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Metagenomic sequencing is a powerful tool for examining the diversity and complexity of
microbial communities. Most widely used tools for taxonomic profiling of metagenomic
sequence data allow for a species-level overview of the composition. However,
individual strains within a species can differ greatly in key genotypic and phenotypic
characteristics, such as drug resistance, virulence and growth rate. Therefore, the
ability to resolve microbial communities down to the level of individual strains within
a species is critical to interpreting metagenomic data for clinical and environmental
applications, where identifying a particular strain, or tracking a particular strain across a
set of samples, can help aid in clinical diagnosis and treatment, or in characterizing yet
unstudied strains across novel environmental locations. Recently published approaches
have begun to tackle the problem of resolving strains within a particular species in
metagenomic samples. In this review, we present an overview of these new algorithms
and their uses, including methods based on assembly reconstruction and methods
operating with or without a reference database. While existing metagenomic analysis
methods show reasonable performance at the species and higher taxonomic levels,
identifying closely related strains within a species presents a bigger challenge, due to the
diversity of databases, genetic relatedness, and goals when conducting these analyses.
Selection of which metagenomic tool to employ for a specific application should be
performed on a case-by case basis as these tools have strengths and weaknesses that
affect their performance on specific tasks. A comprehensive benchmark across different
use case scenarios is vital to validate performance of these tools on microbial samples.
Because strain-level metagenomic analysis is still in its infancy, development of more
fine-grained, high-resolution algorithms will continue to be in demand for the future.

Keywords: metagenomics, microbial detection, strain-level classification, methods review, whole genome
sequencing, bioinformatics

INTRODUCTION

Within a species, bacteria can be highly diverse in terms of their virulence, resistance to antibiotics,
geographical transmission patterns, and other phenotypic characteristics (Fournier et al., 2014;
Maxson and Mitchell, 2016). Individual strains can vary greatly with respect to pathogenicity,
treatment options, transmissibility, and growth rate (Balmer and Tanner, 2011; Alizon et al., 2013).
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In order to effectively treat patients, study bacterial population
dynamics, conduct epidemiological surveillance, and stem
outbreaks, it is critical to identify which specific strains of a
species present in a sample (Fournier et al., 2014; Deurenberg
et al., 2017). Tracking and comparing individual strains shared
across sets of samples would allow for the assessment of the
evolution of population diversity in longitudinal samples within
a patient or other host system. The ability to identify specific
strains in a noisy background of other organisms present in a
metagenomic sample could allow for improved tracking of strains
involved in an outbreak across a population.

Accurately identifying specific pathogenic strains would aid in
patient diagnosis, allowing for personalized treatment regimens,
improved treatment outcomes, and a reduction in the spread
of antibiotic resistance. Mixed infections, defined as infections
caused by multiple strains of a single pathogen species (Marshall,
2002; Cohen et al., 2012), represent an underappreciated
challenge to understanding infections and have been described
for at least 22 bacterial species (Balmer and Tanner, 2011),
including M. tuberculosis (Cohen et al., 2012; Plazzotta et al.,
2015), C. difficile (Eyre et al., 2013, 2012), and Streptococcus
pneumoniae (Esposito et al., 2002; Minagawa et al., 2008). It
is estimated that 10–20% of M. tuberculosis patients in high
risk areas (Huang et al., 2010; Navarro et al., 2011; Plazzotta
et al., 2015) and 10% of Staphylococcus aureus (Lessing et al.,
1995; Cespedes et al., 2005) patients are infected with multiple
pathogenic strains. Mixed infections put patients at a higher
risk of treatment failure (Balmer and Tanner, 2011; Cohen
et al., 2012; Plazzotta et al., 2015), as strains with different drug
susceptibility and antibiotic resistance profiles (Falagas et al.,
2008; El-Halfawy and Valvano, 2015) can complicate diagnosis
and identification of the optimal treatment regimen (Balmer and
Tanner, 2011). In addition to poor treatment outcomes, mixed
strain infections can increase pathogen virulence due to selective
pressure within the host (Frank, 1996). Accurate classification of
individual strains is critical for identifying mixed infections and
will help determine proper treatment options for patients with
complex infections, track transmission of pathogenic strains in a
population, and differentiate between reinfection and intra-host
pathogen evolution.

While there is clearly substantial value in being able to
pinpoint individual strains within metagenomic samples, most
current widely used tools for metagenomic analysis only allow
for an assessment of composition at the genus or species level,
not the strain level. For example, the current most popular
metagenomics taxonomic classification programs, including
Kraken (Wood et al., 2014) MetaPhlAn2 (Truong et al., 2015)
and GTDB-Tk (Chaumeil et al., 2019), are capable of identifying
mixed populations only at the species or genus level–not at
the individual strain level within a species. Tools capable of
conducting classification of metagenomic samples for higher
taxonomic levels such as the family, genus, or species have
been previously reviewed (Hunter et al., 2012; Mande et al.,
2012; Teeling and Glöckner, 2012; Goldman and Domschke,
2014). In contrast, tools to detect taxonomy at a finer-grained
taxonomic levels within metagenomic samples – targeting
specific strains within a species – are still in their infancy (Marx,

2016; Segata, 2018), with most tools only published within the
past 5 years.

To date, there have been no reviews focused on strategies
to computationally classify heterogeneous bacterial populations
using WGS data at the level of specific strains within a
species. This literature review gives an overview of recent
methods for classification at the intra-species, or strain level,
including methods based on WGS data to identify both specific
strains, as well as mixes of strains. These tools are divided
into assembly based, alignment based, and reference free
methods. We have included both secondary sources (reviews
or methods papers) and original research, where the main
objective is developing a novel methodology for detecting
heterogeneous bacterial communities, e.g., mixed infections or
within host evolution. The majority of these tools operate
using short-read sequencing data, due to the abundance and
affordability of the Illumina platform. However, the advent
of both long-read sequencing and single-cell sequencing holds
great promise in enabling effective strain-level identification.
We also cover the few presently existing metagenomic tools
specifically made for these sequencing platforms in this
review. Although we focus on clinical applications here, the
methods discussed are applicable to a broad range of biological
ecosystems typically analyzed using metagenomics, including
soil, wastewater or other environments. We discuss appropriate
applications of each strategy, evaluation of these strategies in
literature, as well as the applicability of these algorithms to
health and disease.

