

Delft University of Technology

Exploiting symmetries in optimal quantum circuit design

de Meijer, Frank; Gijswijt, Dion; Sotirov, Renata

DOI
10.1016/j.disopt.2025.100925
Licence
CC BY
Publication date
2026
Document Version
Final published version
Published in
Discrete Optimization

Citation (APA)
de Meijer, F., Gijswijt, D., & Sotirov, R. (2026). Exploiting symmetries in optimal quantum circuit design.
Discrete Optimization, 59, Article 100925. https://doi.org/10.1016/j.disopt.2025.100925

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.disopt.2025.100925
https://doi.org/10.1016/j.disopt.2025.100925

E
F
a

b

A

K
Q
N
S
C
F
G

1

p
u
w
q
a
a
e
a

o
n
t
q

h
R

Discrete Optimization 59 (2026) 100925

A
1
(

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

xploiting symmetries in optimal quantum circuit design
rank de Meijer a ,∗, Dion Gijswijt a , Renata Sotirov b
Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
CentER, Department of Econometrics and OR, Tilburg University, The Netherlands

 R T I C L E I N F O

eywords:
uantum computing
earest neighbour constraints
ymmetry reduction
ayley graphs
ixed point subspace
eneralized network flow problem

 A B S T R A C T

A physical limitation in quantum circuit design is the fact that gates in a quantum system can
only act on qubits that are physically adjacent in the architecture. To overcome this problem,
SWAP gates need to be inserted to make the circuit physically realizable. The nearest neighbour
compliance problem (NNCP) asks for an optimal embedding of qubits in a given architecture
such that the total number of SWAP gates to be inserted is minimized. In this paper we study
the NNCP on general quantum architectures. Building upon an existing linear programming
formulation, we show how the model can be reduced by exploiting the symmetries of the graph
underlying the formulation. The resulting model is equivalent to a generalized network flow
problem and follows from an in-depth analysis of the automorphism group of specific Cayley
graphs. As a byproduct of our approach, we show that the NNCP is polynomial time solvable
for several classes of symmetric quantum architectures. Numerical tests on various architectures
indicate that the reduction in the number of variables and constraints is on average at least 90%.
In particular, NNCP instances on the star architecture can be solved for quantum circuits up
to 100 qubits and more than 1000 quantum gates within a very short computation time.
These results are far beyond the computational capacity when solving the instances without
the exploitation of symmetries.

. Introduction

The most commonly used model for quantum computation is that of the gated quantum computer, where a calculation is
erformed by executing so-called quantum circuits. A quantum circuit acts on multiple quantum bits, i.e., qubits, which are logical
nits of operation. Whereas classical bits exclusively take the Boolean values zero or one, qubits can be in a superposition state,
hich upon measurement are displayed as zero or one with a certain probability. A quantum circuit sequentially acts on the
ubits via quantum gates, which are unitary transformations that sequentially adjust the state of one or more qubits to perform
n operation. Quantum circuits extend on the gate model for classical computing, and hence, a quantum computer can perform
ny computation that a classical computer can perform [1]. However, based on quantum phenomena such as superposition and
ntanglement, a quantum system is able to perform a much broader spectrum of operations. For an extensive overview of the
dvances and applications of quantum computing, see e.g., [2].
Although there do exist quantum hardwares that act on more than two qubits simultaneously [3], many physical implementations

f quantum gates operate on only one or two qubits at a time [1,4,5]. In this setting, gates that act on more than two qubits therefore
eed to be realized as a sequence of gates of size at most two, which, fortunately, is possible for any quantum gate [1]. For instance,
he set of one-qubit gates and two-qubit controlled-NOT gates is universal [6], meaning that this set is sufficient to perform any
uantum computation.

∗ Corresponding author.
E-mail addresses: f.j.j.demeijer@tudelft.nl (F. de Meijer), d.c.gijswijt@tudelft.nl (D. Gijswijt), r.sotirov@uvt.nl (R. Sotirov).
ttps://doi.org/10.1016/j.disopt.2025.100925
eceived 30 July 2024; Received in revised form 9 December 2025; Accepted 10 December 2025
vailable online 16 December 2025
572-5286/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
 http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/disopt
https://www.elsevier.com/locate/disopt
https://orcid.org/0000-0002-1910-0699
https://orcid.org/0000-0003-0734-4511
https://orcid.org/0000-0002-3298-7255
mailto:f.j.j.demeijer@tudelft.nl
mailto:d.c.gijswijt@tudelft.nl
mailto:r.sotirov@uvt.nl
https://doi.org/10.1016/j.disopt.2025.100925
https://doi.org/10.1016/j.disopt.2025.100925
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2025.100925&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
The qubits in a quantum system are physically embedded in a certain design, i.e., the quantum architecture. This architecture
is commonly represented as a coupling graph, where the vertices represent the qubits and an edge is drawn between two qubits
whenever the qubits can communicate in the quantum system. With ‘‘communicate’’, we refer to the possibility to apply a gate to the
two qubits and consequently affect their simultaneous state. Among the special coupling graphs considered in the literature are the
linear array, see e.g., [7–11], the two-dimensional grid, see e.g., [12–14], the three-dimensional grid [15], the IBM QX architecture,
see e.g., [16], but also general coupling graphs [17–22].

