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Abstract
A visual analysis framework for dinghy sailing: Towards leveraging recorded

training sessions

by Gijs Martinus Wilhelmus REICHERT

Nowadays video plays an important role in the coaching of athletes across many dif-
ferent sports. To make more use of the advantages videos can provide for coaching,
the Dutch Sailing team is shifting from manually recording short videos towards
continuously recording training sessions. This new recording approach provides
opportunities and creates challenges at the same time. In this thesis we present a
pipeline to address the problems with the stability of the recording and the first
steps towards a Visual Analysis Framework, which leverages the available video
data. New information is extracted from the video recordings by detecting and
tracking the boat and sailors. Moreover, we semi-automatically highlight interest-
ing intervals in time of a recorded training session. These are the first steps towards
an extensive Visual Analysis Framework which has the potential to make the anal-
ysis of the videos easier and provide the coaches with tools to improve the analysis
of the performance of the sailors.
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Chapter 1

Introduction

Nowadays technology and data analytics are becoming increasingly intertwined
with sports. The review by Barris and Button [1] reveals that for numerous sports
vision-based analysis approaches exist, mostly focused on player movement and
location. The data can help assess performance during training and in competi-
tive settings. For example, players could receive video-based feedback which has
been studied using ice-hockey players in the work of Nelson, Potrac, and Groom [2].
Video analysis in sport is also used for example to provide feedback [3], provide bio-
mechanical analysis [4] and in sport psychology to motivate and build confidence
[5]. It can even provide new insights that were not previously detected without
the use of technology, such as for example field positions over time and fatigue in
football. This trend holds for the complex sport of sailing as well, where more and
more sensors are added to the boats to measure the performance. However, for most
sailors in the Olympic dinghy class it holds that the use of sensors during training
is not standard practice and not allowed during races. To record and review their
performance the coaches and athletes make use of video to support their review and
analysis.

FIGURE 1.1: Schematic representation of coach following a boat dur-
ing a training session.

When the athletes of a dinghy class boat go out to train the coach usually fol-
lows them around in a rigid-inflatable boat (RIB), a schematic representation can be
found in Figure 1.1. Then, to gather valuable data the coach makes short video clips,
usually not more than a minute per clip, of moments which highlight the goal of the
training or provide videos to reflect on. Also, during starts of races the coaches tend
to record videos to be able to assess the performance afterwards. These videos are
shot using handheld cameras or smartphones, which despite some advantages, such
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as only capturing the moments they think are interesting, also causes a number of
problems. Problems such as, for example, the need to hold and operate them using
one or two hands and the transition time from operating the RIB to being ready to
record.

An example of a reasonable quality input video under acceptable weather condi-
tions and sea state (the general condition of the water surface) can be seen in Figure
1.2, these videos were, however, not stabilized. Acceptable conditions will be dis-
cussed in more detail in Section 1.1.2.

Because most of the videos are shot using handheld devices, the quality regard-
ing stability and observable details, such as rudder movement, is relatively low.
Next to this, the coach has to use two hands to properly operate a RIB. This means
that whenever the coach decides to capture a moment, one hand is operating the
boat and the other is used to shoot videos. Sometimes important moments are not
captured, due to the time it takes to switch between operating the boat and shooting
a video of a sailor. Moreover, because the coach can not operate the RIB with two
hands they tend to keep more distance between the sailing boat and the RIB to be
safe. The increased distance between the camera and the sailing boat makes observ-
ing details from the videos, such as for example rudder movement, difficult. Al-
though the video data could provide a wealth of information, the current approach
leads to the video data not living up to its true potential.

FIGURE 1.2: Example footage taken from coach boat under good con-
ditions.

The company annalisa1 is making an effort to tackle some of these problems by
mounting a camera to the coach boat. These cameras can then record the entire
training session, which means that the coach could focus on operating the RIB while
coaching. However, a training session usually lasts about 2-3 hours. Going through
all of the footage after every training would be undesirable and too time-consuming
for the coaches and sailors. Therefore, we propose a semi-automatic way to deter-
mine which parts are potentially worth reviewing and storing. To facilitate this we
need a tool to be able to visually explore and analyse the footage. This research will
aim to improve the stability of the video data for visual analysis purposes, detect
interesting intervals in the footage and extract and/or cluster valuable data from the
videos.

1https://annalisa-sailing.com/

https://annalisa-sailing.com/
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1.1 Research Goal and Requirements

1.1.1 Research Goal

For the Dutch Olympic sailing teams some of the coaches already use video to sup-
port their analysis of training sessions and races. However, as mentioned previously,
this system is far from ideal and the process varies from coach to coach. The goal of
this research is to improve the visual analysis of videos used to train sailing athletes
in the dinghy class. First, the stabilization of the footage taken from the coach boat
that follows athletes will be improved. Stabilizing the footage should make it easier
to analyze and observe details. Next, of the entire recorded session only the poten-
tially useful parts for the coach and athletes will be highlighted and segmented. This
means another goal is to determine what useful parts of a session are and develop
a method to reliably detect and segment these from the video feed. Finally, we will
provide a visual analysis strategy to facilitate the analysis of the video.

This research will provide the first steps towards what could be an extensive
visual analysis framework for the coaches and athletes. The goal is to design the
framework in such a way that only the video frame data is used and does not rely
on external sensors. Next to this, another goal of this research is to require minimal
manual user input to analyse relevant video sequences. This is because, according
to some of the coaches, if it takes them more time than what they are used to now it
is unlikely that they will ever use it. Therefore, in this thesis we will investigate how
to semi-automatically process, analyze and segment recorded sessions while using
only the video data.

1.1.2 Requirements and Assumptions

To limit the amount of variables for developing the methods in this thesis a few re-
quirements and assumptions are in order. This thesis focuses on the situations where
a Rigid-hull inflatable boat follows one 49er sailing boat. We assume to always be
following one 49er boat under normal weather conditions. By normal weather we
mean that there is no rain limiting the camera view and a sea state calm enough to
record videos without extreme movements limiting the ability to keep the boat in
view most of the time. Next to this, we assume that while following one boat no
other boats will cross paths or be in the video next to the sailing boat of interest.
Lastly, the recording camera needs to have a high enough resolution, with a mini-
mum of 480p but preferably over 1280x720 pixels, and needs to be close enough to
be able to see the persons and boat clearly in the video. This comes down to a maxi-
mum distance of around 30-40 meters, but preferably the RIB is following the sailing
boat more closely.

1.2 Outline

Chapter 2 provides basic background information on sailing and the current and
new situation. Chapter 3 gives an overview of relevant prior work in video analysis
and sailing. Chapter 4 describes the proposed pipeline and used methods. Chapter
5 presents the evaluation of the proposed methods, which consists of experiments
and evaluations with users. Chapter 6 concludes this thesis and discusses potential
future work. This thesis is best viewed in color.
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Chapter 2

Background

This thesis spans multiple topics and the purpose of this chapter is to provide the
necessary basic knowledge and terminology used in this thesis. The background
information mostly focuses on sailing.

2.1 Sailing

2.1.1 Boat Type

The methods and approaches in this thesis are focused on the 49er/49er FX (see
Figure 2.1), a boat in the Olympic dinghy sailing class. Nevertheless, we assume
that the methods should work for other dinghy class boats as well. This skiff type
boat is operated by a two person crew, both equipped with their own trapeze. These
trapezes are used to hang overboard and counteract the force of the wind by using
their body-weight. The two person crew consists of the helm, the one who steers the
boat, and the crew, who sits more towards the front of the boat and does most of the
sail control.

FIGURE 2.1: The 49er schematic and real appearance. (Source: Wiki-
media Commons and Watersportverbond)

Boat parts In Figure 2.2 several boat parts have been labeled. These relevant boat
parts and their corresponding names will be referred to throughout this thesis. Some
of these boat parts are important in understanding the manoeuvres, which will be
discussed next.
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FIGURE 2.2: Relevant parts and names of a sailing dinghy. (Modified
from Wikimedia Commons)

2.1.2 Manoeuvres

In sailing there are many different manoeuvres, but two stand out as most important
in general and in the context of this thesis. These two manoeuvres are called Tacking
and Jibing and will be explained in more detail below.

Tacking

You can not sail a boat directly into the direction the wind is coming from. This
may, however, be the direction the boat needs to go. To overcome this limitation, the
boat is sailed in a zig-zag pattern which is called beating. This is where the tacking
manoeuvre is used as can be seen in Figure 2.3a. Tacking is when you steer the bow
(see Figure 2.2) of the boat, using the rudder, in the direction the wind is coming
from and continue turning until the wind is coming from the other side relative to
the boat. A schematic representation of a Tacking manoeuvre can be seen in Figure
2.3b. During this manoeuvre the sail and sailors move to the other side, relative to
the imaginary centerline from the bow to the stern of the boat.

Jibing

Jibing is the opposite of Tacking. With the stern (see Figure 2.2) of the boat facing
the wind direction the boat is turned “through the wind”. For a schematic represen-
tation of a jibing manoeuvre, see Figure 2.3c.
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(A) Beating to windward. (B) Tack Manoeuvre. (C) Jibe Manoeuvre.

FIGURE 2.3: Beating to windward using tacks, and common manoeu-
vres tacking and jibing.

2.1.3 Hiking

Although hiking is not a manoeuvre, it is an important part of dinghy sailing. Hik-
ing, also known as leaning out or sitting out, is the action of counteracting the wind
force using your body weight and thereby reducing the heel angle of the boat. Hik-
ing in the 49er boat is more "extreme", as the crew is further away from the hull with
their body, which should make detecting the location of the person with respect to
the boat easier. The detection of the location of the person with respect to the boat is
used to extract manoeuvres from the videos, which will be discussed in Chapter 4.
An example of hiking can be seen in Figure 2.4.
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FIGURE 2.4: Crew of a 49er hiking, green outline highlighting the
location of the sailors.

2.1.4 RIB Usage

As mentioned before, in Chapter 1, the coach usually follows a boat around during
a training session in a RIB. This is done in order to stay close enough for the coach
to be able to assess the performance and actions of the sailors. To operate the RIB
you need two hands, one for the throttle handle and one for the steering wheel. The
throttle handle (see Figure 2.5 on the side of the console, left of the steering wheel)
can, however, be left in a position which frees up one hand to do something else,
leaving the throttle handle in the same position. Although the coach spends quite
some of the time following the boat around, the distance between the coach boat
and the sailboat varies. The coach in the RIB could be at around 5-10 meters behind
when taking a closer look at the sailors actions or be further behind to have a better
overview. Moreover, sometimes the coach and the sailboat are stationary and side-
by-side in the water in order for the coach to provide feedback during training.

FIGURE 2.5: Example of a Rigid-Inflatable Boat (RIB) and Console
closeup. (Source: NTCZ and Tornado Boats)
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Chapter 3

Prior Work

In this chapter prior work related to this thesis will be reviewed. First, we will re-
view the current situation of how video is captured and used now in sailing at the
Nationaal Topsportcentrum Zeilen (NTCZ). To the best of our knowledge there has
been no previous research on (semi-)automated video analysis in sailing for coach-
ing. However, there is some relevant work where video is used in the context of
sailing as well as video analysis that is being used in other sports. This will be re-
viewed in Section 3.2. Next to this, there are multiple aspects in this thesis that have
relevant prior work. Relevant stabilization work will be reviewed in Section 3.3.
For automatic manoeuvre detection from video there is again no published work, to
the best of our knowledge. Therefore, relevant related practices and work will be
reviewed in Section 3.4.

