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a b s t r a c t

Prescribed-performance control (PPC) for high-power dynamics with time-varying unknown control
coefficients requires to address two open problems: (a) given a Nussbaum function, which properties
hold for the power of the Nussbaum function? (b) to avoid high gains, how to design a switching gain
that increases only when the tracking error is close to violate the performance bounds? To address
the first problem, we show with a counterexample and a positive example that only some Nussbaum
functions are suited to handle time-varying unknown control coefficients for high-power dynamics.
To address the second problem, we propose a new switching conditional inequality.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade, high-power nonlinear systems have been
ttracting great attention because: first, they generalize strict-
eedback and pure-feedback systems by including more general
dd-integer powers (Lin & Pongvuthithum, 2003; Lin & Qian,
000; Qian & Lin, 2002) in the dynamics; second, they have
een used to describe classes of practical systems such as boiler-
urbine units (Chen & Chen, 2020), hydraulic dynamics (Man-
ing & Fales, 2019), aircraft wing dynamics (Fung, 1955), or me-
hanical systems with cubic force–deformation relations (Lin &
ongvuthithum, 2003; Lin & Qian, 2000; Qian & Lin, 2002). The
ain technique for control of high-power nonlinear systems is

he so-called adding-one-power-integrator technique, success-
ully used in stabilization (Lin & Qian, 2000; Sun & Liu, 2007) and
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tracking problems (Lin & Pongvuthithum, 2003; Qian & Lin, 2002).
However, handling unknown signs of constant or time-varying
control coefficients (Chen & Huang, 2015; Ding, 2015; Ding & Ye,
2002; Ge, Fan, & Lee, 2004; Huang, Wang, Wen, & Zhou, 2018; Li
& Liu, 2018; Liu & Huang, 2008; Liu & Tong, 2017; Ye, 2011), and
guaranteeing transient and steady-state specifications (Li & Liu,
2019; Liu, Sun and Li, 0000; Liu, Sun and Zhou, 0000) still pose
open problems for high-power nonlinear systems, as explained
hereafter.

The term ‘‘sign of the control coefficient’’ (also called ‘‘control
direction’’ in some literature) refers to the sign of the con-
trol gain function. A control law in the presence of this un-
certainty may apply its control action with incorrect sign and
destabilize the system (Chen, 2019; Krstic, Kanellakopoulos, &
Kokotovic, 1995). These signs have been assumed to be known
until Nussbaum (Nussbaum, 1983) proved stability with un-
known signs using a special function (later called Nussbaum
function) alternating its effects in both directions of the sign.
Although alternative methods exist to tackle unknown control
coefficients, such as logic-based switching (Huang & Yu, 2018),
nonlinear proportional–integral control (Psillakis, 2017), and ex-
tremum seeking (Scheinker & Krstic, 2013), the Nussbaum func-
tion method is probably the most studied one. A fundamental
tool to prove stability with the Nussbaum function is the so-
called conditional inequality, which consists in guaranteeing the
boundedness of a Lyapunov-like function when its derivative
along the system trajectories is upper bounded by an appro-

priate expression depending on the Nussbaum function. As the

https://doi.org/10.1016/j.automatica.2022.110584
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3

ontrol coefficients can be constant or time-varying, three rep-
esentative conditional inequalities have been proposed so far
Chen, 2019; Ge & Wang, 2003; Ye & Jiang, 1998) to handle
hese cases. The first conditional inequality was formulated in
e and Jiang (1998) to handle unknown signs of constant control
oefficients. The second conditional inequality in Ge and Wang
2003) (see also discussions in Psillakis (2010)) is given in in-
egral form to handle unknown signs of time-varying control
oefficients. Recently, Chen (2019) distinguished between type
and type B Nussbaum functions, where the former can han-

le constant control coefficients, but only the latter can handle
ime-varying control coefficients. Unfortunately, the capability
o handle time-varying control coefficients was shown in Chen
2019) only for strict-feedback and pure-feedback systems. At
he same time, combining the adding-one-power-integrator and
ussbaummethods (Li & Liu, 2019) requires to take the derivative
f the virtual control laws, which gives rise to negative fractional
erms not well defined when the error crosses zero. There-
ore, handling high-power nonlinear systems via the Nussbaum
ethod is an open question.
With respect to guaranteeing transient and steady-state speci-

ications (e.g. convergence rate or steady-state error), the
rescribed-performance control (PPC) technique first (Bechlioulis
Rovithakis, 2008) and low-complexity PPC later (Bechlioulis
Rovithakis, 2014) have been successfully applied to strict-

eedback (Theodorakopoulos & Rovithakis, 2015; Zhang & Yang,
017) and pure-feedback systems (Bechlioulis & Rovithakis, 2014)
ith known signs of the control coefficients. To handle un-
nown signs, a low-complexity control scheme was recently
eveloped in Zhang and Yang (2019) for strict-feedback dynam-
cs. Although the combination of the Nussbaum method and PPC
ppears promising, one major challenge is to avoid high-gain
ssues, due to the presence of high powers. With these problems
n mind, realizing Nussbaum PPC for high-power nonlinear dy-
amics with unknown signs of time-varying control coefficients
equires to answer two questions: (i) is the positive odd-integer
ower of a type B Nussbaum function still a type B Nussbaum
unction? (ii) is it possible to design a different conditional inequality
hat may allow the Nussbaum gain to stop increasing over some time
ntervals?

This paper answers these open questions as follows:
A counterexample and a positive example are given to show

hat the positive odd-integer-power of a type B Nussbaum func-
ion may not be a type B Nussbaum function. Only some particu-
ar type B Nussbaum functions keep their property even when el-
vated to a positive odd-integer power. These latter functions can
e used for handling time-varying unknown control coefficients
n high-power systems.