A physical limitation of the architecture is that two-qubit gates can only be applied when the qubits are physically adjacent to
each other in the coupling graph. These restrictions are known as nearest neighbour constraints and have been subject of interest
in the design of quantum realizations of specific circuits, see e.g., [23], or the design of quantum architectures itself, see [11] and
the references therein. Instead of research on quantum realizations that comply with the nearest neighbour constraints, we can also
disregard these constraints at first and alter existing quantum circuits to make them feasible, which will be the followed approach
in this paper.

A quantum circuit can be made compliant with respect to the nearest neighbour constraints by the insertion of SWAP gates. A
SWAP gate acts on two adjacent qubits by interchanging their location in the coupling graph.1 If the coupling graph is connected,
any quantum circuit can be made compliant by the insertion of a finite number of SWAP gates and there are often many ways to do
so. However, due to a qubit’s interaction with its environment [24], quantum systems currently still suffer from physical instability
of qubit states after some period of time. This raises the desire for quantum circuits with as few gates as possible. We therefore
prefer to add the minimum number of SWAP gates in order to make a circuit compliant.

Given a quantum circuit and a coupling graph, the nearest neighbour compliance problem (NNCP) asks for an optimal sequential
allocation of the qubits over the quantum architecture such that the total number of SWAP gates to be inserted is minimized. With
‘‘sequential’’, we refer to the decision variables to not only concern the initial allocation, but also the actual SWAP operations that
take place over time. The NNCP was proven to be -hard via a reduction from the token swapping problem [18].

Most research on the NNCP has been on heuristic methods, such as greedy methods [9,12], harmony search [12], optimal linear
arrangement [25] and receding horizon methods [9,10,26,27]. Exact approaches to tackle the NNCP include exhaustive search [9,
28], explicit cost enumeration [29] and linear programming (LP) based methods on the adjacent transposition graph [30,31].
All these methods embrace an implicit factorial scaling in the number of qubits, due to the inherited total number of possible
assignments of the qubits. Recently, also polynomial sized models have been considered that are based on mixed-integer linear
programming [11,32]. The construction considered in [11] is based on the linear array coupling graph, while the models in [32]
consider ordering problems for distributed quantum computing. An integer programming approach for a very related, but slightly
more general problem called the qubit routing problem, has been considered in [33]. Other research focuses on a related version
of the NNCP, where an initial qubit ordering has to be realized that minimizes the (approximated) number of SWAP operations,
without actually considering the exact insertions into the quantum circuit, see [34–36].

Building upon the shortest path formulation considered in [30,31], a main feature of our approach concerns the exploitation of
symmetries in the model. The literature on symmetry reduction methods in mathematical optimization is extensive, and we refer
the reader to [37,38] for comprehensive overviews in this direction. It is well-known that symmetries in integer linear programming
(ILP) problems lead to poor behaviour of numerical algorithms, due to the costly duplication of computational effort in branching
approaches. To reduce this negative effect, symmetries need to be broken, e.g., by perturbation, symmetry-breaking inequalities
(e.g., [39]) or specialized branching techniques (e.g., [40]). The literature on symmetry reduction for integer linear programs (ILPs)
can be distinguished between problem-based approaches, whose symmetry groups are known a priori (see e.g., [41]), or generic
techniques. The latter class on one hand contains methods based on branching tree reductions, such as isomorphism pruning [42,43]
and orbital branching [44]. Alternative methods mainly consider symmetry-handling constraints to restrict the feasible region
of an optimization problem by eliminating symmetric solutions. Two well-known streams in this direction are the utilization of
orbitopes [45] and fundamental domains [46]. Branching tree reductions and symmetry-handling constraints can also be combined,
see e.g., [47].