3.1 Current situation

As is common in many other sports, the coaches of the Dutch sailing team make use
of video analysis in their coaching. However, how the footage is acquired and used
right now varies from coach to coach. What is true for most coaches is the fact that
they manually record short videos whenever they see or expect to see something
interesting that they could use in their coaching. In Figure 3.1 a schematic repre-
sentation of the process can be found. The coach follows a boat and sees something
relevant to record (Figure 3.1, Step 1). They take their recording device and record a
video (Step 2). The process of recording these videos usually requires one and some-
times two hands. This is an undesirable situation as the coaches do actually need to
use their hands to operate the RIB, as described earlier in Section 2.1.4. Some of the
coaches record videos using their phones where others use a handheld camera. The
videos that were recorded by the coaches are then used, for example, in the debrief
after a training session. It depends on the coach if the videos are organized and
stored in some database, sent to the sailors or just kept on their phones or cameras
(Step 3).
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FIGURE 3.1: The process of capturing video clips by coaches. (Step
1. Follow sailor, Step 2. take recording device and record and Step 3.

Share/Show videos.)

New situation In the nearby future the coaches of the Dutch Olympic sailing team
should all have a camera mounted to a pole that will continuously record videos
and a large button on top of the RIB console they can press to mark a point in time
whenever they observe something interesting (see Figure 3.2, Image 2). This way
the coaches have their hands free to operate the RIB safely and can quickly press the
button when they want to.

Tests with the described setup are ongoing and are provided by the company
annalisa. The new system will be available to the coaches in the near future and is
expected to alleviate the burden of recording using their phones or other devices. In
addition, by recording the whole session no events will be missed.

The downside of mounting the camera to a pole on the coach RIB is that the
recorded videos will be less stable. The motion of the RIB is now translated directly
to the motion of the video camera potentially causing the recorded videos to be
unstable. In the situation where a coach holds a camera or phone to record, some
of the motion would be partly compensated by the human holding the recording
device.
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FIGURE 3.2: Coach follows boat with camera mounted and always
recording. Red button can be pressed to mark interesting moments.

3.2 Video analysis in sailing

Since video cameras have been around for quite a while now it is no wonder that
video is often used as a tool in coaching across many different sports. These videos
can be used to provide feedback to athletes, as described in the work of O’Donoghue
[6]. Research focused on video analysis in sailing is, unfortunately, scarcely avail-
able. However, there are a number of publications that make use of video, such as
for example for the analysis during the development and operation of sailing simu-
lators [7], [8], [9].

Video analysis in sailing has also been used before to study technique. To study
movement behaviour a camera was mounted on the bow of a Laser [10]. From the
videos captured by this camera the heel angle was determined using a computer
screen, to display and pause the video, and a protractor, to measure the angle be-
tween the mast and the horizon. Temporal patterns and the nature of physical activ-
ities were studied by analysing video recordings of simulated races [11]. Mackie [12]
reported on the development of a protocol to assess hiking technique using video.

Although published research on performance monitoring systems in dinghy sail-
ing is rare, Boehm et al. presented such a monitoring system[13]. Besides a number
of sensors the system also included audio and video streams to monitor the crew
and observe the sails. This system should allow coaches and sailors to discuss and
evaluate performance based on the sensor and video data. During the Americas
Cup another monitoring system was used to gather data, which was then used to
augment this data on the video broadcast [14]. This system was, however, focused
on making the TV broadcast more attractive and understandable for viewers. But, it
shows that measuring and augmenting data can be helpful in analyzing and under-
standing what is going on in the videos, which in turn could potentially be helpful
for coaching in sailing.
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3.3 Stabilization based on Horizon line

Over the years cameras have become more affordable and able to capture footage of
higher quality. This leads to cameras being used to replace other sensors or combi-
nations of sensors. For example, using the detected horizon line as an alternative for
inertial sensors in unmanned aerial vehicles [15].

This same idea, detecting the horizon, can instead of navigation also be used
to stabilize the captured images by the camera. Several similar approaches, that
detect and utilize the horizon line to stabilize, are available [16], [17], [18]. These
approaches aim to detect the line in the image sequence using edge detection algo-
rithms or other methods and pre-processing steps.

Another approach is using a Support-Vector Machine (SVM) to separate a binary
image into two regions, and, using this to find the horizon [19]. In line with the
SVM approach is the pixel-wise segmentation approach using a Fully Convolutional
Network [20]. These approaches are generally computationally expensive but can
achieve high accuracy.

Other examples of approaches include the use of features detected around the
horizon [21], corner points detected by an adaptive Harris algorithm [22] and hybrid
approaches using a features and dense method [23].

3.4 Manoeuvre Detection

Manoeuvre detection has been done before using the apparent wind angle [13]. This
approach requires sensors to measure the wind angle but does give a reliable estima-
tion of when a manoeuvre happened. Unfortunately, these sensors are not usually
found on dinghy sailing boats but if available could prove to be a valuable addition.

Although examples of research exist in the automotive domain where video data
is used to detect or estimate manoeuvres [24], this does not hold for sailing. Espe-
cially when looking for automatic manoeuvre detection based solely on video data
there is no published research, to the best of our knowledge.

Therefore, on a higher level we will look at vision based detection and tracking
for video analysis in other sports. In addition, we will also review object detection
and tracking which relates to detecting manoeuvres based solely on video data.

To provide coach assistance and performance achievement automatic body track-
ing and motion analysis has been used [25], [26]. Other approaches include, but are
not limited to, event tactic analysis [27], team tracking techniques [28] and vision-
based systems aimed at soccer videos [29]. These methods are examples which are
related to manoeuvre detection in the sense that we need to derive information from
the video to be able to detect the manoeuvres. In this thesis this means the need to
detect the boat and sailors.

Object detection and tracking have become a relatively popular area of research
nowadays. There is a vast amount of work available on object tracking, of which
overviews are given in surveys [30], [31]. This holds for object detection as well, see
for example the survey by Parekh, Thakore, and Jaliya [32]. Lately we have seen an
increasing interest in deep learning methods for object detection [33]. Next to this,
other interesting work is the moving object detection survey by Yazdi and Bouw-
mans [34], which focuses on methods for detecting moving objects from a moving
camera.
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Method

4.1 Overview

To be able to find, extract and visualize segments we need to go through a number
of steps in what we will refer to as the pipeline. An overview of the pipeline is
illustrated in Figure 4.1. First we will briefly address the motivation and purpose of
each step in the pipeline. The sections that follow (Section 4.2 - 4.6) in this chapter
will explain the methods used in each step in detail.

FIGURE 4.1: High level overview of the pipeline.

Source Video With the camera mounted to a RIB a whole training session can be
recorded, as described earlier in Section 3.1. Therefore there will be no manual com-
pensation of the RIB motion as before, when the coach held the camera.

Stabilization To compensate the induced motion source videos will be stabilized.
Our hypothesis is that by stabilizing the video it becomes easier to analyze for coach-
ing purposes, compared to a non-stabilized version of the same video. Next to this,
we assume the stabilized videos will lead to an improved performance of the next
step in the pipeline, detecting and tracking the sailing boat and persons. Although
the stabilization can be skipped, the Detection and Tracking could benefit from the
stabilized footage, as the reduced motion of the object of interest should make it
easier to follow. This is of less importance for the Detection, which does not use
time-coherent data but only uses separate frames, but our hypothesis is that stabi-
lizing the videos makes a real difference for the Tracking.
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Detection and Tracking Manoeuvres are an important aspect of sailing and are
therefore considered to be interesting to review in recorded videos. Manoeuvres
in this thesis refer to Tacking and Jibing, as described in Section 2.1.2. To be able
to determine when a manoeuvre happened from the video data, we need to detect
and track both the location of the boat and the location of the sailors with respect
to the boat. Our assumption is that the RIB is following the sailing boat from be-
hind. Nonetheless, tracking the location of the boat in the video provides informa-
tion about whether there is a boat in view or not, and this information can be used
to label time intervals where there is no boat in view as unimportant.

Manoeuvre Detection With the boat and sailor locations known we can try to
detect manoeuvres. As manoeuvres are an important part of sailing, building an
archive of manoeuvre videos can yield interesting insights. With the points in time
where manoeuvres happened known you could label all the manoeuvres of a train-
ing session as interesting intervals in time. These intervals, can then be used in the
debrief after a training session and stored to create an archive of manoeuvres. A
potential future use of this archive is to annotate the archived data and use it as a
training set for machine learning algorithms. This would be especially interesting
when combining the video data with other sensor data, but will not be in the scope
of this thesis.

Visualization The last step of the pipeline is visualizing (parts of) the previously
extracted information. Going through the numbers and intervals by hand would be
a cumbersome and time-consuming task, which can be improved by using the visual
pipeline in a framework. This visual analysis framework should allow the coaches
and sailors to easily search through a recorded training session and highlight the
intervals that will most likely interest them. This also provides an opportunity to
enrich the video data using, for example, annotations.

4.2 Stabilization

The goal is to stabilize the video to make the footage of the boat easier to analyze. To
do so, we need to compensate the motion of the RIB. Because we are only using video
data we need a visual cue which we can use to calculate the transformations needed
to compensate the motion of the camera. A promising visual cue in this case is the
horizon. We assume that the horizon is always visible in a marine environment, as it
is very likely that there will be a visible edge where the water stops and transitions
to sky or background. Next to this, we assume that the horizon is a relatively long
and more or less straight line.

An overview of the steps of the video stabilization pipeline can be found in Fig-
ure 4.2. The idea is to locate the horizon line, our visual cue, in the video frame
using an edge detector. We run the edge detector and find lines in the video frame,
and from these lines we need to select the horizon. The detected horizon line is then
used to calculate the transformations to stabilize the video. Next, we describe the
subsequent steps of the pipeline in details.

4.2.1 Pre-Processing

We start with the first frame of the video. If this frame is not already in grayscale
we convert it to grayscale. We could have used each color channel separately, but
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FIGURE 4.2: Visual representation of the Stabilization pipeline.

this would complicate the model and we assume it will not significantly improve the
detection of the horizon line, as 90% of the detected edge pixels in grayscale images
are the same for color images [35]. Based on this assumption, we decided to use
grayscale images for the edge detector.

Converting to Grayscale To convert to grayscale we rely on recommendation BT.601
by the International Telecommunication Union – Radiocommunication [36]. The lu-
minance (E

′
Y) is calculated according to the prescribed formula:

E
′
Y = 0.299E

′
R + 0.587E

′
G + 0.114E

′
B

Converting the original frame as in Figure 4.3a using the formula above results
in the image in Figure 4.3b.

(A) Original video frame. (B) Original video frame converted to grayscale.

FIGURE 4.3: Conversion to grayscale.

Median Blur To prepare the frame for the edge detector algorithm, we remove
noise by applying a median blur. The median blur, introduced by Turkey in 1977 as
stated in the work of Weiss [37], was selected because it is edge preserving and has
just one parameter, the kernel size. A kernel size of 7x7 was the smallest kernel that,
empirically, gave good results given the available relevant test data. See Figures 4.4a
and 4.4b for an example of an input frame and the denoised result. The difference
might be hard to observe in this document, but the best observable difference can be
seen in the sail of the sailing boat. However, what is more important is the difference
the denoised image makes for the output of the edge-detector. Applying the median
blur reduces the number of edges detected on waves using the edge-detector. This
difference can clearly be observed after applying the Edge Detector algorithm in
Figures 4.5 and 4.6.
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(A) Input video frame. (B) Denoised frame using median blur.