APPROACHES FOR DETECTING
INDIVIDUAL STRAINS OF BACTERIA
WITHIN A SPECIES

Currently available approaches to classifying genetically distinct
populations from a sequencing read set can be binned into
three categories (see Table 1): (i) methods using (metagenomic)
assembly or de novo reconstruction of genomes within the sample
(assembly based), (ii) aligning genomes to a reference database
(including full genome alignment based and pattern based), and
(iii) reference database free approaches that rely on applying
statistics directly to allele (variant) frequencies.

Assembly Based Approaches for de novo
Strain Level Reconstruction
Assembly based approaches attempt to identify individual
strains in a mixture by performing (whole) genome assembly,
drawing on tools developed for haplotype (single clone or
strain) reconstruction in diploid species. To obtain an accurate
reconstruction there must be a sufficient number of sites that
differ between the component strains in order to separate or
cluster variants into distinct strains (Yuan et al., 2012; Votintseva
et al., 2017). Therefore, accurate reconstruction of distinct strains
requires sufficient read length to capture overlap between reads,
enough discriminating sites to separate populations, and the
presence of at least one variant site in most reads. Figure 1 gives
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TABLE 1 | Tool benchmark and technical details.

Author Method name Type1 Technical details2 Sample benchmarks3 Test metrics4 Required
coverage level
per strain5

Pulido-Tamayo
et al., 2015

EVORha assembly based – java – E. coli time series (lab
grown)

– C. difficile mixed
infection samples

reliability score,
mean absolute
error, rmse

50× coverage

Quince et al., 2017 DESMAN assembly based – git/python
– linear runtime
– 5 strains in 117 min

– fecal metagenome
samples

– community of 100
species and 210 strains
with 96 samples
(synthetic)

accuracy –

Ahn et al., 2015 Sigma alignment based – C++
– scaled for

supercomputers
(alignment with 10,000
cores takes 10 min)

– sample with 5 strains
takes 20 h and 62GB
RAM on a computer with
64CPU

– fecal metagenome
dataset

– numerous spike ins of
fecal set to simulate
outbreaks

accuracy, TP/FP 0.02× coverage

Sankar et al., 2015 BIB alignment based – 1 million reads in 10 min
on single CPU

– git/python

– mixtures of 2–6
staphylococcus strains
(synthetic)

– S. aureas sample data

absolute error

Francis et al., 2013;
Byrd et al., 2014;
Hong et al., 2014

Pathoscope alignment based – git/BioConda
– 1 sample using 16 CPU

and 256GB RAM took
17 min

– European E. coli
outbreak 2011
(O104:H4)

– mixed read datasets of 3
strains

TP/FP 20% genome
coverage

Fischer et al., 2017 DiTASiC alignment based – git/conda
– requires R and python

– 3 simulated set groups
– low, medium, and high

complexity metagenomic
benchmark datasets
(synthetic)

– lacks real world testing

sum of squared
errors,
TP/FP/FN/FP –

–

Huson et al., 2007 MEGAN alignment based – gui/java
– took 180 h using 64CPU

for 300 k reads

– Sargasso sea dataset
– mammoth bone
– simulation studies
– mostly species level

testing

FP –

Dilthey et al., 2019 MetaMaps alignment based – git/Perl
– takes 16–210 h using

262GB RAM
– cannot make own DB

– simulated data
– human microbiome

project data (PacBio,
species)

– Zymo synthetic
community (Oxford
Nanopore Technology)

Precision, recall –

Smillie et al., 2018 StrainFinder pattern based6 – git/python
– 100 samples across 649

reference genomes
using 100–200cores
takes 48 + hours

– needs alignment file with
some preprocessing as
input

– 2–32 strains across
2–64 samples (synthetic)

– recurrent C. difficile
infection over time

Unifrac distance 25×

Gan et al., 2016 pattern based6 – not available – TB datasets – 1× coverage

(Continued)
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TABLE 1 | Continued

Author Method name Type1 Technical details2 Sample benchmarks3 Test metrics4 Required
coverage level
per strain5

Luo et al., 2015 ConStrains pattern based6 – git/python
– took 8.5 h and 2 GB ram

on infant gut dataset
– custom DB not possible

– E. coli admixtures 2–7
strains (synthetic)

– gut microbiome time
series

– microbiome time series
(synthetic)

– cystic fibrosis patient
infection data

Jenson-Shannon
divergence

10× coverage

Freitas et al., 2015 GOTTCHA pattern based6 – git/Perl
– used 16cores and

132GB RAM while being
2–5× slower than other
tools

– custom DB not possible

– human microbiome
project mixtures of 22
genomes

– spiked air filter
metagenome spiked

– spiked human stool
– synthetic communities of

25–300 genomes

precision, recall,
F-score, false
discovery rate and
accuracy

Sahl et al., 2015 WG-FAST pattern based6 – conda
– uses phylogeny

– fecal specimens E. coli
O104:H4 outbreak

accuracy 1×

Roosaare et al.,
2016

StrainSeeker pattern based6 – online web tool
– Perl/R
– needs 300GB space to

build DB
– uses 1 cpu, 512GB

RAM and took 1.1 min
for classification

– E. coli, K. pneumoniae,
E. faceilius, S. enterica
isolate identification
(synthetic)

accuracy <1× coverage

Albanese and
Donati, 2017

StrainEst pattern based6 – git/docker/python
– takes 12–25 min for a

10× –100× coverage
sample using
129–591MB RAM and 4
cores

– paired strains from 4
species (synthetic)

– 2 HMP mock
communities (21
organisms)

– specific strain in skin
microbiome

– cross sectional E. coli
strains in stool samples

– gut microbiome time
series

Matthew
Correlation
Coefficient,
Jensen-Shannon
divergence

10× coverage

Truong et al., 2017 StrainPhlAn pattern based6 – git/conda – human microbiome accuracy 2×

Nayfach et al.,
2016

MIDAS pattern based6 – git/docker/python
– on 1CPU process 5,000

reads per second using
3 GB RAM

– 1.5–2 h for typical gut
metagenome

– stool metagenomes time
series

– marine metagenomes

(only of genes)
accuracy, TP/FP

1 × coverage

Costea et al., 2017 metaSVN pattern based6 – git/conda
– 676 samples in 223 min

using 2,488 GB RAM
and 32 cores

– oral metagenome – 5 × coverage

Tu et al., 2014 GSMer pattern based6 – git/Perl scripts – diabetes patients gut
microbiome