When considering symmetry reduction methods for linear programs, a major research line considers the study of symmetric
polyhedra, see [38, Section 6] and the references therein. Another research line considers the exploitation of symmetries in the
simplex algorithm [48,49]. Bödi et al. [50] consider the exploitation of symmetries in linear programs by restricting to the subspace
of fixed points under a linear map induced by the symmetries in the program. This approach can be generalized to convex programs
and is closely related to the invariant-based symmetry reduction approaches applied to conic and semidefinite programs, see
e.g., Gatermann and Parrilo [51], to which our reduction method also belongs.

Main results and outline

In this paper we consider the nearest neighbour compliance problem on general coupling graphs. Following the linear
programming (LP) formulation derived in [30], we analyse the group symmetry of the underlying graph, which is a sequence
of connected Cayley graphs. By exploiting these symmetries, we reduce the LP model in the number of variables and constraints,
leading to a symmetry-reduced formulation for solving the NNCP. We show the theoretical and practical strength of our approach

1 Strictly speaking, a SWAP gate does only interchange the state of the involved qubits, while the actual hardware entities remain unchanged in the architecture.
2

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
for several classes of symmetric coupling graphs for which the reduction is most significant, namely the graphs that embrace a large
automorphism group.

The LP formulation of [30] can be viewed as a single-pair shortest path problem on a directed graph that we refer to as the
graph 𝑋 = (𝑉 ,𝐴). The graph 𝑋 is composed of layers. As a first step in our approach, we consider the automorphism group of the
subgraphs of 𝑋 induced by each layer. Each subgraph is a Cayley graph of the symmetric group S𝑛 generated by the edges in the
coupling graph of the quantum architecture. We derive the full automorphism group of such Cayley graphs, after which we extend
these automorphism results to derive the automorphism group 𝐺𝑋 of 𝑋. We also study the orbit and orbital structure of the group
action of 𝐺𝑋 on 𝑋. The results on the group structure of these Cayley graphs are in itself interesting, as such graphs are of main
importance in interconnection networks [52,53].

By averaging over each orbital of the action of 𝐺𝑋 on 𝑋 via the Reynolds operator, we show how the LP formulation can be
reduced following the approach of [50]. We show that the resulting reduced LP formulation is equivalent to a generalized network
flow problem on an auxiliary graph following from our construction. For symmetric coupling graphs, this reduced LP formulation
is significantly smaller in size. As a byproduct of our approach, we show that the NNCP is polynomial time solvable for coupling
graph whose automorphism group scales factorially in the number of qubits, e.g., the star graph or complete bipartite graphs with
one of the sizes fixed. The construction of the reduced LP formulation follows completely from the algebraic analysis of 𝑋 and does
not rely on the use of any external algebraic software.

Although the ingredients of our approach are presented generally, we explicitly show how the reduced LP can be constructed
for three special graph types: the cycle graph, the star graph and the biclique graph. For each of these classes, we show how the
orbital structure unfolds by analysing a specific subgroup of the automorphism group of the coupling graphs.

Finally, we test our symmetry-reduced formulation on real and randomly generated quantum circuits defined on the above-
mentioned coupling graphs. Our numerical tests confirm that the effort spent in the algebraic analysis pays off, as computation
times to solve an instance are several orders of magnitude smaller compared to the nonreduced model. Whereas the model from [30]
can only solve instances up to 8 qubits, the largest instances we solve contain up to 100 (resp. 40) qubits and several hundreds
of quantum gates on the star (resp. biclique) coupling graph. Observe that such instances are far out of reach for the nonreduced
model, as this would require the use of at least 100! ≈ 9.33 ⋅ 10157 constraints and even more variables.

This paper is structured as follows. Section 2 formally introduces the NNCP and reviews the shortest path formulation of [30].
In Section 3 we analyse the automorphism group of the graph underlying the formulation, as well as its orbit and orbital structure.
These algebraic properties are exploited in Section 4, where we present our symmetry-reduced NNCP formulation. In Section 5 we
apply our approach to several specific types of coupling graphs. Computational results are discussed in Section 6.

Notation

A directed graph is given by a pair (𝑉 ,𝐴), where 𝑉 is a vertex set and 𝐴 ⊆ 𝑉 ×𝑉 an arc set. For 𝑖 ∈ 𝑉 and 𝐴′ ⊆ 𝐴, we let 𝛿+(𝑖, 𝐴′)
(resp. 𝛿−(𝑖, 𝐴′)) denote the set of arcs in 𝐴′ that leave (resp. enter) vertex 𝑖. In case 𝐴′ = 𝐴, we just write 𝛿+(𝑖) (resp. 𝛿−(𝑖)). An
undirected graph is given by a pair (𝑉 ,𝐸), where 𝑉 is a vertex set and 𝐸 ⊆ 𝑉 (2) is an edge set, where 𝑉 (2) consists of all two-element
subsets of 𝑉 .

