
Porting Darwin to the MV88F6281
ARMing the SnowLeopard.

Tristan Schaap
1269011

Apple Inc.
Platform Technologies Group

Delft University of Technology
Dept. of Computer Science

Committee:

Ir. B.R. Sodoyer
Dr. K. van der Meer

Preface! 3

Introduction! 4

Summary! 5

Building a new platform! 6
Booting iBoot! 7

Building the kernelcache ! 8

Booting the kernel! 10

THUMBs down! 16

Conclusion! 18

Future Work! 19

Glossary! 20

References! 21

Appendix A! 22

Appendix B! 23
Skills ! 23

Process ! 26

Reflection! 27

Appendix C! 28
Plan of Approach! 28

2

Preface
Due to innovative nature of this project, I have had to limit myself in the detail in which I
describe my work. This means that this report will be lacking in such things as product
specific- and classified information.

I would like to thank a few people who made it possible for me to successfully complete
my internship at the Platform Technologies Group at Apple. First off, the people who
made this internship possible, John Kelley, Ben Byer and my manager John Wright.
Mike Smith, Tom Duffy and Anthony Yvanovich for helping me through the rough
patches of this project. And the entirety of Core OS for making my stay an unforgettable
experience.

3

Introduction
About the Platform Technologies Group
As it was described by a manager:

“We do the plumbing, if we do our jobs right, you never see it.”.

The Platform Technologies Group, a subdivision of the Core OS department, works on
the embedded platforms that Apple maintains. Here, platforms are brought up and the
embedded kernel and lower level support for the platforms is maintained.

What is Darwin?
Darwin is the lower half of the Mac OSX operating system. It includes the XNU kernel
which is based on the Mach microkernel, and the userland.

What is the MV88F6281?
The MV88F6281 is an ARMv5te compatible processor from Marvell. It is based on their
custom Sheeva core, which is designed to be like the ARM926EJ-S core from ARM. It
has all the features youʼd expect from a modern CPU, including several high speed
SERDES lanes, a Harvard L1 cache, and 128kb of unified L2 cache.

The Project
The goal of this project is to get Darwin into a workable state on the MV88F6281
processor so that other teams can continue their work on this platform. The project has
three major milestones:

1. Getting the buildsystem into shape, so that it can build the kernel and kexts.
2. Building and booting the kernel into single user mode.
3. Booting the system into multi user mode.

Because my project affects many other people, and it is encapsulated by a larger
project. I joined the biweekly meeting for the encapsulating project. This would allow me
to report back my progress, and get feedback from other engineers.

4

Summary
I worked in the Platform Technologies Group for 12 weeks, porting Darwin to the
MV88F6281. The MV88F6281 is an ARMv5 compatible processor, with the custom
Sheeva core at its heart. The goal of this project was to get Darwin building and booting
into a full multi-user prompt. In order to achieve this goal, I set three milestones:

1. Get the system into a buildable state.
2. Boot Darwin into a single-user shell.
3. Boot Darwin into a full multi-user shell.

Because the project was to be built from scratch with the compiler from the new
SnowLeopard operating system, several problems had to be addressed. These included
problems with missing symbols, needing several kernel patches.

Getting Darwin to boot after getting it to build proved to be a major challenge, forking my
project into two. After encountering a problem with an instruction set on the 6281 chip,
we had to stop using the THUMB instruction set altogether. Because it was unclear at
the time why the chip failed to correctly execute the THUMB instructions, I set out to
research the problem in finer detail alongside the main project of porting Darwin.

After encountering several kernel bugs that stopped the kernel from booting, I achieved
my milestone of a single user mode shell after about 8 weeks of work. After fixing
several problems with both the kernel and the filesystem, I achieved my final goal of
booting into a multi-user prompt.

Continuing my research into how and why the kernel failed to execute several
instructions, I found that the problem lay not with the core itself, but rather with a poor
implementation on the debug hardware. After completing all the milestones that had
been set for me, I successfully completed the project.

5

Building a new platform
When I began this project, development for the MV88F6281 was being done with a train
from a different ARM based project. This made sense, because both projects are ARM
based, and thus share a lot of code, libraries and low-level platform support.

There are unfortunately multiple problems with this approach:

1. If one project made changes to the low-level platform support, these changes
could have major repercussions on the other platform. I will discuss examples of
this later.

2. When one of the projects is in the final stages of development of a release, no
more changes to the lower level libraries are allowed. This means that the other
project can also not make any changes to these lower level libraries. This poses
serious problems when that project is in the early stages of development, where
changes to the lower level libraries are far more prominent.

