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1 Abstract

Vibrations or oscillations can be caused in overhead cable lines or bridge cables due to strong rain
and winds, making the structure unstable.These vibrations can be mathematically described as a
string like initial boundary value problem with non-classical boundary conditions. In this thesis, we
consider a nonlinear attachment at the boundary which consists of a mass, nonlinear spring and
a damper attached to a semi infinite string. In particular, we consider a weak nonlinearity and
damping. In this study we used the D’Alembert solution and the multiple time scales perturbation
method to obtain bounded solutions of the initial boundary value problem. We assumed travelling
wave initial conditions, and obtained special cases and conducted detuning around these special
cases to further study the reflected waves at the boundary and the stability of our solutions. Our
main objective is to study the reflection of the incident wave on the boundary and compute how
much energy is dissipated at the boundary due to the weak dissipative forces present at the boundary

Figure 1: Fred Hartman bridge, Houston, Texas
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2 Introduction

This paper explores the domain of non-linear energy sinks. More specifically, we study the vi-
brations on a string attached to a spring mass damper system. The spring in the system under
consideration exerts a non-linear force (cubic non-linearity) on the mass. We would like to study
how much energy is dissipated at the boundary due to the nonlinear attachment at x = 0 and how
this impacts the amplitude of the reflected waves in the string.

This research has many applications in the real world. One such example is that of overhead
cables. External forces such as wind cause the cables to oscillate, thus making them unstable, as
they cannot cope with those weather conditions. Usually in such cases, dampers(oil or mass) are
attached to the cables to make the system more stable. Due to the presence of a non-linearity and
a damper in our system, energy can be taken out of the system, thus making their amplitudes of
oscillation reduce.

Figure (1) shows an image I took of the Fred Hartman bridge, located in Houston, Texas. A lot
of research was conducted on this bridge by the universities in the US. Soon after its construction,
a lot of the users noticed high amplitude oscillations of the cables attached to the bridge. This
was caused due to rain and winds.

My research is guided keeping these applications in mind. The report is structured as follows:
In Section 3, we formulate the problem and make it dimensionless in order to reduce it to a
mathematical system which we can work with, Section 4 discusses an analytic approach used
to obtain a solution to our initial boundary value problem, Section 5 deals with obtaining the
solutions for the leading order equations, some special cases and the detuned cases and the energy
decay of the system, Section 6 discusses some results and avenues of future research and the last
section mentions all the literature and references used during the course of the research.

3 Formulation of the problem

Figure 2: Mass-spring-string-damper system

In this paper we study the vibrations in a semi infinite string attached to a non-linear spring mass
damper system. To begin with, gravity and other external forces are ignored, thus obtaining a
1-D wave equation with initial and boundary conditions as given below,

(
∂2u

∂t2
) = c2(

∂2u

∂x2
);x > 0, t > 0 (1)

with initial conditions,

{
u(x, 0) = f(x), x > 0
∂u
∂t = g(x), x > 0

(2)
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and boundary condition,

m
∂2u

∂t2
(0, t) = T

∂u

∂x
(0, t)− α∂u

∂t
(0, t)− au(0, t)− bu3(0, t);m > 0, t > 0. (3)

Here, u is the vertical displacement in meters, c is the wave velocity, x is the horizontal
displacement, m is mass, t is the time in seconds, f is the initial vertical displacement at t = 0,
g is the initial velocity of the wave, T is the tension in the string, α is the damping coefficient
and a and b are the coefficients of the linear and non-linear spring force. Next, we must make the
above variables dimensionless before solving the equations. This is done to facilitate scaling up
the problem to real conditions and to ease up the process of identifying when to apply familiar
mathematical techniques. Before we make the variables dimensionless, it is useful to identify the
dimensions of all the quantities present in our problem.

[ρ] = [
kg

m3
]

[u] = [m]

[x] = [m]

[t] = [s]

[T ] = [
kgm

s2
]

[A] = [m2]

[c] = [
m

s
]

[M ] = [kg]

[α] : damping factor = [
kg

s
]

[a] : linear coefficient in spring force = [
kg

s2
]

[b] : cubic coefficient in spring force = [
kg

m2s2
]

In order to do this, let us consider the following transformations,

x = x̃L

u = ũL

t = t̃
c

L

Substituting these transformations into the initial boundary value problem, we get the following
IBVP,

∂2ũ

∂t̃2
=
∂2ũ

∂x̃2
(4)

{
ũ(x̃, 0) = f̃(x̃), x̃ > 0
∂ũ
∂t̃

= g̃(x̃), x̃ > 0
(5)

∂2ũ

∂t̃2
(0, t) = A

∂ũ

∂x̃
(0, t)−B∂ũ

∂t̃
(0, t)− Cũ(0, t)−Dũ3(0, t),m > 0 (6)
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where,

A =
TL

mc2

B =
αL

cm

C =
aL2

mc2

D =
bL

mc2

Each of the parameters, A,B,C and D are dimensionless and this has been verified.
Next, we attempt to reduce the number of parameters in our problem in order to reduce the

number of numerical simulations we need to run. Fewer the parameters, the more easier it is to
control the numerical simulations. We can do so by assuming the following transformation and
trying to eliminate 1 or 2 parameters(ideally keep the parameters corresponding to the damping
and the non-linear spring force),

x̃ = λ1x

t̃ = λ2t

ũ = λ3u

When we substitute these transformed variables into (4), we get that,

λ1 = λ2

Upon substitution into (6) we get,

λ3
λ21
utt = A

λ3
λ1
ux −B

λ3
λ1
ut − Cλ3u−Dλ33u3

Dividing both sides by λ3 and multiplying both sides with λ21, we get,

utt = Aλ1ux −Bλ1ut − Cλ21u−Dλ23λ21u3 (7)

If we set λ1 = 1
A , the coefficient of ux is reduced to 1. Substituting this into (7) we get,

utt = ux −
B

A
ut −

C

A2
u− D

A2
λ23u

3

=⇒ utt =

[
ux −

C

A2
u

]
− B

A
ut −

D

A2
λ23u

3

If we take the damping and the cubic non-linearity to have the same coefficient, we get that

λ3 = ±
√

AB
D . Depending on whether D takes positive/negative values the spring is either a

hardening/softening spring.

When D > 0 : λ3 =
√

AB
D =⇒ the boundary condition will have the term −q̂u3.

When D < 0 : λ3 =
√

AB
−D =⇒ the boundary condition will have the term +q̂u3.

The damping and cubic term have a common coefficient B
A and the linear spring force has the

coefficient C
A2 . For convinience, let, p̂ = C

A2 and q̂ = B
A .

The IBVP reduces to,
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
PDE : utt − uxx = 0;x > 0; t > 0

IC : u(x, 0) = f(x);x > 0; t = 0

IC : ut(x, 0) = g(x);x > 0; t = 0

BC : utt(0, t) = [ux(0, t)− p̂u(0, t)]− q̂[ut(0, t)± u3(0, t)];x = 0; t > 0

where p̂ > 0 and q̂ is very small(weak damping and non-linearity) and q̂ > 0.

For our analysis, we will consider only a hardening spring. So our IBVP under consideration
is,


PDE : utt − uxx = 0;x > 0; t > 0

IC : u(x, 0) = f(x);x > 0; t = 0

IC : ut(x, 0) = g(x);x > 0; t = 0

BC : utt(0, t) = [ux(0, t)− p̂u(0, t)]− q̂[ut(0, t) + u3(0, t)];x = 0; t > 0

(8)

4 Methods of analysis

The multiple time scales method is a global perturbation method. It is usually used in situations
where the mechanical system consists of weak dissipating forces. Since the dissipating forces are
weak, we may not be able to observe the effect they have on a short time scale, but become very
significant on a longer time scale.In our system, we have a weak damping and non-linearity, thus
making multiple time scales an appropriate fit. Any other perturbation method may result in
resonance which gives rise to secular terms. Secular terms are present in the ordered equations
which become unbounded as time passes, thus making the solution and system unstable. We can
identify them as functions of the solutions to the homogeneous system which are present in the
right hand side of the non-homogeneous system. Eliminating the secular terms will ensure that
the solution remains bounded. Physically, this means that, when oscillations are introduced into
our system through the string, the reflected waves would have a lower/or equal to amplitude than
the incoming wave as time passes.
In order to do this, we must show that the effect of the weak dissipating forces can be seen in the
energy of the system. If the energy of the system reduces, it means that our mechanical system
has gone from a highly excited state to a much more stable state, which is more desirable.

5 Analysis of the problem

After the original problem has been made dimensionless and the number of parameters have been
reduced, we get (8) given by,

PDE : utt − uxx = 0;x > 0; t > 0

IC : u(x, 0) = f(x);x > 0; t = 0

IC : ut(x, 0) = g(x);x > 0; t = 0

BC : utt(0, t) = [ux(0, t)− p̂u(0, t)]− q̂[ut(0, t) + u3(0, t)];x = 0; t > 0

This is the one dimensional wave equation. The D’Alembert solution is a well known solution
for the one dimensional wave equation with classical boundary conditions. In (1), the author con-
siders the D’Alembert solution to construct an explicit solution of the boundary value problem.
We can assume that the D’Alembert solution satisfies the PDE and the Initial conditions as we
do not have classical boundary conditions.
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The D’Alembert solution is given by,

(1) For (x− t) > 0 ,

u(x, t) =
f(x+ t)

2
+
f(x− t)

2
+

∫ x+t
x−t g(s)ds

2
(9)

(2) For (x− t) < 0 ,

u(x, t) =
f(x+ t)

2
+
f(x− t)

2
+

∫ x+t
0

g(s)ds

2
+

∫ 0

x−t g(s)ds

2
(10)

The formula for (x− t) < 0 is not defined for negative arguments, as the initial conditions are
only defined for positive values, as we can see from (8). So, for (10), u(x, t) can be expressed as,

u(x, t) = h(x+ t) + z(t− x) (11)

where, h(x + t) = f(x+t)
2 +

∫ x+t
0

g(s)ds

2 is a known function and z(t − x) = f(x−t)
2 +

∫ 0
x−t g(s)ds

2
is an unknown function.We can substitute (11) into the boundary condition in (8).

