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1. Introduction

In 1855, Seidel ([40]) introduced a seemingly overlooked,1 arithmetic procedure, called 
contraction, which—under mild assumptions—allows one to produce from a given gen
eralised continued fraction (gcf) a new gcf whose convergents are any prescribed 
subsequence of the original gcf-convergents. Nearly ninety years later, in 1943, Kakutani 
introduced in [21] induced transformations, which accelerate a given dynamical system by 
only observing the dynamics within a subregion of the domain. In 1989, Shunji Ito ([19]) 
gave an explicit natural extension of what has been called2 ‘the mother of all continued 
fractions’—the Farey tent map�-which generates ‘slow’ continued fraction expansions 
(Farey expansions) whose convergents (Farey convergents) consist of all regular contin
ued fraction (rcf) convergents and so-called mediant convergents (see §2.3 below). In 
this article, we obtain a broad, unifying theory for various continued fraction expansions 
by ‘inducing contractions of the mother of all continued fractions.’

More formally, we use induced transformations of Ito’s natural extension to govern 
contractions of Farey expansions. This coupling of inducing and contracting defines a 
large class of continued fraction algorithms—producing what we call contracted Farey 
expansions�-which are parameterised by measurable subregions of the domain of Ito’s 
natural extension. Within this collection of algorithms we find several well-studied exam
ples. In particular, contracted Farey expansions contain the theory of the second-named 
author’s S-expansions, which themselves contain the theory of rcfs, Minkowski’s di
agonal continued fractions, Bosma’s optimal continued fractions and more ([23]). The 
collection of S-expansions also partially contains Nakada’s parameterised family of α
continued fractions: this latter family is defined for 0 ≤ α ≤ 1, but only those for which 
α ≥ 1/2 are realised as S-expansions. Our theory of contracted Farey expansions contains 
Nakada’s α-continued fractions for all 0 < α ≤ 1�-thus providing a unifying framework 
within which to view these two partially overlapping families—and gives a new descrip
tion of the natural extension of each of the α-continued fraction transformations as an 
induced transformation of Ito’s natural extension (cf. [24]).

In [13], the authors use a one-to-one correspondence between certain forward orbits 
determined by irrationals x ∈ (0, 1) under Ito’s natural extension map and the sequence 
of all Farey convergents (rcf-convergents and mediants) of x. With this correspondence, 
certain subregions of the domain of Ito’s natural extension ‘announce’ certain types 
of Farey convergents. By considering induced transformations on these subregions, the 
authors obtain unified and simple proofs of results from, e.g., [3,6,19,20], old and classical 
results of Legendre and Koksma, and various new results such as generalisations of Lévy’s 

1 Contraction is used in the analytic theory of continued fractions, but usually only for subsequences 
of odd or even integers ([27]). See also [5], where the more general contraction procedure is used on the 
continued fraction expansion of the golden mean, (

√
5 + 1)/2.

2 This is true ‘up to isomorphism.’ The maternal moniker was originally applied to the Lehner map, which 
is isomorphic to the Farey tent map ([12]); see also §4.2 below.
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constant and of the Doeblin–Lenstra conjecture to subsequences of rcf-convergents and 
mediants.

The subsequences from [13] of Farey convergents announced by a subregion of the 
domain of Ito’s natural extension are also of central importance in the current article: 
via contraction, these subsequences form the convergents of our new contracted Farey 
expansions. That is, we fix a subregion R of the domain Ω of Ito’s natural extension and 
consider the subsequence of the forward orbit of a point (x, y) ∈ Ω which enters R under 
the natural extension map. Via the aforementioned one-to-one correspondence between 
orbits and Farey convergents, we obtain a subsequence of Farey convergents of x and use 
contraction to produce a new gcf-expansion of x whose convergents are precisely this 
subsequence. The digits of these new gcf-expansions may be described in terms of the 
dynamics of the induced transformation of Ito’s natural extension on the subregion R, 
and hence we obtain a large collection of continued fraction algorithms parameterised 
by these subregions.

While the present article is informed by [13], these two works may be read indepen
dently. We remark, however, that the ideas of both articles may also be combined: in 
[39], the third-named author exploits results of [13] and the present article to generate 
new, superoptimal continued fraction algorithms producing gcf-expansions which have 
arbitrarily good approximation properties and converge arbitrarily fast.

This article is organised as follows. In §2 we set definitions and notation for generalised, 
semi-regular and regular continued fractions that are used throughout, and in §3 we 
recall several continued fraction algorithms: the Gauss map and its natural extension, 
Nakada’s α-continued fractions and the second-named author’s S-expansions. We recall 
the Farey tent map, Farey expansions and Farey convergents in §4. In §5 we describe 
Ito’s natural extension of the Farey tent map, and, moreover, define and set notation 
for induced transformations of it (§5.2). In §6.1 we describe contraction in the abstract 
setting of generalised continued fractions and in §6.2 use induced transformations of 
Ito’s natural extension to govern contractions of Farey expansions. Furthermore, in §6.3
we define a dynamical system which acts essentially as a two-sided shift on contracted 
Farey expansions. Section 7 realises each of the examples from §3 within our theory of 
contracted Farey expansions.

Acknowledgments. We thank the anonymous referee who reviewed this article. This work 
is part of project number 613.009.135 of the research programme Mathematics Clusters 
which is financed by the Dutch Research Council (NWO).

2. Generalised, semi-regular and regular continued fractions

2.1. Generalised continued fractions

A generalised continued fraction (gcf) is a formal (infinite or finite) expression of the 
form
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[β0/α0;α1/β1, α2/β2, . . . ] =
α−1

β−1 +
α0

β0 +
α1

β1 +
α2

β2 +
.. .

, (1)

where (α−1, β−1) := (1, 0) and for n ≥ 0, αn, βn ∈ C with αn ̸= 0.

Remark 2.1. Notice that for α0, β0, x ∈ C with α0 nonzero,

1 

0 +
α0

β0 + x

= 1 
α0

(β0 + x),

with the convention that c/0 = ∞ and c/∞ = 0 for c ∈ C \ {0}. Thus—although at this 
point it is a strictly formal expression—a gcf should be thought of as 1/α0 ‘multiplied’ 
with the expression

β0 +
α1

β1 +
α2

β2 +
.. .

(hence the choice of notation [β0/α0;α1/β1, . . . ] rather than [α0/β0;α1/β1, . . . ]). Besides 
allowing for this inversion of α0, our inclusion of α−1 and β−1 in (1) also prevents us 
from needing to treat the index 0 as a special case in the matrix notation introduced 
below.

The digits αn and βn are called partial numerators and partial denominators, respec
tively. When a gcf has only finitely many partial numerators and partial denominators, 
the expression on the right-hand side of (1) may be evaluated to give a number in ˆ︁C := C ∪ {∞}. Define for each integer n ≥ −2 (with the obvious restriction in the finite 
case) the nth tail of [β0/α0;α1/β1, α2/β2, . . . ] to be the gcf

[0/1;αn+1/βn+1, αn+2/βn+2, αn+3/βn+3, . . . ].

For each integer n ≥ −1, set

Bn = Bn([β0/α0;α1/β1, . . . ]) :=
(︃

0 αn

1 βn

)︃
,

and for integers −1 ≤ m ≤ n, let

B[m,n] = B[m,n]([β0/α0;α1/β1, . . . ]) := BmBm+1 · · ·Bn.
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Notice that detB[m,n] = (−1)n−m+1αmαm+1 . . . αn ̸= 0. For a matrix A =
(︁
a b
c d

)︁ ∈
GL2C, denote by A · z := az+b

cz+d , z ∈ ˆ︁C, the action of A as a Möbius transformation. 
(We remark that for any r ∈ C\{0}, (rA) · z = A · z; this fact will be used repeatedly 

throughout.) Writing the entries of B[m,n] as 
(︂

R[m,n] P[m,n]
S[m,n] Q[m,n]

)︂
, we have

P[m,n]

Q[m,n]
= B[m,n] · 0 =

αm

βm +
αm+1

βm+1 +
αm+2

. . . +
αn

βn

= [0/1;αm/βm, αm+1/βm+1, . . . , αn/βn] ∈ ˆ︁C.

(Notice that if each αj , βj ∈ Z, then P[m,n]/Q[m,n] ∈ Q ∪ {∞}, but in general, 
gcd(P[m,n], Q[m,n]) ̸= 1.) When m = −1, we use the suppressed notation(︃

Rn Pn

Sn Qn

)︃
:=

(︃
R[−1,n] P[−1,n]
S[−1,n] Q[−1,n]

)︃
= B[−1,n]

and call Pn/Qn the nth convergent of3 [β0/α0;α1/β1, α2/β2, . . . ]. If a gcf is finite and 
evaluates to x ∈ C, or if it is infinite and x = limn→∞ Pn/Qn ∈ C exists, we call 
[β0/α0;α1/β1, α2/β2, . . . ] a gcf-expansion of x, write x = [β0/α0;α1/β1, α2/β2, . . . ]
and—when the expansion [β0/α0;α1/β1, α2/β2, . . . ] is understood—refer to the conver
gents Pn/Qn as convergents of x.

Notice for any integers −1 ≤ m ≤ n that(︃
R[m,n+1] P[m,n+1]
S[m,n+1] Q[m,n+1]

)︃
=B[m,n]Bn+1 =

(︃
R[m,n] P[m,n]
S[m,n] Q[m,n]

)︃(︃
0 αn+1
1 βn+1

)︃
=

(︃
P[m,n] βn+1P[m,n] + αn+1R[m,n]
Q[m,n] βn+1Q[m,n] + αn+1S[m,n]

)︃
.

In particular, R[m,n+1] = P[m,n] and S[m,n+1] = Q[m,n]. Setting (P[m,m−1], Q[m,m−1]) :=
(0, 1) for all m ≥ −1, this gives

B[m,n] =
(︃
P[m,n−1] P[m,n]
Q[m,n−1] Q[m,n]

)︃
, −1 ≤ m ≤ n,

and we obtain the following recurrence relations for all −1 ≤ m ≤ n:

P[m,n+1] = βn+1P[m,n] + αn+1P[m,n−1], P[m,m−1] = 0, P[m,m] = αm, (2)

Q[m,n+1] = βn+1Q[m,n] + αn+1Q[m,n−1], Q[m,m−1] = 1, Q[m,m] = βm.

3 Note that [0/1;α−1/β−1, α0/β0, . . . , αn/βn] = [β0/α0;α1/β1, . . . , αn/βn].
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Let (P−2, Q−2) := (0, 1). When m = −1, the observations above give, for n ≥ −1,

B[−1,n] =
(︃
Pn−1 Pn

Qn−1 Qn

)︃
and the recurrence relations

Pn+1 = βn+1Pn + αn+1Pn−1, P−2 = 0, P−1 = 1, (3)

Qn+1 = βn+1Qn + αn+1Qn−1, Q−2 = 1, Q−1 = 0.

Remark 2.2. The quantities Pn, Qn are defined in terms of the partial numerators and 
partial denominators αn, βn of a gcf. Conversely, since det(B[−1,n]) ̸= 0, the digits αn, βn

are also determined by the quantities Pn, Qn. In particular, the recurrence relations (3) 
imply (︃

αn+1
βn+1

)︃
= B−1

[−1,n]

(︃
Pn+1
Qn+1

)︃
, n ≥ −1.

Remark 2.3. It shall sometimes be useful to allow for infinite partial denominators βn =
∞ for some n ≥ 1 in a gcf [β0/α0;α1/β1, α2/β2, . . . ]. In this case, letting n0 ≥ 0 denote 
smallest index for which βn0+1 = ∞, the gcf [β0/α0;α1/β1, α2/β2, . . . ] is interpreted to 
be the finite gcf [β0/α0;α1/β1, α2/β2, . . . , αn0/βn0 ].

Letting Tn := [0/1;αn+1/βn+1, αn+2/βn+2, . . . ], n ≥ 0, denote the nth tail of the 
gcf-expansion x = [β0/α0;α1/β1, α2/β2, . . . ], one obtains

x =
α−1

β−1 +
α0

β0 +
α1

. . . +
αn

βn + Tn

=
(︃

0 α−1
1 β−1

)︃(︃
0 α0
1 β0

)︃
· · ·

(︃
0 αn

1 βn

)︃
· Tn = B[−1,n] · Tn.

(4)
Notice also that for any z ∈ ˆ︁C,

BT
[−1,n] · z =

(︃
0 1
αn βn

)︃
· · ·

(︃
0 1
α0 β0

)︃(︃
0 1
1 0

)︃
· z =

1 

βn +
αn

βn−1 +
αn−1

. . . +
α1

β0 +
α0

z

, (5)

or
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BT
[−1,n] · z = [0/1; 1/βn, αn/βn−1, . . . , α1/β0, α0/z], (6)

where, in the case that z = ∞, the right-hand side is interpreted as [0/1; 1/βn, αn/βn−1, 
. . . , α1/β0].

2.2. Semi-regular continued fractions

A semi-regular continued fraction (srcf) is a gcf as in (1) with integral partial 
numerators and partial denominators αn, βn ∈ Z satisfying

(i) α0 = 1 and αn = ±1 for n ≥ 1,
(ii) βn > 0 for n ≥ 1, and
(iii) αn+1 + βn ≥ 1 for n ≥ 1.

If there are infinitely many digits, we further require

(iv) αn+1 + βn ≥ 2 infinitely often.

By Tietze’s Convergence Theorem (see, say, [37]) the above conditions guarantee 
that x = limn→∞ Pn/Qn ∈ R always exists, and thus we call [β0/α0;α1/β1, α2/β2, . . . ]
a srcf-expansion of x. Notice that the convergents Pn/Qn of any srcf-expansion of 
x ∈ R are reduced since

|Pn−1Qn − PnQn−1| = |det(B[−1,n])| = |α−1α0 · · ·αn| = 1.

2.3. Regular continued fractions

A regular continued fraction (rcf) is a srcf with partial numerators αn = 1 for 
n ≥ 1. (Note that with this assumption on partial numerators, conditions (iii) and (iv) 
of srcfs are trivially satisfied for any choice of integral partial denominators satisfying 
condition (ii).) A rcf will also be denoted by

[a0; a1, a2, . . . ] := [a0/1; 1/a1, 1/a2, . . . ], an ∈ Z with an > 0, n ̸= 0.

For a rcf, we use the special notation pn := Pn and qn := Qn, n ≥ −2, so the recurrence 
relations (3) become

pn+1 = an+1pn + pn−1, p−2 = 0, p−1 = 1, (7)

qn+1 = an+1qn + qn−1, q−2 = 1, q−1 = 0.

Since a rcf is a srcf, the limit x = limn→∞ pn/qn ∈ R exists for any infinite choice of 
an, n ≥ 0 (this can also be proven directly; see, e.g., [17]), and the odd- and even-indexed 
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rcf-convergents (p2k−1/q2k−1)k≥0 and (p2k/q2k)k≥0 form strictly decreasing and strictly 
increasing sequences, respectively (see, e.g., Theorem 4 of [22]). Conversely, every real 
number x has a rcf-expansion. Moreover, if x is irrational, its rcf-expansion is unique 
and has infinitely many partial denominators an; if x is rational, it has exactly two 
rcf-expansions,

[a0; a1, . . . , an] and [a0; a1, . . . , an − 1, 1],

where an ≥ 2 if n ≥ 1 ([17]).

2.3.1. Mediant convergents
The fractions

λpn + pn−1

λqn + qn−1
for λ ∈ N, 1 ≤ λ < an+1, n ≥ −1, (8)

are called the mediants (or mediant convergents) of x = [a0; a1, a2, . . . ]. Notice that if 
λ = 0, the expression in (8) gives pn−1/qn−1, while if λ = an+1, the expression gives 
pn+1/qn+1 by the recurrence relations (7). Since the mediant (a+ b)/(c+ d) of two frac
tions a/c and b/d with positive denominators lies between them in value, monotonicity 
of the odd-/even-indexed rcf-convergents gives the following relations for all n ≥ 0 (see 
§1.4 of [22]):

x <
p2n+1

q2n+1
= a2n+1p2n + p2n−1

a2n+1q2n + q2n−1
<

(a2n+1 − 1)p2n + p2n−1

(a2n+1 − 1)q2n + q2n−1
< · · ·

<
p2n + p2n−1

q2n + q2n−1
<

p2n−1

q2n−1

(9)

and

p2n

q2n
<

p2n+1 + p2n

q2n+1 + q2n
< · · · < (a2n+2 − 1)p2n+1 + p2n

(a2n+2 − 1)q2n+1 + q2n
<

a2n+2p2n+1 + p2n

a2n+2q2n+1 + q2n
= p2n+2

q2n+2
< x.

(10)

3. Some continued fraction algorithms

In this section we introduce some important continued fraction (cf) algorithms which 
shall be revisited throughout the paper. In particular, the reader will find in §3.1 the 
Gauss map, which generates rcf-expansions; in §3.2 Nakada’s parameterised family of 
α-cfs, which generate srcfs including rcfs, Hurwitz’s singular cfs, nearest integer cfs, 
and Rényi’s backward cfs; and in §3.3 the second-named author’s S-expansions, which 
generate srcfs including Minkowski’s diagonal cfs, Bosma’s optimal cfs and (a strict 
subcollection of) Nakada’s α-cfs.
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Fig. 1. Graphs of the Gauss map G (left), Nakada’s α-cf maps Gα (centre), and the Farey tent map F
(right).

3.1. The Gauss map

3.1.1. The Gauss map
The partial denominators an of rcf-expansions are generated by the Gauss map 

G : [0, 1] → [0, 1] defined by4 G(0) = 0 and G(x) = 1/x − ⌊1/x⌋, x > 0; see Fig. 1. 
Indeed, for x ∈ R, set a0 = a0(x) := ⌊x⌋ and x0 := x − a0 ∈ [0, 1). Define a(0) := ∞, 
a(x) := ⌊1/x⌋ for x ̸= 0, and an = an(x) := a(Gn−1(x0)) for n > 0. Notice that for 
any integer k ≥ 1, an = k if and only if Gn−1(x0) ∈ (1/(k + 1), 1/k]. One finds that for 
Gn−1(x0) ̸= 0,

Gn(x0) = 1 
Gn−1(x0)

− an.

