 

governmental bodies are coordinated. The heap of national and regional laws and regulations, as discussed 

in section 1.2.2, complexify the development of cross-border connections significantly. These should be 

lifted, and new regulation should be made in order to make it easier for countries to cooperate. A specific 

task group should be founded, which should take on this task. International cooperation and 

communication must be made possible and functions as the crucial starting point in truly being able to 

develop a viable HSR network. The importance of this is no new information, but our results endorse it 

even more. The fact that all involved countries in our network are part of the EU, should only be beneficial 

in order to establish sufficient international cooperation and communication. 

 

5.3 Funding and Financing 
As stated before, high-speed rail infrastructure requires substantial investments. Our optimal network is 

able to underline this statement with numbers: for a total revenue of €644.4 bn and lifetime profit of €222.8 

bn, approximately €421.6 bn must be invested in the coming 40 years. A substantial part of €193.8 bn is 

invested initially for construction and acquisition, which is 46% of all expenses during the project’s lifetime. 

The rest will be spent for maintenance and operation for both the infrastructure and rolling stock, and 

amounts to a yearly expense of €5.69 bn. Most of the expenses are made for HSR development and 

exploitation in the UK and Germany, given the design of the network and the fact that HSR construction is 

relatively expensive here. We can split the remainder of section into two parts: general and specific subsidy 

recommendations, where the former looks at a general strategy to realise the optimal network design, and 

the latter looks at promising individual projects that would be viable with a relatively minor subsidy.   

 

General subsidy recommendations 

The required investments are significantly larger than subsidiary budgets allocated for rail development in 

the past, such as the €25 bn as part of the European Green Deal (European Council, 2024) and much more 

than the €23.7 bn already invested into high-speed rail infrastructure since 2000 (European Court of 

Auditors, 2018). They are a fraction of the total amount needed, which is also supported by last-mentioned 

source. It is indicative to the fact that subsidiary help is needed from not only the European Union, but also 

from national and/or regional governmental bodies, a message Deutsche Bahn (2023) subscribes to. The 

willingness of these organisations are crucial to establishment of a vital HSR network. 
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Our network is designed with the basic premise of being able to make up for its costs, but following the 

mentioned cash-flows, this will take 19 years. As mentioned in section 1.2.1, the European Commission and 

national governmental bodies are hesitant with guaranteeing high initial investments out of fear for 

disappointing returns. In these first 19 years, they must be willing to spent this amount of money initially. 

As the vitality of the network depends on it, the parties must come together, and discuss how to set aside 

their fears and trust science. The massive initial investments underline the importance of subsidiary help in 

the initial stages. Given the fact that our network is able to be operationally profitable without subsidiary 

help, it can be confirmed that it is only needed during the initial stage. Of the €193.8 bn in total initial 

investments, 42% should be invested in cross-border connections, which encompass half of the total 

network length. 

 

Specific subsidy recommendations 

Currently, no long-term high-speed rail investment plan exists (European Court of Auditors, 2018). This 

section will therefore formulate one. Our analysis of all 31,125 OD pairs among the 250 most populous 

cities delivers only three connections that would be profitable on their own: London-Paris, Amsterdam-

London and Lille-London. However, many connections would become profitable with help of investments.   

Altogether, it can be concluded that subsidiary help from both the European Commission and national 

and/or regional governmental bodies is crucial in order to establish a viable European HSR network. In 

total, €193.8 bn is needed in the initial stages, which must be spent on infrastructure construction and rolling 

stock acquisition and will pay itself back in 19 years. For this reason, the subsidy might as well be a loan. 

Subsidising cross-border connections in the initial stages is the cornerstone of creating a viable European 

HSR network. Based on the subsidies granted by the European Commission since 2000 (European Court of 

Auditors, 2018), the table below displays all thirteen projects -not part of the network design- that would 

become profitable with a subsidy of no more than €3 bn. 

 

Table 5.1 Most promising HSR projects with minor subsidy 

Connection 
Length 

Subsidy required 
(€bn) City A City B 

Kaunas, Lithuania  Vilnius, Lithuania 100 1.27 
Katowice, Poland Krakow, Poland 100 2.04 
Radom, Poland Warsaw, Poland 317 2.20 
Lublin, Poland Radom, Poland 105 2.26 
Riga, Latvia Tallinn, Estonia 114 2.37 
Częstochowa, Poland Kielce, Poland 306 2.51 
Bergen, Norway Oslo, Norway 128 2.61 
Kielce, Poland Krakow, Poland 468 2.63 
Częstochowa, Poland Lodz, Poland 125 2.67 
Oslo, Norway Stavanger, Norway 129 2.83 
Lodz, Poland Warsaw, Poland 440 2.88 
Bydgoszcz, Poland Poznan, Poland 129 2.92 
Blackwater, United Kingdom Chatham, United Kingdom 148 2.92 

 

Despite our optimal network being focused solely on western Europe, the connections that come the closest 

to being profitably are located in the eastern part of the continent. In particular, the country of Poland is 

heavily represented, along with connections in the Baltic states. The data thus shows that, with help of 

subsidies, the Baltic states could be connected in a profitable network, significantly increasing the span of 

our network.   
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5.4 Environmental Sustainability 
As mentioned in section 1.1.2 and briefly in the previous section, the motivation of European governmental 

bodies to invest into high-speed rail comes from its greener characteristics. Moving people from planes or 

cars to trains is needed in order to reduce carbon footprint and reach climate goals, which EU member 

states agreed to. The most recent and prominent agreement concerns the European Green Deal, which 

aims to reduce transport-related emissions by 90% and triple HSR’s traffic volume between 1990 and 2050 

(European Council, 2024). As the total transport-related greenhouse gas emissions in fact has increased 

since 1990 (EEA, 2023), it can be concluded that the EU is not on track to meet its climate goals. 

In order to estimate the contribution of our network in the light of the Green Deal goals, we use the 

following facts and assumptions: 

 

Table 5.2 Key variables for sustainability calculations 

Key variable Unit Air  
travel 

Car 
travel 

HSR 
travel 

Source 

CO2 emissions [g CO2 / paxkm] 200 170 4 (UK Government, 2022) 
Average travel distance [km] 1,000 500 1,000 Estimate from results 
Passengers shifted to HSR [106 pax] 42 21.3 63.3 Optimisation results 

 

Our network would serve 94.3 million passengers on average per year during its lifetime, which would 

increase the total HSR traffic volume in the EU by 72%, from 131 (Statistica, 2018) to 225 billion km travelled 

on a yearly basis. Thus, even with a partial OD pair coverage of (57%, see section 4.3.3), our network would 

significantly enhance service, improving connectivity on key high-demand routes. Among these passengers, 

42 million used to travel by plane and 21.3 million by car. The mentioned shift alone would significantly 

contribute to that, reducing emissions of the entire European transport sector by 33% by 2050. This 

percentage is based on an average of 200g CO2/paxkm for air travel, 170g for car travel and 4g for HSR 

travel (UK Government, 2022), an average travel distance of 1,000 km for both HSR and air and 500 km for 

car travel, and 714 Mt CO2 total transport-related emissions in 1990 (EEA, 2023). It is assumed that HSR 

operations would start in 2030. These results illustrate the fact that a HSR network would not only be 

profitable on its own, but also provide significant benefits in non-monetary terms. As our model is purposely 

designed to only look at profitability in monetary terms, it makes one wonder how much more HSR could 

be developed if these additional benefits were monetarised. 

 

Altogether, it can be concluded that development of an European HSR network would significantly play a 

role in reducing emissions and reaching the goals aimed for by the Green Deal agreement. Given the large 

impact, its development should start rather sooner than later.
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6 Conclusions & Discussion 
This chapter finalises the project by reviewing the results and providing answers to the 

previously stated research questions. Section 6.1 provides answers to the research questions as 

formulated in section 1.3 initially, while section 6.2 discusses the previous chapters.  

 

6.1 Answers to Research Questions 
This first section will answer the research questions related to each of the four sub-problems introduced in 

section 1.3, in chronological order: demand forecasting in section 6.1.1, profitability estimation in section 

6.1.2 and network optimisation in section 6.1.3. 

6.1.1 Demand Forecasting 
All three research questions regarding this sub-problem can now be answered: 

 

Question 1: What can be learned from completed high-speed rail projects, regarding their 

demand? 

The problem definition in section 1.2.1 illustrates the uncertainty of demand, revenue, construction time 

and the values of various cash-flows, world-wide, across all times. Many HSR projects world-wide and more 

than half of European projects fail to meet expected demands, therefore becoming unprofitable and relying 

on subsidies. Thus, accurate demand forecasting is crucial for the success of high-speed rail. Later, section 

3.2.1 dived more deeply into this problem and found out forecasting knowledge has grown, but not the 

accuracy of forecasting models: financial performances often disappoint as they generally overestimate 

demand figures. This can be attributed to political causes, which have a substantial influence on rail projects: 

decision-makers generally ignore or downplay financial risks under the guise of social welfare or other 

variables that are impossible to measure accurately (Flyvbjerg et al., 2005). In conclusion, passenger 

forecasts for rail projects can be accurate if done in a scientific and independent manner. 

 

Question 2: What models and impact factors can be used to forecast high-speed rail demand? 

In literature, high-speed rail demand forecasts focus on either trip distribution (market shares) or trip 

generation (total available demand across all modes). 

 

Trip distribution 

Particularly logistic regression (logit) models are used to forecast high-speed rail market shares. Multiple 

types of logit models are applied in practice, of which overviews are presented Table 2.2 in and Table 2.5. 

Binomial (BNL) an multinomial logit (MNL) models are the simplest and most popular logit types used in 

literature. However, their simplicity results in a number of drawbacks, particularly regarding the IIA 

property as explained in section 2.2.1. Both nested logit (NL) and mixed logit (ML) are able to mitigate this, 

leading to more accurate forecasting results. Their increased complexity however leads to new drawbacks 

regarding computation difficulty. This project uses the MNL model. 

A wide variety of demand-impacting factors are used in models. A full overview is shown in Table 2.1. 

Their usage popularity depends of the model implemented, as some factor-model combinations work better 

than others. Section 2.2 provides an overview of this, and shows that a logit model almost always includes 

travel time and travel costs as independent variables. Service frequency is the only other factor 

implemented by at least half of demand forecasting studies. Population-related data is regularly used, but 

only from the economic perspective (focussing on value instead of quantity). Population numbers and 

destination attractiveness are almost never used in logit models. 
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Trip generation 

To predict the total travel demand, multiple models are in existence, most prominently linear regression 

and gravity models. Of these two, linear regression is by far the most used in literature. Table 2.3 presents 

an overview of different linear regression models used in literature. Numerous adaptations of the standard 

simple regression model are in use, with different levels of complexity and computation difficulty. However, 

as shown in section 2.1, realistic effects often cannot be linearised, which remains a crucial critique against 

these models. On top of that, literature review in section 2.2.3 pointed out that gravity models are the 

preferred method when no direct connections are available currently.  

 Figure 2.7 shows that gravity models are suitable for different variables: most prominently travel time 

and population. Travel cost and economic factors also are used regularly. Gravity models are also able to 

include the attractiveness of destinations as independent variables.  

 

From the answers to the previous question, it can be seen that gravity models and logit models complement 

each other in terms of demand-impacting factors considered, allowing for an all-encompassing forecasting 

method when these two models are combined. Most of the impact factors are based on one, practically 

undebatable number, with the exception of catchment area population, which depends on the choice of trip 

duration. Calibration showed that 45-minute catchment areas yield the most accurate forecasting result, 

while creating a weighted average of different ‘catchment rings’ do not. It was also found that usage of 

‘GDP/capita’ as impact factor results in much better calibrated parameters. Simply using ‘GDP’ does not, 

despite yielding a better model fit. The demand for high-speed rail depends on more than just travel time 

and travel costs, and the size of the catchment area also depends on the city’s attractiveness. The conclusion 

of question 2 can be recalled here as well - passenger forecasts for rail projects can be accurate if done in a 

scientific and independent manner. The final forecasting model is presented by equation (6.1), which was 

calibrated having a model fit R2 of 0.75, and all but one parameter being over 99% statistically significant. 

The model is proof from any bias (with respect to airport size) and is, next to diverted demand, further 

extended to take induced demand and economic demand growth into account. 

 

6.1.2 Profitability Estimation 
All five research questions regarding this sub-problem can now be answered: 

 

Question 3: What can be learned from completed high-speed rail projects, regarding their 

profitability? 

Many high-speed rail projects have turned out to not be profitable. Analysis of each individual HSR line in 

China’s network shows a clear correlation between operating speed and profitability, indicating the 

importance of the former term. For this reason, this project investigates whether the maximum operating 

speed allows for profitable connections, to find the true potential of HSR. In Europe, a large share of 

connections is unprofitable as well. There are multiple causes for this. Pre-project cost estimates often are 

unrealistic and budgets are easily exceeded with the slightest amount of setbacks. The same holds for 

demand projections, which in 90% of cases are too optimistic, while having an average overestimation of 

106%. These two reasons combined result in insufficient research and inaccurate projections on both sides 

of the balance sheet, which is exaggerated since the difference in both cases is present on the pessimistic 

side. Truly independent research and forecasting is needed to produce accurate predictions. Also, the 

natural variation of costs and revenue should be taken into account since even the slightest setback can 

increase costs or decrease revenue substantially. 

 

Question 4: Into what cash-flows does high-speed rail operational profitability break down? 

High-speed rail projects can be broken down into two parts: the infrastructure and the rolling stock. Each 

of these two have their own related cash-flows. Infrastructural costs can be broken down into construction, 

operating and maintenance costs. The latter two terms often are combined in literature under the heading 
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of operating costs. It’s important to consider these two separately, to avoid double counting. Construction 

terms can be further broken down into planning & land costs, infrastructure building costs and 

superstructure costs. But in literature, they are often all combined and are considered as simply 

‘construction costs’. The rolling stock must be acquired, in literature often referred to as ‘acquisition costs’. 

Furthermore, just like the infrastructure, it needs to be operated and maintained, each adding extra costs. 

All cash-flows mentioned can be divided into two types: initial investments (construction / acquisition 

costs) and recurring payments (operating / maintenance costs). 

 

Question 5: What factors influence these cash-flows and how can this relationship be captured? 

The acquisition costs of trainsets only depend on the choice of train and the amount needed, and therefore 

arguably is the most easy to predict. The operation and maintenance costs of rolling stock is much less set 

in stone and depend on the characteristics of the chosen rolling stock and the degree of use. However, it 

shows relatively low variability when expressed in terms of [€ / km] – indicating a relationship with only 

the line length. In literature, terms of [€ / seat-km] are used more often, with their popularity linked to the 

inclusion of the degree of use. 

Infrastructure-related costs show much more variation in practice. Their costs vary much in relative 

sense between different countries, but less when comparing projects within the same country. Literature 

describes a certain ‘base’ cost per km (indicating that line length is the most important factor of influence), 

but highly sensitive to mainly environmental factors: rough terrain yields more tunnelling and related costs, 

while also more densely populated areas generally induce more construction costs. Also, the economical 

price level might further influence costs, which is a country- or region-dependent factor. It’s impossible to 

estimate these values directly and accurately by formulas. Therefore, we must rely on literature to estimate 

them through thorough investigation of the region’s characteristics. Operation and maintenance costs for 

infrastructure vary much less, relatively. In this sense, they are comparable to the same type of costs for 

rolling stock, and similarly are often expressed in terms of [€ / seat-km], pointing to the degree of use as 

its biggest impact factor. 

 

Question 6: What model can be developed to forecast high-speed rail operational profitability? 

Since this term consists out of a summation and subtraction of a selection of the HSR cash-flows, a 

forecasting model should follow the same approach. A linear addition model thus matches this philosophy. 

This model is developed in section 3.3, following the cash-flows and their influence factors that arose in 

literature in section 2.5: infrastructure construction, rolling stock acquisition, and the operation and 

maintenance of infrastructure and rolling stock. It is section 3.4.7 where all elements of are put together 

and made ready to serve as input for the optimisation model as the objective function. 

 

Question 7: How do the cash-flows of ‘profitability’ translate into ‘operational profitability’ and 

‘justifiability’? 

Section 3.3.3 specifically focuses on this. Operational profitability consists out of all cash-flows occurring 

during the operational stage: maintenance and operation costs of infrastructure and rolling stock, as well 

as ticket revenue. The extent in which this operational profitability is able to pay back the initial investments 

(infrastructure construction and rolling stock acquisition) determines the justifiability. 

 

6.1.3 Network Optimisation 
All four research questions regarding this sub-problem can now be answered: 

 

Question 8: What can be learned from completed high-speed rail projects regarding the 

requirements cities and connections need to fulfil? 

Given the earlier addressed uncertainty in demand and profitability forecasting, it’s hard to find conclusive 

answers to this. One conclusion that may be drawn can be derived from this statement: it is important to 
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keep this uncertainty in mind. Connected cities must be large, and their respective stations must be 

reachable to a large number of passengers within a relatively low amount of time. Stronger conclusions can 

be made regarding operating speeds of HSR services. Section 2.5.2 indicated higher design speeds result 

in more profitable HSR connection, with diminishing effects. This has been shown in theory by Barrón et 

al. (2012) and Belal et al. (2020) as well as in real life data (Zhang, 2024). 

 

Question 9: How can linear programs be formulated in order to solve a realistic TNDFSP 

formulation to optimality within reasonable computation times? 

Current methods lack the capability to solve to optimality for medium-to-large sized networks, while also 

taking demand elasticity into account. By analysis of literature, it was found that the Multi-Commodity Flow 

Problem (MCFP) formulation is needed to do so, and was adapted to incorporate a set of pre-defined valid 

OD flow routes. Compared to the original MCFP formulation, this yielded a TNDP model with the same 

intrinsic logic and outcomes, while requiring much less computation power, increasing the network size 

that could be considered. The model was further enhanced to also incorporate line design elements, so that 

it functions as a fully integrated TNDFSP model. The objective function considers all cash-flows found 

previously, accompanied by transfer penalties in order to capture the user’s perspective. The constraints 

ensure a valid network and line design. Within 6 hours, the model can be solved to optimality for up to 111 

nodes (all cities with a population exceeding 315,000) and all their potential OD pairs. 

 

Question 10: What would an optimal high-speed rail network look like, with respect to its 

topology, operating lines and associated frequencies? 

Connections should be made to serve and bundle multiple OD-markets, as purely connecting two cities will 

almost certainly lead to a unprofitable solution. Thus, in order to make HSR profitable in Europe, a network 

should be designed rather than just one single connection. New development potential can be found in 

North-Western Europe (mainly the UK and Germany), centred around large cities such as London, Paris, 

Amsterdam, and Berlin. Brussels functions as the hub of the network, with lines radiating outwards towards 

the mentioned large cities. Medium-sized cities such as Dusseldorf, Hannover, Stuttgart, Frankfurt and 

Leeds are included, primarily due to their beneficial location directly between two much larger cities, while 

adding enough passengers to the network to make up for the time loss of stopping at the city itself. 

Population-dense regions are considered by using a 45-minute drive population catchment for predicting 

demand, rather than relying solely on individual city populations. This approach likely explains the selection 

of Düsseldorf over the larger nearby city of Cologne. Despite Cologne’s size, Düsseldorf benefits from a 

central location within the densely and heavily populated Ruhr Area, giving it access to a significantly higher 

population catchment, making it the more attractive choice. The network would consist of 15 cities, 15 arcs 

and would serve 60 OD-pairs. Only two arcs are upgraded lines already existing as of today. Eleven lines 

would serve the network, most with operating frequencies of one train per hour, increasing to a maximum 

of three for the busiest connections. The addition of transfer penalties makes up for a seemingly well-

thought line design, which serves most connections with the minimum frequency needed. 

 

Question 11: What are the policy implications from this optimal design? 

The policy implications are listed in chapter 5 specifically, and come down to advice in three areas: 

• International cooperation is vital, as our design involves multiple countries and requires significant 

initial investments. 

• Funding and financial is critically needed, particularly at cross-border connections in the initial 

stages of infrastructure construction and rolling stock acquisition. 

• Our network design would play a major role in meeting set climate goals by the Green Deal 

agreement. 
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6.2 Discussion 
This section aims to summarise all points of discussion that arose during the drafting of the methodology 

and the results of this project. Alike the chapters mentioned in the previous sentence, the discussion will be 

split into three parts: demand forecasting, profitability estimation and network design. 

 

6.2.1 Demand Forecasting 
This section lists all points of potential discussion regarding the demand forecasting parts (section 3.2 and 

4.1). 

 

Model choice 

In section 3.2.2, a forecasting model was developed, which only took diverted demand into account, for 

the first year. The model estimates modal split per mode and trip generation by means of a logit and gravity 

model, respectively. As mentioned in the section, this combination of models has been used before in 

multiple studies. However, the model types chosen have their drawbacks and limitations. 

 

• Modal split: Demand forecasting has already been widely researched in literature. Therefore, it 

is not the main focus as to what this project hopes to contribute to science. This study has opted 

for MNL, also due to its simplicity and popularity among transport studies. However, our literature 

review in section 2.2, and Table 2.2 in particular shows that ideally a mixed logit (ML) should be 

used, given the fact that it should be able to mitigate the IIA property and account for non-constant 

taste parameter values among the population. If the variation of the taste parameters is deemed 

significantly small, the more simpler nested logit (NL) can be used safely. These effects are not 

taken into account by the MNL model, which results in less accurate demand forecasting results. 

Both ‘train’ and ‘HSR’ are seen as two separate travel modes, despite being very alike. Since our 

model does not capture the IIA property, it makes the outcomes of our model less reliable. Since 

forecasting demand is not considered the main focus as to what this project hopes to contribute to 

science, the implementation of ML and/or NL models is saved for further research.  

• Trip generation: as described by section 2.2.3, there is little to argue against the choice for using 

a gravity model, especially when it comes to forecasting demand for new connections, a primary 

interest for this project. Potentially better versions of this model are available, for example the 

dynamic gravity model as developed by Yu et al. (2021) could be used as well, given the fact that 

it is able to incorporate changing parameter values over time. Further studies could experiment 

with this. 

 

Considered travel modes 

The bus is not taken into account as a travel mode, given its marginal market share along the complete 

spectrum of travel distances (Figure 1.1). However, for a truly accurate demand forecasting model, the 

decision to exclude can be argued against. Further studies could look into accounting for the bus mode and 

whether it affects HSR network development.  

 

Impact factors 

Together, the logit and gravity models incorporate most of the suitable demand impact factors as listed in 

section 2.1. However, for simplicity reasons, some were left out. These factors are unpopular among 

demand forecasters, but their effects can be nonnegligible. During model validation, it showed that our 

model is unable to accurately forecast demand for connections with a touristic character, which can be 

attributed to the fact that related impact factors such as ‘destination attraction’ are left out from our 

forecasting model. Our research shows that these impact factors cannot be neglected, and future research 

should incorporate this factor to develop more accurate forecasting models. The same holds for other 

factors left out of our model. 
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For simplicity, the values of population, GDP, distance as well as the travel time and travel costs of all travel 

modes are assumed to remain constant along the lifetime of a high-speed rail project. In fact, the values 

regarding all impact factors are assumed constant. Of course, this is highly unlikely. Furthermore, it can be 

expected that once a high-speed rail network is developed, competing modes change their fares (and 

perhaps shorten their travel times) in order to regain an optimal position in the travel market. This will 

affect the demand and viability of HSR negatively. Due to the extreme complexity and unpredictability of 

this secondary effect, it is left out of consideration for this research. Already during the web scraping stage, 

which was re-run many times during our project due to code enhancements, it was discovered that among 

the thousands of travel options and their characteristics, a handful change every day, which could affect the 

optimal solution. For this reason, the final web scraped data set was collected in one go. Also, within the set 

lifetime of forty years, many other events could occur that could crucially affect HSR’s viability: the rise and 

fall of new transport modes, changes in travel habits and preferences, a new pandemic, etc. Events like 

these often cannot be predicted, as well as their influence on HSR, and we have to assume that they do not 

happen in order to design our network. 