A new switching conditional inequality is proposed. Instead
f always increasing the Nussbaum gain, its design is based on
ncreasing the Nussbaum gain only when the tracking error is
lose to violate the performance bounds.

. Problem formulation

This paper considers the high-power nonlinear systems:⎧⎪⎨⎪⎩
χ̇i(t) = φi(t,χi) + ℓi(t,χi)χ

ri
i+1(t), i = 1, . . . , n − 1,

χ̇n(t) = φn(t,χn) + ℓn(t,χn)u
rn (t),

y(t) = χ1(t),
(1)

where χi = [χ1, . . . , χi]
T

∈ Ri, ri, i = 1, . . . , n, are known
positive-odd integers, and u ∈ R is the control input. The un-
known continuous nonlinear functions φi(·, ·) : R+

× Ri
→ R

(referred to as drift coefficients) and ℓi(·, ·) : R+
× Ri

→ R, i =

, . . . , n, (referred to as control coefficients) satisfy the following
ssumption.
 i

2

Assumption 1 (Zhang & Yang, 2017). There exist unknown, con-
inuous, and positive functions φi(·) : Ri

→ R+, ℓi(·), and ℓi(·) :

Ri
→ R+, i = 1, . . . , n, such that for all t

|φi(t,χi)| ≤ φi(χi), ℓi(χi) ≤ |ℓi(t,χi)| ≤ ℓi(χi). (2)

In line with standard Nussbaum literature (Chen, Li, Ren, &
Wen, 2014; Fan, Yang, Jagannathan, & Sun, 2019; Lv, Yu, Cao, &
Baldi, 2020), Assumption 1 allows the control coefficients ℓi(·, ·)
to be unknown but fixed, guaranteeing controllability of dynam-
ics (1). Nussbaum-based definitions follow.

Definition 1 (Chen, 2019, Definition 3.1, Nussbaum, 1983). A con-
tinuous function N (·) : [0,+∞) → (−∞,+∞) is called a type
A Nussbaum function if it satisfies

lim
y→+∞

sup

∫ y
0 N (s)ds

y
= +∞, lim

y→+∞
inf

∫ y
0 N (s)ds

y
= −∞.

efinition 2 (Chen, 2019, Definition 4.3). A continuous function
(·) : [0,+∞) → (−∞,+∞) is called a type B Nussbaum

unction if it satisfies

lim
→+∞

∫ y
0 N+(s)ds

y
= +∞, lim

y→+∞
sup

∫ y
0 N−(s)ds∫ y
0 N+(s)ds

= +∞,

lim
→+∞

∫ y
0 N−(s)ds

y
= +∞, lim

y→+∞
sup

∫ y
0 N+(s)ds∫ y
0 N−(s)ds

= +∞,

here N+(s) = max
{
0,N (s)

}
and N−(s) = max

{
0,− N (s)

}
re the positive and negative truncated functions of N (s).

emark 1. Note that type B Nussbaum functions are a spe-
ial class of type A Nussbaum functions (Chen, 2019). It was
hown in Chen (2019) that type A Nussbaum functions can handle
nknown signs of constant control coefficients, but may fail to
andle unknown signs of time-varying control coefficients. Ac-
ordingly, type B Nussbaum functions were proposed to tackle
he time-varying scenarios.

The main problem studied in this paper is stated below.

rescribed-performance control (PPC) problem: Consider a
ounded reference signal yr(t) with bounded derivative and a
erformance function ρ1(t) = (ρ1,0 − ρ1,∞) exp(−κ1t) + ρ1,∞ for

positive constants ρ1,0 > ρ1,∞ and κ1. The PPC problem aims to
design a controller for the system (1) such that the closed-loop
system satisfies the following two properties:

(P1) The output tracking error e1(t) = y(t) − yr(t) evolves in the
prescribed set Ω =

{
e1(t) ∈ R | |e1(t)| < ρ1(t)

}
for t ≥ 0;

and
(P2) The closed-loop signals are bounded on the entire time

domain [0,+∞).

he PPC problem has been well formulated in literature, e.g.,
echlioulis and Rovithakis (2008, 2014). However, this problem
emains unsolved for the class of dynamics (1) and even the
tability analysis recently proposed in Chen (2019) does not ap-
ly. Solving this problem requires to address two open issues:
iven a Nussbaum function, which properties hold for the power
f the Nussbaum function? To avoid high gains, how to design
switching gain that increases only when the tracking error is
lose to violate the performance bounds? These two problems are
ddressed by the technical results in the next section.

. Technical results

The high-power terms in (1) require that the positive odd-
r
nteger power of a Nussbaum function, denoted by N (s), is still a
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ussbaum function. However, we show that even if N (s) is a type
Nussbaum function, N r (s) may not result in a type B Nussbaum

function. A counterexample and a positive example are given in
the following two propositions, with proofs in Appendix.

Proposition 1 (Counterexample). Consider the function

N (s) =

∑
λ∈N+

Nλ(s + 2 − 2λ), (3)

where N+ is the set of positive integers and

Nλ(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

(
λ3+

1
3

)
λ sin

(
sπ

)
, if s ∈

[
0, 1

)
− 2λ

4
sin

(
s − 1
2λ − 1

π

)
, if s ∈

[
1, 2λ

)
0, otherwise.

(4)

hen, N (·) is a type B Nussbaum function, but N r (·) with r ≥ 3 a
ositive odd integer is not a type B Nussbaum function.

roposition 2 (Positive Example). Consider the function

(s) = exp(µs2) cos
(πs

2

)
, µ > 0. (5)

Then, N r (·) is a type B Nussbaum function for any positive odd
integer r ≥ 1.