FIGURE 4.4: Denoising video frame using Median Blur.

4.2.2 Canny Edge Detector

With the frame converted to grayscale and denoised the next stage in the pipeline
is the detection of edges. This is achieved by applying the Canny Edge Detection
algorithm [38] to the pre-processed frame. The hysteresis thresholds for the edge
detection algorithm are set to (50, 125). An example of the output of the Edge Detec-
tion algorithm can be found in Figure 4.6, when the same frame is not denoised first
we get an image such as in Figure 4.5.

FIGURE 4.5: Output of Canny Edge Detection without denoising the
frame.
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FIGURE 4.6: Output of Canny Edge Detection from pipeline after de-
noising.

4.2.3 Horizon Line Selection

The Horizon Line Selection consists of three steps. First, we prepare the edges for
the line detection method using dilation. Next, we use a line detection algorithm to
retrieve a set of lines. This set is then sorted and the best candidate for the horizon
line is selected.

Dilation To increase the probability of detecting the horizon, the output of the
Canny Edge Detection algorithm is dilated. The horizon line detection is based on a
voting system, and using dilation helps to make the horizon line a more prominent
continuous line, thereby increasing the probability that it will be selected.

A 3x3 kernel containing ones is constructed which represents the neighbourhood
of pixels over which the maximum is taken when moving the kernel over the image.
For an example of the operation, using a 3x3 kernel as structuring element, see Fig-
ure 4.7. As an example, after two iterations of the dilation operation over the image
in Figure 4.6 we achieve the result in Figure 4.8.
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FIGURE 4.7: Dilated operation using 3x3 structuring element. Image
modified from original [39].

FIGURE 4.8: Dilated output of Canny Edge Detection.

Line segment detection Given the dilated edges, the next step is detecting and ex-
tracting line segments in the binary image. A well known and robust method for
line detection is the Hough Transform, a technique to find geometric primitives by
using a voting procedure in a parameter space. A downside of the original Hough
Transform algorithm is that it is computationally expensive. However, using the
progressive probabilistic Hough transform (PPHT) algorithm [40], line segments are
detected in the source image with less computations. The progressive probabilistic
Hough Transform differs from the standard Hough Transform by repeatedly select-
ing a random point for voting. When a bin exceeds the voting threshold, allowing a
decision, we have detected a line and can remove the supporting points. Points that
remain, which support the detected line, will be removed from the points that have
not voted and continues with another randomly selected point. The parameters for
the PPHT are set to the following: ρ = 1, θ = 0.01, which are the same values used
in the original paper [40]. The voting threshold during experiments was set to 150
votes. Next to this, a minimum line segment length of 100 pixels was used during
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the experiments to avoid selecting short lines on the water surface. Note that the
minimum line length has to be accounted for when using low resolution videos. For
an example output of the PPHT with these parameters see Figure 4.9a.

(A) Detected line segments using PPHT. (B) Longest detected line of PPHT, the horizon.

FIGURE 4.9: Visualization of the output of the Progressive Probabilis-
tic Hough Transform and the line selected from the set.

Line Selection The output of the PPHT algorithm is a set of line segments detected
in the frame. We assume that the longest horizontal line segment in this set is located
on the visible horizon. Therefore, we sort the set of line segments (defined by a start
point and end point with x and y coordinate) by the absolute difference between the
x coordinates of the start and end points of a line. The line segment with the largest
absolute difference in the x direction is selected.

4.2.4 Transformation

The transformations are calculated using the horizon detected using the process-
ing pipeline and the artificial target horizon as depicted in Figure 4.10. Note that
the bottom and top part of the image are darkened, this is merely for visualization
purposes in this thesis and serves no use in the pipeline. The translations and ro-
tation that transform the detected line to the destination are calculated and stacked
in a data structure. This stack is then filtered using a moving average filter and the
transformations applied to the corresponding original frames.
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FIGURE 4.10: Detected horizon (Green) and destination (Orange dot-
ted). Top and bottom part darkened for visualization purposes.

The graphs in Figures 4.11a and 4.11b represent the calculated transformations
that will be applied to the original video to end up with the stabilized result. The
smoothed transformations, the orange line in the graphs that is created by averaging
the values within a window in time, are the transformations that will be used. This
results in a smoother transition between sequential video frames. More examples,
similar to Figure 4.11, can be found in Appendix A.

(A) Translation in y axis per frame, Unfiltered (Blue)
and Smoothed (Orange).

(B) Rotational angle in radians per frame, Unfiltered
(Blue) and Smoothed (Orange).

FIGURE 4.11: Video stabilization graps of transformations.

By applying the transformations to the frame we translate and rotate the frames.
These transformations introduce black areas around the edges, see Figure 4.12b. The
black area in the images gives an indication of how much the frame is rotated and
translated. If desired, these areas can be filled using inpainting techniques. For ex-
ample, using one of the inpainting techniques reviewed by Qureshi, Deriche, Begh-
dadi, et al. [41]. The black areas can also be removed by cropping the frame if the
resolution and field of view of the camera are suitable for this. However, both ap-
proaches can cause problems. Cropping could remove important visual information
and inpainting may not be perfect and therefore still be distracting. Therefore we
will not apply these methods but will evaluate in Chapter 5 if the black areas are
distracting for the users. We leave solving this, if the evaluation indicates this is a
problem, for future work.
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Next to this, in Chapter 5 we will also evaluate if the assumption (see Section 4.1)
that the stabilization will improve the Detection and Tracking holds. The Detection
and Tracking will be explained in Sections 4.3 and 4.4.

(A) Original video frame. (B) Frame after applying transformation.

FIGURE 4.12: Transforming the video frames causing black areas
around edges.

4.2.5 Limitations

Because the stabilization is based on detecting the horizon this introduces limitations
on the method. Whenever there is a long high contrast line that is not parallel to the
horizon it could be detected as being the horizon and in turn stabilize the video
frames with respect to this line. Although the probability of encountering such a
situation is low and during the experiments it was not encountered, it could still
occur and therefore limit the stabilization performance. Imagine for example a rope
or beam in the field of view of the camera or a large object close by obscuring most
of or the entire view.

Another limitation comes from the assumption that the horizon is more or less a
straight line. Because of geometric distortion, often introduced by a wide-angle lens,
the horizon can be a curve in some situations. This limitation could be overcome
by compensating the geometric distortion using for example one of the methods
reviewed by Hughes, Glavin, Jones, et al. [42]. It does however require the camera
to be calibrated and we will leave this as future work.

Next to this, in case there is heavy rain, the raindrops on the lens of the camera
can distort the image too much resulting in the stabilization method not working
properly. The performance under these conditions can be improved upon by equal-
izing the grayscale histogram and increasing the contrast around the horizon, or by
avoiding rain drops hitting the lens of the camera in the first place. Videos recorded
with a lens covered in raindrops is most likely not going to be of any use anyway.

4.2.6 Computational Optimizations

Several computational optimizations could be added to improve the processing speed
of the pipeline. One of these optimizations is downscaling the resolution of the
source frames, which means there are less pixels to process and is therefore faster. Of
course, by reducing the resolution the amount of information (in the form of pixels)
is also reduced. However, downscaling the resolution can aid the correct and faster
detection of the horizon because there will be less lines detected by the PPHT. An
example of this can be seen in Figure 4.13 (original frame in Figure 4.14a, where in
the downscaled version of the frame there is less noise on the water and around the
horizon in the Canny edge detection output. Downscaling too much can however
become problematic and cause the pipeline to not produce any results. When we
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downscale the original frame to 480x230 pixels the pipeline does not work anymore
when keeping the parameters the same. This is because the dilated detected edges
will then clog most of the image making the detection of the horizon line difficult
in most cases. These parameters can be tuned to be able to work with low resolu-
tion videos, but if the trade-off between processing speed and stability is worth it
depends on the use case. Since we are not aiming for a real-time performance, this
was not the case here.

FIGURE 4.13: Dilated Canny output and detected lines of a 1920x1080
pixel frame (top row) and a downscaled version of 640x430 pixels

(bottom row)

Another possible optimization is cropping the source video frames around the
horizon. By cropping away for example the bottom and top 20% of the pixels, as can
be seen in Figure 4.14b we reduce the data that needs to be processed to calculate
the transformations. To achieve this a full frame is processed to detect the horizon
in this frame. The subsequent frame is then cropped around the horizon that was
detected in the previous frame. The assumption here is that the horizon will not shift
out of the range over the course of 1 frame. Whenever the horizon is not detected
one would have to fallback to using the full frame. Small scale experiments with
cropping 20% of top and bottom resulted in a speedup of around 2.

(A) Original unprocessed video frame. (B) Cropped around horizon.

FIGURE 4.14: Potential stabilization method speedup by reducing the
amount of pixels processed.
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4.3 Detection

As mentioned before in Section 4.1, manoeuvres are an important part of sailing. To
detect these manoeuvres using the video data we want to know where the boat is
and where the sailors are located in relation to the boat. Over the last couple of years
we have seen a steady increase in popularity of Deep Learning methods for Object
Detection. This is supported in the review by Zhao, Zheng, Xu, et al. [43], which also
mentions the advantages of Deep Learning over traditional architectures. Next to
this, using a Deep Learning network should allow for detecting boats and persons
in a wide variety of situations and environments with relatively high accuracy. The
Deep Learning network that we chose to use in this thesis is the MobileNets Single
Shot Detector Convolutional Neural Network [44].

MobileNets We selected MobileNet because it is an efficient model, originally de-
signed by Google as a light weight deep neural network that could be used on mo-
bile devices [44] [45]. Moreover, Wu, Sahoo, and Hoi stated that without significant
loss in accuracy Mobilenet significantly reduced computation cost and at the same
time reduced the number of parameters. Next to this, our decision was strenghtened
by the fact that a pre-trained model is readily available, relieving us of the burden of
training the network 1. This model was trained on the Microsoft Common Objects
in COntext (COCO) dataset [47], which contains images for the classes Person and
Boat. Although this model is not specifically trained on dinghy sailing boats and the
sailors on it, we assume that detection performance of persons and boats in video
frames will be sufficient. We leave training the network on a specific dinghy sailing
boat dataset for future work, in part because we do not yet have a sufficient dataset
available to do this.

With the previously mentioned deep learning network we can detect the boat
and persons by feeding the video frames to the network. However, we first need to
prepare the video frames. For a schematic overview of the steps see Figure 4.15. In
the sections below the steps of this pipeline will be discussed in more detail.

FIGURE 4.15: Schematic overview of the pipeline used to detect boats
and persons in video frames.

4.3.1 Preparing the image for Network Inference

Because the deep learning network we use was trained using 300x300 pixel “blobs”
(4D tensors consisting of images, channels, width and height) from images we have
to pre-process the images. This process entails mean subtraction and scaling the
image. Because most of the video data we have available is of a higher resolution

1https://github.com/chuanqi305/MobileNet-SSD/

https://github.com/chuanqi305/MobileNet-SSD/


24 Chapter 4. Method

than 300x300 pixels, there is a need to down-scale most of the input. However, we
down-scale the images to a height of 300 pixels while maintaining the same aspect
ratio as the input images. For an example of a pre-processed frame see Figure 4.16.