Rearranging gives

Gn−1(x0) = 1 
an + Gn(x0)

,

which holds for both Gn−1(x0) ̸= 0 and Gn−1(x0) = 0, and which—with repeated 
applications—in turn gives

x = a0 +
1 

a1 +
1 

. . . +
1 

an + Gn(x0)

= [a0; a1, . . . , an−1, an + Gn(x0)].

Symbolically, the Gauss map acts as a left-shift on rcf-expansions. That is, if x =
[0; a1, a2, . . . ] ∈ (0, 1), then G(x) = [0; a2, a3, . . . ].

4 While G may be defined as a self-map of [0, 1), we choose to include the endpoint 1 for later notational 
purposes.
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The dynamical system ([0, 1],ℬ, νG, G) is exact (and hence strongly mixing, weakly 
mixing and ergodic; see [17]), where ℬ is the Borel σ-algebra5 on [0, 1] and νG is the 
Gauss measure, which is the absolutely continuous, G-invariant probability measure with 
density 1/((log 2)(1 + x)).

3.1.2. The natural extension of the Gauss map
In the late 1970s and early 1980s, Nakada, Ito and Tanaka ([32,33]) introduced an 

explicit, planar natural extension (Ω,ℬ, ν̄G,𝒢) of the system ([0, 1],ℬ, νG, G). Here Ω :=
[0, 1]2; the map 𝒢 : Ω → Ω is defined by 𝒢(0, y) = (0, y) and for z = (x, y) ∈ Ω with 
x ̸= 0,

𝒢(z) :=
(︃
G(x), 1 

a(x) + y

)︃
; (11)

and the 𝒢-invariant probability measure ν̄G has density 1/((log 2)(1 + xy)2). Since 
([0, 1],ℬ, νG, G) is strongly mixing, so is the natural extension (Ω,ℬ, ν̄G,𝒢).

Symbolically, the map 𝒢 acts as a two-sided-shift on rcf-expansions. That is, if

(x, y) = ([0; a1, a2, . . . ], [0; b1, b2, . . . ]) ∈ Ω

with x ∈ (0, 1), then

𝒢(x, y) = ([0; a2, a3, . . . ], [0; a1, b1, b2, . . . ]). (12)

The map 𝒢 may also be understood geometrically: setting

Vk :=
(︃

1 
k + 1 ,

1 
k

]︃
× [0, 1] and Hk := [0, 1] ×

(︃
1 

k + 1 ,
1 
k

]︃
(13)

for each integer k ≥ 1, one finds that 𝒢(Vk) = Hk, up to null sets; see Fig. 2. We call Vk

and Hk the kth vertical and horizontal regions, respectively.

3.2. Nakada’s α-continued fractions

In 1981, Nakada ([32]) introduced a one-parameter family of continued fraction algo
rithms, called α-cf maps, each of which generates—in a similar fashion as the Gauss 
map�-srcf-expansions. For each α ∈ [0, 1], Nakada’s α-cf map Gα : [α − 1, α] →
[α− 1, α] is defined by Gα(0) := 0 and for x ̸= 0,

Gα(x) := 1 
|x| −

⌊︃
1 
|x| + 1 − α

⌋︃
;

5 Throughout, ℬ represents the Borel σ-algebra on the appropriate domain.
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Fig. 2. Up to null sets, the map 𝒢 sends the vertical region Vk to the horizontal region Hk. 

see Fig. 1. Notice that G1 = G is the Gauss map. In fact, Nakada’s α-cfs contain several 
other well-studied continued fraction algorithms: when α = (

√
5 − 1)/2, Gα generates 

Hurwitz’s singular cfs ([16]); α = 1/2 generates the nearest integer cfs introduced by 
Minnigerode in [30] and studied by Hurwitz in [16]; and α = 0 generates Rényi’s backward 
cfs ([38]). The latter map G0 has an infinite, σfinite, absolutely continuous invariant 
measure ρ0 with density 1/(x + 1), while for α ∈ (0, 1], there is a unique, absolutely 
continuous invariant probability measure ρα ([28]). Moreover, for each α ∈ [0, 1], the 
dynamical system ([α− 1, α],ℬ, ρα, Gα) is exact and, hence, ergodic ([28]).

Since Nakada’s introduction of the α-cfs, much work has been done to determine 
explicitly the invariant measures ρα and to understand the metric entropy h(Gα) =
hρα

(Gα) as a function α ↦→ h(Gα) of α ∈ (0, 1]. Nakada restricted his initial study in 
[32] to α ≥ 1/2 and derived ρα by constructing an explicit, planar natural extension 
of ([α − 1, α],ℬ, ρα, Gα). However, it was observed at the time that difficulties arose in 
extending these methods to α < 1/2. The second-named author in 1991 ([23]) reobtained 
Nakada’s natural extensions for α ≥ 1/2 in a simple fashion as special instances within 
his theory of S-expansions; see §3.3 below. In 1999, Moussa et al. ([31]) determined 
explicit, absolutely continuous invariant probability measures for a subset of a slightly 
different family of maps called folded α-cfs, which are factors of the α-cf maps. From 
their results one could obtain ρα for 

√
2−1 ≤ α < 1/2 and—using Rohlin’s formula—the 

entropy h(Gα) as a function of α ∈ [
√

2 − 1, 1] (see [28]):

h(Gα) =
{︄

π2

6 log(1+g) ,
√

2 − 1 ≤ α ≤ g,

π2

6 log(1+α) , g < α ≤ 1,
(14)

where g := (
√

5 − 1)/2. Following this, the entropy function was conjectured to be 
monotone increasing and continuous on the remaining subinterval (0,

√
2 − 1) ([4]).

It was thus quite surprising when, in 2008, Luzzi and Marmi ([28]) gave numerical 
evidence suggesting that h(Gα) possessed a seemingly complicated, non-monotone, self
similar structure on (0,

√
2−1). In the same year, Nakada and Natsui ([34]) confirmed this 
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non-monotonicity by giving countably many non-empty intervals on which the function 
is increasing, decreasing and constant, respectively. These intervals are determined by a 
phenomenon called matching, where the Gα-orbits of α and α − 1 coincide after some 
finite number of steps. Further numerical data on these so-called matching intervals 
was given in [7], and the authors also exhibited points in the complement of the union 
of matching intervals at which the entropy function fails to be locally monotone. The 
matching intervals were completely classified in [8], and their union was shown to have 
full measure. (These intervals have surprising connections to unimodal maps, the real 
slice of the boundary of the Mandelbrot set, and the parameter space of a family of maps 
producing signed binary expansions ([1,9,10]).)

In 2012, Kraaikamp, Schmidt and Steiner ([24]) proved that the entropy function is 
indeed continuous on (0, 1] (this fact had also been proven in a 2009 preprint of Tiozzo 
for α > 0.056 . . . and was later improved to Hölder continuity on (0, 1] ([41,42])). In 
[24], the authors construct a planar natural extension of ([α− 1, α],ℬ, ρα, Gα) for each 
α > 0. The domain of this natural extension is first defined theoretically as an orbit 
closure of a certain planar map; a further detailed analysis of the Gα-orbits of α and 
α − 1 allow for a more explicit description of this domain (see §7 of [24]). Moreover, 
the authors prove (Theorem 2 of [24]) a conjecture of Luzzi and Marmi ([28]) that the 
product of the entropy h(Gα) and the measure of the natural extension domain (using 
density 1/(1 + xy)2) is constant—in fact, equal to π2/6�-as a function of α, and they 
extend the constant branch of h(Gα) in (14) to the maximal interval [g2, g]. However, 
even equipped with such machinery, a number of open questions are left at the end of 
[24]. In particular, the authors ask for explicit values of the entropy h(Gα) for α < g2, 
and they restate a conjecture of [7] on the explicit form of the density of ρα.

3.3. S-expansions

In 1991, the second-named author introduced in [23] a large class of new continued 
fraction algorithms by coupling two tools: singularisation and induced transformations of 
the natural extension (Ω,ℬ, ν̄G,𝒢) of the Gauss map. Singularisation is an old, arithmetic 
procedure—tracing back as early as Lagrange’s addendum ([25]) to Euler’s Vollständige 
Anleitung zur Algebra�-whereby one can sometimes manipulate a srcf-expansion to 
produce a new, ‘accelerated’ srcf-expansion of the same number.

Indeed, suppose that x has a srcf-expansion [β0/α0;α1/β1, α2/β2, . . . ] with con
vergents (Pn/Qn)n≥−1. Suppose, moreover, that βn+1 = αn+2 = 1 for some n ≥ 0. 
Singularisation at position n replaces this srcf-expansion with the srcf-expansion

x = [β0/α0;α1/β1, . . . , αn−1/βn−1, αn/(βn +αn+1),−αn+1/(βn+2 + 1), αn+3/βn+3, . . . ].

One can show that the convergents (P ′
n/Q

′
n)n≥−1 of this new expansion satisfy
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P ′
j

Q′
j

=

⎧⎨⎩
Pj

Qj
, j < n,

Pj+1
Qj+1

, j ≥ n,

i.e., singularisation at position n removes the nth convergent Pn/Qn; see [23]. By iterating 
this procedure (possibly infinitely many times), one obtains a new srcf-expansion of x
whose convergents are a subsequence (Pnk

/Qnk
)k≥−1 of the original convergents.

Beginning from a rcf-expansion [a0; a1, a2, . . . ] = [a0/1; 1/a1, 1/a2, . . . ] with conver
gents pn/qn, acceleration via singularisation admits two major restrictions:

(i) the convergents pn/qn which are removed correspond to partial denominators an+1 =
1, and

(ii) consecutive convergents pn/qn, pn+1/qn+1 cannot be removed.

Restriction (ii) comes from the fact that in order to remove both pn/qn and pn+1/qn+1, 
one would need to either first singularise the original expansion at position n, then 
singularise the new expansion again at position n, or first singularise at position n + 1
and then at position n. However, in either case, the partial denominator corresponding 
to the second singularisation is strictly greater than 1, contrary to the singularisation 
requirements. Nevertheless, one may singularise to remove non-consecutive convergents 
pn/qn with an+1 = 1 independent of order and, thus, simultaneously; see [23].

In [23], the natural extension (Ω,ℬ, ν̄G,𝒢) of the Gauss map is used to govern the 
singularisation process, beginning from rcf-expansions. In particular, one fixes a mea
surable singularisation area6 S ⊂ Ω satisfying ν̄G(∂S) = 0,

(a) S ⊂ V1, and
(b) S ∩ 𝒢(S) = ∅,

and considers the 𝒢-orbit of the point (x, 0) in Ω with x = [0; a1, a2, . . . ] irrational. 
That ν̄G(∂S) = 0 is a technical condition, called ν̄G-continuity, guaranteeing that for 
Lebesgue–a.e. x, the 𝒢-orbit of (x, 0) behaves like a ‘ν̄G-generic’ point; see Remark 4.6.i 
of [23]. Condition (a) guarantees that if 𝒢n(x, 0) ∈ S, then an+1 = 1, and condition 
(b) guarantees that two consecutive points in the 𝒢 orbit of (x, 0) do not belong to S; 
cf. restrictions (i) and (ii) above. By simultaneously singularising the rcf-expansion of 
x at all positions n for which 𝒢n(x, 0) ∈ S, one obtains a srcf-expansion of x, called an 
S-expansion, whose convergents are a subsequence of the rcf-convergents of x. Put a 
different way, S-expansions are srcfs whose convergents are precisely the subsequence 

6 Technically, condition (a) should be replaced by S ⊂ V1 and (b) by S ∩ 𝒢(S) ⊂ {(g, g)} with g =
(
√

5 − 1)/2; see Definition 4.4 and Remark 4.6.ii of [23]. Moreover, in [23], 𝒢 is defined on [0, 1) × [0, 1]
rather than Ω = [0, 1]2. What follows in §7.2 below can be done with these minor adjustments, but for 
simplicity we shall omit these details.
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of rcf-convergents pn/qn for which 𝒢n(x, 0) ∈ Ω \ S for n ≥ 0, i.e., S-expansions are 
governed by the induced transformation of (Ω,ℬ, μ̄G,𝒢) on Ω \ S.

In addition to defining new cf-algorithms, the author shows in [23] that many previ
ously studied cf-algorithms are realised by certain singularisation areas S. Since these 
arise from induced transformations of a common dynamical system, ergodic properties 
of the underlying algorithms are easily comparable with one another. The collection of 
S-expansions includes Minkowski’s diagonal cfs ([29]), Bosma’s optimal cfs ([2]) and 
(the natural extensions of) Nakada’s α-cfs. However, the α-cfs realised as S-expansions 
are—somewhat curiously—only those for which α ≥ 1/2 (cf. [15]). This is explained (for 
α ∈ [

√
2 − 1, 1/2)) by Nakada and Natsui in the introduction of [34], where it is noted 

that convergents of α-cfs are not necessarily rcf-convergents and, hence, not neces
sarily S-expansion convergents. In §7.3 below, we exhibit the natural extension of each 
([α − 1, α],ℬ, ρα, Gα), α ∈ (0, 1], as an induced transformation of the natural extension 
of another, slower continued fraction map—the Farey tent map.

4. The Farey tent map and Farey expansions

In this section we introduce another cf-map�-the Farey tent map—whose natural 
extension (see §5 below) shall be of central importance to us. The Farey tent map 
generates srcf-expansions whose convergents consist of all rcf-convergents and mediant 
convergents; see (8) above and Proposition 4.1 below. Much of this background can be 
found also in [13], but we include it here for completeness.

4.1. The Farey tent map

Define ε : [0, 1] → {0, 1} by

ε(x) :=
{︄

0, x ≤ 1/2,
1, x > 1/2,

and for ε ∈ {0, 1}, set

Aε :=
(︃

1 − ε ε
1 1

)︃
.

The Farey tent map F : [0, 1] → [0, 1] is defined by

F (x) := A−1
ε(x) · x =

{︄
x/(1 − x), x ≤ 1/2,
(1 − x)/x, x > 1/2;

(15)

see Fig. 1 above. The dynamical system ([0, 1],ℬ, μ, F ) is ergodic, where μ is the infinite, 
σfinite, absolutely continuous F -invariant measure with density 1/x ([14,19,36]). One 
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finds from the definition of F that if x ∈ [0, 1] has rcf-expansion7 x = [0; a1, a2, a3, . . . ], 
then

F (x) =
{︄

[0; a1 − 1, a2, a3, . . . ], a1 > 1,
[0; a2, a3, a4, . . . ], a1 = 1.

(16)

From this, it follows that the Gauss map G is the jump transformation of F associated 
to the interval (1/2, 1], meaning that for x as above with x ̸= 0,

min{j ≥ 0 | F j(x) ∈ (1/2, 1]} = a1 − 1, and G(x) = F a1(x);

see, e.g., §11.4 of [11].

4.2. Farey expansions and Farey convergents

4.2.1. The Farey tent map and rcf-convergents and mediants
In [19], Ito studied the ergodic properties of the dynamical system ([0, 1],ℬ, μ, F ) and 

showed via matrix relations that F generates all convergents and mediant convergents 
of the rcf-expansion of any irrational x ∈ (0, 1). We reproduce this fact here, fixing 
notation8 along the way.

Recall from (15) that F (x) = A−1
ε(x) · x, or x = Aε(x) · F (x). Setting

xn := Fn(x) and εn+1 = εn+1(x) := ε(xn), n ≥ 0, (17)

we find for each n ≥ 0 that xn = Aε(xn) · F (xn) = Aεn+1 · xn+1. Repeatedly applying 
this beginning from x = x0, we have

x = (Aε1Aε2 · · ·Aεn) · xn.

Let A[0,0] := I2 be the identity matrix and for n > 0,

A[0,n] = A[0,n](x) := Aε1Aε2 · · ·Aεn . (18)

With this notation,

xn = Fn(x) = A−1
[0,n] · x, n ≥ 0.

We wish to determine the entries of A[0,n]. For x = [0; a1, a2, . . . ] irrational and n ≥ 0, 
let jn = jn(x) and λn = λn(x) be the unique integers9 satisfying

7 If the expansion of x is finite, we set the remaining digits equal to ∞, e.g., x = [0; a1, . . . , an,∞,∞, . . . ]. 
This also holds for x equal to 0 = [0;∞,∞, . . . ] and 1 = [0; 1,∞,∞, . . . ], interpreting ∞ − 1 = ∞.
8 Notation is largely recycled from [19] but with matrix entries permuted.
9 These should be thought of in light of Euclid’s division lemma: for integers n, a ≥ 0, there exist unique 

integers j and λ such that n = ja + λ with 0 ≤ λ < a. Instead of summing a fixed integer a with itself j
times, we sum the first j rcf-digits a1, a2, . . . , aj of x.
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n = a1 + a2 + · · · + ajn + λn, jn ≥ 0, 0 ≤ λn < ajn+1. (19)

From (16), we have

ε1ε2ε3 · · · = 0a1−110a2−110a3−11 · · · ,

so

ε1ε2 · · · εn = 0a1−110a2−11 · · · 0ajn−110λn . (20)

Denote the entries of A[0,n], n ≥ 0, by(︃
un tn
sn rn

)︃
=

(︃
un(x) tn(x)
sn(x) rn(x)

)︃
:= A[0,n],

and observe that for any k ∈ Z,

Ak
0A1 =

(︃
1 0
1 1

)︃k (︃0 1
1 1

)︃
=

(︃
1 0
k 1

)︃(︃
0 1
1 1

)︃
=

(︃
0 1
1 k + 1

)︃
. (21)

From (20) and (21), it follows for n > 0 that(︃
un tn
sn rn

)︃
= A[0,n] = Aε1 · · ·Aεn

= Aa1−1
0 A1 · · ·Aajn−1

0 A1A
λn
0

=
(︃

0 1
1 a1

)︃
· · ·

(︃
0 1
1 ajn

)︃(︃
1 0
λn 1

)︃
=

(︃
pjn−1 pjn
qjn−1 qjn

)︃(︃
1 0
λn 1

)︃
=

(︃
λnpjn + pjn−1 pjn
λnqjn + qjn−1 qjn

)︃
, (22)

where pj/qj is the jth
rcf-convergent of x (see also Lemma 1.1 of [19]). Equality of 

the first and final expressions also holds for n = jn = λn = 0 since, in this case, both 
matrices are the identity I2. As a sequence, the quotients of the left-hand columns of the 
matrices in (22) are(︃
un

sn

)︃
n≥0

=
(︃
λnpjn + pjn−1

λnqjn + qjn−1

)︃
n≥0

=
(︃
p−1

q−1
,
p0 + p−1

q0 + q−1
, . . . ,

(a1 − 1)p0 + p−1

(a1 − 1)q0 + q−1
, (23)

p0

q0
,
p1 + p0

q1 + q0
, . . . ,

(a2 − 1)p1 + p0

(a2 − 1)q1 + q0
, . . . ,

pj−1

qj−1
,
pj + pj−1

qj + qj−1
, . . . ,

(aj+1 − 1)pj + pj−1

(aj+1 − 1)qj + qj−1
, . . .