The set of integers {1,… , 𝑘} is denoted by [𝑘]. For a subset 𝑆 of a finite set 𝑇 , we denote by 1𝑆 ∈ {0,1}𝑇 the indicator vector
of 𝑆 in 𝑇 .

For a group 𝐺, we denote by id𝐺 (or simply id) its identity element. When 𝐺 acts on a set 𝑋, we denote by Orb(𝑥) ∶= {𝑔(𝑥) ∶
𝑔 ∈ 𝐺} ⊆ 𝑋 the orbit of 𝑥 ∈ 𝑋 under the action of 𝐺. The set of orbits of 𝑋 under 𝐺 is denoted by the quotient 𝑋∕𝐺. For any 𝑔 ∈ 𝐺,
we let 𝑋𝑔 ∶= {𝑥 ∶ 𝑔(𝑥) = 𝑥} be the set of fixed points of 𝑔.

The symmetric group on a finite set 𝑌 is denoted by Sym(𝑌). When 𝑌 = [𝑛], its symmetric group is shortened to S𝑛. A permutation
𝜏 ∈ S𝑛 can be written in one-line notation, i.e., as an ordered array (𝜏(1), 𝜏(2),… , 𝜏(𝑛)) of images of {1,… , 𝑛} under 𝜏. Alternatively,
𝜏 can be written in the usual cycle notation of permutations. Permutations that only consist of a 2-cycle are called transpositions.
For 𝑆 ⊆ [𝑛] and 𝜏 ∈ S𝑛, we define the sets 𝜏(𝑆) ∶= {𝜏(𝑠) ∶ 𝑠 ∈ 𝑆} and 𝜏−1(𝑆) ∶= {𝜏−1(𝑠) ∶ 𝑠 ∈ 𝑆}. Moreover, we let
S𝑛(𝑆) ∶= {𝜏 ∈ S𝑛 ∶ 𝜏(𝑆) = 𝑆} denote the setwise stabilizer of 𝑆 under S𝑛.

2. Nearest neighbour compliance problem

A given quantum circuit can be made feasible with respect to the adjacent interaction constraints by inserting SWAP gates.
Although these do not interfere with the functionality of the quantum circuit, the total number of gates is favoured to be as small
as possible for several reasons. Executing a quantum gate is often computationally expensive and introduces some error due to
environmental noise [54]. Moreover, it is well-known that qubits have a limited coherence time, inducing the need for quantum
circuit of small depth. The nearest neighbour compliance problem (NNCP) aims at finding an embedding of the qubits over a given
architecture such that the number of SWAP gates needed to make the final circuit feasible with respect to the adjacent interaction
constraints is minimized.

In this section we formally introduce the nearest neighbour compliance problem as a shortest path problem.
3

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
2.1. Mathematical formulation of the NNCP

We make two model assumptions about the quantum circuits under consideration. First, quantum gates that act on a single
qubit always comply with the adjacent interaction constraints and are therefore not taken into consideration. Second, it only makes
sense to talk about adjacency in the context of two-qubit quantum gates. If a quantum gate acts on more than two qubits, we first
decompose it into two-qubit gates. This is always possible [1] and there exist a large variety of ways for doing this. Throughout this
paper, we assume without loss of generality that quantum circuits consist of a sequence of two-qubit gates.

Let 𝑄 = {𝑞1, 𝑞2,… , 𝑞𝑛} denote the set of qubits of the quantum system. The qubits need to be embedded in a certain topology,
that we refer to as the architecture of the quantum system. This architecture is fixed and can be modelled as a graph (𝐿,𝐸). Here
𝐿 = [𝑛] denotes a set of physical locations and 𝐸 ⊆ 𝐿(2) is the adjacency structure of the architecture. That is, if {𝑖, 𝑗} ∈ 𝐸, then
locations 𝑖 and 𝑗 are physically adjacent to each another and can therefore directly share information. The graph is denoted as the
coupling graph of the quantum system and denoted by Coup(𝐸) ∶= (𝐿,𝐸). We assume that (𝐿,𝐸) is connected, which implies that
all pairs of locations can indirectly share information.