Remark 2. The above propositions may lead to a new class
of Nussbaum functions which are those functions where N r (·)
satisfies Definition 2 for any positive odd integer r . Function (5)
belongs to such class.

The following lemma is instrumental to constructing a Nuss-
baum gain that increases only when the tracking error is close to
violate the performance bounds.

Lemma 1 (Switching Conditional Inequality). Let N (·) be a type B
Nussbaum function. Consider two continuous and piecewise differ-
entiable functions V (·) and s(·) such that

V̇ (t) ≤
[
ℓ(t)N (s(t)) + β

]
ṡ(t), (6)

ṡ(t)
{
≥ 0, if V (t) ≥ φ,

= 0, if V (t) < φ,
(7)

where φ and β are positive constants, V (0) < φ, s(0) = 0, and ℓ(·) is
a time-varying unknown function satisfying ℓ(t) ∈

[
l1, l2

]
, ∀t with

either 0 > l2 > l1 or l2 > l1 > 0. Then, V (·) and s(·) are bounded
on the entire time domain [0,+∞).

Proof. For better comprehension, a sketch of the idea behind (7)
is shown in Fig. 1. Let 0 = t0 < t1 ≤ t2 ≤ t3 ≤ · · · be the
time sequence satisfying V (tj) = φ, V (t) < φ, ∀t ∈ (t2j−2, t2j−1),
and V (t) ≥ φ, ∀t ∈ [t2j−1, t2j], for j = 1, 2, . . .. According to the
time sequence above, we consider the case of t ∈ [t2m−1, t2m] for
m ∈ N+. Integrating V̇ (·) over the time intervals [t0, t1), [t1, t2),
. . . ., [t2m−2, t2m−1), [t2m−1, t] results in

V (t) ≤

m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt +

m∑
i=1

∫ t2j−1

t2j−2

V̇ (t)dt

+ φ +

∫ t

t2m−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤φ +

m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

+

∫ t [
ℓ(t)N (s(t)) + β

]
ṡ(t)dt,
t2m−1
a

3

where the integral over t ∈ [t2j−2, t2j−1) has been removed by
observing that V (t2j−1) = V (t2j−2) = φ. Then, it follows that

V (t) ≤φ +

m−1∑
j=1

∫ t2j

t2j−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

+

m−1∑
j=1

∫ t2j−1

t2j−2

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt  

Θ(s(t))

+

∫ t

t2m−1

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤φ +

∫ t

0

[
ℓ(t)N (s(t)) + β

]
ṡ(t)dt

≤φ + βs(t) + l2

∫ s(t)

0
N+(τ )dτ − l1

∫ s(t)

0
N−(τ )dτ  

Ξ (s(t))

, (8)

by noting the facts that Θ(s(t)) ≡ 0 due to ṡ(t) = 0 for t ∈

[t2j−2, t2j−1], s(0) = 0, and N (s) = N+(s)−N−(s). When s(t) = 0,
t , the boundedness of s(t) and V (t) can be trivially obtained
ccording to (8).
When s(t) ̸= 0, it is obtained from (8) that

≤
V (t)
s(t)

≤

∆(s(t))  [
Ξ

(
s(t)

)
s(t)

]
+
φ

s(t)
+ β  

Υ (s(t))

. (9)

In the following, we prove boundedness of s(·) on [0,+∞) by
contradiction. If s(·) is unbounded, one can calculate the limit
behavior of ∆(s) in (9) as s → +∞, using Definition 2. In
particular, for the case 0 > l2 > l1,

lim
s→+∞

inf ∆(s)

lim
s→+∞

→+∞  
1
s

∫ s

0
N−(τ )dτ

→−∞  [
−l1 + l2 sup

∫ s
0 N+(τ )dτ∫ s
0 N−(τ )dτ  

→−∞

]

= − ∞, (10)

and similarly, for the case l2 > l1 > 0,

lim
s→+∞

inf ∆(s)

lim
s→+∞

→+∞  
1
s

∫ s

0
N+(τ )dτ

→−∞  [
l2 −l1 sup

∫ s
0 N−(τ )dτ∫ s
0 N+(τ )dτ  

→−∞

]

− ∞. (11)

ote that ‘inf’ in (10) and (11) becomes ‘sup’ due to l2 < 0
nd l1 > 0, respectively. The relations above indicate that an
nbounded s leads to a negative unbounded ∆(s). Independently
f whether the unboundedness of ∆(s) occurs in finite time or at
nfinity (this depends on the behavior of s(·)), the consequence
ould be that there exists a time t̄ > 0 such that(
s(t̄)

)
≤ −ε

or some positive ε, which contradicts (9). It concludes that s(·)
s bounded over the entire time domain [0,+∞), so are Ξ (s(·))
nd hence V (·) from (8).
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Fig. 1. Illustration of the evolution of V (·).

Finally, let us now consider the case of t ∈ (t2m, t2m+1). The
boundedness of s(·) and V (·) is guaranteed by the above argument
for t = t2m and the facts that V (t) < φ and ṡ(t) = 0 for
t ∈ (t2m, t2m+1). ■

Remark 3. Lemma 1 encompasses (Chen, 2019, Lemma 4.3) as
special case when ṡ(t) = 0 in (7) is never active (e.g. for suf-
ficiently small φ). Existing conditional inequalities (Ge & Wang,
2003, Lemma 2), (Ge et al., 2004, Lemma 2), and (Liu & Tong,
2017, Lemma 1) guarantee boundedness on a finite time interval
[0, tδ), tδ < +∞ (cf. discussion in Psillakis (2010, Remark 1)):
the proposed Lemma 1 ensures boundedness on the entire time
domain [0,+∞), thanks to the properties of type B Nussbaum
functions used in the proof by contradiction (cf. (10)–(11)).