The solution to these problems is fairly simple. Create a new separate train for the
MV88F6281. The Mac OSX buildsystem allows for what is called a Platform. A Platform
is a complete replication of a root directory, and it contains a compiler, libraries and all
the tools needed to build both userland and kernelland applications for Darwin. So one
of the goals of this project is to create a Platform for the MV88FXXXX family.

6

Booting iBoot
iBoot is the bootloader of choice for embedded targets at Apple. My first task was to get
iBoot building and booting on the MV88F6281. This involved setting up the JTAG
environment needed to upload code to the target, as well as perform the initialization of
the target. This includes setting up the SDRAM controller to allow access to the main
memory banks.

The JTAG unit is a BDI3000, made by Abatron. One of its features is the setting of
memory mapped registers, such as required by the SDRAM controller in the Sheeva
core. Setting up the registers turned out to be trivial, using the W32 command in a BDI
script, which will write to a memory mapped register. The needed SDRAM settings were
glanced from the MV88F6281 datasheet, and the bootloader that was originally present
on the device.

The actual process of building and booting iBoot on the MV88F6281 was fairly hassle
free. Because iBoot is a bootloader, it has to be entirely self contained and cannot rely
on external libraries. Even with only the ARMv5 compiler found in Snow Leopard, a
simple:

make TARGET=airBoot PLATFORM=mv88f6281

Sufficed to build a binary image ready to be loaded using the BDI debugger.

7

Building the kernelcache
After acquiring the means to boot kernels on my device, the second task was to
research the viability of using the vanilla ARM toolchain supplied with the new Snow
Leopard operating system to build a kernelcache for the MV88F6281. This would
identify the problems we would be facing when designing a completely new
MV88FXXXX platform.

Snow Leopard comes with libraries for ARMv6 and ARMv7 targets, but has only a
compiler for the ARMv5 target. This is not a problem for the goal weʼre trying to achieve,
which is building the kernel. The kernel does not rely on any of the libraries, thus we
should just be able to build it with nothing but a kernel.

make TARGETS=”arm development mv88f6281” VERBOSE=yes

Does indeed build us an ARMv5 kernel. Building the kexts1 we need in order to boot the
system such as AppleARMPlatform build in much the same way.

The way embedded systems boot is with a kernelcache. This kernelcache contains all
the kexts, and the kernel. These kexts and the kernel exist in a prelinked form, that is to
say, no further linking needs to be performed by the kernel in order to use the kexts
found in the kernelcache.
In order to perform this prelinking, a kernelcache builder needs to be used. This will
invoke the kext linker, kxld, to perform the linking of the kexts into the kernel. The
kernelcache builder will then build the kernelcache out of these kexts and the kernel.

When prelinking the kexts, kxld will try to resolve all the imported symbols using
symbols exported by other kexts. Most notably, the System.kext, which is the kext
associated with the kernel. This is where I ran into the first problem. Building the
kernelcache for the first time produced several errors.

These are C++ related symbols, and should have been defined in the kernel, and more
specifically, in libkmod. libkmod is the library that all kernel modules use to initialize
themselves and hook into the kernel. After much searching, it turned out that a #define
in the kernel was the culprit.

kxld[com.apple.driver.AppleARMPlatform]: The following symbols are unresolved for this kext:
kxld[com.apple.driver.AppleARMPlatform]: .constructors_used
kxld[com.apple.driver.AppleARMPlatform]: .destructors_used
kxld[com.apple.driver.AppleARMPlatform]: __start
kxld[com.apple.driver.AppleARMPlatform]: __stop

8

1 Kexts, or kernel extensions are what drivers are called.

In the latest version of the SnowLeopard operating system, the C++ runtime had been
changed for the x86_64 platform. This involved relocation several symbols to another
part of the kernel. Unfortunately, the way this was implemented in the header was

#if __i386__ || __ppc__

Which will indeed cause the desired behavior, the symbols will no longer be defined for
x86_64. It should however been implemented as

#if !__i686__

Which will once again define the symbols for __ARM__. Reproducing this fix in several
other header files and adding some of these symbols to the symbol_export list allowed
me to fully prelink the kernel and kexts, producing a valid kernelcache.

9

Booting the kernel
After building the kernelcache, the next step was to try and boot the kernelcache. My
initial attempt at booting the kernelcache landed me somewhere halfway through the
boot. The processor hung, and no specific error was given. Using gdb through my BDI
JTAG debugger, I traced back the hang to one specific line of code.

Right after figuring this out I attended one of our bi-weekly status meetings. I mentioned
this particular problem at the meeting, and one of the engineers present explained to
me that this was a function that was used for dynamically linking in kexts into the kernel.
Because we are using a kernelcache, we donʼt have to dynamically load kexts. In fact,
we canʼt because weʼre missing the kxld executable. Because the function was of no
use to us, I simply commented it out.

