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Abstract
Rank-Biased Overlap (RBO) is a widely used metric for comparing

ranked lists, due to its ability to handle incomplete and non-conjoint

rankings while emphasizing top-ranked items. However, traditional

RBO only considers the identity of ranked items, ignoring any asso-

ciated relevance values. In many real-world applications, different

systems may retrieve non-overlapping documents with similar in-

formational value. This paper proposes an extension of RBO that

incorporates graded relevance scores, enabling the comparison of

rankings based on the information they convey rather than shared

items alone.

Two relevance-aware variants for redefining RBO are proposed

using cumulative gain. These variants are evaluated and analyzed

using TREC ad hoc and simulated data, comparing them with each

other and against standard RBO. The results demonstrate that the

new RBO variants provide a more informative similarity measure

when comparing rankings with differing identities but similar rele-

vance patterns.

CCS Concepts
• Information systems→ Evaluation of retrieval results; Sim-
ilarity measures; Retrieval effectiveness; Information retrieval.

Keywords
Rank correlation, rank similarity, rank-biased overlap, relevance

profile, graded relevance, gain

1 Introduction
Rankings are an integral part of modern everyday life: recommenda-

tions on streaming platforms, search engine results, feeds on social

media platforms, and many more. The creation of such rankings

is often heavily automated, using systems that aim to retrieve the

most relevant items for the users need.

The field of information retrieval (IR) offers techniques to eval-

uate the rankings produced by these systems [11]. Traditional IR

evaluation assigns a binary relevance score of 1 or 0 to each docu-

ment retrieved based on some ground truth, indicating whether the

items are relevant or not. Then, metrics such as recall, precision and

F1 are calculated to assess how well the system retrieved relevant

documents.

However, binary relevance is often too simplistic to reflect the

differences in document usefulness. Graded relevance is an exten-

sion of binary relevance that captures the notion that some relevant

items are more relevant than others. It accomplishes this by grading

on a scale 𝑅 = [0, 1, ..., 𝑀], for some integer𝑀[13].

While traditional binary relevance metrics have been adapted to

handle graded relevance (e.g., generalized precision and recall, gP

and gR [5]), several newmetrics have been developed specifically for

graded relevance. These include metrics like Rank-Biased Precision

(RBP) and gain-based measures such as Cumulative Gain (CG),

Discounted Cumulative Gain (DCG), and Normalized Discounted

Cumulative Gain (nDCG) [4, 9].

A different class of metrics focuses on the similarity between

rankings themselves. This is useful when comparing the outputs of

different systems or tracking changes in a system over time. Classi-

cal rank correlation measures such as Kendall’s 𝜏 and Spearman’s

𝜌 compare the orderings of the same set of items, but they assume

full overlap between lists [6, 14].

However, this assumption is often violated in practical retrieval

settings, which is why Webber et al. [16] introduced Ranked Biased

Overlap (RBO). RBO uniquely combines three important properties.

Firstly, RBO is able to compare rankings of lists that do not contain

the same items, which is referred to as non-conjointness. Secondly,

RBO is top-weighted, meaning it assigns higher similarity scores to

lists that agree more on the highest-ranked items, even if they differ

more on lower-ranked ones, compared to lists that align more at

the bottom but diverge at the top. Finally, RBO is monotonic, which

implies that comparing more items of two rankings, for instance

the top 20 rather than the top 10, will never result in a lower score.

Classic RBO calculates its score based on the identities of the

items in both rankings and would for instance return a score of

0 if the items between the rankings are disjoint. One could argue,

however, from the IR perspective, that 2 rankings:

• Ranking 𝑆 : ⟨doc1 (rel=3), doc2 (rel=2), doc3 (rel=0)⟩
• Ranking 𝐿: ⟨doc4 (rel=3), doc5 (rel=2), doc6 (rel=0)⟩

with disjoint items are equivalent, since the relevance of the docu-

ments at each position are the same.

Thus, the aim of this work is to adapt RBO, as described by Web-

ber et al. [16], to provide a similarity score between rankings based

on their profiles, represented by the relevance scores of items, rather

than their identity. This is done by answering the question: How
can Rank-Biased Overlap (RBO) be extended for relevance values?.

To answer this question and motivate the redefinitions, Section

2 first describes identity based RBO more in depth. This is then

followed by Section 3, which proposes 2 relevance aware RBO

redefinitions and Section 4, which evaluates the new metrics and

compares them to identity based RBO. Finally, Section 5 summarizes

the work and provides suggestions for further research, followed

by Section 6, which discusses the integrity and reproducibility of

the work.

2 RBO using identities
Throughout this paper, the notation in Table 1 will be introduced

and used. Furthermore, Table 2 is an example of 3 rankings 𝐿, 𝑆 and

𝑇 , both in their identity and relevance score form. This example

will be used to explain RBO and to motivate the choices made in

later sections.
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Table 1: Summary of notation

Symbol Description

𝑆, 𝐿 Rankings with prefixes of lengths 𝑠 and 𝑙 , where 𝑠 ≤ 𝑙

𝑆𝑟𝑒𝑙
𝑑

, 𝑆𝑖𝑑
𝑑

Relevance and identity of items at rank 𝑑 in 𝑆

𝑆𝑛:𝑚 (multi)-Set of items from rank 𝑛 to𝑚 (inclusive) in 𝑆

𝑑 Evaluation depth for computing agreement

𝑋𝑑 , 𝐷𝑑 , 𝐴𝑑 Overlap, difference, and agreement at depth 𝑑

𝑝 Persistence parameter of RBO

𝐶𝐺𝑆,𝑑 Cumulative gain of ranking 𝑆 at depth 𝑑

𝐺𝑥 Gain of relevance value 𝑥

N Normalization factor

𝑅 List of all relevance values

𝑀 maximum relevance score in 𝑅

𝜖 Parameter for local agreement when one ranking has CG = 0

Table 2: Examples of rankings 𝐿, 𝑆 and 𝑇 in identity and
relevance form, with ranking prefixes of length 𝑙 = 9, 𝑠 = 5

and 𝑡 = 4. 𝑅 = [0, 1, 2, 3].

𝑑 1 2 3 4 5 6 7 8 9 10 11 . . .

𝐿id ⟨e p q c f a b h y⟩ z k . . .

𝑆 id ⟨a p e z i⟩ q o h k f l . . .

𝑇 id ⟨r o e z⟩ m s n h u f v . . .

𝐿rel ⟨1 2 1 3 0 2 3 2 3⟩ 3 0 . . .

𝑆rel ⟨2 2 1 3 0⟩ 1 3 2 0 0 1 . . .

𝑇 rel ⟨0 3 1 3⟩ 0 2 3 2 1 0 3 . . .

Identity based RBO
id
, as described by Webber et al. [16], is cal-

culated using a weighted sum of similarity values between the two

rankings at increasing depth, using the following formula:

RBO
id

𝐿id,𝑆 id,𝑝
=

1 − 𝑝
𝑝

∞∑︁
𝑑=1

𝐴id

𝐿id,𝑆 id,𝑑
· 𝑝𝑑 =

1 − 𝑝
𝑝

( 𝑠∑︁
𝑑=1

𝐴id

𝐿id,𝑆 id,𝑑
· 𝑝𝑑︸               ︷︷               ︸

1

+
𝑙∑︁

𝑑=𝑠+1
𝐴𝑖𝑑

𝐿id,𝑆 id,𝑑
· 𝑝𝑑︸                  ︷︷                  ︸

2

+
∞∑︁

𝑑=𝑙+1
𝐴id

𝐿id,𝑆 id,𝑑
· 𝑝𝑑︸                  ︷︷                  ︸

3

)
.