4. Nussbaum gain adaptive PPC design

This section starts with the performance functions ρi(t) =

ρi,0 − ρi,∞) exp(−κit) + ρi,∞ for positive constants ρi,0 > ρi,∞
and κi, i = 1, . . . , n. In line with Bechlioulis and Rovithakis
(2008, 2014), Theodorakopoulos and Rovithakis (2015) and Zhang
and Yang (2017), the initial conditions ei(0) should satisfy the
initial feasibility |ei(0)| < ρi(0), i.e. start inside the prescribed
performance. Let α1(t) = yr(t), αi+1(t), i = 1, . . . , n, be the virtual
control laws to be designed, and u(t) = αn+1(t) be the real control
law.

Next, we introduce the virtual tracking error ei(t) = χi(t) −

αi(t) and the error transformation

Ti(t) =

tan
(
π
2

ei(t)
ρi(t)

)
cos2

(
π
2

ei(t)
ρi(t)

) , i = 1, . . . , n. (12)

he virtual control functions are devised as follows,

i+1(t) = ϱiN
(
si(t)

)
Ti(t), i = 1, . . . , n, (13)

where ϱi > 0 is a design parameter and N r (·) is a type B
Nussbaum function for any positive odd integer r ≥ 1. An
adaptation law for si(t) is constructed as

ṡi(t) =

{
T
ri+1
i (t), if |ei(t)| ≥ δiρi(t)

0, if |ei(t)| < δiρi(t)
(14)

for a constant δi ∈ (0, 1). Similar to Zhang and Yang (2017, Eq.
(8)), Eq. (14) increases only when the error is close to violate the
performance bound: however, the stability analysis in Zhang and
Yang (2017) is for strict-feedback dynamics and cannot be used
here. The way we prove stability relies on the proposed Lemma 1.
Before the main result, we use a lemma similar to Zhang and Yang
(2017, Lemma 3), thus the proof is omitted.

Lemma 2. If χi(·), α̇i(·), si(·), Ti(·), and ei+1(·) are bounded on a time
interval [0, tδ) with tδ a strictly positive time instant, then α̇i+1(·) is
bounded on [0, t ) for i = 1, . . . , n.
δ

4

Theorem 1. Under Assumption 1 and with N r (·) being a type B
Nussbaum function for any positive odd integer r ≥ 1, consider the
closed-loop system composed of (1), the control laws (12)–(13), and
the adaptation law (14). In particular, N r (·) is a type B Nussbaum
function for any positive odd integer r ≥ 1. If the initial conditions
ei(0) satisfy |ei(0)| < ρi(0), i = 1, . . . , n, then the PPC problem is
solved in the sense of P1 and P2.

Proof. (Time dependence of the functions ei, αi, α̇i, and N (si) will
be omitted whenever unambiguous). Taking the time derivative
of ei along (1), (12) and (13) yields

ėi = χ̇i − α̇i = φi(t,χi) + ℓi(t,χi)(ei+1 + αi+1)ri − α̇i

= φi(t,χi) + ℓi(t,χi)ϑi(ei+1, αi+1)e
ri
i+1 − α̇i

+ ℓi(t,χi)γi(ei+1, αi+1)α
ri
i+1

= Fi(t) + γi(ei+1, αi+1)ℓi(t,χi)ϱ
ri
i N ri (si)T

ri
i (t),

ėn = Fn(t) + ℓn(t,χn)ϱ
rn
n N rn (sn)Trn

n (t), (15)

here the second equality used the separation lemma of Lv, De
chutter, Shi, and Baldi (2022) and Lv, Yu, Cao, and Baldi (0000),
ϑi(ei+1, αi+1)| ≤ ϑ̄i with ϑ̄i a positive constant, γi(ei+1, αi+1) ∈

1 − ϵ̄i, 1 + ϵ̄i] with an arbitrary constant ϵ̄i ∈ (0, 1), Fi(t) =

i(t,χi) + ℓi(t,χi)ϑi(ei+1, αi+1)e
ri
i+1 − α̇i, i = 1, . . . , n − 1, and

n(t) = φn(t,χn) − α̇n.
In what follows, we will prove that |ei(t)| < ρi(t), i = 1, . . . , n,

holds for t ≥ 0 using a contradiction. Suppose there exists an
error em such that

|em(tm)| ≥ ρm(tm), ∀m ∈ {1, . . . , n}. (16)

Let tδ = min{tm} be the time instant when (16) is violated for the
first time. Then, due to continuity of ei and the fact |ei(0)| < ρi(0),
i = 1, . . . , n, it follows that

|ei(t)| < ρi(t), ∀t ∈ [0, tδ), (17)

and that there exists an error eδ satisfying

lim
t→t−

δ

|eδ(t)| = lim
t→t−

δ

|ρδ(t)|, δ ∈ {1, . . . , n}, (18)

here t−δ denotes the left limit of tδ . To seek a contradiction, the
nalysis given below is conducted on a finite time interval [0, tδ).

tep 1: Consider the Lyapunov function candidate

1(t) =
1
2
tan2

(
π

2
e1(t)
ρ1(t)

)
, ∀t ∈ [0, tδ). (19)

When |e1(t)| < δ1ρ1(t), it immediately follows that

V1(t) <
1
2
tan2

(
πδ1

2

)
≜ ψ1. (20)

rom (14), we further have

˙1(t) = 0, when V1(t) < ψ1. (21)

When |e1(t)| ≥ δ1ρ1(t), V1(t) ≥ ψ1 holds. Taking the time
derivative of V1(t) along (15) yields

V̇1(t) =
π

2
T1(t)
ρ2
1 (t)

[
ė1(t)ρ1(t) − e1(t)ρ̇1(t)

]
= T1(t)F1f (t) + g1f (t)N r1 (s1)T

r1+1
1 (t), (22)

here

F1f (t) =
π

2

(
F1(t)
ρ1(t)

−
e1(t)ρ̇1(t)
ρ2
1 (t)

)
,

1f (t) =
π

2
1

ρ1(t)
γ1(e2, α2)ℓ1(t, χ1)ϱ

r1
1 .
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ccording to the boundedness of yr and its derivative, α1(·) and
˙1(·) are bounded on [0, tδ), which, together with (17), yields the
oundedness of χ1(·) on [0, tδ). By Assumption 1, the bounded-
ess of χ1 and α̇1 results in that of F1(·) and hence F1f (·) on [0, tδ).