As an experiment we compared down-scaling to different resolutions from a
source video of 1920x1080 pixels. This was used as a sanity check. It confirmed the
network did indeed perform better, where performance in this case refers to the boat
being detected in the frame, when the images were down-scaled to a height of 300
pixels (see Figure 4.17). Additionally, we tracked the middle of the boat manually for
this video and plotted the x coordinate. The middle x-coordinate was determined by
taking the middle of the left and right edge of the bounding box, measured in pixels
(pixel 0 on the x-axis is the leftmost column of pixels in the image). The middle x co-
ordinate of the manually tracked boat and the 533x300 down-scaled images follow
more or less the same trajectory, albeit with an offset caused by the manual selection
of the middle of the boat.

FIGURE 4.16: The “blob”, obtained by pre-processing a video frame.
The three color channels (Red, Green and Blue) are shown.
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FIGURE 4.17: Graph of the difference in detection of the boat in the
video frames when downscaling to different resolutions. Also con-

tains the manually tracked middle of the boat.

4.3.2 Network Inference and Detection

With the “blob” prepared, we feed it to the network to detect the boat and sailors.
As a result, the network will return a bounding box around a detected object, to-
gether with the class and confidence associated with that bounding box. For an
example, see Figure 4.18a. All bounding boxes with a confidence lower than 66%
are discarded to filter out noise. However, the network could still return multi-
ple bounding boxes surrounding the same object. To end up with just one bound-
ing box around an object we apply a technique called Non-Maximum Suppression.
We applied the same technique as Malisiewicz, Gupta, and Efros which used non
maximum-suppresion in their work [48] and made the code publicly available2. Us-
ing this algorithm we calculate the overlap ratio between bounding boxes and only
keep the bounding boxes that do not cross the set threshold. The threshold used in
this case was an overlap ratio of 0.5.

2http://www.cs.cmu.edu/~tmalisie/projects/iccv11/index.html

http://www.cs.cmu.edu/~tmalisie/projects/iccv11/index.html
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(A) Boat bounding box detected in video frame with a confidence of 99.60%. (B) Person detected within the bounding box
of the boat with a confidence of 74.35%.

FIGURE 4.18: Detection of boat and person in video frame.

We have separated the detection of boat and person into two steps. By this we
mean that we first feed the entire prepared video frame to the network and try to
detect the boat. Next, we use the bounding box of the detected boat and crop the
video frame to the bounding box around the boat. After the first frame this will
be done using the tracking method, this will be discussed in Section 4.4. Then, the
cropped video frame is again fed to the network to detect the sailor(s). An example
of this can be seen in Figure 4.18b. This is done because of the following reasons:
First, whenever there is a person on the RIB within the field of view of the recording
camera we would detect this person even though this would not be one of the sailors
that we are interested in. Although we could mask out the RIB part of the video
frame, we opted to take another approach instead. Masking the RIB would introduce
more parameters and methods, as the RIBs vary in size, color and mounting location
and angle of the camera. Therefore, to avoid testing and tuning extra methods and
parameters we separated the detection in two steps. Second, during experiments
the detection rate of persons was, empirically, quite low. This was mainly caused by
the image being resized for the neural network, making the persons in the frame too
small to be recognized as such. By feeding the cropped video frame to the network
to detect the persons this problem was reduced, because the image would not have
to be resized as much compared to the original video frame.

Unfortunately, during experiments it became apparent that the detection did not
always continuously detect the boat when it was present in the video frames. For
some videos we can detect the boat in every frame using the deep learning network,
see for example the “533x300” line in Figure 4.17. However, this does not hold for
all videos. For some videos, for example when the recording camera is further away
or when recording the boat from an angle that makes it difficult to recognize a boat
as such, there are large gaps in time where the boat was not detected for multiple
sequential frames (see Figure 4.19). When the camera is too far away there is not
enough resolution to detect the boat.

As mentioned previously, the cropped video is used as input to detect the per-
sons on the boat. During experiments we noticed that the detection becomes too
unstable below a resolution a 200x200 pixels when trying to detect persons on the
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boat. Using this resolution as a minimum threshold, empirically, produced good re-
sults. When the detected bounding box around the boat has a total resolution of less
than 40,000 pixels we do not attempt to detect the persons on the boat.

One of the options would be to filter the gaps, for example using filters such as
the Kalman Filter [49]. But, as we have the frames available, we can leverage this
data by using the detections of the network as input for a tracking algorithm. This
will be discussed in more detail in Section 4.4.

FIGURE 4.19: Graph of x coordinate of middle of bounding box de-
tected per frame, measured in pixels and the x-axis being the horizon-

tal axis of the frame.
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4.4 Tracking

As mentioned before in Section 4.3, we can use the detection output of the network
as input for a tracking method. This allows for automatically initializing a tracker
which we assume will improve the continuous localization of the boat and sailors.
By using a tracking method we make use of the temporal coherence of the sequential
video frames, which was not used by the detection network. When the detection
fails, the tracking method could still be tracking the object and fill in the gaps. Next
to this, for most tracking methods it holds that these are faster in terms of FPS than
using detection methods.

Tracking Algorithm The tracking method that was selected is the Discriminative
Correlation Filter with Channel and Spatial Reliability (DCR-CSF) method [50]. This
tracking method was selected because it is a relatively fast method with an excel-
lent tracking performance. It can accurately track complex objects under rotations,
occlusions and other factors while running in real-time on the CPU. The DCR-CSF
approach is an extension of the Correlation Filter tracking method. The Correlation
Filter works by training a filter on the appearance of an object. At the first frame the
object is selected by placing a tracking window on the object of interest and training
the filter. Then, we take the next frame and correlate the filter over a window in
the next frame. The location in the frame where the output of the correlation filter
is maximal is selected as the new location of the object. The filter is then updated
using that location and the process is repeated. The Channel and Spatial Reliability
extension improves the Correlation Filter. Color segmentation is used to improve
which parts of the object will be used in the filter for tracking, this is referred to as
the spatial reliability. The Channel Reliability refers to the calculated reliability of
each feature channel used in the filter.

4.4.1 Implementation Details

The tracking algorithm is initialized using the detected bounding box around the
object in the video frame. We use a separate tracker for the boat and person. The
tracker is updated each frame which provides the bounding box surrounding the lo-
cation of the tracked object. This information is then used in turn by the Manoeuvre
Detection part of the pipeline, which will be discussed in Section 4.5

After the first frame where a boat is detected (see Section 4.3.2), the bounding
box that is generated as output by the tracking algorithm is used to crop the video
frame to the bounding box located around the boat. To avoid cropping the sailors
off, that will be hiking and therefore outside of the boat, a margin is taken around
the detected bounding box. This margin does not have to be that large, because the
bounding box generated by the tracker is always larger than the bounding box of the
detection step, because it is less accurate. In this thesis we used a margin of 50 pixels
as, empirically, this gave good results. The location of this bounding box is averaged
over 10 sequential frames to avoid jitter. We assume that within 10 frames of the
video the boat will not have moved significantly and can therefore safely average
over 10 frames.

Even though the tracking algorithm is relatively accurate, there will be some
tracking error. This tracking error tends to accumulate over time causing the track-
ing to drift from the target object. To account for this tracking error we calculate
the distance between the center of the detected bounding box (see Section 4.3) and
the center of the bounding produced by the tracking algorithm. For a schematic
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representation see Figure 4.20. If the boat is detected in a frame and the distance is
higher than a set threshold, the tracker is re-initialized using the location from the
detection method (see Section 4.3). The threshold used during experiments which,
empirically, worked well was a distance threshold of 25 pixels.

FIGURE 4.20: Calculate distance between bounding box produced by
the detection method and the tracking algorithm.

4.5 Manoeuvre Detection

With the Detection and Tracking step of the pipeline we are able to detect the bound-
ing box around the sailor and boat (see Sections 4.3 and 4.4). These bounding boxes
can then be used to calculate the difference between the middle of the bounding box
around the boat and person. As we are trying to detect the sailors switching sides
during a manoeuvre, as described in Section 2.1.2, we only consider the horizontal
difference (x axis). Even if the boat is not straight up, because of the heel angle of the
boat, the sailors should still be far from the middle of the boat. Especially because
the sailors will be Hiking to keep the heel angle of the boat small, which means they
will be hanging outside the boat with their full body. See Figure 4.21 for a schematic
representation of what the difference in this case entails. The calculated difference is
measured in pixels.
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FIGURE 4.21: Calculate difference between middle of bounding boxes
in x axis produced by detection method and tracking algorithm.

Because calculating the difference depends on the detection and tracking of both
the boat and person, situations will occur where the difference can not be defined
because one or more is not detected. Whenever the boat or person is not detected
we need to deal with this missing data, as we need the difference as input for the
manoeuvre detection. The approach taken to deal with this missing data is to keep
the last known value up until the point where new data is available.

The idea behind this Manoeuvre Detection approach is to detect when the sailors
switched to the other side of the boat. Because we assume to be following the boat
from behind, we define the vertical line in the middle of the bounding box as the
middle of the boat (see Boat Middle line in Figure 4.21). Whenever the sailors cross
this line, and remain on the other side, we assume that a manoeuvre has just oc-
curred. This means that we need to detect two aspects to detect the manoeuvres.
First, detect on which side of the boat the sailors are. Second, detect when the sailors
cross the “Boat Middle” line.

To detect the manoeuvres we combine two methods, Adapted Edge focusing and
Regression Line Fitting. We use the Adapted Edge Focusing to robustly pinpoint the
frame where the sailors cross the “Boat middle” line, which marks the middle of
the manoeuvre. The Regression Line Fitting is used to find the start and end of the
manoeuvre by fitting lines and applying a threshold to the data before and after the
middle of the manoeuvre. These methods will be explained in more detail in 4.5.1
and 4.5.2.

The calculated difference data is noisy, as can be seen in Figure 4.23a where we
illustrate the noisy calculated difference, Gaussian filtered calculated difference dur-
ing a manoeuvre and regression line fit at the start of a manoeuvre. Because of this
noisy data we will apply Adapted Edge Focusing and Regression Line Fitting to ro-
bustly detect that the sailors have moved to the other side and indeed remain there.
To reliably detect the zero-crossing point, marking the middle of the manoeuvre, in
the calculated difference data we would need to filter the data first. To tackle this
problem we adapted a technique called Edge Focusing [51].



4.5. Manoeuvre Detection 31

4.5.1 Adapted Edge Focusing

Instead of sliding a window, for which a size would need to be defined, and filtering
the data in the window we use a scale space technique called Edge Focusing to find
zero crossings in the noisy data. Edge-focusing is used to track edges from coarse
to fine scale in different applications, for example, in medical imaging. Using the
research of Bergholm [51], Witkin [52] and the description in the book by Romeny
[53] (p. 221-225), an implementation of the Edge Focusing method was created and
adapted to be used in this application.

FIGURE 4.22: Adapted Edge Focusing “signature” graph. Using
coarse to fine tracking following the positive edge to pinpoint zero-

crossing frame.