)︃
,
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i.e., the map F generates all rcf-convergents and mediants. Notice that the denominators 
(sn)n≥0 do not form an increasing sequence. Supposedly to ‘remedy’ this, in [19] Ito 
instead considers the sequence ((un + tn)/(sn + rn))n≥0 with increasing denominators. 
However, in light of Proposition 4.1 below, we find it more natural to study (un/sn)n≥0.

4.2.2. Lehner and Farey expansions
Originally, there was no continued fraction expansion associated to the Farey tent map 

F . Such expansions do exist and can be obtained from a map introduced by Lehner in 
1994; see [26]. The Lehner map (also referred to as ‘the mother of all continued fractions’ 
in [12]) is the map L : [1, 2] → [1, 2] defined by

L(x) :=
{︄

1/(2 − x), x ≤ 3/2,
1/(x− 1), x > 3/2.

For x ∈ [1, 2] and each n ≥ 0, set

(bn, en+1) = (bn(x), en+1(x)) :=
{︄

(2,−1), Ln(x) ≤ 3/2,
(1, 1), Ln(x) > 3/2.

The digits (bn, en+1) generate the so-called Lehner expansion of x ∈ [1, 2],

x = [b0/1; e1/b1, e2/b2, . . . ], (24)

which is a srcf-expansion (see [12,26]).
Lehner studied expansions of the form (24) generated by L but no dynamical prop

erties of this map. In [12] it is observed that the dynamical systems ([0, 1],ℬ, μ, F )
and ([1, 2],ℬ, ρ, L) are isomorphic via the translation x ↦→ x + 1, where ρ is the 
absolutely continuous, L-invariant measure with density 1/(x − 1). Through this iso
morphism, the Farey tent map F can be used to generate a Farey expansion for 
each x ∈ [0, 1] (see also [18]). Indeed, for x ∈ [0, 1], let εn+1 = εn+1(x), n ≥ 0, 
be as in (17), and let [b0/1; e1/b1, e2/b2, . . . ] be the Lehner expansion of x + 1. Then 
x = [b0 − 1/1; e1/b1, e2/b2, . . . ], and we have

(bn, en+1) =
{︄

(2,−1), Ln(x + 1) ≤ 3/2
(1, 1), Ln(x + 1) > 3/2

}︄
=

{︄
(2,−1), Fn(x) ≤ 1/2
(1, 1), Fn(x) > 1/2

}︄

=
{︄

(2,−1), εn+1 = 0
(1, 1), εn+1 = 1

}︄
= (2 − εn+1, 2εn+1 − 1).

Hence F generates srcf-expansions, called Farey expansions:

x = [(1 − ε1)/1; (2ε1 − 1)/(2 − ε2), (2ε2 − 1)/(2 − ε3), . . . ]. (25)
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The convergents

Pn/Qn = [(1 − ε1)/1; (2ε1 − 1)/(2 − ε2), (2ε2 − 1)/(2 − ε3), . . . , (2εn − 1)/(2 − εn+1)]

of the Farey expansion of x are called the Farey convergents of x. In [13] (Proposition 
3.1), it is observed that the sequence (Pn/Qn)n≥−1 of Farey convergents is precisely the 
sequence (un/sn)n≥0 from (23) of rcf-convergents and mediants generated by F :

Proposition 4.1. For each n ≥ 0, (︃
un

sn

)︃
=

(︃
Pn−1
Qn−1

)︃
,

where Pn/Qn is the nth Farey convergent of x.

5. Ito’s natural extension of the Farey tent map

We now come to one of the central tools of this article: the natural extension of the 
Farey tent map, originally introduced by Ito in 1989 ([19]). In §5.1, we recall the definition 
of Ito’s natural extension and discuss a one-to-one correspondence between orbits under 
the natural extension map and Farey convergents. Via this correspondence, we find that 
certain subregions of the domain of Ito’s natural extension give rise to certain types of 
Farey convergents. In §5.2, we discuss induced transformations of Ito’s natural extension 
and their connection with subsequences of Farey convergents. Moreover, we revisit a 
theorem of Brown and Yin from [6] stating that the natural extension of the Gauss 
map is isomorphic to a certain induced transformation of Ito’s natural extension, and 
we recall from [13] that the entropy of our induced systems may be computed in terms 
of the measures of their domains (Theorem 5.6 below). As in §4, much of the material 
of this section can be found in [13], but we include it here for completeness and for some 
minor notational and definitional changes.

5.1. The natural extension of the Farey tent map

In [19], Ito determined a planar natural extension (Ω,ℬ, μ̄,ℱ) of the dynamical system 
([0, 1],ℬ, μ, F ) associated to the Farey tent map. The map ℱ : Ω → Ω is defined for each 
z = (x, y) ∈ Ω by

ℱ(z) :=
(︂
A−1

ε(x) · x,Aε(x) · y
)︂

=

⎧⎨⎩
(︂

x 
1−x ,

y
1+y

)︂
, x ≤ 1/2,(︂

1−x
x ,

1 
1+y

)︂
, x > 1/2,

(26)

where again Ω = [0, 1]2, and μ̄ is the infinite, σfinite, absolutely continuous ℱ-invariant 
measure with density 1/(x + y − xy)2. Since ([0, 1],ℬ, μ, F ) is ergodic, so is its natural 
extension (Ω,ℬ, μ̄,ℱ).
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Notice that ℱ is simply the Farey tent map F in the first coordinate. Setting εn+1 =
εn+1(x) = ε(xn) as in (17), we find that

zn = (xn, yn) := ℱn(z) =
(︂
A−1

[0,n] · x,A[n,0] · y
)︂
, n ≥ 0, (27)

where A[0,n] is defined as in (18), and

A[n,0] = A[n,0](x) := AεnAεn−1 · · ·Aε1 , n ≥ 1.

The entries of A[n,0] may be computed explicitly in terms of those of A[0,n] (recall (22)). 
Indeed, if x = [0; a1, a2, . . . ], we have for n > 0 that

A[n,0] = Aεn · · ·Aε1I2

= Aλn
0 A1A

ajn−1
0 · · ·A1A

a1−1
0 A1A

−1
1

=
(︃

0 1
1 λn + 1

)︃(︃
0 1
1 ajn

)︃
· · ·

(︃
0 1
1 a1

)︃(︃−1 1
1 0

)︃

=
(︃

0 1
1 λn + 1

)︃(︃(︃
0 1
1 a1

)︃
· · ·

(︃
0 1
1 ajn

)︃)︃T (︃−1 1
1 0

)︃
=

(︃
0 1
1 λn + 1

)︃(︃
pjn−1 qjn−1
pjn qjn

)︃(︃−1 1
1 0

)︃
=

(︃
qjn − pjn pjn

(λn + 1)qjn + qjn−1 − ((λn + 1)pjn + pjn−1) (λn + 1)pjn + pjn−1

)︃
=

(︃
rn − tn tn

sn + rn − (un + tn) un + tn

)︃
,

and the first and final expressions are also equal to I2 for n = 0. Notice, furthermore, 
that AT

[0,n] and A[n,0] are conjugate under A1:

A1A
T
[0,n] =

(︃
tn rn

un + tn sn + rn

)︃
= A[n,0]A1. (28)

5.1.1. ℱ-orbits and Farey convergents
Interpreting the map ℱ symbolically and geometrically leads to a natural correspon

dence between ℱ-orbits and Farey convergents. Fix z = (x, y) ∈ Ω with (finite10 or 
infinite) rcf-expansions

(x, y) = ([0; a1, a2, . . . ], [0; b1, b2, . . . ]). (29)

One verifies using (16) and (26) that

10 As in (16), if the expansion of x or y is finite, we set the remaining digits equal to ∞. If x = 1/2, we 
take the shorter of its two rcf-expansions, namely x = [0; 2].
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Fig. 3. From left to right: The sets V3 ∩ H1, ℱ(V3 ∩ H1), ℱ2(V3 ∩ H1) and ℱ3(V3 ∩ H1), respectively. 

ℱ(z) =
{︄

([0; a1 − 1, a2, . . . ], [0; 1 + b1, b2, . . . ]), a1 > 1,
([0; a2, a3, . . . ], [0; 1, b1, b2, . . . ]), a1 = 1.

(30)

Recalling the vertical and horizontal regions from (13), the image of the rectangle Va∩Hb

for a > 1 is thus the rectangle ℱ(Va ∩ Hb) = Va−1 ∩ Hb+1 immediately below and to 
the right of the original rectangle, and the image of the right-half V1 of Ω is the top 
half ℱ(V1) = H1, up to a Lebesgue-null set. In particular, the iterates ℱλ, 0 ≤ λ < a, 
‘slide’ the rectangle Va ∩H1 ‘down-and-right’ through a rectangles, and the next image 
ℱa(Va ∩H1) is mapped back as a subset of H1 (see Fig. 3). 

Now let z = (x, y) be as in (29) with x irrational, and fix some n ≥ 0. Recall from 
(19) that n may be written uniquely as

n = a1 + a2 + · · · + ajn + λn,

where 0 ≤ λn < ajn+1. Repeatedly applying (30), one finds

zn = ℱn(z)

=
{︄

([0; a1 − λn, a2, . . . ], [0;λn + b1, b2, . . . , . . . ]), n < a1,

([0; ajn+1 − λn, ajn+2, . . . ], [0;λn + 1, ajn , . . . , a2, a1 − 1 + b1, b2, . . . ]), n ≥ a1.

(31)
In particular, if z ∈ H1 so that b1 = 1, then zn belongs to (the closure of) Vajn+1−λn

∩
Hλn+1 for all n ≥ 0.

Remark 5.1. The closure is needed in the previous statement if and only if z = (x, 1)
with a1 = 1 and a1 ≤ n < a1 + a2. Indeed, in this case

zn = (xn, yn) = ([0; a2 − λn, a3, . . . ], [0;λn + 1, 1]).

Hence yn = 1/(λn + 2) which implies zn / ∈ Hλn+1 lies on the lower boundary of Hλn+1. 
In all other cases for which z ∈ H1, one has in fact zn ∈ Vajn+1−λn

∩Hλn+1 for all n ≥ 0. 
In particular, this annoyance for z = (x, 1) and a1 = 1 is ‘corrected’ for n ≥ a1 +a2, and 
the closures are no longer needed. We shall frequently overlook this subtlety and make 
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no mention of the special case a1 = 1, and thus some claims should be understood up to 
this minor technicality. See also Remark 5.4 below.

Recall from Proposition 4.1 and (23) that the (n− 1)st Farey convergent of x is

un

sn
= λnpjn + pjn−1

λnqjn + qjn−1
. (32)

Identifying the nth point zn ∈ Vajn+1−λn
∩ Hλn+1 of the ℱ-orbit of z ∈ H1 with the 

(n− 1)st Farey convergent un/sn, we find that certain subregions R ⊂ Ω correspond to 
certain types of rcf-convergents or mediants. For instance, if R = H1, then zn ∈ R if 
and only if λn = 0 in (32), i.e., un/sn is a rcf-convergent. More generally, if R = Hλ+1, 
then zn ∈ R if and only if λn = λ, i.e., un/sn is a rcf-convergent (λ = 0) or a ‘λth

mediant’ convergent (λ > 0).
Moreover, setting R = Va, we have zn ∈ R if and only if a = ajn+1 − λn, or λn =

ajn+1−a. Hence zn ∈ R if and only if un/sn is a rcf-convergent (ajn+1 = a) or ‘(a−1)st
fromfinal’ mediant convergent (ajn+1 > a). Lastly, setting R = Va−λ ∩Hλ+1, we have 
zn ∈ R if and only if λn = λ and ajn+1 = a, i.e., un/sn is a rcf-convergent (λ = 0) or 
‘λth mediant’ convergent (λ > 0) with partial denominator ajn+1 = a.

These observations naturally lead us to consider the dynamics of Ito’s natural ex
tension (Ω,ℬ, μ̄,ℱ) restricted to certain subregions of the domain in order to ‘pick out’ 
desired subsequences of Farey convergents.

5.2. Inducing Ito’s natural extension

A μ̄-measurable set R ⊂ Ω is called inducible11 if either 0 < μ̄(R) < ∞ or R = Ω. In 
the former case (i.e., μ̄(R) < ∞), we call R proper. For R inducible, define the hitting 
time to R, denoted NR : Ω → N ∪ {∞}, by

NR(z) := inf{n ≥ 1 | ℱn(z) ∈ R}. (33)

Since (Ω,ℬ, μ̄,ℱ) is conservative and ergodic ([6]), μ̄--a.e. z ∈ Ω enters R infinitely 
often under iterates of ℱ (see Remark 2.2.1 of [11]). Unless otherwise stated, we assume 
throughout that the null set of points from any S ⊂ Ω whose ℱ-orbits enter R at most 
finitely many times are removed from S, and—abusing notation—denote this new set 
again by S. Define ℱR : Ω → R by

ℱR(z) := ℱNR(z)(z).

The induced map of ℱ on R is the map ℱR restricted to R, and the induced measure μ̄R

is defined by

11 We remark that the definition of inducible given here is broader than that in [13], where it is also 
required that μ̄(∂R) = 0. This latter condition (called μ̄-continuity) is not needed for our present purposes.
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μ̄R(S) :=
{︄

μ̄(S) 
μ̄(R) , R ̸= Ω,

μ̄(S), R = Ω,
for all S ∈ ℬ, S ⊂ R.

Ergodicity of the induced system (R,ℬ, μ̄R,ℱR) follows from that of (Ω,ℬ, μ̄,ℱ). Notice 
that μ̄R is a probability measure if and only if R is proper.

Writing z = (x, y) and setting AR(z) := A[0,NR(z)](x), A−1
R (z) := (AR(z))−1 and 

AT
R(z) := (AR(z))T , Equations (27) and (28) give

ℱR(z) =
(︁
A−1

R (z) · x,A1A
T
R(z)A−1

1 · y)︁ . (34)

We denote the entries of AR(z) by(︃
uR(z) tR(z)
sR(z) rR(z)

)︃
:= AR(z) = Aε1 · · ·AεNR(z) . (35)

For n ≥ 0, set zRn = (xR
n , y

R
n ) := ℱn

R(z) and define NR
n (z) by NR

0 (z) := 0 and

NR
n (z) :=

n−1∑︂
ℓ=0 

NR(zRℓ ), n ≥ 1. (36)

When the point z is understood, we use the suppressed notation NR
n := NR

n (z), n ≥ 0. 
We remark that when R = Ω, NR

n = n for all n ≥ 0. In general, the sequence (NR
n )n≥1

gives the indices N ≥ 1 for which the forward orbit (ℱN (z))N≥0 of z enters the region 
R, so ℱn

R(z) = ℱNR
n (z), n ≥ 0.

Let AR
0 (z) := I2 be the identity matrix, and for n ≥ 1 set

AR
n (z) := AR(zRn−1) = Aε

NR
n−1+1

· · ·AεNR
n
. (37)

Notice that for m ≥ 1 and n ≥ 0,

AR
m(zRn ) = AR(zRn+m−1) = AR

n+m(z). (38)

Moreover, set

AR
[m,n](z) := AR

m(z)AR
m+1(z) · · ·AR

n (z), 0 ≤ m ≤ n, (39)

and denote the entries of AR
[0,n](z) by

(︃
uR
n (z) tRn (z)

sRn (z) rRn (z)

)︃
:= AR

[0,n](z) = Aε1 · · ·AεNR
n
. (40)

When the point z is understood, we use the suppressed notation

AR
[0,n] =

(︃
uR
n tRn

sRn rRn

)︃
:= AR

[0,n](z), n ≥ 0. (41)



838 K. Dajani et al. / Journal of Number Theory 278 (2026) 816--874 

From (40) and (18), we have AR
[0,n] = A[0,NR

n ] and thus, by (22),

(︃
uR
n tRn

sRn rRn

)︃
=

(︃
uNR

n
tNR

n

sNR
n

rNR
n

)︃
=

(︄
λNR

n
pjNR

n
+ pjNR

n
−1 pjNR

n

λNR
n
qjNR

n
+ qjNR

n
−1 qjNR

n

)︄
, n ≥ 0. (42)

The following lemma will be useful in §6.3 below.

Lemma 5.2. For any z = (x, y) ∈ Ω, uR(z), sR(z) ∈ Z satisfy sR(z) > 0 and 0 ≤ uR(z) ≤
sR(z).

Proof. It is clear from (35) that uR(z), sR(z) ∈ Z. Moreover, AR(z) = AR
[0,1], so setting 

N = NR
1 , (42) gives (︃

uR(z)
sR(z)

)︃
=

(︃
uN

sN

)︃
=

(︃
λNpjN + pjN−1
λNqjN + qjN−1

)︃
.