(1)

The input consists of rankings 𝐿id and 𝑆 id with prefix lengths

𝑙 and 𝑠 , and the persistence parameter 𝑝 . 𝐿id and 𝑆 id in Table 2

are examples of what the input rankings for original RBO might

look like. The letters represent the identities of the documents, so,

for instance, 𝐿id
1

= 𝑆 id
3

= 𝑒 represents the same document in both

rankings. Additionally, 𝐿id has a prefix length of 𝑙 = 9 and 𝑆 id of

𝑠 = 5. This implies that during the RBO calculation, only the first 9

elements of 𝐿id and 5 of 𝑆 id are known. It should also be noted that

it is assumed that 𝑠 ≤ 𝑙 .

Furthermore, The persistence 𝑝 has a domain of (0, 1) and is

used to adjust the top-heaviness of RBO. A lower persistence has

more weight for the similarity at the top of the rankings, while

a higher persistence gives more weight to the similarity between

lower ranks. Common choices for 𝑝 are .8, .9 and .95, which models

a user that compares the top 5, 10 and 20 documents respectively

[3].

Using these inputs, Equation (1) calculates the RBO
id
score by

taking a weighted sum of the agreement 𝐴id

𝐿id,𝑆 id,𝑑
, at increasing

depth 𝑑 . Agreement represents the ratio of the overlap, denoted as

𝑋 id

𝐿id,𝑆 id,𝑑
, between rankings 𝐿id and 𝑆 id at depth 𝑑 . It is calculated

as

𝐴id

𝐿id,𝑆 id,𝑑
=

|𝑋 id

𝐿id,𝑆 id,𝑑
|

𝑑
=
|𝐿𝑖𝑑
:𝑑
∩ 𝑆 id

:𝑑
|

𝑑
, (2)

where 𝐿id
:𝑑
and 𝑆 id

:𝑑
represent the set of the top 𝑑 elements of 𝐿id and

𝑆 id, respectively. For instance, again using the example in Table

2, 𝐿id
:3

= {𝑒, 𝑝, 𝑞}, 𝑆 id
:3

= {𝑎, 𝑝, 𝑒} and 𝐴id

𝐿id,𝑆 id,3
= 2

3
. Also, for the

sake of conciseness, henceforth the rankings are removed from the

subscript, so 𝐴id

𝐿id,𝑆 id,𝑑
is written as 𝐴id

𝑑
, unless specific rankings are

used as examples.

However, at depths 𝑑 > 𝑠 , calculating the overlap 𝑋 id

𝑑
as de-

scribed in Equation (2) is problematic. This is because the rankings

past the prefixes are unknown when calculating the RBO score and

assumptions have to be made. Consequently, there is incomplete

information about 𝑆 id when 𝑠 < 𝑑 ≤ 𝑙 and about both 𝑆 id and 𝐿id

when 𝑑 > 𝑙 .

To highlight these different cases, Equation (1) is split up into

3 different parts. Part 1 handles the depth increments to depth 𝑠 ,

which is the final depth at which there is a new known element in

the prefix of 𝑆 id. Part 2 covers the depths between 𝑠 +1 and 𝑙 , where
unseen elements are selected past the prefix of 𝑆 id, but there are

still elements in the prefix of 𝐿id. Finally, part 3 covers the depth

past 𝑙 , which represents the unseen parts of the complete rankings

of the prefixes 𝐿id and 𝑆 id. So, for the rankings 𝐿id and 𝑆 id from the

example in Table 2, part 1 goes until 𝑑 = 𝑠 = 5, part 2 until 𝑑 = 𝑙 = 9

and part 3 is for everything after.

Webber et al. [16] proposed three main ways to calculate part 2

and 3 of Equation (1). First of all, RBOMAX calculates the maximum

possible score by assuming an optimal continuation of the rank-

ings past their prefixes. RBOMIN, on the other hand, calculates the

minimum possible score, by assuming the worst-case continuation

past the prefixes. Finally, RBOEXT uses the agreement between the

prefixes of the rankings to give a point estimate for the final score.

3 Definitions for RBO using relevance
3.1 Definitions for base RBO
3.1.1 Motivation for cumulative gain. To redefine RBO to be relevance-

based, ways to reformulate agreement are proposed, similar to the

approach from Corsi and Urbano [3] when they extended RBO to be

tie-aware. The following describes different possibilities for defin-

ing agreement function 𝐴rel

𝑑
and why eventually a metric based on

cumulative gain [4] was chosen.

Initially, one might think that RBO with relevance scores could

be calculated simply through the use of the original agreement cal-

culation as described in Equation (2). This does not work, however,

since there are repeating elements. 𝑆rel from Table 2, for instance,

has the relevance score 2 at position 1 and 2, which for a normal

set would result in 𝑆rel
:2

= {2}. As a result, there are cases such as
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𝑆rel
:3

= 𝐿rel
:3

= {1, 2}, which is undesirable, since the rankings are not

the same up to 𝑑 = 3.

Instead, 𝑆rel
:𝑑

could be defined as a multi-set. So, for the example,

𝑆rel
:2

= {2, 2}. Equation (2) as is could handle both sets and multi-sets.

Moreover, the distributions of the relevance scores in 𝑆rel
:𝑑

and

𝐿rel
:𝑑

could be compared using distribution based metrics such as KL

divergence and Hellinger distance [2, 7].

What these approaches miss, however, is the overlap between

different relevance scores. For instance, using the examples in Table

2, they would yield the same agreement for𝐴rel

𝐿rel,𝑆rel,1
and𝐴rel

𝑇 rel,𝑆rel,1
,

which is 0. It is argued that the similarity between 𝐿rel
:1

and 𝑆rel
:1

is

bigger than between 𝑇 rel

:1
and 𝑆rel

:1
, since a relevance score of 1 and

2 implies that the informational gain of the documents are more

similar in the scope of a topic than a score of 0 and 2. Thus, this

should also reflected in the agreement, which would not be the case

with the aforementioned metrics.

Therefore, a different approach to define𝐴rel

𝑑
had to be taken and

inspiration was drawn from preexisting graded relevance evalua-

tion metrics. From those, cumulative gain based metrics were found

to be the most promising. They provide higher scores for more

similar relevance grades and accumulate gain up to and including

rank 𝑑 , where the gain value depends on the relevance assigned to

the document [4].

Both DCG and nDCG have their own built in weights based

on depth, which is unnecessary, since RBO already provides this,

which leaves base cumulative gain.

This is a good choice, as it is emulates the overlap calculation

of 𝑅𝐵𝑂 id
, which does not care when items are seen, but just that

they have been seen before or at rank 𝑑 . Moreover, the agreement

definition using cumulative gain, denoted as 𝐴𝐶𝐺
𝑑

, provides the

opportunity to assign scores such that 𝐴𝐶𝐺
1,𝐿𝑟𝑒𝑙 ,𝑆𝑟𝑒𝑙

≠ 𝐴𝐶𝐺
1,𝑇 𝑟𝑒𝑙 ,𝑆𝑟𝑒𝑙

.