Commenting out that function allowed the system to boot slightly further, right up to the
point where it was loading kexts into memory and pairing them to actual devices. The
system now came to a halt with a more explicit error, and a kernel panic.

This panic means that the kernel is unable to find the kext for the AppleARM platform.
More specifically, it is missing the AppleARM PlatformExpert. This is the kext that has all
the information on the underlying system, and functions to modify and access it.
Information includes the operation of the Interrupt Controller, and other systems that are
critical to operation.

record_startup_extensions_function();

panic(cpu 0 caller 0xc0230569): "Unable to find driver for this platform: \"AppleARM\".\n"@/
Users/src/xnu-trunk/iokit/Kernel/IOPlatformExpert.cpp:1389

10

The kernelcache however did include this AppleARMPlatform kext. This problem led me
on a wild goose chase around the entire buildsystem. The buildsystem was a likely
culprit, because it was a largely untested system. After replacing several key items of
the buildsystem, including the compiler, kernelcachebuilder, kxld, and several libraries I
was no further to my goal. The only thing that had not been researched was the kernel
itself. Once again using gdb and several debug printfs I located the function that was
supposed to load these drivers into the kernel.

Turned out that the function that according to the engineer only dynamically loaded
kexts was also responsible for loading prelinked kexts into the kernel. I uncommented
the function. I had gained valuable knowledge as to how the buildsystem worked,
having tore it apart pretty thoroughly, but no closer to my goal of booting Darwin.

record_startup_extensions_function();

11

Debugging using JTAG
Setting up my JTAG unit to catch all the processor exception vectors, I started to walk
through the offending function. Using a technique called singlestepping, I was able to
narrow down the problem to a single snippet of assembly, shown below.

Single stepping this code showed the problem. The JTAG unit caught an exception
while trying to execute the code at 0xC00814C2.

After carefully inspecting the offending code, it was deemed that this was actually valid
THUMB code. The target of this BLX instruction, which jumps to the specified address
and changes into ARM mode, was also valid code. This problem turned out to be
insurmountable, and after several meetings we decided to entirely drop half of the
instruction set. The suspicion was that a silicon bug in the Sheeva core made the unit
fail on certain instances of the BLX instruction. This suspicion was enhanced by the fact
that a previous Sheeva based device, the MV88F5281 exhibited similar behaviour and
that unit had been proven to have a silicon bug. This bug was supposed to have been
fixed in the newer MV88F6281 but it was possible that they introduced a new bug while
trying to fix the old one. Because the project needed to be completed anyway, the
decision to drop the THUMB instruction set was made. I did continue to investigate, and
finally solve, the problem with the THUMB instruction set. I will discuss this in a later
chapter.

This means that we now had to re-engineer the platform to not compile any THUMB
code, but rather only ARM code. Fortunately, GCC contains a flag to disable all thumb
code, -mno-thumb. This flag was used throughout the Platform, and no more THUMB
was produced. This however was not the solution to all our problems, as the unit still did
not boot, and still gave me no obvious warning when booting. However, singlestepping
through the code now no longer gave me an undefined instruction exception, so I was
able to locate the real problem.

c00814be !!!!!!!!!!!4640 !!!!!!!mov !!!!r0, r8
c00814c0 !!!!!!!!!!!990c !!!!!!!ldr !!!!r1, [sp, #48]
c00814c2 !!!!!!!f005eaac !!!!!!!blx !!!!0xc0086a1c
c00814c6 !!!!!!!!!!!e79f !!!!!!!b.n !!!!0xc0081408
c00814c8 !!!!!!!!!!!4803 !!!!!!!ldr !!!!r0, [pc, #12] !!
c00814ca !!!!!!!f7a0f823 !!!!!!!bl !!!!!0xc0021514
c00814ce !!!!!!!!!!!e781 !!!!!!!b.n !!!!0xc00813d4

!!!Core number !!!!!!: 0
!!!Core state !!!!!!!: debug mode (ARM)
!!!Debug entry cause : Exception (UNDEFINED)
!!!Current PC !!!!!!!: 0xc00814c0
!!!Current CPSR !!!!!: 0x60000093 (Supervisor)

12

Threadpointers

In the XNU kernel a pointer that points to the current threads information struct, or
current thread-pointer, is something that is always kept handy. In order to do that, it is
always stored in a specific place. On ARMv5, it was decided that in the kernel the
register r9 was to be used for this purpose. Later revisions of the ARM specification,
such as ARMv6 and ARMv7, provided a dedicated register to be used, stored in a CP15
register. But because all ARM platforms share a lot of their code, r9 should still not be
touched in ARMv6 and ARMv7. This is only an issue in hand rolled assembly, because
GCC has had rules added to it to prevent it from using the r9 register.