Since N > 0, (19) implies either jN > 0 or λN > 0. If jN = 0, then uR(z) = λNp0+p−1 =
p−1 = 1 and sR(z) = λNq0 + q−1 = λN > 0, so the claim holds. If jN > 0, then 
sR(z) ≥ qjN−1 ≥ q0 = 1, and uR(z)/sR(z) lies between pjN−1/qjN−1 and pjN+1/qjN+1, 
which are fractions between 0 and 1. Thus 0 ≤ uR(z) ≤ sR(z). □

Notice from (42) that (uR
n /s

R
n )n≥0 is a subsequence of the Farey convergents 

(un/sn)n≥0. In particular, the correspondence zn ↔ un/sn between the ℱ-orbit of z ∈ H1
and the Farey convergents of x gives a correspondence zRn ↔ uR

n /s
R
n between the subse

quence (zRn )n≥0 = (zNR
n

)n≥0 of points in the ℱ-orbit of z entering R and the subsequence 
(uR

n /s
R
n )n≥0 = (uNR

n
/sNR

n
)n≥0 of Farey convergents. Hence a subregion R naturally de

termines a subsequence of Farey convergents. We illustrate with the examples discussed 
at the end of §5.1:

Example 5.3. The region R = Hλ+1 corresponds to rcf-convergents (λ = 0) or λth

mediants (λ > 0): {︃
uR
n

sRn

}︃
n≥0

=
{︃
λnpjn + pjn−1

λnqjn + qjn−1

⃓⃓⃓
λn = λ

}︃
n≥0

.

The vertical regions R = Va give—in addition to the rcf-convergents pj−1/qj−1 for 
which aj+1 = a�-final mediants, next-tofinal mediants, and so on for a = 1, 2, . . . , 
respectively: {︃

uR
n

sRn

}︃
n≥0

=
{︃
λnpjn + pjn−1

λnqjn + qjn−1

⃓⃓⃓
λn = ajn+1 − a

}︃
n≥0

.

The regions R = Va−λ∩Hλ+1 pick out rcf-convergents (λ = 0) or λth-mediants (λ > 1) 
corresponding to partial denominators a in the rcf-expansion of x:
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{︃
uR
n

sRn

}︃
n≥0

=
{︃
λnpjn + pjn−1

λnqjn + qjn−1

⃓⃓⃓
λn = λ, ajn+1 = a

}︃
n≥0

.

Remark 5.4. For the reasons explained in Remark 5.1, some of the statements in Exam
ple 5.3 are false for z = (x, 1), where x = [0; a1, a2, . . . ] with a1 = a(x) = 1. For some of 
the examples in §7, it will be advantageous to ‘fix’ this. In such cases, we may ‘adjust’ 
the map ℱR so that the corresponding statements on the subsets of Farey convergents 
are true for all z = (x, 1). For instance, when R = H1 and z = (x, 1) with x > 1/2, the 
sequence (uR

n /s
R
n )n≥0 skips the rcf-convergent p0/q0 of x. To ‘catch’ this convergent, we 

instead consider the map ℱH1 : H1 → H1 where for z = (x, y) ∈ H1, ℱH1(z) := ℱa(x)(z)
if x ̸= 0 and ℱH1(z) := z if x = 0. The maps ℱH1 and ℱH1 agree on H1\(A∪B), where 
A = (1/2, 1]×{1} and B = {0}×(1/2, 1]. The dynamical systems (H1,ℬ, μ̄H1

,ℱH1) and 
(H1,ℬ, μ̄H1 ,ℱH1) are isomorphic under the identity map and thus—from an ergodic
theoretic point of view—indistinguishable. Moreover, the map ℱH1 ‘fixes’ the subtlety 
in Remark 5.1 since, for z ∈ A, ℱH1(z) = ((1 − x)/x, 1/2) ∈ H1. Thus we do include 
the convergent p0/q0 in (uR

n /s
R
n )n≥0. Throughout, we shall often consider such altered 

systems without mention, denoting them again by (R,ℬ, μ̄R,ℱR).

Consider again R = H1, which gives as a subsequence (uR
n /s

R
n )n≥0 of Farey con

vergents the rcf-convergents of x. Now R consists of all points z = (x, y) as in (29) 
with b1 = 1, so—after the alteration of Remark 5.4�-we find from (31) that for x ̸= 0, 
NR(z) = a1 = a(x) and

ℱR(z) = ℱa1([0; a1, a2, . . . ], [0; 1, b2, b3, . . . ]) = ([0; a2, a3, . . . ], [0; 1, a1, b2, b3, . . . ]). (43)

Notice the similarity between this induced map and the map 𝒢 from (12); they both 
act essentially as a two-sided shift on rcf-expansions. In fact, Brown and Yin proved in 
1996 that a copy of the Gauss natural extension is found sitting (inverted, scaled and 
‘suspended’ from y = 1) within (Ω,ℬ, μ̄,ℱ) as the induced system (R,ℬ, μ̄R,ℱR) with 
R = H1 (Theorem 1 of [6]):

Theorem 5.5 (Brown–Yin, 1996 [6]). The induced system (R,ℬ, μ̄R,ℱR) with R = H1 is 
isomorphic to the Gauss natural extension (Ω,ℬ, ν̄G,𝒢).

Using Theorem 5.5, one can exploit knowledge about the Gauss natural extension 
(Ω,ℬ, ν̄G,𝒢) to infer properties of other induced systems (R,ℬ, μ̄R,ℱR). This is used, 
for instance, in the proof12 of Theorem 4.6 of [13], which states that the measure-theoretic 
entropy h(ℱR) = hμ̄R

(ℱR) of the induced system (R,ℬ, μ̄R,ℱR) is inversely proportional 
to the μ̄-measure of R:

12 The aforementioned μ̄-continuity condition assumed on inducible regions R in [13] is not needed in the 
proof.
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Theorem 5.6. For any proper, inducible subregion R ⊂ Ω,

h(ℱR) = π2

6μ̄(R) .

Remark 5.7. We remark here the striking resemblance between Theorem 5.6, Remark 
5.10 of [23] on the entropy of S-expansions and Theorem 2 of [24] (conjectured in Remark 
2 of [28]) on the entropy of α-cfs. From the results of §7.2 and §7.3 below, Theorem 5.6
may be viewed as simultaneously extending these results from [23,24].

6. Inducing contractions of the mother of all continued fractions

We have seen in §5.2 that inducible subregions R ⊂ Ω naturally determine subse
quences (uR

n /s
R
n )n≥0 = (uNR

n
/sNR

n
)n≥0 of the convergents of Farey expansions. In this 

section, we construct new gcf-expansions whose convergents are precisely the sub
sequences (uR

n /s
R
n )n≥0 (Corollary 6.12). These gcfs arise from a general procedure 

described in §6.1 called contraction, which—under very mild assumptions—allows one to 
produce from a given gcf a new gcf whose convergents are any desired subsequence of 
the original convergents. In §6.2, we use induced transformations of Ito’s natural exten
sion of the Farey tent map (‘the mother of all continued fractions’) to govern contractions 
of Farey expansions. In §6.3 we introduce a dynamical system—isomorphic to the in
duced system (R,ℬ, μ̄R,ℱR)�-which acts essentially as a two-sided shift on contracted 
Farey expansions.

6.1. Contraction

Recall the singularisation procedure discussed in §3.3: beginning with a srcf
expansion, one may (simultaneously) singularise at possibly countably many positions 
to produce a new srcf-expansion whose convergents are a subsequence of the original 
convergents. However, singularisation at position n is subject to the condition that the 
partial numerator αn+2 and partial denominator βn+1 are both equal to 1. Moreover, 
beginning from a rcf-expansion, this constraint on partial denominators implies that 
consecutive convergents cannot be removed via singularisation.

In this subsection, we recall an old acceleration technique of Seidel from 1855 ([40]; 
see also [37]), called contraction, which overcomes these obstacles. Although our main 
interest is in producing gcf-expansions whose convergents are subsequences of Farey 
convergents, we present contraction in the general, abstract setting of gcfs discussed 
in §2.1, as we feel this technique has been largely overlooked13 and can be fruitfully 
applied to other continued fraction algorithms. For the same reason, we include a proof 
of Seidel’s theorem (Theorem 6.6) below.

13 As mentioned in the introduction (§1), contraction is used in the analytic theory of continued fractions, 
but usually only for subsequences of odd or even integers ([27]). See also [5].
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Definition 6.1. A gcf [β0/α0;α1/β1, α2/β2, . . . ] is called contractable if Q[m+1,n] ̸= 0
for all 0 ≤ m ≤ n. The contracted continued fraction (ccf) of a contractable gcf 
[β0/α0;α1/β1, α2/β2, . . . ] with respect to a strictly increasing sequence of non-negative 
integers (nk)k≥0 is the gcf [β′

0/α
′
0;α′

1/β
′
1, α

′
2/β

′
2, . . . ], where

(︃
α′
k+1

β′
k+1

)︃
:=

(︃− det(B[nk−1+2,nk+1])Q[nk−2+2,nk−1]Q[nk+2,nk+1]
Q[nk−1+2,nk+1]

)︃
, k ≥ −1,

with nk := k for k < 0.

Remark 6.2. The requirement that a contractable gcf satisfies Q[m+1,n] ̸= 0 for all 
0 ≤ m ≤ n guarantees that the partial numerators α′

k+1 are nonzero for all k ≥ −1, i.e., 
that a ccf is in fact a gcf as defined in §2.1. Indeed, we have det(B[nk−1+2,nk+1]) ̸= 0
for all k ≥ −1 as noted in §2.1, and both Q[nk−2+2,nk−1] ̸= 0, k ≥ 1, and Q[nk+2,nk+1] ̸=
0, k ≥ −1, by assumption. Moreover, for k = −1 and k = 0, Q[nk−2+2,nk−1] = 1 ̸= 0; see 
(2).

This requirement also guarantees that the scalars ck in Theorem 6.6 below are non
zero.

Remark 6.3. Notice that the partial numerators α′
n of a ccf in general do not satisfy 

|α′
n| = 1, even if this is true of the original gcf. Hence contraction does not necessarily 

send srcfs to srcfs.

Example 6.4. We compute the ccf with respect to (nk)k≥0 = (2k)k≥0 of [β0/α0;α1/β1, 
α2/β2, . . . ] = [1/1; 1/2, 2/3, 3/4, . . . ], i.e., α0 = 1 and αn = βn−1 = n for all n > 0. We 
first note that the recurrence relations (2) and the fact that all of the partial numerators 
and partial denominators are positive imply that this gcf is in fact contractable. From 
Definition 6.1,(︃

α′
0

β′
0

)︃
=

(︃− det(B[0,0])Q[−1,−2]Q[1,0]
Q[0,0]

)︃
=

(︃
α0 · 1 · 1

β0

)︃
=

(︃
1
1

)︃
,

(︃
α′

1
β′

1

)︃
=

(︃− det(B[1,1])Q[0,−1]Q[2,2]
Q[1,2]

)︃
=

(︃
α1 · 1 · β2
β2β1 + α2

)︃
=

(︃
1 · 1 · 3
3 · 2 + 2

)︃
=

(︃
3
8

)︃
,

(︃
α′

2
β′

2

)︃
=

(︃− det(B[2,3])Q[1,0]Q[4,4]
Q[2,4]

)︃
=

(︃ −α2α3 · 1 · β4
β4(β3β2 + α3) + α4β2

)︃
=

(︃ −2 · 3 · 1 · 5
5(4 · 3 + 3) + 4 · 3

)︃
=

(︃−30
87

)︃
,

and for k > 1,(︃
α′
k+1

β′
k+1

)︃
=

(︃− det(B[2k,2k+1])Q[2k−2,2k−2]Q[2k+2,2k+2]
Q[2k,2k+2]

)︃
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=
(︃ −α2kα2k+1 · β2k−2 · β2k+2
β2k+2(β2k+1β2k + α2k+1) + α2k+2β2k

)︃
=

(︃ − ((2k)(2k + 1)) · (2k − 1) · (2k + 3)
(2k + 3)((2k + 2)(2k + 1) + (2k + 1)) + (2k + 2)(2k + 1)

)︃
=

(︃−(2k − 1)(2k)(2k + 1)(2k + 3)
(2k + 1)((2k + 3)2 + (2k + 2))

)︃
.

The first few terms of the ccf are thus

[1/1; 3/8,−30/87,−420/275,−1890/623,−5544/1179,−12870/1991,−25740/3107, . . . ].

Before proving that the convergents of a ccf are a subsequence of the original gcf
convergents, we need the following:

Lemma 6.5. For any gcf,

Q[m+1,n] = QnPm−1 − PnQm−1

detB[−1,m]
for all integers −1 ≤ m ≤ n.

Proof. If m = n, then both the left- and right-hand sides of the expression equal 1. For 
m < n, Q[m+1,n] is the bottom-right entry of

B[m+1,n] = B−1
[−1,m]B[−1,n] = 1 

detB[−1,m]

(︃
Qm −Pm

−Qm−1 Pm−1

)︃(︃
Pn−1 Pn

Qn−1 Qn

)︃
,

which is evidently QnPm−1−PnQm−1
detB[−1,m]

. □
Let [β′

0/α
′
0;α′

1/β
′
1, α

′
2/β

′
2, . . . ] be the ccf of a contractable gcf [β0/α0;α1/β1, α2/β2, 

. . . ] with respect to (nk)k≥0. For −1 ≤ m ≤ n, let(︃
P ′

[m,n−1] P ′
[m,n]

Q′
[m,n−1] Q′

[m,n]

)︃
= B′

[m,n] := B[m,n]([β′
0/α

′
0;α′

1/β
′
1, α

′
2/β

′
2, . . . ]),

and when m = −1, set P ′
n := P ′

[−1,n] and Q′
n := Q′

[−1,n].

Theorem 6.6 (Seidel, 1855 [40]). With notation as above,

(︃
P ′
k

Q′
k

)︃
= ck

(︃
Pnk

Qnk

)︃
, k ≥ −2, where ck =

k−1∏︂
j=0 

Q[nj−1+2,nj ],

with nk := k, k < 0, and the product defining ck set equal to 1 for k < 1. In 
particular, the ccf with respect to (nk)k≥0 of a contractable gcf-expansion x =
[β0/α0;α1/β1, α2/β2, . . . ] ∈ C with convergents (Pk/Qk)k≥−1 is a gcf-expansion of x
with convergents (Pnk

/Qnk
)k≥−1.
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Proof. The proof of the first statement is by induction on k. The statement trivially 
holds for k < 0. Now let k+1 ≥ 0 and suppose the statement is true for k and k− 1. By 
the recurrence relations (3) and Definition 6.1�-letting U represent either P or Q�-we 
compute

U ′
k+1 =β′

k+1U
′
k + α′

k+1U
′
k−1

=Q[nk−1+2,nk+1]ckUnk
− det(B[nk−1+2,nk+1])Q[nk−2+2,nk−1]Q[nk+2,nk+1]ck−1Unk−1

=ck
(︁
Q[nk−1+2,nk+1]Unk

− det(B[nk−1+2,nk+1])Q[nk+2,nk+1]Unk−1

)︁
.

By Lemma 6.5,

Q[nk−1+2,nk+1] =
Qnk+1Pnk−1 − Pnk+1Qnk−1

detB[−1,nk−1+1]
and

Q[nk+2,nk+1] =
Qnk+1Pnk

− Pnk+1Qnk

detB[−1,nk+1]
,

so the above computation gives

U ′
k+1 =

ck
(︁
(Qnk+1Pnk−1 − Pnk+1Qnk−1)Unk

− (Qnk+1Pnk
− Pnk+1Qnk

)Unk−1

)︁
detB[−1,nk−1+1]

.

For both U = P and U = Q, the numerator of the previous expression simplifies to

ck(Qnk
Pnk−1 − Pnk

Qnk−1)Unk+1 .

Using Lemma 6.5 once more, we have

U ′
k+1 = ck

Qnk
Pnk−1 − Pnk

Qnk−1

detB[−1,nk−1+1]
Unk+1 = ckQ[nk−1+2,nk]Unk+1 = ck+1Unk+1 .

This proves the first statement. The second statement follows from the first, since for 
a contractable gcf, Q[nj−1+2,nj ] ̸= 0 for all j ≥ 0 implies ck ̸= 0 for all k ≥ −1, and 

x = limk→∞ Pk

Qk
= limk→∞

Pnk

Qnk
. □

Example 6.7. Continuing with Example 6.4, for [β0/α0;α1/β1, α2/β2, . . . ] = [1/1; 1/2, 
2/3, 3/4, . . . ] one computes(︃(︃

Pn

Qn

)︃)︃
n≥0

=
(︃(︃

1
1

)︃
,

(︃
3
2

)︃
,

(︃
11
8

)︃
,

(︃
53
38

)︃
,

(︃
309
222

)︃
,

(︃
2119
1522

)︃
,

(︃
16687
11986

)︃
,(︃

148329
106542

)︃
,

(︃
1468457
1054766

)︃
,

(︃
16019531
11506538

)︃
, . . .

)︃
.

For the ccf
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[β′
0/α

′
0;α′

1/β
′
1, α

′
2/β

′
2, . . . ] = [1/1; 3/8,−30/87,−420/275,−1890/623,−5544/1179,

− 12870/1991,−25740/3107, . . . ]

of [1/1; 1/2, 2/3, 3/4, . . . ] with respect to (2k)k≥0, we find(︃(︃
P ′
k

Q′
k

)︃)︃
k≥0

=
(︃(︃

1
1

)︃
,

(︃
11
8

)︃
, 3

(︃
309
222

)︃
, 3 · 5

(︃
16687
11986

)︃
, 3 · 5 · 7

(︃
1468457
1054766

)︃
,

3 · 5 · 7 · 9
(︃

190899411
137119578

)︃
, . . .

)︃
.

As fractions, P ′
k/Q

′
k = P2k/Q2k for k ≥ 0.

6.2. Contracted Farey expansions

Throughout this subsection, R ⊂ Ω is an inducible subregion and z = (x, y) ∈ Ω with 
x irrational. Using notation from §2.1 and §4.2, let [β0/α0;α1/β1, α2/β2, . . . ] denote the 
Farey expansion of x, i.e., α0 = 1, β0 = 1 − ε1, and for n > 0, αn = 2εn − 1 and 
βn = 2 − εn+1; see (25). Below, we shall perform contraction on Farey expansions, but 
first we must show that Farey expansions are in fact contractable.

Proposition 6.8. The Farey expansion of an irrational x ∈ (0, 1) is contractable.

Proof. We must show that Q[m+1,n] ̸= 0 for any 0 ≤ m ≤ n. By Lemma 6.5, this is 
equivalent to QnPm−1 ̸= PnQm−1 for all 0 ≤ m ≤ n. By Proposition 4.1, the Farey 
convergents (Pj/Qj)j≥−1 = (uj/sj)j≥0 are all rcf-convergents and mediants, which are 
distinct by (9) and (10). □

Recall the definition of NR
n = NR

n (z) from (36).