3.1.2 Definitions using cumulative gain. Agreement is reformulated

using cumulative gain as follows:

𝐴
CG,x

𝑆rel,𝐿rel,𝑑
=

𝑋CG

𝑆rel,𝐿rel,𝑑

Nx

𝑆rel,𝐿rel,𝑑

= 1 −
𝐷CG

𝑆rel,𝐿rel,𝑑

Nx

𝑆rel,𝐿rel,𝑑

, (3)

where Nx

𝑑
is a normalization factor for which 2 variants are pro-

posed in Section 3.1.3. Furthermore,

𝑋CG

𝑆rel,𝐿rel,𝑑
= Nx

𝑆rel,𝐿rel,𝑑
− 𝐷CG

𝑆rel,𝐿rel,𝑑
(4)

and

𝐷CG

𝑆rel,𝐿rel,𝑑
= |𝐶𝐺𝑆rel,𝑑 −𝐶𝐺𝐿rel,𝑑 | (5)

describe the overlap and difference between the cumulative gains

𝐶𝐺𝑑 , respectively. Since 𝐷
CG

𝑆rel,𝐿rel,𝑑
= 𝐷CG

𝐿rel,𝑆rel,𝑑
, the redefinition is

symmetric, just like 𝑅𝐵𝑂 id
.

𝐶𝐺𝑑 , as described by Järvelin and Kekäläinen [4], is defined as:

𝐶𝐺𝑆rel,𝑑 =


𝐺
𝑆rel
𝑑

, if 𝑑 = 1,

𝐺
𝑆rel
𝑑

+𝐶𝐺𝑆rel,𝑑−1, otherwise,
(6)

where 𝐺
𝑆rel
𝑑

is the gain associated with the relevance value of the

document in ranking 𝑆rel at rank 𝑑 .

This gain could be understood as the amount the document

helps the user and is described by a gain function that maps the

relevance of the document to a numerical gain value. In general,

the gain function can map relevance scores to any number, as long

as irrelevant documents have no gain, 𝐺0 = 0, and the function is

monotonically non-decreasing, ∀𝑥,𝑦 𝑥 ≥ 𝑦 → 𝐺𝑥 ≥ 𝐺𝑦 .

There are some standard gain functions commonly used, how-

ever. The linear and exponential mappings each offer different ways

to convert a document’s relevance score into a gain value and they

each have a hyperparameter 𝜃 .

• Linear gain increases linearly with the relevance score and

is scaled by a factor 𝜃 . This approach assumes that each in-

crease in relevance provides a consistent, incremental benefit

[4]:

𝐺 lin

𝑆rel
𝑑
,𝜃
= 𝑆rel

𝑑
· 𝜃, (7)

• Exponential gain places more emphasis on higher rele-

vance scores by applying an exponential transformation to

the score. This is useful when the importance of more rele-

vant documents increases rapidly with each level [1].

𝐺
exp

𝑆rel
𝑑
,𝜃
= 𝜃𝑆

rel

𝑑 − 1, (8)

Examples of these gain functions can be found in Table 3.

When 2 rankings are compared, it is assumed that the same gain

function is used for both rankings and that the gain function is

known. This is necessary to perform the normalization, which is

discussed next.

Table 3: Examples of linear and exponential functions, based
on the relevance scores from Table 2

𝑑 1 2 3 4 5 6 7 8 9 10 11 . . .

𝐺 lin

𝐿rel
𝑑
,1
⟨1 2 1 3 0 2 3 2 3⟩ 3 0 . . .

𝐶𝐺 lin

𝐿rel,𝑑,1
⟨1 3 4 7 7 9 12 14 17⟩ 20 20 . . .

𝐺 lin

𝑆rel
𝑑
,1
⟨2 2 1 3 0⟩ 1 3 2 0 0 1 . . .

𝐶𝐺 lin

𝑆rel,𝑑,1
⟨2 4 5 8 8⟩ 9 12 14 14 14 15 . . .

𝐺
exp

𝐿rel
𝑑
,2
⟨1 3 1 7 0 3 7 3 7⟩ 7 0 . . .

𝐶𝐺
exp

𝐿rel,𝑑,2
⟨1 4 5 12 12 15 22 25 32 ⟩ 39 39 . . .

𝐺
exp

𝑆rel
𝑑
,2
⟨3 3 1 7 0⟩ 1 7 3 0 0 1 . . .

𝐶𝐺
exp

𝑆rel,𝑑,2
⟨3 6 7 14 14⟩ 15 22 25 25 25 26 . . .

3.1.3 Global and local maximum cumulative gain normalization.
The final part of the agreement redefinition in Equation (3) that

still has to be covered is the normalization factor Nx

𝑑
, which has

to ensure that

𝐷CG

𝑑

Nx

𝑑

∈ [0, 1], since it must hold that 𝐴
CG,x

𝑑
∈ [0, 1].

There are two methods, local and global normalization, proposed

to achieve this.
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First of all, local normalization normalizes the difference 𝐷CG

𝑑
by dividing by the maximum cumulative gain of both rankings at

depth 𝑑 , and is defined as

N loc

𝑆rel,𝐿rel,𝑑
=𝑚𝑎𝑥{𝐶𝐺𝑆rel,𝑑 ,𝐶𝐺𝐿rel,𝑑 }. (9)

Since𝐶𝐺𝑆rel,𝑑 ≥ 0 and𝐶𝐺𝐿rel,𝑑 ≥ 0, it must always be the case that

𝐷CG

𝑑
= |𝐶𝐺𝑆rel,𝑑 −𝐶𝐺𝐿rel,𝑑 | ≤ 𝑚𝑎𝑥{𝐶𝐺𝑆rel,𝑑 ,𝐶𝐺𝐿rel,𝑑 } = N loc

𝑆rel,𝐿rel,𝑑
.

Therefore, it holds that

𝐷CG

𝑑

Nloc

𝑑

∈ [0, 1].
Local normalization has two problems, however. First of all, if

𝐶𝐺𝑆rel,𝑑 = 𝐶𝐺𝐿rel,𝑑 = 0, then N loc

𝑑
= 0 and as a result, 𝐷CG

𝑑
would

be divided by 0. In this case, since𝐶𝐺𝑆rel,𝑑 = 𝐶𝐺𝐿rel,𝑑 , the agreement

is set to 1.

Secondly, if 𝐶𝐺𝑆rel,𝑑 = 0 and 𝐶𝐺𝐿rel,𝑑 ≠ 0 (or vice versa), then

𝐷CG

𝑑

Nloc

𝑑

=
Nloc

𝑑

Nloc

𝑑

= 1. As a result, any 𝐶𝐺𝐿rel,𝑑 > 0 would lead to

𝐴CG

𝑑
= 0, which is unwanted. A 𝐶𝐺𝑑 of 1 is clearly closer to 0 than

a 𝐶𝐺𝑑 of 2, and this should be reflected in the agreement.