Each qubit in 𝑄 needs to be assigned to a physical location in 𝐿. A bijection 𝜏 ∶ 𝐿 → 𝑄 is called a qubit order. To present a
qubit order, we use one-line notation with respect to the images in 𝑄. For example, the order

𝜏 = (𝜏(1), 𝜏(2), 𝜏(3), 𝜏(4)) = (𝑞2, 𝑞3, 𝑞1, 𝑞4)

corresponds to the assignment where qubit 𝑞2 is on location 1, qubit 𝑞3 on location 2, qubit 𝑞1 on location 3 and qubit 𝑞4 on
location 4. The set of all qubit orders on 𝑛 qubits is equal to S𝑛.

A SWAP gate interchanges the qubits on two locations in the embedding. It can also be modelled as an element 𝜎 ∈ S𝑛, where 𝜎
is a transposition. Using cycle notation, the SWAP gate 𝜎 = (𝑖 𝑗) applied to the qubit order 𝜏 interchanges the qubits 𝜏(𝑖) and 𝜏(𝑗).
Applying this SWAP gate can be seen as a right action of 𝜎 on S𝑛, i.e.,

𝜏 ◦ 𝜎 = (𝜏(1), 𝜏(2),… , 𝜏(𝑖),… , 𝜏(𝑗),… , 𝜏(𝑛)) ◦ (𝑖 𝑗)
= (𝜏(1), 𝜏(2),… , 𝜏(𝑗),… , 𝜏(𝑖),… , 𝜏(𝑛)),

for all 𝜏 ∈ S𝑛. To simplify notation, we omit the ◦ in group actions and just write 𝜏𝜎 in the sequel.

Remark 2.1. Although both elements of S𝑛, 𝜏 represents a qubit order, while 𝜎 represents a SWAP gate. To discriminate between
these objects, we always use one-line notation for qubit orders and cycle notation for SWAP gates throughout the paper.

A SWAP gate can only be applied to qubits on locations that are adjacent in Coup(𝐸). Whenever there is an edge {𝑖, 𝑗} ∈ 𝐸, the
SWAP gate (𝑖 𝑗) acts on adjacent locations. Let

𝑇 ∶=
{

(𝑖 𝑗) ∈ S𝑛 ∶ {𝑖, 𝑗} ∈ 𝐸
}

(1)

denote the set of transpositions that correspond to a feasible SWAP gate in the quantum system.
Given two qubit orders 𝜏1, 𝜏2 ∈ S𝑛, we are interested in the minimum number of SWAP gates that need to be applied to 𝜏1 to

obtain 𝜏2 by only using SWAP gates from 𝑇 . Let 𝐽𝑇 ∶ S𝑛 × S𝑛 → Z+ be defined as
𝐽𝑇 (𝜏1, 𝜏2) ∶= min{𝑘 ∶ 𝜏2 = 𝜏1𝜎1𝜎2… 𝜎𝑘, 𝜎1,… , 𝜎𝑘 ∈ 𝑇 }, (2)

which forms a metric on all qubit orders and depends on the quantum architecture 𝑇 . Observe that this metric is left-invariant,
i.e., 𝐽𝑇 (𝜏1, 𝜏2) = 𝐽𝑇 (𝜋𝜏1, 𝜋𝜏2) for all 𝜋 ∈ S𝑛, implying that 𝐽𝑇 (𝜏1, 𝜏2) equals the length of the shortest sequence of transpositions of
𝑇 needed to generate 𝜏−12 𝜏1. It is known that finding such minimum-length sequence is in general 𝑃𝑆𝑃𝐴𝐶𝐸-complete [55]. For
special types of coupling graphs, however, the metric 𝐽𝑇 is computationally tractable, e.g., when Coup(𝐸) is a path or the complete
graph. For these cases, 𝐽𝑇 coincides with the Kendall tau distance and the Cayley distance, respectively.

Let 𝑞1, 𝑞2 ∈ 𝑄 be two qubits such that 𝑞1 ≠ 𝑞2. Then the unordered pair 𝑔𝑞1𝑞2 = {𝑞1, 𝑞2} is a two-qubit quantum gate that acts
on qubits 𝑞1 and 𝑞2. Whenever the specific qubits on which the gate acts are irrelevant, we sometimes omit the subscripts. A finite
sequence 𝐶 = (𝑔1,… , 𝑔𝑚) of gates 𝑔1,… , 𝑔𝑚 is called a gate sequence of size 𝑚. Given a set of qubits 𝑄 and a gate sequence 𝐶, the
tuple 𝛤 = (𝑄,𝐶) is called a quantum circuit.