Definition 6.9. The contracted Farey expansion of x with respect to R and z = (x, y), 
denoted

[βR
0 /αR

0 ;αR
1 /β

R
1 , αR

2 /β
R
2 , . . . ] = [βR

0 (z)/αR
0 (z);αR

1 (z)/βR
1 (z), αR

2 (z)/βR
2 (z), . . . ],

is the ccf of the Farey expansion of x with respect to (nk)k≥0, where nk := NR
k+1−1, k ≥

0. If z = (x, 1), we call this the contracted Farey expansion of x with respect to R.

Remark 6.10. Using (31), one can show that for any z = (x, y) and z′ = (x′, y′) in Ω with 
x = x′, |ℱn(z) − ℱn(z′)| → 0. Using this and the fact that (Ω,ℬ, μ̄,ℱ) is conservative 
and ergodic ([6]), one finds that for any inducible R ⊂ Ω with μ̄(int(R)) > 0, the forward 
ℱ-orbit of (x, 1) enters R infinitely often for Lebesgue–a.e. x ∈ (0, 1); see Remark 4.3 of 
[13]. Hence, for such R, the contracted Farey expansion of x with respect to R exists for 
Lebesgue–a.e. x ∈ (0, 1).
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In order to study contracted Farey expansions using the dynamics of ℱR, we wish to 
understand these expansions and their convergents in terms of entries from the matrices 
AR(z) and AR

[m,n](z) from (35) and (39) rather than B[m,n]. To this end, we begin with a 
lemma. Let zRn = ℱn

R(z) and recall that sR(z) and sRn (z) denote the bottom-left entries 
of the matrices AR(z) and AR

[0,n](z), respectively; see (35) and (40).

Lemma 6.11. For any z ∈ Ω and 0 ≤ j < k, one has Q[NR
j +1,NR

k −1] = sRk−j(zRj ). In 

particular, if k = j + 1, then Q[NR
j +1,NR

j+1−1] = sR(zRj ).

Proof. First, notice that for any n > 0,

detA[0,n] = det (Aε1 · · ·Aεn) =
n ∏︂

j=1
(1 − 2εj) = det(B−1B0 · · ·Bn) = detB[−1,n], (44)

and equality of the left- and right-hand sides also holds for n = 0 since both sides equal 
1. Then by Lemma 6.5, Proposition 4.1, and Equations (41) and (42),

Q[NR
j +1,NR

k −1] =
QNR

k −1PNR
j −1 − PNR

k −1QNR
j −1

detB[−1,NR
j ]

=
sNR

k
uNR

j
− uNR

k
sNR

j

detA[0,NR
j ]

=
sRk u

R
j − uR

k s
R
j

detAR
[0,j]

,

where AR
[0,j] = AR

[0,j](z). For the first statement, it suffices to show that the right-hand 
side of the previous line equals the bottom-left entry of AR

[0,k−j](zRj ). From (38), (39) 
and (41), we have

AR
[0,k−j](zRj ) =AR

1 (zRj )AR
2 (zRj ) · · ·AR

k−j(zRj )

=AR
j+1(z)AR

j+2(z) · · ·AR
k (z)

=
(︂
AR

[0,j]

)︂−1
AR

[0,k] = 1 
detAR

[0,j]

(︃
rRj −tRj
−sRj uR

j

)︃(︃
uR
k tRk

sRk rRk

)︃
,

and the first statement follows. The second statement follows immediately from the first 
and the fact that AR

[0,1](zRj ) = AR
1 (zRj ) = AR(zRj ); see (38) and (39). □

Now let [βR
0 /αR

0 ;αR
1 /β

R
1 , αR

2 /β
R
2 , . . . ] be the contracted Farey expansion of x with 

respect to R and z, and for −1 ≤ m ≤ n, let(︄
PR

[m,n−1] PR
[m,n]

QR
[m,n−1] QR

[m,n]

)︄
= BR

[m,n] := B[m,n]([βR
0 /αR

0 ;αR
1 /β

R
1 , αR

2 /β
R
2 , . . . ]) (45)

and
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PR
n := PR

[−1,n], QR
n := QR

[−1,n]. (46)

Then Theorem 6.6, Proposition 4.1 and Lemma 6.11 imply:

Corollary 6.12. With notation as above,

(︃
PR
k

QR
k

)︃
= cRk

(︃
uR
k+1

sRk+1

)︃
, k ≥ −1, where cRk =

k−1∏︂
j=0 

sR(zRj ),

with cRk = 1 for k < 1. In particular, the contracted Farey expansion of x with respect to 
R and z = (x, y) has convergents (uR

k /s
R
k )k≥0.

Corollary 6.12 describes the convergents of a contracted Farey expansion in terms of 
the entries of AR

[0,n] (see (41)). Proposition 6.14 below gives an alternative description 
of the partial numerators and partial denominators αR

k , β
R
k in terms of entries of the 

matrices AR(z) (see (35)). For this, we introduce three integer-valued maps on Ω: let 
dR, αR, βR : Ω → Z be defined for z ∈ Ω by

dR(z) :=
{︄
sR(ℱ−1

R (z)), if ℱ−1
R (z) is defined,

1, otherwise,

αR(z) := − det(AR(z))dR(z)sR(ℱR(z)) (47)

and

βR(z) := sR(z)uR(ℱR(z)) + rR(z)sR(ℱR(z)). (48)

Remark 6.13. Notice that Lemma 5.2 implies dR(z) is a positive integer for any z. We 
claim that dR(z) = 1 whenever z = (x, 1). By definition of ℱ (Equation (26)), ℱ−1(z) ∈
(1/2, 1] × {0}, and ℱ−n(z) ∈ [0, 1/2] × {0} for n > 1. If ℱ−1

R (z) is not defined (e.g., 
if R does not intersect the line [0, 1] × {0}), then dR(z) = 1 by definition. Otherwise, 
ℱ−1

R (z) = ℱ−n(z) for some n ≥ 1, and

AR(ℱ−1
R (z)) = An−1

0 A1 =
(︃

0 1
1 n

)︃
implies dR(z) = sR(ℱ−1

R (z)) = 1. In either case, dR(z) = 1 for z = (x, 1) as claimed.
One motivation for defining dR(z) as above lies in the second statement of the following 

proposition: when dR(z) = 1, the notation simplifies and we need not consider the index 
1 partial numerator αR

1 as a separate case.

Proposition 6.14. The digits of the contracted Farey expansion of x with respect to R and 
z = (x, y) are given by
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αR

0
βR

0

)︃
=

(︃
sR(zR0 )
uR(zR0 )

)︃
, 

(︃
αR

1
βR

1

)︃
=

(︃
αR(zR0 )/dR(zR0 )

βR(zR0 )

)︃
and(︃

αR
k+1

βR
k+1

)︃
=

(︃
αR(zRk )
βR(zRk )

)︃
, k > 0.

When dR(z) = 1 (e.g., when z = (x, 1) by Remark 6.13), this becomes(︃
αR

0
βR

0

)︃
=

(︃
sR(zR0 )
uR(zR0 )

)︃
and

(︃
αR
k+1

βR
k+1

)︃
=

(︃
αR(zRk )
βR(zRk )

)︃
, k ≥ 0.

Proof. From Definitions 6.1 and 6.9, we have(︃
αR
k+1

βR
k+1

)︃
=

(︃− det(B[NR
k +1,NR

k+1])Q[NR
k−1+1,NR

k −1]Q[NR
k+1+1,NR

k+2−1]
Q[NR

k +1,NR
k+2−1]

)︃
, k ≥ −1, (49)

where NR
k := k for k < 0. For k = −1,(︃
αR

0
βR

0

)︃
=

(︃− det(B[0,0])Q[−1,−2]Q[NR
0 +1,NR

1 −1]
Q[0,NR

1 −1]

)︃
=

(︃
Q[NR

0 +1,NR
1 −1]

Q[0,NR
1 −1]

)︃
.

Lemma 6.11 gives Q[NR
0 +1,NR

1 −1] = sR(zR0 ), and Lemma 6.5 and Proposition 4.1 give

Q[0,NR
1 −1] =

QNR
1 −1P−2 − PNR

1 −1Q−2

detB[−1,−1]
= PNR

1 −1 = uR
1 = uR(zR0 ).

Thus the claim holds for αR
0 , β

R
0 . Next, notice from Equation (44) that for any 0 ≤ m <

n,

detB[m+1,n] =
detB[−1,n]

detB[−1,m]
=

detA[0,n]

detA[0,m]
= det(Aεm+1 · · ·Aεn),

so by (37), we have for k ≥ 0 that

det(B[NR
k +1,NR

k+1]) = det(Aε
NR

k
+1

· · ·Aε
NR

k+1
) = det(AR(zRk )).

This, Equation (49) and Lemma 6.11 give for k ≥ 0

(︃
αR
k+1

βR
k+1

)︃
=

(︃− det(B[NR
k +1,NR

k+1])Q[NR
k−1+1,NR

k −1]Q[NR
k+1+1,NR

k+2−1]
Q[NR

k +1,NR
k+2−1]

)︃

=

⎧⎪⎪⎨⎪⎪⎩
(︃− det(AR(zR0 ))sR(zR1 )

sR2 (zR0 )

)︃
, k = 0,(︃− det(AR(zRk ))sR(zRk−1)sR(zRk+1)

sR2 (zRk )

)︃
, k > 0.
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When k = 0, this gives αR
1 = αR(zR0 )/dR(zR0 ). When k > 0, sR(zRk−1) = sR(ℱ−1

R (zRk )) =
dR(zk), so αR

k+1 = αR(zRk ). Moreover, for k ≥ 0, sR2 (zRk ) is the bottom-left entry of

AR
[0,2](zRk ) = AR

1 (zRk )AR
2 (zRk ) = AR(zRk )AR(zRk+1)

=
(︃
uR(zRk ) tR(zRk )
sR(zRk ) rR(zRk )

)︃(︃
uR(zRk+1) tR(zRk+1)
sR(zRk+1) rR(zRk+1)

)︃
;

see (40), (39), (38) and (35). Thus sR2 (zRk ) = sR(zRk )uR(zRk+1) + rR(zRk )sR(zRk+1) =
βR(zRk ). This proves the first statement. The latter statement follows immediately from 
the first. □

We refer the reader to §7 below for examples using Proposition 6.14.

6.3. A two-sided shift for contracted Farey expansions

In this subsection, we associate to the induced system (R,ℬ, μ̄R,ℱR) an isomorphic 
dynamical system (ΩR,ℬ, ν̄R, τR) acting essentially as a two-sided shift for contracted 
Farey expansions. This new system will serve several purposes in §7 below: we will see 
that (ΩH1 ,ℬ, ν̄H1 , τH1) = (Ω,ℬ, ν̄G,𝒢) is the natural extension of the Gauss map; for 
certain subregions R ⊂ H1, (ΩR,ℬ, ν̄R, τR) will coincide with a two-sided shift system 
associated to S-expansions in [23]; and in §7.3, we describe the natural extension of 
each of Nakada’s α-cfs, 0 < α ≤ 1, as an induced system (R,ℬ, μ̄R,ℱR) by using the 
isomorphic system (ΩR,ℬ, ν̄R, τR).

To ease exposition, we impose some restrictions on our inducible subregion R ⊂ Ω
throughout this subsection. First, we assume that R is bounded away from the origin 
and that for any z = (x, y) ∈ R, y > 0. Furthermore, we assume that sR(z) = 1 for all 
z ∈ R, and hence—by Lemma 5.2�-that uR(z) ∈ {0, 1}. The regions R considered in §7
below shall satisfy these assumptions.

Remark 6.15. A two-sided shift space may be constructed without the restriction sR(z) =
1, but in general the domain ΩR consists of several planar ‘sheets,’ and the invariant 
measure ν̄R is a sum of measures which—restricted to each of these sheets—has density 
of the form in Theorem 6.16 below. However, this more general system is not needed for 
our purposes.

Define ϕR : R → R2, where for z = (x, y) ∈ R,

ϕR(z) = (X(z), Y (z)) :=
(︃(︃

1 −uR(z)
0 1

)︃
· x, 

(︃ −1 1
1 − uR(z) uR(z)

)︃
· y

)︃
(50)

=

⎧⎨⎩
(︂
x, 1−y

y

)︂
, uR(z) = 0,

(x− 1, 1 − y) , uR(z) = 1.
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Fig. 4. Left: The domain Ω = [0, 1]2. Right: The first quadrant shows part of the image of Ω\([0, 1] × {0})
under the map (x, y) ↦→ (x, (1 − y)/y); the second quadrant shows the image of Ω under the map (x, y) ↦→
(x − 1, 1 − y).

The map ϕR is injective, except possibly on the null-set of points {(x, y) ∈ R | x ∈
{0, 1}}; see Fig. 4. Setting ΩR := ϕR(R), its inverse (off of the image of the aforemen
tioned null-set) ϕ−1

R : ΩR \ ({0} × [0,∞)) → R is given by

ϕ−1
R (X,Y ) =

⎧⎨⎩
(︂
X, 1 

Y +1

)︂
, X > 0,

(X + 1, 1 − Y ), X < 0.

If z = ϕ−1
R (X,Y ), this may also be written

ϕ−1
R (X,Y ) =

(︃(︃
1 uR(z)
0 1

)︃
·X, 

(︃
uR(z) −1

uR(z) − 1 −1

)︃
· Y

)︃
=

(︃
X + uR(z), uR(z)Y − 1 

(uR(z) − 1)Y − 1

)︃
.

(51)

Define τR : ΩR → ΩR by

τR(X,Y ) :=
{︄

(X,Y ), X = 0,
ϕR ◦ ℱR ◦ ϕ−1

R , X ̸= 0.

We obtain a dynamical system (ΩR,ℬ, ν̄R, τR), where ν̄R := μ̄R ◦ϕ−1
R denotes the push

forward measure of μ̄R under ϕR. By construction, (R,ℬ, μ̄R,ℱR) and (ΩR,ℬ, ν̄R, τR)
are isomorphic. Recall the definitions of αR and βR from (47) and (48).
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Theorem 6.16. The map τR : ΩR → ΩR is given by τR(0, Y ) = (0, Y ) and for X ̸= 0,

τR(X,Y ) =
(︃
αR(z)
X

− βR(z), 1 
βR(z) + αR(z)Y

)︃
,

where z = ϕ−1
R (X,Y ), and the measure ν̄R has density

1 
μ̄(R)(1 + XY )2 .

Remark 6.17. We remark here the resemblance between the measures and maps from 
(ΩR,ℬ, ν̄R, τR) and the natural extension (Ω,ℬ, ν̄G,𝒢) of the Gauss map from §3.1. We 
shall return to this point in §7.1 below.

Proof of Theorem 6.16. We begin with the statement about the map τR. By definition, 
τR(0, Y ) = (0, Y ), so let (X,Y ) ∈ ΩR with X ̸= 0. Set (X ′, Y ′) := τR(X,Y ), z =
(x, y) := ϕ−1

R (X,Y ) and z′ = (x′, y′) := ℱR(z), and note that (X ′, Y ′) = ϕR(z′). Set 
u = uR(z) and u′ = uR(z′). Using Equations (50), (34), (51), and symmetry of A1, 
respectively,

(X ′, Y ′) =
(︃(︃

1 −u′
0 1

)︃
· x′, 

(︃ −1 1
1 − u′ u′

)︃
· y′

)︃
=

(︃(︃
1 −u′
0 1

)︃
A−1

R (z) · x, 
(︃ −1 1

1 − u′ u′

)︃
A1A

T
R(z)A−1

1 · y
)︃

=
(︃(︃

1 −u′
0 1

)︃
A−1

R (z)
(︃

1 u
0 1

)︃
·X,(︃ −1 1

1 − u′ u′

)︃
A1A

T
R(z)A−1

1

(︃
u −1

u− 1 −1

)︃
· Y

)︃

=
(︄(︃

1 −u′
0 1

)︃
A−1

R (z)
(︃

1 u
0 1

)︃
·X,

(︄(︃ −1 1
1 − u′ u′

)︃−T

A−1
1 A−1

R (z)A1

(︃
u −1

u− 1 −1

)︃−T
)︄−T

· Y
)︄
.

One easily computes

(︃ −1 1
1 − u′ u′

)︃−T

A−1
1 =

(︃
1 −u′
0 1

)︃
and A1

(︃
u −1

u− 1 −1

)︃−T

= −
(︃

1 u
0 1

)︃
,

so (X ′, Y ′) = (M · X,M−T · Y ), where (recall u = uR(z), u′ = uR(z′) and sR(z) =
sR(z′) = 1)
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M =
(︃

1 −u′
0 1

)︃
A−1

R (z)
(︃

1 u
0 1

)︃
= 1 

detAR(z)

(︃
1 −u′
0 1

)︃(︃
rR(z) −tR(z)
−sR(z) uR(z)

)︃(︃
1 u
0 1

)︃
= 1 

detAR(z)

(︃
rR(z) + sR(z)u′ (rR(z)u− tR(z)) − u′(uR(z) − sR(z)u)

−sR(z) uR(z) − sR(z)u

)︃
= 1 

detAR(z)

(︃
rR(z) + sR(z)u′ rR(z)u− tR(z)

−sR(z) 0

)︃
= −1 

detAR(z)

(︃− (rR(z)sR(z′) + sR(z)uR(z′)) − det(AR(z))
1 0

)︃
= −1 

detAR(z)

(︃−βR(z) αR(z)
1 0

)︃
.

Thus

τR(X,Y ) = (X ′, Y ′) = (M ·X,M−T · Y )

=
(︃(︃−βR(z) αR(z)

1 0

)︃
·X,

(︃
0 1

αR(z) βR(z)

)︃
· Y

)︃
,

proving the claim about τR.
Next we prove the statement about the density of ν̄R. Let S be a measurable subset 

of ΩR. Using a change of variables,

ν̄R(S) =μ̄R ◦ ϕ−1
R (S) =

ˆ

ϕ−1
R (S)

dμ̄R = 1 
μ̄(R)

¨

ϕ−1
R (S)

ρ(x, y)dxdy

= 1 
μ̄(R)

¨

S

ρ(ϕ−1
R (X,Y ))|detJ |dXdY,

where

ρ(x, y) := 1 
(x + y − xy)2

is the density of μ̄ and J is the Jacobian of ϕ−1
R at (X,Y ) ∈ S. Let u = uR(z) ∈ {0, 1}, 

where z = ϕ−1
R (X,Y ). By Equation (51), the Jacobian of ϕ−1

R at (X,Y ) is

J =
(︃1 0

0 u((u−1)Y−1)−(u−1)(uY−1)
((u−1)Y−1)2

)︃
=

(︃
1 0
0 −1 

((u−1)Y−1)2

)︃
.