Invoking the boundedness of γ1(e2, α2), ρ1(·), and ℓ1(·, χ1) leads
to the boundedness of g1f (·) on [0, tδ). Then, it follows from the
Extreme Value Theorem that there exist positive constants F̄1f ,

1f
, and ḡ1f such that

|F1f (t)| ≤ F̄1f , g1f (t) ∈ [g
1f
, ḡ1f ], 0 /∈ [g

1f
, ḡ1f ]. (23)

ubstituting |e1(t)| ≥ δ1ρ1(t) into (12) gives⏐⏐Tr1
1 (t)

⏐⏐ ≥
tanr1

(
π
2 δ1

)
cos2r1

(
π
2 δ1

) ≥ tanr1
(π
2
δ1

)
. (24)

ynthesizing (22)–(24) results in

˙1(t) ≤
|F1f (t)|
|T

r1
1 (t)|

T
r1+1
1 (t) + g1f (t)N r1 (s1)T

r1+1
1 (t)

≤

[
F̄1f

tanr1
(
π
2 δ1

) + g1f (t)N r1 (s1)

]
ṡ1(t). (25)

Note from Proposition (5) that N r1 (·) is a type B Nussbaum
function. So, we can apply Lemma 1 to prove that V1(·) and s1(·)
are bounded on [0, tδ). In view of (19), we can claim that there
exists a constant σ̄1 > 0 such that |e1(t)| ≤ ρ1(t) − σ̄1 < ρ1(t),
∀t ∈ [0, tδ) (equivalently to the boundedness of T1(·) on [0, tδ)).
This, together with (12) and the boundedness of N (s1), gives the
boundedness of α2(·) and χ2(·) on [0, tδ) due to χi = ei + αi,
= 1, 2. By Lemma 2, α̇2(·) is bounded on [0, tδ).

tep i(i = 2, . . . , n): Boundedness of χi(·) and α̇i(·) on [0, tδ)
was obtained from step i − 1. Consider the Lyapunov function
candidate

Vi(t) =
1
2
tan2

(
π

2
ei(t)
ρi(t)

)
, ∀t ∈ [0, tδ). (26)

When |ei(t)| < δiρi(t), it follows that

Vi(t) <
1
2
tan2

(
πδi

2

)
≜ ψ i. (27)

From (14) one has

ṡi(t) = 0, when Vi(t) < ψ i. (28)

When |ei(t)| ≥ δiρi(t), it holds that Vi(t) ≥ ψ i. Taking the time
erivative of Vi(t) along (14) gives

˙i(t) =
π

2
Ti(t)
ρ2
i (t)

[
ėi(t)ρi(t) − ei(t)ρ̇i(t)

]
= Ti(t)Fif (t) + gif (t)N ri (si)T

ri+1
i (t), (29)

where

Fif (t) =
π

2

(
Fi(t)
ρi(t)

−
ei(t)ρ̇i(t)
ρ2
i (t)

)
,

if (t) =
π

2
1
ρi(t)

γi(ei+1, αi+1)ℓi(t,χi)ϱ
ri
i .

n light of Assumption 1 and the boundedness of χi(·), α̇i(·) and
i+1(·) on [0, tδ), Fi(·) is bounded on [0, tδ), which further ensures
he boundedness of Fif (·) on [0, tδ). Recalling Assumption 1 and
he boundedness of γi(ei+1, αi+1) leads to that of gif (·) on [0, tδ).
imilar to Step 1, one can conclude there exist positive constants

¯if , g if
, and ḡif such that

|F (t)| ≤ F̄ , g (t) ∈ [g , ḡ ], 0 /∈ [g , ḡ ]. (30)
if if if if if if if a

5

Fig. 2. Wing section with leading-edge (LE) and trailing-edge (TE) control
surfaces.

Substituting |ei(t)| ≥ δiρi(t) into (12) results in

T
ri
i (t)

⏐⏐ ≥
tanri

(
π
2 δi

)
cos2ri

(
π
2 δi

) ≥ tanri
(π
2
δi

)
. (31)

Summarizing (29)–(31) leads to

V̇i(t) ≤
|Fif (t)|
|T

ri
i (t)|

T
ri+1
i (t) + gif (t)N ri (si)T

ri+1
i (t)

≤

[
F̄if

tanri
(
π
2 δi

) + gif (t)N ri (si)

]
ṡi(t). (32)

Likewise, N ri (·) is a type B Nussbaum function, so we apply
Lemma 1 to prove that Vi(·) and si(·) are bounded on [0, tδ).
ccording to (26), there exists a constant σ̄i > 0 such that
ei(t)| ≤ ρi(t)− σ̄i < ρi(t) ∀t ∈ [0, tδ), which, combined with (12)
nd the boundedness of N (si), yields the boundedness of αi+1(·)
nd χi+1(·) on [0, tδ) owing to χi+1 = ei+1+αi+1. Therefore, α̇i+1(·)

is bounded on [0, tδ) according to Lemma 2.
In summary, we proved that |ei(t)| ≤ ρi(t) − σ̄i < ρi(t), i =