We say that a qubit order 𝜏 complies with a gate 𝑔𝑞1𝑞2 if qubits 𝑞1 and 𝑞2 are adjacent in 𝜏 with respect to the coupling graph
Coup(𝐸), i.e., if 𝜏−1(𝑔𝑞1𝑞2) = {𝜏−1(𝑞1), 𝜏−1(𝑞2)} ∈ 𝐸. We now formulate the NNCP.

Definition 2.2 (NNCP). Let 𝛤 = (𝑄,𝐶) be a quantum circuit with 𝑛 qubits and 𝑚 gates, and let Coup(𝐸) = (𝐿,𝐸) be the coupling
graph of the underlying architecture. Then, the nearest neighbour compliance problem asks for a sequence of qubit orders 𝜏𝑘,
𝑘 ∈ [𝑚], each one corresponding to an order prior to applying a gate of 𝐶, such that ∑𝑚−1

𝑘=1 𝐽𝑇 (𝜏
𝑘, 𝜏𝑘+1) is minimized and such that

𝜏𝑘 complies with 𝑔𝑘 for all 𝑘 ∈ [𝑚].

The NNCP as presented in Definition 2.2 is known to be -hard in general [18].
We end this section by introducing the notion of the so-called gate graph, which captures the underlying qubit dependencies

imposed by the gates in the circuit.

Definition 2.3. Let 𝛤 = (𝑄,𝐶) be a quantum circuit. The gate graph (𝑄,𝑈) is an undirected graph that has vertex set 𝑄 and edge
set 𝑈 = {𝑔 ∶ 𝑔 ∈ 𝐶}.

The gate graph (𝑄,𝑈) will be exploited in Section 3.2.
4

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
2.2. The NNCP as a shortest path problem

In this section we show how the NNCP can be modelled as a shortest path problem in a directed graph following the construction
of [30,31].

Let an instance of the NNCP as defined in Section 2.1 be given. Of key importance in the reduction to a shortest problem is the
notion of a Cayley graph.

Definition 2.4 (Cayley Graph). Let 𝐺 be a finite group and let 𝑆 be a subset of 𝐺 such that id𝐺 ∉ 𝑆 and 𝑆 = 𝑆−1 ∶= {𝑠−1 ∶ 𝑠 ∈ 𝑆}.
The Cayley graph Cay(𝐺,𝑆) on 𝐺 with respect to 𝑆 is defined as the (directed) graph with vertex set 𝐺 and arc set {(𝑔, 𝑔𝑠) ∶ 𝑔 ∈
𝐺, 𝑠 ∈ 𝑆}.

Observe that Cay(𝐺,𝑆) as in Definition 2.4 contains an arc if and only if it also contains the reversed arc. Although this suggests
that any Cay(𝐺,𝑆) is undirected, we stick to the setting of two reversed directed arcs, since we will employ the Cayley graphs as
subgraphs of a larger directed graph.

Let 𝐻 ∶= Cay(S𝑛, 𝑇), where 𝑇 is given by (1). More precisely, the vertex and arc set of 𝐻 are given by 𝑉 (𝐻) ∶= S𝑛 and
𝐴(𝐻) ∶=

{

(𝜏, 𝜏𝜎) ∶ 𝜏 ∈ S𝑛, 𝜎 ∈ 𝑇
}

, respectively. Each vertex in 𝑉 (𝐻) represents a qubit order, while an arc in 𝐴(𝐻) represents a
SWAP gate that translates a qubit order into another qubit order with respect to the coupling graph. Now, we define the subgraphs
𝐻𝑘 for 𝑘 ∈ [𝑚] as disjoint copies of 𝐻 , one for each gate in the circuit.

The 𝑚 subgraphs 𝐻𝑘 are merged to obtain a graph 𝑋 = (𝑉 ,𝐴). The vertex set 𝑉 of 𝑋 consists of the union of all 𝑉 𝑘, 𝑘 ∈ [𝑚], as
well as a source 𝑠 and sink 𝑡, i.e., 𝑉 = {𝑠} ∪ 𝑉 1 ∪⋯ ∪ 𝑉 𝑚 ∪ {𝑡}. Since the subgraphs 𝐻1,… ,𝐻𝑚 are identical, we use superscripts to
indicate to which subgraph a vertex belongs. For example, 𝜏𝑘 and 𝜏𝑘+1 correspond to the same qubit order in subgraph 𝑘 and 𝑘+1,
respectively.