Moreover,
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ρ(ϕ−1
R (X,Y )) =

(︃
(X + u) + uY − 1 

(u− 1)Y − 1 − (X + u) uY − 1 
(u− 1)Y − 1

)︃−2

=
(︃

(X + u)((u− 1)Y − 1) + (uY − 1) − (X + u)(uY − 1)
((u− 1)Y − 1) 

)︃−2

=
(︃

1 + XY 
(u− 1)Y − 1

)︃−2

so that

ρ(ϕ−1
R (X,Y ))|detJ | =

(︃
(u− 1)Y − 1

1 + XY 

)︃2 1 
((u− 1)Y − 1)2 = 1 

(1 + XY )2 . □
For given (X,Y ) = (X(z), Y (z)) ∈ ΩR, set

(XR
n , Y R

n ) = (XR
n (z), Y R

n (z)) := τnR(X,Y ), n ≥ 0. (52)

Then, for XR
n ̸= 0,

zRn = ℱn
R(z) = ℱn

R ◦ ϕ−1
R (X,Y ) = ϕ−1

R ◦ τnR(X,Y ) = ϕ−1
R (XR

n , Y R
n ), n ≥ 0. (53)

The next result states that the map τR acts essentially as a two-sided shift operator on 
contracted Farey expansions.

Proposition 6.18. Let [βR
0 /αR

0 ;αR
1 /β

R
1 , αR

2 /β
R
2 , . . . ] denote the contracted Farey expan

sion of x ∈ (0, 1)\Q with respect to R and z = (x, y) ∈ R. Then for n ≥ 0,

(XR
n , Y R

n ) = ([0/1;αR
n+1/β

R
n+1, α

R
n+2/β

R
n+2, . . . ],

[0/1; 1/βR
n , α

R
n /β

R
n−1, . . . , α

R
1 /β

R
0 , αR

0 /(1/y − 1)]).

Proof. For each n ≥ 0, set

(Tn, Vn) := ([0/1;αR
n+1/β

R
n+1, α

R
n+2/β

R
n+2, . . . ],

[0/1; 1/βR
n , α

R
n /β

R
n−1, . . . , α

R
1 /β

R
0 , αR

0 /(1/y − 1)]).

Using (4) and (5), one finds that for each n ≥ 0,

(Tn+1, Vn+1) =
(︄(︃

0 αR
n+1

1 βR
n+1

)︃−1

· Tn,

(︃
0 1

αR
n+1 βR

n+1

)︃
· Vn

)︄

=
(︃
αR
n+1
Tn

− βR
n+1,

1 
βR
n+1 + αR

n+1Vn

)︃
. (54)

We will show by induction that (XR
n , Y R

n ) = (Tn, Vn) for all n ≥ 0. By (50), Proposi
tion 6.14 and the fact that sR(z) = 1 for all z,



K. Dajani et al. / Journal of Number Theory 278 (2026) 816--874 853

XR
0 =

(︃
1 −uR(z)
0 1

)︃
· x =

(︃
αR

0 −βR
0

0 1

)︃
· x =

(︃(︃
0 1
1 0

)︃(︃
0 αR

0
1 βR

0

)︃)︃−1

· x.

Setting n = 0 in (4) and multiplying both sides by B−1
[−1,0] reveals that XR

0 = T0. 
Similarly,

Y R
0 =

(︃ −1 1
1 − uR(z) uR(z)

)︃
· y =

(︃ −1 1
αR

0 − βR
0 βR

0

)︃
· y

=
(︃

0 1
αR

0 βR
0

)︃(︃
0 1
1 0

)︃(︃−1 1
1 0

)︃
· y =

(︃(︃
0 1
1 0

)︃(︃
0 αR

0
1 βR

0

)︃)︃T (︃−1 1
1 0

)︃
· y.

Since 
(︁−1 1

1 0

)︁ · y = 1/y − 1, Equation (6) gives Y R
0 = V0. Now suppose that (XR

n , Y R
n ) =

(Tn, Vn) for some n ≥ 0. By Theorem 6.16, Proposition 6.14, our inductive hypothesis 
and (54),

(XR
n+1, Y

R
n+1) =

(︃
αR(zRn )
XR

n

− βR(zRn ), 1 
βR(zRn ) + αR(zRn )Y R

n

)︃
=

(︃
αR
n+1
Tn

− βR
n+1,

1 
βR
n+1 + αR

n+1Vn

)︃
=(Tn+1, Vn+1). □

For the remainder of this subsection, we restrict our attention to the full-measure 
subset of points z ∈ R for which zRn = (xR

n , y
R
n ) := ℱn

R(z) ∈ R is defined and xR
n ̸= 0

for all n ∈ Z (in particular, x / ∈ Q). We remark that as ℱR is totally invariant on 
this subset, the induced system (R,ℬ, μ̄R,ℱR) and its restriction to this full-measure 
subset are isomorphic. The same is true of the system (ΩR,ℬ, ν̄R, τR) and its restriction 
to the image under ϕR of our full-measure, totally ℱR-invariant subset of R. Abusing 
notation, we denote these restricted, isomorphic systems again by (R,ℬ, μ̄R,ℱR) and 
(ΩR,ℬ, ν̄R, τR).

Now, let

Δ(0/1;α1/β1, α2/β2, . . . , αn/βn) × Δ(0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(m−1)/β−m)

⊂ ΩR

be the (possibly empty) set of points (X(z), Y (z)) ∈ ΩR satisfying

αR(zRj ) = αj+1 and βR(zRk ) = βk+1

for all −m ≤ j ≤ n − 1 and −m − 1 ≤ k ≤ n − 1. The following result is needed 
in §7.3 below when we realise the natural extensions of the α-cfs as induced systems 
(R,ℬ, μ̄R,ℱR).
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Proposition 6.19. The Borel σ-algebra ℬ restricted to ΩR is generated by the sets

Δ(0/1;α1/β1, α2/β2, . . . , αn/βn) × Δ(0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(m−1)/β−m).

Proof. We first remark that each of these sets belongs to ℬ since each may be written as 
an intersection of preimages of integers under compositions of the measurable functions 
αR, βR, ℱ±1

R and ϕ−1
R . Next, notice that there are only countably many such sets, so it 

suffices to show that any open set U ∈ ΩR can be written as some union of these. It thus 
suffices to show that for any (X,Y ) = (X(z), Y (z)) ∈ U , there exists some set

Dn = Δ(0/1;α1/β1, α2/β2, . . . , αn/βn)

× Δ(0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(n−2)/β−(n−1))
(55)

such that (X,Y ) ∈ Dn ⊂ U . By definition, (X,Y ) belongs to each Dn, n ≥ 1, for which

αj+1 = αR(zRj ) and βk+1 = βR(zRk ) (56)

for all −(n − 1) ≤ j ≤ n − 1 and −n ≤ k ≤ n − 1. Thus, to prove that there is some n
for which Dn ⊂ U , it suffices to show that the Euclidean diameters of the sets Dn tend 
to 0 uniformly in n. For this, it suffices to show that

|X − cn| → 0 and |Y − dn| → 0

uniformly in n, where—recycling notation�-(X,Y ) is an arbitrary point in Dn and

(cn, dn) := ([0/1;α1/β1, α2/β2, . . . , αn/βn],

[0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(n−2)/β−(n−1)]).

Fix Dn as in (55) and assume (X,Y ) = (X(z), Y (z)) ∈ Dn so that (56) holds. 
Proposition 6.14 and the fact that sR(z) = 1 (and hence dR(z) = 1) imply that the 
digits of the contracted Farey expansion of x with respect to R and z = (x, y) are given 
by (︃

αR
0

βR
0

)︃
=

(︃
1

uR(z)

)︃
and

(︃
αR
j+1

βR
j+1

)︃
=

(︃
αR(zRj )
βR(zRj )

)︃
, j ≥ 0.

The previous line and (50) give X = x−βR
0 . Letting PR

n , QR
n be as in (46), the previous 

line and (56) give

PR
n

QR
n

= [βR
0 /αR

0 ;αR
1 /β

R
1 , . . . , αR

n /β
R
n ] = [βR

0 /1;α1/β1, . . . , αn/βn],

so also cn = PR
n

QR
n
− βR

0 . By Corollary 6.12 and (42),
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PR
n

QR
n

=
uR
n+1

sRn+1
= λNpjN + pjN−1

λNqjN + qjN−1
,

where N = NR
n+1(z). By (9) and (10),

|X − cn| =
⃓⃓⃓⃓
x− PR

n

QR
n

⃓⃓⃓⃓
=

⃓⃓⃓⃓
x− λNpjN + pjN−1

λNqjN + qjN−1

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
x− pjN−1

qjN−1

⃓⃓⃓⃓
≤ 1 

q2
jN−1

,

where the final inequality follows classical arguments in the theory of rcfs. Since R is 
bounded away from the origin, there is some integer M > 0 such that for any integer 
a ≥ 1, the number of rectangles Va−λ ∩ Hλ+1, 0 ≤ λ < a, intersecting R is no greater 
than M . By (19) and the fact that zRn+1 ∈ VajN+1−λN

∩HλN+1, this implies that jN =
jNR

n+1(z) grows uniformly in n. Since the denominators qj of rcf-convergents are strictly 
increasing, we have that |X − cn| → 0 uniformly in n.

It remains to show that |Y − dn| → 0 uniformly in n. Let n ≥ 1, and consider 
zR−n = (xR

−n, y
R
−n) = ℱ−n

R (z). By Proposition 6.14, the digits of the contracted Farey 
expansion of xR

−n with respect to R and zR−n are given by(︃
αR

0 (zR−n)
βR

0 (zR−n)

)︃
=

(︃
1

uR(zR−n)

)︃
and

(︃
αR
k+1(zR−n)

βR
k+1(zR−n)

)︃
=

(︃
αR(zR−n+k)
βR(zR−n+k)

)︃
, k ≥ 0.

Since (XR
n (zR−n), Y R

n (zR−n)) = (X,Y ) ∈ Dn (see (52)), we have by (56)

αj+1 = αR(zR−n+(n+j)) = αR
n+j+1(zR−n) and βk+1 = βR(zR−n+(n+k)) = βR

n+k+1(zR−n)

for all −(n−1) ≤ j ≤ n−1 and −n ≤ k ≤ n−1. In particular, applying Proposition 6.18
to zR−n, we find

Y = Y R
n (zR−n) = [0/1; 1/βR

n (zR−n), αR
n (zR−n)/βR

n−1(zR−n), . . . ,

αR
1 (zR−n)/βR

0 (zR−n), αR
0 (zR−n)/(1/yR−n − 1)]),

while

dn =[0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(n−2)/β−(n−1)]

=[0/1; 1/βR
n (zR−n), αR

n (zR−n)/βR
n−1(zR−n), . . . , αR

2 (zR−n)/βR
1 (zR−n)])].

Set

BR
[−1,n](zR−n) :=B[−1,n]([βR

0 (zR−n)/αR
0 (zR−n);αR

1 (zR−n)/βR
1 (zR−n), . . . , αR

n (zR−n)/βR
n (zR−n)])

=
(︃

0 1
1 0

)︃(︃
0 αR

0 (zR−n)
1 βR

0 (zR−n)

)︃(︃
0 αR

1 (zR−n)
1 βR

1 (zR−n)

)︃
· · ·

(︃
0 αR

n (zR−n)
1 βR

n (zR−n)

)︃
,

and denote the entries by
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BR
[−1,n](zR−n) =

(︃
PR
n−1(zR−n) PR

n (zR−n)
QR

n−1(zR−n) QR
n (zR−n)

)︃
.

Then Equation (6) gives

Y = (BR
[−1,n](zR−n))T ·

(︃
1 

yR−n

− 1
)︃

=
PR
n−1(zR−n)(1 − yR−n) + QR

n−1(zR−n)yR−n

PR
n (zR−n)(1 − yR−n) + QR

n (zR−n)yR−n

,

while

dn = (BR
[−1,n](zR−n))T · 0 =

QR
n−1(zR−n)
QR

n (zR−n) 
.

Notice by Proposition 6.14, Equation (47) and the fact that sR(z) = 1 for all z, that

|det(BR
[−1,n](zR−n)| = |αR

0 (zR−n)αR
1 (zR−n) · · ·αR

n (zR−n)| = 1.

Moreover, recall that yR−n ∈ [0, 1]. We thus compute

|Y − dn| =
⃓⃓⃓⃓
PR
n−1(zR−n)(1 − yR−n) + QR

n−1(zR−n)yR−n

PR
n (zR−n)(1 − yR−n) + QR

n (zR−n)yR−n

− QR
n−1(zR−n)
QR

n (zR−n) 

⃓⃓⃓⃓

=
|PR

n−1(zR−n)QR
n (zR−n) − PR

n (zR−n)QR
n−1(zR−n)||1 − yR−n|

|PR
n (zR−n)(1 − yR−n) + QR

n (zR−n)yR−n||QR
n (zR−n)| 

≤ 1 
|PR

n (zR−n) + (QR
n (zR−n) − PR

n (zR−n))yR−n|QR
n (zR−n)

≤ 1 
min

{︁
PR
n (zR−n), QR

n (zR−n)
}︁
QR

n (zR−n)
.

By Corollary 6.12,

min
{︁
PR
n (zR−n), QR

n (zR−n)
}︁
QR

n (zR−n) = min
{︁
uR
n+1(zR−n), sRn+1(zR−n)

}︁
sRn+1(zR−n),

so it suffices to show that

min
{︁
uR
n (z), sRn (z)

}︁
sRn (z) → ∞

uniformly in n. Write uR
n (z) = λNpjN + pjN−1 ≥ pjN−1 and sRn (z) = λNqjN + qjN−1 ≥

qjN−1 where N = NR
n (z). As before, since R is bounded away from the origin, jN =

jNR
n (z) grows uniformly in n. Since x / ∈ Q, there is some n large enough (independent of 

z) for which uR
n (z) ≥ pjN−1 ≥ 1. Since the rcf-convergent denominators qj are strictly 

increasing for j > 0,

min
{︁
uR
n (z), sRn (z)

}︁
sRn (z) ≥ min {pjN−1, qjN−1} qjN−1 → ∞

uniformly in n. □
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Notice from Propositions 6.14 and 6.18 that

X(z) = [0/1;αR(zR0 )/βR(zR0 ), αR(zR1 )/βR(zR1 ), . . . ].

From the proof of Proposition 6.19, it is evident that the convergents

dn = [0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(n−2)/β−(n−1)]

of the gcf

[0/1; 1/β0, α0/β−1, α−1/β−2, . . . ]

with

αj+1 = αR(zRj ) and βj+1 = βR(zRj ), j < 0,

also converge to Y (z). We thus obtain gcf-expansions of both X(z) and Y (z) on which 
τR acts as a two-sided shift:

Corollary 6.20. For z ∈ R for which zRn is defined for all n ∈ Z,

(X(z), Y (z)) =
(︁
[0/1;αR(zR0 )/βR(zR0 ), αR(zR1 )/βR(zR1 ), . . . ],

[0/1; 1/βR(zR−1), αR(zR−1)/βR(zR−2), . . . ]
)︁
,

and for any n ∈ Z, τnR (X(z), Y (z)) equals(︁
[0/1;αR(zRn )/βR(zRn ), αR(zRn+1)/βR(zRn+1), . . . ],

[0/1; 1/βR(zRn−1), αR(zRn−1)/βR(zRn−2), . . . ]
)︁
.

7. Examples of contracted Farey expansions

In this section we consider several examples of explicit, inducible regions R and the 
contracted Farey expansions they produce. We shall find in §7.1 rcfs, in §7.2 the second
named author’s S-expansions, and in §7.3 Nakada’s α-cfs for α ∈ (0, 1]. Throughout 
this section, any reference to the induced system (H1,ℬ, μ̄H1 ,ℱH1) is to the ‘altered’ 
system from Remark 5.4.

7.1. Regular continued fractions, revisited

Set R = H1, and recall from Theorem 5.5 above that the induced system 
(R,ℬ, μ̄R,ℱR) is isomorphic to the Gauss natural extension (Ω,ℬ, ν̄G,𝒢). We re-obtain 
this fact here through the use of contracted Farey expansions and the two-sided shift of 
§6.3.
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Proof of Theorem 5.5. Let z = (x, y) ∈ R with x ̸= 0 be as in (29). Using (30), we find 
that NR(z) = a1 = a(x), and by (35),

(︃
uR(z) tR(z)
sR(z) rR(z)

)︃
= AR(z) = Aε1 · · ·Aεa1

= Aa1−1
0 A1 =

(︃
0 1
1 a1

)︃
=

(︃
0 1
1 a(x)

)︃
.

(57)
In particular, sR(z) = 1 for all z, so we are in the setting of §6.3. We know that 
(R,ℬ, μ̄R,ℱR) is isomorphic to (ΩR,ℬ, ν̄R, τR); we shall show that this latter system 
is precisely (Ω,ℬ, ν̄G,𝒢). Since uR(z) = 0 for all z, the map ϕR : R → R2 from (50) is

ϕR(z) =
(︃
x,

1 − y

y

)︃
for all z = (x, y) ∈ R, x ̸= 0, (58)

and thus ΩR = ϕR(R) = Ω, up to a null set. Since μ̄(R) = log 2, Theorem 6.16 gives 
that ν̄R = ν̄G. Moreover, from Equations (47), (48), and (57) we find

(︃
αR(z)
βR(z)

)︃
=

(︃
1

a(x)

)︃
. (59)

But if (X,Y ) = ϕR(z), Equation (58) gives X = x, so by Theorem 6.16 and Equation 
(11),

τR(X,Y ) =
(︃

1 
X

− a(X), 1 
a(X) + Y

)︃
= 𝒢(X,Y ).