The values of beta parameters are currently taken as a median from 57 studies. However, it should be 

noticed that the variation in these studies is large, given that each of these studies has a different approach 

when it comes to the determination of these values. We can therefore not be sure whether the beta values 

are correctly chosen. Also, as mentioned before, it could be the case that these values change from country 

to country or even from person to person. Some studies have estimated parameter values for each travel 

purpose (e.g. commuting or leisure), as they weigh travel times and costs differently. For simplicity, we 

assume that all passengers in Europe weigh off travel times and costs in the same way, along the entire 40-

year lifespan of HSR projects. Also, these values are prone to change for each travel mode. Furthermore, 

base preferences for certain travel modes are not taken into account. Further studies can look into the effect 

of varying values of taste parameters, and their effect on the optimal design. 

Despite that fact that the size of catchment areas varies from city to city (Boelrijk, 2019), our model 

assumes a constant size for all cities. This choice was made as this variation requires new research, as 

studies on this subject are scarce. The issue is attempted to be addressed through our ‘bias elimination’ 

process, but more research is needed to assess the accuracy and shortcomings of our model for various 

inputs. This subject can be recommended for further study. 

Our model is calibrated to air passenger data. However, as discovered during the data collection stage, 

many data points are missing from the Eurostat data sets. This applies to data regarding return flights (if 

the outward flight is represented), but also to some connections in its entirety. For some countries and 

airports, a large share of data is not reported. The influence of the missing data on the quality of our final 

calibrated model is unknown. 

   

Calibration 

To mitigate effects of competition among modes, and our intention to create an accurate forecasting model, 

our only choice was to calibrate the gravity model only for distances larger than 1,000 km. However, the 

model is used to forecast demand over distances shorter than 1,000 km. This approach results in concerns 

regarding the accuracy of our model for shorter travel distances. 

The exclusion of some impact factors resulted in a forecasting bias. The bias is eliminated by scaling 

the model outcomes by a factor depending on the outcome’s value itself, which results in a much more 

accurate forecasting model, while questions about the scientific integrity of this approach should be asked. 

Further research should look into adding more impact factors, and whether they can eliminate the bias, 

making a ‘bias elimination’ step unnecessary. 

 

Demand Evolution 

The forecasting model was further refined in section 3.2.6, to also incorporate the effects of induced 

demand and economic demand growth. Both effects have been added. As future demand is very complex 

to accurately estimate, and prone to many unpredictable factors that could heavily influence its value, this 
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project has opted for a relatively simple approach to include them. For induced demand, a simple factor is 

added, uniformly for all potential connections in Europe, even though it was mentioned that this value can 

significantly vary from location to location. Economic demand growth is implemented with more detail, 

and in this extent, mainly country-based GDP growth is estimated with a significant amount background 

research and data analysis. The flaws with our approach arise during translating GDP growth into demand 

growth, which was performed by a simple calculation of elasticity, which was assumed to be constant across 

the entirety of Europe, and for the decades to come. Also, section 2.1.3 noted that elasticities are only 

confirmed to be accurate for the small frame of values (in this case, GDP growth) they were calculated for. 

Our study uses the same elasticity for a wide frame of GDP growth values, and therefore we cannot be 

certain whether the projected demand growth is accurate for all connections. As our study does not take 

demand forecasting into account as its prime focus, we leave further research regarding this part for future 

studies. 

Altogether, it can be concluded that the demand forecasting model complies with the level of detail 

required for this project. However, many enhancements could still be made in order to make it significantly 

more accurate. This requires a study having it as primary focus. 

 

6.2.2 Profitability Estimation 
This section lists all points of potential discussion regarding the profitability estimation parts (section 3.3 

and 4.2). 

 

For our project, a reasonably simple profitability estimation model was developed. The literature review 

section successfully mapped all cash-flows that significantly impact high-speed rail profitability. Mapping 

the impact factors of each cash-flow was done, but did not go much in depth deliberately, as profitability 

estimation is not seen as this project’s primary focus. Our analysis sticks with the few most obvious impact 

factors, such as infrastructure length. 

Our HSR fare setting is based on travel times and fares for competing modes of transportation, and 

optimally chosen to maximise the expected revenue. It was shown that this is a justifiable approach and 

matches common real-life practice. However, our model fails to take into account changing competition 

caused by our fare setting. Given the fact that we chose a HSR fare optimising our revenue, it is very likely 

that other travel modes change their fares in response, which benefits them optimally but will definitely not 

benefit HSR. Given the complexity and unpredictability of these interactions, our project does not take them 

into account. More research regarding this matter is needed. 

Instead of setting HSR fares in order to maximise revenue, a much greener policy could be applied: 

optimise the total HSR demand served by the network. Since our project aims to optimise for profitability 

to demonstrate the limits of its economic viability, other policies were disregarded. However, other 

optimisation approaches could be taken, depending on the wishes of both operators and governmental 

bodies. More research is needed in order to further investigate this. 

In order to reduce complexity, our model does not take unpredictable variabilities into account. For 

example, the construction costs are determined by the origin’s and destination’s elevation and country. 

This gives our model a reasonable level of realism, but does not take factors into account that are 

unpredictable, such as the ones mentioned by section 1.2.1, causing construction delays and heavily 

influencing the project’s economic viability. The values produced by our model do not specifically take 

these factors into account, but it was based on unit costs of completed projects. 

Also, even though our model projects codes decades into the future, it does not take possible inflation 

(or deflation) into account. This choice was made deliberately, as it is extremely hard to predict 40 years 

into the future. 

Altogether, our profitability model is able to produce reasonable estimates of HSR profitability, 

complying with the level of detail required for this project, but scrapes the surface of the science behind it. 

A study should investigate this to produce significantly more accurate models.   
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6.2.3 Network Design 
This section lists all points of potential discussion regarding the network design parts (section 3.4 and 4.3). 

 

Being the part considered the core of what this project hopes to offer scientifically, our network design 

model was developed to have as few flaws as possible. However, given the complexity of transportation 

problems, a number of assumptions had to be made in order to find the right balance between the applicable 

scale of this model (larger being better) and the scientific value of its outcome. To increase the scale of our 

model, assumptions and simplifications were made in section 3.4.9, which were carefully chosen and funded 

on literature in order to stay confident that the model’s output is optimal. We call these ‘smart restrictions’. 

Even though our ‘smart restrictions’ were chosen very cautiously and funded in literature, their existence 

automatically results in that it cannot be proven that our solution would be the optimal in real life. However, 

our solution is optimal with respect to the data fed to our optimisation model. More computation power is 

needed in order to run our model without ‘smart restrictions’, or to run it for larger potential networks. 

Supercomputers might be able to provide the necessary computation power, but test runs on the DelftBlue 

Supercomputer showed that our code should then first be rewritten in order to be solved in parallel. These 

experiments are left up for future study. 

During model stability analysis, it was proven that unlike the network’s topology, its line design is 

sensitive to small changes in fare setting. Luckily, the line design is easier to change in real life, since being 

a tactical decision. However, more research is necessary to look deeper into making robust line designs, 

that are able to adapt to multiple demand or fare setting scenarios. 

During benchmarking, it was shown that our model outperforms comparable studies when viewed from 

the user’s perspective. However, it did come at the cost of operators, requiring a significantly larger fleet 

and much more lines. It should be noted that our model’s nature is much different from the models we 

compare ourselves to, which makes it harder to make conclusions about the quality of each model. 

The balance between operator and user costs is determined by the choice of parameters such as 

transfer penalty per passenger and unit maintenance & operating costs. Given the experimental character, 

addressing these parameters and their interaction regarding this network is considered outside of this 

project’s scope and saved for further research. However, we can conclude that our solution is much more 

realistic than the other heuristic approaches here, given the fact that it takes elastic demand into account. 

The sustainability calculations illustrate the HSR network would not only be profitable on its own, but 

also provide significant benefits in non-monetary terms. As our model is purposely designed to only look 

at profitability in monetary terms, it makes one wonder how much more HSR could be developed if these 

additional benefits were monetarised. This is left up to further research. 

Fluctuations in travel demand, costs, and revenue over a 40-year horizon are inherently uncertain. 

However, a strictly robust or stochastic approach may not be needed, as our current model is already 

complex and computationally demanding. The additional value from using robust or stochastic optimisation 

is unlikely to justify the effort in large-scale HSR network design. Furthermore, once the infrastructure is 

built, the line design can be adapted relatively flexibly to accommodate unforeseen changes in demand, by 

changing timetables, operating lines or frequencies. 

Altogether, our optimisation model is able to produce very realistic and optimal high-speed rail 

networks for larger problem sizes than currently available in literature, especially if elastic demand should 

be taken into account. However, research on the subject of line design robustness could potentially further 

enhance the quality of our model’s solution when it comes to sensitivity to small changes is fare setting. 
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Appendices 
A. TNDFSP Literature 

Overviews of studies using different network design problems are provided by Guihaire & Hao (2008), 

Ibarra-Rojas et al. (2015), Chen et al. (2011) and Farahani et al. (2013). In practice, these problems are 

applied to urban public transport only. In total, 21 TNDP and 23 TNDFSP-related works were found with 

at least some relation to this work, highlighted in green in Table 0.1 below. It serves as a preliminary step 

in determining closely-related works, as presented in Table 1.1 in section 1.2.3. 

 

Table 0.1 Complete overview of works using related network design problems. Related parts of the work are highlighted in 
green. 

   Solution method Real 
case Reference Constraints Objective(s) E H N A 

TNDP studies        
Patz (1925) capacity, demand min. number of empty seats  ✓    
Sonntag (1978) restricted set of possible lines - min. average travel time 

- min. number of transfers 
 ✓    

Mandl (1980) - constant frequency 
- area coverage 

- min. travel time 
- max. route directness 

 ✓    

Xiong & Schneider (1993)  - min. total travel time 
- min. construction cost 

   ✓  

Chakroborty & Dwivedi 
(2002) 

route feasibility - min. total travel time 
- min. unsatisfied demand 
- max. 2-transfer passengers 

   ✓  

Chen et al. (2003)  
Chen et al. (2006) 

 max. expected profit, social welfare ✓     

Guan (2003) - transit capacity 
- number of transfers per OD 
pair 
- line length 

- min. total line length 
- min. total number of lines taken 
- min. total travel length 

✓    ✓ 

Murray (2003) - service coverage 
- access 

- max. number of stops ✓    ✓ 

Zhao & Gan (2003) 
Zhao & Ubaka (2004)  
Zhao (2006) 

- predefined routes and areas 
- number of lines and stops 
- route length and network 
directness 
- deviation from main routes 

- min. number of transfers 
- max. route directness 
- max. area coverage 

 ✓    

Yu et al. (2005) - line length 
- route directness 

- min. number of transfers 
- max. passenger flow / route 

   ✓ ✓ 

Guan et al. (2006) - link capacity 
- line length 
- number of transfers 

- min. total route length 
- min. number of passenger routes 
- min. total travelled distance 

✓    ✓ 

Zhao & Zeng (2006) - route directness 
- route feasibility 
- number of routes 
- route length 
- budget 

- min. average number of transfers 
- max. service coverage 

 ✓   ✓ 

Chen & Subprasom (2007)  max. expected profit, social welfare, 
equity 

✓     

Barra et al. (2007) - travel demand satisfaction 
- budget  
- service level 

min. total route length ✓     

Yang et al. (2007) route length max. number of direct travellers / length      
Mauttone & Urquhart (2009) demand - min. number of routes 

- min. total travel time 
 ✓    

Fan & Mumford (2010) number of lines - min. total travel time 
- min. number of transfers 

 ✓    

Curtin & Biba (2011) route length max. sum of arc and node service value  ✓   ✓ 
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Table 0.1 continued 
TNDFSP studies        
Hasselström (1979)  
Hasselström (1981) 

budget - min. number of transfers 
- max. number of passengers 

✓     

Ceder & Wilson (1986) - frequency 
- fleet size 
- route length 

- min. excess travel, transfer & waiting 
time 
- min. vehicle costs 

 ✓    

Van Nes et al. (1988) fleet size - max. demand satisfaction 
- max. number of direct trips 

✓     

Bussieck (1998) - number of transit vehicles 
- frequency 
- line and vehicle capacity 

- max. number of direct passengers 
- min. operator costs 

✓     

Pattnaik et al. (1998) - headway 
- load factor 

- min. operator costs 
- min. travel time 

   ✓ ✓ 

Bielli et al. (2002) pre-defined lines max. 24 network performance criteria    ✓ ✓ 
Carrese & Gori (2002) - demand 

- route length 
- number of transfers 
- total travel time 
- fleet size 

- min. user waiting & excess time  
(compared to minimum path) 
- min. operator costs 
 

 ✓   ✓ 

Fusco et al. (2002) - level of service 
- demand 
- lines configuration 
- frequency 
- route length 

min. overall cost  ✓    

Ceder (2003) - route length 
- deviation from shortest path 

- min. operator and user costs  ✓    

Tom & Mohan (2003)  - min. operator costs 
- min. total travel time 

   ✓  

Wan & Lo (2003) - line frequency 
- capacity 

min. operator costs ✓     

Agrawal & Matthew (2004) - line frequency 
- load factor 

- min. operator and user costs ✓    ✓ 

Fan and Machemehl (2004) 
Fan and Machemehl (2006a) 
Fan and Machemehl (2006b) 

route length - min. waiting, traveling, walking time 
- min. fleet size 
- min. cost of unsatisfied demand 

  ✓ ✓  

Hu et al. (2005) - route length 
- average transfer, stop, 
headway times 

- max. nonstop passenger flow 
- min. operator and user costs 

   ✓ ✓ 

Zhao (2006) route directness - min. number of transfers 
- max. demand coverage 

 ✓    

Zhao & Zeng (2007) - headway 
- fleet size 
- route length 
- load factor 

- min. weighted sum of operator and 
user costs 

 ✓    

Borndörfer et al. (2005) 
Borndörfer et al. (2008) 

demand - min. operator costs 
- min. total travel time 

   ✓  

Szeto & Wu (2011) - fleet size 
- number of stops 
- frequency 
- route length 

- min. weighted sum of transfers & travel 
time 

   ✓ ✓ 

Cipriani et al. (2012) - capacity 
- frequency 
- route length 

- min. sum of operator and user costs  ✓  ✓ ✓ 

This work - demand  
- travel time  
- constant frequency  
- level of service 
- route/line feasibility & length  
- frequency 
- pre-defined lines 

- max. operating profit 
(or min. operator costs, min. overall 
cost, max. profit) 
- min. number of transfers 

✓    ✓ 

Problem: ND (Transit Network Design), FS (Transit Network Design & Frequency Setting) 
Methods: E (Exact), H (Heuristic), N (Neighbourhood Search), A ((Evolutionary) Algorithm) 
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B. Demand Forecasting 

For this project, the web was searched for papers attempting to forecast high-speed rail demand, or 

attempting to forecast demand for other modes while including HSR. In total, exactly 100 studies were 

found to meet the mentioned requirements. These papers form the basis of the literature reviews in section 

2.1 and section 2.2. An overview of these papers can be found here.  

 

Table 0.2 Overview of 100 papers dedicated to high-speed rail demand forecasting, listed with the demand-impacting factors, 
models used and location of the case study. 

Reference Model Case Study Factors 

(Albalate et al., 2015) regression (GLS-random effects) Europe fare, distance, seat cost, population, GDP 
(Ashiabor et al., 2007) logit (nested, mixed) USA travel time, travel cost, household income 
(Behrens & Pels, 2012) logit (multinomial, mixed) UK, France fare, distance, frequency, travel time 

(Ben-Akiva et al., 2010) 
logit (nested), regression (linear), 
formula calibration Italy 

travel time, travel cost, access/egress time, 
frequency 

(Bergantino & Capozza, 2015) regression (GLS-random effects) Italy fare, income 

(Bergantino & Madio, 2020) logit (multinomial) Italy 
in-vehicle time, access / exit time, reliability, 
price, frequency 

(Börjesson, 2014) logit (nested) Sweden fare, travel time, income 

(Brand et al., 1992) logit (multinomial) USA 
travel time (in-vehicle, wait), transfers, travel 
cost, income 

(Burge et al., 2010) choice model (stated preference) UK 
population, income, travel time, travel cost, 
frequency 

(Cabanne, 2003) 
time series (direct demand, 
generation/modal split) France 

(access, waiting, in-vehicle) time, punctuality, 
frequency, interchanges, travel cost 

(Capozza, 2016) regression (linear) Italy GDP, travel cost, travel time 

(Cartenì et al., 2017) logit (binomial) Italy 
city attractiveness, distance, time, frequency, 
ticket price 

(Cascetta & Cartenì, 2014) logit (binomial) Italy 
(access, egress, transfer, waiting, in-vehicle, 
total) time, ticket fare 

(Cascetta & Coppola, 2011) logit (nested), regression (linear) Italy 
travel time, travel cost, access/egress time, 
punctuality, frequency 

(Cascetta et al., 2011) logit (nested) Italy travel cost, travel time, access + egress time 

(Castillo-Manzano et al., 2015) regression (linear, dynamic) Spain 
population, number of air operations, air 
passengers, unemployment rate 

(Chai et al., 2018) regression (panel threshold) China 
frequency, GDP, population, pollution, speed, 
travel time 

(Chen et al., 2019) regression (panel, hierarchical) China distance, population, GDP 

(Chen, 2010) logit (multinomial, nested) Sweden 
travel cost, travel time, access, egress, in 
vehicle-time 

(Chen, 2017) regression (panel) China distance, population, GDP, hub status 
(Chirania, 2012) logit (Box-Cox) USA travel time, travel cost 
(Clever & Hansen, 2008) logit (nested) Japan frequency, transfers, fare, distance 

(Clewlow et al., 2014) regression (linear) Europe 
travel time, population, GDP, density, fuel 
price 

(Couto & Graham, 2007) 
regression (multiplicative 
heteroscedastic) Worldwide fare, GDP/capita, population 

(Daly, 2010) logit (nested) UK distance, travel cost 

(Danapour et al., 2018) logit (binomial) Iran 
ticket price, travel time, hospitality, 
convenience 

(Dargay & Clark, 2012) regression (linear, dynamic) UK income 

(De Bok et al., 2010) logit (multinomial) Portugal 
travel cost, travel time, frequency, 
accessibility, wait time 

(Diez-Pisonero, 2012) none (case studies) Spain transit time, comfort, fixed cost 

(Dobruszkes et al., 2014) regression (Tobit) Europe 
frequency, distance, travel time, population, 
GDP, number of air transit, seat availability 

(Dobruszkes, 2011) none (case studies) Europe fare, frequency, travel time 
(Fröidh, 2005) none (case studies) Sweden travel time, fare, frequency 

(Fu et al., 2014) logit (three-level, nested) Japan 
fare, travel time, distance, frequency, 
capacity 

(Gaudry, 2008) logit (Box-Cox) Canada 
fare, travel time, access time, frequency of 
service, income 

(Gu & Wan, 2020) regression (linear) China  
frequency, travel time, population, GDP, seat 
availability, welfare 

(Gundelfinger-Casar & Coto-
Millán, 2017) gravity Spain fare, travel time 
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(Hensher, 1997) logit (heteroskedastic extreme value) Australia travel time, frequency, fares 
(Hong & Najmi, 2022) logit (conditional choice) USA ticket price, travel time, frequency 
(Hsu & Chung, 1997) new (discrete choice model) China value of time, speed, distance, fares 

(Inoue et al., 2015) logit (nested) Japan 
fare, frequency, access time, egress time, 
travel time 

(Jiménez & Betancor, 2012) regression (linear) Spain 
number of air passengers, tourism, GDP, 
distance, time  

(Jung & Yoo, 2014) logit (multinomial, nested) South Korea fare, access time, travel time, frequency 

(Kroes & Savelberg, 2019) new (substitution model) 
The 
Netherlands travel time, fares, transfers 

(Lee et al., 2016) logit (mixed) South Korea frequency, travel cost, travel time, safety 
(Leng et al., 2015) gravity, logit (multinomial) China GDP, population, distance 

(Li & Schmöcker, 2014) 
time series (log-linear first-order 
moving average) Taiwan population, GDP 

(Li & Sheng, 2016) logit (multinomial) China 
access time, egress time, travel time, income, 
trip purpose 

(Li et al., 2019) regression (panel) China 
fare, frequency, distance, access time, 
population, GDP, internet usage 

(Li et al., 2021) regression (Bayesian binary logistic) China 
distance, travel cost, travel time, safety, 
comfort, punctuality, access time 

(Liu et al., 2019) regression (panel) China, Japan fare, population, GDP 
(Lubis et al., 2019) logit (multinomial) Indonesia travel time, price, frequency 
(Ma et al., 2019) regression (reduced-form) China fare, travel time, population, GDP 
(Mahardika et al. 2021) logit (mixed) Indonesia travel time, travel cost 

(Mandel et al. 1994) logit (linear, Box-Cox) Germany 
travel cost, travel time, frequency, trip 
distance, value of time 

(Martín & Nombela, 2007) gravity, logit (multinomial) Spain 
travel time, cost, frequency, distance, 
income, population 

(Martínez et al., 2016) data analysis Spain 
catchment area population with distance 
decay 

(Miyoshi & Givoni, 2012) formula fitting (logistic) UK air traffic demand, seat capacity, travel time 
(Mizutani & Sakai, 2021) regression (DID) Japan fare, distance, travel time, population, income 
(Nelldal & Jansson, 2010) Sampers, Samvips, Vips Sweden in-vehicle time 

(Nurhidayat et al., 2018) logit (binomial) Indonesia 
income, trip purpose, fare, travel time, mode 
to airport 

(Nurhidayat et al., 2019) logit (binomial) Indonesia fare, travel time 

(Ortúzar & Simonetti, 2008) 
regression (binary choice), logit 
(mixed, nested) Chile travel time, fare, comfort, service delay 

(Outwater et al., 2010) logit (multinomial, nested) USA 

employment, households, travel time, 
distance, travel cost, VOT, frequency, 
reliability, income 

(Pagliara & Vassallo, 2012) logit (multinomial) Spain cost, frequency 
(Pagliara et al., 2015) regression (logistic) Spain price, accessibility, frequency, safety, comfort 
(Pan & Truong, 2020) regression (logistic) China frequency, price, attitude 
(Park & Ha, 2006) logit (multinomial) South Korea fare, frequency, distance 
(Qian et al., 2023) logit (multinomial) China transit time 
(Ren et al., 2020) logit (binomial, multinomial) China distance, income 
(Rich & Mabit, 2012) logit (nested) Europe travel cost, travel time 

(Rohr et al., 2010) logit (nested) UK 
cost, travel time, frequency, wait time, 
interchanges, income 

(Román & Martín, 2010) logit (multinomial, nested) Spain 
travel time, travel cost, headway, access + 
egress time, waiting time, reliability 

(Román et al., 2007) logit (nested) Spain 
travel cost, travel time, access + egress time, 
headway, reliability, comfort, waiting time 

(Román et al., 2010) logit (nested) Spain 

access time, waiting time, in-vehicle time, 
egress time, travel cost, headway/frequency, 
reliability, comfort, income 

(Sánchez-Borràs et al. 2010) econometric Europe ticket prices 

(Shilton, 1982) gravity (adaption) UK 
population, distance, competing modes, 
socio-economics 

(Strauss et al., 2021) gravity China price, frequence, distance, population, GDP 
(Su et al., 2020) regression China frequency, distance 
(Utomo et al., 2020) logit (binomial) Indonesia fare, travel time 

(Wan et al., 2016) regression (DID) 
China, Japan, 
South Korea population, GDP/capita, distance 

(Wang et al., 2018) regression (DID) China 
speed, distance, population, income, tourism 
status, travel time, safety 

(Wang et al., 2021) vertical differentiation China fare, frequency, distance 
(Wang, 2011) logit (binomial) Sweden travel time, travel cost 
(Wang, Jiang et al., 2020) connectivity utility model China population, GDP 
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(Wang, Sun et al., 2020) vertical differentiation France 
fare, frequency,  travel time, seat cost, value 
of time 

(Wardman, 2006) regression (weighted least squares) UK GDP, travel time, travel costs, population 
(Xia & Zhang, 2017) vertical differentiation China access time, egress time, travel time, service 

(Yang & Zhang, 2012) competition model China 
access time, distance, speed, fixed cost, seat 
cost, value of time, operating hours 

(Yang et al., 2022) logit (binomial) China safety, comfort, fares, convenience 

(Yang, Burghouwt, et al., 2018) regression (panel) China 
frequency, ticket fare, travel time, population, 
GDP 

(Yang, Dobruszkes, et al., 2018) regression (linear, multiple) China GDP, population, distance 

(Yao & Morikawa, 2005) logit (multinomial) Japan 

travel cost, travel time (access / egress / line), 
(working) population, (non-)business 
attractiveness, industrial structure, 
GDP/capita, frequency 

(Yu et al., 2021) gravity (adaption) China 
GDP, population, industrial structure, 
distance, speed, income 

(Zeng & Wang, 2020) logit (adapted, improved) China fare, frequency, travel time, comfort 
(Zhang & Lu, 2015) vertical differentiation USA travel cost, travel time 

(Zhang et al., 2014) Lerner index China 
distance, number of air passengers, 
frequency, population, GDP 

(Zhang et al., 2017) regression (linear, multiple) China 
fare, frequency, distance, travel time, 
population, GDP 

(Zhang et al., 2018) regression (DID) East Asia 
population, GDP, access, distance, number of 
air passengers 

(Zhang et al., 2020) regression (panel) China distance, population, income, tourism factor 
(Zhong et al., 2014) data analysis Worldwide population, density, employment, income 
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Logit parameters 

These were attained the following 57 different models by fifteen studies, and used to find good estimates 

of 𝛽𝑇𝑇 and 𝛽𝑇𝐶. They were used as part of the results in section 4.1. Details about each of the models were 

stated here as well. The studies all originate from the long list of 100 studies in Table 0.2. 