To handle this specific instance, the following is used in case of

one 𝐶𝐺𝑑 being equal to 0:

𝐴
CG,loc

𝑑
= 1 −

N loc

𝑑
− 𝜖 + 𝜖 · N

loc

𝑑

𝑑 ·𝐺𝑀

N loc

𝑑

=
𝜖

N loc

𝑆rel,𝐿rel,𝑑

− 𝜖

𝑑 ·𝐺𝑀
. (10)

In this redefinition, an 𝜖 is subtracted from the difference 𝐷CG

𝑑
=

N loc

𝑑
, to ensure that agreement is not always 0. This can be inter-

preted as setting the 𝐶𝐺𝑑 that is equal to zero to 𝜖 . This epsilon

should be bounded such that

𝑁 loc

𝑑
−𝜖

Nloc

𝑑

<
𝑁 loc

𝑑
−min

𝑥
{𝐺𝑥 |𝐺𝑥>0}

Nloc

𝑑

, which

forces the constraint that the agreement between 0 and a nonzero

𝐶𝐺𝑑 is never greater or equal than that between the same𝐶𝐺𝑑 and

the lowest possible nonzero 𝐶𝐺 score, which is equivalent to the

minimum nonzero gain value.

Furthermore, it should still be possible for the agreement to be

0, which should be the case when the 𝐶𝐺 scores are as distant as

possible. This maximum distance can be represented as 𝑑 · 𝐺𝑀 ,

where 𝐺𝑀 represents the maximum gain, because 𝑀 is the maxi-

mum relevance. It corresponds to the worst case where one ranking

is filled with only 0’s and the other with the maximum relevance𝑀 .

Therefore, the term 𝜖 · N
loc

𝑑

𝑑 ·𝐺𝑀
is added to 𝐷𝑑 as well, since it simpli-

fies to 𝜖 ifN loc

𝑑
= 𝑑 ·𝐺𝑀 , thus canceling out the 𝜖’s in Equation (10),

again resulting in 𝐴
CG,loc

𝑑
= 0.

Due to this additional factor, the domain for 𝜖 can also include

the minimum gain value, resulting in (0,min

𝑥
{𝐺𝑥 |𝐺𝑥 > 0}].

When all edge cases for local normalization are combined, the

agreement is calculated as:

𝐴
CG,loc

𝑆rel,𝐿rel,𝑑
=


1, if 𝐶𝐺𝐿rel,𝑑 = 0 ∧𝐶𝐺𝑆rel,𝑑 = 0,

𝜖

Nloc

𝑆rel,𝐿rel,𝑑

− 𝜖
𝑑 ·𝐺𝑀

, if 𝐶𝐺𝐿rel,𝑑 = 0 ∨𝐶𝐺𝑆rel,𝑑 = 0,

1 −
𝐷CG

𝑆rel,𝐿rel,𝑑

Nloc

𝑆rel,𝐿rel,𝑑

, otherwise.

(11)

To avoid this division into cases, a second normalization factor,

called global normalization, is proposed:

Nglo

𝑆rel,𝐿rel,𝑑
= 𝑑 ·𝐺𝑀 . (12)

It applies the same principal as the 𝜖 · N
loc

𝑑

𝑑 ·𝐺𝑀
term in Equation (10),

but then for the normalization of 𝐷𝐶𝐺
𝑑

.

All in all, the agreement function 𝐴
CG,x

𝑑
, defined in Equation (3)

using either the global normalizationNglo

𝑆,𝐿,𝑑
or the local normaliza-

tion version from Equation (11), can be substituted into the base

RBO formulation in Equation (1) in place of the identity-based

agreement 𝐴id

𝑑
.

Using this reformulation, the computation of part 1 of the RBO

expression in Equation (1), which covers the known prefixes of

the two rankings, is fully defined. However, parts 2 and 3, which

involve reasoning over the continuation of the rankings beyond

the observed prefix lengths, require additional assumptions and

methods. The three main procedures for handling the continuation

- RBOMIN, RBOMAX and RBOEXT - are discussed in detail in the

following Section.

3.2 Definitions for RBOMIN, RBOMIN, and RBOEXT

3.2.1 Definition for RBOMIN. After evaluating the prefix of rank-
ing 𝑆rel, RBOMIN describes a tight lower-bound on the final possible

RBO score. The following describes procedures to arrive at this

minimum score for part 2 and part 3 of Equation (1), for both the

local and global normalization factors. For part 2, an algorithm is

provided and for part 3 there are closed form solutions.

Initially, for part 2, one might think that the least optimal way to

continue 𝑆rel past its prefix is to just add the maximum or minimum

gain to𝐶𝐺𝑆rel,𝑠 , depending on whether it was smaller or larger than

𝐶𝐺𝐿rel,𝑠 .

The reason this does not work is illustrated in the examples from

Table 3. At depth 5, 𝐶𝐺𝑆rel,𝑑,1 is higher than 𝐶𝐺𝐿rel,𝑑,1. However,

the remainder of the prefix of 𝐿rel contains a large number of high

relevance values, resulting in a lot of gain. If themaximum relevance

value was continuously picked for 𝑆𝑟𝑒𝑙 for the remainder of the

prefix of 𝐿𝑟𝑒𝑙 , its cumulative gain would be 𝐶𝐺𝑆rel,𝑙 = 8 + 4 · 3 = 20,

which leads to a difference of 𝐷CG

𝑆rel,𝐿rel,𝑙
= |20 − 17| = 3.

If 0’s had been picked, on the other hand, the difference would

be 𝐷CG

𝑆rel,𝐿rel,𝑙
= |17 − 8| = 9 and the weighted sum of intermediate

agreements and future agreements, for most reasonable values of 𝑝

lead to a lower RBO score. Furthermore, it could also be the case

during part 2 that it is optimal to alternate multiple times which

gain value is the highest. Due to such edge cases, all reachable

cumulative gain values are explored.

This can be accomplished using Algorithm 1 (see Appendix A).

It employs a dynamic programming approach to keep track of all

𝐶𝐺 values the ranking 𝑆rel can reach for depths [𝑠 + 1, 𝑙] in a map

and the minimum RBO value that led to that CG. Then, once the

map for 𝑑 = 𝑙 has been created, the equations for part 3 are used to

calculate the minimum possible RBO score.

Algorithm 1 uses multiple inputs, which represent the following.

𝐶𝐺𝑆 and𝐶𝐺𝐿 are the cumulative gain scores at depth 𝑠 . 𝑅 is the list
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with all possible relevance scores. 𝐺 is the gain function used and

𝑙𝑜𝑐𝑛𝑜𝑟𝑚 is a boolean that is true ifN loc

𝑑
should be used and false if

N𝑔𝑙𝑜

𝑑
is used. The other parameters represent the same values as in

the rest of the paper.