The boundary condition is given by,

utt(0, t) = [ux(0, t)− p̂u(0, t)]− q̂[ut(0, t) + u3(0, t)] (12)

Upon substitution, we get the following expressions that need to be put into the BC,

utt(0, t) = h′′(t) + z′′(t)

ux(0, t) = h′(t)− z′(t)

p̂u(0, t) = p̂h(t) + p̂z(t)

q̂ut(0, t) = q̂[h′(t) + z′(t)]

q̂u3(0, t) = q̂(h(t) + z(t))3 = q̂[h(t)3 + z(t)3 + 3h(t)z(t)2 + 3z(t)h(t)2]

When we substitute the above expressions in (12) and rearrange the terms by putting all the
known functions on the RHS and the unknown functions on the LHS, we get,

z′′(t) + z′(t) + p̂z(t) + q̂z′(t) + q̂z(t)3 + 3q̂h(t)z(t)2 + 3q̂z(t)h(t)2 = −h′′(t) + h′(t)− p̂h(t)− q̂h′(t)− q̂h(t)3

(13)

5.1 Initial conditions

We assume the following initial conditions,

{
u(x, 0) = f(x) = Asin(ωx), x > 0

ut(x, 0) = g(x) = Aωcos(ωx), x > 0
(14)

We know that, h(x+ t) = f(x+t)
2 +

∫ x+t
0

g(s)ds

2 and z(t− x) = f(x−t)
2 +

∫ 0
x−t g(s)ds

2 , when x = 0,
this reduces to,
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h(t) =
f(t)

2
+

∫ t
0
g(s)ds

2
(15)

z(t) =
f(−t)

2
+

∫ 0

−t g(s)ds

2
(16)

When we substitute (14) in (15) , we get,

h(t) =
Asin(ωt)

2
+
Aω

2

∫ t

0

cos(ωs)ds = Asin(ωt) (17)

As a result we also get that,
h′(t) = Aωcos(ωt)

and
h′′(t) = −Aω2sin(ωt)

From a physical standpoint, we know that the reflected wave is given by z(−t). We know that
at t = 0, no reflected wave exists. This implies that at t = 0, there is no position or velocity
corresponding to the reflected wave. Hence, we get that,{

z(0) = 0

z′(0) = 0

We find that we reduce our problem from a PDE to an ODE, in terms of z(t). The initial
value problem is,

{
z′′(t) + z′(t) + p̂z(t) + q̂z′(t) + q̂z(t)3 + 3q̂h(t)z(t)2 + 3q̂z(t)h(t)2 = −h′′(t) + h′(t)− p̂h(t)− q̂h′(t)− q̂h(t)3

z(0) = 0, z′(0) = 0

(18)

where, h(t) = Asin(ωt).

5.2 Method of Multiple scales

Our mechanical system has reduced to the analysis of equation (18). In (2), the author calculated
the reflection coefficients first and then calculated the natural frequency of the system. However,
we will consider the natural frequency of the system and obtain the reflected wave using the multi-
ple time scales method to avoid resonance. For this initial value problem, we will use the multiple
time scales method. We consider two separate time scales, one regular time scale of O(1) and one
slower time scale of O( 1

q̂ ).

We begin by introducing a slow time scale, τ , such that,

τ = q̂t (19)

This gives us an asymptotic expansion of z(t) as follows,
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z(t) = z̃(t, τ) = [z0(t, τ) + q̂z1(t, τ) + q̂2z2(t, τ) + ...] (20)

Above, z(t) is expressed as a function of two time scales, t and τ . The derivatives with respect
to t are given by,

{
d
dt = ∂

∂t + q̂ ∂
∂τ

d2

dt2 = ∂2

∂t2 + 2q̂ ∂2

∂t∂τ + q̂2 ∂2

∂τ2

(21)

Next, we must substitute (21) into (18) in terms of the unknown function, z.

z′′(t) =

[
∂2zo
∂t2

+ 2q̂
∂2z0
∂t∂τ

+ q̂2
∂2z0
∂τ2

]
+ q̂

[
∂2z1
∂t2

+ 2q̂
∂2z1
∂t∂τ

+ q̂2
∂2z1
∂τ2

]
+ ...

=⇒ z′′(t) =
∂2zo
∂t2

+ q̂

[
2
∂2z0
∂t∂τ

+
∂2z1
∂t2

]
+O(q̂2)

z′(t) =

[
∂z0
∂t

+ q̂
∂z0
∂τ

]
+ q̂

[
∂z1
∂t

+ q̂
∂z1
∂τ

]
+ ...

=⇒ z′(t) =
∂z0
∂t

+ q̂

[
∂z0
∂τ

+
∂z1
∂t

]
+O(q̂2)

Substituting these expressions in (18), we get,

∂2zo
∂t2

+ q̂

[
2
∂2z0
∂t∂τ

+
∂2z1
∂t2

]
+O(q̂2)

+
∂z0
∂t

+ q̂

[
∂z0
∂τ

+
∂z1
∂t

]
+O(q̂2) + p̂

[
z0 + q̂z1 +O(q̂2) + q̂

[
∂z0
∂t

+O(q̂2)

]

+q̂

[
z30+O(q̂2)

]
+q̂

[
3h2(t)z0+O(q̂2)

]
+q̂

[
3h(t)z20+O(q̂2)

]
= −h′′(t)+h′(t)−p̂h(t)−q̂h′(t)−q̂h(t)3

z(0) = 0 =⇒ z0(0, 0) + q̂z1(0, 0) + ... = 0

z′(0) = 0 =⇒

(
(
∂

∂t
+ q̂

∂

∂τ
)(z0(0, 0) + q̂z1(0, 0) + ...

)
= 0

Next, we collect the like powers of q̂. The leading order IVP is given below, followed by the
O(q̂) IVP.


O(1) : ∂

2zo
∂t2 + ∂z0

∂t + p̂z0 = −h′′(t) + h′(t)− p̂h(t) = h0(t)

z0(0, 0) = 0
∂z0
∂t (0, 0) = 0

(22)


O(q̂) : ∂

2z1
∂t2 + ∂z1

∂t + p̂z1 + 2 ∂
2z0
∂t∂τ + ∂z0

∂τ + ∂z0
∂t + z30 + 3h2(t)z0 + 3h(t)z20 = −h′(t)− h3(t) = h1(t)

z1(0, 0) = 0(
∂z1
∂t (0, 0) + ∂z0

∂τ (0, 0)

)
= 0

(23)
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5.3 Leading order equation

We will first solve the leading order equation in the initial value problem, (22).

∂2zo
∂t2

+
∂z0
∂t

+ p̂z0 = −h′′(t) + h′(t)− p̂h(t) = h0(t) (24)

Equation (24) is a non-homogeneous ODE. It has a fundamental set of solutions and a partic-
ular solution, denoted as, z0 = z0,c + z0,p.

The fundamental set z0,c are solutions to the homogeneous ODE, i.e., ∂
2zo
∂t2 + ∂z0

∂t + p̂z0 = 0 and

the particular solution z0,p is a solution to the non-homogeneous problem, i.e., ∂
2zo
∂t2 + ∂z0

∂t + p̂z0 =
h0(t), where h0(t) = (Aω)cos(ωt) + (Aω2 −Ap̂)sin(ωt).

5.3.1 Particular solution

We start by calculating the particular solution. The RHS of (24) is h0(t) = −h′′(t) +h′(t)− p̂h(t).
From (17), we can see that,

h0(t) = (Aω)cos(ωt) + (Aω2 −Ap̂)sin(ωt)

If we assume the particular solution to be of the form z0,p = k1cos(ωt) + k2sin(ωt) and substi-
tute it in the LHS of equation (24), then we get sine and cosine functions. In the RHS we already
have sine and cosine terms, so we have to determine the coefficients of these expressions.

We have that z0,p = k1cos(ωt) + k2sin(ωt).

So, z′0,p = −k1ωsin(ωt) + k2ωcos(ωt) and z′′0,p = −k1ω2cos(ωt)− k2ω2sin(ωt).

We get the following set of equations that need to solved simultaneously to determine k1 and
k2.

{
(p̂k1 + k2ω − k1ω2) = Aω

(p̂k2 − k1ω − k2ω2) = Aω2 −Ap̂
(25)

From (25), we have,

=⇒ k2ω + (p̂− ω2)k1 = Aω

=⇒ k2 =

[
A− (

p̂− ω2

ω
)k1

]

−k1ω + (p̂− ω2)

[
A− (

p̂− ω2

ω
)k1

]
= Aω2 −Ap̂

=⇒ −k1ω + p̂A− p̂2k1
ω

+ 2p̂k1ω −Aω2 − k1ω3 = Aω2 −Ap̂

=⇒ −k1ω −
p̂2k1
ω

+ 2p̂k1ω − k1ω3 = 2(Aω2 −Ap̂)

k1

[
− ω2 − (ω4 − 2p̂ω2 + p̂2)

]
= 2Aω(ω2 − p̂)
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k1(−ω2 − (ω2 − p̂)2) = 2Aω(ω2 − p̂)

=⇒ k1 =

[
−2Aω(ω2 − p̂)
ω2 + (ω2 − p̂)2

]
Now that we have an expression for k1, the expression for k2 can easily be found upon substi-

tution into k2 =

[
A− ( p̂−ω

2

ω )k1

]
. We get k2 as,

k2 =

[
A(ω2 − (ω2 − p̂)2)

ω2 + (ω2 − p̂)2

]
Therefore, we have found the particular solution of (22), given as ,

z0,P (t) =

[
−2Aω(ω2 − p̂)
ω2 + (ω2 − p̂)2

]
cos(ωt) +

[
A(ω2 − (ω2 − p̂)2)

ω2 + (ω2 − p̂)2

]
sin(ωt) (26)

5.3.2 Fundamental solution

Now that we have computed the particular solution of the leading order equation. We now have
to compute the fundamental sets of solution of the leading order equation, i.e., z0,c(t, τ).