To robustly detect the zero-crossing the point is tracked from coarse to fine scale.
This is done by applying a Laplacian of Gaussian (LoG) filter for a range of values
for standard deviation σ. We start with a high value for σ and decrease this with
small steps. In this thesis we used a range for σ of [ea, eb], a = 5, b = 0 with steps
of 0.005 between 0 and 5. The stepsize of 0.005 was chosen to ensure the difference
between frames forward or backward between sequential values for σ in this range
is never higher than 1. We take the indices of the detected zero-crossings, which
are called the “signatures”, using the Laplacian of Gaussian at each value for σ in
the range. When we plot all these signatures we end up with a graph like Figure
4.22. Using this collection of signatures we will track the zero-crossing from coarse
to fine. By following the positive edge down from a coarse start point, for example
at σ = 140, we arrive at the precise zero-crossing point at frame 110. The stepsize is
necessary to be able to track the edge down, because we take steps of not more than
one frame per signature when tracking the edge.

With the middle of manoeuvre determined we now turn to Regression Line Fit-
ting to find the start and end of the manoeuvre.
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4.5.2 Regression Line Fitting

We use least squares regression line fitting [54] because it is a simple and computa-
tionally relatively inexpensive method. Moreover, it is a robust way to determine if
the calculated difference has stabilized without having to tune a lot of parameters.
Using a window in time of 90 frames we apply simple linear regression to fit a line
to the data points in this window. This window of 90 frames was chosen because the
manoeuvres took, in our experiments, on average 6 seconds and the videos during
the experiments were 30 frames per second. Therefore, we assume that the win-
dow of half a manoeuvre should be robust and, empirically, worked well during our
experiments.

The slope of the fitted line is used to determine if the calculated difference has
stabilized, meaning the sailors remain at more or less the same position on the boat.
We call the line stable whenever the slope of the fitted line is lower than 0.15 radian,
which empirically worked well during our experiments. This value could be in-
creased if there is a need for tighter intervals or decreased if we want to be sure that
we are really following the boat straight from behind and the sailors remain in one
spot. For an example of the line fitted to the noisy data see the Regression Line in
Figure 4.23a. For the frames where the line is stable we note the sign of the intercept,
allowing us to differentiate between the two sides of the boat later on. With this
procedure we are able to determine when the sailors remain on one side, because
the fitted line is stable when this is the case. Then, to determine when a manoeuvre
started and ended, we search where the line stable on one side using the slope and
the sign of the intercept and wait for the line fitted to data of the frames that follow
to stabilize on the other side. In Figure 4.23a we see the Regression Line fitted to a
window of 90 frames with an angle below 0.15 radian, marking the start of the ma-
noeuvre using the last frame in time in the window. In Figure 4.23b we can observe
where the line stabilized on the other side, signifying the end of the manoeuvre. The
output of the manoeuvre detection is a pair of frames, signifying the start and end
frame of the manoeuvre. A margin can be applied to these start and end frames to
capture the moments leading up to the manoeuvre in the interval.

(A) Regression line fitted to find stable point marking start
of manoeuvre, before zero crossing (middle of manoeuvre).

(B) Regression line fitted to find stable point after zero cross-
ing.

FIGURE 4.23: Fitting regression lines to calculated difference data to
search for stable position of sailors on one side.
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With the start, zero-crossing point and end of the manoeuvre calculated the ma-
noeuvre intervals are now defined and serve as the output of the pipeline. These
manoeuvre intervals can now be visualized together with the video as the last step
and put to use by the users. The visualization method will be discussed in Section
4.6.

4.5.3 Limitations

One of the limitations comes from the assumption that the camera is following the
boat from behind. Whenever this assumption does not hold, for example when the
boat is more or less side to side with the RIB, it will generate false positives. This
is because when we take the middle of the bounding box around the boat from the
side we will see a lot of zero-crossings, as the persons and middle of the boat move
in and out of frame. This in turn will trigger the manoeuvre detection and give the
false positives as output. This could be dealt with by discarding these false positives
manually in an interface or by making sure the RIB always follows one boat from
behind.

Next to this, whenever the RIB is not following the sailing boat closely enough
the persons on the boat will not be detected. This in turn will limit the ability to
detect the manoeuvres.

Another limitation of this method is the inaccuracy in detecting the zero-crossings
using the Adapted Edge Focusing method. In some cases the Positive Edge is tracked
but leads to the wrong frame. This is often caused by missing data or very rapid
changes in the calculated difference data.

4.6 Visualization

In this section we will discuss the visualization of the video and the extracted inter-
vals using the methods in the pipeline. Visualizing the extracted manoeuvres and
video is the last step of the pipeline, as can be seen in Figure 4.1. To visualize this
data, which allow the coaches to perform a visual analysis, we need a visual analysis
framework that is tailored to the available data. We will discuss the components of
the framework and their envisioned purpose as well as the implementation details
of these components.

4.6.1 Framework Components

The video, stabilized or not, can be shown “as is”, whereas the manoeuvres can
benefit from a visualization approach to make it easier to find the manoeuvres and
interesting intervals in the recorded training session. The main goal is to allow the
coaches to analyze interesting parts of the recorded training session without the need
to go through the entire recorded session. To achieve this goal we need to show the
video itself and the interesting intervals. Up until this point the manoeuvres are
a collection of tuples, where each tuple consists of the start and end frames of a
manoeuvre. At this point in the pipeline other intervals in time, created by pushing
the red button (see Section 3.1, New Situation), can be added to the set of intervals.
These intervals will be visualized in two ways to make it easier to find the interesting
intervals in the recorded session. The intervals and their relation in time with the
video will be visualized using a Timeline which is illustrated schematically in figure
4.24, where we can distinguish intervals by using patterns or colors. The Video
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itself will be displayed in the same view as the timeline, as can be seen in 4.24, to
achieve our goal of finding the interesting intervals easily in the video. This timeline
allows the coaches to not have to search through the video but can instantly select
marked intervals, addressing our goal to not have to go through the entire recording.
Next to this, the same time-related data will also be available in the form of a list of
annotated thumbnails. This list should allow the user to easily select an interval,
while the thumbnail gives a visual cue on the contents of an interval. A schematic
overview of the three previously mentioned components (Video, Timeline and List)
can be seen in Figure 4.24. These three components will be discussed in more detail
next.

FIGURE 4.24: Schematic representation of the three important com-
ponents of the visual analysis framework.

Video The video is in the end what the user will analyze. Following one of the
User Interface Design principles described in the book of Galitz [55] we focus the
user attention on the most important component, in this case the video. Therefore, it
takes up the most space in the framework and is positioned at a central location. The
video shown can either be the original video or the stabilized version of the video.

Timeline The timeline, which can be seen in Figure 4.25, is used to show the lo-
cations in time of the intervals. To allow the user to easily distinguish the intervals
from the rest of the timeline we make use of color. Intervals are colored blue and the
rest of the timeline a shade of gray, they can be selected by clicking on them. When
clicked the interval will be highlighted using orange. These colors were chosen be-
cause orange and blue are complementary colors, and therefore should give a high
contrast. When clicking the intervals the video starts playing from the beginning
of the clicked interval. The user also has the option to click anywhere in the time-
line and the video will start from the point in time where the cursor is located. This
should allow the user to easily analyze the manoeuvres, intervals created by the red
button and the rest of the video. Using the timeline the user can manually add inter-
vals by marking the start and end of a new manoeuvre using the cursor and mark
buttons.

FIGURE 4.25: Timeline as used in the Visual Analysis Framework
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List of Intervals The list of intervals provides an overview of all the intervals that
are associated with a video, see Figure 4.26a. They allow the user to select an interval
based on the thumbnail. The intervals in the list are linked with the intervals in the
timeline, clicking them will place the cursor of the timeline at the correct location
in time. Intervals in the list can be marked as important, deleted or annotated by
the user. Intervals can be annotated by adding the comments using the Annotation
component of the framework, as can be seen in Figure 4.26b.

(A) Example of a list
of manoeuvres with
thumbnails and inter-

val timings.

(B) Window allowing the user to
annotate the intervals in the list.

FIGURE 4.26: List of intervals and annotation components of the Vi-
sual Analysis Framework.

Complete Visual Analysis Framework When we assemble these components to-
gether in a singe User Interface we end up with the framework such as the one that
can be seen in Figure 4.27. For an enlarged version see Figure A.6 in Appendix A.
This is the complete visual analysis framework, we will evaluate it with the intended
users in Section 5.4
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FIGURE 4.27: The complete Visual Analysis Framework with all com-
ponents.

4.6.2 Implementation Details

The Visual Analysis Framework was implemented using a combination of libraries
and programming languages and was tested on the Ubuntu Linux Platform. Most
of the interface was built using Python and Qt, using Python bindings provided by
Pyside2 3. All of the features were implemented using Qt except for the Timeline
and the Mediaplayer playing the videos.

The Timeline was implemented using JavaScript and D34. The Javascript code
runs inside a QWebEngineView which communicates events with the other com-
ponents of the interface via a QWebChannel. This way, we can communicate and
synchronize click events between all components making it a connected interface.

To have a robust and versatile mediaplayer we make use of Video Lan Client
Mediaplayer5, better known as VLC. Using Qt and the Python bindings for VLC6 we
make calls to the VLC API. This requires VLC to be installed on the platform. The
Timeline and VLC calls are synchronised to allow for the playback at the location a
user selects in the timeline.

3https://pypi.org/project/PySide2/
4https://d3js.org/
5https://www.videolan.org/
6https://pypi.org/project/python-vlc/

https://pypi.org/project/PySide2/
https://d3js.org/
https://www.videolan.org/
https://pypi.org/project/python-vlc/
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Chapter 5

Evaluation & Results

In this chapter we will evaluate the proposed methods (see Chapter 4). First, we
will evaluate the stabilization quality quantitatively using quality metrics and qual-
itatively using a small user study with seven coaches. We evaluate whether the
stabilized videos are easier to analyze as a coach. Second, we evaluate the Detection
and Tracking accuracy with two experiments using available relevant test videos. In
these experiments we compare a manually constructed ground truth with the output
of the proposed methods in Sections 4.3 and 4.4. Third, we evaluate the Manoeuvre
Detection by comparing the output of the proposed method with a ground truth and
determine the sensitivity and accuracy for a small set of relevant test videos. Fourth,
we evaluate the proposed Visual Analysis Framework using a user study with seven
coaches.

5.1 Stabilization

The stabilization method as described in Chapter 4 was evaluated using videos pro-
vided by annalisa, SIC and coaches at NTCZ. Most of these videos were taken using
a camera mounted to a pole on the RIB and mostly contain footage of the RIB fol-
lowing a sailing boat around in different sea states and weather conditions. The im-
plemented system takes around 0.134 seconds to process a video frame (1920x1080
pixels, H.264) on a laptop with an i7-4720HQ processor and 16GB of RAM. This
is the single thread performance where the computation bottleneck is applying the
median blur and calculating the probabilistic Hough transform for line detection,
both methods take on average between 60 and 70 ms each per video frame. A speed
up could be achieved by a parallelized processing of the video frames or by crop-
ping the video frames around the detected horizon, see Section 4.2.6. An experiment
with cropping the video frames around the horizon to between 40-50 percent of the
original size resulted in a speedup of around 2. Experimental results of some of the
videos used, without applying the aforementioned methods to achieve a speedup,
can be found in Table 5.1 below.

To be able to observe the difference it is advised to view the original and stabi-
lized versions of the videos1. These videos are available for comparison and convey
the difference in viewing experience a lot better than an image sequence. Two exam-
ples of such image sequences, comparing the original and stabilized video, can be
found in Figures 5.1 and 5.2.