But because ARMv5 is a platform that was not being actively developed for at Apple, the
code for this platform was not being exercised. This meant that it was possible for a
function to trash the r9 register with it going unnoticed. This because when the code
was being run on either ARMv6 or ARMv7 the current thread pointer would be restored
from the dedicated CP15 register before use.

After spending considerable time tracing my steps through several assembly files, the
problem was finally identified in the OSAtomicAdd function, which was used by copypv,
which in turn was used by the function loading the kexts into memory to copy the kexts
from physical to virtual memory. The problem meant that after calling the OSAtomicAdd
function, the value in the r9 register would not be pointing to the current thread struct,
but instead to a random piece of memory. Once the kernel used any of the values in this
struct, it would generate a data abort. Due to the r9 pointer being corrupted, the data
abort handler itself would generate an abort when trying to print out the panic, thus
creating an infinite loop of aborts and hanging the kernel.

Even though the problem was hard to track down, the fix was fairly trivial. Replacing the
use of r9 with another register allowed the system to continue booting. The system
actually continued to boot up to the point where it required a filesystem. Setting up an
NFS server with a filesystem borrowed from another ARM based unit, I achieved one of
the milestones of the project, a single user prompt.

13

Multiuser mode

Achieving the single user milestone presented me with the next challenge, achieving
multi-user mode. The difference between multi-user mode and single user mode is fairly
small.

1. In single user mode launchd does not initialize any services.
2. Multi-user mode provides you with a prompt
3. In single user mode launchd does not attempt to open a pipe to allow launctl

to talk to it.

Even though the difference between single and multi-user mode is fairly small, it was
large enough to create problems booting into it. After booting into multi-user mode, the
system would hang. Once again without any sort of descriptive error. This time my JTAG
unit nor GDB was of any help, as the unit did not fatally crash but rather hung in a
function waiting to receive a message from an IPC socket. However, knowing that we
had a single-user prompt, it had to be something that was only being done in multi-user
mode, drastically reducing the number of problems.

Through a process of elimination, one shell script was found to be the very unlikely
culprit. /etc/.profile is the systemwide default init script for sh. It does a minimal setup of
environment variables and other things needed to run the shell. The offending line in the
script, by another process of elimination, was found to be eval `/usr/libexec/path_helper
-s`. Booting back into single-user mode and trying all the elements separately:

eval true
/usr/libexec/path_helper -s
`echo true`

Showed that the problem was in using the back ticks. In SH, back ticks mean “execute
this and replace myself with the output”. So for `echo true`, SH would execute echo
true, receive the output ʻtrueʼ and execute that. After some experimenting, we found that
the simplest use-case which crashed the system was the command line whoami &. This
will execute the whoami command in the background. This generated the following
output:

This meant that the process was actually being executed before the system died. At one
point I accidentally resized the SSH window I was using to debug this issue. Resizing
the window made the unit crash. This fact combined with the fact that backgrounding a
task crashed the unit led us to believe that the problem had to do with signals. The act
of backgrounding a task spawns a child process, which then terminates. This sends a
SIGCHLD to the parent task. When a window is resized, this sends a SIGWINCH signal
to the process.

bash-3.2# whoami &
root

14

After determining that the signal handler was the culprit, I started looking through the
second level SWI handler which is written in ARM assembler. This handler at one point
calls the function set_cthread_ptr. Because of the way this function is designed the
loading of the arguments happens about a hundred lines away from the actual function
call, unless youʼre running on ARMv6 or ARMv7, in which case the argument will load
right before calling the function. This again because they use the special purpose
register to store the current thread pointer.

Because of this separation of loading the arguments and calling the function, the r0
register which held the arguments and is generally considered to be a register for
momentary use got used in some revision of the kernel. This broke ARMv5 support for
signals. Changing the register used from r0 to a non-used register such as r10 fixed the
problem. Doing this allowed signals to work once again on ARMv5 systems:

This however didnʼt fix the multi-user problem. However, adding several debug printfs to
the launchd deamon showed a problem where it was unable to write to /tmp/launchd.
Launchd will write a named pipe to that location, in order for launchctl to communicate
with it. With that named pipe missing, launchctl could not tell launchd to start all the
services. After deliberating with the build engineer responsible for the project, he
decided to add an extra project to the build that would recreate the /tmp directory that
had been removed in an earlier erase-empty-directories step. With this fix in place, the
system booted to a full multi-user mode, achieving the final milestone in the project.