 

Table 0.3 Models and studies used for gathering logit parameters 

Reference Location Org. units #Obs 𝑹𝟐 𝜷𝑻𝑻 [𝒉] 𝜷𝑻𝑪 [𝟐𝟎𝟐𝟒 €] 𝑽𝒐𝑻 [€/𝒉] Note 
(Behrens & Pels, 2012) UK, France min, 1995 £ 9,470 - -0.82800 -0.00152 543.84 business travellers 
   18,536 - -0.34800 -0.00574 60.61 leisure travellers 
   9,470 - -1.09200 -0.00162 672.11 business travellers 
   18,536 - -0.93600 -0.00408 229.59 leisure travellers 
(Brand et al., 1992) USA h, 1990 $ - - -1.34440 -0.01724 77.98 business air travellers 
   - - -1.72300 -0.02770 62.20 nonbusiness air travellers 
   - - -0.56360 -0.01287 43.78 business car travellers 
   - - -0.28170 -0.01460 19.29 nonbusiness car travellers 
(Chen, 2010) Sweden min, 2006 SEK 12,048 0.483 -0.26760 -0.01832 14.61   
   12,048 0.530 -0.12600 -0.02205 5.72   
   12,048 0.558 -0.16860 -0.01919 8.79   
   12,048 0.607 -0.19560 -0.01316 14.86   
   12,048 0.611 -1.08600 -0.06170 17.60   
   12,048 0.234 -0.41364 -0.01927 21.47   
(de Bok et al., 2010) Portugal h, 2007 € 5,176 0.486 -0.01460 -0.08362 0.17 commuting travellers 
   5,176 0.491 -0.01470 -0.08503 0.17 commuting travellers 
   5,176 0.502 -0.01200 -0.01289 0.93 commuting travellers 
   5,176 0.508 -0.01180 -0.01864 0.63 commuting travellers 
   3,246 0.822 -0.01570 -0.05286 0.30 business travellers 
   3,246 0.822 -0.01600 -0.05286 0.30 business travellers 
   3,246 0.821 -0.01250 -0.02401 0.52 business travellers 
   3,246 0.821 -0.01120 -0.03471 0.32 business travellers 
   13,370 0.475 -0.00554 -0.05768 0.10 other travellers 
   13,370 0.475 -0.00665 -0.05959 0.11 other travellers 
   13,370 0.482 -0.00628 -0.03023 0.21 other travellers 
   13,370 0.481 -0.00738 -0.04270 0.17 other travellers 
(Fu et al., 2014) Japan h, 2005 (x100) $ 901 - -0.44270 -0.00007 6168.86   
(Jung & Yoo, 2014) South Korea min, 2012 ₩ 3,534 - -0.26400 -0.02459 10.74 business travellers, MNL 
   3,534 - -0.25200 -0.03200 7.88 nonbusiness travellers, MNL 
   3,534 - -0.16800 -0.02344 7.17 business travellers, ML 
   3,534 - -0.36000 -0.04576 7.87 nonbusiness travellers, NL 
(Li & Sheng, 2016) China min 1,128 0.213 -0.96180      
   1,128 0.206 -0.83820      
   1,128 0.214 -0.73560      
(Lubis et al., 2019) Indonesia h,  2016 IDR 402 0.107 -0.71700      
   403 0.121 -0.71700     
   404 0.127 -0.71700      
   405 0.128 -0.71700      
(Mandel et al. 1994) Germany h, 1980 DM 62,982 0.314 -0.63900      
   62,982 0.492 -1.00600      
(Martín & Nombela, 2007) Spain h, 2010 € 143 0.510 -0.36450 -0.00241 151.19   
   40 0.292 -0.46060 -0.02478 18.59   

(Outwater et al., 2010) USA min, 2000 $ 1,500 0.276 -3.60000 -0.12490 28.82 
access models / business-
commute 

   2,724 0.365 -1.80000 -0.19984 9.01 access models / recreation-
other 

   1,466 0.075 -3.60000 -0.12490 28.82 
egress models / business-
commute 

   2,668 0.231 -1.80000 -0.19984 9.01 egress models / recreation-
other 

   2,198 0.380 -1.08000 -0.02831 38.15 long trip / business-commute 
   5,075 0.309 -0.66000 -0.05829 11.32 long trip / recreation-other 
(Pagliara & Vassallo, 2012) Spain 2010 € 1,011 0.334   -0.09322    
   1,011 0.340   -0.13796    
   1,011 0.343   -0.15001    
(Park & Ha, 2006) South Korea 2003 ₩ 829 0.203   -0.00010    
(Román & Martín, 2010) Spain min, 2004 € 2,917 - -0.28200 -0.08615 3.27   

(Yao & Morikawa, 2005) Japan 
h, 2000 (x10000) 

JPY 18,798 0.495 -2.13600 -0.30413 7.02 business SP/RP 

   18,798 0.495 -2.13600 -0.30413 7.02 business aggregate 
   32,202 0.456 -0.56200 -0.22330 2.52 non-business SP/RP 
   32,202 0.456 -0.56200 -0.22330 2.52 non-business aggregate 
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Ordinary Least Squares 

In OLS, a linear relationship between the dependent variable 𝑌 and its factor of influence 𝑋 is assumed. 

The method therefore considers a formula of the following shape to be fitted to the observed data (Malonda 

& Carles, 2003): 

 

𝑌𝑖 =  𝛼 + 𝛽𝑋𝑖 + 𝑒𝑖 (0.1) 

 

Here, each unique observation is indicated by an index 𝑖. For simplicity, the equation above only considers 

one factor of influence. The 𝛼-factor represents the predicted value when the values of all impact factors is 

set to zero. 𝛽 is the coefficient belonging to the impact factor and characterises the relationship between 

the impact factor and the variable it is attempting to forecast. The coefficient is multiplied by the value of 

that impact factor for an observation 𝑋𝑖 . OLS ensures the average difference between observed and 

predicted values is set to zero. However, this gives no further information about the accuracy of this formula 

in absolute terms. In reality, the predicted outcome will deviate from the observed value. Therefore, an 

error term 𝑒𝑖 is added in equation (0.1). 

To approach reality, the value of these error terms for all observations must remain as small as possible. 

Let’s take a closer look at this error term by rewriting equation (0.1): 

 

𝑒𝑖 =  𝑌𝑖 − (𝛼 + 𝛽𝑋𝑖) (0.2) 

 

OLS minimises the sum of squared error terms. The necessity of squaring the terms comes from the fact 

that an error is seen as a nonnegative number; it is a measure of the distance between observed and 

predicted data (Malonda & Carles, 2003). This must be minimised. The squaring is performed to turn 

negative values into positives, thus seeing equivalence between a -3 and +3 error, as it is both squared to 

9. Both 𝛼 and 𝛽 are chosen to minimise the sum of squares 𝑆𝑆, as indicated in equation (0.3). 

 

𝑆𝑆 =  ∑ 𝑒𝑖
2

𝑛

𝑖=1

= (𝑌𝑖 − 𝛼 − 𝛽𝑋𝑖)2 (0.3) 

 

Then, these values are substituted in for equation (0.3), which then becomes the linear trendline best fitting 

to the data. Quantifying the accuracy of this equation and its parameters commonly is done by the following 

few indicators, and also will be used to display calibration results in this project: 

• Standard deviation¸ which can be calculated for each parameter estimated. It is the average 

deviation of the value from the mean, when the formula is applied to the data. Higher standard 

deviations indicate a greater uncertainty of the parameter’s value. To be able to make fair 

comparisons between the different parameters, this is often scaled to the estimated value of the 

parameter by means of the t-test. 

• T-test, which is calculated by dividing the parameters estimate by its standard deviation. The 

absolute value of the outcome is a measure to grasp the relative significance or magnitude of the 

parameter estimate in relation to its variability. Higer values of the t-test indicate a stronger 

significance, and increase the probability that the observed relationship is real and not due to 

random chance. 

• P-value, which is calculated directly from the value of the t-test. The outcome is a number between 

0 and 1. Lower values indicate a higher significance level; for example, a level of 95% is indicated 

by a p-value of 0.05. In studies, the this is usually considered most important when it comes to 

assessing the statistical significance of estimated parameters. 

• To assess the fit of the trendline, 𝑹𝟐 is considered the standard. It measures how well the model 

approximate the actual data. It is calculated by means of the following equation: 
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𝑅2 =  1 −
∑(𝑌𝑖 − �̂�𝑖)

2

∑(𝑌𝑖 − �̅�)2
 (0.4) 

 

Here, 𝑌𝑖  and �̂�𝑖  represent the observed and predicted value of observation 𝑖 , respectively. The 

average of all these observations is indicated by �̅�. The outcome 𝑅2 will take values between 0 and 

1, which represents the share of variation in the real data that is explained by the model (Coker, 

1995). Thus, a higher 𝑅2-value corresponds to a better model fit. 
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C. Air Passengers Data Set 

Data sets used 

Table 0.4 lists all Eurostat databases used for this project, along with their names. These data sets provided 

the air passenger data, needed to calibrate the model defined in chapter 3. 

 

Table 0.4 Air passenger databases used (Eurostat, 2024a) 

Name Country 
No. 
Flights 

Years 
available 

avia_par_at Austria 291 1993-2022 
avia_par_be Belgium 319 1993-2022 
avia_par_ba Bosnia and Herzegovina 25 2021 
avia_par_bg Bulgaria 191 2007-2023 
avia_par_hr Croatia 254 2008-2023 

avia_par_cy Cyprus 157 
2001-2023 

excl. ‘02 
avia_par_cz Czechia 75 2002-2022 

avia_par_dk Denmark 293 
1993-2022 

excl. ‘00 
avia_par_ee Estonia 62 2001-2022 
avia_par_fi Finland 207 1997-2023 
avia_par_fr France 1915 1993-2022 

avia_par_de Germany 2160 1993-2022 

avia_par_el Greece 1015 
1993-2022 

excl. ’01-‘02 
avia_par_hu Hungary 129 2001-2022 
avia_par_is Iceland 83 2003-2023 
avia_par_ie Ireland 285 1993-2022 
avia_par_it Italy 2131 1993-2022 
avia_par_lv Latvia 90 2001-2023 
avia_par_lt Lithuania 165 2003-2023 
avia_par_lu Luxembourg 69 1993-2023 
avia_par_mt Malta 94 2001-2023 
avia_par_me Montenegro 50 2016-2022 
avia_par_mk North Macedonia 48 2015-2022 
avia_par_no Norway 439 1999-2023 
avia_par_pl Poland 758 2004-2022 
avia_par_pt Portugal 476 1993-2022 
avia_par_ro Romania 374 2001-2022 
avia_par_rs Serbia 84 2016-2022 
avia_par_sk Slovakia 109 2001-2023 
avia_par_si Slovenia 33 2004-2022 
avia_par_es Spain 1967 1993-2022 
avia_par_se Sweden 478 1993-2022 
avia_par_ch Switzerland 350 1993-2022 
avia_par_nl The Netherlands 502 1993-2023 
avia_par_tr Türkiye 1172 2012-2022 
avia_par_uk United Kingdom 2282 1993-2019 
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Scope selection 

The table below lists all European countries and their rationale behind being included or not into the 

scope, which has been defined in section 1.5: 

 

Table 0.5 Reasoning of area scope inclusion per country 

European Country ISO-3 Continental 
Europe 

Included? Reason of different choice 

Albania ALB yes yes - 
Andorra AND yes yes - 
Austria AUT yes yes - 
Belgium BEL yes yes - 
Bosnia and Herzegovina BIH yes yes - 
Bulgaria BGR yes yes - 
Croatia HRV yes yes - 
Czechia CZE yes yes - 
Denmark DNK yes yes - 
Estonia EST yes yes - 
Finland FIN yes yes - 
France FRA yes yes - 
Germany DEU yes yes - 
Greece GRC yes yes - 
Hungary HUN yes yes - 
Italy ITA yes yes - 
Kosovo XKK yes yes - 
Latvia LVA yes yes - 
Liechtenstein LIE yes yes - 
Lithuania LTU yes yes - 
Luxembourg LUX yes yes - 
Monaco MCO yes yes - 
Montenegro MNE yes yes - 
Netherlands NLD yes yes - 
North Macedonia MKD yes yes - 
Norway NOR yes yes - 
Poland POL yes yes - 
Portugal PRT yes yes - 
Romania ROU yes yes - 
San Marino SMR yes yes - 
Serbia SRB yes yes - 
Slovakia SVK yes yes - 
Slovenia SVN yes yes - 
Spain ESP yes yes - 
Sweden SWE yes yes - 
Switzerland CHE yes yes - 
Turkiye TUR yes (partly) yes (partly) - 
United Kingdom GBR no yes Eurotunnel connection 
Vatican City VAT yes yes - 
Armenia ARM no no - 
Azerbaijan AZE partly no military conflict (Vision of Humanity, 2024) 
Belarus BLR yes no military conflict 
Cyprus CYP no no - 
Georgia GEO partly no not connected to rest of scope 
Iceland ISL no no - 
Ireland IRL no no - 
Kazakhstan KAZ partly no not connected to rest of scope 
Malta MLT no no - 
Moldova MDA yes no military conflict 
Russia RUS partly no military conflict 
Ukraine UKR yes no military conflict 
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Cities with multiple airports 

The following cities are served by multiple airports. This includes only airports available in the data set that 

fulfil the scope requirements, and after preprocessing. These airports are assigned a new city-specific code, 

so that flight data serving the same origin and destination can be combined. Other airports keep their old 

code. This table is updated for the same year as the flight data used (2019). 

 

Table 0.6 Cities served by multiple airports (2019) 

#Airports City IATA Airport Name Code 
6 London, England LHR* Heathrow Airport C-LON 
  LGW Gatwick Airport  
  STN London Stansted Airport  
  LTN London Luton Airport  
  LCY London City Airport  
  SEN London Southend Airport  
3 Paris, France CDG* Charles de Gaulle Airport C-PAR 
  ORY Orly Airport  
  BVA Beauvais-Tillé Airport  
3 Stockholm, Sweden ARN* Stockholm Arlanda Airport C-STO 
  NYO Stockholm Skavsta Airport  
  BMA Stockholm Bromma Airport  
3 Milan, Italy LIN Milan Linate Airport C-MIL 
  MXP* Milan Malpensa Airport  
  BGY Orio al Serio International Airport  
3 Barcelona, Spain GRO Girona-Costa Brava Airport C-BAR 
  BCN* Josep Tarradellas Barcelona-El Prat Airport  
  REU Reus Airport  
3 Istanbul, Turkiye IST* Istanbul Airport C-IST 
  ISL Istanbul Atatürk Airport  
  SAW Istanbul Sabiha Gökçen International Airport  
2 Warsaw, Poland WAW* Warsaw Chopin Airport C-WAR 
  WMI Warsaw-Modlin Airport  
2 Brussels, Belgium BRU* Brussels National Airport C-BRU 
  CRL Brussels South Charleroi Airport  
2 Rome, Italy CIA Ciampino–G. B. Pastine International Airport C-ROM 
  FCO* Leonardo da Vinci–Fiumicino Airport  
2 Turin, Italy CUF Cuneo International Airport C-TUR 
  TRN* Turin Airport  
2 Venice, Italy TSF Treviso Airport C-VEN 
  VCE* Venice Marco Polo Airport  
2 Oslo, Norway OSL* Oslo Airport, Gardermoen C-OSL 
  TRF Sandefjord Airport, Torp  
2 Glasgow, Scotland GLA* Glasgow Abbotsinch Airport C-GLA 
  PIK Glasgow Prestwick Airport  
2 Berlin, Germany BER Berlin Schönefeld Airport C-BER 
  TXL* Berlin Tegel Airport  
2 Frankfurt, Germany FRA* Frankfurt Airport C-FRA 
  HHN Frankfurt-Hahn Airport  
2 Hamburg, Germany HAM* Hamburg Airport C-HAM 
  XFW Hamburg Finkenwerder Airport  
2 Munich, Germany MUC* Munich Airport C-MUN 
  FMM Memmingen Airport  
*biggest airport serving the city, is used for coordinates 
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Matchings 

The table below lists all 200 urban centres that could be matched with an airport for which flight data is 

available. The urban centres are originating from the full 726-long list, the airports are from the demand 

forecasting data set. 

Table 0.7 Matching of airports with urban centres 

IATA UC IATA UCS IATA UC IATA UCS 

AAL Aalborg CRA Craiova LCG A Coruña RIX Riga 
AAR Aarhus C-ROM Rome LCJ Lodz RMI Rimini 
ABZ Aberdeen C-STO Stockholm LEI Almeria RMU Murcia 
ACH Sankt Gallen C-TUR Turin LEJ Leipzig RNS Rennes 
AGH Helsingborg C-VEN Venice LGG Liège RTM Rotterdam [The Hague] 
AGP Málaga C-WAR Warsaw LIG Limoges RZE Rzeszów 
ALC Alacant / Alicante CWL Cardiff LIL Lille SBZ Sibiu 
AMS Amsterdam DEB Debrecen LIS Lisbon SCN Saarbruecken 
ANR Antwerp DRS Dresden LJU Ljubljana SCV Suceava 
AOI Ancona DSA Sheffield LNZ Linz SDR Santander 
ATH Athens DTM Dortmund LPI Linköping SJJ Sarajevo 
BCM Bacău DUS Dusseldorf LPL Liverpool SKG Thessaloniki 
BDS Brindisi EAP Basel LRH La Rochelle SKP Skopje 
BEG Belgrade EAS Donostia / San Sebastián LUX Luxembourg SOF Sofia 
BES Brest EDI Edinburgh LUZ Lublin SOU Portsmouth 
BGO Bergen EIN Eindhoven LYS Lyon SPU Split 
BHX Birmingham EMA Nottingham MAD Madrid STR Stuttgart 
BIO Bilbao ERF Erfurt MAN Manchester SVG Stavanger 
BIQ Anglet ETZ Nancy MME Middlesbrough SVQ Seville 
BLQ Bologna EXT Exeter MMX Malmö SXB Strasbourg 
BNX Banja Luka FDH Constance MPL Montpellier SZG Salzburg 
BOD Bordeaux FKB Karlsruhe MRS Marseille SZY Olsztyn 
BOH Bournemouth FLR Florence MST Aachen SZZ Szczecin 
BOJ Burgas FMO Münster NAP Naples TGD Podgorica 
BRE Bremen FNI Nimes NCE Nice TGM Târgu Mureș 
BRI Bari GDN Gdansk NCL Newcastle upon Tyne TIA Tirana 
BRQ Brno GIB Algeciras NRN Nijmegen TKU Turku 
BRS Bristol GNB Grenoble NTE Nantes TLL Tallinn 
BTS Bratislava GOA Genoa NUE Nuremberg TLN Toulon 
BUD Budapest GOT Gothenburg NWI Norwich TLS Toulouse 
BZG Bydgoszcz GPA Patras OPO Porto TMP Tampere 
BZR Béziers GRQ Groningen OSR Ostrava TRD Trondheim 
C-BAR Barcelona GRX Granada OST Bruges TRS Triest 
C-BER Berlin GRZ Graz OTP Bucharest TSR Timișoara 
C-BRU Brussels GVA Geneva OUL Oulu TUF Tours 
CFE Clermont-Ferrand HAJ Hanover OVD Gijón TZL Tuzla 
CFR Caen HEL Helsinki PAD Paderborn VAR Varna 
C-FRA Frankfurt am Main HUY Hull PEG Perugia VGO Vigo 
C-GLA Glasgow IAS Iași PGF Perpignan VIE Vienna 
CGN Cologne INI Niš PIS Poitiers VIT Vitoria-Gasteiz 
C-HAM Hamburg INN Innsbruck PLQ Klaipėda VLC Valencia 
C-IST Istanbul IOA Ioannina PMF Parma VLL Valladolid 
CLJ Cluj-Napoca KLU Klagenfurt PNA Pamplona VNO Vilnius 
C-LON London KRK Krakow POZ Poznan VRN Verona 
CMF Chambéry KSC Košice PRG Prague WRO Wroclaw 
C-MIL Milan KTW Katowice PRN Pristina XRY Jerez 
C-MUN Munich KUN Kaunas PSA Pisa ZAD Zadar 
C-OSL Oslo KUO Kuopio PSR Pescara ZAG Zagreb 
C-PAR Paris KVA Xanthi PUF Pau ZAZ Zaragoza 
CPH Copenhagen LBA Leeds REG Reggio Calabria ZRH Zurich 
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D. Fare Setting Model 

 

Proof that the revenue function always finds exactly one optimal solution 

This is the original revenue model from section 3.3.1 can be shown by rewriting the model: 

 

𝑅𝑖𝑗 =
exp(𝑉𝐻𝑆𝑅,𝑖𝑗)

∑ 𝑧𝑘,𝑖𝑗 ∙ exp(𝑉𝑘,𝑖𝑗)𝑘∈𝑲

∙ 𝑘 ∙
(𝑃𝑖 ∙ 𝑃𝑗)

𝛼
∙ (𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)

𝛽

(𝑑𝑖𝑗)
𝛾 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 (0.5) 

 

To find the optimal fare setting, that maximises the revenue, the maximum value of this equation must be 

found, by setting the derivate of the formula with respect to 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗  to zero. 