The difference between the original and the stabilized frames from the video is
clearly visible in Figure 5.1. The waves caused the RIB to roll and therefore rotated
the camera with respect to the horizon. This rotation and translation is compensated
by the stabilization to end up with the bottom row of images in Figure 5.1.

1http://tiny.cc/Stable

http://tiny.cc/Stable
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TABLE 5.1: Video stabilization experimental results.

Description Length (s) Bitrate (kbps) Processing time FPS Total Time∗ FPS∗

Garmin VIRB @ (1920x1080, H264) 57 24965 03:49.03 7.47 04:40.18 6.11
Garmin VIRB @ (1920x1080, H264) 14 24966 00:58.87 7.44 01:11.72 6.11
Garmin VIRB @ (432x240, H264) 10 62208 00:02.37 105.83 00:02.96 84.80
iPhone @ (1920x1080, H265) 8 8166 00:35.46 6.40 00:43.37 5.23
Amcrest @ (1280x720, H264) 332 1771 03:03.02 27.25 04:04.63 20.38
Amcrest @ (1280x720, H264) 286 4706 04:21.12 16.44 05:22.60 13.30
Amcrest @ (1280x720, H264) 170 2388 01:49.57 23.40 02:21.72 18.00

* Total includes the encoding and writing of the video frames to disk.

FIGURE 5.1: Comparison of Original (top row) and Stabilized frames
(bottom row) (432x240 pixels source)

FIGURE 5.2: Comparison of Original (top row) and Stabilized frames
(bottom row) (1920x1080 pixels)

When the water surface is calmer, such as in Figure 5.2, the rotations and trans-
lations needed to stabilize the original frames are not as extreme. The geometric dis-
tortion caused by the wide-angle lens of the camera, in this particular case a Garmin
VIRB, is however still visible in the stabilized frames. When these distortions are
more extreme they can reduce the quality of the stabilization method or cause it to
fail. Examples of the limitations, mentioned in Section 4.2.5, will be discussed in
Section 5.1.3 below.
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5.1.1 Stabilization Quality

To quantify the difference in quality between the stabilized video and the original
we make use of the quality metric Peak Signal-to-Noise ratio (PSNR). We use the
PSNR because it is a simple and understandable metric. Despite a lot of criticism on
this metric it is a good metric for comparative quality assessment when keeping the
video content the same according to Korhonen and You [56].

The Peak Signal-to-Noise ratio between consecutive frames in dB is defined as

PSNR = 10 · log10

(
MAX2

I
MSE

)
(5.1)

Where MAXI is the maximum possible pixel value of image I and the Mean-
Squared-Error MSE for consecutive frames, with dimensions (M, N) is defined as:

MSE(n) =
1

MN

M

∑
j=0

N

∑
i=0

[In(i, j)− In+1(i, j)]2 (5.2)

This relatively simple quality metric gives an idea of the improvement in quality,
if any. Next to this, we will also use it to compare the cropped stabilized versions
to the non-cropped stabilized versions. In Figure 5.3a a graph of the PSNR can be
found of a video and its stabilized counterpart.

(A) PSNR graph for Source and stabilized video.

(B) PSNR graph for Source and stabilized video with cropped frame.

FIGURE 5.3: Graphs of non-cropped and cropped PSNR values.

From Figure 5.3a we can observe that the stabilized version is only slightly better
than the original according to this quality metric. This small difference is for the most
part caused by the moving edges due to the applied transformations and the black
background filler. When we look at the cropped version of the video, see Figure
5.3b, we observe that the PSNR is higher for the stabilized video. An example of
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the difference between the original video and the cropped version can be found in
Figure 5.4.

FIGURE 5.4: Original frame and orange edge signifying what the
frame would be cropped to.

To summarize the PSNR graphs into single values we use the Interframe Trans-
formation Fidelity (ITF), which is the PSNR between consecutive frames averaged
over the whole video. Experimental results for 4 videos taken under different con-
ditions can be found in Tables 5.2 and 5.3. From these results we can conclude that
for these experiments the stabilized cropped version is always better than the non-
stabilized cropped version. This suggests that the stabilization does improve the
quality of the videos. However, according to the quality metric, not cropping the
edges reduces the quality. Though, as stated before in Section 4.2.4, cropping can
cause problems as well. We leave the problem of removing the black areas by crop-
ping or by inpainting as future work.

What is more important though, is if the coaches that have to work with the
videos think the stabilized videos are actually better. This will be evaluated next.

Conditions ITF Source (dB) ITF Stabilized (dB)

Sunny & Calm 27.20 27.44
Large Waves & Rain 30.34 26.12
Medium Waves & Cloudy 23.99 24.21
Large Waves & Cloudy 30.83 29.93

TABLE 5.2: ITF for source and stabilized videos taken under different
conditions.

Conditions ITF Cropped Source (dB) ITF Cropped Stabilized (dB)

Sunny & Calm 26.58 28.00
Large Waves & Rain 30.05 30.62
Medium Waves & Cloudy 23.23 24.88
Large Waves & Cloudy 30.78 30.98

TABLE 5.3: ITF for Cropped source and stabilized videos taken under
different conditions.
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5.1.2 User study

A user study with seven coaches was conducted to evaluate the stabilization method
(see Section 4.2). For a list of the participants see Table 5.4. The goal of this evaluation
was to determine if the users (the coaches) prefer the stabilized videos or the original
videos and what the motivations are behind their preference.

To evaluate their preference the users were shown three pairs of videos, each
original video of the pair taken under different conditions. One video in sunny
weather and with relatively calm sea state, one cloudy and medium waves and the
last one cloudy and large waves. Each pair of videos consisted of the original video
and a stabilized version , for an example see Figure 5.5. Then, for each pair the
following question was asked:

Which video (1 or A) is easier to analyze? (1) - Strong preference for Video 1 ;
(3) - Both videos are equally easy/difficult); (5) - Strong preference for Video A

The user would then be presented with a Likert scale [57] and had to
select one of the 5 options (1-5). All the votes and motivations were col-
lected of the seven coaches and will be discussed in Results below.

FIGURE 5.5: A pair of videos used in user study. Video 1 being the
original video and Video A the stabilized version.

User study participants

TABLE 5.4: List of coaches who participated in the user study.

Results

From the summarized results in Figure 5.6 we can conclude that there
is a preference for the stabilized versions of the videos, as 10 of the 21
votes either prefer or strongly prefer the stabilized version of the videos.
The results per video can be found in Appendix A, Figures A.3, A.4 and
A.5. Motivations given for these choices in favor of the stabilized ver-
sions of the videos is that it makes looking at the details easier and that
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“the movements of the video are caused by the RIB, which are totally ir-
relevant”. Moreover, one coach states that it is easier to focus on the boat
in the stabilized videos.

Two of the coaches mention that the videos are equal for them, both the
original and stabilized version were “okay”.

However, not all coaches agreed with the stabilized version making it
easier to analyze. One of the coaches had a slight preference for the sta-
bilized version but was concerned what would happen in rough condi-
tions. Another coach, who had a strong preference for the original video,
stated the following: “Stabilized video would be better if surroundings
are cropped; really distracting at the moment to have the changing sides;
cause those are continuous references for the brain”.

We can conclude that the stabilized version is considered to be the bet-
ter version, but in future work the distracting moving edges should be
addressed.

FIGURE 5.6: Results of the votes in the stabilization user study. Votes
for 1 are strongly preferring the original video, votes for 3 are both
videos are equal and votes for 5 are strongly preferring the stabilized

video.

5.1.3 Examples of limitations

One of the limitations of the stabilization method comes from the as-
sumption that the horizon is more or less a straight line, as discussed in
Section 4.2.5. An example of a failure case because of the geometric dis-
tortion can be found in Figure 5.7a. It is clear that the horizon line in this
frame is not in fact a straight line and therefore causes the method to fail
at this point.

As mentioned in Section 4.2.5, raindrops on the lens of the camera can
distort the image too much resulting in the stabilization method not work-
ing properly. For an example with such conditions see Figure 5.7b.
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(A) Example video frame with geometric distor-
tion.

(B) Example video frame with rain drops.

FIGURE 5.7: Examples of situations limiting the performance of the
stabilization method.

5.2 Detection and Tracking

To evaluate the Detection and Tracking two experiments were conducted.
The purpose of these experiments is to evaluate the detection and track-
ing methods, as described in Sections 4.3 and 4.4. In the first experiment
we compare the detection and tracking performance of a boat in a video
with a ground truth. Then, in the second experiment we will compare
the combined detection and tracking performance for the boat and per-
son with a ground truth. The experiments and results are discussed in
more detail in the following sections.

5.2.1 Boat Detection

First, a ground truth was constructed for a non-stabilized video. The
video sequence used in this experiment was of a manoeuvre scenario
where we closely follow the boat and the boat and person could always
be detected. Constructing the ground truth was done by manually an-
notating the video with labeled bounding boxes. For this experiment
only the boat was our object of interest, the sailors on the boat are not
considered. Next, the implementation of the methods for detection and
tracking (see Sections 4.3 and 4.4) was used to process the same video.
The output, a bounding box around the boat, was then compared to the
ground truth by using the Intersection over Union (IoU). This measure
can be calculated per frame with equation 5.3, where Gi is the ground
truth bounding box of the object and Di is the detected/tracked bound-
ing box.

IoU =
|Gi ∩ Di|
|Gi ∪ Di|

(5.3)

With this measure we measure the overlap between the ground truth
and the object detected using the algorithms. In this experiment we mea-
sured the Intersection over Union for the detection and the combined
detection and tracking. The results for the video in this experiment can
be seen in Figure 5.8. From these results we would conclude that us-
ing the detection only is better, as the IoU or “similarity” is higher than
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the combined Detection & Tracking. However, this difference in IoU is
mostly because the bounding box for the combined Detection & Tracking
is almost always a larger bounding box than the ground truth, where us-
ing the Detection only is usually smaller. Although for accurate detection
you would normally want to be as close as possible to the ground truth
this does not matter as much for our method. As explained in Section
4.5, we will use the x-coordinate of the middle of the bounding box in
the video frames. Therefore, when we compare the Euclidean Distance
for these one dimensional points, we see that the Detection-only does
not always outperform the combined Detection & Tracking (see Figure
5.9). This difference is caused, as mentioned before, by the difference
in bounding boxes (see Figure 5.10). We can observe from Figure 5.10a
that the middle of the bounding box (in x direction, horizontal axis) is
more off than the bounding box in Figure 5.10b, which was created using
combined Detection and Tracking.

An IoU of 0.6 for the combined Detection & Tracking (see Figure 5.8) is
not very accurate. Even though the middle of the bounding box created
by the combined Detection & Tracking is more accurate than the IoU of
0.6 suggests, the Detection only is more accurate. Therefore, when pos-
sible the Detection bounding box should be used. However, the Detec-
tion method does not always produce an output which was the reason
to include Tracking as mentioned in sections 4.3 and 4.4. More on this
in section 5.2.3. In future work the Detection method could be improved
upon to try to track the boat and persons by using Tracking by Detection.
This would mean that the boat and person need to be detected in every
frame, which is not the case right now.

FIGURE 5.8: Intersection over Union per frame of a test video for De-
tection and combined Detection & Tracking, compared with a manu-

ally constructed ground truth.
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FIGURE 5.9: Comparison of Detection-Only and Detection & Track-
ing regarding the Euclidean distance to the middle of the Ground
truth Bounding Box from the method output Bounding Box. Lower

is better.