– obesity associated
microbiome

TP <0.25 × (100
GSMs)
>0.25 × (50
GSMs)

Scholz et al., 2016 PanPhlAn pattern based6 – git/python – E. coli outbreak
O104:H4

– gut microbiomes
– skin microbiome
– oral microbiome
– marine metagenomes

F1 score 1 × coverage

(Continued)
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TABLE 1 | Continued

Author Method name Type1 Technical details2 Sample benchmarks3 Test metrics4 Required
coverage level
per strain5

Koslicki and Falush,
2016

MetaPalette pattern based6 – git/docker/python – spiked HMP community
(22 organisms)

– soil metagenome

Divergence, FP 22 × coverage

Anyansi et al., 2020 QuantTB pattern based6 – git/python
– <10 min for single

sample using single core
and pre-build database

– TB datasets precision, recall,
F-score, FP/TP

–

Eyre et al., 2013 reference db free – R script in supplements – C. difficile infected
patients

RMSE –

O’Brien et al., 2016 pfmix reference db free – R
– for a 5 strain sample

takes 10 min on single
core

– blood from malaria
patients

Mean squared error 25 reads

Assefa et al., 2014 estMOI reference db free – git/Perl
– little documentation

– clinical isolates of
P. falciparum

accuracy 30 × coverage

Zhu et al., 2017 DEploid reference db free – R package
– 1–6 h

– clinical isolates of P.
falciparum

accuracy 1% abundance

Sobkowiak et al.,
2018

MixInfect reference db free – R script/git
– no documentation

– tested on TB samples accuracy 10 × coverage

1Category of algorithm. 2Details about the computational parameters of the tool in terms of code base/runtime/memory usage/availability. 3Example datasets tool was
tested on in paper. 4Metrics by which each method was evaluated. 5The required coverage for the tool per stain to perform. If no value is indicated, this indicates the
particular value could not be determined from the article where the method was published. 6Pattern based methods use a database of predefined markers to classify
genetic diversity within a sample.

FIGURE 1 | Assembly of multiple distinct strains from a read set. The blue areas in the sample reads represent regions where the strains have identical sequence.
Variant locations in the reads are denoted as red or dark gray stripes. Red variants originate from one haplotype, whereas dark gray variants originate from the other.
The goal of an assembly based method is to resolve distinct strains based on the coverage and distribution of the read data, drawing on methods previously
developed for resolving haplotypes.

an overview of how a read set can be resolved into a set of distinct
individual strains using an assembly based procedure.

EVORhA, one of the few assembly based methods designed
for reconstructing complete bacterial genomes from bulk
metagenomic sequencing data, identifies strains via local
haplotype assembly (Table 1; Pulido-Tamayo et al., 2015).
For each genomic region containing a sufficient amount of
genetic variation, candidate strains are first defined as individual
genetically distinct combinations of polymorphisms. To filter out
candidate strains that are actually sequencing errors, a minimum
number of reads must support an initial candidate strain. In

an extension step, candidates are merged with nearby locally
constructed candidate strains, based on read frequency and
overlap of polymorphism combinations. Ultimately, a mixture
model is used to group extended candidate strains occurring at
similar frequencies and match these together on a genome-wide
level, making the read frequency ratios of observed candidate
strains crucial to this method. However, this read frequency
criteria for merging strains can produce chimeric strains due
to the presence of subpopulations with similar frequencies,
similar to a key problem encountered in phasing with whole
genome assembly. Given very high coverage, sufficient frequency
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diversity and sufficient segregating sites, assembly based methods
such as EVORhA can resolve the full genomes of genetically
distinct subpopulations and yield the most accurate strain
identification results when compared to other categories of
strain-level identification tools.

Knowing the full sequences of organisms within a sample
then allows for comparison and tracking of strains at the highest
resolution possible. As such, these methods would be suitable for
observing a strain’s evolutionary trajectory as well as detecting
mixed infections composed of strains that are highly similar to
each other. In order to estimate frequencies, a method would
need to account for relative abundance of reads specific to each
strain. DESMAN (Quince et al., 2017) does this by exploiting
differences in read coverage between genes conserved within a
species and other parts of the genome. DESMAN requires a group
of metagenome assembled genomes (MAGS) to do estimate
relative abundances.

A major drawback of assembly based methods is that a
large amount of coverage, 50–100 × for each strain, is required
to achieve an accurate reconstruction, demanding extremely
high depth sequencing for strains at a low abundance within
a sample (Zagordi et al., 2011). High levels of coverage are
required to account for errors introduced by sequencing: each
distinct strain must be sequenced with sufficient coverage in
order to differentiate spurious variation from true distinct strains.
Such high coverages can be achieved in studies where sample
complexity is low, with typically less than 5 strains present.

Reference Database Approaches
In order to relate strains observed within a sample to previously
studied genomes or species, it is necessary to use a reference
database. Reference databases can vary greatly in different
dimensions, such as genome quantity or species diversity.
Methods employing a reference database can be broken down
into two major categories: (i) approaches that have full genomes
within their database, and (ii) approaches that only use subsets
of these genomes within their database. Here we cover these two
overarching approaches and show the pros and cons of each.

FULL GENOME ALIGNMENT BASED
APPROACHES

Full genome alignment based methods (alignment methods for
short) classify strains by aligning reads to a predefined set of
reference genomes and applying probabilistic models to calculate
a statistical measure representing the likelihood a specific read
is associated with a given reference (Figure 2 and Table 1;
Li and Homer, 2010). These methods are often considerably
faster than assembly based methods and require less coverage,
some methods claim to work with less than 1× coverage. These
methods can achieve such low coverages compared to assembly
based methods due to their use of a reference database – where
the most likely candidate is selected based on the available
data using the probabilistic model. Alignment based methods
share the same similarities and limitations, such as reference
database composition, alignment method, and strain abundance

quantification. We will discuss these similarities and limitations
on the whole toward the end of this section.