The arc set 𝐴 of 𝑋 contains the union of all 𝐴𝑘, 𝑘 ∈ [𝑚]. Moreover, the arcs between different subgraphs are introduced by the
following sets:

𝐷0 ∶= {(𝑠, 𝜏1) ∶ 𝜏1 ∈ 𝑉 1}

𝐷𝑘 ∶= {(𝜏𝑘, 𝜏𝑘+1) ∶ 𝜏𝑘 ∈ 𝑉 𝑘, 𝜏𝑘+1 ∈ 𝑉 𝑘+1, (𝜏𝑘)−1(𝑔𝑘) ∈ 𝐸}, 𝑘 ∈ [𝑚 − 1]
𝐷𝑚 ∶= {(𝜏𝑚, 𝑡) ∶ 𝜏𝑚 ∈ 𝑉 𝑚, (𝜏𝑚)−1(𝑔𝑚) ∈ 𝐸}.

(3)

These sets can be interpreted as follows. The set 𝐷0 contains an arc from 𝑠 to all nodes in 𝐻1. For all 𝑘 ∈ [𝑚 − 1], 𝐷𝑘 contains
the connecting arcs from 𝐻𝑘 to 𝐻𝑘+1. Suppose the gate 𝑔𝑘 acts on qubits 𝑞1 and 𝑞2. Then we include an arc from a qubit
order 𝜏𝑘 in 𝐻𝑘 to the same qubit order 𝜏𝑘+1 in 𝐻𝑘+1 if and only if 𝑞1 and 𝑞2 are adjacent in 𝜏𝑘 with respect to Coup(𝐸). That
is, whenever (𝜏𝑘)−1(𝑔𝑘) = {(𝜏𝑘)−1(𝑞1), (𝜏𝑘)−1(𝑞2)} ∈ 𝐸. Similarly, 𝐷𝑚 contains all arcs from 𝜏𝑚 with this property to the sink node 𝑡.
Now, the arc set 𝐴 of 𝑋 is given by

𝐴 = 𝐴1 ∪⋯ ∪ 𝐴𝑚 ∪𝐷0 ∪𝐷1 ∪⋯ ∪𝐷𝑚.

We set the cost of each arc in 𝐴𝑘, 𝑘 ∈ [𝑚], equal to one, as traversing these arcs corresponds to applying one SWAP gate. The cost
of the arcs in 𝐷𝑘, 𝑘 = 0,… , 𝑚, is equal to zero, as no SWAP gates are applied when moving from a subgraph to the next.

This construction implies the following result.

Theorem 2.5 ([31]). Any (𝑠, 𝑡)-path in 𝑋 induces a sequence (𝜏1,… , 𝜏𝑚) of qubit orders that all comply with the adjacent interaction
constraints. A shortest (𝑠, 𝑡)-path in 𝑋 corresponds to an optimal solution of the NNCP.

There are many algorithms in the literature for solving the shortest path instance, e.g., Dijkstra’s algorithm with Fibonacci
heaps [56]. Alternatively, we can solve it as a linear programming (LP) problem. For all 𝑘 ∈ [𝑚] and 𝑒 ∈ 𝐴𝑘, let 𝑥𝑒 denote a variable
that is one if arc 𝑒 is used on a path, and zero otherwise. Similarly, for all 𝑘 ∈ {0} ∪ [𝑚] and 𝑒 ∈ 𝐷𝑘, let 𝑦𝑒 denote a variable that is
one if arc 𝑒 is used on a path, and zero otherwise. Then the shortest (𝑠, 𝑡)-path in 𝑋 can be found by solving the following LP:

min
𝑚
∑

𝑘=1

∑

𝑒∈𝐴𝑘
𝑥𝑒

s.t.
∑

𝑒∈𝐷0
𝑦𝑒 = 1,

∑

𝑒∈𝐷𝑚
𝑦𝑒 = 1

∑

𝑒∈𝛿−(𝜏,𝐷𝑘−1)

𝑦𝑒 +
∑

𝑒∈𝛿−(𝜏,𝐴𝑘)

𝑥𝑒 =
∑

𝑒∈𝛿+(𝜏,𝐷𝑘)

𝑦𝑒 +
∑

𝑒∈𝛿+(𝜏,𝐴𝑘)

𝑥𝑒 ∀𝜏 ∈ 𝑉 𝑘, 𝑘 ∈ [𝑚]

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐴𝑘, 𝑘 ∈ [𝑚],

0 ≤ 𝑦𝑒 ≤ 1 ∀𝑒 ∈ 𝐷𝑘, 𝑘 ∈ {0} ∪ [𝑚].