Table 4: Sets of reachable cumulative gain values at increasing
depths. It shows that an arithmetic series like [0,1,2] expands
more slowly than [0,9,99]

𝑠 𝑠+1 𝑠+2 𝑠+3
[0, 1, 2] {0} {0, 1, 2} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4, 5, 6}
[0, 9, 99] {0} {0, 9, 99} {0, 9, 18, 99, 108, 198} {0, 9, 18, 27, 99, 108, 117, 198, 207, 297}

There are some things to note about Algorithm 1. The space

and time complexity is heavily dependent on the gain function,

since having more duplicate 𝐶𝐺 values during an iteration leads to

fewer values in the map. This results in a lower space complexity,

as illustrated in Table 4. In the case of a linear gain function, the

time complexity is 𝑂 ( |𝑅 |2𝑙2) and the space complexity is 𝑂 ( |𝑅 |𝑙2).
This is due to the fact that only |𝑅 |−1 new𝐶𝐺 values are added to

the map at each iteration. Using the example in Table 4 at depth 𝑠+1,
𝐶𝐺𝑠+1 = 2 can reach 3 gain values, of which 2 are new, 𝐶𝐺𝑠+2 = 3

and𝐶𝐺𝑠+2 = 4.𝐶𝐺𝑠+1 = 1, on the other hand, can reach𝐶𝐺𝑠+2 = 1,

𝐶𝐺𝑠+2 = 2 and 𝐶𝐺𝑠+2 = 3, which were either already in the map or

just explored by the highest 𝐶𝐺 value. As a result, the increase can

be interpreted as the maximum 𝐶𝐺 value reaching |𝑅 | − 1 new 𝐶𝐺

values during each iteration.

For an exponential gain function with a 𝜃 larger than 𝑙 , on the

other hand, the total number of CG values that can be reached

at depth d is described by

(𝑑−𝑠+|𝑅 |−1
𝑑−𝑠

)
, since the only overlap that

occurs is if the same gain values are picked, but in a different order.

This is equivalent to the combinatorics problem of calculating the

number of combinations with replacement for unordered lists [12].

Assuming for the worst case that 𝑠 = 0, this leads to a space com-

plexity of 𝑂 ( (𝑙+|𝑅 |−1)!
𝑙 !( |𝑅 |−1)! ) and a time complexity of 𝑂 ( (𝑙+|𝑅 |−1)! |𝑅 |

𝑙 !( |𝑅 |−1)! ).
For part 3, the calculation starts at depth 𝑙 + 1, where 𝐷𝐶𝐺

𝑙
is

the final difference value that depends on the actual prefixes 𝑆𝑟𝑒𝑙

and 𝐿𝑟𝑒𝑙 . To minimize the agreement in part 3, the difference 𝐷CG

𝑑
should be maximized.

At each depth increment, 𝐷CG

𝑑
can increase at most by the max-

imum gain 𝐺𝑀 , as it assumes the worst case continuation of the

rankings, where the ranking with the lower 𝐶𝐺 score is assumed

to only contain 0’s for 𝑑 > 𝑙 and the other the maximum relevance

score. Therefore, the sum that minimizes part 3 can be described

for 𝐴
CG,glo

𝑑
as

∞∑︁
𝑑=𝑙+1

𝐴
CG,glo

𝑑
𝑝𝑑 =

∞∑︁
𝑑=𝑙+1

(1 −
𝐷CG

𝑙
+𝐺𝑀 · (𝑑 − 𝑙)
𝐺𝑀 · 𝑑

)𝑝𝑑 . (13)

Using the fact, as described by Webber et al. [16], that

∞∑︁
𝑑=1

𝑝𝑑

𝑑
= ln

1

1 − 𝑝 , (14)

the closed-form solution for Equation (13) can be derived:

∞∑︁
𝑑=𝑙+1

(1 −
𝐷CG

𝑙
+𝐺𝑀 · (𝑑 − 𝑙)
𝐺𝑀 · 𝑑

)𝑝𝑑 =

𝐺𝑀 · 𝑙 − 𝐷CG

𝑙

𝐺𝑀

∞∑︁
𝑑=𝑙+1

𝑝𝑑

𝑑
=

𝐺𝑀 · 𝑙 − 𝐷CG

𝑙

𝐺𝑀
(ln 1

1 − 𝑝 −
𝑙∑︁

𝑑=1

𝑝𝑑

𝑑
) .

(15)

For 𝐴
CG,loc

𝑑
, there are 2 main cases, due to the split in Equa-

tion (11). If neither ranking has a cumulative gain score of 0 at

depth 𝑙 , then part 3 can be described as

∞∑︁
𝑑=𝑙+1

𝐴
CG,loc

𝑑
𝑝𝑑 =

∞∑︁
𝑑=𝑙+1

(1 −
𝐷CG

𝑙
+𝐺𝑀 · (𝑑 − 𝑙)

N𝑙𝑜𝑐
𝑙
+𝐺𝑀 · (𝑑 − 𝑙)

)𝑝𝑑 =

∞∑︁
𝑑=0

(1 −
𝐷CG

𝑙
+𝐺𝑀 · (𝑑 + 1)

N loc

𝑙
+𝐺𝑀 · (𝑑 + 1)

)𝑝𝑑+𝑙+1 =

N loc

𝑙
− 𝐷𝑙

𝐺𝑀
𝑝𝑙+1

∞∑︁
𝑑=0

𝑝𝑑

𝑑 + ((𝐺𝑀 )−1 · N𝑙𝑜𝑐
𝑙
+ 1)

.

(16)

This contains a sum that is a Lerch transcendent [8], which can be

rewritten as an integral and have the form:

Φ(𝑧, 𝑘, 𝛼) =
∞∑︁
𝑛=0

𝑧𝑛

(𝑛 + 𝛼)𝑘
=

1

Γ(𝑘)

∫ ∞

0

𝑡𝑠−1 · 𝑒−𝛼𝑡
1 − 𝑧𝑒−𝑡 𝑑𝑡 . (17)

Filling in the corresponding values for the sum in Equation (16)

results in:

Φ(𝑝, 1, (𝐺𝑀 )−1 · N𝑙𝑜𝑐
𝑆,𝐿,𝑙
+ 1) =

∞∑︁
𝑛=0

𝑝𝑛

𝑛 + (𝐺𝑀 )−1 · N𝑙𝑜𝑐
𝑆,𝐿,𝑙
+ 1

=

∫ ∞

0

𝑒
−( (𝐺𝑀 )−1 ·N𝑙𝑜𝑐

𝑆,𝐿,𝑙
+1)𝑡

1 − 𝑝𝑒−𝑡 𝑑𝑡 .

(18)

Equation (18) does not have a closed-form solution with elemen-

tary functions. Consequently, RBOMIN for local normalization has

to be estimated. This can be achieved by evaluating the sum up

to a depth at which the remainder of the sum is negligibly small,

since the inside of the sum is decreasing. Alternatively, the integral

can be estimated. This can, for instance, be done using numerical

quadrature methods, such as adaptive Gauss-Kronrod integration

[10].