Thus (ΩR,ℬ, ν̄R, τR) = (Ω,ℬ, ν̄G,𝒢). □
Let z = (x, y) ∈ R as in (29) (so b1 = 1) with x / ∈ Q, and notice that repeated use of 

(43) gives

zRk = (xR
k , y

R
k ) = ℱk

R(x, y) = ([0; ak+1, ak+2, . . . ], [0; 1, ak, . . . , a1, b2, b3, . . . ]).

Thus, by Proposition 6.14 and Equation (59), the digits of the contracted Farey expansion 
of x with respect to R = H1 and z = (x, y) ∈ R are

(︃
αR

0
βR

0

)︃
=

(︃
sR(z)
uR(z)

)︃
=

(︃
1
0

)︃
and

(︃
αR
k+1

βR
k+1

)︃
=

(︃
1

a(xR
k )

)︃
=

(︃
1

ak+1

)︃
.

That is, the contracted Farey expansion of x with respect to R = H1 and z = (x, y)
recovers the rcf-expansion [0/1; 1/a1, 1/a2, . . . ] = [0; a1, a2, . . . ] of x.
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7.2. S-expansions, revisited

We also find S-expansions (and thus Minkowski’s diagonal cfs, Bosma’s optimal 
cfs, and Nakada’s α-cfs for α ≥ 1/2; see [23] and §3.3 above) as special instances 
of contracted Farey expansions. Indeed, let S ⊂ Ω be a singularisation area, i.e., S is 
ν̄G-measurable set with ν̄G(∂S) = 0 satisfying both

(a) S ⊂ V1 and
(b) S ∩ 𝒢(S) = ∅,

and let [βS
0 /α

S
0 ;αS

1 /β
S
1 , α

S
2 /β

S
2 , . . . ] be the S-expansion of x = [0; a1, a2, . . . ] ∈ (0, 1) \Q

obtained by simultaneously singularising at all positions n for which 𝒢n(x, 0) ∈ S (see 
Definitions 4.4, 4.5 of [23] and §3.3 above). For n ≥ −1 let

BS
[−1,n] =

(︃
PS
n−1 PS

n

QS
n−1 QS

n

)︃
:= B[−1,n]([βS

0 /α
S
0 ;αS

1 /β
S
1 , α

S
2 /β

S
2 , . . . ]).

From remarks preceding Theorem 4.13 and Theorem 5.3.i of [23], it follows that PS
−2 =

QS
−1 = 0, PS

−1 = QS
−2 = 1, and for k ≥ 0,(︃

PS
k

QS
k

)︃
=

(︃
pjSk
qjSk

)︃
,

where pj/qj is the jth
rcf-convergent of x and (jSk )k≥0 is the subsequence of powers 

j ≥ 0 for which 𝒢j(x, 0) ∈ Δ := Ω\S.
We wish to determine a proper, inducible subregion R ⊂ Ω for which the contracted 

Farey expansion [βR
0 /αR

0 ;αR
1 /β

R
1 , αR

2 /β
R
2 , . . . ] of x with respect to R coincides with the 

S-expansion of x. By Remark 2.2, it suffices to find R such that PR
k = PS

k and QR
k = QS

k

for all k ≥ 0, with

BR
[−1,k] =

(︃
PR
k−1 PR

k

QR
k−1 QR

k

)︃
as in (45) and (46).

It seems natural to set R := ϕ−1
H1

(Δ) ⊂ H1, where ϕH1 : H1 → Ω is the iso
morphism map between (H1,ℬ, μ̄H1 ,ℱH1) and (Ω,ℬ, ν̄G,𝒢) from (58) above satisfying 
ϕH1 ◦ ℱH1(z) = 𝒢 ◦ ϕH1(z) for all z ∈ H1. However, in the classical setting of rcfs and, 
in particular, S-expansions, one uses the one-to-one correspondence between points in 
the 𝒢-orbit of (x, 0) and rcf-convergents pn/qn, which come from the right-hand column 
of the matrix 

(︁ pn−1 pn

qn−1 qn

)︁
. On the other hand, for contracted Farey expansions we use the 

one-to-one correspondence between points in the ℱR-orbit of (x, 1) and contracted Farey 
convergents uR

n /s
R
n coming from the left-hand column of the matrix AR

[0,n] = A[0,NR
n ]

from (41). When R = ϕ−1
H1

(Ω) = H1, the matrix AH1
[0,n] is of the form 

(︁ pn−1 pn

qn−1 qn

)︁
, so the 
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Fig. 5. Bottom-left: A singularisation area S and its complement Δ in Ω. Bottom-right: The images of S
and Δ under 𝒢. Top-right: The region R = ψ−1(Δ) and its complement in H1.

one-to-one correspondence in this setting is between ℱn
H1

(x, 1) = ϕ−1
H1

◦ 𝒢n(x, 0) and 
pn−1/qn−1. This indexing discrepancy is fixed by instead considering the isomorphism 
map ψ := 𝒢−1 ◦ ϕH1 between (H1,ℬ, μ̄H1 ,ℱH1) and (Ω,ℬ, ν̄G,𝒢):

H1 H1

Ω Ω

ℱH1

ϕH1 ϕH1
ψ

𝒢

Set

R := ψ−1(Δ) = H1\ψ−1(S);

see Fig. 5. Notice that for any z ∈ H1, either ϕH1(z) ∈ Δ or 𝒢 ◦ ϕH1(z) ∈ Δ; otherwise, 
both ϕH1(z) and 𝒢 ◦ ϕH1(z) belong to S, contrary to condition (ii) of a singularisation 
area. Thus, either ψ−1 ◦ϕH1(z) ∈ R or ψ−1 ◦ 𝒢 ◦ϕH1(z) ∈ R. But ψ−1 ◦ϕH1 = ℱH1 and 
ψ−1 ◦ 𝒢 ◦ ϕH1 = ℱ2

H1
, so for any z ∈ H1, either ℱH1(z) ∈ R or ℱ2

H1
(z) ∈ R. The entries 

of the matrices AR(z) depend on whether ℱH1(z) ∈ R:
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Lemma 7.1. For any z = (x, y) ∈ H1 with x = [0; a1, a2, . . . ],

(︃
uR(z) tR(z)
sR(z) rR(z)

)︃
= AR(z) =

⎧⎪⎪⎨⎪⎪⎩
(︃

0 1
1 a1

)︃
if ℱH1(z) ∈ R,(︃

1 a2
1 a2 + 1

)︃
if ℱH1(z) / ∈ R.

Proof. First suppose that ℱH1(z) ∈ R. Now ℱH1(z) = ℱa1(z), and for all 1 ≤ j < a1, 
ℱj(z) / ∈ H1 implies ℱj(z) / ∈ R ⊂ H1. Thus NR(z) = a1, and by (35) we have

AR(z) = Aa1−1
0 A1 =

(︃
0 1
1 a1

)︃
.

If ℱH1(z) = ℱa1(z) / ∈ R, then ℱ2
H1

(z) = ℱa1+a2(z) ∈ R. Since ℱj(z) / ∈ H1 for 1 ≤ j <

a1 + a2 with j ̸= a1, we have NR(z) = a1 + a2 and—by (35)�-

AR(z) = Aa1−1
0 A1A

a2−1
0 A1 =

(︃
0 1
1 a1

)︃(︃
0 1
1 a2

)︃
=

(︃
1 a2
a1 a2a1 + 1

)︃
.

But ℱH1(z) / ∈ R is equivalent to ϕH1(z) / ∈ Δ, or ϕH1(z) ∈ S. Since ϕH1 acts as the 
identity on the first coordinate and S ⊂ V1 by condition (a) of a singularisation area, 
this implies a1 = 1. □

By Lemma 7.1, sR(z) = 1 for all z ∈ H1 and, in particular, for all z = (x, 1). By 
Corollary 6.12, Equation (42), and the fact that R ⊂ H1 (so λNR

k+1
= 0),

(︃
PR
k

QR
k

)︃
=

(︃
uR
k+1

sRk+1

)︃
=

(︄
pj

NR
k+1

−1

qj
NR

k+1
−1

)︄
, k ≥ 0.

Writing NR
k+1 = a1 + · · · + aj

NR
k+1

(see (19)), we see that the indices jNR
k+1

, k ≥ 0, are 

precisely the powers j > 0 for which

ℱa1+···+aj (x, 1) = ℱj
H1

(x, 1) ∈ R.

Equivalently, these are the powers j > 0 for which

ϕ−1
H1

◦ 𝒢j ◦ ϕH1(x, 1) ∈ R = ψ−1(Δ) = ϕ−1
H1

◦ 𝒢(Δ),

or 𝒢j−1(x, 0) ∈ Δ. Thus jNR
k+1

− 1 = jSk , and

(︃
PR
k

QR
k

)︃
=

(︄
pj

NR
k+1

−1

qj
NR

k+1
−1

)︄
=

(︃
pjSk
qjSk

)︃
=

(︃
PS
k

QS
k

)︃
, k ≥ 0.

By Remark 2.2, this proves:
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Proposition 7.2. The contracted Farey expansion of x with respect to R = ψ−1(Δ) coin
cides with the S-expansion of x.

In §5 of [23], a two-dimensional ergodic system14 (ΓS ,ℬ, ρ, τ) is constructed corre
sponding to the two-sided shift operator for S-expansions. We briefly recall this sys
tem here and show that it coincides with (ΩR,ℬ, ν̄R, τR) as defined in §6.3. (Note by 
Lemma 7.1 that sR(z) = 1 for all z ∈ R, so we are in the setting of §6.3.) Set

Δ− := 𝒢(S) and Δ+ := Δ\Δ−.

Define M : Δ → R2 for z = (x, y) by

M(z) :=

⎧⎨⎩(x, y), z ∈ Δ+,(︂
−x 
1+x , 1 − y

)︂
, z ∈ Δ−,

and let ΓS := M(Δ). The map τ : ΓS → ΓS is defined by τ := M ◦ 𝒢Δ ◦ M−1, 
where 𝒢Δ : Δ → Δ is the map 𝒢 induced on Δ, i.e., 𝒢Δ(z) = 𝒢(z) if 𝒢(z) ∈ Δ and 
𝒢Δ(z) = 𝒢2(z) otherwise. The measure ρ is the probability measure on (ΓS,ℬ) with 
density 1/((log 2)ν̄G(Δ)(1 + XY )2) (see Theorem 5.9 of [23]). Setting

XS
k := [0/1;αS

k+1/β
S
k+1, α

S
k+2/β

S
k+2, . . . ], k ≥ 0,

Y S
0 := 0 and

Y S
k := [0/1; 1/βS

k , α
S
k /β

S
k−1, . . . , α

S
2 /β

S
1 ], k ≥ 1,

where x = [βS
0 /α

S
0 ;αS

1 /β
S
1 , α

S
2 /β

S
2 , . . . ] is the S-expansion of x, it is observed following 

Definition 5.8 of [23] that

(XS
k , Y

S
k ) = τk(XS

0 , Y
S
0 ), k ≥ 0.

Note that by Propositions 6.18 and 7.2, τn and τnR agree for all n ≥ 0 when evaluated 
at (XS

0 , Y
S
0 ) = (XS

0 , 0). We claim that in fact (ΩR,ℬ, ν̄R, τR) = (ΓS ,ℬ, ρ, τ). By (50)
and Lemma 7.1,

ϕR(z) =

⎧⎨⎩
(︂
x, 1−y

y

)︂
, ℱH1(z) ∈ R,

(x− 1, 1 − y) , ℱH1(z) / ∈ R.
(60)

Lemma 7.3. For any z ∈ Δ, M(z) = ϕR ◦ ψ−1 ◦ 𝒢−1
Δ (z).

14 We replace the original notation ΩS from [23] by ΓS to avoid confusion with ΩR defined §6.3. However, 
we shall see in Proposition 7.4 below that, in fact, ΓS = ΩR.
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Proof. Suppose first that z = (x, y) ∈ Δ+. Now, since z / ∈ Δ− = 𝒢(S), we have 𝒢−1(z) ∈
Ω \ S = Δ. Hence 𝒢−1

Δ (z) = 𝒢−1(z). Then

ϕR ◦ ψ−1 ◦ 𝒢−1
Δ (z) = ϕR ◦ ϕ−1

H1
(z) = ϕR

(︃
x,

1 
1 + y

)︃
.

Notice that

ℱH1

(︃
x,

1 
1 + y

)︃
= ψ−1 ◦ ϕH1

(︃
x,

1 
1 + y

)︃
= ψ−1(z) ∈ ψ−1(Δ) = R,

so by (60), ϕR (x, 1/(1 + y)) = z. Thus, for z ∈ Δ+, ϕR ◦ ψ−1 ◦ 𝒢−1
Δ (z) = z = M(z).

Next, suppose that z ∈ Δ−. Then z ∈ 𝒢(S), so 𝒢−1(z) ∈ S = Ω \ Δ and 𝒢−1
Δ (z) =

𝒢−2(z). Moreover, since 𝒢−1(z) ∈ S ⊂ V1, we have 𝒢−1(z) = (1/(x + 1), 1/y − 1). With 
these observations, we find

ϕR ◦ ψ−1 ◦ 𝒢−1
Δ (z) = ϕR ◦ ϕ−1

H1
◦ 𝒢−1(z) = ϕR ◦ ϕ−1

H1

(︃
1 

x + 1 ,
1 
y
− 1

)︃
= ϕR

(︃
1 

x + 1 , y
)︃
.

We claim that ℱH1(1/(x + 1), y) / ∈ R. This is equivalent to ψ−1 ◦ ϕH1(1/(x + 1), y) / ∈
ψ−1(Δ), or ϕH1(1/(x+1), y) ∈ S. But ϕH1(1/(x+1), y) = (1/(x+1), 1/y−1) = 𝒢−1(z) ∈
S by assumption, so the claim holds. Thus, from (60), we have ϕR(1/(x + 1), y) =
(−x/(x+1), 1− y) and ϕR ◦ψ−1 ◦𝒢−1

Δ (z) = (−x/(x+1), 1− y) = M(z) for z ∈ Δ−. □
Proposition 7.4. With R = ψ−1(Δ),

(ΩR,ℬ, ν̄R, τR) = (ΓS ,ℬ, ρ, τ).

Proof. By Lemma 7.3,

ΩR = ϕR(R) = ϕR ◦ ψ−1(Δ) = ϕR ◦ ψ−1 ◦ 𝒢−1
Δ (Δ) = M(Δ) = ΓS .

Moreover,

ψ ◦ ℱR(z) =
{︄
ψ ◦ ℱH1(z), ℱH1(z) ∈ R,

ψ ◦ ℱ2
H1

(z), ℱH1(z) / ∈ R,

=
{︄
ϕH1(z), ϕH1(z) ∈ Δ,

𝒢 ◦ ϕH1(z), ϕH1(z) / ∈ Δ,

=
{︄
𝒢 ◦ ψ(z), 𝒢 ◦ ψ(z) ∈ Δ,

𝒢2 ◦ ψ(z), 𝒢 ◦ ψ(z) / ∈ Δ,

=𝒢Δ ◦ ψ(z),
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so

τR = ϕR ◦ ℱR ◦ ϕ−1
R = ϕR ◦ ψ−1 ◦ 𝒢Δ ◦ ψ ◦ ϕ−1

R = M ◦ 𝒢Δ ◦M−1 = τ.

Lastly, ν̄R = ρ since these are both probability measures on ΩR = ΓS with densities of 
the form C(1 + XY )−2, where C is a normalising constant. □
7.3. Nakada’s α-continued fractions, revisited

Recall Nakada’s parameterised family of α-cf maps from §3.2, which are defined for 
all 0 ≤ α ≤ 1. Moreover, recall from the end of §3.3 that the natural extensions of 
the α-cfs are realised as S-expansion systems, but only for α ≥ 1/2. Since, by §7.2, 
S-expansions are realised as contracted Farey expansions, so are Nakada’s α-cfs for 
α ≥ 1/2. In this subsection we extend this fact to α > 0, giving a new description of a 
planar natural extension of ([α− 1, α],ℬ, ρα, Gα) as an explicit induced transformation 
(R,ℬ, μ̄R,ℱR) of Ito’s natural extension of the Farey tent map (Theorem 7.11 below; 
cf. [24]).

Remark 7.5. One finds that Gα([α − 1, α]) = [α − 1, α), so ([α − 1, α],ℬ, ρα, Gα)
is isomorphic to the restriction of this system to [α − 1, α), which we denote by 
([α − 1, α),ℬ, ρα, Gα). The endpoint α was included in the domain in §3.2 so that 
we could speak of matching, which depends on the Gα-orbits of α and α − 1. How
ever, it shall be more convenient in this subsection to consider the isomorphic system 
([α− 1, α),ℬ, ρα, Gα).

The domain R will be constructed in two steps: first, we define a subset A ⊂ H1 via 
an integer-valued map k on H1; second, R is defined by ‘pushing’ part of A down into 
Ω \H1 with the map ℱ . Fix α ∈ (0, 1] and define k : H1 → N ∪ {∞} by

k(z) := inf{j > 0 | ℱ−j
H1

(z) ∈ [0, α) × [1/2, 1]}, z ∈ H1,

and let

A := {z ∈ H1 | k(z) is odd};

see Fig. 6. Recall the definition of hitting times NR from (33). The restriction of NR to 
R�-also denoted NR�-is called the return time to R. We wish to determine the return 
times NA under ℱ . For this, we use the following:

Lemma 7.6. For any z = (x, y) ∈ H1,

k(ℱH1(z)) =
{︄

1, x < α,

k(z) + 1, x ≥ α.
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Proof. First, notice that ℱ−1
H1

(ℱH1(z)) = z belongs to [0, α)×[1/2, 1] if and only if x < α. 
Thus, if x < α, then k(ℱH1(z)) = 1. If x ≥ α, then k(z) is the infimum of powers j > 0
for which

ℱ−(j+1)
H1

(ℱH1(z)) = ℱ−j
H1

(z) ∈ [0, α) × [1/2, 1].

Hence k(ℱH1(z)) = k(z) + 1. □
Lemma 7.7. The return times NA : A → N under ℱ are

NA(z) =
{︄
a1, x < α,

a1 + a2, x ≥ α,

where z = (x, y) ∈ A with x = [0; a1, a2, . . . ].