 

𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 = max
𝑇𝐶𝐻𝑆𝑅,𝑖𝑗

(𝑅𝑖𝑗) ⟹
𝑑

𝑑𝑇𝐶𝐻𝑆𝑅,𝑖𝑗
[𝑅𝑖𝑗] = 0 (0.6) 

 

Written out fully and simplified, it amounts to solving the following equation: 

 

(𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)
𝛽

∙ (𝑃𝑖 ∙ 𝑃𝑗)
𝛼

∙ 𝑘 ∙ exp(𝑉𝐻𝑆𝑅,𝑖𝑗) ∙ [𝑧𝐻𝑆𝑅,𝑖𝑗 ∙ exp (𝑉𝐻𝑆𝑅,𝑖𝑗) + [∑ 𝑧𝑘,𝑖𝑗 ∙ exp (𝑉𝑘,𝑖𝑗)𝑘∈𝑲\{𝐻𝑆𝑅} ] ∙ [𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 + 1]]

(𝑑𝑖𝑗)
𝛾

∙ (∑ 𝑧𝑘,𝑖𝑗 ∙ exp (𝑉𝑘,𝑖𝑗)𝑘∈𝑲\{𝐻𝑆𝑅} )
2 = 0 (0.7) 

 

This only holds when the numerator equals zero and the denominator does not. As the denominator will 

never equal zero in a practical situation (only when 𝑧𝑘,𝑖𝑗 = 0 for all 𝑘), it can be solved by the following 

equation: 

 

(𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)
𝛽

∙ (𝑃𝑖 ∙ 𝑃𝑗)
𝛼

∙ 𝑘 ∙ exp(𝑉𝐻𝑆𝑅,𝑖𝑗) ∙ [𝑧𝐻𝑆𝑅,𝑖𝑗 ∙ exp(𝑉𝐻𝑆𝑅,𝑖𝑗) + [∑ 𝑧𝑘,𝑖𝑗 ∙ exp(𝑉𝑘,𝑖𝑗)
𝑘∈𝑲\{𝐻𝑆𝑅}

] ∙ [𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 + 1]] = 0 (0.8) 

 

As the terms outside of square brackets will never become zero, solving this equation is equivalent to: 

 

𝑧𝐻𝑆𝑅,𝑖𝑗 ∙ exp(𝑉𝐻𝑆𝑅,𝑖𝑗) + [∑ 𝑧𝑘,𝑖𝑗 ∙ exp(𝑉𝑘,𝑖𝑗)
𝑘∈𝑲\{𝐻𝑆𝑅}

] ∙ [𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 + 1] = 0 (0.9) 

 

After writing out the full exp(𝑉𝐻𝑆𝑅,𝑖𝑗) term and some rearrangement, the equation can be written as: 

 

[𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 + 1]

exp (𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗)
= −

𝑧𝐻𝑆𝑅,𝑖𝑗 ∙ exp(𝛽𝑇𝑇 ∙ 𝑇𝑇𝐻𝑆𝑅,𝑖𝑗)

∑ 𝑧𝑘,𝑖𝑗 ∙ exp(𝑉𝑘,𝑖𝑗)𝑘∈𝑲\{𝐻𝑆𝑅}

 (0.10) 

 

The left side includes the variable of interest (HSR cost), while the right-hand side includes known values 

only. As this expression cannot be simplified further, it means that the optimal HSR fare setting 𝑇�̂�𝐻𝑆𝑅,𝑖𝑗  

cannot be found by means of a simple calculation. A more sophisticated, iterating solving strategy is 

required in order to approximate this value. 

Now, let 𝐶0 = 𝛽𝑇𝐶 ∙ 𝑇𝐶𝐻𝑆𝑅,𝑖𝑗 and the right-hand side of equation (0.10) equal 𝐶1. This is done to foresee 

the nature of the possible solutions. The equation can now be simply written as: 

 
𝐶0 + 1

exp (𝐶0)
= 𝐶1 (0.11) 

 

As costs are positive values and 𝛽𝑇𝐶 takes a negative value in literature, 𝐶0 will always be negative as well. 

In practice, also 𝐶1 will always be negative, as the numerator and denominator both will be positive as 

exp(𝑥) > 0 for all 𝑥, and 𝑧𝐻𝑆𝑅,𝑖𝑗 by definition is equal to 1 when this model is applied. 
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Plotting experiments in Desmos (2011) show that solving equation (0.11) for 𝐶0 < 0 and 𝐶1 < 0 always 

yields exactly one solution with regards to 𝐶0. The smaller 𝐶1 becomes, the smaller 𝐶0 will be. This proves 

that the revenue model in equation (3.9) with HSR fare as a free variable will always allow to find one unique 

optimum point, and it belongs to the maximum revenue, our point of interest. 
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E. Train Acquisition Formula 

 

Rewriting equation (2.6) into (2.7) 

The equation of Belal et al. (2020) can be generalised by replacing the numerical values by constants: 

𝑛𝑖𝑗 =
𝐶 ∙ 𝐷𝐻𝑆𝑅,𝑖𝑗 ∙ (𝑙𝑖𝑗 + 𝑣𝑚𝑎𝑥)

𝑠 ∙ 𝑣𝑚𝑎𝑥
 

This can be written without brackets: 

𝑛𝑖𝑗 =
𝐶 ∙ 𝐷𝐻𝑆𝑅,𝑖𝑗 ∙ 𝑙𝑖𝑗

𝑠 ∙ 𝑣𝑚𝑎𝑥 +
𝐶 ∙ 𝐷𝐻𝑆𝑅,𝑖𝑗 ∙ 𝑣𝑚𝑎𝑥

𝑠 ∙ 𝑣𝑚𝑎𝑥  

Showing individual parts: 

𝑛𝑖𝑗 = 𝐶 ∙
𝐷𝐻𝑆𝑅,𝑖𝑗

𝑠
∙

𝑙𝑖𝑗

𝑣𝑚𝑎𝑥 + 𝐶 ∙
𝐷𝐻𝑆𝑅,𝑖𝑗

𝑠
 

 

Now, dividing passenger numbers 𝐷𝐻𝑆𝑅,𝑖𝑗  by the number of seats 𝑠 represents the needed frequency of 

operations 𝑓𝑖𝑗. Also, dividing the line length 𝑙𝑖𝑗  by the operating speed 𝑣 is a measure of travel time 𝑡𝑖𝑗. Both 

newly introduced terms here can be substituted into the equation: 

 

𝑛𝑖𝑗 = 𝐶 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗 + 𝐶 ∙ 𝑓𝑖𝑗 = 𝐶 ∙ 𝑓𝑖𝑗 ∙ (𝑡𝑖𝑗 + 1) 

 

For simplicity, it is assumed that 𝑡𝑖𝑗 + 1 ≈ 𝑡𝑖𝑗, which transforms the equation to: 

 

𝑛𝑖𝑗 = 𝐶 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗 

 

Now, let’s look at the units in this equation: 

 

[𝑡𝑟𝑎𝑖𝑛𝑠] = [−] ∙ [
𝑡𝑟𝑎𝑖𝑛𝑠

ℎ𝑟
] ∙ [ℎ𝑟] 

 

Which is correct. From logics, it can be deduced that the equation correctly estimates the number of 

trains needed to operate a line at a certain frequency: 

 

If trains operate a line with length 𝑙𝑖𝑗  at a frequency 𝑓𝑖𝑗, it means that at a certain station, 𝑓𝑖𝑗 trains depart 

per hour. The distance (in hours travel time) between each train equals 1/𝑓𝑖𝑗. Each train travels back and 

forth between the line’s terminal stations, meaning that they travel in a cycle with a duration of 2 ∙ 𝑡𝑖𝑗 hours. 

If we have a cycle of length 2 ∙ 𝑡𝑖𝑗 hours, and a distance between each successive train of 1/𝑓𝑖𝑗 hours, it 

means that the number of trains needed equals: 

 

𝑛𝑖𝑗 =
𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑡𝑟𝑎𝑖𝑛𝑠
=

2 ∙ 𝑡𝑖𝑗

1
𝑓𝑖𝑗

= 2 ∙ 𝑡𝑖𝑗 ∙ 𝑓𝑖𝑗 

 

Thus, the value of 𝐶 equals 2. The expression above must be rounded upwards, as the number of trains 

must be integer. If rounded downwards, the spacing between successive trains would become too large, 

meaning that the needed frequency cannot be satisfied. Rounding up a value in mathematics is typically 

done by usage of ceiling brackets. 

 

𝑛𝑖𝑗 = ⌈2 ∙ 𝑡𝑖𝑗 ∙ 𝑓𝑖𝑗⌉ 

 

Which is equivalent to the new equation (2.7). 
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F. Construction Costs 

Construction costs per country 

Borgogno (2023) reports unit construction costs per km for 27 countries within the scope of this project: 

 

Table 0.8 Construction costs per country (Borgogno, 2023) 

ISO-3 Country 
Surface cost 
[M€ / km] 

Tunnel cost 
[M€ / km] 

ALB Albania - - 
AUT Austria 23 65 
BEL Belgium 26 74 
BIH Bosnia and Herzegovina - - 
BGR Bulgaria 15 43 
HRV Croatia 12 36 
CZE Czech Republic 19 54 
DNK Denmark 15 44 
EST Estonia 6 16 
FIN Finland 10 29 
FRA France 35 100 
DEU Germany 45 129 
GRC Greece 18 51 
HUN Hungary 12 34 
ITA Italy 36 106 
XKO Kosovo - - 
LVA Latvia 5 15 
LTU Lithuania 6 16 
LUX Luxembourg 21 60 
MKD North Macedonia - - 
MCO Monaco - - 
MNE Montenegro - - 
NLD Netherlands 34 98 
NOR Norway 20 58 
POL Poland 12 36 
PRT Portugal 17 50 
ROU Romania 15 42 
SRB Serbia - - 
SVK Slovakia 19 56 
SVN Slovenia 17 48 
ESP Spain 27 77 
SWE Sweden 17 48 
CHE Switzerland 29 84 
TUR Turkiye - - 
GBR United Kingdom 43 125 
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Of the 39 countries within this scope (Appendix C), 35 are represented in the database of 726 cities, as 

introduced in section 3.4.8. Thus, for eight of these 35, no data is available in the work of Borgogno (2023): 

 

Table 0.9 Neighbouring countries of countries not reported by Borgogno (2023) 

ISO-3 Country #Neighbouring countries Of which reporting 

ALB Albania (4): Greece, Kosovo, North Macedonia, Montenegro (1): Greece 
BIH Bosnia and Herzegovina (3): Croatia, Montenegro, Serbia (1): Croatia 
XKO Kosovo (4): Albania, Montenegro, North Macedonia, Serbia (0) 
MKD North Macedonia (5): Albania, Bulgaria, Greece, Kosovo, Serbia (2): Bulgaria, Greece 
MCO Monaco (1): France (1): France 

MNE Montenegro 
(5): Albania, Bosnia and Herzegovina, Croatia, Kosovo, 
Serbia 

(1): Croatia 

SRB Serbia 
(8): Bosnia and Herzegovina, Bulgaria, Croatia, Hungary, 
Kosovo, Montenegro, North Macedonia, Romania 

(4): Bulgaria, Croatia, 
Hungary, Romania 

TUR Turkiye 
(8): Armenia, Azerbaijan, Bulgaria, Georgia, Greece, 
Iran, Iraq, Syria 

(2): Bulgaria, Greece 
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All but Kosovo have neighbours with reported values. This means that attributing countries with data will 

be performed in two steps: firstly, all non-reporting countries except Kosovo will be attributed the average 

of their reporting neighbouring countries. Then, all of Kosovo’s neighbours will have values, and the average 

of those is taken for Kosovo. The final table of construction costs is adjusted for inflation, and is then 

presented as: 

 

Table 0.10 Construction costs per country, complete (Borgogno, 2023) 

ISO-3 Country 
Surface cost 
[M€ / km] 

Tunnel cost 
[M€ / km] 

ALB Albania 22 64 
AUT Austria 29 81 
BEL Belgium 32 92 
BIH Bosnia and Herzegovina 15 45 
BGR Bulgaria 19 54 
HRV Croatia 15 45 
CZE Czech Republic 24 67 
DNK Denmark 19 55 
EST Estonia 7 20 
FIN Finland 12 36 
FRA France 44 125 
DEU Germany 56 161 
GRC Greece 22 64 
HUN Hungary 15 42 
ITA Italy 45 132 
XKO Kosovo 20 55 
LVA Latvia 6 19 
LTU Lithuania 7 20 
LUX Luxembourg 26 75 
MKD North Macedonia 21 59 
MCO Monaco 44 125 
MNE Montenegro 15 45 
NLD Netherlands 42 122 
NOR Norway 25 72 
POL Poland 15 45 
PRT Portugal 21 62 
ROU Romania 19 52 
SRB Serbia 17 49 
SVK Slovakia 24 70 
SVN Slovenia 21 60 
ESP Spain 34 96 
SWE Sweden 21 60 
CHE Switzerland 36 105 
TUR Turkiye 21 59 
GBR United Kingdom 54 156 
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G. Existent European Network 

The figure below shows the map of the currently existing high-speed rail connections in Europe. 

 

Map of existent network 

 

Figure 0.1 Current European high-speed rail network (UIC, 2018) 
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List of upgradeable infrastructure 

As mentioned in section 3.3.2, OD pairs with an average train operating speed exceeding 200 km/h will be 

given a 50% discount in HSR construction costs, since it would then come down to upgrading already 

existing infrastructure, rather than constructing new infrastructure. The table below lists all OD pairs for 

which this is the case. It should be noted that only the top 250 cities in population are taken into account 

for this list. 

 

Table 0.11 OD pairs with upgradeable rail infrastructure 

OD pair name 
Average train 
travel speed 

Bordeaux-Paris 282 
Paris-Strasbourg 279 
Madrid-Zaragoza 254 
Barcelona-Madrid 250 
Nancy-Paris 250 
Córdoba-Zaragoza 250 
Metz-Paris 238 
Marseille-Paris 233 
Lille-Lyon 232 
Brussels-Paris 229 
Le Mans-Paris 226 
Barcelona-Zaragoza 224 
Paris-Rennes 221 
Lille-Paris 220 
Sevilla-Zaragoza 216 
Montpellier-Paris 216 
Lyon-Paris 213 
Bologna-Milan 213 
Karlsruhe-Paris 211 
Lille-London 210 
Lille-Marseille 210 
Paris-Toulon 207 
Cologne-Wiesbaden 204 
Málaga-Zaragoza 202 
London-Paris 200 
Mannheim-Stuttgart 200 
Bielefeld-Dortmund 200 
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H. Optimal Network 

This section presents extensive displays of the optimal network. 

 

Served OD pairs 

The table below shows data related to every served OD pair in the network, including market shares. 

“0.00%” means that the travel mode is unavailable (after HSR goes into operation). 

 

Table 0.12 Overview of served OD pairs 

Name 
Length 
[km] 

Travel 
time 
[h] 

First-year 
demand 
[pax] 

Market share [%] 
 
Plane Train Car HSR 

Amsterdam-London 575 1.99 20,224,504 4.88% 8.05% 1.47% 85.60% 
London-Paris 464 1.56 12,936,155 11.02% 0.00% 4.00% 84.97% 
Frankfurt am Main-London 761 2.58 7,750,188 2.81% 10.49% 0.38% 86.32% 
Edinburgh-London 655 2.25 7,249,183 15.92% 0.23% 5.70% 78.15% 
Düsseldorf-London 565 1.96 7,144,261 11.18% 3.17% 1.07% 84.58% 
Düsseldorf-Paris 518 1.81 6,809,277 1.58% 2.50% 22.01% 73.91% 
London-Munich 1156 4.00 4,079,705 10.93% 0.73% 0.06% 88.28% 
Amsterdam-Paris 528 1.84 3,917,107 3.38% 6.32% 14.23% 76.08% 
Brussels-London 364 1.24 3,894,770 1.00% 24.50% 0.70% 73.79% 
Berlin-London 1135 3.93 3,181,802 13.26% 0.13% 0.02% 86.59% 
Brussels-Paris 317 1.09 3,154,216 0.10% 26.92% 20.34% 52.65% 
Berlin-Düsseldorf 570 1.97 2,019,844 2.35% 27.56% 5.93% 64.16% 
Frankfurt am Main-Paris 714 2.43 2,009,311 0.53% 22.13% 7.24% 70.10% 
Berlin-Paris 1088 3.78 1,973,123 15.86% 0.23% 0.92% 82.99% 
Brussels-Düsseldorf 201 0.72 1,770,885 0.00% 13.10% 39.81% 47.09% 
Leeds-London 326 1.20 1,749,705 0.66% 6.76% 27.64% 64.94% 
Frankfurt am Main-Munich 395 1.42 1,642,057 0.19% 15.61% 23.44% 60.75% 
Nottingham-Paris 670 2.30 1,573,034 0.05% 13.21% 0.82% 85.93% 
Hamburg-London 997 3.50 1,451,245 13.49% 0.20% 0.11% 86.20% 
Paris-Southampton 587 2.03 1,449,145 1.31% 10.52% 2.21% 85.96% 
London-Nottingham 206 0.74 1,376,672 0.00% 24.26% 28.74% 46.99% 
Leeds-Paris 790 2.76 1,307,810 11.25% 1.79% 0.46% 86.51% 
Brussels-Frankfurt am Main 397 1.34 1,274,538 1.32% 25.24% 13.85% 59.59% 
Düsseldorf-Hamburg 432 1.54 1,238,177 1.74% 0.91% 31.46% 65.89% 
Berlin-Brussels 771 2.69 1,235,733 11.90% 2.44% 5.49% 80.17% 
London-Southampton 123 0.47 1,129,688 0.00% 17.71% 42.71% 39.57% 
Düsseldorf-Nottingham 771 2.70 1,117,338 9.49% 1.38% 0.79% 88.34% 
Hannover-Paris 798 2.78 1,038,976 3.93% 1.13% 11.57% 83.36% 
Brussels-Munich 792 2.76 1,012,084 4.46% 7.31% 6.83% 81.40% 
London-Nuremberg 984 3.37 1,004,463 9.61% 2.36% 0.15% 87.88% 
Düsseldorf-Southampton 688 2.43 938,313 9.80% 0.67% 1.65% 87.89% 
Nuremberg-Paris 937 3.22 839,524 1.00% 10.35% 7.48% 81.18% 
Hannover-London 845 2.93 700,371 13.31% 0.48% 0.20% 86.01% 
Brussels-Leeds 690 2.44 692,411 12.04% 2.34% 0.47% 85.16% 
Brussels-Nottingham 570 1.98 672,064 0.43% 15.17% 0.71% 83.69% 
Düsseldorf-Leeds 891 3.16 671,342 13.38% 0.05% 0.12% 86.45% 
Brussels-Southampton 487 1.71 660,309 0.08% 12.55% 2.55% 84.82% 
Frankfurt am Main-Southampton 884 3.05 609,912 2.09% 6.31% 1.59% 90.01% 
Frankfurt am Main-Nottingham 967 3.32 555,968 7.54% 3.47% 0.21% 88.78% 
Amsterdam-Nottingham 781 2.73 537,745 9.14% 2.08% 0.64% 88.14% 
Brussels-Hamburg 633 2.26 480,284 3.07% 12.29% 9.89% 74.75% 
Frankfurt am Main-Leeds 1087 3.78 438,929 11.45% 0.22% 0.06% 88.27% 
Frankfurt am Main-Nuremberg 223 0.79 391,279 0.56% 25.87% 31.47% 42.10% 
Düsseldorf-Hanover 280 0.97 380,186 0.07% 32.15% 22.34% 45.45% 
Brussels-Nuremberg 620 2.13 366,965 0.57% 12.45% 11.24% 75.74% 
Hamburg-Nottingham 1203 4.24 286,732 9.50% 0.17% 0.15% 90.17% 
Berlin-Southampton 1258 4.40 243,906 9.64% 0.04% 0.09% 90.24% 
Brussels-Hanover 481 1.69 238,571 0.02% 17.13% 13.23% 69.62% 
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Edinburgh-Nottingham 449 1.51 228,162 1.51% 0.03% 23.57% 74.88% 
Leeds-Nottingham 120 0.46 223,635 0.00% 35.96% 33.94% 30.10% 
Nuremberg-Southampton 1107 3.84 204,078 4.31% 2.49% 1.40% 91.80% 
Munich-Nuremberg 172 0.63 201,019 0.00% 8.87% 49.16% 41.97% 
Munich-Nottingham 1362 4.74 188,554 9.59% 0.11% 0.02% 90.28% 
Hamburg-Hanover 152 0.57 156,814 0.00% 28.38% 37.30% 34.32% 
Munich-Southampton 1279 4.47 155,331 10.30% 0.06% 0.05% 89.59% 
Berlin-Hanover 290 1.00 146,762 0.01% 42.71% 16.31% 40.97% 
Leeds-Southampton 449 1.67 142,019 0.02% 0.70% 27.53% 71.74% 
Hanover-Nottingham 1051 3.67 137,785 9.07% 0.40% 0.28% 90.26% 
Hanover-Southampton 968 3.40 133,829 8.14% 0.27% 1.12% 90.48% 
Edinburgh-Southampton 778 2.72 36,778 12.24% 0.07% 5.81% 81.88% 
 

 

Figure of the optimal network 

 

 
Figure 0.2 Optimal network design, full-size 
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I. Benchmarking 

Our optimisation model was benchmarked to the network of Mandl (1980). This section presents the 

underlying characteristics of this network. 

 

Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demand matrix 

 

Table 0.13 Mandl (1980) network demand matrix 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
0 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0 
1 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0 
2 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0 
3 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0 
4 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0 
5 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0 
6 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0 
7 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0 
8 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0 
9 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0 

10 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0 
11 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0 
12 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0 
13 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

  

Figure 0.3 Mandl's network (Arbex & da Cunha, 2015) 
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A B S T R A C T 

 

Despite being a long-cherished EU ambition and a crucial key to achieving climate goals, there is still no European High-Speed Rail (HSR) 

network, with the few completed projects often facing disappointing demand resulting in unprofitability. In order to gain insights to profitable 

network design, this study develops a new formulation to the “Transport Network Design & Frequency Setting Problem” (TNDFSP), as current 

literature lacks one that can optimally solve the problem for instances of this size while also accounting for demand elasticity. Our model works 

with elastic and dynamic HSR demand calculated from optimal fare settings and observed travel mode characteristics from competing 

alternatives. The optimal solution is largely insensitive to fare changes, and in some measures outperform current state-of-the-art. Our model 

considers the 111 most populous European cities, along with all their origin-destination (OD) pairs, and finds the most profitable network 

design within a reasonable solution time frame. The results show HSR can be very profitable in Europe, but only when concentrated around a 

selected group of the largest cities in the western part of the continent. Despite being profitable and contributing significantly to set Green Deal 

goals, the viability of our network heavily depends on the willingness of several countries to invest significantly in infrastructure construction. 

 

Keywords: High-speed rail, Network design, Frequency setting, Mathematical optimisation, Demand forecasting, Profitability estimation 

Detailed report: An electronic version is available at https://repository.tudelft.nl/. 

 

 

1 INTRODUCTION 

 

1.1. Background & context 

 

In Europe, the long-distance travel market (>700 km) has been dominated by 

planes, as it most often is the only practical option (Bleijenberg, 2020). The 

market showed continuous exponential growth in air passenger numbers of 

6.0% yearly on average (Eurostat, 2019), and projected to double in passenger 

numbers by 2040 (Timperley, 2020), tripling its contribution to climate change 

between 2020 and 2050 (ICAO, 2019). This is incompatible with the active 

Climate Agreements (Gössling & Humpe, 2020; Bleijenberg, 2020), and 

therefore, the European Union is forced to look for greener travel alternatives, 

the most promising candidate being High-Speed Rail (HSR). 

High-speed trains emit on average seven times less CO2 per passenger-

km (Strauss et al., 2021), when compared to air or road alternatives. With 

commercial speeds reaching up to 350 km/h, relatively low waiting times and 

the ability to directly connect city centres (Martín et al., 2014), they have a 

competitive advantage for travel times up to four hours (UIC, 2018). Japan was 

the first country to develop HSR with the introduction of the Shinkansen in 

1964. In recent decades, fuelled by HSR-backing governmental policy and 

subsidies, China has built a network comprising more than two-thirds of the 

global rail length (Chen, 2020), proving very successful by serving 2.4 million 

passengers in 2019 (Zhang, 2024), and decimating local airplane’s market share 

(Bradsher, 2013). Following this example, it comes as no surprise that the EU 

has been pushing governments to develop international high-speed rail 

connections.  