When one of the rankings, or both, have a 𝐶𝐺 of 0, one CG

score is kept at 0 and the other is increased by the maximum gain,

resulting in:
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∞∑︁
𝑑=𝑙+1

𝐴
CG,loc

𝑑
𝑝𝑑 =

∞∑︁
𝑑=𝑙+1

( 𝜖

N𝑙𝑜𝑐
𝑙
+𝐺𝑀 · (𝑑 − 𝑙)

− 𝜖

𝐺𝑀 · 𝑑
)𝑝𝑑 =

𝜖

𝐺𝑀
𝑝𝑙+1

∞∑︁
𝑑=0

𝑝𝑑

𝑑 + ((𝐺𝑀 )−1 · N𝑙𝑜𝑐
𝑙
+ 1)
− 𝜖

𝐺𝑀

∞∑︁
𝑑=𝑙+1

𝑝𝑑

𝑑
=

𝜖

𝐺𝑀
𝑝𝑙+1Φ(𝑝, 1, (𝐺𝑀 )−1 · N loc

𝑙
+ 1) − 𝜖

𝐺𝑀
(ln 1

1 − 𝑝 −
𝑙∑︁

𝑑=1

𝑝𝑑

𝑑
),

(19)

where similar derivations are used as for Equations (15) and (16),

again resulting in a Lerch transcendent.

3.2.2 Definition for RBOMAX. RBOMAX describes the upper bound

of the score that can be reached, similar to how RBOMIN describes

the lower bound. The following proposes an exact method for

calculating the strict upper bound when linear gain is used, and

highlights the complexity for the definition for other gain functions.

The main proposed procedure is to make 𝐶𝐺𝑆rel,𝑑 and 𝐶𝐺𝐿rel,𝑑

equal as quickly as possible. This is only guaranteed to work for

gain functions that map to an arithmetic series, since they ensure

that continually picking the values that minimize the 𝐶𝐺 at depth

𝑑 always converges the final difference to 0.

However, if the gain function does not follow an arithmetic pro-

gression, choosing values that equalize the cumulative gains early

may actually yield a lower RBO score than selecting values that

keep the gains very close without ever matching exactly. This is due

to RBO’s top-weighted nature, which prioritizes small differences

in cumulative gain at early depths. For instance, for 𝑅 = [0, 3, 5]
𝐶𝐺𝑆rel,d = 5 and 𝐶𝐺𝐿rel,𝑑 = 6, 𝐷CG

𝑑
= 1 first has to be increased to

𝐷CG

𝑑+1 = 2 before it can be 𝐷CG

𝑑+2 = 0.

Moreover, in the case of N loc
, if the maximum gain value 𝐺𝑀

is large, it may be preferable to initially keep 𝐷𝐶𝐺
𝑑

constant and

then add 𝐺𝑀 to both rankings to induce a sharp increase in N loc
,

thereby maximizing agreement. This is again not an issue for arith-

metic series, since lowering the difference always leads to higher

agreement scores than increasing the normalization factor.

Thus, the following procedure for part 2 only applies to gain

values that map to an arithmetic series. The gain values are picked

such that 𝐶𝐺𝑆rel,𝑑 gets as close as possible to 𝐶𝐺𝐿rel,𝑑 , using

𝐶𝐺𝑆rel,𝑑 =


𝐶𝐺𝑆rel,𝑑−1, if 𝐶𝐺𝐿rel,𝑑 −𝐶𝐺𝑆rel,𝑑−1 < 0,

𝐶𝐺𝐿rel,𝑑 , if 0 ≤ 𝐶𝐺𝐿rel,𝑑 −𝐶𝐺𝑆rel,𝑑−1 < 𝐺𝑀 ,

𝐶𝐺rel𝑆,𝑑−1 +𝐺𝑀 , otherwise.

(20)

For similar reasons as part 2, for part 3 it is again assumed that

the gain values form an arithmetic series. An exhaustive search,

similar to RBOMIN, is not possible due to part 3 going to infinity

and thus it is left as an open problem.

In the case of arithmetic series, the maximum gain is added to the

lowest CG value, while the highest CG value stays the same for the

𝑘 = ⌊𝐷
𝐶𝐺
𝑙

𝐺𝑀
⌋ ranks past the prefix of 𝑙 . Then, at depth 𝑑 = 𝑘 + 𝑙 + 1,

the gain value is added that leads to 𝐷𝐶𝐺
𝑘+𝑙+1 = 0. From then on,

∀𝑑 ≥ 𝑘 + 𝑙 + 1(𝐴CG,x

𝑑
= 1). This results in the following redefinition

for part 3 for both normalization factors Nx

𝑑
,

∞∑︁
𝑑=𝑙+1

𝐴
CG,x

𝑑
𝑝𝑑 =

𝑙+𝑘∑︁
𝑑=𝑙+1

(1 −
𝐷CG

𝑙
−𝐺𝑀 · (𝑑 − 𝑙)
Nx

𝑑

)𝑝𝑑 +
∞∑︁

𝑑=𝑙+𝑘+1
𝑝𝑑 =

𝑙+𝑘∑︁
𝑑=𝑙+1

(1 −
𝐷CG

𝑙
−𝐺𝑀 · (𝑑 − 𝑙)
N𝑥
𝑑

)𝑝𝑑 + 𝑝

1 − 𝑝 −
𝑙+𝑘∑︁
𝑑=1

𝑝𝑑 .

(21)

No additional formulations are required to handle the different

cases of agreement in Equation (11) for local normalization. This

is because the minimum CG score always increases and therefore

there is no case where the CG is 0, unless 𝐶𝐺𝐿rel = 𝐶𝐺𝑆rel = 0, but

then𝐴
CG,loc

𝑑
= 1 and the sum for perfect agreement for 𝑑 = 𝑙 +𝑘 + 1

can immediately be applied for 𝑘 = 0.

3.2.3 Definition for RBOEXT. For RBOEXT, the point is to extrapo-

late the complete RBO score based on the prefixes 𝑆rel and 𝐿rel and

provide a point estimate. For part 2 of Equation (1), the continuation

of 𝑆rel has to be extrapolated. For part 3 the extrapolation is for not

only the rankings but also their agreement.

The extrapolation for the continuation of 𝑆rel for part 2 is based

on the 𝐶𝐺 observed up to the end of its prefix at depth 𝑠 , and is

calculated as

𝐶𝐺𝑆rel,𝑑 = 𝐶𝐺𝑆rel,𝑑−1 +
𝐶𝐺𝑆rel,𝑠

𝑠
. (22)

For both normalization factors, calculating part 2 is equivalent to

the calculation of part 1. The only thing that is adapted is the way

𝐶𝐺𝑆rel,𝑑 is calculated.

For part 3, similar to the definition of Webber et al. [16], the

agreement between 𝑆 and 𝐿 is assumed to stay the same after depth

𝑙 , which gives

∞∑︁
𝑑=𝑙+1

𝐴
CG,x

𝑑
𝑝𝑑 = 𝐴

CG,x

𝑙
· 𝑝

𝑙+1

1 − 𝑝 . (23)

.

4 Experimental Evaluation
To analyze the behaviour of the proposed definitions, tests were

performed using TREC (Text REtrieval Conference) run data from

2010-2014 in the ad hoc track [15], and simulated rankings based

on the approach from Corsi and Urbano [3]. To compare the met-

rics, the RBOEXT score is used, with rankings of lengths up to 100.

Furthermore, 𝑝 = 0.9 and 𝜖 = min

𝑥
{𝐺𝑥 |𝐺𝑥 > 0} are used.