Proof. First, suppose that x < α, and notice that for all 0 < j < a1, ℱj(z) ∈ Hj+1 ̸= H1
implies ℱj(z) / ∈ A ⊂ H1. On the other hand, by Lemma 7.6, k(ℱH1(z)) = 1 is odd, so 
ℱH1(z) ∈ A. Since ℱH1(z) = ℱa1(z), we have NA(z) = a1.

Next, suppose that x ≥ α. As above, ℱj(z) / ∈ H1 for all 0 < j < a1+a2 with j ̸= a1, so 
ℱj(z) / ∈ A for such j. Moreover, z ∈ A implies that k(z) is odd, and thus by Lemma 7.6, 
k(ℱH1(z)) = k(z)+1 is even. Hence ℱa1(z) = ℱH1(z) / ∈ A. Write z′ = (x′, y′) := ℱH1(z). 
Again by Lemma 7.6,

k(ℱH1(z′)) =
{︄

1, x′ < α,

k(z′) + 1, x′ ≥ α.

But k(z′) = k(ℱH1(z)) is even, so in either case k(ℱH1(z′)) is odd. Hence ℱa1+a2(z) =
ℱ2

H1
(z) = ℱH1(z′) ∈ A, and NA(z) = a1 + a2. □

We now define the subregion R ⊂ Ω in terms of the set A ⊂ H1. For each integer 
a > 1, let

Aa := A ∩ Va ∩ ([α, 1] × [1/2, 1])

be the set of points z = (x, y) ∈ A for which x = [0; a1, a2, . . . ] with a1 = a and x ≥ α. 
Next, define

R := A ∪
⋃︂
a>1

a−1 ⋃︂
λ=1

ℱλ(Aa) (61)

as the region A ⊂ H1 together with each Aa ‘pushed down’ into Ω\H1 under ℱ a maximal 
number of times; see Fig. 6. Notice that if α > 1/2, then Aa = ∅ for a > 1 and hence 
R = A.
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Fig. 6. Approximations of the regions A (top-left), R (top-right), and ΩR (bottom) for α = 1/4. 

Remark 7.8. In Fig. 6, the region A consists of rectangles extending from x = 0 to x = 1, 
and the region R consists of A together with rectangles extending from x = F (1/4) = 1/3
to x = 1 and x = F 2(1/4) = 1/2 to x = 1. These ‘full’ rectangles are due to the fact 
that α = 1/4 is of the form α = 1/n for some integer n ≥ 1; see also [28], where the 
natural extensions of the α-cf maps are constructed for such α. For general α > 0, one 
can show that A consists of rectangles extending from various x = x0 ∈ [0, 1) to x = 1.

Lemma 7.7 and the definition of R give the following:

Corollary 7.9. The return times NR : R → N under ℱ are given by NR = NA if α > 1/2
and

NR(z) =

⎧⎪⎪⎨⎪⎪⎩
a1, x < α,

1, α ≤ x ≤ 1/2,
a2 + 1, 1/2 < x,

if α ≤ 1/2, where z = (x, y) ∈ A with x = [0; a1, a2, . . . ].
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From this and Equation (35), we find that if α > 1/2, then

AR(z) =
(︃
uR(z) tR(z)
sR(z) rR(z)

)︃
=

{︄
Aa1−1

0 A1, x < α

A1A
a2−1
0 A1, x ≥ α

}︄
=

⎧⎪⎪⎨⎪⎪⎩
(︃

0 1
1 a1

)︃
, x < α,(︃

1 a2
1 a2 + 1

)︃
, x ≥ α,

(62)
while if α ≤ 1/2,

AR(z) =
(︃
uR(z) tR(z)
sR(z) rR(z)

)︃
=

⎧⎪⎨⎪⎩
Aa1−1

0 A1, x < α

A0, α ≤ x ≤ 1/2
A1A

a2−1
0 A1, 1/2 < x

⎫⎪⎬⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︃
0 1
1 a1

)︃
, x < α,(︃

1 0
1 1

)︃
, α ≤ x ≤ 1/2,(︃

1 a2
1 a2 + 1

)︃
, 1/2 < x.

(63)

Notice, in particular, that sR(z) = 1 for all z, and R satisfies the assumptions of §6.3. 
Moreover,

uR(z) =
{︄

0, x < α,

1 x ≥ α,
(64)

so the map ϕR : R → R2 from (50) is given by

ϕR(z) =

⎧⎨⎩
(︂
x, 1−y

y

)︂
, x < α,

(x− 1, 1 − y) , x ≥ α.
(65)

The region ΩR = ϕR(R) is shown in Fig. 6.
Before proving that (R,ℬ, μ̄R,ℱR) is the natural extension of ([α − 1, α),ℬ, ρα, Gα), 

we determine the values of αR(z) and βR(z) defined in (47) and (48).

Lemma 7.10. Let z = (x, y) ∈ R with x ̸= 0, 1. Then

αR(z) =
{︄

1, x < α,

−1, x ≥ α,
and βR(z) =

⎧⎨⎩
⌊︁ 1 
x + 1 − α

⌋︁
, x < α,⌊︂

1 
1−x + 1 − α

⌋︂
, x ≥ α.

Proof. Let z = (x, y) ∈ R with x = [0; a1, a2, . . . ], and set z′ = (x′, y′) = ℱR(z). From 
(47), the fact that sR(z) = 1 for all z, and (62) and (63), we have
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αR(z) = − det(AR(z)) =
{︄

1, x < α,

−1, x ≥ α,

as claimed.
Next, from (48) and the fact that sR(z) = 1 for all z, we have βR(z) = rR(z)+uR(z′). 

If α > 1/2, then from (62) and (64), we find that

βR(z) =
{︄

a1 + uR(z′), x < α

a2 + 1 + uR(z′), x ≥ α

}︄
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1, x < α and x′ < α,

a1 + 1, x < α and x′ ≥ α,

a2 + 1, x ≥ α and x′ < α,

a2 + 2, x ≥ α and x′ ≥ α.

(66)

Now suppose α ≤ 1/2. Notice that if α ≤ x ≤ 1/2, then by (34) and (63),

x′ = A−1
R (z) · x =

(︃
1 0
−1 1

)︃
· x = x 

1 − x
> x ≥ α (67)

implies uR(z′) = 1. Hence, again from (63) and (64),

βR(z) =

⎧⎪⎨⎪⎩
a1 + uR(z′), x < α

1 + uR(z′), α ≤ x ≤ 1/2
a2 + 1 + uR(z′), 1/2 < x

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1, x < α and x′ < α,

a1 + 1, x < α and x′ ≥ α,

2, α ≤ x ≤ 1/2,
a2 + 1, 1/2 < x and x′ < α,

a2 + 2, 1/2 < x and x′ ≥ α.

(68)

The remainder of the proof consists of cases. Throughout, we repeatedly use the two 
inequalities α ≤ 1 + x′ and x′ < 1 + α, which follow from α ∈ (0, 1] and x′ ∈ [0, 1].

(i) Suppose that x < α. We must show βR(z) =
⌊︁ 1 
x + 1 − α

⌋︁
. By (34), (62) and (63),

x′ = A−1
R (z) · x =

(︃
a1 −1
−1 0

)︃
· x = 1 

x
− a1,

so

1 
x

+ 1 − α = x′ + a1 + 1 − α.

(a) If x′ < α, then

a1 ≤ x′ + a1 + 1 − α < a1 + 1,

and by (66) and (68), βR(z) = a1 =
⌊︁ 1 
x + 1 − α

⌋︁
.
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(b) If x′ ≥ α, then

a1 + 1 ≤ x′ + a1 + 1 − α < a1 + 2,

so by (66) and (68), βR(z) = a1 + 1 =
⌊︁ 1 
x + 1 − α

⌋︁
.

(ii) Now suppose that x ≥ α. We must show βR(z) =
⌊︂

1 
1−x + 1 − α

⌋︂
.

(a) If x ≤ 1/2, then from the computation in (67), 1 + x′ = 1/(1 − x). Hence

1 
1 − x

+ 1 − α = 2 + x′ − α,

and (using x′ > x)

2 ≤ 2 + x− α < 2 + x′ − α < 3.

By (68), βR(z) = 2 =
⌊︂

1 
1−x + 1 − α

⌋︂
.

(b) Now suppose that x > 1/2. By (34), (62) and (63),

x′ = A−1
R (z) · x =

(︃
a2 + 1 −a2
−1 1

)︃
· x = x 

1 − x
− a2,

and

1 
1 − x

+ 1 − α = x 
1 − x

+ 2 − α = a2 + 2 + x′ − α.

(1) If x′ < α, then

a2 + 1 ≤ a2 + 2 + x′ − α < a2 + 2,

and by (66) and (68), βR(z) = a2 + 1 =
⌊︂

1 
1−x + 1 − α

⌋︂
.

(2) Lastly, if x′ ≥ α, then

a2 + 2 ≤ a2 + 2 + x′ − α < a2 + 3,

so by (66) and (68), βR(z) = a2 + 2 =
⌊︂

1 
1−x + 1 − α

⌋︂
. □

We are now in a position to prove:

Theorem 7.11. The induced system (R,ℬ, μ̄R,ℱR) is the natural extension of ([α −
1, α),ℬ, ρα, Gα).

Proof. When α = 1, then R = [0, 1) × [1/2, 1), and (R,ℬ, μ̄R,ℱR) is isomorphic to 
(H1,ℬ, μ̄H1 ,ℱH1). The result follows from Theorem 5.5 and the fact that for α = 1, 
([α− 1, α),ℬ, ρα, Gα) is (isomorphic to) ([0, 1],ℬ, νG, G).
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Now suppose α ∈ (0, 1). Since (R,ℬ, μ̄R,ℱR) and the system (ΩR,ℬ, ν̄R, τR) from 
§6.3 are isomorphic, it suffices to show that the latter system is the natural extension of 
([α − 1, α),ℬ, ρα, Gα). Throughout, we shall consider the restrictions of (R,ℬ, μ̄R,ℱR)
and (ΩR,ℬ, ν̄R, τR) to the full-measure subsets on which ℱn

R and τnR are defined for all n ∈
Z, and such that for any (x, y) ∈ R and any (X,Y ) ∈ ΩR, both x and X are irrational; 
see the discussion preceding Proposition 6.19. Since Gα([α−1, α)\Q) ⊂ [α−1, α)\Q, we 
shall in fact show that (ΩR,ℬ, ν̄R, τR) is the natural extension of ([α − 1, α),ℬ, ρα, Gα)
restricted to [α− 1, α)\Q, which we denote ([α− 1, α)\Q,ℬ, ρα, Gα)

To distinguish the Borel σ-algebras restricted to ΩR and [α−1, α)\Q, we shall denote 
these by 𝒞 and 𝒟, respectively. Notice that ([α−1, α)\Q,𝒟, ρα, Gα) is non-invertible and 
(ΩR, 𝒞, ν̄R, τR) is invertible. We will show (i) that ([α− 1, α)\Q,𝒟, ρα, Gα) is a factor of 
(ΩR, 𝒞, ν̄R, τR) with factor map πX : ΩR → [α − 1, α)\Q being the projection onto the 
first coordinate, and (ii) that the factor map πX satisfies

∞ ⋁︂
n=0

τnR ◦ π−1
X (𝒟) = 𝒞,

where 
⋁︁∞

n=0 τ
n
R ◦ π−1

X (𝒟) is the smallest σ-algebra containing each σ-algebra τnR ◦
π−1
X (𝒟), n ≥ 0.

(i) We must show that πX : ΩR → [α − 1, α)\Q is measurable, surjective, and satisfies 
πX ◦τR = Gα◦πX and ν̄R◦π−1

X = ρα. Certainly πX is measurable, since for any Borel 
set A ∈ 𝒟, π−1

X (A) = (A × [0, 1]) ∩ ΩR ∈ 𝒞 is a Borel set in ΩR. For surjectivity, 
suppose α has rcf-expansion α = [0;α1, α2, . . . ], and let z = (x, y) ∈ H1 with 
x = [0; a1, a2, . . . ] / ∈ Q and y = [0; 1, b, b, b, . . . ] for some b > α1. Then

ℱ−1
H1

(z) = ([0; b, a1, a2, . . . ], [0; 1, b, b, . . . ]) ∈ [0, α) × [1/2, 1],

so k(z) = 1 is odd and z ∈ A. Similarly, k(ℱ−n
H1

(z)) = 1 for all n ≥ 0, so ℱ−n
H1

(z) ∈ A

for all n ≥ 0. This—together with Corollary 7.9�-implies that ℱn
R(z) ∈ R is defined 

for all n ∈ Z. Since x ∈ [0, 1]\Q was arbitrary, (65) gives πX(ΩR) = πX(ϕR(R)) =
[α− 1, α)\Q, i.e., πX is surjective.
Next, we show πX ◦ τR = Gα ◦ πX . Let (X,Y ) = (X(z), Y (z)) ∈ ΩR, where z =
(x, y) ∈ R, and notice from (65) that

X =
{︄
x, x < α,

x− 1, x ≥ α.

Moreover, x < α if and only if X > 0, and x ≥ α if and only if X < 0. These 
observations, together with Theorem 6.16 and Lemma 7.10, give

πX ◦ τR(X,Y ) =αR(z)
X

− βR(z)
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=

⎧⎨⎩
1 
X − ⌊︁ 1 

x + 1 − α
⌋︁
, x < α,

− 1 
X −

⌊︂
1 

1−x + 1 − α
⌋︂
, x ≥ α,

=
{︄

1 
X − ⌊︁ 1 

X + 1 − α
⌋︁
, X > 0,

− 1 
X − ⌊︁− 1 

X + 1 − α
⌋︁
, X < 0,

= 1 
|X| −

⌊︃
1 
|X| + 1 − α

⌋︃
=Gα ◦ πX(X,Y )

as desired. Lastly, notice that for any Borel set A ∈ 𝒟, τR-invariance of ν̄R gives

ν̄R ◦ π−1
X (G−1

α (A)) = ν̄R ◦ τ−1
R (π−1

X (A)) = ν̄R ◦ π−1
X (A),

so ν̄R◦π−1
X is an absolutely continuous, Gα-invariant probability measure. Uniqueness 

of ρα implies ν̄R ◦π−1
X = ρα. Thus ([α−1, α),𝒟, ρα, Gα) is a factor of (ΩR, 𝒞, ν̄R, τR).

(ii) We now show that

∞ ⋁︂
n=0

τnR ◦ π−1
X (𝒟) = 𝒞.

The forward inclusion follows from measurability of πX and τ−1
R , so it suffices to 

show the backward inclusion. For this, it suffices to show that every element of a 
generating set of the Borel σ-algebra 𝒞 on ΩR can be written as τkR ◦ π−1

X (D) for 
some D ∈ 𝒟 and k ≥ 0. By Proposition 6.19, 𝒞 is generated by the sets

C = Δ(0/1;α1/β1, α2/β2, . . . , αn/βn)

× Δ(0/1; 1/β0, α0/β−1, α−1/β−2, . . . , α−(m−1)/β−m)

containing all points (X(z), Y (z)) ∈ ΩR for which

αR(zRj ) = αj+1 and βR(zRk ) = βk+1

for all −m ≤ j ≤ n− 1 and −m− 1 ≤ k ≤ n− 1.
Let D ∈ 𝒟 be the set of irrationals X ∈ [α− 1, α) for which

sgn(Gj
α(X)) = αj−m and

⌊︃
1 

|Gk
α(X)| + 1 − α

⌋︃
= βk−m

for all 1 ≤ j ≤ n + m and 0 ≤ k ≤ n + m. Let X ∈ [α − 1, α) \ Q, (X,Y ) =
(X(z), Y (z)) ∈ π−1

X ({X}), and zRk = ℱk
R(z) for all k ∈ Z. Using the fact that 

Gα ◦ πX = πX ◦ τR, Equations (52), (53) and Lemma 7.10 give
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sgn(Gk
α(X)) = αR(zRk ) and

⌊︃
1 

|Gk
α(X)| + 1 − α

⌋︃
= βR(zRk ), k ≥ 0,

so π−1
X (D) is the set of points (X(z), Y (z)) ∈ ΩR such that

αR(zRj ) = αj−m and βR(zRk ) = βk−m

for all 1 ≤ j ≤ n+m and 0 ≤ k ≤ n+m. By Corollary 6.20, this is the set of points 
of the form

X = X(z) =[0/1;αR(zR0 )/βR(zR0 ), αR(zR1 )/βR(zR1 ), . . . ]

=[0/1;αR(zR0 )/β−m, α−(m−1)/β−(m−1), . . . , αn/βn,

αR(zRn+m+1)/βR(zRn+m+1), . . . ]

and

Y = Y (z) = [0/1; 1/βR(zR−1), αR(zR−1)/βR(zR−2), . . . ].

Since (XR
m+1, Y

R
m+1) = τm+1

R (X,Y ) is of the form

XR
m+1 = [0/1;α1/β1, . . . , αn/βn, αR(zRn+m+1)/βR(zRn+m+1), . . . ]

and

Y R
m+1 = [0/1; 1/β0, α0/β−1, . . . , α−(m−1)/β−m, αR(zR0 )/βR(zR−1), . . . ],

we have τm+1
R ◦ π−1

X (D) = C. □
Remark 7.12. Recall from the end of §3.2 that there are several open questions about 
Nakada’s α-cfs, including explicit descriptions of the values of the entropy h(Gα) for 
α < g2, g = (

√
5 − 1)/2, and of the densities of the invariant measures ρα ([24]). It is 

also open to explicitly compute the so-called Legendre constant for α < g2 ([15,35]).
Each of these questions may be answered with an understanding of the domain of 

the natural extension of ([α−1, α),ℬ, ρα, Gα); see, e.g., Theorem 5.6 for the entropy. To 
date, however, the description of this domain has proven to be unmanageable for these 
tasks. Our new description of the natural extension (R,ℬ, μ̄R,ℱR) could bring many of 
these questions within reach. Indeed, by (61), in order to understand R it suffices to 
understand the set A ⊂ H1. We hope to return to these questions in subsequent work 
and suspect that matching (see §3.2 above) will play a crucial role in their resolution.
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