 

1.2. Problem definition 

 

Even though Europe has an extensive conventional rail network, it was 

developed with national focus, complicating interoperability and efficiency 

when travelling internationally. Despite HSR-backing policy acting since the 

1990s and investments of €23.7 billion into HSR development, the total 

transport-related greenhouse gas emissions have only increased since then 

(EEA, 2023). It can be concluded that the EU is not on track to meet its climate 

goals. As of today, still no European network exists (European Court of 

Auditors, 2018). This can be attributed to three leading problems: 

 

1. HSR policy has proven to be ineffective, as the European Union has 

no legal powers in forcing member states to construct rail connections 

as envisioned, due to many national rules being still in place. These act 

as technical and administrative barriers when it comes to construction 

of cross-border connections (European Court of Auditors, 2018).  

2. There is great uncertainty in the profitability of lines, putting their 

justifiability under scrutiny and causing governmental bodies to 

become reluctant when it comes to HSR development. Projects 

commonly have to deal with cost overruns and construction delays. In 

particular, the demand is hard to forecast. In Europe, three out of seven 

lines fail to have a sufficient number of passengers, while nine of out 

fourteen do not even have the potential number of passengers in the 

area to ever reach a sufficient amount (European Court of Auditors, 

2018). These projects therefore rely on subsidies, raising major 

critiques whether this money could not have been better spent 

elsewhere. 

3. As pointed out by Grolle et al. (2024), no HSR network design methods 

are currently available – a crucial literature gap. The great complexity 

of the “Transport Network Design & Frequency Setting Problem” 

(TNDFSP), primarily caused by demand elasticity, has led to the 

problem being primarily solved by (meta)heuristic algorithms, 

providing a good but not optimal solution. Due to the complexity of 

the problem, many assumptions and simplifications are made, putting 

the value of the found solutions under scrutiny. Prominent examples of 

these are the usage of fixed demand (despite its elastic nature) and 

network simplification (Cascetta & Coppola, 2012). Current literature 

lacks one that can optimally solve the problem for instances of this size 

while also accounting for demand elasticity. 
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1.3. Research goal 

 

In order to address the problems mentioned above, this study aims to develop 

a model that is able to assess European HSR profitability through mathematical 

optimisation, finding the optimal configuration of connections, lines and their 

frequencies. Therefore, the goal is to answer the following main research 

question: 

 

“Which European cities must be connected via High-Speed Rail, and how 

should these connections be served in order to lead to an (optimally) 

profitable network?” 

 

 

1.4. Paper framework 

 

The methodological framework required to answer this question consists of 

three parts: demand forecasting, profitability estimating and network design. 

Each of these parts return in the remaining sections of this paper. 

Section 2 presents the highlights of our literature review. Following from 

that, section 3 formulates the methodology required to answer our main 

research question. Section 4 presents the results after implementation of the 

methodology. Section 5 derives policy implications from this and section 6 

concludes by presenting the highlights among the findings. Finally, a 

discussion is presented in section 7. 

 

 

 

2 LITERATURE REVIEW 

 

2.1. Demand forecasting 

 

The science behind long-distance travel demand forecasting has been covered 

many times by literature. Typically, it is performed by a forecasting model, 

each taking a number of demand-influencing factors into account. The 

relationships between these factors and the level of demand are quantified by 

means of calibration to real-life observed data. In order to create an overview 

of what is used in literature, 100 long-distance travel demand forecasting 

studies published between 1982 and 2023 were analysed, with special interest 

regarding model types, demand-impact factors and their combinations. In 

particular, great literature reviews are performed by Nurhidayat et al. (2023), 

Zhang et al. (2012) and Börjesson (2014), which delivered half of the found 

papers, while the rest was found by further snowballing through academic data 

bases such as ScienceDirect, Scopus and Google Scholar. 

 

Impact factors 

In total, these 100 studies make use of 38 distinguishable demand-impact 

factors, which can be divided into eight categories. We can present the 

following highlights among the findings: 

 

• Travel time and travel cost are by far the most important impact factors, 

being used by 88% and 72% of studies, respectively. 

• Economic factors are used by 44% of studies, with GDP and Income 

being the most popular examples in this group. 

• Service frequency depends on the network’s line design, and is 

included by 43% of studies. 

• Population (34%) is most often expressed in terms of city population, 

but a far more accurate measure to represent the number of potential 

number of travellers would be the number of inhabitants living within 

the catchment area, as HSR stations might and should attract travellers 

from outside the city in which it is located (Martínez et al., 2016). 

• Travel comfort factors are important, but hard to quantify and therefore 

are included by only 29% of studies, which a great number of different 

factors used, without a clear favourite. 

• Destination attractiveness can be crucially influencing the level of 

demand, especially when it comes to touristic attraction (Mokhtarian 

& Salomon, 2001). However, due to its complexity of quantification, 

it is included by only 7% of studies. 

• Together, these seven groups capture 89% of all factors used by studies 

to forecast demand. 

 

Forecasting models 

In total, these 100 studies make use of 21 distinguishable models, which can be 

divided into four types. We can present the following highlights among the 

findings: 

 

• Models are destined to forecast either the market share of a travel mode, 

or the total passenger flow. 

• Both linear and logistic regression are the two clear favourite model 

types among demand forecasting studies, used by 47% and 32%, 

respectively. 

• Logistic regression is the only established model type able to forecast 

market shares. Most popular subtypes are both the multinomial (MNL) 

and nested (NL) logit. 

• Typically, ordinary linear regression is used, but panel linear 

regression is commonly used as well. 

• Relatively many studies (21%) experiment with alternative, non-

established and self-invented models that do not fit within the 

previously mentioned groups. 

• Despite being considered the most suitable method to estimate demand 

for new transit connections, especially when currently no direct service 

is available (Grosche et al., 2007), gravity models are used by only 6% 

of studies. 

• Demand is not a fixed number, as its impact factors change over time 

(Cascetta & Coppola, 2011). 

 

Model-factor combinations 

The relative popularity of the eight found groups among established model 

types are presented in Figure 1 below. 

 

The figure shows that some factors are very common to use in one model type, 

but not in another. The best example for this is ‘population’, which is 

commonly used in linear regression and gravity models, but practically non-

existent in logit models. Travel time is the only factor popular among all model 

types. Travel costs are implemented in almost all logit models, but for other 

model types it is way less common. The ‘economy’ factors are mostly used in 

linear models. The analysis also shows that gravity models often are kept very 

simple. Comfort-related and ‘other’ factors are not implemented. 

 

Demand evolution 

As briefly mentioned in the “Forecasting models” section, the level of demand 

is prone to change over time. In order to forecast the total demand, it is 

commonly divided into the following parts, as listed by Cascetta & Coppola 

(2011): 

 

• Diverted demand, which comes from people already travelling, 

changing their minds about which alternative to use. 

• Induced demand, which occurs by people who were not travelling, but 

now choose to do so. The effects happen directly, or indirectly, when 

it requires a change in lifestyle, habit or land use. 

• Demand growth, which is caused by an increase of mobility due to 

economic growth. 

 

The forecasting model types assessed here often only take the directly 

occurring effects in account, which are called endogenous. Cascetta & Coppola 

(2011) advise to also look at exogenous (indirect) factors, since they can have 

a large impact on (future) demand. 

 

Figure 1 Demand-impacting factor usage among established models 
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2.2. Profitability estimation 

 

In order to assess the profitability of a HSR project, each of its impacting cash-

flows must be mapped out. Barrón et al. (2012) provide insights into this 

subject with great detail, applied to real European cases. This helps 

constructing an overview of all significant cash-flows that come into play when 

constructing and operating new high-speed rail lines: 

 

• Ticket revenue, which is dependent on the fare setting and the total 

passenger flow. The latter factor itself also depends on the fare setting 

(May et al., 2022). 

• Infrastructure construction, maintenance and operating costs. Here, the 

construction cost is an initial investment, while the other two cash-

flows are recurring payments. Construction costs heavily depend on 

the line length, maximum operating speed, terrain, population density 

and the economic price level. Operating and maintenance costs also 

depend on the country’s economic price level but varies much less 

from country to country. It mainly depends on the number of seat-km 

(Barrón et al., 2012). 

• Rolling stock acquisition, maintenance and operating costs. Here, the 

acquisition cost is an initial investment, while the other two cash-flows 

are recurring payments. Acquisition costs depend on the choice and 

number of rolling stock, which tends to increase with faster trains with 

a higher capacity. Operating and maintenance costs depend on the 

number of seat-km. 

 

To illustrate the magnitude of these cash-flows, Table 1 below lists it’s 

indicative values, based on works of Barrón et al. (2012), de Rus et al. (2020), 

Nash (2010) and Fröidh (2006). Note that the reported values are all adjusted 

for inflation, based in 2024 prices. 

 

Table 1 Indicative values of HSR cash-flows 

Part Types Indicative values 

Infrastructure Construction €26.5 million / km 

 Operating and 

Maintenance 

€100 thousand / km / year 

Rolling stock Construction €37.5 million / train 

 Operating and 

Maintenance 
€0.03 / seat-km 

Passengers   

 

2.3. Network design 

 

The TNDFSP consists out of two distinctive problems: the TNDP, which 

relates to network design, and the FSP, which relates to line design. In order to 

assess the larger problem, both the smaller problems are analysed separately 

here at first. 

 

2.3.1.Transport Network Design Problem (TNDP) 

The definition of the problem is provided by Feremans et al. (2003): it consists 

of “finding the optimal subgraph of a graph, subject to side constraints”. The 

subgraph is formed by the set of selected city-pairs (edges) and associated cities 

(nodes), while the graph encompasses all city-pairs (edges) and all cities 

(nodes). It is a well-studied transportation problem. In this project, the focus 

lies on one certain application of the TNDP: finding the optimal choice of 

adding new links. 

 

Mathematical definition 

The TNDP related to this project considers an undirected graph 𝐺 = (𝑁, 𝐴), 

where 𝑁 represents the set of nodes (cities) and 𝐴 represents the set of arcs 

(connections) connecting these nodes. Each arc 𝑎 ∈ 𝐴 has certain attributes, 

such as the travel time and/or cost related to traversing it. For each arc, the 

decision can be made about whether it must be built or not. For this reason, a 

binary decision variable 𝑦𝑎 is included, defined for each arc 𝑎 ∈ 𝐴. If the arc is 

built, 𝑦𝑎 is set to 1 and zero otherwise. Most often, the choice in arc selection 

is not an entirely free choice – it usually comes with a number of constraints. 

The selection of arcs 𝑎 form a new set 𝐴𝑠𝑒𝑙 ⊆ 𝐴. The nodes associated with the 

arcs 𝑎 ∈ 𝐴𝑠𝑒𝑙 also form a new set 𝑁𝑠𝑒𝑙 ⊆ 𝑁. Together, they form a new graph 

𝐺𝑠𝑒𝑙 = (𝑁𝑠𝑒𝑙 , 𝐴𝑠𝑒𝑙), which then logically is a subgraph of the original graph 

𝐺 = (𝑁, 𝐴) . Each possible graph 𝐺𝑠𝑒𝑙 ⊆ 𝐺  has an associated ‘value’ 𝑍 

resulting from the objective function. The goal of the problem is to find the 

optimal network, maximising 𝑍, while adhering to all constraints. 

 

A promising recent development regarding optimal TNDP solving is the 

adaption of the Multi-Commodity Flow Problem’s (MCFP) formulation. Marín 

& García-Ródenas (2009) already observed that this approach is required when 

considering passenger flows for each OD pair. However, with current practice, 

the formulation suits small instances of the problem only, due to the added 

complexity by OD pair specific flows (Gutiérrez-Jarpa et al., 2017), a problem 

overcome by last-mentioned authors by splitting the problem in two. First, they 

optimise for the network’s topology only, based on the OD pair flows. Then, 

they optimise for the design of lines over this topology. 

 

Objectives 

Extensive reviews on TNDP studies are provided by Kepaptsoglou & Karlaftis 

(2009), encompassing 62 studies published between 1967 and 2007, and by 

Durán-Micco & Vansteenwegen (2021), for thirty studies ranging from 2009 

to 2021. Analysis of these 92 TNDP studies shows that more recently, the focus 

has shifted towards optimisation from a user perspective rather than the 

operator’s point of view. The user perspective is typically addressed by 

minimising total travel time or total user travel costs. The operator’s 

perspective is addressed by maximising profit, or minimising costs. 

 

Constraints 

In the most basic formulation of the TNDP, it is constrained that lines can visit 

each node at most once and that all demand must be served (Kepaptsoglou & 

Karlaftis, 2009); (Guihaire & Hao, 2008). Constraints are related to either the 

network’s performance or limited resources. Due to the complexity of the 

problem, studies attempting to find solutions generally include a low number 

of non-complex constraints (Fan & Machemehl, 2006a); (Guihaire & Hao, 

2008). Demand is typically included as being ‘fixed’, despite naturally being 

elastic. Accounting for this into TNDP solving further complexifies an already 

very complex problem, thus the vast majority of studies choose to work with a 

fixed demand (Kepaptsoglou & Karlaftis (2009); Durán-Micco & 

Vansteenwegen (2021)). 

Further examples of constraints are related to fleet size, operator costs and 

other operator-related budgets, maximum line length, capacity on lines and 

other constraints on the network’s topology (Durán-Micco & Vansteenwegen, 

2021). 

 

Solving methods 

Only 10% of studies reviewed by the authors use an exact method for solving. 

Typically, the size of the networks in these studies are very small. With major 

questionable simplifications, Gutiérrez-Jarpa et al. (2017) solve for a network 

of 108 nodes, 3,789 arcs and 360,000 passengers, and Borndörfer et al. (2007) 

is able to solve for a network with 410 nodes, taking several hours to do so. 

Most often, TNDPs are solved by (meta)heuristics - known for finding a 

reasonably good solution relatively fast, while not being designed for a specific 

model. Hence their popularity over exact approaches. Guihaire & Hao (2008) 

classify TNDP-applied heuristics into four ‘big families’: neighbourhood 

search, evolutionary search, hybrid search and greedy heuristics. Even within 

these groups, the exact approach varies from study to study. The possible 

choices in approaches, premises and simplifications are endless. With again 

major simplifications, heuristics allow for solving of much larger network 

instances. For example, Oliker & Bekhor (2020) pre-define a set of passenger 

routes for each OD pair, allowing to solve a network of 903 nodes, 2975 arcs 

and 5394 OD pairs. 

 

2.3.2.Frequency Setting Problem (FSP) 

The TNDP does not address how the network must be operated in order to 

sufficiently handle the demand. Generally speaking, transport networks are 

served by lines, each having their own designed frequency. The optimal 

incorporation these two factors into a transit network design is known as the 

Frequency Setting Problem.  

 

Mathematical definition 

Similar to the TNDP definition, the frequency setting problem considers a 

directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 represents the set of nodes (or vertices, in 

this context: cities) and 𝐴 represents the set of arcs (or links, in this context: 

HSR connections) connecting these nodes. These represent the movement of 

trains. 
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Now, the frequency setting problem adds to this a set of lines 𝐿. Each line 𝑙 ∈

𝐿 consists of a set of adjacent arcs. Each arc has a passenger flow 𝑄𝑎, defined 

for all 𝑎 ∈ 𝐴 , originating from the solution of the TNDP. The set 𝐿 

encompasses many lines, much more than eventually chosen, as the goal is to 

select the optimal subset 𝐿𝑠𝑒𝑙 ⊂ 𝐿. For this reason, an integer decision variable 

𝑓𝑙 is included which denotes the frequency, defined for each line 𝑙 ∈ 𝐿. If the 

line is not chosen, 𝑓𝑙 is simply set to zero. 

 

Objectives 

An extensive FSP literature review is provided by Durán-Micco & 

Vansteenwegen (2021), for thirty studies ranging from 2009 to 2021. Analysis 

of these show objectives vary much less for FSPs than for TNDPs. Most 

commonly, frequency setting problems optimise operator’s and/or user’s costs, 

as they are highly influenced by the set frequency (Durán-Micco & 

Vansteenwegen, 2021). As a one-sided optimal solution is not socially 

desirable, most studies formulate an objective function that includes both sides 

and call it ‘social welfare’. The user’s and operator’s perspectives are addressed 

similarly as in TNDP, but the line design now allows for penalising transfers 

with a monetary value. 

 

Constraints 

In literature, frequency setting problem formulations impose a wide variation 

of constraints. But most prominently, all demand on the network must be served, 

as otherwise it would not be regarded as a valuable solution (Canca et al., 2018). 

The design of lines and setting of their associated frequencies is namely guided 

by the flow of passengers over the network (Kepaptsoglou & Karlaftis, 2009). 

Constraints mainly act on lines, regarding their allowed length, number 

of stops, directness and degree of overlapping with other lines. Often, line 

frequencies are bounded by minimum and maximum values and must be 

integer. 

 

Solving methods 

Similarly to TNDPs, the exact approach is uncommon and used in 

approximately 10% of studies (Durán-Micco & Vansteenwegen, 2021), again 

due to its complexity. Therefore, exact approaches only suit small networks. 

Cancela et al. (2015) find a new Mixed-Integer Linear Programming (MILP) 

formulation for a bus network, and solves the problem successfully for 

relatively small networks. The authors emphasize that research on larger 

networks would benefit from solving with algorithms instead, as a network of 

84 nodes and 143 arcs takes over four hours to solve. Ranjbari et al. (2020) 

solve a full TNDFSP by use of pre-defining candidate lines and stations. 

Most of TNDFSP-related studies thus solve the problem by heuristics, the 

most popular being the evolutionary algorithm, allowing for solving larger 

instances of the problem. 

 

 

2.4. Summary of literature gaps 

 

Both the demand forecasting and profitability estimation parts are already well-

researched. Within the network design part, however, an important literature 

gap was discovered. 

Regarded as one of the most complex transportation problems to solve, 
the TNDP and TNDFSP are typically solved using heuristic methods (Guihaire 

& Hao, 2008). Studies make various compromises to keep their solving times 

within reasonable bounds, such as limiting the number of nodes, arcs or OD 

pairs. Demand elasticity is considered one of the main factors complexifying 

the problem (Jiang et al., 2014), and therefore not accounted for by studies 

when applying an exact mathematical approach to a medium-to-large sized 

network (Kepaptsoglou & Karlaftis, 2009; Durán-Micco & Vansteenwegen, 

2021). This puts the scientific value of optimal transport network designs, 

found through mathematical optimisation, under scrutiny. It is evident that with 

current practices in literature, medium- to large-sized realistic and optimal 

transport networks cannot be designed with exact methods (Murray, 2003); 

(Guan et al., 2003), which is also evidenced by the literature review of Guihaire 

& Hao (2008). This project will attempt to bridge this gap, and account for 

demand elasticity in linear programming in larger instances of the problem. 

 

 

 

 

 

3 METHODOLOGY 

 

3.1. Foundational premises 

 

These will form the foundation of our methodology, as they shape its overall 

framework and nature. Their values were carefully set and presented in Table 

2 below: 

 

Table 2 Methodological premises 

 

Lifetime 40 years 

Maximum design speed 350 km/h 

Track type double-track 

Traffic type served passenger traffic 

Power supply electric 

Train set name: CRH380CL 

year: 2011 

seats: 1,053 

homogeneously 

Network & line design integrated 

 

A maximum design speed of 350 km/h was selected as it is the highest speed 

currently in operation. UIC High-Speed (2018) lists all train sets meeting this 

requirement, and after assessment of capacity and costs, type CRH380CL was 

chosen. During optimisation, network and line design will be integrated, as it 
produces higher-valued solutions. 

 

 

3.2. Demand forecasting 

 

Problem definition 

In the last thirty years, demand forecasting knowledge has grown, but not the 

accuracy of forecasting models: demand is overestimated, on average by 106% 

(Flyvbjerg et al., 2005). This is reflected by European HSR lines: nine out of 

fourteen failed to generate sufficient demand in order to be successful 

(European Court of Auditors, 2018). This can be attributed to political causes, 

which have a substantial influence on rail projects: decision-makers generally 

ignored or downplay financial risks under the guise of social welfare or other 

variables that are impossible to measure accurately (Flyvbjerg et al., 2005). 
Börjesson (2014) identifies three other arising problems that complexes HSR 

passenger forecasting: 

 

1. It depends on more factors than regional travel models. Therefore, HSR 

demand models need to be adapted. 

2. The non-linear relationship between demand and travel time. 

3. HSR models are harder to calibrate than regional travel models, due to 

scarcer data. 

 

All three of these factors must be addressed in order to provide realistic HSR 

demand forecasts. 

 

Model definition 

Addressing the problems mentioned above, our model must incorporate more 

demand-impacting factors. As the most established and used method in practice, 

a logit model is used to forecast HSR demand. A direct consequence of this 

choice is that the HSR demand has to be estimated via its market share, by 

multiplying a total demand flow with the HSR market share (Sánchez-Borràs 

et al., 2010; Leng et al., 2015). The following model is constructed: 

 

𝐷𝐴𝐼𝑅,𝑖𝑗 =
exp (𝑉𝑝𝑙𝑎𝑛𝑒,𝑖𝑗)

∑ 𝑧𝑘,𝑖𝑗 ∙ exp (𝑉𝑘,𝑖𝑗)𝑘∈𝑲
∙ 𝑘 ∙

(𝑃𝑖 ∙ 𝑃𝑗)
𝛼

∙ (𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗)
𝛽

(𝑑𝑖𝑗)
𝛾  (1) 

 

where: 

𝑉𝑘,𝑖𝑗 = 𝛽𝑇𝑇 ∙ 𝑇𝑇𝑘,𝑖𝑗 + 𝛽𝑇𝐶 ∙ 𝑇𝐶𝑘,𝑖𝑗 (2) 

 

The meaning of these parameters are explained below in Table 3: 
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 Table 3 Nomenclature of demand forecasting model 

Parameter Unit Definition 

𝐷𝐴𝐼𝑅,𝑖𝑗 [pax] air demand for city pair 𝑖𝑗 

𝑉𝑘,𝑖𝑗 [-] observed utility of alternative 𝑘 for city pair 𝑖𝑗 

𝑧𝑘,𝑖𝑗 [-] presence of alternative 𝑘 for city pair 𝑖𝑗 

𝛽𝑇𝑇 [util/h] MNL coefficient for travel time 

𝛽𝑇𝐶 [util/€] MNL coefficient for travel cost 

𝑇𝑇𝑘,𝑖𝑗 [h] travel time of alternative 𝑘 for city pair 𝑖𝑗 

𝑇𝐶𝑘,𝑖𝑗 [€] travel cost of alternative 𝑘 for city pair 𝑖𝑗 

𝑘 [-] intercept gravity coefficient 

𝛼 [-] gravity coefficient for population 

𝛽 [-] gravity coefficient for GDP 

𝛾 [-] gravity coefficient for distance 

𝑃𝑖 [pax] population of city 𝑖 
𝐺𝐷𝑃𝑖 [€] GDP of city 𝑖 

𝑑𝑖𝑗 [km] distance between city pair 𝑖𝑗 

 

This formulation provides a solution to all three complexing factors in HSR 

demand forecasting: it encompasses more factors of influence, the non-linearity 

between demand and travel time is addressed by the logit part and 𝛾-parameter, 

and it is calibrated on widely available flight demand data rather than scarce 

HSR data. 

The model defined includes the five most popular demand impacting 

factors from studies (see section 2.1), excluding ‘frequency’ which is addressed 

separately as the ‘frequency setting problem’. 

 

Data collection 

In order to gather data to accurately calibrate and later implement the demand 

forecasting model, data must be gathered for all of its variables. Below is listed 

how: 

 

Air demand: Arguably the most comprehensive data set on long-distance 

travel passenger data currently accessible is provided by Eurostat (2024a), the 

statistical office of the European Union. Data is updated on a monthly basis, 

for each EU member state. We neglect season trends, opting for a yearly basis 

of demand forecasting. For calibration, 2019 is the chosen year of interest, 

being the latest available year of normal operations before the pandemic. 

Passenger numbers are combined for outward and return flights, and for flights 

serving the same city pair. Only flights in continental Europe are considered. A 

figure of the scope is provided below. 