-sh-3.2# whoami &
[1] 4
root
-sh-3.2# true
-sh-3.2#

15

THUMBs down
As was quickly glossed over in the ʻBooting the kernelʼ chapter, we encountered an
issue with the THUMB instruction set in the MV88F6281ʼs Sheeva core that forced us to
abandon this instruction set, and move to an entirely ARM kernel and userland.
Because it was important to both Apple and Marvell to understand this problem, I
continued to investigate it alongside my porting work.

The assumption that I was working off was that the THUMB instruction set was broken.
So I set out to prove this. After miraculously finding that the kernel got past the earlier
problem of the copypv, I tried writing some of my own assembler to exercise the
problem. This assembler can be found in Appendix A. I singlestepped this code and
successfully exercised the problem.

The above trace shows one of the unfortunate symptoms of the problem, bogus
information in all the hardware register. All the registers are returning close to the same
value. This made the debugging process all that much harder, because I had no idea
what state the processor was really in after executing this instruction. I discussed this
with another engineer. Because the symptoms made regular debugging nigh
impossible, he put me in contact with Jenning Chee, one of Marvellʼs lead hardware
designers.

!!!!!!!!User !!!!FIQ !!!!Superv !!Abort !!!!IRQ !!!!!Undef
GPR00: 00000000 00000000 00000000 00000000 00000000 00000000
GPR01: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR02: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR03: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR04: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR05: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR06: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR07: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR08: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR09: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR10: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR11: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR12: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR13: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
GPR14: c0086396 c0086396 c0086396 c0086396 c0086396 c0086396
PC !!: c0086380
CPSR : c00863b6
SPSR : !!!!!!!!!c0086396 c0086396 c0086396 c0086396 c0086396

16

After explaining the problem to Jenning, he relayed my test results and code to the
hardware design team in Israel. This team tried to unsuccessfully replicate my results on
identical hardware. Replacing my unit with a new one however got me the same results
as I got earlier. The only difference between my setup and that of the team in Israel was
that they were using a Lauterbach JTAG unit, instead of my BDI3000 JTAG unit. After
this confusing result, I tried executing my code once again, without the BDI3000 JTAG
unit attached. It worked.

Because the only variable that had changed in the equation was the JTAG debugger, it
was now the main suspect. After some more experiments, this was found to be true.

Even though the Sheeva core is most likely not the problem, the THUMB instruction set
was not put back in the MV88F6281 platform. This because the BDI is the most used
JTAG debugger at Apple, and changing this unit would be much more of a hassle than
disabling the THUMB instruction-set on the platform.

Because this issue is still under investigation and certain details of the debug module
and process contain information which is under Non Disclosure Agreement, I cannot
speculate as to the cause of this problem.

17

Conclusion
In the 12 weeks that I spent working on this project I learned more about embedded
systems, buildsystems and debugging than I could have ever hoped for. Having had the
opportunity to go deep down into the crevices of a complicated embedded devices in
my research into the THUMB issue has taught me more about the inner workings of an
embedded device than any lecture could have ever done.

Also having the chance to deliberate with engineers on both the Apple side, and the
side of a vendor has strengthened my ability to communicate with other engineers at a
technical level and has given me insights into the operations of a major company.
Attending the bi-weekly project meetings showed me how a large project such as this is
handled on an operational level, and a human resources level.

I faced several technical difficulties during this project, all of which can be roughly
subdivided into three categories:

1. Buildsystem. Having to create a buildsystem from the ground up, including the
filesystem and kernelcache.

2. Stale kernel source. Because the ARMv5 branch of XNU had not been exercised
in a long time, bugs snuck in.

3. JTAG debugger. Due to issues with the JTAG debugger, an entire instruction set
could not be used.

Having to deal with all these issues showed me how platform bringup worked from a
very low level where I had to get the system to compile, to a fairly high level, where I
had to debug issues on a filesystem level. Achieving all of the milestones that I set out
to achieve, I successfully completed the project.

18

Future Work
Getting the unit to boot to multi-user mode is a big step forward, but it is not quite ready.
Several things have to be done before this product is ready to ship.

L2 Cache
The L2 cache in the MV88F6281 is Virtually Index and Virtually Tagged, or VIVT. XNU
was not designed to handle this. Several changes have to be made to the kernel in
order to exploit the advantages of the 128kb unified L2 cache.

Drivers
The hardware has to have several more drivers ported to it, to fully utilize the potential.

Userland
The bare minimum userland that has been ported to the platform is not enough to
perform the tasks the unit needs to perform. Several applications will have to be written
or ported from other platforms.

19

Glossary
Term Definition

ARMv5 The fifth incarnation of the ARM specification.

Breakpoint A preset point at which the execution of the
processor will be halted, to allow for debugging.

CP15 Coprocessor 15 in several ARM processors is used
to control a whole range of system functionality such
as the memory management unit.