Our leading order equation can be written as,

z′′0 + z′0 + p̂z0 = 0

The characteristic form of the equation is,

r2 + r + p̂ = 0

This is a regular quadratic equation,whose roots are, r1,2 = −1±
√
1−4p̂

2 . The nature of the roots
depends on the value of

√
1− 4p̂. We have three scenarios,

The solution of the ODE is of the form,

z0(t, τ) = A0(τ)z0,c1(t) +B0(τ)z0,c2(t)

where,



Case1 :

(
p̂ < 1

4

)
: z0,c1(t) = er1t ; z0,c2(t) = er2t

Case2 :

(
p̂ = 1

4

)
: z0,c1(t) = ert ; z0,c2(t) = tert

Case3 :

(
p̂ > 1

4

)
: z0,c1(t) = eλtcos(µt) ; z0,c2(t) = eλtsin(µt)

(27)

where, r1 = −1+
√
1−4p̂

2 , r2 = −1−
√
1−4p̂

2 , r = − 1
2 , λ = −1

2 and µ =
√
4p̂−1
2 .

Since z0(t, τ) depends on both slow and fast timescales, i.e., τ and t. We see that functions
z0,ci are dependent on t and A0(τ) and B0(τ) are functions of τ , i.e., the slow time scale.

In the next three sections we proceed with the detailed stability analysis of each of the three
solutions of the leading order equation.
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The three cases are as follows:

(i)z0(t, τ) = A0(τ)er1t +B0(τ)er2t +

[
−2Aω(ω2−p̂)
ω2+(ω2−p̂)2

]
cos(ωt) +

[
A(ω2−(ω2−p̂)2)
ω2+(ω2−p̂)2

]
sin(ωt),

where, r1 = −1+
√
1−4p̂

2 , r2 = −1−
√
1−4p̂

2

(ii)z0(t, τ) = A0(τ)ert +B0(τ)tert +

[
−2Aω(ω2−p̂)
ω2+(ω2−p̂)2

]
cos(ωt) +

[
A(ω2−(ω2−p̂)2)
ω2+(ω2−p̂)2

]
sin(ωt),

where, r = − 1
2

(iii)z0(t, τ) = A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt) +

[
−2Aω(ω2−p̂)
ω2+(ω2−p̂)2

]
cos(ωt) +

[
A(ω2−(ω2−p̂)2)
ω2+(ω2−p̂)2

]
sin(ωt),

where, λ = −1
2 and µ =

√
4p̂−1
2

5.4 Case 1 of leading order equation

Now we consider Case 1 of the leading order equation, i.e., O(1) equation.
In order to find the constants involved, we need to solve for z0(t, τ) using the initial conditions

z0(0, 0) = 0 and ∂z0
∂t (0, 0) = 0.

z0(t, τ) = A0(τ)er1t +B0(τ)er2t +

[
−2Aω(ω2 − p̂)
ω2 + (ω2 − p̂)2

]
cos(ωt) +

[
A(ω2 − (ω2 − p̂)2)

ω2 + (ω2 − p̂)2

]
sin(ωt)

For convenience, let’s write z0(t, τ) as,

z0(t, τ) = A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt) (28)

When t = 0 =⇒ τ = 0,

z0(0, 0) = A0 +B0 + k1 = 0

z′0(0, 0) = A0r1 +B0r2 + k2ω = 0

Simultaneously solving both the equations we get,

B0 = −k1 −A0

=⇒ A0r1 + (−k1 −A0)r2 + k2ω = 0

=⇒ A0(r1 − r2)− k1r2 + k2ω = 0


A0(0) =

(
k1r2−k2ω
r1−r2

)

B0(0) =

(
k2ω−k1r1
r1−r2

) (29)
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We have now obtained the initial conditions for the case 1. Next, we must make sure that the
solution stays bounded. In order to check whether this, we must check the presence of secular
terms in the RHS of the O(q̂) equation.

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

+ p̂z1 + 2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 = −h′(t)− h3(t)

O(q̂) : z′′1 + z′1 + p̂z1 =

(
− 2

∂2z0
∂t∂τ

− ∂z0
∂τ
− ∂z0

∂t
− z30 − 3h2(t)z0 − 3h(t)z20 − h′(t)− h3(t)

)

The homogeneous form of the O(q̂) equation is, z′′1 + z′1 + p̂z1 = 0. This ODE has the same
fundamental solutions as the O(1) equation. We need to make sure that the RHS of the O(q̂)
equation does not contain secular terms. In order to do this, we need to choose A0(τ) and B0(τ),
such that, the coefficients of the secular terms become zero. We start by substituting z0(t, τ) in
the RHS and finding the conditions for eliminating secular terms.

O(q̂) : z′′1 + z′1 + p̂z1 = −

(
2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 + h′(t) + h3(t)

)
(30)

We consider each of the terms on the RHS and state whether the term contains secular terms
or not. Please note that at this stage we are not considering special values of p̂ for which we obtain
additional secular terms. We will expand on this in a later stage.

• h′(t) = Aωcos(ωt) - Not secular

• h3(t) = A3sin3(ωt) - Not secular

• 3h2(t)z0(t, τ) = 3A2sin2(ωt)[A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]

=⇒ 3A2

2 (1− cos(2ωt))[A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)] - Secular

• 3h(t)z20(t, τ) = 3Asin(ωt)[A0(τ)er1t+B0(τ)er2t+k1cos(ωt)+k2sin(ωt)][A0(τ)er1t+B0(τ)er2t+
k1cos(ωt) + k2sin(ωt)]

=⇒ 2(3Ak2sin
2(ωt))[A0e

r1t +B0e
r2t] = 3Ak2(1− cos(2ωt))[A0e

r1t +B0e
r2t] - Secular

• z30 = [A0(τ)er1t + B0(τ)er2t + k1cos(ωt) + k2sin(ωt)][A0(τ)er1t + B0(τ)er2t + k1cos(ωt) +
k2sin(ωt)][A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]

3(
k21A0e

r1t

2 ) + 3(
k22A0e

r1t

2 ) + 3(
k21B0e

r2t

2 ) + 3(
k22B0e

r2t

2 ) - Secular

• ∂z0
∂t = ∂

∂t [A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]

(A0r1)er1t + (B0r2)er2t - Secular

• ∂z0
∂τ = ∂

∂τ [A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]

(∂A0

∂τ )er1t + (∂B0

∂τ )er2t - Secular

• 2 ∂
2z0
∂t∂τ = 2 ∂2

∂t∂τ [A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]

(2r1
∂A0

∂τ )er1t + (2r2
∂B0

∂τ )er2t - Secular
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We need to find A0(τ) and B0(τ) by equating the coefficients of er1t and er2t to zero, as the
follows,



(
dA0

dτ + c1+2r1
2+4r1

A0

)
= 0(

dB0

dτ + c1+2r2
2+4r2

B0

)
= 0

(31)

where c1 =
3(A+k2)

2+3k21
2 ≥ 0

The system in (31) has a unique equilibrium point at (A0, B0) = (0, 0) if c1 6= −2r1 and
c1 6= −2r2.

When c1 = −2r1, we get infinitely many equilibrium points along the A0 axis, with the
phase lines pointing away from the equilibrium points. A series of source nodes.
When c1 = −2r2, we get infinitely many equilibrium points along the B0 axis, with phase
lines pointing towards the critical points. A series of sink nodes.
When −2r2 < c1 < −2r1, we get a saddle at the unique equilibrium point (A0, B0) = (0, 0).
When c1 > −2r2, we get a stable sink node.

(a) c1 = −2r1 (b) c1 = −2r2 (c) −2r2 < c1 < −2r1

(d) c1 > −2r2

Figure 3: Bifurcations of the system- Case 1 leading order

We solve (31) using (29), and get the functions,

A0(τ) =

(
k1r2 − k2ω
r1 − r2

)
e−

τ(3A2+6Ak2+3k21+3k22+2r1)

4r1+2
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B0(τ) =

(
k2ω − k1r1
r1 − r2

)
e−

τ(3A2+6Ak2+3k21+3k22+2r2)

4r2+2

These are the functions which avoid secular terms in the O(q̂) equation, =⇒ z1(t, τ) is
bounded, so our approximation of z(t) = z̃(t, τ) = [z0(t, τ) + q̂z1(t, τ) + q̂2z2(t, τ) + ...] is,

z(t) = z0(t, τ) +O(q̂)

Below we plot the initial incoming wave and the reflected wave, i.e., u(x, 0) and z0(t, τ)
respectively. We consider three sample p̂ values such that p̂i <

1
4 . We also consider the

effect of ω on the amplitudes of the oscillations for q̂ = 0.00001.