(A) Bounding box around boat generated by
Detection only (Blue) compared with ground

truth bounding box (Green).

(B) Bounding box around boat generated by
Detection and Tracking (Orange) compared

with ground truth bounding box (Green)

FIGURE 5.10: Bounding boxes for Detection only, and combined De-
tection and Tracking. Compared with a ground truth bounding box

around the boat (Green).

Stabilized vs. Non-Stabilized As an extension of the boat detection
experiment we compared the accuracy for Stabilized and Non-Stabilized
videos. As stated before in Sections 4.1 and 4.2, we assume that the
stabilized videos are beneficial to the performance of the Detection and
Tracking methods. To test this, similar to the boat detection experiment,
a ground truth was created. However, for this extension we created a
ground truth for the original video and the stabilized version of this
video. The Detection and Tracking performance was then measured us-
ing the Intersection over Union, the results for both videos can be found
in Figure 5.11. For the Detection and Tracking the average IoU improved
from 0.43 for the original to 0.60 for the stabilized video. From these re-
sults we can conclude that for this video our assumption holds. There
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is a significant difference in performance for the combined Detection
and Tracking. When we look at the performance using only the Detec-
tion method we do not see a significant difference. This is because the
Tracking method does use the time-coherent information of a sequence of
frames whereas the Detection method just uses separate frames. There-
fore the tracking benefits from the reduced motion of the object of inter-
est.

FIGURE 5.11: Comparison of the IoU per frame for a stabilized video
and the original video.

5.2.2 Boat and Helmsman

In this experiment both the boat and helmsman (the sailor in control of
the rudder) were objects of interest. Similar to Experiment 1, a ground
truth was constructed and used to compare against. For the compari-
son the same measure, as described with Equation 5.3, was used. The
Intersection over Union was calculated for the boat and helmsman sepa-
rately, the results can be seen in Figure 5.12. The video contained footage
of the crew of a 49er doing a Tack manoeuvre. Examples of the detected
bounding boxes compared with the constructed ground truth can be seen
in Figures 5.13a and 5.13b. For the first fifteen frames the person was not
detected, resulting in a IoU of zero (see Figure 5.12). Next to this, the de-
tection jumped to the other sailor for a brief period from frame 19 until
30 which resulted in a IoU value of zero as well. However, this does not
cause problems because these jumps and gaps will be accounted for in
the next step of the pipeline, the Manoeuvre Detection method (see Sec-
tion 4.5). Again, with an average IoU of around 0.6 is not really accurate.
Therefore the Detection only should be used when available, but when-
ever the boat or persons are not detected we have to rely on the Tracking
method.
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FIGURE 5.12: Intersection over Union per frame of a test video with
combined Detection & Tracking, compared with a manually con-
structed ground truth. Objects of interest are the boat and the helms-

man.

(A) Before Tack. Bounding box around
boat (Blue) and helmsman (Orange) gener-
ated by Detection and Tracking compared

with ground truth bounding box (Green)

(B) After Tack. Bounding box around boat
(Blue) and helmsman (Orange) generated
by Detection and Tracking compared with

ground truth bounding box (Green)

FIGURE 5.13: Bounding boxes generated using Detection and Track-
ing. Compared with a ground truth bounding box (Green).

5.2.3 Combined Detection and Tracking

Although from Experiments 1 and 2 above it may seem that using only
detection results in a higher accuracy, this is only partly true. While
it is true that the bounding box generated using only Detection often
has a higher Intersection over Union value, it sometimes results in too
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small bounding boxes, which can cause problems in next steps (see Fig-
ure 5.10a). For example because the sailors could be cropped out when
using this bounding box. Of course, we could add a margin and still use
this. However, what the experiments do not show is that often the Detec-
tion method fails to detect the persons in the video. Additionally, from
time to time the detection network struggled with the detection of the
boat as well. For an example of the advantage of the combined detection
and tracking see Figure 5.14. Note that this is a different video sequence
than in the Experiments and is presented here to illustrate the point that
we can not only rely on the Detection method. In this graph we see the
Detection only (DNN Detect) and the combined Detection and Tracking
(Tracking). From this graph we can conclude that with the combined De-
tection and Tracking we are able to have a much more continuous stream
of information, which in turn should result in a more robust Manoeuvre
Detection. The manoeuvre will be evaluated next in Section 5.3.

The previously mentioned empirical evidence in this evaluation confirm
our decision to use tracking together with detection.

FIGURE 5.14: Comparison of person location with respect to the mid-
dle of the boat using Detection only (DNN Detect) and combined De-
tection and Tracking (Tracking). The x-axis is distance in pixels from

the middle of the boat.

5.3 Manoeuvre Detection

The performance of the manoeuvre detection was evaluated using three
different relevant video sequences, recorded by a camera mounted to a
RIB. We evaluate the sensitivity of the manoeuvre detection method as
well as the accuracy of the zero crossing detection method, both methods
are described in Section 4.5. To evaluate the sensitivity we compare the
output of the Manoeuvre Detection method with a manually constructed
ground truth. The output of the Adapted Edge Focusing algorithm will
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be compared with a manually constructed ground truth as well. This will
be discussed in more detail below.

5.3.1 Sensitivity

To evaluate the performance of the manoeuvre detection we compare the
output of the manoeuvre detection with a manually constructed ground
truth. This ground truth consists of the manually annotated manoeuvre
intervals that can be seen in the videos. We will compare this with our
manoeuvre detection method and quantify the True Positives, False Neg-
atives and False Positives. The amount of videos available, of a RIB with
the camera mounted following a 49er boat, is too low to draw strong con-
clusion about the performance of the manoeuvre detection. However, it
should give an idea of what can be expected when conforming to the
requirements and assumptions, as stated in Section 1.1.2.

The videos used for the comparison contained 14 manoeuvres that were
manually annotated as the ground truth. The results of the comparison
can be seen in Table 5.5.

Ground Truth TP FN FP Sensitivity Corrected FP Corrected Sensitivity

Video 1 3 1 2 12 ∼33% 2 ∼66%
Video 2 7 4 3 7 ∼57% 0 ∼80%
Video 3 4 3 1 3 ∼75% 2 ∼75%

Total 14 8 6 22 57.14% 4 72.72%

TABLE 5.5: Results from the comparison between ground truth and
output of Manoeuvre Detection. True Positives (TP), False Negatives
(FN) and False Positives (FP) and the calculated sensitivity. The sit-
uations that violate the requirements and assumptions are discarded

and the remaining manoeuvres are referred to as the “Corrected”.

When we remove the situations where the assumptions do not hold from
the set of ground truth manoeuvres we see that the average sensitivity of
the method is 72.72% for these videos (See Table 5.5). The amount of data
available is not large enough to draw strong conclusions on the sensitiv-
ity, but does give an indication of what can be expected when adhering
to the requirements and assumptions. The violated requirements and as-
sumptions are in most cases caused by the RIB not following the sailing
boat or the sailing boat being too far away to detect and track the per-
sons on it. For an example of both these situations see Figure 5.15. When
we look at the results in Table 5.5 without removing the situations where
the assumptions do not hold we see that the sensitivity of the Manoeu-
vre Detection method is 57.14%. This relatively low sensitivity is partly
because of the violation of the requirements and assumptions.
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(A) Sailing boat disappearing off screen while RIB con-
tinues straight ahead, limiting the ability to detect the

manoeuvre.

(B) Sailing boat too far away to detect the persons on
the boat, limiting the ability to detect the manoeuvre.

FIGURE 5.15: Limitations for manoeuvre detection caused by vio-
lated assumptions.

The number of False Positives from the three videos combined was on
the high side with 22, as can be seen in Table 5.5. However, the vast ma-
jority of these False Positives was caused by the RIB lying stationary next
to the sailing boat for some time. This limitation, as described in Section
4.5.3, comes from the violated assumption that the RIB is following the
sailing boat around from behind. For an example of the sailing boat lying
stationary next to the RIB see Figure 5.16. When we discard all the situ-
ations where a False Positive was generated by one of the assumptions
being violated, we end up with a corrected False Positive count of four.
Most of the violated assumptions (13 out of 22) were the sailing boat ly-
ing next to the RIB. Other violated assumptions causing False Positives
were the RIB not following the sailing boat or other boats crossing be-
tween RIB and the followed sailing boat.

FIGURE 5.16: Example of situation causing False positives, sailing
boat next to the RIB violates assumption and in turn generates false

positives for the Manoeuvre Detection.

5.3.2 Zero-Crossing Accuracy

To evaluate the Zero-Crossing accuracy we created a set of zero-crossings
by applying the Adapted Edge Focusing method (see Section 4.5) on a
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set of videos. These where then compared with a manually constructed
ground truth to evaluate the accuracy in terms of frames. A 100% accu-
rate zero-crossing would be the method outputting the same video frame
as the ground truth as the point in time where the zero-crossing occurred.
For the results of this comparison see Table 5.6. From these results we can
conclude that the Adapted Edge Focusing is relatively accurate. For 20
cases the method was accurate to the exact frame, for the remaining 7 of
the set this was not the case. With a median offset of 26 frames and an
average of 45 frames this means that in practice, with a frame-rate of 30
frames per second, we would be off by about a second.

Total Accurate Inaccurate Avg. Offset Med. Offset

27 20 7 ∼45 Frames 26 Frames

TABLE 5.6: Results for the accuracy of the Zero-Crossings.

Although the precise frame of the zero-crossing is not that important we
encountered one case where the Adapted Edge Focusing was off by 100
frames. For an example of the limitations of the Adapted Edge Focusing,
as described in Section 4.5.3, see Figures 5.17a and 5.17b. From these
figures we can see that coarse to fine search starts around frame 151 for a
LoG filter with a σ of 140. However, instead of tracking the edge to frame
115, which is where the actual zero-crossing occurs, the edge is tracked
to frame 215. This is caused by the missing data and in this case causes
the Edge Focusing to generate the output with an offset of 100 frames.
With a recording at 30 frames per second this would mean that we are
more than three seconds off with detecting the middle of the manoeuvre.
In most cases this should not be a problem, as searching for the stable
lines should still find the start and end if the start and end can be found
in the window around the middle of the manoeuvre.
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(A) (B)

FIGURE 5.17: Example of missing data causing inaccuracy in the out-
put of the Adapted Edge Focusing method. (A) Graph of “signatures”
using LoG at different values for σ, using the Calculated Difference
in 5.17b as input data. (B) Graph of calculated difference data filtered
using the LoG at different values for σ, used in the Adapted Edge Fo-
cusing. Missing data causes the sudden jump in value around frame
215, causing the coarse to fine tracking output the wrong frame as

zero-crossing point.

5.4 Visual Analysis Framework

To evaluate the created Visual Analysis Framework a user study was con-
ducted. Seven coaches participated in the user study, a list of the partici-
pating coaches can be found in Section 5.1.2. The goal of this user study is
to determine if the coaches think that this would be a useful addition for
their coaching or not. A working prototype, which can be seen in Figure
4.27 in Section 4.6, was shown to the participating coaches and evalu-
ated using a questionnaire. This questionnaire consisted of the following
questions below:

Question Answer Type

What aspects of this framework, if any, would be useful for coaching? Open Question
What features are you missing in this framework? Open Question
What features are not useful? Open Question
How likely is it that you would use this in coaching? Likert Scale
How useful, in your opinion, is the timeline with
marked intervals/manoeuvres in the framework? 1-10 Scale

5.4.1 Results

The summarised results of the questions and interviews can be found
below. The results are summarised per question in the paragraphs below,
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the full list of answers can be found in Appendix B Figures B.1 and B.2.