Exception Vector The ARMv5 specification calls for several exception
vectors to be in place. These vectors are placed at a
fixed spot in memory and are called whenever an
exception such as an undefined instruction occurs.

GDB The GNU debugger is used to debug applications on
a high level

Interworking Interworking on THUMB enabled platforms means
switching between the ARM and THUMB instruction
sets.

JTAG A port that allows control over the CPU on the lowest
level. It allows you to halt the CPU, and analyze its
current state.

Kernelcache A kernelcache is a binary blob containing the kernel
and all the necessary prelinked kexts.

Kext Short for kernel extension, kexts are drivers.

Singlestepping The technique of executing one instruction for every
key press by the user

SWI Software Interrupt. An instruction that allows running
code to generate an interrupt. Commonly used for
syscalls.

THUMB An extension to the ARM instruction set, THUMB is a
completely separate instruction set. It is 16 bit
instead of 32 bit, allowing for space savings up to
40%.

20

References
• Marvell, 88F6281 Hardware Specifications document, December 1, 2008*.

• Marvell, 88F6180, 88F6190, 88F6192 and 88F6281 Functional Specifications
document, December 1, 2008*.

• Marvell, Document Changes and Updates 88F6281 Hardware Specifications, Revision
E and 88F6180, 88F6190, 88F6192 and 88F6281 Functional Specifications, Revision
C, January 28, 2009*.

• ARM, ARMv5 Architecture Reference document, 2005.

• Marvell, Feroceon L2 Addendum, October 23, 2007*.

• Apple, internal kernel documentation*.

• Apple, internal iBoot documentation*.

• Marvell, Preliminary Feroceon Core datasheet, January 30, 2008*.

21

* Document only available under NDA

Appendix A
/*
 * Copyright (C) 2007 Apple Inc. All rights reserved.
 * Copyright (C) 2006 Apple Computer, Inc. All rights reserved.
 *
 * This document is the property of Apple Inc.
 * It is considered confidential and proprietary.
 *
 * This document may not be reproduced or transmitted in any form,
 * in whole or in part, without the express written permission of
 * Apple Inc.
 */

 .text
 .align 4
 .arm
 .global _do_crash_asm
_do_crash_asm:
 b .
 mrs r0, CPSR
 bic r0, r0, #0x0F
 orr r0, r0, #0xC3
 msr CPSR, r0

 mov r0, lr
 blx do_crash_asm_thumb_aligned
 blx do_crash_asm_thumb_non_aligned
 bx r0

 .thumb
 .align 4
do_crash_asm_thumb_aligned:
 mov r8, r8
 mov r1, lr
 blx do_crash_asm_arm
 bx r1

 .align 4
do_crash_asm_thumb_non_aligned:
 mov r1, lr
 blx do_crash_asm_arm
 bx r1

 .arm
 .align 4
do_crash_asm_arm:
 mov r0, r0
 bx lr

22

Appendix B
Skills
This project required a high level of understanding of methods of debugging embedded
systems, as well as an affinity with both C and assembly coding. Having already worked
on several projects requiring such skills, I was confident in my ability to overcome any
difficulties that would undoubtably arise. In order to show my preparation for the task at
hand, I will discuss two of the projects that have given me the skills necessary to
complete the work on the MV88F6281.

Prex

Having always possessed an interest in all things embedded, I came across an obscure
Chinese made handheld device. Opening the device showed me a processor marked
as an SPMP3050. After some research I determined this was an ARM926EJ-S based
processor, much like the one the Sheeva core in the MV88F6281 is based on.
Unfortunately, no datasheets were available for this specific processor. So in order to
make use of the various peripherals of the device, such as the LCD screen and serial
port, a certain amount of reverse engineering of the existing firmware was needed.

Reverse engineering is the process of taking assembled binary executable code, and
reversing the process of assembly. This yields a long listing of assembly instructions,
equivalent to the original binary. In order to read these specific instructions, one must
have intimate knowledge of the underlying system. Having worked with several ARM
systems before, I started reverse engineering the memory map of the device.

Reading a considerable amount of ARM assembly, I figured out how several of the
peripherals worked. Once I had the basics of the device figured out, I started work on
porting an RTOS (Real Time Operating System) to the platform. After much deliberation,
it was decided this should be Prex. Lacking in experience regarding operating systems,
I researched several aspects of the Prex kernel.

With new insights gained from reading both sourcecode and documentation, I started
work on porting the bootloader and base Prex kernel to the device. Writing low-level
device drivers involves a mixture of C and ARM assembly. After completing several of
the device drivers, among which the serial port, LCD and GPIO interfaces, we had a
fully working Prex kernel running on the device.