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 4: When q̂ = 0.00001

5.5 Case 2 of leading order equation

Now we consider Case 2 of the leading order equation, i.e., O(1). In Case 2, the solution of
the ODE takes the form,

z0,C(t, τ) = A0(τ)ert +B0(τ)tert

In order to find the constants invloved above, we need to solve for z0(t, τ) using the initial
conditions z(0, 0) = 0 and z′(0, 0) = −Aω.

z0(t, τ) = A0(τ)ert +B0(τ)tert +

[
−2Aω(ω2 − p̂)
ω2 + (ω2 − p̂)2

]
cos(ωt) +

[
A(ω2 − (ω2 − p̂)2)

ω2 + (ω2 − p̂)2

]
sin(ωt)

For convenience, lets write z0(t, τ) as,

z0(t, τ) = A0(τ)ert +B0(τ)tert + k1cos(ωt) + k2sin(ωt) (32)

When t = 0 =⇒ τ = 0,

z0(0, 0) = A0 + 0 + k1 = 0

z′0(0, 0) = A0r +B0 + k2ω = 0

15



From the first condition, we see that A0(0, 0) = −k1. Substituting this in the second
condition we get that,

B0(0, 0) = (k1r − k2ω)

{
A0(0, 0) = −k1
B0(0, 0) = (k1r − k2ω)

(33)

We have now obtained the initial conditions for the case 2 constants. Next, we must consider
the O(q̂) equation.

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

+ p̂z1 + 2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 = −h′(t)− h3(t)

O(q̂) : z′′1 + z′1 + p̂z1 =

(
− 2

∂2z0
∂t∂τ

− ∂z0
∂τ
− ∂z0

∂t
− z30 − 3h2(t)z0 − 3h(t)z20 − h′(t)− h3(t)

)

We proceed in the same way as for Case 1 and try to eliminate the secular terms present in,

O(q̂) : z′′1 + z′1 + p̂z1 = −

(
2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 + h′(t) + h3(t)

)

Upon examining each of the terms on the RHS of the O(q̂) equation and collecting the
coefficients of ert and tert and equating them to zero, we get the expressions,



(
dA0

dτ = 0(
2dB0

dτ = −B0 − (c1 − 1
2 )A0

(34)

where, c1 =
3(A+k2)

2+3k21
2 .

The system in (34) does not have unique equilibrium points. When c1 = 1/2, we get
infinitely many equilibrium points along the A0 axis with the phase lines directed towards the
equilibrium points, implying stability. When c1 > 1/2, we get infinitely many equilibrium
points along an oblique axis with a decreasing slope and the phase lines imply stability.
When c1 < 1/2, we again get infinitely many equilibrium points along an oblique axis with
an increasing slope with phase lines implying stability. The behaviour is shown below.
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(a) c1 = 1/2 (b) c1 > 1/2 (c) c1 < 1/2

Figure 5: Bifurcations of the system- Case 2 leading order

When we solve (34) using (33), we get,

A0(τ) = −k1

B0(τ) =
1

2
e−τ/2

[
k1

(
3A2(eτ/2 − 1) + 6Ak2(eτ/2 − 1) + (3k22 − 1)

eτ/2 − 3k22 + 2r + 1

)
+ 3k31(eτ/2 − 1)− 2k2ω)

]

These are the functions which avoid secular terms in the O(q̂) equation, =⇒ z1(t, τ) is
bounded, so our approximation of z(t) = z̃(t, τ) = [z0(t, τ) + q̂z1(t, τ) + q̂2z2(t, τ) + ...] is,

z(t) = z0(t, τ) +O(q̂)

We have the plots of our initial wave Asin(ωt) and our reflected wave z0(t, τ) for different
values of ω and p̂ = 1/4.

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 6: When q̂ = 0.00001
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5.6 Case 3 of the leading order equation

Now we consider Case 3 of the leading order equation, i.e., O(1) . In Case 3, the solution of
the ODE takes the form,

z0,C(t, τ) = A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt)

In order to find the constants involved, we need to solve for z0(t, τ) using the initial conditions
z0(0, 0) = 0 and ∂z0

∂t (0, 0) = 0.

z0(t, τ) = A0(τ)eλtcos(µt)+B0(τ)eλtsin(µt)+

[
−2Aω(ω2 − p̂)
ω2 + (ω2 − p̂)2

]
cos(ωt)+

[
A(ω2 − (ω2 − p̂)2)

ω2 + (ω2 − p̂)2

]
sin(ωt)

For convenience, lets write z0(t, τ) as,

z0(t, τ) = A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt) + k1cos(ωt) + k2sin(ωt) (35)

When t = 0 =⇒ τ = 0,

z0(0, 0) = A0 + k1 = 0 =⇒ A0(0) = −k1

z′0(0, 0) = A0λ+B0µ+ k2ω = 0

From the first condition, A0(0) = −k1. Putting this value in the second condition,

B0µ− k1λ+ k2ω = 0 =⇒ B0(0) =

(
k1λ− k2ω

µ

)


A0(0) = −k1

B0(0) =

(
k1λ−k2ω

µ

)
(36)

We have now obtained the initial conditions for the case 3 constants. Next, we must consider
the O(q̂) equation.

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

+ p̂z1 + 2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 = −h′(t)− h3(t)

O(q̂) : z′′1 + z′1 + p̂z1 =

(
− 2

∂2z0
∂t∂τ

− ∂z0
∂τ
− ∂z0

∂t
− z30 − 3h2(t)z0 − 3h(t)z20 − h′(t)− h3(t)

)

We proceed in the same way as for Case1 and try to eliminate the secular terms present in,

O(q̂) : z′′1 + z′1 + p̂z1 = −

(
2
∂2z0
∂t∂τ

+
∂z0
∂τ

+
∂z0
∂t

+ z30 + 3h2(t)z0 + 3h(t)z20 + h′(t) + h3(t)

)
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Upon examining each of the terms on the RHS of the O(q̂) equation and collecting the
coefficients of eλtcos(µt) and eλtsin(µt) and equating them to zero, we get the expressions,



(
2dA0

dτ = −A0 +B0(
c1− 1

2

µ )(
2dB0

dτ = −B0 −A0(
c1− 1

2

µ )

(37)

where c1 =
3(A+k2)

2+3k21
2 ≥ 0.

The system in (37) has a unique equilibrium at (A0, B0) = (0, 0).When c1 = 1/2, we get a
stable node at (0, 0). If c1 6= 1/2, we get a spiral sink at the point (0, 0). This is consistent
with the fact that the system has complex eigenvalues with negative real parts.

(a) Low omega, c1 = 1/2 (b) c1 6= 1/2

Figure 7: Bifurcations of the system - Case 3 leading order

We solve (37) using (36), we get complex roots and the solutions of the system of linear
ODEs are given below,

A0(τ) = −k1e−τ cos(

√√√√(c1 − 1
2

µ

)2

τ)

B0(τ) =
(k1λ− k2ω)

µ
e−τ cos(

√√√√(c1 − 1
2

µ

)2

τ)

These are the functions which avoid secular terms in the O(q̂) equation, =⇒ z1(t, τ) is
bounded, so our approximation of z(t) = z̃(t, τ) = [z0(t, τ) + q̂z1(t, τ) + q̂2z2(t, τ) + ...] is,
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z(t) = z0(t, τ) +O(q̂)

We have the plots of our initial wave Asin(ωt) and our reflected wave z0(t, τ) for different
values of ω. We take three sample p̂ values such that p̂i > 1/4.

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 8: When q̂ = 0.00001

5.7 Special p̂ values

During the course of the research conducted in the previous section, we find that there is a
possibility of obtaining additional secular terms for specific values of p̂ in each of the intervals
in Case 1 of the leading order equation and Case 3 of the leading order equation.

Let us first consider equation (30). We examine each of the terms present on the RHS of
the equation. The term z30 has a few possibilities.

Consider,

z30 = [A0(τ)er1t +B0(τ)er2t + k1cos(ωt) + k2sin(ωt)]3

This can also be written as,

z30 =

[
(A0(τ)er1t +B0(τ)er2t)3 + (k1cos(ωt) + k2sin(ωt))3

+3(A0(τ)er1t+B0(τ)er2t)2(k1cos(ωt)+k2sin(ωt))+3(A0(τ)er1t+B0(τ)er2t)(k1cos(ωt)+k2sin(ωt))2

]

The second and third terms do not prodeuce any secular terms and the last term has already
been included in our leading order case. The first term can be expanded as follows,

(A0(τ)er1t +B0(τ)er2t)3 = A3
0e

3r1t +B3
0e

3r2t + 3A2
0B0e

(2r1+r2)t + 3A0B
2
0e

(r1+2r2)t

This term can produce additional secular terms if 3r1 = r1 or 3r1 = r2 or 3r2 = r2 or
3r2 = r1 or 2r1 + r2 = r1 or 2r1 + r2 = r2 or r1 + 2r2 = r1 or r1 + 2r2 = r2.

Given that, r1 = −1+
√
1−4p̂

2 , r2 = −1−
√
1−4p̂

2 . We substitute these r1 and r2 values to find
that at p̂ = 0 and at p̂ = 3

16 we get additional secular terms. This implies that we need to
analyse these special cases separately to get a better understanding of our system.
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For Case 3 of the leading order equation, we again find that the z30 term on the RHS of
equation (30) has a possibility for additional secular terms.

Consider,

z30 = (A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt) + k1cos(ωt) + k2sin(ωt))3

In this expansion we consider the term 3(A0(τ)eλtcos(µt) + B0(τ)eλtsin(µt))(k1cos(ωt) +
k2sin(ωt))2. This can be expanded further as,

(A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt))

(
k21 + k22

2
+
k21 − k22

2
cos(2ωt) + k1k2sin(2ωt)

)
We see that in addition to the secular terms that have already been obtained we also get
terms like,

k21 − k22
4

A0e
λt

(
cos(µ+ 2ω)t+ cos(µ− 2ω)t

)
This can result in additional secular terms if cos(µ+ 2ω)t = cos(µ)t. This can happen only
if ω = 0 or ω = ±µ. However, ω is the frequency and it should always be positive. Hence,
µ = ±ω.