 

 

Population: Following from literature review, catchment area population is 

deemed the most accurate representation of population. Its size is determined 

by the chosen travel time, of which the figure has been debated in literature. 

Here, 120 minutes in car travel time is set as a maximum, matching the 

maximum allowed access time of most studies (Marcucci & Gatta, 2011). 

Seeking for an optimal fit, the model is calibrated for every increment of 15 

minutes. The population living in catchment areas around the city centres are 

gathered with use of Smappen (2024). 

 

 

 

Gross Domestic Product (GDP): As population data was attained in the 

previous section, the model will be calibrated on GDP and GDP/capita, as we 

seek for the best fit. For model calibration, the data will be acquired by usage 

of the following three databases from Eurostat: 

 

1. met_10r_3gdp: Gross domestic product (GDP) at current market prices 

by metropolitan regions (Eurostat, 2024b) 

2. tgs00003: Regional gross domestic product by NUTS 2 regions - 

million EUR (Eurostat, 2024d) 

3. demo_r_d2jan: Population on 1 January by age, sex and NUTS 2 region 

(Eurostat, 2024c) 

 

If the city is included, data set 1 finds us the city’s total GDP directly. If not, is 

deducted by scaling the region’s GDP (data set 2) down, based on the 

population of the region (data set 3) and the city itself. To find GDP per capita, 

population data from a data set by Florczyk et al. (2020) is used, which was 

created in name of the European Commission, reports the population for all 

European centres, based in 2015. 

 

Distance: The great circle distance between city centres are used. The city’s 

coordinates are used as input to calculate this. The coordinates again are found 

by ODS (2024). The great-circle distance is calculated by the Haversine 

formula (Agramanisti Azdy & Darnis, 2020). Using this formula is much less 

time-consuming than measuring distances in route planners, without sacrificing 

much in terms of accuracy. 

 

Non-HSR travel time & travel cost: Rome2Rio (2024) provides great insights 

into all ways to travel from origin to destination, for plane, train, bus, ferry and 

car. For each way of travel, it provides the total door-to-door travel time 

(including waiting time) and travel costs. For the latter, it also looks at 

minimum and maximum values for travelling the route indicated, taking into 

account periodical price variations. It includes all possible travel modes, 

regardless of their likelihood to be used. Arguably the greatest benefit of using 

this source is the fact it shows real data that people weighing off their travel 

options would also use. Data is gathered through web scraping, for which a 

Python code is written, which makes use of the dedicated Selenium package. 

 

HSR travel time & travel cost: Travel cost is a design choice, related to fare 

setting. The methodology behind that is explained in section 3.3. Travel time 

will be deduced from literature. In China, the average speed is 90% of the 

design speed 𝑣𝑚𝑎𝑥, which is the peak efficiency observed worldwide (Zhang 

& Zhang, 2021). Therefore, this value 𝑘𝑒𝑓𝑓 will be used in calculating travel 

times: 

 

𝑇𝑇𝐻𝑆𝑅,𝑖𝑗 =
𝑙𝑖𝑗

𝑘𝑒𝑓𝑓 ∙ 𝑣𝑚𝑎𝑥 + 𝑡𝑑𝑤𝑒𝑙𝑙 + 𝑡𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑡𝑒𝑔𝑟𝑒𝑠𝑠 (3) 

 

Here, 𝑙𝑖𝑗  is the line length between station 𝑖  and 𝑗 , while the 𝑡 -parameters 

represent the dwelling, access and egress time, respectively. The dwelling time 

is set to 5 minutes (Grolle et al., 2024), while the access and egress time 

summed are set to 30 minutes (Sane, 2020). 

 

Model calibration 

Our complete model as presented in equation (1) cannot be calibrated, as 

observed market shares are scarcely reported. Added to this, numerous 

examples of long-distance travel studies have investigated this matter – unlike 

gravity model studies seeking for the ideal catchment area size. Only the air 

demand counts as observed data. It is for this reason that the model is split into 

two parts for calibration: logit and gravity. 

 

Logit: The 𝛽𝑇𝑇  and 𝛽𝑇𝐶 -parameters can be estimated easily by statistical 

analysis of the MNL studies among the 100 demand studies introduced in 

section 2. The median of all reported values is taken here, and it will be checked 

if the attained Value of Time (VoT) is acceptable. 

 

Gravity: To calibrate a gravity model, it is usually written in a log-linear form 

(Grosche et al., 2007): 

 

log(𝐷𝐻𝑆𝑅,𝑖𝑗) = 𝑘 + 𝛼 log(𝑃𝑖 ∙ 𝑃𝑗) + 𝛽 log(𝐺𝐷𝑃𝑖 ∙ 𝐺𝐷𝑃𝑗) − 𝛾 log(𝑑𝑖𝑗) (4) 

 

The model will be calibrated by the Ordinary Least Squares (OLS) method.  

 

 

 

Figure 2 Project’s scope 
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Bias elimination 

The catchment area size is kept constant throughout the calibration process, 

despite greatly varying along with city and airport size (Lieshout, 2012; 

Grosche et al., 2007). This might induce a bias, where the demand related to 

large cities is underestimated and vice versa. In order to attain a non-biased 

forecasting model, the bias is eliminated by scaling the model output, based on 

the magnitude of the value itself. When plotting the log of predicted demand 

(here called: 𝑦) versus the log of observed demand (𝑥), its trendline is described 

by 𝑦 = 𝑎𝑥 + 𝑏. For an unbiased model, 𝑎 = 1 and 𝑏 = 0, which simplifies to 

𝑦 = 𝑥. In any other case, the model is biased and therefore lacks accuracy. This 

bias can be eliminated by transforming the 𝑦𝑜𝑙𝑑 value, following the following 

formula: 
 

𝑦𝑛𝑒𝑤 =
𝑦𝑜𝑙𝑑 − 𝑏

𝑎
 (5) 

 

Model validation 

The model is validated by taking the same approach as by Belal et al. (2020): 

we take five of the connections with the highest estimated demand, while not 

selecting a city more than once and calculate how closely the model approaches 

the observed demand. 

 

Demand evolution 

In order to accurately forecast demand into the future, section 2.1 showed we 

have to take induced demand and economic demand growth into account. This 

study does so by calculating a factor for both influences, specific to each OD 

pair. The final demand forecast will then be a multiplication of both factors and 

the original demand forecast. 

 

Induced demand: Preston (2013) mentions the level of induced demand for 

multiple European high-speed rail projects which are in operation, with most 

values around and above 20%. To avoid overestimation, which would result in 

a very optimistic and perhaps unrealistic network design, the multiplication 

factor is set to 1.20. 

 

Economic demand growth: Trafikverket (2021) estimated a conservative 

value of 0.7 for GDP elasticity with respect to demand. Again, to limit the risk 

of demand overestimation, this value will be used here as well. World Bank 

(2023) reports yearly GDP growth for every country in the world between 1961 

and 2023. For this project, the mean yearly growth rate 𝑝 from the last 40 years 

is taken into account for each country within the scope. For a connection 𝑖𝑗 

between two countries, the minimum yearly growth rate among them is 

considered normative for economy-based demand growth. This value 𝑝 is used 

to compute the factor 𝑘𝑖𝑗
𝑒𝑐𝑜 as follows: 

 

𝑘𝑖𝑗
𝑒𝑐𝑜 =

1

𝑇𝑙𝑖𝑓𝑒 + 1
∑ (1 +

𝑝𝑖𝑗 ∙ 𝑒𝐺𝐷𝑃

100
)

𝑡
𝑇𝑙𝑖𝑓𝑒

𝑡=0

 (6) 

 

Here, 𝑇𝑙𝑖𝑓𝑒  is the project’s lifetime in years, with 𝑡 ∈ {0,1,2, … , 𝑇𝑙𝑖𝑓𝑒}. 𝑝𝑖𝑗  is 

the minimum economic growth rate among the two countries related to city pair 

𝑖𝑗 as a percentage, and 𝑒𝐺𝐷𝑃 represents the demand-related GDP elasticity. 

 

 

3.3. Profitability estimation 

 

In order to estimate the profitability of a potential HSR line, each of the cash-

flows introduced in Table 1 will be attributed a formula. 

 

Ticket revenue: The revenue depends on the outcome of the product of the 

ticket fare and demand. The fare setting is a design choice. Operators generally 

set a price that maximises their passenger revenue (Qin et al., 2019). This study 

will follow the same approach, aided by Python library SciPy. It can be 

mathematically proven that optimising for maximum revenue will always yield 

exactly one, nonnegative, optimal fare setting.  

 

Construction costs: It was determined that the total costs depend on the line 

length, and a unit cost for each km 𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

. This unit cost depends on the 

location and difference in height. Borgogno (2023) quantifies these 

relationships and produces unit construction cost per km, for surface (𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒) 

and tunnelling (𝐶𝑡𝑢𝑛𝑛𝑒𝑙) separately for European countries. It is assumed that 

𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 is a result of a convex combination of  𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒  and 𝐶𝑡𝑢𝑛𝑛𝑒𝑙 , 

dependent on a normalised height difference. Thus, the maximum possible 

height difference between two cities in Europe is set to 1 and the minimum is 

set to 0, with linear interpolation in between. The formula calculating the total 

infrastructure construction cost is displayed as: 

 

𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

∙ 𝑙𝑖𝑗 (7) 

 

Acquisition costs: As mentioned, these depend solely on the number of train 

sets bought and a unit price. The minimum number of trains needed to operate 

a line is product of the frequency and the full round-trip time:  

 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 ∙ ⌈2 ∙ 𝑓𝑖𝑗 ∙ 𝑡𝑖𝑗⌉ (8) 

 

Infrastructure maintenance & operation costs:  As stated, these are 

calculated based on yearly sum per km 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎. 

 

𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

= 𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 ∙ 𝑙𝑖𝑗 (9) 

 

Rolling stock maintenance & operation costs: These are calculated based on 

a value per seat-km 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛, and has to be multiplied with a number of factors 

in order to acquire the total yearly costs:  

 

𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛 = 𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙

𝑛𝑖𝑗 ∙ 𝑙𝑖𝑗

𝑡𝑖𝑗
 (10) 

 

The total profitability estimate of a HSR connection is a summation of all cash-

flows, where the costs are negative. The meaning of all variables used in 

equations 7-10 are explained in Table 4 below. 

 

 

Table 4 Nomenclature of profitability estimation model 

Parameter Unit Definition 

𝐶𝑖𝑗
𝑋,𝑖𝑛𝑓𝑟𝑎

 
[€] infrastructure construction costs  

between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑋,𝑡𝑟𝑎𝑖𝑛

 
[€] rolling stock acquisition costs  

between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑇,𝑖𝑛𝑓𝑟𝑎

 
[€/year] infrastructure operation & maintenance 

costs between city 𝑖 and 𝑗 

𝐶𝑖𝑗
𝑇,𝑡𝑟𝑎𝑖𝑛

 
[€/year] rolling stock operation & maintenance 

costs between city 𝑖 and 𝑗 

𝑘𝑋,𝑖𝑛𝑓𝑟𝑎 [€/km] unit infrastructure construction cost 

𝑘𝑋,𝑡𝑟𝑎𝑖𝑛 [€/train] unit rolling stock acquisition cost  

𝑘𝑇,𝑖𝑛𝑓𝑟𝑎 
[€/km/year] unit infrastructure  

operation & maintenance cost 

𝑘𝑇,𝑡𝑟𝑎𝑖𝑛 
[€/seat-km] unit rolling stock  

operation & maintenance cost 

𝑠 [pax] seats per train set 

𝐻 [h/day] operating hours per day 

𝐷 [day/year] operating days per year 

𝑣𝑚𝑎𝑥 [km/h] maximum operating speed 

𝑇𝑙𝑖𝑓𝑒  [year] project lifetime 

𝑙𝑖𝑗 [km] distance between city 𝑖 and 𝑗 

𝑡𝑖𝑗 [h] travel time between city 𝑖 and 𝑗 

𝑛𝑖𝑗 [-] trains to serve demand between city 𝑖 and 𝑗 

 

Upgradeable lines 

In some cases, it makes no economic sense to build new costly high-speed rail 

infrastructure, and rather upgrade existing facilities. This does not apply to all 

infrastructure: according to UIC (2018), only dedicated lines having maximum 

speeds of at least 250 km/h could be further upgraded to 350 km/h. As the 

construction of 350 km/h HSR infrastructure is roughly twice as expensive as 

for 250 km/h (Preston, 2013), a 50% construction cost discount is applied, if 

the connection already provides a rail connection with an average travel speed 

exceeding 200 km/h, which can be calculated through previously garnered data 

through web scraping. In this case, the level of induced demand will be halved 

as well. 
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3.4. Network design 

 

In order to create the final network design, based on demand forecasts and 

profitability estimates, a TNDFSP must be formulated, fitting the very nature 

of our field. Mathematical programming is chosen to find optimal solutions. 

Following the mentioned literature gap, it was decided to incorporate demand 

elasticity into the model, while passengers are assigned to the shortest path. 

 

 

3.4.1.Model inspiration 

Introduced as a promising formulation, the Multi-Commodity Flow Problem 

(MCFP), leading to an “efficient formulation” to handle “city-scale transit 

networks” (Ng et al., 2024). The philosophy behind the MCFP is explained by 

Magnanti & Wong (1984). The problem concerns finding the lowest cost of 

sending commodities (goods or people) through a network. A general 

formulation is provided in the equations below: 

 

min ∑ ∑ 𝑐𝑎𝑘 ∙ 𝑥𝑎𝑘

𝑘∈𝑲𝑎∈𝑨

 (11) 

s.t.: 

∑ 𝑥𝑎𝑘

𝑎∈𝑨𝒊
𝒐𝒖𝒕

− ∑ 𝑥𝑎𝑘

𝑎∈𝑨𝒊
𝒊𝒏

= {
𝐷𝑘 𝑖𝑓 𝑖 ∈ 𝑶(𝒌)

−𝐷𝑘 𝑖𝑓 𝑖 ∈ 𝑫(𝒌)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∀𝑖 ∈ 𝑵, 𝑎 ∈ 𝑨

 

(12) 

 

Here, 𝑐𝑎𝑘 is the unit cost related to transporting commodity 𝑘 over arc 𝑎, while 

𝑥𝑎𝑘  refers to the number of commodities 𝑘  transported over arc 𝑎 . The 

objective function sums for all 𝑘 ∈ 𝑲 and all 𝑎 ∈ 𝑨. The set of all arcs 𝑨 is split 

into smaller sets 𝑨𝒊
𝒊𝒏 and 𝑨𝒊

𝒐𝒖𝒕, representing the set of arcs going in and out from 

node 𝑖 ∈ 𝑵, respectively. Equation (12) guarantees node continuity, meaning 

that the amount of a commodity going in a node equals the amount of that 

commodity going out of that node. Unless that node is the origin of that 

commodity 𝑘 , being the set of 𝑶(𝒌) . Here the flow only goes outwards, 

meaning that the equation should equal the demand of commodity 𝑘 , also 

named 𝐷𝑘 . The same in the other direction holds for the destination of the 

commodity, defined by set 𝑫(𝒌). The MCFP formulation will be adapted to 

the nature of this project, firstly to incorporate elements of network design 

(section 3.4.2), then of line design (section 3.4.3).  

 

 

3.4.2.Network design elements 

In order to construct an objective function and constraints, a number of 

elements must be introduced: 

 

Nodes: We define the set of nodes 𝑵, equivalent to the MCFP set of nodes. To 

indicate if node 𝑛 is selected for our final network, we define a binary decision 

variable 𝑧𝑛. 

 

Arcs: We also define the set of undirected arcs 𝑨. Binary decision variables 𝑦𝑎 

are defined to indicate if arc 𝑎 is selected for the final network. Each arc has 

been attributed with a travel time 𝑡𝑎, travel cost 𝑐𝑎, length 𝑑𝑎 and lifetime cost 

𝑓𝑎
𝑐𝑜𝑠𝑡. 

 

OD pairs: The original MCFP set of commodities is translated to a set of OD 

pairs 𝑷, as their meaning is equivalent for this problem. 

 

OD flow routes: The main problem found with exact approaches was that they 

can only solve within reasonable running times for small to medium-sized 

networks. In the MCFP formulation, for each commodity 𝑘, decision variables 

are considered whether it is transported along arc 𝑎. Inspired by the work of 

Oliker & Bekhor (2020) and Liang et al. (2019), this can be reformulated 

without changing the intrinsic nature and optimal solution: for each commodity 

𝑘, we can define a set of potential routes across the network instead. A route 

would then be defined as a valid sequence of arcs from origin to destination. 

The same is done for this project’s model; to do so, we define the set of OD 

flow routes 𝑹, inspired by the work of Arbex & da Cunha (2015). Each OD 

flow route 𝑟 can be selected or not for our final network, which can be indicated 

by binary decision variable 𝑥𝑟. An algorithm must be written in order generate 

all possible OD flow routes. Each route is attributed with a travel time 𝑡𝑟, travel 

cost 𝑐𝑟 and length 𝑑𝑟. Binary parameters are introduced in order to couple each 

OD flow route 𝑟 to nodes, arcs and OD pairs: 

 

 

 

 

 

• 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒: whether OD flow route 𝑟 covers node 𝑛 (1) or not (0) 

• 𝑐𝑎𝑟
𝑎𝑟𝑐: whether OD flow route 𝑟 covers arc 𝑎 

• 𝑐𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

: whether OD flow route 𝑟 covers OD pair 𝑝  

• 𝑚𝑝𝑟
𝑜𝑑𝑝𝑎𝑖𝑟

: whether OD flow route 𝑟 matches OD pair 𝑝 

 

Demand: Since the relationship between travel time and demand was found to 

be non-linear by our forecasting model, it has to be linearised for this 

mathematical programming model: 

 

𝐷𝐻𝑆𝑅,𝑝 =  𝛼𝑝 + 𝛽𝑝 ∙ 𝑡𝑝 + 𝛾𝑝 ∙ 𝑐𝑝 (13) 

 

Here, the demand 𝐷𝐻𝑆𝑅,𝑝 is estimated by a ‘max demand’ 𝛼𝑝 for OD pair 𝑝 ∈

𝑷 (when travel time and costs are zero), an associated ‘time decay’ 𝛽𝑝 and ‘cost 

decay’ 𝛾𝑝, indicating by how much the demand would reduce for respectively 

one hour extra travel time 𝑡𝑝, or one euro in extra travel cost 𝑐𝑝. The yearly 

flow on route 𝑟 is referred to as 𝑞𝑟
𝑦𝑒𝑎𝑟

, calculated by: 

 

𝑞𝑟
𝑦𝑒𝑎𝑟

=  𝛼𝑟 + 𝛽𝑟 ∙ 𝑡𝑟 + 𝛾𝑟 ∙ 𝑐𝑟 (14) 

 

A trendline will be fitted for the interval 𝑡𝑟 ∈ [𝑡𝑟 , 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 ∙ 𝑡𝑟];  𝑐𝑟 ∈

 [𝑐𝑟 , 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 ∙ 𝑐𝑟]. In this regard, 𝑘𝑑𝑒𝑡𝑜𝑢𝑟 is the maximum allowed detour factor, 

which is set at 1.25, matching the value used in European HSR network design 

by Grolle et al. (2024). 

 

Ticket revenue: Recall that the objective of the formulation is a maximisation 

of lifetime profitability, and that revenue was found to be a component of that. 

We define the lifetime revenue 𝑓𝑟
𝑟𝑒𝑣 for route 𝑟 as the product of its demand 

per year 𝑞𝑟
𝑦𝑒𝑎𝑟

, fare price 𝑐𝑟 and the lifetime of the project 𝑇𝑙𝑖𝑓𝑒 in years. 

Now all variables and parameters are defined, the constraints can be 

constructed. 

 

(1) Node selection 

A node 𝑛 is selected if a selected OD flow route 𝑟 flows over it (15). Also, a 

node 𝑛 cannot be selected if no selected OD flow route 𝑟 flows over it (16). 

 

𝑧𝑛 ≥ 𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒          ∀𝑛 ∈ 𝑵, ∀𝑟 ∈ 𝑹 (15) 

𝑧𝑛 ≤ ∑(𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒)

𝑟∈𝑹

          ∀𝑛 ∈ 𝑵 (16) 

 

(2) Arc selection 

An arc 𝑎 must be selected if a selected OD flow route 𝑟 flows over it (17). As 

arc selection automatically induces costs, a constraint oriented to the opposite 

such as (16) can be disregarded – it is illogical for the model to build arcs if no 

flow exists on it, as it maximises for profitability. 

 

𝑦𝑎 ≥ 𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐          ∀𝑎 ∈ 𝑨, ∀𝑟 ∈ 𝑹 (17) 

 

(3) OD pair selection 

An OD pair 𝑝 may be served by at most one selected OD flow route 𝑟 (18). 

 

∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

) ≤

𝑟∈𝑹

1          ∀𝑝 ∈ 𝑷 (18) 

 

(4) Minimum node separation 

Having too short distances between selected nodes undermines HSR’s rationale 

(Rodrigue, 2017). Therefore, a minimum distance 𝑙𝑚𝑖𝑛  between nodes is 

introduced. To impose the constraint, firstly a set of all node pairs (𝑖, 𝑗) ∈ 𝑵 

that would violate 𝑙𝑚𝑖𝑛  is introduced: 𝑵𝒄𝒍𝒐𝒔𝒆. Following up on this, we can 

define the following constraints to ensure that the minimum distance between 

nodes is respected: 

 

𝑧𝑖 + 𝑧𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆 (19) 

 

(5) Non-crossing arcs 

Selected arcs are not allowed to cross each other. To constrain this, we defined 

the set of all crossing arc pairs (𝑖, 𝑗) as 𝑨𝒄𝒓𝒐𝒔𝒔, with 𝑎, 𝑏 ∈ 𝑨 and 𝑎 ≠ 𝑏. Then, 

the following constraints should hold: 

 

𝑦𝑖 + 𝑦𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 (20) 
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(6) Decision variables 

As stated before: 𝑥𝑟, 𝑧𝑛 and 𝑦𝑎 are all binary: 

 

𝑥𝑟 ∈ {0, 1}          ∀𝑟 ∈ 𝑹 (21) 

𝑦𝑎 ∈ {0, 1}          ∀𝑎 ∈ 𝑨 (22) 

𝑧𝑛 ∈ {0, 1}          ∀𝑛 ∈ 𝑵 (23) 

 

 

3.4.3.Line design elements 

In order to construct an objective function and constraints, a number of 

elements must be introduced: 

 

Operating frame: the number of operating hours per day 𝐻 is set to 18, and 

the number of operating days per year 𝐷 is set to 365. 

 

Valid operating lines: each route 𝑟 will be attributed a binary value 𝑙𝑟, which 

equals 1 if it is considered a valid operating line and 0 if not. An OD flow route 

𝑟 is considered an invalid operating line if it has no intermediate stops, and if 

the total travel time along the entire route is more than 9 hours. 

 

Line frequencies: a nonnegative integer decision variable 𝑤𝑟  denoting the 

frequency of  route 𝑟 is introduced, along with a universal maximum frequency 

𝑊𝑚𝑎𝑥, here set to 12 trains per hour, matching minimum headway rules for the 

same 350 km/h trains in the Chinese network (Tian & Zhang, 2024). 

 

Number of trains: This is related to the operated frequency 𝑤𝑟 on route 𝑟. The 

associated nonnegative integer decision variable is defined as 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛. The seat 

capacity of each train is denoted by 𝑠. 

 

Peak hour demand: This is calculated by calculating the average demand per 

operating hour throughout the year, while multiplying with a peak hour factor 

𝑘𝑝𝑒𝑎𝑘ℎ𝑟, set to 1.25. This factor is a conversion factor between peak hour flow 

and average hourly flow. The peak hour flow 𝑞𝑟
𝑝𝑒𝑎𝑘

 is then calculated as 

follows: 

 

𝑞𝑟
𝑝𝑒𝑎𝑘

=
𝑘𝑝𝑒𝑎𝑘ℎ𝑟

2 ∙ 𝐷 ∙ 𝐻
∙ 𝑞𝑟

𝑦𝑒𝑎𝑟
 (24) 

 

The division by two is performed in order to convert to flow per direction, as 

the flow 𝑞𝑟
𝑦𝑒𝑎𝑟

 combines flow in both directions. 