23

Prex - Conclusion

I gained several insights into the inner workings of an operating system, something
which would be highly valuable when working on the MV88F6281. I also honed my
reverse engineering skills, which would come in handy when searching for possible
bugs.

Development board

For another project, I required a small development board with a high amount of high
speed general purpose IO pins. Rooting around my drawers I could only find larger
development boards. These did not meet the requirements for the project, which called
for a small development board.

Scouring the internet for a device that would meet the requirements, I came up empty.
This was a niche that was apparently unfilled, so I decided to fill it myself, by designing
my own development board.
Drawing up a few specifications on my whiteboard, I came up with the following:

• Must be able to sample and write at speeds of up to 166MHz
• Must be able to interface to a PC over USB
• Must be flexible

After much deliberation, I decided upon the components for the board. A highspeed
FPGA would be used for the sampling of the GPIOs, and a microcontroller would
interface with the FPGA and provide USB capabilities. Having an affinity with Actel
FPGAs and ARM microcontrollers, I chose the A3P250-VQ100 as the FPGA, and the
AT91SAM7S128 microcontroller by Atmel.

The PCB design was done in Altium designer, and the parts were ordered from Mouser.
I ordered the fabrication of the PCBs from Myro PCB in Shenzen, China.
After all the parts arrived, I assembled an early prototype.

24

Debugging the hardware took some time, but once all the components were
enumerating on their respective busses (FPGA on JTAG, microcontroller on both JTAG
and USB), I ported an operating system called eCos to the microcontroller.

Development board - Conclusion

Developing my own development board from the ground up gave me valuable insights
into how hardware is designed, and how to properly read datasheets to get the required
information out of it. Porting yet another operating system to a microcontroller
strengthened my knowledge of operating systems even further. Using JTAG to debug
the ARM7TDMI processor gave me experience in the low-level debugging field.

25

Process
Quality assurance

Working on a large project such as the XNU kernel, there has to be a form of quality
assurance in order to keep the project building. Unfortunately, unit-tests as they are
commonly used on traditional software projects donʼt work on the lowlevel code that is a
kernel. Therefor, another form of quality assurance is used on the XNU project as well
as several other embedded projects at Apple.

The procedure to getting your changes mainlined and included into the trunk is to file a
CCC to the bug review board. The CCC I filed for the inclusion of my first patch is
included here.

It lists all the information needed to process the change, including the name of the
person who peer-reviewed the change. All changes must be peer-reviewed, in order to
reduce the chance of a bug or regression sneaking into the kernel. It also lists the
person who will be integrating the change. Because so many people work on the XNU
kernel, it is impossible and unwise to have each person integrate their own changes.
Because of this, integrators will accumulate a certain amount of patches and then
commit them to the trunk of the project.

This CCC is submitted to the BRB (Bug Review Board), to check if there are any
problems. If not, they are forwarded to the integrator who will integrate you changes.

- Location of Diffs: Attached to Radar under filename pr-7169646-1493.patch
- Reviewed by:John Doe
- Branch: svn+ssh://src.apple.com/svn/xnu/branches/PR-7169646-1493
- B&I Project Name(s): XNU
- Project(s) that need to be rebuilt: XNU
- Integrator:!Linda
- Built for architectures: ARMv5
- Build Built On: SnowLeopard 10A411
- Build Tested On: XNU trunk rev. 65168
- Machines Tested On: K30Alt

- Tested by: Tristan Schaap
- Testing instructions:

Build XNU, verify XNU boots past kext loading.

---Embedded-Only Submission Information---
- Risk Level: None
- Risk Details:!None that I know of, only affects ARMv5 targets
- Review Details:!None.
- Security Details:!None that I know of.

26

Reflection
Working as part of a large team, for a large company and on a large project has given
me food for thought. Even though the secrecy that is inherent to working for Apple
shapes the company and allows it to create some of the most innovative products on
the market, it has a downside in that you arenʼt allowed to talk about possible difficulties
youʼre facing with people that do not have clearance on your project. People that might
have valuable insights or even solutions.

Because a large portion of my project was about porting old code, I had to interact a lot
with people who had written this code. Luckily, most of these people knew about my
project and I had little problem talking to them. However on a few occasions I had to be
very cryptic about what I wanted or needed, impeding my progress.

This progress was slow at times, resulting in me being very frustrated. This is inherent
to doing complicated low-level work, where progress is often achieved in bursts rather
than a constant increase. Looking back on my project, I feel that I might have benefitted
from a more structured way of working. This ʻchaosʼ can partly be attributed to the fact
that even though I had previous operating system experience, I was unfamiliar with the
Darwin way of handling things. Someone more experienced with Darwin would probably
have been able to know instinctively where the bug was most likely to be.