Given that µ =
√
4p̂−1
2 , we have that p̂ = 1+4ω2

4 .

Therefore,
For Case 1 of the leading order equation :

p̂ = 0

p̂ =
3

16

For Case 2 of the leading order equation : There are no special cases, as p̂ already take a
specific value.

For Case 3 of the leading order equation :

p̂ =
1 + 4ω2

4

5.7.1 When p̂ = 0

First we consider the following case,

– When p̂ = 0

In the case 1 of (27), we have r1 and r2, given by, r1 = −1+
√
1−4p̂

2 , r2 = −1−
√
1−4p̂

2 .

When p̂ = 0, r1 = 0 and r2 = −1. Putting this into the equation for z0(t, τ), we get,

z0(t, τ) = A0(τ) +B0(τ)e−t + k1cos(ωt) + k2sint(ωt)

When t = 0 and τ = 0, we have, z0(0, 0) = 0 and ∂z0
∂t (0, 0) = 0. This gives us the initial

conditions,
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{
A0(0) = −k1 − k2ω
B0(0) = k2ω

(38)

For this case we need to find and eliminate the secular terms. We do so by considering
(23).

O(q̂) : z′′1 +z′1 + p̂z1 =

(
−2

∂2z0
∂t∂τ

− ∂z0
∂τ
− ∂z0

∂t
−z30−3h2(t)z0−3h(t)z20−h′(t)−h3(t)

)

We calculate each of the terms present in the RHS and collect the coefficients of the
functions e0t = 1 and e−t.

∗ 2 ∂
2z0
∂t∂τ = ( 2∂B0

∂τ )e−t +N.S.T

∗ ∂z0
∂τ = ∂A0

∂τ + ∂B0

∂τ e
−t +N.S.T

∗ ∂z0
∂t = B0e

−t +N.S.T

∗ z30 = (A3
0 +

3A0k
2
1

2 +
3A0k

2
2

2 ) + (3A2
0B0 +

3B0k
2
1

2 +
3B0k

2
2

2 )e−t +N.S.T

∗ 3A2sin2(ωt)z0 = ( 3A2A0

2 ) + ( 3A2B0

2 )e−t +N.S.T

∗ 3Asin(ωt)z20 = (3Ak2A0) + (3Ak2B0)e−t +N.S.T

∗ h′(t) and h3(t) are Non secular terms.

The coefficients of e0t and e−t need to be equated to zero. So we have,[
dA0

dτ
+A0(C +A2

0)

]
= 0

[
dB0

dτ
+B0(1− C − 3A2

0)

]
= 0

where, C = (
3(A+k2)

2+3k21
2 ) =⇒ C > 0.

We can convert the above equations into a system of nonlinear ODEs as below,

{
dA0

dτ = −A0(C +A2
0) = F,

dB0

dτ = −B0(1− C − 3A2
0) = G

(39)

When −A0(C + A2
0) = 0 =⇒ A0 = 0. When A0 = 0, from ∂B0

∂τ = 0, we have
B0 = 0 or C = 1. When C 6= 1 and C > 0, the system has one equilibrium point
(A0, B0) = (0, 0). We need to linearise (39). We have to calculate the Jacobian of the
system to linearise it.

J =

( ∂F∂A0
) ( ∂F∂B0

)

( ∂G∂A0
) ( ∂G∂B0

)


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J[0,0] =

−C 0

0 C − 1


When C 6= 1 and C > 0, the system reduces to,

[
dA0

dτ
dB0

dτ

]
=

[
−C 0
0 C − 1

] [
A0

B0

]
(40)

We observe that the eigenvalues of (40) are −C and C − 1.
When 0 < C < 1, both the eigenvalues are negative =⇒ λ1 < 0, λ2 < 0. This means
we obtain an attractor stable node at (A0, B0) = (0, 0) for the linearised system.
When perturbed, the stability of this node does not change for the nonlinear system,
it is stable even for the nonlinear system.
When C > 1, we observe that the eigenvalues ar eof opposite signs, i.e., λ1 < 0, λ2 > 0.
This would give us an unstable saddle at (A0, B0) = (0, 0). This would also result in
a saddle for the nonlinear system.
When C = 1 =⇒ that we obtain a singular matrix J . Here we have λ1 < 0, λ2 = 0.
This situation leads to a scenario with infinitely many critical points along the
same direction as the second eigenvector V2 = (0, p). λ1 < 0 =⇒ that the phase
trajectories are going into the critical points and are parallel to the A0 axis. This would
result in inifinitely many sink nodes for the linear system and for the nonlinear system
it remains unchanged.

(a) When 0 < C < 1 (b) When C > 1 (c) When C = 1

Figure 9: Bifurcations of special case 1

We can obtain a closed form solution of the system in (39) using the initial conditions

in (38) as, where, a = (k1+k2ω)
2

C+(k1+k2ω)2
.

A0(τ) =

√
aCe−2Cτ

1− ae−Cτ
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B0(τ) =

(
k2ω(e−(2C+1)τ )(e2Cτ − a)

)3/2

(1− a)3/2

The reflected wave and the incoming wave are plotted using the solution for z0(t, τ).

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 10: Reflected waves- Special case 1 and q̂ = 0.00001

5.7.2 When p̂ = 3
16

Next we consider the following case,

– When p̂ = 3
16

In the case 1 solution of the O(1) equation, we have r1 and r2, given by, r1 = −1+
√
1−4p̂

2 ,

r2 = −1−
√
1−4p̂

2 .

When p̂ = 3
16 , r1 = −1

4 and r2 = −3
4 . Putting this into the equation for z0(t, τ), we get,

z0(t, τ) = A0(τ)e−t/4 +B0(τ)e−3t/4 + k1cos(ωt) + k2sint(ωt)

When t = 0 and τ = 0, the initial conditions are given by,

{
A0(0) = − 3k1+4k2ω

2

B0(0) = k1+4k2ω
2

(41)

For this case we need to find and eliminate the secular terms. We do so by considering
the O(q̂) equation.

O(q̂) : z′′1 +z′1 + p̂z1 =

(
−2

∂2z0
∂t∂τ

− ∂z0
∂τ
− ∂z0

∂t
−z30−3h2(t)z0−3h(t)z20−h′(t)−h3(t)

)

We calculate each of the terms present in the RHS and collect the coefficients of the
functions e−t/4 and e−3t/4.

∗ 2 ∂
2z0
∂t∂τ = (−12

∂A0

∂τ )e−t/4(−32
∂B0

∂τ )e−3t/4 +N.S.T

∗ ∂z0
∂τ = ∂A0

∂τ e
−t/4 + ∂B0

∂τ e
−3t/4 +N.S.T
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∗ ∂z0
∂t = (−1A0

4 )e−t/4 + (−3B0

4 )e−3t/4 +N.S.T

∗ z30 = (
3A0k

2
1

2 +
3A0k

2
2

2 )e−t/4 + (
3B0k

2
1

2 +
3B0k

2
2

2 +A3
0)e−3t/4 +N.S.T

∗ 3A2sin2(ωt)z0 = ( 3A2A0

2 )e−t/4 + ( 3A2B0

2 )e−3t/4 +N.S.T

∗ 3Asin(ωt)z20 = (3Ak2A0)e−t/4 + (3Ak2B0)e−3t/4 +N.S.T

∗ h′(t) and h3(t) are Non secular terms.

The coefficients of e−t/4 and e−3t/4 need to be equated to zero. We get the following
expressions, [

dA0

dτ
+A0(C − 1

2
)

]
= 0

[
dB0

dτ
−B0(C − 3

2
)− 2A3

0

]
= 0

where, C = (
6(A+k2)

2+6k21
2 ) =⇒ C > 0.

We can convert the above equations into a system of nonlinear ODEs as below,

{
dA0

dτ = −A0(C − 1
2 ) = F,

dB0

dτ = B0(C − 3
2 ) + 2A3

0 = G
(42)

We have to equate F = 0. When we do so we find that A0 = 0 or C = 1
2 . When A0 = 0,

we have from G = 0, B0 = 0 or C = 3
2 . So when C 6= 1

2 and C 6= 3
2 and C > 0, the

system has one equilibrium point (A0, B0) = (0, 0). In order to analyse the stability of
this equilibrium point for various intervals of C, we need to linearise the system. We
start by calculating the Jacobian of the system as follows,

J =

( ∂F∂A0
) ( ∂F∂B0

)

( ∂G∂A0
) ( ∂G∂B0

)



J[0,0] =

( 1
2 − C) 0

0 (C − 3
2 )


When C 6= 1

2 and C 6= 3
2 C > 0, the system reduces to,

[
dA0

dτ
dB0

dτ

]
=

[
( 1
2 − C) 0

0 (C − 3
2 )

] [
A0

B0

]
(43)

We observe that the eigenvalues of (43) are λ1 = ( 1
2 − C) and λ2 = (C − 3

2 ).