 

Now all variables and parameters are defined, the constraints can be 

constructed. 

 

(1) Frequency setting 

An operating line 𝑟 cannot be selected if the corresponding OD flow route 𝑟 is 

not selected, or when it is not considered a valid operating line. Also, 

maximum operating frequencies 𝑊𝑚𝑎𝑥 universally apply.  

 

𝑤𝑟 ≤ 𝑊𝑚𝑎𝑥 ∙ 𝑙𝑟 ∙ 𝑥𝑟           ∀𝑟 ∈ 𝑹 (25) 

 

(2) Serve all demand 

Together, the selected valid operating lines 𝑟 must serve all demand in entire 

network. 

 

𝑠 ∙ ∑(𝑤𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)

𝑟∈𝑹

≥ ∑(𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐 ∙ 𝑞𝑟

𝑝𝑒𝑎𝑘
)

𝑟∈𝑹

          ∀𝑎 ∈ 𝑨 (26) 

 

(3) Rolling stock acquisition 

Acquire the correct number of trains 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 for each operating line 𝑟. It should  

equal ⌈2 ∙ 𝑤𝑟 ∙ 𝑡𝑟⌉ (terms corrected for the definitions in this section). This can 

be linearly defined: 

 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 − 1 ≤ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟          ∀𝑟 ∈ 𝑹 (27) 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ≥ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟          ∀𝑟 ∈ 𝑹 (28) 

 

Transfer penalties 

In order to address the user’s perspective in the objective function as well, as 

monetary penalty is added for every passenger who has to transfer. de Keizer 

et al. (2015) provide an added perceived travel time of 22.63 minutes if a trip 

is not without transfer. The real transfer time is included in this value as well, 

allowing for calculation of monetary valued penalties for every passenger who 

has to transfer. Wardman et al. (2012) provide a common European VoT of 

€14.80 per hour. The penalty per passenger having to transfer thus equals 

(22.63/60) ∙ €14.80 ≈ €5.58. 

To include this into the objective function, a binary decision variable 𝑇𝑝, 

which indicates whether the passengers from OD pair 𝑝 are served with (1) or 

without (0) transfer. Given the definitions of this model, the following 

situations must both occur for an OD pair 𝑝 in order for a transfer penalty to be 

imposed: 

3. The OD pair 𝑝 must be served. This means that any OD flow route 𝑟 

exactly matching the OD pair 𝑝  must be selected. We therefore 

introduce a binary decision variable 𝑢𝑝  indicating whether this 

statement is true (1) or false (0). 

4. The OD pair 𝑝 may not be served directly. This means that any OD flow 

route 𝑟 covering that OD pair 𝑝 may not be selected. We therefore 

introduce a binary decision variable 𝑣𝑝  indicating whether this 

statement is true (0) or false (1) 

Note the reverse order of values to the Booleans, as this allows for construction 

of the following equation: 

 

𝑇𝑝 = 𝑢𝑝 − 𝑣𝑝          ∀𝑝 ∈ 𝑷 (29) 

 

We can check that this equation is formulated correctly: it only equals 1 if an 

OD pair 𝑝 is served, but not directly. As non-active OD pairs 𝑝 cannot be 

served by selected operating lines it is constrained that 𝑢𝑝 ≥ 𝑣𝑝, ∀𝑝 ∈ 𝑷. This 

way, it is also constrained that the outcome of 𝑢𝑝 − 𝑣𝑝  is always binary, 

making the separate addition of decision variable 𝑇𝑝 unnecessary. Both 𝑢𝑝 and 

𝑣𝑝 are correctly defined by the constraints below: 

 

(4) Served OD pairs 

An OD pair 𝑝 is served if the OD flow route 𝑟 exactly matching that OD pair 

𝑝 is selected (31). If not, the OD pair is not served (30). 

 

𝑢𝑝 ≤ ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (30) 

𝑢𝑝 ≥ 𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

          ∀𝑝 ∈ 𝑷, ∀𝑟 ∈ 𝑹 (31) 

 

(5) Served OD pairs, without transfer 

An OD pair 𝑝 is served directly if any OD flow route 𝑟 covering that OD pair 

𝑝 is selected (33). If none of these routes 𝑟 are selected, the OD pair is not 

served directly (32). In the second constraint below, 𝑀 is an arbitrary large 

constant. 

 

𝑣𝑝 ≤ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (32) 

𝑀 ∙ 𝑣𝑝 ≥ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (33) 

 

(6) Decision variable boundaries 

As stated before, 𝑢𝑝 and 𝑣𝑝 are binary, while 𝑤𝑟 and 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 are nonnegative 

and integer: 

 

𝑤𝑟 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (34) 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (35) 

𝑢𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (36) 

𝑣𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

149 
 

 

3.4.4.Notation & formulation 

The full model can now be presented as: 

 

𝑚𝑎𝑥 ∑(𝑥𝑟 ∙ 𝑓𝑟
𝑟𝑒𝑣)

𝑟∈𝑹

  

 − ∑(𝑦𝑎 ∙ 𝑓𝑎
𝑐𝑜𝑠𝑡)

𝑎∈𝑨

  

 − [𝑘𝑋 ∙ ∑(𝑛𝑟
𝑡𝑟𝑎𝑖𝑛)

𝑟∈𝑹

] − [𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑇 ∙ 𝑠 ∙ 𝐻 ∙ 𝐷 ∙ ∑ (
𝑛𝑟

𝑡𝑟𝑎𝑖𝑛 ∙ 𝑑𝑟

𝑡𝑟

)

𝑟∈𝑹

]  

 − [𝑇𝑙𝑖𝑓𝑒 ∙ 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ ∑ [(𝑢𝑝 − 𝑣𝑝) ∙ ∑(𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

∙ 𝑞𝑟
𝑦𝑒𝑎𝑟

)

𝑟∈𝑹

]

𝑝∈𝑷

] (38) 

   

𝑠. 𝑡. 𝑧𝑛 ≥ 𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒          ∀𝑛 ∈ 𝑵, ∀𝑟 ∈ 𝑹 (39) 

 𝑧𝑛 ≤ ∑(𝑥𝑟 ∙ 𝑐𝑛𝑟
𝑛𝑜𝑑𝑒)

𝑟∈𝑹

          ∀𝑛 ∈ 𝑵 (40) 

 𝑦𝑎 ≥ 𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐          ∀𝑎 ∈ 𝑨, ∀𝑟 ∈ 𝑹 (41) 

 ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

) ≤

𝑟∈𝑹

1          ∀𝑝 ∈ 𝑷 (42) 

 𝑧𝑖 + 𝑧𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆 (43) 

 𝑦𝑖 + 𝑦𝑗 ≤ 1          ∀(𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 (44) 

 𝑤𝑟 ≤ 𝑊𝑚𝑎𝑥 ∙ 𝑙𝑟 ∙ 𝑥𝑟          ∀𝑟 ∈ 𝑹 (45) 

 𝑠 ∙ ∑(𝑤𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐)

𝑟∈𝑹

≥ ∑(𝑥𝑟 ∙ 𝑐𝑎𝑟
𝑎𝑟𝑐 ∙ 𝑞𝑟

𝑝𝑒𝑎𝑘
)

𝑟∈𝑹

          ∀𝑎 ∈ 𝑨 (46) 

 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 − 1 ≤ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟           ∀𝑟 ∈ 𝑹 (47) 

 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ≥ 2 ∙ 𝑤𝑟 ∙ 𝑡𝑟           ∀𝑟 ∈ 𝑹 (48) 

 𝑢𝑝 ≤ ∑(𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (49) 

 𝑢𝑝 ≥ 𝑥𝑟 ∙ 𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

          ∀𝑝 ∈ 𝑷, ∀𝑟 ∈ 𝑹 (50) 

 𝑣𝑝 ≤ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (51) 

 𝑀 ∙ 𝑣𝑝 ≥ ∑(𝑤𝑟 ∙ 𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

)

𝑟∈𝑹

          ∀𝑝 ∈ 𝑷 (52) 

 𝑢𝑝 ≥ 𝑣𝑝          ∀𝑝 ∈ 𝑷 (53) 

 𝑥𝑟 ∈ {0, 1}          ∀𝑟 ∈ 𝑹 (54) 

 𝑦𝑎 ∈ {0, 1}          ∀𝑎 ∈ 𝑨 (55) 

 𝑧𝑛 ∈ {0, 1}          ∀𝑛 ∈ 𝑵 (56) 

 𝑤𝑟 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (57) 

 𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 ∈ ℝ≥0          ∀𝑟 ∈ 𝑹 (58) 

 𝑢𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (59) 

 𝑣𝑝 ∈ {0, 1}          ∀𝑝 ∈ 𝑷 (60) 

 

The twenty-three equations above form a Mixed-Integer Linear Program 

(MILP). Equation (38) is the objective function, which maximises profit while 

also taking the user perspective into account. It consists out of four parts, here 

listed in the order of how they are presented above: 

 

1. Ticket revenue is simply the sum of the revenue of selected lines; 

2. Infrastructure costs are simply the sum of the lifetime costs of selected 

arcs; 

3. Rolling stock costs split in acquisition costs (the first part) and operating 

& maintenance costs (second part); 

4. Transfer penalties, only added if decision variables 𝑢𝑝 and 𝑣𝑝 have the 

correct values. 

 

A nomenclature to the formulation mentioned above is provided in Table 5. 

 

 

3.4.5.Pre-processing 

This aims to reduce the sizes of sets that are input for the optimisation model. 

These are the set of nodes 𝑁, arcs 𝐴, OD pairs 𝑃 (‘network simplification’) and 

OD pair flow routes 𝑅 (‘route generation’). 

 

Network simplification: Frei et al. (2010) cites multiple European long-

distance travel studies, who all set 100 km as a minimum threshold regarding 

arc length. In Europe, the longest distance between two stations is 253 km 

(European Court of Auditors, 2018). Therefore, considering all potential arcs 

is unnecessary, as many of them are not within the boundaries of workable 

length. To have a safe margin, it is decided to set 500 km as the maximum 

allowed arc length. This also matches the maximum distance over which 

European high-speed rail generally is competitive with other transport modes, 

according to last-mentioned authors. The 100 km minimum bound by Frei et al. 

(2010) will be used for this project as well. Arcs with lengths outside of these 

boundaries will be deleted from the arcs set, and the sets of nodes and OD pairs 

are updated accordingly. 

 

 

 

 

Table 5 Nomenclature of optimisation model 

Sets 

𝑵 𝑛 ∈ 𝑵 Set of nodes 

𝑨 𝑎 ∈ 𝑨 Set of arcs 

𝑷 𝑝 ∈ 𝑷 Set of OD pairs 

𝑹 𝑟 ∈ 𝑹 Set of OD flow routes (and potential operating lines) 

𝑵𝒄𝒍𝒐𝒔𝒆 (𝑖, 𝑗) ∈ 𝑵𝒄𝒍𝒐𝒔𝒆 Set of node pairs too close together (< 100 km) 

𝑨𝒄𝒓𝒐𝒔𝒔 (𝑖, 𝑗) ∈ 𝑨𝒄𝒓𝒐𝒔𝒔 Set of arc pairs crossing each other 

   
Decision variables 

𝑥𝑟 [-] Whether OD flow route 𝑟 ∈ 𝑹 is selected 

𝑦𝑎 [-] Whether arc 𝑎 ∈ 𝑨 is selected 

𝑧𝑛 [-] Whether node 𝑛 ∈ 𝑵 is selected 

𝑛𝑟
𝑡𝑟𝑎𝑖𝑛 [trains] Number of trains acquired to operate line 𝑟 ∈ 𝑹 

𝑤𝑟 [trains / hr] Operating frequency of line 𝑟 ∈ 𝑹 

𝑢𝑝 [-] Whether OD pair 𝑝 ∈ 𝑷 flows over the network 

𝑣𝑝 [-] Whether OD pair 𝑝 ∈ 𝑷 is served without transfer 

   
Parameters 

𝑓𝑟
𝑟𝑒𝑣 [€] Lifetime revenue for OD flow route 𝑟 ∈ 𝑹 

𝑓𝑎
𝑐𝑜𝑠𝑡 [€] Lifetime cost for arc 𝑎 ∈ 𝑨 

𝑘𝑇 [€ / (paxkm)] Unit rolling stock operating and maintenance cost 

𝑘𝑋 [€ / train] Unit rolling stock acquisition cost  

𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 [€ / pax] Unit transfer penalty 

𝑇𝑙𝑖𝑓𝑒 [years] Project lifetime 

𝐻 [hours / day] Operating hours per day 

𝐷 [days / year] Operating days per year 

𝑠 [pax / train] Seat capacity 

𝑊𝑚𝑎𝑥 [trains / hr] Maximum allowed frequency 

𝑐𝑛𝑟
𝑛𝑜𝑑𝑒 [-] Whether OD flow route 𝑟 ∈ 𝑹 covers node 𝑛 ∈ 𝑵 

𝑐𝑎𝑟
𝑎𝑟𝑐 [-] Whether OD flow route 𝑟 ∈ 𝑹 covers arc 𝑎 ∈ 𝑨 

𝑐𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

 [-] Whether OD flow route 𝑟 ∈ 𝑹 covers OD pair 𝑝 ∈ 𝑷 

𝑚𝑝𝑟
𝑂𝐷𝑝𝑎𝑖𝑟

 [-] Whether OD flow route 𝑟 ∈ 𝑹 matches OD pair 𝑝 ∈ 𝑷 

𝑞𝑟
𝑦𝑒𝑎𝑟

 [pax / year] Yearly demand OD flow route 𝑟 ∈ 𝑹 (both directions) 

𝑞𝑟
𝑝𝑒𝑎𝑘

 [pax / hr] Peak hour demand OD flow route 𝑟 ∈ 𝑹 (per direction) 

𝑡𝑟 [hr] Travel time along route 𝑟 ∈ 𝑹 

𝑑𝑟 [km] Length of route 𝑟 ∈ 𝑹 

𝑙𝑟 [-] Whether OD flow route 𝑟 ∈ 𝑹 is a valid operating line  

𝑀 [-] Arbitrarily large constant 

 

Route generation: The goal of this algorithm is to find all valid routes for each 

OD pair’s passengers. What makes a route ‘valid’ or ‘invalid’ will be described 

later in this section. Following the previously mentioned reasoning of Magnanti 

& Wong (1984), the potential number of routes is extremely large, increasing 

exponentially with the size of the network. An efficient algorithm must be used 

in order to find all routes. The Python package ‘NetworkX’ will be used, which 

is known for efficiently analysing the structure of networks. Our algorithm will 

iterate over the OD pairs 𝑝 ∈ 𝑃, and follow the steps below for each 𝑝. 

 

• Define set 𝑁𝑝  as all nodes the flow of OD pair 𝑝 can traverse while 

keeping within detour boundaries.  

• Define the set 𝐴𝑝 as all arcs that connect two nodes in 𝑁𝑝. Then, for OD 

pair 𝑝, the algorithm only considers graph 𝐺𝑝 = (𝑁𝑝, 𝐴𝑝), which can be 

considerably smaller than 𝐺 = (𝑁, 𝐴). 

 

Using breadth-first strategy (BFS), which is more efficient when attempting to 

find shortest paths (Rocha & Ferreira, 2018), all possible routes are explored. 

A path is not explored any further if: 

• It visits a node for the second time; 

• The added node moves closer to the path’s origin node; 

• The angle of deviation between two consecutive arcs exceeds a half turn 

(90 degree); 

• The cumulative angle of deviation exceeds a three-quarter turn (135 

degrees); 

• The route fails to generate a positive level of demand 

 

The outcome for each OD pair 𝑝 is a list of routes, defined as sequences of arcs. 

The algorithm will be ran over all 𝑝 ∈ 𝑷 to produce a complete set of routes 𝑹. 

 

 

3.4.6.Optimisation 

The model formulation for network and line design will be written in Python 

3.7.13 code language, with a loaded in Gurobi Optimizer 9.5.2. The 

mathematical problem related to this project will be solved on a Lenovo laptop 

with 2.3GHz Intel i7-11800H CPU and 32GB of RAM, and 64-bit Windows 

11 as OS. 

 

Since it will be unknown a priori how the running time of the optimisation 

depends on the number of cities taken into account, it is decided to rank them  
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based on their population. At first, the top two cities in terms of population 

make up the set of nodes. One city will be added at a time, as long as the running 

time of the model stays within a reasonable duration of six hours. It is assumed 

that after some point, no new cities will be added to the optimal network as 

their size in population has become too small to make an impact. As discussed 

earlier, the Chinese HSR network is considered a leading example in HSR 

network potential. This network aims to connect all cities with over 500,000 

inhabitants (China Daily, 2020). It is aimed for to take all European cities 

meeting this criterion at the least. Literature review offered no findings of a 

‘minimum population’. Therefore, we hope to include more cities, lowering 

this inhabitant bound by as much as possible, as it increases the result’s 

scientific value. 

 

 

3.4.7.Model validation 

The workings of the model will be validated by means of a model stability 

analysis and benchmarking. 

 

Model stability analysis: This will be performed by randomly varying the fare 

settings of a smaller instance of the network, by a maximum of 10% from the 

original value. This test is run six times, and possible changes from the original 

optimal solution will be assessed. 

 

Benchmarking: To compare the outcomes of our model with state-of-the-art, 

it will be benchmarked to the network of Mandl (1980), which is the most 

widely known benchmark problems (Kechagiopoulos & Beligiannis, 2014). 

Benchmarking comes down to validating the optimisation model. The network 

encompasses 15 nodes (the same as our optimal solution) and 21 arcs, 

resembling a number of cities in Switzerland. Similar to our problem, demand 

is exerted bidirectionally, with peak hour demand already provided. In total, 

this demand equals 15,570. 

 

 

4 RESULTS 

 

4.1. Demand forecasting 

 

4.1.1.Data collection for calibration 

Air demand: After pre-processing, demand data was found for 514 city pairs, 

encompassing 71 unique cities and 320 million passengers, with the yearly 

demand per city pair varying from 34,000 to 7.2 million. 

 

Demand-impacting factors: The data shows great variation among all 

variables, indicated by the standard deviation being larger than the mean value. 

This is great news, as the calibrated model should be able to cope with a wide 

range of population catchments 𝑃𝑖,𝑡 . The same can be said about the other 

variable that relates to people: the number of air passengers 𝐷𝐴𝐼𝑅,𝑖𝑗. GDP (city 

total 𝐺𝐷𝑃𝑖 or per capita 𝐺𝐷𝑃𝐶𝐴𝑃𝑖) and distances 𝑑𝑖𝑗  vary much less, which 

does not impose a problem, since the choice of locations is spread well across 

the continent. Multiple scenarios regarding the catchment area size and GDP 

measure enter the calibration stage, as we seek for the best model fit. Therefore, 

all possible scenarios are included in Table 6 below, representing the key 

characteristics of the data used for model calibration. 

 

 

 

 

 

 

4.1.2.Model calibration 

This section presents the calibration results for both the gravity and logit part 

of the model.  

 

Gravity model 

The gravity model was calibrated for various catchment area sizes, as well as 

for both total GDP and GDP per capita, to see what GDP indicator explains the 

data best. The R2 fit for both models at various catchment area sizes are plotted 

in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of R2, the GDP model outperforms the GDP/cap model for all 

catchment area sizes. However, this seems due to overfitting, as most calibrated 

parameters are not showing a decent statistical significancy, and some are of 

the wrong sign. The likely cause is the intercorrelation between two of the GDP 

model’s variables: population and total GDP. The GDP/cap model’s fit varies 

with the choice of catchment area size, with an optimal fit at 45 minutes. This 

aligns with the findings of Martínez et al. (2016): 80% of HSR users live within 

a 30 min travel. Even though the GDP/cap model has a poorer fit than the total 

GDP model, most of its calibrated parameters are showing great statistical 

significance, all of the correct sign. Due to the significant parameters, the model 

is likely to represent true relationships in the data, making it easier to interpret 

and trust. This also enhances predictive power, as the model likely captures real 

effects. For these reasons, the GDP/cap model is chosen, as it balances a good 

fit with great parameter significance. Below, Table 7 shows the calibration 

results for the chosen catchment area size and GDP measure. 

 

Table 7 Calibration results for optimal model 

 

All parameters’ estimates of the expected sign, and all but distance parameter 

𝛾  are showing extreme significance. This means that in the data, the 

relationship between distance and demand cannot be picked up as easily as for 

other model-assumed relationships. The parameter is still significant at a 70% 

confidence level. 

The model fits the data reasonably well, reaching a 𝑅2 value of 0.468. 

However, it is biased in the sense that it overestimates demand involving small 

cities and vice versa, as expected in section 3.2. When plotting observed data 

against model-predicted data, we attain a trendline 𝑦 = 𝑎𝑥 + 𝑏  with 𝑎 =

0.468 and 𝑏 = 2.926. After bias elimination, the model fit is increased to a 

respectable 0.751, and the plot can be presented as: 

 

Var. Unit N MIN MEDIAN MAX AVG STD 

𝑃𝑖,15 [pax] 71 923 253,994 2,342,971 442,383 474,620 

𝑃𝑖,30 [pax] 71 4,133 708,944 9,974,841 1,265,734 1,548,360 

𝑃𝑖,45 [pax] 71 12,388 1,113,145 13,417,545 1,916,266 2,332,799 

𝑃𝑖,60 [pax] 71 36,904 1,515,685 14,474,396 2,504,137 2,835,263 

𝑃𝑖,75 [pax] 71 43,916 1,952,954 15,108,562 3,121,031 3,270,876 

𝑃𝑖,90 [pax] 71 59,127 2,580,338 17,432,372 3,820,950 3,768,015 

𝑃𝑖,105 [pax] 71 68,970 3,298,628 20,158,470 4,618,074 4,424,464 

𝑃𝑖,120 [pax] 71 72,672 3,646,519 23,084,990 5,473,373 5,280,943 

𝐺𝐷𝑃𝑖  [M€] 71 1,178 35,447 757,630 84,055 127,604 

𝐶𝐴𝑃𝑖  [K€] 71 5.980 58.562 607.256 83.758 84.513 

𝑑𝑖𝑗  [km] 514 1,001 1,517 3,364 1,623 482 

𝐷𝐴𝐼𝑅,𝑖𝑗 [pax] 514 34,660 309,341 7,209,728 622,587 871,726 

N = number of values; MIN = minimum; MAX=maximum; AVG=average; STD=standard 

deviation; K€ = thousand euros; M€ = million euros; CAP=GDP/capita 

Parameter Coeff.  Std t-stat p-value 

𝑘 -2.524 ** 0.606 -4.16 3.74 x 10-5 

𝛼 0.564 ** 0.028 20.31 0 

𝛽 0.382 ** 0.046 8.22 1.55 x 10-15 

𝛾 0.139  0.13 1.03 3.02 x 10-1 

Est. = estimated value; Std = standard deviation; Significant at conf. level: 95% 

(*), 99% (**)  

Figure 3 Model fit for varying catchments and GDP measures 

Table 6 Model calibration characteristics 

Figure 4 Left: observed vs. un-biased predicted total flow. Right: accompanying error 
histogram (N=514) 
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Logit model 

The logit parameters in our model were attained by statistical analysis of 57 

MNL models, originating from 17 case studies in our previously mentioned 

100-study literature review. Their methodologies underline the necessity of 

choosing not to calibrate this project’s MNL model to actual data: these studies 

use extensive surveys to estimate parameters, with the number of reported 

observations summing up to almost half a million. It is indicative of the 

complexity involved that estimating these parameters constitutes a distinct 

scientific discipline in its own right. Studies were applied in the UK, France, 

Germany, Spain, Portugal, Sweden and a few other countries outside of Europe, 

with the number of observations ranging from 40 to 63,000, and the r-squared 

model fit ranging between 0.075 and 0.822. 