What aspects of this framework, if any, would be useful for coaching?
Three of the coaches mentioned that all of the aspects could be useful
in coaching. Others named specifically the ability to mark manoeuvres
and making notes that are attached to these intervals. One coach did not
think any of the aspects of the framework would be useful in coaching.
The motivation for this was that there was no detail to be seen in the
videos, which suggests that this coach was evaluating the quality of the
videos rather than the framework around the videos.

What features are you missing in this framework? Two of the coaches,
one in the questionnaire and another in an interview, stated that they
were missing an easy way to share and store the clips. The prototype did
not contain functionality for sharing and storing the clips and notes. An-
other feature that was mentioned was the ability to draw on the videos,
as well as labeling/naming the clips.

One coach mentioned the ability to zoom in on the boat to be able to see
more detail, because for the relatively fast sailing boats it is difficult to
stay close. Then, if the quality of the video is high enough, you could
automatically zoom in and follow the boat. This was a particularly inter-
esting suggestions as we have the tracking data available already. There-
fore, if the video resolution is high enough this could be an interesting
addition to the framework.

What features are not useful? Besides the notes that the videos are too
far away, which is not necessarily a feature of the framework, the most
interesting comments were on the list of manoeuvres. Although we as-
sumed that the thumbnails would give an indication of the contents of
the interval, this is not the case. One coach stated that everything looks
the same in the thumbnails and therefore it is not very useful. This in
line with the comments of another coach on the previous question (What
features are you missing in this framework?), who stated that you need a
way to label/name the intervals to be able to distinguish between them.
This is an important aspect that has to be taken into account in the next
iteration of the framework design.

How likely is it that you would use this in coaching? The results for
this question can be found in Figure 5.18 below. Two of the coaches voted
low on the Likert scale (1 and 2). On average we can conclude that the
coaches would likely use this in coaching. The coach which voted the
lowest was the coach who stated that no detail could be seen in the
videos, and therefore was not useful. The other coach who voted low
did find the aspects of the framework useful and found the timeline very
useful. However, this coach found it not likely that he would use this
himself in coaching, but could see the potential value in a framework
like the one presented.
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FIGURE 5.18: Results of the answers of the question: “How likely is
it that you would use this in coaching?”. Answers were in the form

of a Likert scale.

How useful, in your opinion, is the timeline with marked intervals/manoeuvres
in the framework? This question was asked to evaluate whether the
timeline makes sense to the coaches and if they think it is a useful addi-
tion. We assumed that this would be a good method to show the intervals
in time for the video. The results in Figure 5.19 below indicate that this
is indeed the case. With an average of 7.43, and no votes below a value
of 6, we can conclude that all coaches consider the timeline to be a useful
aspect of the framework.

FIGURE 5.19: Results of the answers of the question: “How useful, in
your opinion, is the timeline with marked intervals/manoeuvres in

the framework?”. Answered on a discrete scale from 1-10.



55

Chapter 6

Conclusions and Future Work

Switching to the new situation with cameras mounted to a pole created
some problems and at the same time provided opportunities. In this the-
sis we presented a pipeline that addresses the problems of the videos
regarding stability and leverages the available video data using multi-
ple steps. The goal of this research was to improve the visual analysis
of recorded training sessions used to train sailing athletes in the dinghy
class. We did so by stabilizing the videos using the horizon as a visual
cue, making the movements and details of the sailors easier to analyze.
Next to this, we extract manoeuvres from the recorded training sessions
by tracking the location of the boat and sailors in the videos. These ex-
tracted intervals are then visualized in the Visual Analysis Framework
to be able locate these in the recorded videos, without having to search
through the entire recorded session by hand. These contributions com-
bined improve the visual analysis of the recorded training sessions while
using only the video data and minimal user input.

To deal with the unstable videos, due to the camera mounted to the RIB,
we created a stabilization method based on the horizon line. Under most
circumstances this method is able to compensate the induced motion.
The majority of the users in the user study agreed to the stabilized videos
being easier to analyze. The moving borders caused by the transforma-
tions of the stabilized video are, however, too distracting according to
some users. To improve the stabilized videos this would have to be ad-
dressed. Next to the improved stability of the videos, making them eas-
ier to analyze, the stabilization has a positive effect on the accuracy of
the tracking method. During experiments (see Section 5.2.1) the average
Intersection over Union went from 0.43 to 0.60 for the stabilized video
using the proposed Detection and Tracking method.

The Detection and Tracking is used to provide input data for the ma-
noeuvre detection. The combination of the Detection and Tracking pro-
vide data of reasonable quality. Although the IoU with a manually con-
structed ground truth is usually around 0.6, this is most of the time ac-
curate enough to be able to detect the manoeuvres. In most videos the
Detection and Tracking of the boat was a lot more consistent than track-
ing the persons on the boat. In most cases this is caused by the distance
between the camera and the boat, making the persons too small to detect
using this version of the Deep Learning network. The Tracking method
does however make sure that, in most cases, we are able to fill in the gaps
where the Detection does not detect the persons with enough confidence.
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The data generated by the Detection and Tracking is used as input for
the proposed Manoeuvre Detection method. During experiments with
the limited amount of relevant test videos available we found that we
reached a sensitivity of around 72%. This was after removing the clearly
violated assumptions such as not following the boat around. These as-
sumptions not holding were also the main source of false positives. Al-
though the false positives could easily be discarded by the user, the missed
manoeuvres require a different approach in operating the RIB or an im-
proved detection of the persons on the boat. The Zero-Crossing accu-
racy detection of the Adapted Edge Focusing is, with 20 out of 27 zero-
crossings accurate to the frame, reasonably accurate. Most of the inac-
curacies were caused by missing data, which would be addressed by an
improved Detection and Tracking.

To visualize the intervals and videos a Visual Analysis Framework proto-
type was created. Using a user study we found that most of the coaches
believe they would use the Visual Analysis Framework in coaching. Two
of the coaches reported that the list of thumbnails is not useful because in
the presented prototype every thumbnail looks the same. They suggest
having the option to label or name them to be able to quickly distinguish
between the different intervals. Next to this, some of the coaches stated
that the observable detail in the videos was too low because the boat was
too far ahead of the recording camera. One of the suggested features
that came forward during the user study is the option to (automatically)
zoom in on the boat. From the user study we can conclude that the pro-
posed timeline is a useful feature of the Visual Analysis Framework. The
coaches responded with an average of 7.43 out of 10 and no vote lower
than 6 on the question how useful the timeline is, on a discrete scale from
1 to 10.

All in all we were able to address most of our research goals with the
presented pipeline. The videos are stabilized under most circumstances,
satisfying the ability to see more detail in the videos without the dis-
tracting movement. However, the moving edges of the videos make the
result not optimal yet. According to most coaches it is, however, an im-
provement over the original videos. Interesting intervals, in this work
only Tacks and Jibes, can be extracted semi-automatically with minimal
user input. These are extracted with a reasonable accuracy using the
steps in the pipeline, although there is room for improvement. These
steps of the pipeline lead to the Visual Analysis Framework presented,
which answers the question if we can design a Visual Analysis Frame-
work which improves the analysis of recorded training sessions. The pre-
sented pipeline and Visual Analysis Framework is a step forward in the
video analysis for sailing coaches, but not yet a perfect solution. There is,
however, a number of opportunities which could lead to a more robust
and feature-rich Visual Analysis Framework. These will be discussed
next.
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6.1 Future Work

Although the current pipeline shows potential there are aspects that still
need improvement. In the video stabilization step of the pipeline the
moving edges caused by applying the transformations should be ad-
dressed. This could be done by cropping the video to make sure that
all of the moving edges are outside of the cropped. However, this comes
with the risk of cropping out potentially important parts of the frame.
Another option is to fill up the black background. This could be done by,
for example, extending the edges of the frame with a blurred repetition
of the edge of the frame. Or, by using inpainting techniques to fill the ar-
eas. However, these approaches can still be distracting for the user. This
can be less distracting than the current method with the moving edges.
The trade-offs between the distracting movement and introduced risks
of misinterpretation by trying to address the moving edges should to be
researched.

The deep learning network used for detection can be improved upon.
For example, by using Transfer Learning to be able to detect the persons
on the boat more reliably. Although the network is relatively accurate in
detecting persons in all kinds of situations, there is room for improve-
ment for detecting persons on a boat. Especially in the situations where
the persons on the boat are further away from the recording camera. This
does require a large enough annotated data-set to train the network on,
which is currently not available and thus would have to be constructed
first for this application. Another approach to improve the detection of
the persons on the boat would to add detectable markers or even sen-
sors to the sailors outfits. This does however require the sailors to wear
the markers or sensors in a location that is clearly visible while not lim-
iting their ability to operate as they could without these markers. An
improved Detection and Tracking method will in turn result in an im-
proved Manoeuvre Detection.

Another approach to improve the Manoeuvre Detection is by training a
neural network using videos of manoeuvres. This does however require
a good data-set to train this network. This data-set could be constructed
using the method proposed in this thesis. By taking the intervals labeled
as manoeuvres, after removing the false positives, a data-set could be
created and annotated over time and use it to train a new network specif-
ically for detecting manoeuvres.

Although this thesis focused on the video data only, in the future data
from other sensors may be available as well. Whenever a wind direction
sensor is available, and the assumption holds that the RIB is following
the sailing boat, this data can be used to detect the manoeuvres as well.
This should, in theory, allow for a much more reliable detection when
combined with the proposed method, as from the significant changes in
wind angle we can derive when a manoeuvre must have occurred.

One of the future additions for the Visual Analysis Framework could
be an automatic zooming feature. As the location of the bounding box
around the boat is already available this could be used to implement au-
tomatically zooming in around the boat. This would address the con-
cerns of some of the coaches that there is not enough observable detail
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in the videos, which is in most cases caused by the sailing boat being too
far away. However, this would also amplify the movement and therefore
should be investigated if this does indeed improve the observable detail
while not limiting the ability to analyze the videos easily.

The presented pipeline already shows potential. By adding the afore-
mentioned features and techniques to the pipeline and Visual Analy-
sis Framework we will create an even better video analysis framework.
Which in turn could improve the performance of the sailors and result in
more medals and wins.
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Appendix A

Additional figures

FIGURE A.1: Stabilization pipeline examples with sources videos of
1920x1080 pixels, same video downscaled to 640x430 pixels and an-

other video with a resolution of 432x240 pixels.



60 Appendix A. Additional figures

FIGURE A.2: Snapshots of stabilized videos with green line represent-
ing detected horizon and accompanying graphs of rotational angle.
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(A) First pair of videos shown, video A being the stabilized version.

(B) Voting results for first pair of videos used in user study.

FIGURE A.3: Video and results of first video pair used in user study.
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(A) Second pair of videos shown, video 1 being the stabilized version.

(B) Voting results for second pair of videos used in user study.

FIGURE A.4: Video and results of second video pair used in user
study.
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(A) Third pair of videos shown, video A being the stabilized version.

(B) Voting results for third pair of videos used in user study.

FIGURE A.5: Video and results of third video pair used in user study.
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User Study Responses
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