The TREC data consists of rankings of at most 1000 documents

for different topics, generated by different systems. Each year con-

tains 50 different topics, resulting in 250 different topics in total. For

each topic, a subset of the documents is given a graded relevance

score, where a scale of [0,1,2,3] was used in 2010 and 2011, and a

scale of [0,1,2,3,4] for 2012, 2013 and 2014. If the document was not

given a relevance score for a certain topic, then it was assumed

the relevance score was 0. Any ties that were present within the

rankings have been broken at random, as this prevents the RBO

score from being inflated [3].
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Figure 1: Comparisons between 𝑅𝐵𝑂 id and the two relevance
based variants using different relevance domains, 𝜖 = 1, 𝐺 lin

1
,

TREC data, p=0.9.

To highlight the difference between the graded relevance scales

of the TREC data before 2012 and after, the scatter plots use 2

different colors. The orange points in the scatter plots represent

the comparison between rankings with documents graded using

𝑅 = [0, 1, 2, 3], while the blue points used 𝑅 = [0, 1, 2, 3, 4]. In total,

there are 110300 orange data points and 67350 blue data points for

the TREC related scatter plots (Figure 1 and 4).

Moreover, 2 data sets of synthetic rankings were generated using

an adaptation of the code from Corsi and Urbano [3] to create

rankings that are more conjoined. It generates pairs of rankings of

length 1000 based on a target Kendall 𝜏 . Both datasets aremade up of

10000 pairs of rankings and grade the items using 𝑅 = [0, 1, 2, 3, 4].
Due to differences in procedure used to generate the synthetic data,

they are explained further in their respective Sections.

The Python and R code used to calculate RBO scores, generate

synthetic rankings and produce graphs in this Section are available

on Github
1
. Also, RBO

𝑖𝑑
was calculated using code from Corsi and

Urbano [3].

4.1 Comparison between RBO scores using
TREC data

Figure 1 compares the RBO scores for 𝐺 lin

1
using TREC run data.

The scatter plots reveal multiple properties of the different RBO

metrics.

First of all, the scatter plot comparing global and local normal-

ization shows that the variants are positively correlated. Also, the

curve of blue points above the orange points reveals that the metrics

are more similar when the maximum relevance is lower.

Furthermore, the scatter plots comparing to RBO
id
show that

there is no correlation between RBO
id
and the relevance based met-

rics. For instance, when RBO
id
finds little agreement, the relevance

based metrics are still able to capture overlap. Thus, the relevance

based metrics compute something different than RBO
id
.

Moreover, in the vast majority of cases, the data points lie above

the 𝑥 = 𝑦 line, indicating that in general the relevance based metrics

score higher than 𝑅𝐵𝑂 id
. Sometimes, the local normalization is

lower, which is further discussed in Section 4.3.

4.2 Comparison between RBO scores using
synthetic data

Figure 2 uses synthetic ranking pairs that are more conjoint to

compare the RBO scores. The pairs of rankings were generated

1
https://github.com/ThijsH04/RBO_rel

Figure 2: Comparisons between 𝑅𝐵𝑂 id and the two relevance
based variants. 𝜖 = 1, 𝐺 lin

1
, Synthetic data, p=0.9.

using a target 𝜏 between 0.5 and 1 and the rankings were randomly

truncated to a length between 10 and 100 [3]. Then, relevance

scores were assigned to the items in each ranking pair, using the

distribution {0 : 0.678, 1 : 0.212, 2 : 0.090, 3 : 0.018, 4 : 0.002}. This
distribution was created by randomly sampling the first 10 ≤ 𝑛 <

100 relevance scores of each 2014 TREC run.

Figure 2 shows similar trends as Figure 1, reaffirming that even

when the identity-based rankings are more similar, the relevance

based metrics still compute something different than 𝑅𝐵𝑂 id
.

4.3 Analysis of the Effect of different relevance
distributions using synthetic data

As stated at the end of Section 4.1, there are some cases where the

𝑅𝐵𝑂 id
score is higher when compared to the local normalization

𝑅𝐵𝑂 variant. This is also the case for the simulated data in Figure 2.

These data points highlight a property of 𝐴
CG,loc

𝑑
, where 𝐴

CG,loc

𝑑
=

𝐴
CG,loc

𝑑+1 , when 𝑆rel
𝑑+1 = 𝐿rel

𝑑+1 = 0 and 𝐶𝐺𝑑,𝑆rel > 0 and 𝐶𝐺𝑑,𝐿rel > 0.

Figure 3 emphasis this using synthetic rankings [3]. Ranking

pairs 𝑆 id and 𝐿id are generated using a Kendall 𝜏 between 0.5 and

0.9 and truncated to a length of 100. The items in these rankings are

then assigned a relevance score using the distribution {𝑎 : 0.92, 𝑏 :

0.02, 2 : 0.02, 3 : 0.02, 4 : 0.02}, where 𝑎 and 𝑏 will be substituted

out with 0 and 1. For instance, by substituting 0 for 𝑎 and 1 for 𝑏, 𝑎

is made the dominant relevance score. By swapping which element

is dominant, two different pairs of 𝑆rel and 𝐿rel are created. For the

final step, 2 new items 𝑓 and 𝑔 are introduced and assigned the

relevance scores 1 and 4. 𝑓 is then put at the top of 𝑆 and 𝑔 at the

top of 𝐿. This sets 𝐴
CG,x
1

= 1

4
for both normalization factors, which

ensures that the agreement not changing for local normalization is

clear.

Figure 3 shows that the effect of altering the dominating element

is different for both normalization variants. Figure 3 (a) depicts

an increase of the RBO scores for local normalization, when the

dominating relevance values is set from 0 to 1, which is as expected.

Figure 3 (b), on the other hand, shows that for global normalization,

the RBO scores that result from changing the dominating relevance

are highly correlated, implying it is more robust to such changes.

4.4 Effect of different gain functions using
TREC data

The effect of different gain functions is presented in Figure 4 based

on TREC data.

https://github.com/ThijsH04/RBO_rel


Bachelor thesis, June 22, 2025, Delft University of Technology, Delft, The Netherlands Houben

(a) Comparisons for local normalization

(b) Comparisons for global normalization

Figure 3: Comparisons between RBOid and relevance-based
variants for synthetic data with 𝜖 = 1,𝑝 = 0.9, 𝐺 lin

𝑥,1
, and

𝑅 = [0, 1, 2, 3, 4],𝐴1 =
1

4
. The first two columns show results for

dominant relevance values 0 and 1, each assigned a probabil-
ity of 0.92 (others received 0.02). The third column compares
the relevance-based variants for dominant values 0 and 1.

Figure 4 shows that for both normalization factors, different

scalar terms 𝜃 for𝐺 lin

𝑥,𝜃
lead to the same results. This is as expected,

since the scalar is canceled out during the normalization.

Furthermore, Figure 4 also illustrates that exponential gain func-

tions impact local and global normalization differently. In the case

of global normalization (Figure 4(b)), using an exponential gain

with a higher base 𝜃 results in higher RBO scores. This occurs be-

cause the global normalization factor scales with the maximum

possible cumulative gain, which increases rapidly with higher 𝜃 .

As a result, the relative differences between lower relevance scores

become less significant, inflating the agreement and RBO score.