Pathoscope, (Hong et al., 2014) one of the most commonly
used classification pipelines for metagenomic analysis, uses
different aligners three aligners [GNUMAP (Clement et al., 2009),
Bowtie 2 (Langmead and Salzberg, 2012) and BLAST (Altschul
et al., 1997)] to align reads to reference genomes. Scores for each
alignment are converted to posterior probabilities that represent
the likelihood that an alignment is the source of the read. Non-
unique reads are reassigned to their nearest reference using a
Bayesian mixture model which uses both the mapping scores
and the proportions of non-unique reads. Another alignment
based method, Sigma, allows users to choose their own short-read
alignment algorithm, using Bowtie2 as a default (Ahn et al., 2015).
Instead of using scores given by an aligner, Sigma computes
its own probability scores for each read to originate from an
alignment by examining the number of matches and mismatches
between the two.

Calculation of strain abundance in alignment based
approaches leverages the number of reads mapping to each
reference genome. For Sigma the relative abundance of a
genome is simply the proportion of aligned reads out of the
total number of reads, whereas Pathoscope calculates relative
abundance from the sum of the probability of reads mapped
to different genomes in the reference database. BIB exploits
the similarities between alignment based strain identification
and the more well-established field of RNA-seq data analysis
(Kim and Salzberg, 2011; Glaus et al., 2012; Langmead and
Salzberg, 2012; Trapnell et al., 2012) for calculating relative
abundances, by implementing the RNA-seq algorithm BitSeq
(Glaus et al., 2012) within its identification pipeline to calculate
relative abundances, after aligning reads to a reference database
with Bowtie 2. Unlike other alignment methods, StrainFinder
(Smillie et al., 2018) calculates abundances for all the genomes
in the reference database using SNP frequencies after aligning
reads with BWA. Because StrainFinder uses the Expectation
Maximization algorithm to estimate strain frequencies, the
user needs to input the expected number of strains expected to
be in the sample, to ensure the best likelihood. This not only
makes StrainFinder exceptionally computationally intensive, but
also makes it less suitable for broad metagenomic studies with
unknown number of strains.

While alignment based detection methods work well for
species with clear and well-separated sub-lineages, the selection
of genomes and choice of size for the reference database is
critical for applications to more closely related strains. Some
tools aim to draw on large and comprehensive databases in order
to gain higher resolution. Sigma offers users the opportunity
to define their own reference databases and claims support for
up to tens of thousands of genomes. The entirety of RefSeq
(2266 genomes at time of publication) has been used as the
reference database for Sigma. PathoScope generates a reference
database from all genome sequences in NCBI for a given query
taxID. The resulting redundancy from using a taxID which
could potentially include very closely related strains, instead of
a database of filtered genomes such as RefSeq, ensures coverage
at all genomic levels, but can result in non-specific strain
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FIGURE 2 | Alignment based approaches. Reads of a sequencing dataset – where different colors denote genetically distinct strains – are aligned to a reference
database of full genomes or taxonomic markers (in this case genes). Strain abundances can be estimated by the relative number of reads aligning to each reference
genome.

identification calls. Even if similar sequences are excluded, it
is often not practical to have a reference genome for every
genetically distinct, closely related strain in a species. While a
large reference database can increase coverage of intra-species
diversity, it also requires a larger computational search space
for matching reads. In addition, differentiating between closely
related strains in a highly comprehensive reference database
is nearly impossible and can result in an inflated number of
false positive predictions. Removal of closely related reference
genomes when using BIB improved accuracy and reduced non-
specific predictions to multiple unrelated strains. Therefore,
proper pruning of representative reference sequences to an
appropriate level of resolution is essential.

A major drawback of alignment based methods is that they
are dependent on details of the underlying alignment tool and
its parameters. Different alignment methodologies can result

in discordant results between methods and impacts our ability
to perform comparisons between tools. For example, most
alignment based methods use a short-read aligner (Hong et al.,
2014; Ahn et al., 2015; Sankar et al., 2015), while DiTASiC
(Fischer et al., 2017) uses the pseudo alignment approach
found in Kallisto (Bray et al., 2016) used for aligning RNA
seq reads. Some strain identifiers [Pathoscope, and MEGAN
(Huson et al., 2007)] make predictions using the quality score
of the alignment of each read. Sigma and BIB use Bowtie2
as an aligner by default which reports all reads that map
in multiple locations while Pathoscope and DiTASiC (Fischer
et al., 2017) post-process multi-mapping reads within their
algorithm, and StrainFinder uses BWA which randomly assigns
multi-mapping reads to a specific location. Sigma additionally
allows users to select their own aligner. The differences between
alignment methods and their impact on results have been
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reported before in literature (Canzar and Salzberg, 2017). Because
these strain classification methods depend on the information
given via the alignment, variation at the alignment stage may
have consequences throughout the entire method. Each approach
can limit the ability to correctly identify strains in a sequencing
set in different circumstances. The impact of these variations
has not yet been characterized, but will ultimately depend
on the species under examination and the parameters of the
alignment method and how the classification methods employ
the alignment information.

PATTERN BASED METHODS BASED ON
ALIGNMENT TO GENETIC MARKERS

Methods where alignments are done to a set of genetic marker,
rather than complete genomes were developed to offer decreased
compute time and memory requirements. We will refer to
these as pattern based methods. These methods classify genetic
diversity within a sample using a database of predefined
markers, such as unique genes, SNPs, genome-specific k-mers, or
fluctuations in GC content. The choice of marker type can vary
based on the species, data type, and classification goals. Similar to
alignment based methods, pattern based identification methods
require a reference database with which to “learn” parameters
for their statistical models. However, pattern based methods first
preprocess the reference database, extract useful features, and
apply these features for a new classifier algorithm, resulting in
decreased run times. New sequencing reads can then be classified
based off the constructed model.

An example of a method that uses a database of universal
single-copy gene families as the predefined marker set is
MIDAS, which aims to provide both species and strain-level
taxonomic identification. MIDAS first determines species content
by aligning reads to a single-copy gene database containing a
single representative genome per species (Nayfach et al., 2016). In
order to determine strain-level information, reads are mapped to
a pan-genome database containing genes from the species found
in the first alignment step. Abundance estimation per strain is
calculated by normalizing by the coverage of universal single
copy gene families. However, this sort of strain level inference
using variation in genes alone is not practical for discrimination
purposes, because universal single-copy genes represent a smaller
portion of the genome and are, by definition, conserved between
strains of species (Jordan et al., 2002; Martín et al., 2003). MIDAS
requires at least 1 × coverage per strain to determine the presence
or absence of a gene.