When 0 < C < 1
2 , we have that λ1 > 0 and λ2 < 0. This means that we obtain an

unstable saddle at (A0, B0) = (0, 0) for the linearised system. This means that when
perturbed slightly, it remains a saddle point for the nonlinear system as well.
When 1

2 < C < 3
2 , we have that λ1 < 0 and λ2 < 0. This means we obtain an attractor

or sink at (A0, B0) = (0, 0) for the linearised system. When perturbed, it will continue
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to be a stable node for the nonlinear system.
When C > 3

2 , we obtain λ1 < 0 and λ2 > 0. This =⇒ that we get an unstable
saddle point at (A0, B0) = (0, 0) for the linearised system. This continues to be an
unstable saddle when perturbed for the nonlinear system.
When C = 1

2 , we obtain a singular matrix J . Here λ1 = 0 and λ2 < 0. This means
that we obtain infinitely many equilibrium points along the direction of the
eigenvector V1 of the form (A0, B0) = (p, 0). Since λ2 < 0, the phase trajectories
are directed towards the equlibrium points and are parallel to the B0 axis. We get
stable nodes for the linearised and the nonlinear system as well.
When C = 3

2 , we obtain a singular matrix J . Here λ1 < 0 and λ2 = 0. This means
that we obtain infinitely many equilibrium points along the direction of the
eigenvector V2 of the form (A0, B0) = (0, p). Since λ1 < 0, the phase trajectories
are directed towards the equlibrium points and are parallel to the A0 axis. We get
stable nodes for the linearised and the nonlinear system as well.

(a) When 0 < C < 1
2

(b) When 1
2
C < 3

2
(c) When C > 3

2

Figure 11

(a) When C = 1/2 (b) When C = 3/2

Figure 12: Bifurcations of special case 2

We solve the system in (42) using the initial conditions in (41), we get the following
solution,
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A0(τ) = −3k1 + 4k2ω

2
eτ/2−Cτ

B0(τ) =
e(C−3/2)τ

(4(4C − 3))

(
2k1

(
72k22ω

2(e(3−4C)τ − 1) + 4C − 3

)

+8k2ω

(
8k22ω

2(e(3−4C)τ−1)+4C−3

)
+108k2k

2
1ω(e(3−4C)τ−1)+27k31(e(3−4C)τ−1)

)

We can now plot the solution,i.e., the reflected waves and the incoming waves,

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 13: Reflected waves- Special case 2 and q̂ = 0.00001

5.7.3 When p̂ = ( 1+4ω2

4 )

This case arises as a special p̂ value for Case 3. We have that,

z0(t, τ) = A0(τ)eλtcos(µt) +B0(τ)eλtsin(µt) + k1cos(ωt) + k2sin(ωt) (44)

where λ = −1
2 and µ =

√
4p̂−1
2

Substituting the special p̂ value into µ, we get that µ = ±ω.

• When µ = ω

We substitute µ = ω into the z0(t, τ) to obtain,

z0(t, τ) = A0(τ)e−t/2cos(ωt) +B0(τ)e−t/2sin(ωt) + k1cos(ωt) + k2sin(ωt)

The initial codnitions are given by,

{
A0(0) = −k1
B0(0) = −k1+2k2ω

2ω

(45)

Using this z0(t, τ), we compute the RHS of the O(ε) equation as follows, where N.S.T stands
for non-secular terms,
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∂z0
∂t

= (
−A0

2
+B0µ)e−t/2cos(ωt) + (−A0µ−

−B0

2
)e−t/2sin(ωt) +N.S.T

∂z0
∂τ

= (
dA0

dτ
)e−t/2cos(ωt) + (

dB0

dτ
)e−t/2sin(ωt)

2
∂2z0
∂t∂τ

= (
−dA0

dτ
+ 2µ

dB0

dτ
)e−t/2cos(ωt) + (−2µ

−dA0

dτ
+
−dB0

dτ
)e−t/2sin(ωt) +N.S.T

3hz20 = (
3AB0k1

2
+3AA0k2−

3AA0k2
2

)e−t/2cos(ωt)+(
3AA0k1

2
+3AB0k2+

3AB0k2
2

)e−t/2sin(ωt)+N.S.T

3h2z0 = (
3A2A0

2
− 3A2A0

4
)e−t/2cos(ωt) + (

3A2B0

2
+

3A2B0

4
)e−t/2sin(ωt) +N.S.T

z30 = (
3A0(k21 + k22)

2
+

3A0(k21 − k22)

4
+

3B0k1k2
2

)e−t/2cos(ωt)+

(
3B0(k21 + k22)

2
− 3B0(k21 − k22)

4
+

3A0k1k2
2

)e−t/2sin(ωt)

Collecting all the coefficients of e−t/2cos(ωt) and e−t/2sin(ωt), we get the following system,

{
2ω dA0

dτ = A0(c1 − ω) +B0(3c2 + c3 − 1
2 ) = F,

2ω dB0

dτ = −A0(c2 + 3c3 − 1
2 )−B0(c1 + ω) = G

(46)

Here, c1 = 3
2 (Ak1 + k1k2), c2 = 3

4 (A + k2)2 and c3 = 3
4k

2
1. The equilibrium point is

(A0, B0) = (0, 0).

We need to compute the characteristic equation of (46). Doing so will help us compute the
eigenvalues of the system. Depending on the eigenvalues, we can determine the stability of
the phase trajectories as t tends to infinity.

The characteristic equation is computed by, |J − λI| = 0, where J is the Jacobian of the
system and λ is the eigenvalues of the system.

|J − λI| = 0∣∣∣∣∣∣
(c1 − ω − λ) (3c2 + c3 − 1

2 )

(−c2 − 3c3 + 1
2 ) (−c1 − ω − λ)

∣∣∣∣∣∣ = 0

Upon calculating the determinant, we get the following quadratic characteristic equation. When
we solve the equation below for λ, we obtain the two eigenvalues of the system.

λ2 + 2ωλ+

(
ω2 + 3(c2 + c3)2 − 2(c2 + c3) +

1

4

)
= 0 (47)

28



The roots of this equation are:

λ1,2 = −ω ±
√

2(c2 + c3)− 3(c2 + c3)2 − 1

4

=⇒ λ1,2 = −ω ± i
√
Q0 (48)

Given the constraints of our physical system, i.e., ω > 0 and A > 0,and the fact that the values
of k1, k2 and c1, c2, c3 are dependent on ω and A. We find that Q0 always takes negative values,
which leads to complex conjugate eigenvalues, which would result in a spiral sink always as the
real part of our eigenvalues is negative.

Figure 14: System leads to spiral sinks

• When µ = −ω
When we plug in µ = −ω into (44), we get the same system as the case where µ = ω. The
inferences concerning stability also remain the same.

If we solve the system (46) using the initial conditions in (45), we get the following solutions,
where a = c1 − ω and b = (3c2 + c3 − 1/2)

A0(τ) = −e−ωτ
(
k1cos(

√
Qot) +

√
Q0

b
sin(

√
Q0t)

)

B0(τ) = −e−ωτ
(
k1 + 2k2ω

2ω
cos(

√
Qot)−

a+ ω

b
sin(

√
Q0t)

)

We can now plot the incoming and reflected wave as follows,
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(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 15: Reflected waves- Special case 3 and q̂ = 0.00001

5.8 Detuning

Next we move on to the process of detuning. Detuning is the process by which a small perturbation
is induced to the special p̂ value to observe if that perturbation impacts its stability.

p̂ = pcritical + δq̂

We will consider the following cases :

• p̂ = 0 + δq̂

• p̂ = 3
16 + δq̂

• p̂ = ( 1+4ω2

4 ) + δq̂

5.8.1 Case 1 : p̂ = 0 + δq̂

Firstly, we consider the the special value p̂ = 0. We perturb p̂ = 0 by a small value δq̂ where q̂ is
a very small quantity and δ is an O(1) constant.

We want to analyse the effect of this perturbation on our solution. In order to do that, we
need to substitute p̂ = 0 + δq̂ in the Boundary condition in (8).

We get,

utt = ux − δq̂u− q̂(ut + u3) (49)

We know that u(x, t) = h(x+ t) + z(t− x). Substituting this in (49), we get,

h′′ + z′′ = h′ − z′ − δq̂h− δq̂z − q̂h′ − q̂z′ − q̂(h3 + z3 + 3h2z + 3hz2)

z′′ + z′ + δq̂z + q̂z′ + q̂(z3 + 3h2z + 3hz2) = h′ − h′′ − δq̂h− q̂h′ − q̂h3

Upon using the expansion z = z0(t, τ) + z1(t, τ) + ..., we get,

O(1) :
∂2z0
∂t2

+
∂z0
∂t

= h′ − h′′

z0(t, τ) = A0(τ) +B0(τ)e−t + k1cosωt+ k2sinωt

where k1 = −2Aω
1+ω2 and k2 = A(1−ω2)

1+ω2

The initial conditions are given by,
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{
A0(0) = −k1
B0(0) = k2ω

(50)

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

=

(
−2∂2z0
∂t∂τ

− ∂z0
∂τ
− δz0 −

∂z0
∂t
− z30 − 3h2z0 − 3hz20 − δh′ − h′ − h3

)

• ∂z0
∂t = −B0(τ)e−t +N.S.T

• δz0 = δA0 + δB0e
−t +N.S.T

• ∂z0
∂τ = dA0

dτ + dB0

dτ e
−t

• 2∂2z0
∂t∂τ = −2dB0

dτ e−t

• z30 = A3
0 + (3A2

0B0)e−t +
3(k21+k

2
2)

2 (A0 +B0e
−t) +N.S.T

• 3h2z0 = 3A2

2 (A0 +B0e
−t +N.S.T

• 3hz20 = 3Ak2(A0 +B0e
−t) +N.S.T

We want to eliminate the secular terms, so we collect the coefficients of 1 and e−t and equate
them to zero to obtain a system of ODEs.[

B0 − δB0 −
dB0

dτ
+

2dB0

dτ
− 3A2

0B0 −
3(k21 + k22)

2
B0 −

3A2

2
B0 − 3Ak2B0

]
= 0

[
− δA0 −

dA0

dτ
−A3

0 −
3(k21 + k22)

2
A0 −

3A2

2
A0 − 3Ak2A0

]
= 0

We obtain the following system of ODEs,

{
dA0

dτ = A0(−c1 −A2
0 − δ),

dB0

dτ = B0(c1 + 3A2
0 + δ − 1)

(51)

where, c1 =
3(A+k2)

2+3k21
2 ≥ 0

In order to analyse the stability of our O(1) solution, we need to analyse how the eigenvalues
of (51) behave around the equilibrium point (A0, B0) = (0, 0). We also see that when A0 = 0 =⇒
B0 = 0 or c1 = 1− δ.