Conversely, in local normalization (Figure 4(a)), applying ex-

ponential gain with a larger 𝜃 leads to lower RBO scores. Since

normalization in this case is based on the maximum cumulative

gain observed between the two rankings at each depth, the denom-

inator on increases a lot in the presence of high gain values. This

makes any mismatch of high relevance more penalizing, by quickly

reducing the agreement score.

Moreover, Figure 4 also shows that higher maximum relevance

tend to inflate the RBO score of the global normalization variant,

while local normalization is effected less.

5 Conclusions and Future Work
This work proposed a novel redefinition of Rank-Biased Overlap

(RBO) [16] for relevance profiles, resulting in a similarity metric

that accounts for graded relevance values associated with items in

ranked lists. While traditional RBO compares rankings based solely

on the identity of the items, the proposed reformulations capture

similarity in informational value using relevance judgments of the

items, even when two systems return disjoint sets of documents.

(a) Comparisons for local normalization

(b) Comparisons for global normalization

Figure 4: Comparisons of RBO scores for local and global
normalization using 𝐺 lin

𝑥,1
, 𝐺 lin

𝑥,2
, 𝐺exp

𝑥,2
and 𝐺

𝑒𝑥𝑝

𝑥,10
. TREC data,

𝜖 = 1,p=0.9.

This was achieved by redefining the agreement 𝐴𝑑 to use the dif-

ference between the cumulative gain [4] of the rankings, while

preserving RBO’s key properties of top-weightedness, monotonic-

ity, non-conjointness and symmetry.

Two redefinitions for 𝐴𝑑 were presented and analyzed using

real world (TREC) and synthetic data [3, 15]. The redefinitions

use different ways to normalize the difference 𝐷𝑑 between the

cumulative gains of the rankings at depth 𝑑 and have different use

cases due to their strengths and weaknesses:

• Global normalization, normalizes the difference using the

theoretical maximum difference at the depth of evaluation.

Its scores tend to inflate when the maximum gain is higher,

but it captures similarity between similar relevance’s well.

• Local normalization, which normalizes the difference at

each depth by the maximum cumulative gain observed in

either ranking up to that point. It is less sensitive to higher

maximum gain, but misses similarity with relevance’s of 0.

The experiments also showed that the relevance-based RBO

scores are generally higher than identity-based ones and that the

scores are uncorrelated, highlighting that the redefinition calculate

something different than original RBO.

Furthermore, using these definitions, an effort was made to refor-

mulate the three RBO extensions that address uneven prefix lengths

and the assumption of indefinite rankings. These formulations are

complete for RBOMIN and RBOEXT.

For RBOMAX, on the other hand, only complete procedures for

linear gain functions were provided, leaving the redefinitions for

exponential and in general arbitrary gain functions as an open

problem.

Additional future work could also extend relevance-based RBO

to handle ties, similar to recent work for identity-based RBO from

Corsi and Urbano [3]. Furthermore, the proposed metrics could

be compared with metrics such as nDCG and RBP [4, 9], or new

relevance-based RBO reformulations.



Extending Rank-Biased Overlap (RBO) to Relevance Profiles Bachelor thesis, June 22, 2025, Delft University of Technology, Delft, The Netherlands

6 Responsible Research
This section discusses the reproducibility and transparency of the

work.

Throughout the paper, an effort was made to make the thought

process behind decisions clear. The main goal of the paper was to

explore possible redefinitions for RBO for ranking profiles and we

were never under the assumption that the proposed solutions are

perfect (the definitions are incomplete after all). By highlighting the

thought process of the decisions made and the resulting flaws and

short, future research on this topic, by for instance our responsible

professor, can challenge our reasoning, possibly resulting in better

redefinitions.

Furthermore, reproducibility of the work was kept in mind dur-

ing the creation of the paper. By making the code, synthetic data,

and results open source on Github
2
, a reader should be able to

reproduce and verify our results by following the descriptions in

the Jupyter notebook. The aim was to make the Jupyter notebook

easy to follow, to lower the burden of reproducing the results.

However, one possible issue with the reproducibility, is that the

TREC dataset used is not present in the repository, due to its license.

We assume this not to be a major problem, since the assumption is

made that a researcher who aims to reproduce the results most likely

is familiar with the TREC dataset and has access to it. Moreover,

the Jupyter notebook makes it clear in which directory to store the

TREC dataset to produce the required output.

As for the transparency of the work, ideas and code from litera-

ture were cited to the best of our ability. However, pointers given

by the supervisor, or ideas that came up during discussions with

the supervisor and peers, are not formally attributed, as there may

only be one author for this thesis.
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A Algorithm for RBOMIN

Algorithm 1 Algorithm for calculating RBOMIN for part 2 & 3

1: procedure RBOMIN(𝐶𝐺𝑆 ,𝐶𝐺𝐿,𝑅, 𝑠, 𝑙, 𝐿, 𝑝,𝐺, 𝑙𝑜𝑐𝑛𝑜𝑟𝑚)

2: 𝐶𝐺𝑀𝑎𝑝 ← empty map

3: 𝐶𝐺𝑀𝑎𝑝 [𝐶𝐺𝑆 ] = 0

4: 𝑑 ← 𝑠 + 1
5: while𝑑 ≤ 𝑙 do
6: 𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝 ← empty map

7: 𝐶𝐺𝐿 ←𝐶𝐺𝐿 +𝐺 (𝐿𝑑 )
8: for 𝑟 ∈ 𝑅 do
9: for 𝑐𝑔 ∈ 𝐶𝐺𝑀𝑎𝑝 do
10: 𝑁𝑒𝑤𝐶𝐺 ← 𝑐𝑔 +𝐺 (𝑟 )
11: 𝑅𝐵𝑂𝑆𝑐𝑜𝑟𝑒 ←𝐶𝐺𝑀𝑎𝑝 [𝑐𝑔] + 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 (𝑁𝑒𝑤𝐶𝐺,𝐶𝐺𝐿,𝑅,𝐺, 𝑙𝑜𝑐𝑛𝑜𝑟𝑚) · 𝑝𝑑
12: if 𝑁𝑒𝑤𝐶𝐺 ∈ 𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝 then
13: 𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝 [𝑁𝑒𝑤𝐶𝐺 ] ←𝑚𝑎𝑥 {𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝 [𝑁𝑒𝑤𝐶𝐺 ], 𝑅𝐵𝑂𝑆𝑐𝑜𝑟𝑒}
14: else
15: 𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝 [𝑁𝑒𝑤𝐶𝐺 ] ← 𝑅𝐵𝑂𝑆𝑐𝑜𝑟𝑒

16: end if
17: end for
18: end for
19: 𝐶𝐺𝑀𝑎𝑝 ← 𝑁𝑒𝑥𝑡𝐶𝐺𝑀𝑎𝑝

20: 𝑑 ← 𝑑 + 1
21: end while
22: 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ←∞
23: for 𝑐𝑔 ∈ 𝐶𝐺𝑀𝑎𝑝 do
24: 𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 ←𝑚𝑖𝑛{𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒,𝐶𝐺𝑀𝑎𝑝 [𝑐𝑔] + 𝑝𝑎𝑟𝑡3(𝑅,𝐶𝐺𝐿,𝑐𝑔, 𝑙, 𝑝,𝐺, 𝑙𝑜𝑐𝑛𝑜𝑟𝑚) }
25: end for
26: return𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒

27: end procedure
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