K-mers are often used in pattern based methods because
unlike genes, they are sampled across the whole genome,
including regions that are not especially conserved. In order
to gain greater resolution than can be obtained by using only
genes, GSMer identifies strains by capitalizing upon a strain-
specific database of strain-specific k-mers, or GSMs (genome
specific markers) (Tu et al., 2014). Each strain in the database is
represented by a set of at least 50 GSMs (optimized for k-mer size
and number). If a strain has fewer than 50 unique GSMs, it is not
included in the database. A strain is only identified in a read set if

a perfect match for all 50 GSMs of that strain is identified within
the read set, resulting in a high false negative rate and an inability
to identify strains not similar to those in the database. This may
work well for slow evolving and well conserved organisms that
will not change and can be expected to always include the set of 50
GSMers required to be identified. But not in settings where strains
are diverse and quickly changing as there is a higher chance for
the set 50 GSMers required to be present to have been mutated or
changed due to evolutionary drift.

Phylogenetic trees complement pattern based methods by
offering a more informative database structure where paths can
be indexed with a series of markers leading to a presence of
a particular strain. Trees also provide an intuitive visualization
of the phylogenetic placement of a strain. Given the tree, these
tools map k-mers or SNPs from unknown samples onto nodes
within the tree to determine phylogenetic “paths,” sequences of
nodes, which represent presence of a particular strain in the
sample. Strain abundances are calculated based on the SNP or
k-mer coverage.

SNP based tree methods differ in their SNP calling, variant
filtering, tree construction, and path determination techniques.
Relying solely on SNPs limits the inclusion of other types of
genomic variation such as indels, which could be picked up in
a k-mer based method. SNP/phylogenetic hybrid methods are
particularly suitable for species with low genomic divergence like
Mycobacterium tuberculosis, because it is a clonal organism with
strains differing by very few SNPs. Gan et al. (2016) and Sahl et al.
(2015) (WG-FAST) have both developed tree based classification
methods constructed using SNP variations between reference
genomes (Figure 3). Another SNP based method, StrainEST
(Albanese and Donati, 2017), is not based on a phylogenetic
tree model but uses SNP frequencies within each genome of a
reference database to predict strains based on co-occurring SNPs
within a sample. This is done by modeling the SNP profile of
a sample as a linear combination of the SNPs in a reference
database using LASSO regression.

In contrast, k-mer based tree approaches can be more suitable
for species that have larger degree of genetic variation or bigger
structural variations that are not detectable by only considering
SNPs. They would be less efficient at differentiating strains
which are only a few SNPs apart as the impacts of a genetic
sequencing error are more pronounced in the tree construction
and classification process when working with k-mers. Roosaare
et al. (2016) (StrainSeeker) have developed guide-tree based
classification methods based on k-mers. A phylogenetic tree
detailing the relationship between reference genomes must first
be provided by the user.

Another kind of approach, GOTTCHA, generates a database
of unique signatures for each genome at different taxonomic
levels (Freitas et al., 2015). The unique signatures of a strain
are the collection of all subsequences not found in any other
available sequences at the desired taxonomic level. The unique
signature of an unknown query sample can then be mapped
against this database to determine coverage statistics for the
query’s unique signature. The abundance of predicted strains
is obtained through a statistic comparing the total number of
mapped bases to the signature for the reference, and the number
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FIGURE 3 | Tree Based Method Overview. (A) Example database of genomes with SNPs present as markers. (B) Representation of genome database, where 1
denotes a SNP and 0 absence of a SNP (C) SNP tree constructed based on SNPs from the database. (D) SNPs present in new reads can be matched against the
tree to infer likely reference genome of origin by identifying sequences of successfully matching nodes (a path).

of unique bases mapped. StrainPhlAn (Truong et al., 2017) also
uses species specific marker sets to classify strains, but only
identifies the most abundant strain for each detected species in
a metagenomic sample. The presence of other strains is assessed
by calculating the number of polymorphic positions per species.

Other pattern based methods employ clustering to help
delineate strains and augment pattern based detection
techniques. For example, ConStrains assimilates elements
of de novo assembly to detect genetically distinct strains (Luo
et al., 2015). Reads for each species are first mapped against
species-specific marker genes using MetaPhlAn2 (Segata et al.,
2013) to generate a multiple alignment, and SNPs are determined
using Samtools (Li, 2011) based on sufficient coverage criteria.
The resulting SNP profiles are clustered into groups representing
genetically distinct strains, with abundances calculated using a
Monte-Carlo algorithm. In order to delineate strains, ConStrains
requires a relatively high coverage (10×).

The major drawback of reference database methods (both
pattern and alignment) is that detection of totally novel
pathogens is not possible. In contrast, assembly based methods,

which reconstruct genetically distinct genotypes without need
for a reference, can detect and reconstruct novel strains. When
confronted with a novel strain that is not represented in the
reference database, a good reference database based detection
method should output the nearest possible strain as well as
the uncertainty of the match. Ultimately, meaningful results
are limited to the identification of strains with reasonably close
matches within the database.

Reference Database Free Approaches
The methods described above all depend on either the presence of
genome sequences in a reference database, or the reconstruction
of a genome from reads. However, an additional subgroup of
methods exist that do not use a reference database, but rather
models within-sample diversity using a statistical model in order
to delineate genetically distinct strains. These reference database
free approaches apply statistics directly from elements acquired
from the sequencing read set such as SNPs or k-mers.

For example, Eyre et al. (2013) applied a probabilistic model
to allele frequencies at specific variable sites with the underlying
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assumption that the sample was a mixture of two haplotypes.
Variable sites were defined across the whole genome as locations
with ambiguous calls. As this approach is limited to modeling
a maximum of two strains in the data, other methods have
extended this approach to allow for the presence of multiple
strains in the sample data, including estMOI, DEploid, and pfmix
(Assefa et al., 2014; O’Brien et al., 2016; Zhu et al., 2017).
Both DEploid and estMOI use variant calls to infer the number
of haplotypes in the dataset first locally (short regions), then
globally. DEploid goes further by using a reference panel of
known genomes to create a prior in their Bayesian approach to
estimate the relative abundance, number of haplotypes, and their
allelic states. Pfmix similarly uses a Bayesian model but does not
estimate haplotypes, instead uses a single reference to provide
variants and allele frequencies to directly infer the number and
proportions of strains from allele frequencies.