J =

∣∣∣∣∣∣
−(c1 + δ) 0

0 (c1 + δ)− 1

∣∣∣∣∣∣
(i) When c1 = (1−δ) =⇒ c1+δ = 1, λ1 < 0 and λ2 = 0. This means we obtain infinitely many

equilibrium points along the B0 axis with each of the equilibrium points being an attractor(stable).
(ii) When c1 > (1− δ) =⇒ c1 + δ > 1, we get λ1 < 0 and λ2 > 0. This gives us a saddle for the
linearised system and a saddle for the nonlinear system as well.
(iii) When 0 < c1 +δ < 1, λ1 < 0 and λ2 < 0. This leads to a stable node for the linearised system
and it is asymptotically stable for the nonlinear system.
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(a) c1 + δ = 1 (b) c1 + δ > 1 (c) 0 < c1 + δ < 1

Figure 16: Bifurcations of the system- Case 1 detuned system.

We solve the system in (51) using the initial conditions in (50), to get,

A0(τ) =

√
(c1 + δ)k21e

−2(c1+δ)τ

(c1 + δ) + k21(1− e−2(c1+δ)τ )

B0(τ) = k2ωe
−τ(2c1+2δ+1)

(
(c1 + δ)e2τ(c1+δ) + k21(e2τ(c1+δ) − 1)

c1 + δ

)3/2

We plot the reflected wave and the initial wave for a low and high omega and q̂ = 0.01 below,

(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 17: Reflected waves- Case 1 detuned system and q̂ = 0.00001

5.8.2 Case 2 : p̂ = 3
16 + δq̂

Next, we consider the the special value p̂ = 3
16 . We perturb p̂ = 3

16 by a small value δq̂ where q̂ is
a very small quantity and δ is an O(1) constant.

We want to analyse the effect of this perturbation on our solution. In order to do that, we
need to substitute p̂ = 3

16 + δq̂ in the Boundary condition in (8).

We get,
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utt = ux −
3

16
u− δq̂u− q̂(ut + u3) (52)

We know that u(x, t) = h(x+ t) + z(t− x). Substituting this in (52), we get,

h′′ + z′′ = h′ − z′ − 3

16
h− 3

16
z − δq̂h− δq̂z − q̂h′ − q̂z′ − q̂(h3 + z3 + 3h2z + 3hz2)

z′′ + z′ +
3

16
z + δq̂z + q̂z′ + q̂(z3 + 3h2z + 3hz2) = h′ − h′′ − 3

16
h− δq̂h− q̂h′ − q̂h3

Upon using the expansion z = z0(t, τ) + z1(t, τ) + ..., we get,

O(1) : z′′0 + z′0 +
3

16
z0 = h′ − h′′ − 3

16
h

z0(t, τ) = A0(τ)e−t/4 +B0(τ)e−3t/4 + k1cosωt+ k2sinωt

where k1 =

(
2(Aω2− 3A

16 )
3
8−(

3
16 )

2 1
ω−ω3

)
and k2 =

(
A+

512(Aω2− 3A
16 )

96ω−9−256ω4

)
The initial conditions are given by,

{
A0(0) = − 3k1+4k2ω

2

B0(0) = k1+4k2ω
2

(53)

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

+
3

16
z1 =

(
−2∂2z0
∂t∂τ

− ∂z0
∂τ
− δz0 −

∂z0
∂t
− z30 − 3h2z0 − 3hz20 − δh′ − h′ − h3

)

• ∂z0
∂t = −A0

4 e−t/4 − 3B0

4 e−3t/4 +N.S.T

• δz0 = δA0e
−t/4 + δB0e

−3t/4 +N.S.T

• ∂z0
∂τ = dA0

dτ e
−t/4 + dB0

dτ e
−3t/4

• 2∂2z0
∂t∂τ = − 1dA0

2dτ e
−t/4 − 3dB0

2dτ e
−3t/4

• z30 =
3(k21+k

2
2)

2 (A0e
−t/4 +B0e

−3t/4) +N.S.T

• 3h2z0 = 3A2

2 (A0e
−t/4 +B0e

−3t/4 +N.S.T

• 3hz20 = 3Ak2(A0e
−t/4 +B0e

−3t/4) +N.S.T

We want to eliminate the secular terms, so we collect the coefficients of e−t/4 and e−3t/4 and
equate them to zero to obtain a system of ODEs.[

A0

4
− δA0 −

1

2

dA0

dτ
− 3(A+ k2)2 − 3k21

2
A0 −

3A2A0

2
− 3Ak2A0

]
= 0

[
3B0

4
− δB0 +

1

2

dB0

dτ
− 3(A+ k2)2 − 3k21

2
B0 −

3A2B0

2
− 3Ak2B0

]
= 0

We obtain the following system of ODEs,
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
1dA0

2dτ = A0(−(c1 + δ)− 1
4 ),

1dB0

2dτ = B0((c1 + δ)− 3
4 )

(54)

where, c1 =
3(A+k2)

2+3k21
2 ≥ 0.

We solve the system in (54) using the initial conditions in (53), to get,

A0(τ) = −4k2ω + 3k1
2

e−
τ
2 (4c1+4δ+1)

B0(τ) =
4k2ω + k1

2
e−

τ
2 (3−4c1−4δ)

This system has an equilibrium point when c1 6= −1
4 , c1 6= 3

4 , i.e., (A0, B0) = (0, 0).
(i) When c1 + δ = −1

4 , λ1 = 0 and λ2 < 0. We get infinitely many equilibrium points along
the A0 axis with phase lines pointing towards a stable node at each of these equilibria.
(ii) When c1 + δ = 3

4 , λ1 < 0 and λ2 = 0. We get infinitely many equilibrium points along the B0

axis with phase lines pointing towards a stable node at each of these equilibria.
(iii) When −14 < c1 + δ < 3

4 , λ1 < 0 and λ2 < 0. This leads to a stable node for the linear system
of ODEs we have obtained.
(iv) When c1 + δ > 3

4 , λ1 < 0 and λ2 > 0. This leads to a saddle at the equilibrium point.
(v) When c1 + δ < −1

4 , λ > 0 and λ2 < 0. This leads to a saddle for the linear system of ODEs
at the equilibrium point.
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(a) c1 + δ = −1/4 (b) c1 + δ = 3/4 (c) −1/4 < c1 + δ < 3/4

(d) c1 + δ > 3/4

Figure 18: Bifurcations of the system- Case 2 detuned system

Figure 19: c1 + δ < −1/4

Next, we plot our initial and reflected wave,similar to the previous cases,
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(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 20: Reflected waves- Case 2 detuned system and q̂ = 0.00001

5.8.3 Case 3: p̂ = ( 1+4ω2

4 ) + δq̂

Next, we consider the the special value p̂ =

(
1
4 +ω2 + δq̂

)
. We perturb p̂ =

(
1
4 +ω2

)
by a small

value δq̂ where q̂ is a very small quantity and δ is an O(1) constant.
We want to analyse the effect of this perturbation on our solution. In order to do that, we

need to substitute p̂ =

(
1
4 + ω2 + δq̂

)
in the Boundary condition in (8).

We get,

utt = ux −
1

4
u− ω2u− δq̂u− q̂(ut + u3) (55)

We know that u(x, t) = h(x+ t) + z(t− x). Substituting this in (55), we get,

h′′ + z′′ = h′ − z′ − h

4
− z

4
− ω2h− ω2z − q̂δh− q̂δz − q̂h′ − q̂z′ − q̂(h3 + z3 + 3h2z + 3hz2)

z′′ + z′ +
z

4
+ ω2z + q̂(δz + z′ + z3 + 3h2z + 3hz2) = h′ − h′′ − h

4
− ω2h− q̂(δh+ h′ + h3)

Upon substitution of the expansion z = z0(t, τ) + q̂z1(t, τ) + ..., we get,

O(1) :
∂2z0
∂t2

+
∂z0
∂t

+ (
1

4
+ ω2)z0 = h′ − h′′ − h

4

=⇒ r2 + r + (
1

4
+ ω2) = 0 =⇒ r1,2 =

−1± 2iω

2

=⇒ z0(t, τ) = A0(τ)e−t/2cosωt+B0(τ)e−t/2sinωt+ k1cosωt+ k2sinωt

where, k1 = 4Aω2−4Aω3+2Aω
1
4+4ω2 and k2 =

5Aω2−A4 −Aω
1
4+4ω2 .