1, . . . , n, for t ∈ [0, tδ). However, this contradicts the assumption
in (18) and implies that tδ should be extended to +∞. As a result,
|ei(t)| < ρi(t), i = 1, . . . , n, holds for t ∈ [0,+∞). Given that
Lemma 1 holds true on [0,+∞), the boundedness of closed-loop
signals is guaranteed on [0,+∞). This completes the proof. ■

5. Simulation verification

To validate the proposed method, a two-degree-of-freedom
wing section with leading-edge (LE) and trailing-edge (TE) control
surfaces as in Fig. 2 is considered. The system dynamics can be
described by (Fung, 1955; Ko, Kurdila, & Strganac, 1997):[

Iα mwxαb
mwxαb mt

][
α̈

ḧ

]
+

[
ch 0
0 cα(α̇)

][
α̇

ḣ

]
+

[
kα(α) 0
0 kh(h)

][
α

h

]
=

[
M
−L

] (33)

here α and h denote the pitch angle and the plunge displace-
ent, respectively; Iα is the moment of inertia; mw = mt + ml

s the sum of wing section mass mt and load section mass ml;
α is the distance between the center of mass and the elastic
xis; b is the semi-chord of the wing; ch is the plunge damping
oefficient. The pitch damping cα(α̇), the pitch stiffness kα(α), and
the plunge stiffness kh(h) are expressed as cα(α̇) =

∑2
j=0 cαjα̇

j,

α(α) =
∑2

j=0 kαjα
j, and kh(h) =

∑2
j=0 khjh

j, where cαj, kαj,
nd k are unknown non-zero constants, so they cannot be used
hj
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Fig. 3. (a): Evolution of y and yr; (b): Evolution of the tracking error e1; (c): Evolution of the control input signal u; (d): Evolution of the state variables χ2 , χ3 , and
χ4 .
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in control design. In (33), M and L represent the aerodynamic
moment and lift expressed by

M =ρU2b2sp

{
c̄lα

(
α +

ḣ
U

+ (0.5 − a) b
α̇

U

)
+ c̄lββ + c̄lγ γ

}
L = ρU2bsp

{
clα

(
α +

ḣ
U

+ (0.5 − a) b
α̇

U

)
+ clββ + clγ γ

}
here c̄lα =

( 1
2 + a

)
clα + 2cmα , c̄lβ =

( 1
2 + a

)
clβ + 2cmβ ,

c̄lγ =
( 1
2 + a

)
clγ + 2cmγ , and ρ is the air density; U denotes the

freestream velocity; clα , clβ and clγ are the lift derivatives; cmα ,
mβ and cmγ are the moment derivatives; sp is the span; a is the
ondimensional distance from midchord to the elastic axis; β and
are the TE and LE control surface deflections, respectively. With

he change of coordinates χ1 = α, χ2 = α̇, χ3 = h, χ4 = ḣ, and
= β + γ , we can rewrite (33) as{
χ̇1 = χ2, χ̇2 = φ2 (χ̄2)+ ℓ2 (χ̄2) χ

3
3 ,

χ̇3 = χ4, χ̇4 = φ4 (χ̄4)+ u,
(34)

here φ2 (χ) = cᾱ1χ1 + cα11χ
3
1 + cα̇1χ2 + cα̇11χ

3
2 + cḣ1χ2

cβ1β + cγ1γ , φ4 (χ) = cα2χ1 + cα21χ
3
1 + cα̇2χ2

cα̇21χ
3
2 + ch21χ

3
3 + cḣ2χ4, and ℓ2 (χ̄2) = mwxαbkh2 with cᾱ1 =

2mtcmα+c1mtxαbclα , cα11 = −mtkα2 , cα̇1 = c2mtcmα (0.5 − a) b
U −

α0mt + c1mtxαbclα (0.5 − a) b
U , cα̇11 = −mtcα2, cḣ1 = c2mtcmα 1

U +

1mtxαbclα 1
U − chmtxαb, cβ1 = c2mtcmβ + c1mtxαbclβ , cγ1 =

1mtxαbclγ + c2mtcmγ , cα2 = −c2mtxαbcmα − c1Iαclα , cα21 =

txαbkα2 , cα̇2 = −c2mtxαbcmα (0.5 − a) b
U − c1Iαclα (0.5 − a) b

U +

α0mtxαb, cα̇21 = mtxαbcα2, ch21 = −kh2Iα , cḣ2 = −c2mtxαcmα b
U −

hIα−c1Iαclα 1
U , cβ2 = −c2mtxαbcmβ−c1Iαclβ , cγ2 = −c2mtxαbcmγ−

1Iαclγ , c1 = ρU2bsp, and c2 = ρU2b2sp.
Since the sign of kh2 is unknown, the sign of the control coeffi-

ient ℓ2(·) is unknown and cannot be used in the control design.
aking the same structural parameters as Ko et al. (1997) gives
he values of model parameters used for simulation in Table 1. Let
he reference signal be yr(t) = sin(0.5t) + sin(t). The initial state
values are chosen as χ1(0) = 3.5, χ2(0) = −1.5, χ3(0) = −2.5
and χ4(0) = −1.5. The design parameters are chosen to be: ϱ1 =

1.25, ϱ2 = 1.75, ϱ3 = ϱ4 = 5, δ1 = 0.75, δ2 = 0.5, δ3 = 0.35,
δ4 = 0.9, ρ1,0 = ρ2,0 = ρ3,0 = ρ4,0 = 5, ρ1,∞ = 0.1, ρ2,∞ = 0.85,
ρ3,∞ = 0.5, ρ4,∞ = 0.75, κ1 = 1.25, κ2 = 0.75, κ3 = κ4 = 0.5.
The parameters and initial conditions of Nussbaum functions are
µ = 0.25 and s1(0) = s2(0) = s3(0) = s4(0) = 0, respectively.