Reference database-free approaches do not attempt to identify
the presence of a specific, previously sequenced strain; rather,
they utilize allele (variant) discrepancies within a WGS read set to
quantify the number and proportion of unique strains present in
a sample. These methods are therefore unable to offer insight on
the relationship of strains in the sample compared to previously
documented strains, since there is no mapping of the sample to a
database of previously seen strains. However, they are especially
effective in determining strain number of species within cultured
WGS samples.

COMPARATIVE DISCUSSION OF
DIFFERENT METHODOLOGIES

The methods mentioned in this review all aim to utilize the
discriminative capability of WGS data to taxonomically classify
samples at the level of individual strains within a species. These
algorithms differ in required coverage, the number of strains that
can be detected, the ability to detect higher level taxa (Table 2),
and other criteria. To help guide tool selection we have made a
flow chart (Figure 4) showing which types of tools would work
well with different use cases.

Reference database methods (alignment and pattern based)
are the most broadly applicable group of methods. They can
be used on samples with lower coverage levels of the species
of interest (<1×) making them faster and more robust than
assembly based approaches. In addition, they can be used to
taxonomically classify or examine intra-species heterogeneity
within an isolate culture expected to contain a single, well-studied
species (such as E. coli), as these methods require prior knowledge
of a species. This is not possible for reference database free
approaches. Also, some methods, such as GSMer and Sigma,
are able to classify at both the species and strain level, which
is useful when exploring strain level variety in metagenomic
samples containing multiple species.

Biological uses of reference database methods can be quite
broad. A common goal is to detect strains from only a
particular pathogenic species. Pathoscope, SIGMA, WG-FAST,
and PanPhlAN were all used to identify samples containing a
particular toxic strain of E. coli from fecal metagenomic data

obtained during a 2011 outbreak. In this case, although Sigma
and Pathoscope are able to remove DNA from extraneous species,
possibly providing a slight boost in computational efficiency,
these methods are still both computationally intensive programs.
Database methods can also be used to track transmission
of strains between hosts. MIDAS was used to track strain
transmission between mothers and their infants from stool
metagenomes for a number of different microbial species. In a
similar vein, StrainFinder was developed to track microbial strain
transfer in fecal transplant cases. Phylogenetic-based methods
such as those of Gan et al. (2016) and StrainSeeker can also track
evolutionary divergence of the same strain within longitudinal
metagenomic samples. These methods have the advantage of
including a visual representation of the underlying decision
process which can be easier to explain and understand. The
phylogenetic framework also offers users the ability to sanity
check results. For example, multiple closely related strains can be
detected when the “true” strain is not present in the database.

If the single species present in the isolate sample is not as
well-studied, then assembly methods are suitable, as they are not
as dependent on prior knowledge encapsulated in a reference
database. Assembly methods can also be useful in tracking
progression of a single genome. For example, EVORhA was
used to examine an evolving clonal population of E. coli strain.
Because assembly methods require sufficient coverage (50 × for
EVORhA) to resolve haplotypes, these methods are not suitable
for communities of samples with low coverages.

Certain methods quantify the number of strains or the relative
abundance of strains within a sample using allelic variations
within the dataset and do not require a database of known
genomes. These reference database free tools are useful when
the relationships between strains in a single-species sample
are of interest, rather than the exact strain identities or their
relationships to previously studied strains. This would be suitable
for testing multiplicities of strains in uncultured soil samples
or other extreme environments which are still under sampled.
Reference database free approaches can also be applied for
well characterized species, however, since pattern and alignment
based tools can also offer strain identity – these might be
preferred due to the extra information given.

Ease of use and speed of analysis are both important concerns
when considering a metagenomic tool. Table 1 details the
different machine requirements and speed tests given by the
methods reported in this paper. Though versatile and adaptable
to different scenarios, tools requiring extensive mapping to a
reference database can be extremely computationally intensive.
Sigma required nearly 20 h resolving a single 5 strain community
(20 million reads) against a database of 2,266 reference
genomes with 62GB of memory and 64 cores. StrainFinder,
another alignment method, took more than 48 h with 100–
200 cores for 100 samples. Some methods were tested in
high performance computing environments (i.e., Pathoscope,
MEGAN, GOTTCHA, all >100GB memory) which may not
always be available for clinicians. Additionally, tools requiring
a database typically only report times/requirements to process
a sample, but rarely include the time required to generate a
custom database. We were only able to find both values for
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TABLE 2 | Tool use cases and detection details.

Method name Taxonomic level1 A2 Sample setting3 Use cases4

EVORhA strain Y – high coverage data – reconstruct evolutionary trajectories
– clonal populations
– resolve genomes in metagenomic communities

DESMAN strain Y – better with low complexity (<20 strains) communities – environmental populations
– metagenomic communities

Sigma strain, species Y – made specifically to provide useful information for
outbreaks

– metagenomic bio surveillance for outbreaks

BIB strain Y – species with clear population structure and
well-separated lineages

– unsuitable for species with frequent recombination
(maybe the case for many alignment methods)

– clinical use, mixed samples
– flagging contaminated/problematic samples

Pathoscope multiple levels Y – designed to be complete framework to analyze
metagenomic data

– environmental samples
– clinical samples

DiTASiC strain Y – comparing abundances across samples – general strain identification and abundance
– allows for differential abundance testing across samples

MEGAN strain, species Y – broad taxonomic classification – environmental populations

MetaMaps strain, species Y – long read data – medium complexity environmental communities
– medium complexity

StrainFinder strain, species Y – track strain genotypes over time
– specifically made to understand real world clinical

problem
– requires prior knowledge for number of strains

– clinical/pathogen identification
– human microbiome

Gan, Mingyu strain Y – specifically for TB – clinical TB samples
– mixed infections of few strains

ConStrains strain, species Y – only needs one genome per species
– robust against unknown strains

– clinical microbiome sets
– time series data
– finding specific strains within population at low

abundance

GOTTCHA user defined Y – designed to find low abundance populations – clinical diagnosis
– bio surveillance
– community profiling