 

The median reported values of the 53 travel time and 47 travel cost beta 

parameters were -0.4606 and -0.0311, respectively. This results in an effective 

Value of Time of €14.80 per hour, closely approximating commuting values 

attained by an European-wide applied study by Wardman et al. (2012), when 

adjusted for inflation. 

 

 

4.1.3.Model validation 

After pre-processing, a validation data set of 180 million passengers, 187 cities 

and 890 connections remain. A statistical summary of this data set is provided 

in the table below. 

 

Table 8 Characteristics of validation data 

 

The validation approach as taken by Belal et al. (2020) will be used here as 

well: we take five interesting connections and calculate how closely the model 

approaches the observed demand. Five air connections with more than 1 million 

in yearly observed demand are chosen. The table below shows the accuracy of 

the demand forecasting model for these connections. 

 

Table 9 Validation results 

 

The results show that the model predicts demand reasonably well, with the 

absolute deviation in terms of 10-log staying within 5%. The only exception 

here is the London to Faro connection, which is severely underestimated by the 

model. This indicates that the model is not able to estimate trips that have a 

heavy touristic character. This comes as no surprise, since the model only takes 

population, GDP and distance into account. The correlation between observed 

and predicted demand, when expressed in base 10 logarithm, equals a R2 value 

of 0.337. Without taking connections with a touristic character into account, 

this value would reach 0.792. 

 

 

4.1.4.Demand evolution 

The mean yearly GDP growth between 1964 and 2023, among the 39 countries 

within this project’s scope, vary between 1.38% (Greece) and 5.04% (Turkiye). 

When inserting the possible values into equation (6), it turns out that the factor 

𝑘𝑖𝑗
𝑒𝑐𝑜 varies between 1.22 and 2.17. 

As mentioned before, the level of induced demand is the same for every 

connection, unless it already has an upgradeable high-speed rail line. 

 

 

4.2. Profitability estimation 

As our model is straightforward and relies on rules of thumb, it is not destined 

for validation. 

 

 

 

4.3. Network design 

 

4.3.1.Data collection 

This section presents the results of data collection as input for the optimisation 

model. 

 

Set of nodes 

The data set by Florczyk et al. (2020) provides data on 160 metrics for 13,135 

urban centres (hereafter referred to as cities). After pre-processing, it was found 

that 726 cities, originating from 35 countries, comply with all scope 

requirements. Together, they form the set of potential nodes 𝑁, sharing 263,175 

possible connections among them. Below, Figure 5 shows their distribution 

across the continent. 

 

 

These 726 cities encompass a wide range of values in all characteristics. With 

all settlements of population over 50,000 represented, there is confidence that 

the set encompasses all potential HSR stations. The required data was 

successfully gathered regarding all cities. Below, a statistical summary of the 

city-related model input data is given: 

 

Table 10 Statistical summary of nodes set 

Var. Unit MIN MEDIAN MAX MEAN STD 

𝑃𝑂𝑃 [pax] 50,054 101,361 14,111,242 285,165 844,314 

𝑃𝑖,45 [pax] 195,736 1,243,560 13,417,545 1,845,190 1,786,929 

𝐶𝐴𝑃𝑖  [€] 84 15,772 51,478 16,105 6,749 

𝐻 [m] -3 80 909 142 161 

POP=population; CAP=GDP/capita; H=mean elevation 

 

 

Set of arcs 

Now the information regarding the set of nodes N is gathered, it is used to find 

all necessary arc- and OD pair-related data by means of web scraping. This was 

performed for all 31,125 city pairs for the 250 most populated cities, as this 

already took more than three days to complete. The task of performing such 

large amounts of searches regularly caused errors due to not being able to load 

web pages in time. The web scraping code had to be adapted to this, to 

automatically search arc-related data again if the load errors occurred. A 

complete database encompassing the needed data for all 31,125 city pairs was 

made successfully. In Table 11, a statistical summary of this data base is given. 

Note that all characteristics are based on the direct arc between origin and 

destination. 

 

 

 

 

 

 

Var. Unit N MIN MEDIAN MAX AVG STD 

𝑃𝑖,45 [pax] 187 4,191 4,129,149 29,518,637 6,225,502 6,358,880 

𝐶𝐴𝑃𝑖  [K€] 187 5,980 48,534 607,256 72,364 68,010 

𝑑𝑖𝑗  [km] 890 1,000 1,473 3,120 1,527 377 

𝐷𝐴𝐼𝑅,𝑖𝑗 [pax] 890 20,114 99,356 3,195,192 202,426 293,041 

N = number of values; MIN = minimum; MAX=maximum; AVG=average; STD=standard 

deviation; K€ = thousand euros; M€ = million euros; CAP=GDP/capita 

Connection Observed demand Predicted demand Difference  

(%log) Ordinary 

notation 

log Ordinary 

notation 

log 

London-Faro 3,195,192 6.50 54,448 4.74 -27.2 

Istanbul-Dusseldorf 2,253,703 6.35 4,475,305 6.65 +4.7 

London-Krakow 1,775,915 6.25 1,696,741 6.23 -0.3 

London-Porto 1,646,479 6.22 1,486,021 6.17 -0.7 

London-Valencia 1,189,040 6.08 1,181,056 6.07 +0.0 

Figure 5 Cities within scope 
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Table 11 Model input characteristics 

Var. Unit Min Med Max Mean Std 

Demand 

forecasting 
      

𝑙𝑖𝑗 [km] 16 1,423 5,041 1,507 832 

𝑇𝑇𝑝𝑙𝑎𝑛𝑒 [h] 0.0 6.6 26.9 6.6 2.3 

𝑇𝑇𝑡𝑟𝑎𝑖𝑛 [h] 0.0 15.4 100.0 17.9 12.7 

𝑇𝑇𝑐𝑎𝑟  [h] 0.2 13.5 59.6 14.5 8.1 

𝑇𝑇𝐻𝑆𝑅 [h] 0.1 4.6 16.1 4.9 2.6 

𝑇𝐶𝑝𝑙𝑎𝑛𝑒 [€] 0 220 1,355 228 90 

𝑇𝐶𝑡𝑟𝑎𝑖𝑛 [€] 0 268 1,341 272 158 

𝑇𝐶𝑐𝑎𝑟 [€] 4 336 1,453 355 196 

𝑇𝐶𝐻𝑆𝑅 [€] 37 170 734 177 71 

𝐷𝐻𝑆𝑅,𝑖𝑗 [pax] 14 24,237 10,263,681 108,926 313,918 

�̅�𝑡𝑟𝑎𝑖𝑛 [km / h] 0 83 282 83 29 

𝛼 [pax] 35 61,874 22,732,344 234,875 662,871 

𝛽 [pax / h] -974,438 -2,515 -1 -11,355 32,557 

𝛾 [pax / €] -66,572 -171 0 -772 -2,213 

R2 [-] 0.975 0.997 1.000 0.997 0.003 

       

Profit 

estimation 
      

𝑘𝑋,𝑖𝑛𝑓𝑟𝑎 [M€ / km] 7.0 47.6 116.1 48.9 16.7 

𝑓𝑎
𝑟𝑒𝑣 [M€] 0.1 139.6 64,577.4 521.5 1,540.6 

𝑓𝑎
𝑐𝑜𝑠𝑡 [B€] 0.8 71.5 314.4 75.7 42.6 

 

Since all cities are located in continental Europe, travelling between them by 

car or the potential new HSR line should always be possible. This is reflected 

in the data, as the minimum travel time of these modes is larger than zero. A 

relatively low share city pairs are not connected by plane (4.5%) or train (3.9%), 

indicating the existence of infrastructure related to all modes. Most of the city 

pairs can be traversed by plane within a day, while the median train travel time 

already exceeds 15 hours. A comparison to the median 4.6 hours of potential 

HSR infrastructure is indicative to the opportunity of HSR development in 

continental Europe. This is even further accentuated by comparing travel costs: 

when instructed to maximise revenue, high-speed rail can be significantly 

cheaper than competing modes. This does not mean that HSR infrastructure 

should be developed everywhere across the continent. As the data shows, in 

many cases the demand is low, also indicated by a median of only 24,000 

passengers per year. Only 1.6% of all city pairs would be able to generate a 

first-year demand of more than 1 million. Considered solely, only eleven 

(0.03%) of them would be profitable. The ’average train speed’ was calculated 

in order to find upgradeable infrastructure, for which the value must be at least 

200 km/h. A total of 29 arcs meet this demand. 

 

4.3.2.Pre-processing 

The largest potential network size our laptop could solve for within six hours 

considers the 111 most populated cities within the scope, which are all cities 

with a population exceeding 315,000. Recall that model pre-processing was 

performed by means of network simplification and route generation. 

 

Network simplification: Without pre-processing, our optimisation model 

would consider 111 nodes, connected by 6,105 arcs and the same number of 

OD pairs. The size of the network and mainly its related set 𝐴 was reduced 

significantly: only 109 nodes, 589 arcs and 5,886 OD pairs. This is due to the 

fact that our network simplification process primarily imposes constraints to 

arc lengths. 

 

Route generation: The NetworkX route generating algorithm proved to be 

significantly faster than the optimisation process. Considering the final 

potential network size of 111 cities, it found 77,062 valid potential routes in 

approximately eight minutes. Even though the number of routes averages to 13 

for each OD pair, the distribution of routes among the OD pairs is extremely 

uneven. In fact, the top 10% OD pairs with the most routes account for over 

90% of all routes found. This can be attributed to the fact that a relatively low 

number of city pairs are far apart and are able to generate demand, 

exponentially increasing the number of potential routes. 

 

4.3.3.Optimisation 

Optimising for a network of 111 cities (effectively: 109, as explained earlier), 

589 arcs, 2,269 OD pairs and 77,067 routes resulted in construction of a model 

with 243,671 integer decision variables (of which 89,537 are binary) and 

1,035,732 constraints. The optimal solution was found after a little under six 

hours, an optimal lifetime profitability of €222.8 bn was reported, which can 

be broken down into the cash-flows present in the objective function: 

 

Table 12 Profitability breakdown in optimal network (B€) 

Revenue Costs 

Ticket revenue € 655.413 Infrastructure construction € 193.809 

  Infrastructure maintenance & operation € 15.876 

  Rolling stock acquisition € 5.062 

  Rolling stock operation & maintenance € 194.134 

  Transfer penalty € 12.739 

Total revenue € 644.413 Total cost € 421.620 

Total profit: € 222.793 

 

 

Topology 

The optimal configuration consists out of 15 cities, connected by 15 arcs and is 

displayed in Figure 6. The yellow dots not connected by lines, are cities that 

the model considered, but did not add to the network. Most of the arcs will be 

newly built, as only two are currently in high-speed operation: Brussels-Paris 

(average speed: 229 km/h) and London-Paris (200 km/h). 

It heavily focuses on north-western Europe. Since our model accounts for 

already existent HSR infrastructure, it becomes evident that it’s not worth the 

investment of upgrading domestic lines in the networks of France, Spain and 

Italy, as their current quality and coverage is sufficient. Simultaneously, it 

shows that mainly Germany and Great Britain are in dire need of more border-

crossing HSR infrastructure. The network avoids mountainous terrain, 

indicating that this might affect the viability of HSR operation. Some 

connections are drawn as if they would cross water, but HSR travel times are 

determined by the shortest distance over land. 

The network covers the largest cities in the remaining western countries: 

Great Britain, Germany, Belgium and the Netherlands. One can notice a clear 

triangle-structure, with extending arms in multiple directions to large cities 

such as Berlin, Amsterdam, Hamburg, Munich and Edinburgh, which all show 

great air demand with at least one of the cities in the triangle. Having one of 

the largest airports in the world, the city of Frankfurt is also part of the network. 

Some medium-to-large cities function as intermediate stops between larger 

cities, as they benefit from their location, while still adding a sufficient number 

of passengers to the network. Examples of these cities are Dusseldorf, 

Hannover, Stuttgart, Leeds, Nottingham and Nuremberg. Perhaps the most 

surprising addition to the network is the city of Southampton, which is located 

closely to London, and shows sufficient demand levels with the latter city and 

Paris. 

 

The combined length of all arcs equals 3,969 km, with lengths of individual 

arcs varying between 120 and 464 km. The network would serve close to 600 

thousand passengers per day, on average over its lifetime. Focussing purely on 

ticket revenue and infrastructural costs, it appears that almost two-thirds (63%) 

Figure 6 Optimal network topology; loose dots are considered though not selected cities 
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of all profit originates from the London-Paris and London-Brussels arcs. 

Another remarkable finding is that for a maximally profitable network, not all 

individual arcs have to be profitable on their own: 5 out of 15 arcs are not, 

which are all situated at an end point of the network. The table below shows 

the profitability for each selected arc, only considering ticket revenue and 

infrastructural costs, as rolling stock-related costs depend on the design of lines, 

which will be addressed in the next section. 

 

Table 13 Profitability of connections 

Connection name Length 

[km] 

Flow 

[pax/ 

day] 

Revenue 

[B€] 

Costs 

[B€] 

Profit 

[B€ ] 

Brussels-London 364 131,680 199.943 17.513 182.430 

London-Paris 464 42,105 106.965 13.023 93.941 

Brussels-Dusseldorf 201 67,474 54.182 9.890 44.292 

Amsterdam-Brussels 211 56,345 45.245 9.563 35.683 

Brussels-Paris 317 45,726 40.057 6.934 33.122 

Brussels-Frankfurt 397 46,779 46.443 21.436 25.007 

London-Nottingham 206 42,771 33.721 12.233 21.488 

Dusseldorf-Hanover 280 33,654 26.042 17.371 8.671 

London-Southampton 123 13,021 9.125 7.323 1.803 

Edinburgh-Nottingham 449 17,155 26.800 26.017 0.783 

Leeds-Nottingham 120 11,931 7.490 7.646 -0.155 

Frankfurt -Nuremberg 223 22,566 16.473 18.474 -2.000 

Munich-Nuremberg 172 16,618 12.131 14.557 -2.426 

Berlin-Hanover 290 20,093 14.375 17.865 -3.490 

Hamburg-Hanover 152 8,249 5.420 9.840 -4.420 

TOTAL 3,969 576,167 644,413 209,685 434,728 

 

 

OD pairs 

60 out of 105 potential OD pairs within the network are served. Travel times, 

costs and distance vary between 0.46 - 4.74 hours, €43 – 326 and 120 – 1,362 

km with means of 2.34 hours, €168 and 673 km, respectively. First-year 

passenger demand (accounted for induced demand) varies from 36,000 to 20.2 

million. HSR market share per served OD pair varies between 30 and 92%, 

with a mean of 75% per OD pair. The market share of the entire network equals 

79% (with a roughly equal share for the other modes). 

 

Line design 

The line design ensures direct connections for 52 out of 60 (87%) of OD pairs 

and 95% of passengers. All OD pairs are served with at most one transfer. 

Brussels can be considered a main hub, being associated with nine out of eleven 

lines, while having a direct connection with all but one of the other cities. 

Serving 95% of passengers directly, the inclusion of transfer penalties resulted 

in a well-balanced line design, which appears to “care” about the number of 

transfers passengers make, but does not overdo it in the sense that every OD 

pair is served by a separate line. Together, the lines serve all arcs, most often 

with the minimum required frequency. The topology displayed in Figure 6 will 

be served by eleven lines and a fleet of 81 trains. They are listed in Table 14. 

Below, Figure 7 shows the optimal line map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 Line design 

# Stops 
Length 

[km] 

Trip 

time 

[h] 

Freq 

[h-1] 

Fleet 

[-] 

1 (2): London, Paris 464 1.55 3 10 

2 
(5): Berlin, Hannover, Dusseldorf, 

Brussels, Paris 
1,088 3.78 1 8 

3 (3): Amsterdam, Brussels, Paris 528 1.84 1 4 

4 (3): Amsterdam, Brussels, London 575 1.99 2 8 

5 
(5): Frankfurt am Main, Brussels, 

London, Nottingham, Leeds 
1,087 3.78 1 8 

6 (3): Dusseldorf, Brussels, London 565 1.96 1 4 

7 
(6): Hamburg, Hannover, Dusseldorf, 

Brussels, London, Nottingham 
1,203 4.24 1 9 

8 
(4): Nuremberg, Frankfurt am Main, 

Brussels, Paris 
937 3.22 1 7 

9 (3): Edinburgh, Nottingham, London 655 2.25 1 5 

10 
(6): Munich, Nuremberg, Frankfurt am 

Main, Brussels, London, Southampton 
1,279 4.47 1 9 

11 
(6): Berlin, Hannover, Dusseldorf, 

Brussels, London, Southampton 
1,258 4.40 1 9 

TOTAL 9,639 - - 81 

 

 

4.3.4.Model stability analysis 

The variations are applied to an optimisation model version considering the 77 

most populous cities in Europe. In total, our model was ran six times, which 

generated the optimal network designs in running times varying between 1200 

and 2300 seconds. This result already indicates that our fare variations created 

problems with a large variation in complexity. However, the number of nodes 

and arcs was the same for all simulations, and the optimal network stayed 

exactly the same in three out of six simulations. The other half showed minor 

changes compared to the original network: in three cases, a connection London-

Lille was added, and in one case Nottingham-Edinburgh was deleted. The 

number of lines varied between 10 and 12, and the fleet size between 70 and 

87. Even though the fares were changed by a maximum of 10%, the maximum 

deviation in profit value equals only 2.5%. Therefore, the results show that the 

inclusion of arcs often is insensitive to relatively small changes in fare setting, 

which builds confidence in our model’s predictions, which is important in order 

to be able to make trustworthy recommendations. 

 

 

4.3.5.Benchmarking 

Our model finds an optimal solution consisting of 31 lines and a fleet of 134 

vehicles, with the length of lines varying between two and eight nodes. The 

solving time of our model equals 20 seconds on average, which is considerably 

lower than algorithms proposed by Kechagiopoulos & Beligiannis (2014). Our 

model outperforms state-of-the-art algorithms in terms of total travel time and 

level of service, therefore providing a solution which is heavily focused on 

user-friendliness. However, this does come at the expense of operator costs, as 

our solution requires much more lines and a substantially larger fleet size than 

solutions by state-of-the-art approaches.  
 

 

  

Figure 7 Line design map; the numbers denote the joint frequency per arc 
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The balance between operator and user costs is determined by the choice of 

parameters such as transfer penalty per passenger and unit maintenance & 

operating costs. Given the experimental character, addressing these parameters 

and their interaction regarding this network is considered outside of this 

project’s scope and saved for further research. 

 

 

5 POLICY IMPLICATIONS 

 

This section translates our findings from the previous section into the lessons 

implications they have for policy, and recommendations that can be made 

regarding them. We shine our light on the implications from three perspectives: 

international cooperation, funding & financing, and environmental 

sustainability. 

 

International cooperation 

Cross-border operations are vital for the vitality of our network, as 84.8% of its 

passengers travel internationally. For this reason, it’s of crucial importance that 

national and regional governmental bodies are coordinated. The heap of 

national and regional laws and regulations should be lifted, and new regulation 

should be made in order to make it easier for countries to cooperate. A special 

task force serving this exact purpose could be greatly beneficial. 

 

Funding & financing 

As stated before, high-speed rail infrastructure requires substantial investments. 

Our optimal network is able to underline this statement with numbers: for a 

total revenue of €644.4 bn and lifetime profit of €222.8 bn, approximately 

€421.6 bn must be invested in the coming 40 years. A substantial part of €193.8 

bn is invested initially for construction and acquisition, which is 46% of all 

expenses during the project’s lifetime. The rest will be spent for maintenance 

and operation for both the infrastructure and rolling stock, and amounts to a 

yearly expense of €5.69 bn. 

Our network pays itself back in 19 years. Given the significant expenses, 

subsidiary help is needed from not only the European Union, but also from 

national and/or regional governmental bodies. The money would be primarily 

spent on infrastructure construction (42% in international connections).  

Analysis of the outcomes of our profitability model shows that many lines 

would be profitable with a subsidy of no more than €3 bn. These lines are 

located most often in Poland or the Baltic States. Therefore, tactical 

investments could make the dream of a continent-wide HSR network come true. 

 

Environmental sustainability 

Our network would serve 94.3 million passengers on average per year during 

its lifetime, which would increase the total HSR traffic volume in the EU by 

72%, from 131 (Statistica, 2018) to 225 billion km travelled on a yearly basis. 

Among these passengers, 42 million used to travel by plane and 21.3 million 

by car. The mentioned shift alone would significantly contribute to that, 

reducing emissions of the entire European transport sector by 33% by 2050. 

This percentage is based on an average of 200g CO2/paxkm for air travel, 170g 

for car travel and 4g for HSR travel (UK Government, 2022), an average travel 

distance of 1,000 km for both HSR and air and 500 km for car travel, and 714 

Mt CO2 total transport-related emissions in 1990 (EEA, 2023). It is assumed 

that HSR operations would start in 2030. 

 

 

6 CONCLUSIONS 

 

The Transport Network Design Problem (TNDP) model developed in this study 

effectively overcomes the limitations of current methods, particularly in 

solving medium-to-large network designs with demand elasticity. By adapting 

the Multi-Commodity Flow Problem (MCFP) formulation to incorporate OD 

flow routes, the model retains the intrinsic logic of MCFP while significantly 

reducing computational demand. This allows the model to achieve optimality 

for networks with up to 111 nodes, or all European cities with a population over 

315,000. It represents a significant step forward in high-speed rail (HSR) 

network design in this field. 

The application of this model demonstrated that a profitable HSR network 

in Europe would not span the entire continent but would rather be concentrated 

in the north-western region, with a primary focus on major cities in the UK and 

Germany, and Brussels as the central hub. The model suggests that upgrading 

existing infrastructure is generally not cost-effective. The network would 

consist of 15 cities, 15 arcs (of which two upgraded from existing 

infrastructure) and would serve 60 OD-pairs. Eleven lines would serve the 

network, most with operating frequencies of one train per hour, increasing to a 

maximum of three for the busiest connections. The addition of transfer 

penalties makes up for a seemingly well-thought line design, which -besides 

appearing to be complex- serves almost all connections with the minimum 

frequency needed. 

Moreover, the proposed network design aligns with the European Green 

Deal’s climate objectives, potentially increasing HSR traffic volume by 72% 

and reducing emissions from the transport sector by 33% by 2050. However, 

achieving these outcomes will depend heavily on international cooperation and 

the provision of financial support, particularly for cross-border connections 

during the initial stages of infrastructure development. 

 

 

7 DISCUSSION 

 

This study addresses the limitations in demand forecasting, profitability 

estimation, and network design for high-speed rail (HSR) in Europe, 

contributing new insights into the Transport Network Design Problem (TNDP) 

under elastic demand. While the demand forecasting model used was functional, 

its simplifications—such as the exclusion of certain travel modes (e.g. bus) and 

impact factors—indicate room for further accuracy improvements, particularly 

through incorporating mixed logit or dynamic gravity models. The inability to 

fully capture inter-modal competition limits the precision of the demand 

forecasts, primarily when working with trips with a touristic character, but 

these were not the primary focus of the research. 

The profitability estimation model, though simplified, provides 

reasonable insights into HSR viability under current assumptions. However, it 

overlooks critical factors such as fare competition and inflation, which could 

significantly change the results over a 40-year project span. Additional research 

could explore greener policies for optimising HSR demand, looking beyond 

only the maximisation of revenue. 

The network design model performs strongly, efficiently solving for 

larger networks while taking demand elasticity into account. However, the 

model’s reliance on ‘smart restrictions’ to reduce the number of OD flow routes 

and the inherent assumptions about fare sensitivity reveal areas where further 

work, particularly on line design robustness, could enhance its applicability to 

real-world scenarios. Similarly to the profitability estimation model, the 

network design model's focus on profitability leaves untouched potential for 

considering non-monetary benefits such as sustainability gains. 

 

In conclusion, while the TNDP model successfully advances HSR network 

design, further studies are essential to refine demand forecasts, enhance 

profitability models, and explore robust design approaches. 
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