The initial conditions are given by,{
A0(0) = 2(k2ω−k1ω)

2ω+1

B0(0) = − (k1+2k2ω)
2ω+1

(56)

O(q̂) :
∂2z1
∂t2

+
∂z1
∂t

+(
1

4
+ω2)z1 =

(
−2∂2z0
∂t∂τ

− ∂z0
∂τ
−δz0−

∂z0
∂t
−z30−3h2z0−3hz20−δh′−h′−h3

)
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• ∂z0
∂t = (−A0

2 +B0ω)e−t/2cosωt+ (−B0

2 −A0ω)e−t/2sinωt+N.S.T

• δz0 = (δA0)e−t/2cosωt+ (δB0)e−t/2sinωt+N.S.T

• ∂z0
∂τ = (dA0

dτ )e−t/2cosωt+ (dB0

dτ )e−t/2sinωt

• 2∂2z0
∂t∂τ = (−dA0

dτ + 2ω dB0

dτ )e−t/2cosωt+ (−dB0

dτ − 2ω dA0

dτ )e−t/2sinωt

• z30 =

(
3(k21+k

2
2)

2 A0+
3(k21−k

2
2)

4 A0+ 3k1k2
2 A0

)
e−t/2cosωt+

(
3(k21+k

2
2)

2 B0+
3(k21−k

2
2)

4 B0− 3k1k2
2 B0

)
e−t/2sinωt+

N.S.T

• 3h2z0 = ( 3A2A0

2 − 3A2A0

4 )e−t/2cosωt+ ( 3A2B0

2 − 3A2B0

4 )e−t/2sinωt+N.S.T

• 3hz20 = (3Ak2A0 − 3Ak2A0

2 )e−t/2cosωt+ (3Ak2B0 − 3Ak2B0

2 )e−t/2sinωt+N.S.T

We would like to eliminate the secular terms, so we collect the coefficients of e−t/2cosωt and
e−t/2sinωt and equate them to zero to obtain a system of ODEs.

[
A0

2
−B0ω−δA0−2ω

dB0

dτ
−3(k21 + k22)

2
A0−

3(k21 − k22)

4
A0−

3k1k2
2

A0−
3A2A0

2
+

3A2A0

4
−3Ak2A0+

3Ak2A0

2

]
= 0

[
B0

2
+A0ω−δB0+2ω

dA0

dτ
−3(k21 + k22)

2
B0−

3(k21 − k22)

4
B0+

3k1k2
2

B0−
3A2B0

2
+

3A2B0

4
−3Ak2B0+

3Ak2B0

2

]
= 0

We obtain the following system of ODEs,


2ω dA0

dτ = A0(−ω) +B0(c1 − c2 + δ − 1
2 ),

2ω dB0

dτ = B0(−ω)−A0(c1 + c2 + δ − 1
2 )

(57)

where, c1 =
3(A+k2)

2+9k21
4 and c2 = 3k1k2

2 .

J =

∣∣∣∣∣∣
−(1/2) (c1 − c2 + δ − 1

2 )/2ω

(−c1 − c2 − δ + 1
2 )/2ω −(1/2)

∣∣∣∣∣∣
We calculate the characteristic equation using |J − λI| = 0, and get,

λ1,2 = −1

2
± i
√
Q0

ω

We take a look at the system in (57). (i) When c2 + 1
2 < c1 + δ =⇒ c1 − c2 + δ − 1

2 > 0
=⇒ c1 + c2 + δ − 1

2 > 0 we get imaginary eigenvalues with a negative real part. This leads to a
stable spiral for the linear system of ODEs.
(ii) When c2+ 1

2 > c1+δ =⇒ c1−c2+δ− 1
2 < 0 which =⇒ c1+c2+δ− 1

2 < 0 or c1+c2+δ− 1
2 > 0

or c1 + c2 + δ − 1
2 = 0. In each of these cases we get the following behaviour.
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(a) c2 +
1
2
< c1 + δ (b) c1 + c2 + δ − 1

2
< 0

Figure 21

(a) c1 + c2 + δ − 1
2
> 0 (b) c1 + c2 + δ − 1

2
= 0

Figure 22: Bifurcations of Case 3 in Detuning

We can solve (57) using (56) to get,

A0(τ) =
2(k2ω − k1ω)

2ω + 1
e−τ/2cos(

√
Q0

ω
τ)

B0(τ) = −k1 + 2k2ω

2ω + 1
e−τ/2cos(

√
Q0

ω
τ)

where, Q0 = (c1 + δ) − (c1 + δ)2 + (c22 − 1
4 ). Now that we have the solutions, we plot the

incoming wave and the reflected wave for a low and high omega value.
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(a) Low omega, ω = 3 (b) High omega, ω = 50

Figure 23: Reflected waves- Case 3 detuned system and q̂ = 0.01

5.9 Energy of the system

In order to check whether the energy of the system reduces due to our system and to what extent
it reduces, we must consider the energy of the system as a whole.

Etot(t) = Estring + Espring

The energy of the string is given by the kinetic energy of the string and the potential energy
of the string. The upper limit of the integral comes from the fact that

c = λ/T

, where c is the wave speed which is c = 1 and the time period of a wave travelling with a frequency
ω is T = 2π/ω. This =⇒ that the wavelength, i.e., λ = c ∗ T , =⇒ λ = 2π/ω.

Let us first consider the energy of the string.

Estring(t) =

∫ ∞
0

1

2
(u̇(x, t)2 + u′(x, t)2)dx

We examine the rate at which the energy of the string changes,

dEstr
dt

=
d

dt

[ ∫ ∞
0

1

2
(u̇(x, t)2 + u′(x, t)2)dx

]

dEstr
dt

=

∫ ∞
0

(
ututt + uxuxt

)
dx (58)

∫ ∞
0

(uxuxt)dx = ux(∞, t)ut(∞, t)− ux(0, t)ut(0, t)−
∫ ∞
0

uxxutdx

We assume that the energy at x = ∞ is zero as our interest is only in the waves near the
boundary at x = 0. This implies that,

∫ ∞
0

(uxuxt)dx = −ux(0, t)ut(0, t)−
∫ ∞
0

uxxutdx (59)

Substituting (59) in (58), we get,

dEstr
dt

=

∫ ∞
0

ut(utt − uxx)dx− ux(0, t)ut(0, t)

From (8) we know that utt − uxx = 0, this =⇒
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dEstr
dt

= −ux(0, t)ut(0, t)

We can substitute the boundary condition in (8) in the place of ux(0, t), to get,

dEstr
dt

=

(
− ut(0, t)utt(0, t)− p̂ut(0, t)u(0, t)− q̂ut(0, t)u3(0, t)

)
− q̂u2t (0, t)

dEstr
dt

=

(
− dEspr

dt

)
−−q̂u2t (0, t)

dEtot
dt

= −q̂u2t (0, t) < 0

This implies that the energy in our system is decaying for all of our cases. The energy at time
t can be calculated using the following expression.

E(t)− E(0) = −q̂
∫ t

0

u2t (0, t) (60)

where, E(0) is the energy present in our initial wave, which is found to be E(0) = A2ωπ, where
A is the amplitude of the incoming wave and ω is the frequency of the initial wave.

The energy at t = 0 for a low value of omega, ω = 3 and a high omega, ω = 50 are given below,

(a) E(0) for low omega, ω = 3 (b) E(0) for high omega, ω = 50

Figure 24: When q̂ = 0, no damping

Now, we consider the energy decay for each of the leading order cases. For each of the intervals,
we consider sample p̂ values and plot the energy decay due to one incoming wave,i.e., the energy
between t = 0 and t = 2π

ω .

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 25: Case 1 leading order for p̂ = 1/6, 1/8, 1/12 and q̂ = 0.00001
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(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 26: Case 2 leading order for p̂ = 1/4 and q̂ = 0.00001

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 27: Case 3 leading order for p̂ = 1/3, 1, 2 and q̂ = 0.00001

Next, we consider the energy of the system in the special cases.

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 28: Case 1-special case for p̂ = 0 and q̂ = 0.00001
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(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 29: Case 2-special case for p̂ = 3
16 and q̂ = 0.00001

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 30: Case 3-special case for p̂ = 1+4ω2

4 and q̂ = 0.00001

In the special cases above, we observe that the energies drop immediately for the cases where
p̂ = 0, 3/16, which is in line with the evolution of the amplitudes given in Figure (10) and Figure
(13). In special case 3 however, we see that the energy takes longer to start reducing. At higher
frequencies, the energy stays at the same amplitude as the incident wave for a longer period of
time, before it starts decaying. Overall the energy decreases over time, consistent with what was
proved in (60).

Finally, we consider the change in energy in the Detuned cases.

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 31: Case 1-detuned case for p̂ = 0 + q̂δ and q̂ = 0.00001
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(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 32: Case 2-detuned case for p̂ = 3
16 + q̂δ and q̂ = 0.00001

(a) E(t) for low omega, ω = 3 (b) E(t) for high omega, ω = 50

Figure 33: Case 3-detuned case for p̂ = 1+4ω2

4 + q̂δ and q̂ = 0.00001

As we can see in Figures (31),(32) and (33), the energy decreases in the time interval 0 < t < 2π
ω .

This is supported by the corresponding reflected waves in Figures (17), (20) and (23). As we can
see, there is an initial increase in amplitudes in all three cases and then there is a decay in the
amplitude.

(60) was used to plot the decay of energy in the system. The trapezoidal approximation rule
was used to calculate the amount of energy taken out of the system by the damper. Trapezoids are
much more accurate representations of the area under the curve as opposed to using rectangles,
which makes this a good approximation.

6 Conclusions and future research

In the mechanical system, we considered a hardening spring and observed that due to the presence
of an initial velocity for the incident wave, for higher ω values, we observe that the reflected waves
have an initial impact after which the wave stabilises. From Figures (25),(26),(27),(28),(29),(30),(31),(32)
and (33), we see that the energy of the system between t = 0 and t = 2π

ω is decaying for all the
cases that we have discussed.

Our main objective was to show how the incident wave gets reflected at the boundary and to
show that the presence of a nonlinear attachment at the boundary is responsible for an overall de-
cay in the energy of the system. The research conducted in this study provides sufficient evidence
to prove the same.

This topic can be extended by including new avenues for research such as, considering the
case where the nonlinear spring at the boundary is of the softening type, considering different
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initial conditions, applying variations of the multiple time scales method and also obtaining more
accurate approximations of the solutions, i.e., z(t) = z0(t, τ) + q̂z1(t, τ) +O(q̂2).
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