WG-FAST strain N – isolate identification (single isolate and complex
samples

– designed for low coverage strains

– disease outbreaks
– pathogen identification

StrainSeeker strain, species Y – phylogeny based
– identifying clade of novel strain
– unable to differentiate strains with few SNV

– pathogen identification

StrainEst strain Y – identifying strains of particular species
– best at lower than species level
– limited for poorly characterized species

– ecological/environmental samples
– human/skin microbiome
– molecular epidemiology

StrainPhlAn strain, species N – identifies most abundant strain of particular species
within metagenomes not all strains

– reconstruction of stain level phylogenies of species

– human microbiome

MIDAS strain, species N – cannot quantify novel species – transmission gut microbiome

metaSNV strain, species N – strain level variation within metagenomes – environmental samples

GSMer strain, species Y – identify species/strain specific for well-studied
organisms

– possible false negatives if not all GSMs covered
– false positives due to overlapping GSMs with

incorrect strains

– human microbiome

PanPhlAn strain, species Y – characterization of strain level gene elements
– useful for population genomics where few reference

genomes exist
– culture free

– outbreak epidemiology
– human microbiome

MetaPalette strain, speices Y – metagenomic profiling – environmental samples
– human microbiome

(Continued)
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TABLE 2 | Continued

Method name Taxonomic level1 A2 Sample setting3 Use cases4

QuantTB strain Y – specifically for TB – mixed infections of few strains
– clinical TB pathogen identification

Eyre, David W. strain Y – mixed infection detection
– assumes only mixes of 2 strains

– mixed infection screening in outbreak surveillance

pfmix strain Y – mixed infection detection
– specifically for P. falciparum

– pathogen identification

estMOI strain N – specifically made for P. falciparum
– estimates multiplicity of infection
– might not be possible for highly related genomes

– pathogen identification
– transmission intensity

DEploid strain Y – estimating mixed infections
– originally developed for P. falciparum
– can be used for any mixture of strains within species

– pathogen identification

MixInfect strain Y – detecting mixed infections in TB
– not suitable for non-TB species

– pathogen identification

1Taxonomy levels the method claims to be able to accurate identify. 2Denotes whether a method gives the abundance of a strain. 3Specifics about which context the tool
was originally demonstrated for. 4Different use case scenarios that the tool can be used for or has been tested for.

FIGURE 4 | Flow chart of tool selection depending on scenario. Guide chart showing which tools can be used in which use case. Presence of a tool under one use
case doesn’t necessarily exclude it from being applicable to another use case.

StrainSeeker, which process samples relatively quickly (<2 min)
but suggests 300GB of space and 512GB of ram available to
generate a database. In terms of usability, almost all of the

tools were made to run in a Linux environment, therefore
requiring some level of computational expertise in order to
navigate requirements and installation setups. Few tools offer an
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online accessible functionality (MEGAN and StrainSeeker). That
being said, certain tools are bundled in easy to install package
managers like Conda and R (i.e., DEploid, pfmix, StrainPhlAn),
while others only offer a collection of scripts (i.e., MixInfect,
and Eyre et al). Due to the requirements for installation and use
(Bash/Linux), using most of these methods would require some
bioinformatics knowledge. Further work would need to go into
making these tools accessible and open for general use, such as
online web tools, or a easy to use/install gui.

Most of the methods described in this review have not been
benchmarked across all possible use case scenarios in a systematic
or independent manner; therefore, a researcher using these tools
will need to carefully determine whether a particular tool would
work for their data type of interest. We discuss more about
benchmarking in the next section.

METHOD EVALUATION,
BENCHMARKING AND SIMULATION

Thorough and robust benchmarking of algorithms for a
particular application and data type is critical. As this field is
relatively new, there has yet to be a proper comparative study
benchmarking the efficiency, accuracy, and specificity of these
methods in a diversity of application domains: clinical pathogens
(Cassir et al., 2016; Ward et al., 2016), microbiomes (Fang
et al., 2018; Goltsman et al., 2018) and industrial biotechnology
(Capece et al., 2016; Walsh et al., 2017; De Filippis et al.,
2019) as examples.

The types of validation that have been performed for
each method are indicated in Table 1. For all tools, an
initial validation of model performance was performed using
in silico simulated reads of known composition, generated
from genomes of known host strains using tools such as
MetaSim, Grinder, and Art (Richter et al., 2011; Angly et al.,
2012; Huang et al., 2012). Alternatively, sequencing reads from
presumed pure strains can be used. Testing applicability to strain
mixes involves constructing a more complex synthetic dataset
containing a mixture of varying quantities of individual strain
read sets. Factors that must be considered in the construction of
synthetic validation datasets include: (1) Determining the actual
sequencing depth necessary to be able to identify a particular
strain in a read set and number of reads to use. (2) The
diversity in strain composition in terms of taxonomic levels that
should be represented or background non-target species. (3) The
level of complexity that needs to be introduced in the reads
(in terms of SNVs and genomic distance between strains) and
(4) the scalability of the method to fluctuation in sample size
(e.g., low abundance strains in large sample sets). Validation on
synthetic datasets addresses performance of the algorithms in the
best-case scenario. Subsequent to these validation experiments,
performance needs to be examined on test-case “real” samples,
as this is often presents a much greater challenge than testing on
in silico-generated datasets.

In order to compare the results of benchmarking different
tools, metrics for comparing results across different types of
outputs from various tools must be carefully chosen. The

published benchmarking methods for the tools described in
Table 1 use a variety of different metrics. The most common
method employed for the published tools involves testing the
specific algorithm on a dataset of known diversity and abundance,
and comparing accuracy metrics. For alignment- and pattern
based methods, a true and false positive would be defined as
whether the algorithm was able to detect the correct strain within
the sample, or whether it detected the wrong strain, respectively.
A false negative would be defined if the algorithm failed to detect
a strain present in the sample, and a true negative would be
called if the algorithm did not output any strains not present.
An important consideration in the assessment of true negatives
is whether the algorithm informs the user of the uncertainty
of the match and outputs the nearest strain. Most methods
mentioned in this paper quantified the reliability of their method
by either calculating the true positive rate/false discovery rate or
by checking manually whether the results were correct.