Simulation results are shown in Figs. 3 and 4, where: Fig. 3(a)–
(b) show that output y tracks the reference signal yr with bounded
tracking error while the tracking error e1 evolves within the
prescribed bounds (−ρ1, ρ1); Fig. 3(c)–(d) show the boundedness
of the control signal u and state variables χ2, χ3, and χ4; Fig. 4(a)–
(b) show the boundedness of s1, s2, s3, s4, N (s1), N (s2), N (s3),
and N (s4). To investigate the influence of the parameter δi, i =

1, . . . , 4, on the closed-loop response, we use three different sets
of values for δ : Case 1: δ = 0.15, δ = 0.2, δ = 0.25, δ = 0.3;
i 1 2 3 4

6

Table 1
The values of model parameters.
Coefficient Value Coefficient Value

cᾱ1 0.7835 cα11 −1.5616
cα̇11 −7.6423 cḣ1 2.6583
cγ1 0.7256 cα2 −5.8731
cα̇2 −3.2567 cα̇21 1.2548
cḣ2 −8.2431 cα1 0.5717
cα̇1 4.9527 cβ1 0.5394
cα21 2.2495 ch21 −0.6724
cα0 −1.0395 cα2 6.7242
kh0 2.3985 kh1 −4.7592
kh2 3.6937 kα0 −2.0593

Fig. 4. (a): Evolution of s1 , s2 , s3 , and s4; (b): Evolution of N (s1), N (s2), N (s3),
nd N (s4).

ase 2: δ1 = 0.25, δ2 = 0.3, δ3 = 0.35, δ4 = 0.4; Case 3:
1 = 0.35, δ2 = 0.45, δ3 = 0.55, δ4 = 0.6. The trajectories of the
adaptation parameters si are in Fig. 5, validating the boundedness
f si for different δi, i = 1, . . . , 4.
To show the advantages of the proposed method in han-

ling time-varying unknown control directions, two situations
re considered: the proposed method with a type A Nussbaum
unction N (s) = sin(3πs)s2 and with a type B Nussbaum function
(s) = cos

(
πs
2

)
exp(0.25s). The simulation results for a type

Nussbaum function have been already shown in Fig. 4, while
he simulation results for a type A Nussbaum function are in
ig. 6, from which it can be seen that type A Nussbaum function
thought for fixed control coefficients) may fail to stabilize the
ystem if the coefficients are not fixed. Table 2 validates the
dvantages of our proposed method in terms of: integral abso-
ute value (IAV)

[∫ T
0

∑4
i=1 |N ′

i (t)|dt
]
, integral time absolute value

ITAV)
[∫ T ∑4 t|N ′(t)|dt

]
, and root mean square value (RMSV)
0 i=1 i
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Fig. 5. Evolution of s1 , s2 , s3 , and s4 under three cases.

Fig. 6. Evolution of N (s1), N (s2), N (s3), and N (s4) for a type A Nussbaum
unction.

Table 2
Performance indices with two types of Nussbaum functions.

Type B Type A

IAV 110.71 → ∞

ITAV 1296.74 → ∞

RMSV 4.38 → ∞

[ 1
T

∫ T
0

∑4
i=1 N ′2

i (t)dt
] 1
2 , where N ′

i = ϱiN (si(·))Ti(·), i = 1, . . . , 4
represents the value of controller gain.

6. Conclusions

In the context of prescribed-performance control (PPC) for
high-power dynamics with time-varying unknown control co-
efficients, this work has shown that only some particular type
B Nussbaum functions can be used for handling time-varying
unknown control coefficients in high-power systems. Then, a
novel switching Nussbaum conditional inequality was designed
to avoid high gains, by letting the switching gain increases only
when the tracking error is close to violating the performance
bounds. An interesting topic deserving future investigation is PPC
with time-varying unknown control coefficients and positive-odd
rational powers, which contains positive-odd integer powers as a

special case.

7

Appendix

Proof of Proposition 1. We first define some quantities as
follows,

pλ,r =

∫ 1

0

[
2

(
λ3+

1
3

)
λ sin

(
sπ

)]r

ds

= 2r
(
λ3+

1
3

)
λ

∫ 1

0
sinr(sπ)

ds = 2r
(
λ4+

1
3 λ

)
αr

and

qλ,r =

∫ 2λ

1

[
2λ

4
sin

(
s − 1
2λ − 1

π

)]r

ds

= 2rλ4
∫ 2λ

1
sinr

(
s − 1
2λ − 1

π

)
ds

= 2rλ4 (2λ − 1)
∫ 1

0
sinr (sπ) ds = 2rλ4 (2λ − 1)αr

for αr =
∫ 1
0 sinr(sπ)

ds. In accordance with Definition 2, the proof
is divided into three parts.

(i) For any y ≥ 0, there exists λ ∈ N+ such that y ∈ [2λ−2, 2λ+1
−

2). As a result, it holds that

1
y

∫ y

0
N−(s)ds ≥

1
2λ+1 − 2

∫ 2λ−1

0
N−(s)ds

=

∑λ−1
k=1 qk,1

2λ+1 − 2
=

∑λ−1
k=1 2k4 (2k

− 1)α1

2λ+1 − 2
≥ 2λα1

or λ ≥ 3. The fact that λ → +∞ as y → +∞ implies
imy→+∞

1
y

∫ y
0 N−(s)ds = +∞.

ii) Note the following calculation, with y = 2λ − 1,∫ y
0 N+(s)ds∫ y
0 N−(s)ds

=

∑λ

k=1 pk,1∑λ−1
k=1 qk,1

=

∑λ

k=1 2
k4+

1
3 k∑λ−1

k=1 2k4
(
2k − 1

) . (35)

It follows from the Stolz–Cesaro Theorem (Muresan, 2008, Sect.
3.17, pp. 85, Theorem 1.22) that

lim
λ→+∞

∑λ

k=1 2
k4+

1
3 k∑λ−1

k=1 2k4
(
2k − 1

) = lim
λ→+∞

2λ
4
+

1
3 λ

2(λ−1)4+λ−1
= +∞

hich, together with (35), implies limy→+∞ sup
∫ y
0 N+(s)ds∫ y
0 N−(s)ds

= +∞.