If I were to redo this project I would have probably tried to work closer with the other
engineers available to me, and do more teamwork. I did learn a lot more about the XNU
kernel trying to figure out all the problems myself, but I would have been able to finish
my project quicker if I had asked for more help.

I donʼt believe my preparation was lacking, I had little to no problems adjusting to the
MacOSX development platform, drawing on my experience with the UNIX
commandline. Further drawing on my skills with ARM assembly and the C programming
language, I was able to quickly orient myself and start with the task at hand.

In conclusion, even though I had a few hiccups and several unforeseen problems arose
during the project, I am satisfied with the way it turned out. Several details could have
been improved upon, but I have learned from these mistakes, which means they were
not made in vain.

27

Appendix C
Plan of Approach

28

Porting Darwin to the MV88F6281
Plan of Approach

Tristan Schaap
1269011

Apple Inc.
Platform Support Group

Delft University of Technology
Dept. of Computer Science

Committee:

Ir. B.R. Sodoyer
Dr. K. van der Meer

Preface! 3

Plan of approach! 4
Summary! 4

Introduction! 4

Contract! 5

Planning! 5

Quality assurance! 5

Preface
Because the planning of this project is largely dependent on intermediary results, some
parts of this planning may be intentionally left vague. Also, because the project in
question is one that is highly innovative, several product-specific and confidential details
have been left out.

This document describes the requirements of the project. The goal of the project is to
achieve a fully working Darwin multi-user environment on the MV88F6281 processor by
Marvell. In order to achieve this, several milestones will be decided upon, and a rough
planning will be made.

Plan of approach
Summary

For this internship at Apple, I will be porting Darwin to the MV88F6281, an ARMv5
compatible CPU based on the custom Marvell Sheeva core. Several steps will need to
be taken to achieve the final goal of being able to boot into a multiuser prompt. Due to
the unpredictability of the steps, only rough estimates will be made as to how long a
given step will take. Only one deadline will be implemented. This deadline is for the final
milestone, booting into a multiuser prompt. This deadline will be set to the 25th of
September.

I will start my project in Cupertino, California on the 6th of July and will be working in 2
Infinite Loop, on the 4th floor until the 25th of September. There will be bi-weekly
meetings with the team, allowing for status updates and discussing further steps.

Introduction

Darwin is the combination of the XNU kernel, based on the Mach microkernel, and the
accompanying userland. Darwin is in use on both the desktop operating system
MacOSX, as well as the embedded iPhone OS. With this in mind, it makes sense for
any new platform to use Darwin as well, as this focusses all engineering effort on
maintaining and improving Darwin, rather than spreading the effort out over several
operating systems and thus diluting the effectiveness.

The intent of this project is to port Darwin to the MV88F6281 processor, and allowing it
to be blessed with the multitude of network protocols and applications already
developed for the Darwin operating environment. In the process of porting Darwin,
several design decision will have to be made on the fly, making the planning a slightly
volatile and dynamic one. Bi-weekly meetings with the project members and
management will resolve any issues that arise, and further planning will be decided
based on these issues.

Even though the planning might be fairly volatile, a few milestones will be decided upon,
allowing me to measure my progress through the project.

Contract

Project goal

The goal of this project is to port Darwin to the MV88F6281. The expected outcome of
this project is a fully working multi-user environment on the target hardware, allowing for
further development of the target hardware.

Requirements

The port of Darwin must be developed in the MacOSX development environment, using
the currently unreleased SnowLeopard operating system. All development will be done
in C, or ARM assembly and debugging will be performed with in-house tools.

Darwin must boot entirely to the multi-user prompt, however it is not necessary to have
complete hardware support. Drivers will be developed at a later stage in the project.

Planning

As mentioned earlier, the planning of this project is by no means a simple task. Because
deciding the best course of action depends on the intermediary results and a fixed
planning does not fit within the philosophy of the Platform Support Group. I decided to
go with the development method as it exists within the Platform Support Group, which is
to break the project up into several milestones, and give a rough estimate as to how
long each milestone will take. This allows for a certain amount of stretch in your
planning, as embedded development is unlike normal development. Problems present
themselves in a multitude of ways, and because you are often working with prototype
hardware, it is unclear whether the issue is hardware, software or a combination of both.

Three major milestones exist within the project:

1. Getting the XNU kernel, needed kernel extensions, and userland into a buildable
state.

2. Being able to boot Darwin into a single user mode
3. Being able to boot Darwin into a multi user mode

Achieving the first milestone should be reachable within 3 weeks, the second milestone
will take about 4 weeks, and the final milestone should take about 3 weeks again. This
leaves about 2 weeks of leeway to account for the inevitable problems I will encounter.

Quality assurance

Progress shall be evaluated at the bi-weekly meetings.