In addition to simply identifying which strains are present or
absent in a sample, additional metrics must assess the accuracy
in estimating strain abundances. One method to do this, used by
the assembly based detection method, EVORhA, uses the mean
absolute error (MAE) metric between the true abundances and
estimated abundances. In addition, they also calculated the root
mean squared error (RMSE), which was also used by Eyre et al.
Another method to assess accuracy in strain abundance is the
Jenson-Shannon divergence, which was used in ConStrains to
measure their prediction accuracy.

A comprehensive comparison and benchmarking of these
tools is needed to provide further insight into the efficiency of
these tools at performing strain-level identification on a wide
range of sample types, be it metagenomic, clinical, or cultures.
This benchmarking strategy would need to deal with the nuances
between tools, as they have different goals, different use-case
scenarios, and different criteria for success. It might be possible
to conduct these comprehensive benchmarks in categories such
that similar tools could be evaluated together on novel datasets
with a common evaluation metric.

CONCLUSION AND FUTURE
DIRECTIONS

Whole genome sequencing of microbial populations has the
capability to offer a view into genetic diversity at varying
taxonomic levels. Current widely used taxonomic classifiers allow
for the identification of species within WGS sets. However,
algorithms for finer-grained classification, at the individual strain
level within a species, are still relatively new. Such techniques
have the capacity to greatly impact healthcare and other fields
by precise tracking of disease outbreaks, differentiation of
commensal and pathogenic strains, and linking strain level
genotypic traits with phenotypic characteristics of clinical and
industrial importance (Capece et al., 2016; Cassir et al., 2016;
Ward et al., 2016; Walsh et al., 2017; Fang et al., 2018;
Goltsman et al., 2018; De Filippis et al., 2019). One assumption
almost universally made within taxonomic tools is that a
direct relationship exists between strain read coverage and
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strain abundance in the sample. As such, calculations of strain
abundance levels take into account the variations of coverage
across variant sites or reads. Though intuitive, none of the
tools presented here presented analysis to prove this assumption.
Conducting such verification steps is particularly important for
tools focusing on clinical use and pathogen identification, where
it is typical for a culturing step to be conducted before sequencing.
In actuality, there could be many reasons why read abundance
does not directly reflect the composition of the sample: isolation
technique (culture sweep vs. single colony isolation), cell lysis
efficiency, contamination skewing read depth, or the sequencing
process itself (Morgan et al., 2010; Pereira et al., 2018).

There are numerous ways in which current strain
identification methods can improve their benchmarking.
Firstly, very few algorithms tested the performance of their tools
on multiple (>2) low abundance strains (<1–2×). Detecting
low abundance strains would be preferred for microbial
communities such as the gut, where specific strains exhibit
differing pathogenicity. Secondly, no methods quantified or
benchmarked how genetically distant a strain needs to be in
order to properly delineate it. Third, there are no tools that
allow a user to compare strains within and across samples, which
would be useful for transmission studies. Lastly, delineating
extremely closely related strains remains a difficult problem
for the metagenomic tools. Many tools requiring a reference
database remove genomes from the database that are extremely
close together or self-report that they would not work well
with highly related genomes (Assefa et al., 2014; Sankar et al.,
2015; Albanese and Donati, 2017). Such analysis remains
difficult due to the problems that arise when considering
closely related strains such as an increase in false positives
due to both strains being reported when only one is actually
present or problems within the model itself driven by high
levels of collinearity. The difficulty with detecting extremely
close strains is further compounded due to the ambiguous
definition of a strain.

The methods detailed in this literature review are almost all
directed toward sequencing technologies that produce reads from
mixtures of cells. Direct sequencing of individual cells would
bypass this need to computationally subdivide reads produced
from current NGS technologies into those originating from
different strains. Single-cell sequencing strategies such as Drop-
Seq (Macosko et al., 2015) and 10× Genomics (Zheng et al., 2017)
are rapidly improving to provide a systematic and comprehensive
view of the genetic diversity of complex communities. Having
sequencing data originating from individual cells would greatly
simplify studies of heterogeneous populations of strains.
However, there are still technical difficulties to overcome
before single-cell sequencing becomes widely adopted. It is
probable that the next iteration of strain-level identification
algorithms will be focused on such technologies. One pioneering
example is MetaSort, which combines the advantages of
both WGS and single cell sequencing data (Ji et al., 2017).
This method assembles genomes from both WGS reads and
single cell sequencing reads and integrates the two using a
machine-learning algorithm, resulting in genomes present in the
sample. The increased resolution from single cell sequencing

based detection is likely to uncover novel forms of genetic
heterogeneity. In addition, advances in long read sequencing
continue to change the scope and direction of strain-level
detection in metagenomic samples.

Longer read lengths could make it easier and more practical
to phase haplotypes, as well as identify strains with fewer reads.
A number of studies have applied long read sequencing data
from third generation sequencing platforms such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
to assemble individual strains within metagenomic communities
(Tsai et al., 2016; Bertrand et al., 2019). For example, Somerville
et al. (2019) used the long-read assembler, Flye (Kolmogorov
et al., 2019), to reconstruct individual contigs from a long read
metagenomic sample, followed by a phylogenetic analysis using
NCBI RefSeq to determine strain identity. Long-reads can also
be beneficial for alignment based strain identification approaches.
For example, MetaMaps developed its own mapping algorithm to
align long reads to genomes in a database. Challenges for strain-
level identification using long-read sequencing can vary based
on the tools. In the case of MetaMaps, a minimum read-length
is required for a read to be considered, resulting in numerous
unassigned reads. Overall, the use of longer reads can mitigate
some of the limitations of short-reads, allowing for the resolution
of difficult to sequence regions and longer contigs. However, this
comes at the expense of increased errors, lower coverage and
higher cost. We still expect many more tools will be released for
long-read platforms as it continues to gain in popularity.

The ability to quantify and detect bacterial strains within
heterogeneous environments has applications in numerous
fields including diagnostics (Dekkera, 2018), clinical studies for
the microbiome (Wang et al., 2015), bio surveillance (Ahn
et al., 2015), tracking transmission of infectious strains in an
outbreak (Hong et al., 2014; Ahn et al., 2015; Nayfach et al.,
2016), providing insight into the spread of antibiotic resistance
(Sukhum et al., 2019), tracking progression of within-host
bacterial evolution (Pulido-Tamayo et al., 2015) and exploring
diverse environments (Tringe and Rubin, 2005). We look forward
to the wide range of applications and effects these tools will have
in shaping and progressing sequencing based research.
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