The results limy→+∞
1
y

∫ y
0 N+(s)ds = +∞ and limy→+∞

up
∫ y
0 N−(s)ds∫ y
0 N+(s)ds

= +∞ can be proved in a similar way and are

omitted. According to Definition 2, N (·) is a type B Nussbaum
function.

(iii) For any y ≥ 0, there exists λ ∈ N+ such that y ∈ [2λ −

, 2λ+1
− 2). According to the definition of N r , we have∫ y

0 N r
−
(s)ds∫ y

0 N r
+ (s)ds

≤

∫ 2λ−2
0 N r

−
(s)ds∫ 2λ−2

0 N r
+ (s)ds

or

∫ 2λ+1
−2

0 N r
−
(s)ds∫ 2λ+1−2

0 N r
+ (s)ds

.

The following calculation

lim
y→+∞

sup

∫ y
0 N r

−
(s)ds∫ y

0 N r
+ (s)ds

≤ lim
λ→+∞

∫ 2λ+1
−2

0 N r
−
(s)ds∫ 2λ+1−2

0 N r
+ (s)ds

≤ lim
λ→+∞

∑λ

k=1 qk,r∑λ−1
k=1 pk,r

= lim
λ→+∞

∑λ

k=1 2
rk4

(
2k

− 1
)

∑λ

k=1 2
r
(
k4+

1
3 k

)
= lim
λ→+∞

(
2λ−

rλ
3 − 2−

rλ
3

)
=

⎧⎨⎩
+∞, r = 1;
1, r = 3;

0, r > 3.
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hows the violation of Definition 2. Thus, one can conclude that
r (·) is not a type B Nussbaum function. This completes the

roof. ■

roof of Proposition 2. According to Chen (2019), N r (s) is a type
B Nussbaum function for r = 1. So the remaining task is to show
that statement still holds for r ≥ 3. By the Darboux–Stieltjes
integral property (Muresan, 2008, Sect. 6.12, pp. 257, Theorem
1.7, (h)), one has, for any a ≥ 0, it holds that

exp
(
rµa2

)
αr ≤

∫ a+1

a
exp

(
rµs2

) ⏐⏐⏐cosr(πs
2

)⏐⏐⏐ ds
= exp

(
rµs̄2

) ∫ a+1

a

⏐⏐⏐cosr(πs
2

)⏐⏐⏐ ds ≤ exp
(
rµ(a + 1)2

)
αr (36)

or some s̄ ∈ (a, a + 1) and αr =
∫ 1
0 cosr

(
πs
2

)
ds, which is used in

he remaining proof. In accordance with Definition 2, the proof is
ivided into two parts.

i) For any y ≥ 0, there exists λ ∈ N such that y ∈ [4λ−3, 4λ+1),
where N is the set of integers. As a result, one has

1
y

∫ y

0
N r

+
(s)ds >

1
4λ+ 1

∫ 4λ−1

0
N r

+
(s)ds

>
1

4λ+ 1

λ−1∑
k=1

∫ 4k+1

4k−1
exp

(
rµs2

)
cosr

(πs
2

)
ds.

y (36), we can arrive at
4k+1

4k−1
exp

(
rµs2

)
cosr

(πs
2

)
ds ≥ 2αr exp

(
rµ(4k − 1)2

)
and hence

lim
y→+∞

1
y

∫ y

0
N r

+
(s)ds

≥ lim
λ→+∞

2αr
∑λ−1

k=1 exp
(
rµ(4k − 1)2

)
4λ+ 1

= +∞.

ii) Note the following calculation, with y = 4λ+ 3,∫ y
0 N r

−
(s)ds∫ y

0 N r
+ (s)ds

=

∫ 4λ+3
0 N r

−
(s)ds∫ 4λ+3

0 N r
+ (s)ds

>

∑λ

k=0

∫ 4k+3
4k+1 exp

(
rµs2

) ⏐⏐⏐cosr( πs2 )⏐⏐⏐ ds∑λ

k=0

∫ 4k+1
4k−1 exp

(
rµs2

)
cosr

(
πs
2

)
ds

≥

∑λ

k=0

[
exp

(
rµ(4k + 1)2

)
+ exp

(
rµ(4k + 2)2

)]
αr∑λ

k=0

[
exp

(
rµ(4k)2

)
+ exp

(
rµ(4k + 1)2

)]
αr

.

t follows from Stolz–Cesaro Theorem (Muresan, 2008) that

lim
→+∞

∫ 4λ+3
0 N r

−
(s)ds∫ 4λ+3

0 N r
+ (s)ds

≥ lim
λ→+∞

exp
(
rµ(4λ+ 2)2

)
exp

(
rµ(4λ+ 1)2

) = +∞,

which implies limy→+∞ sup
∫ y
0 N r

−
(s)ds∫ y

0 N r
+
(s)ds

= +∞.

The results limy→+∞
1
y

∫ y
0 N r

−
(s)ds = +∞ and limy→+∞ sup∫ y

0 N r
+
(s)ds∫ y

0 N r
−
(s)ds

= +∞ can be proved similarly. According to Defini-

ion 2, N r (·) is a type B Nussbaum function. ■
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