(SPP)

3. Symmetries in 𝑿 = (𝑽 ,𝑨)

The graph 𝑋 constructed in Section 2.2 contains 𝛩(𝑚𝑛!) vertices and 𝛩(|𝐸|𝑚𝑛!) arcs. The bottleneck in solving the NNCP to
optimality is clearly the factorial scaling in the number of qubits. Fortunately, for many structured quantum system architectures, the
5

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
problem can be reduced by exploiting the symmetries in 𝑋. In this section we study these symmetries in terms of the automorphism
group of 𝑋.

In Sections 3.1 and 3.2 we study the automorphism group of Cayley graphs generated by transpositions and the automorphism
group of 𝑋, respectively. In Section 3.3 we study the orbit and orbital structure induced by this group action on 𝑋. The results in
this section are the key ingredients of the symmetry reduction explained in Section 4.

3.1. Automorphism group of Aut(Cay(S𝑛, 𝑇))

For a directed graph 𝑋 with vertex set 𝑉 and arc set 𝐴, a permutation 𝜌 ∈ Sym(𝑉) is called an automorphism of 𝑋 if (𝜌(𝑖), 𝜌(𝑗)) ∈ 𝐴
if and only if (𝑖, 𝑗) ∈ 𝐴. We also say that such 𝜌 acts on 𝑋. The automorphism group of 𝑋 is the group of all automorphisms of 𝑋
and is denoted by Aut(𝑋).

In order to determine the automorphism group of the graph 𝑋 introduced in Section 2.2, we start by considering the
automorphism group of the subgraphs 𝐻𝑘, 𝑘 ∈ [𝑚]. Recall that all 𝐻𝑘 are identical and equal to Cay(S𝑛, 𝑇), where 𝑇 is a set
of transpositions, see (1). Hence, the goal of this subsection is to study Aut(Cay(S𝑛, 𝑇)).

There exist several works in the literature on the automorphism group of Cayley graphs generated by transpositions. As indicated
by Feng [57], we can show that S𝑛 acts on Cay(S𝑛, 𝑇) by left multiplication. That is, for any 𝑎 ∈ S𝑛 the mapping 𝜏 ↦ 𝑎𝜏 defines
an automorphism of Cay(S𝑛, 𝑇). All such automorphisms form a subgroup of Aut(Cay(S𝑛, 𝑇)). We can also show that the group
Aut(Coup(𝐸)) acts on Cay(S𝑛, 𝑇) by right multiplication via the mapping 𝜏 ↦ 𝜏𝑏−1, which is an automorphism of Cay(S𝑛, 𝑇) for all
𝑏 ∈ Aut(Coup(𝐸)). To verify this, let (𝜏1, 𝜏2) be an arc in Cay(S𝑛, 𝑇). Then 𝜏2 = 𝜏1𝜎1 for some 𝜎1 ∈ 𝑇 . The image of this arc under
the action of an element 𝑏 ∈ Aut(Coup(𝐸)) is

(𝜏1𝑏−1, 𝜏2𝑏−1) = (𝜏1𝑏−1, 𝜏1𝜎1𝑏−1) = (𝜏1𝑏−1, 𝜏1𝑏−1𝑏𝜎1𝑏−1).

It is well-known that if a permutation maps 𝑖 to 𝑗, then the conjugate of this permutation by 𝑏 maps 𝑏(𝑖) to 𝑏(𝑗). Therefore, if
𝜎1 = (𝑖 𝑗), then 𝜎2 ∶= 𝑏𝜎1𝑏−1 = (𝑏(𝑖) 𝑏(𝑗)). Since 𝑏 is an automorphism of Coup(𝐸), 𝜎2 ∈ 𝑇 , which implies that (𝜏1𝑏−1, 𝜏2𝑏−1) is again
an arc of Cay(S𝑛, 𝑇). Since 𝜏 ↦ 𝜏𝑏−1 is bijective, it follows that Aut(Coup(𝐸)) indeed acts on Cay(S𝑛, 𝑇) by right multiplication.

We now show how both group actions are combined in order to obtain a subgroup of Aut(Cay(S𝑛, 𝑇)). Let us define the mapping
𝜃 ∶ S𝑛 × Aut(Coup(𝐸)) → Aut(Cay(S𝑛, 𝑇)) given by

𝜃(𝑎, 𝑏) ∶= (𝜏 ↦ 𝑎𝜏𝑏−1). (4)

Indeed, 𝜃(𝑎, 𝑏) is the composition of an action by left multiplication by an element 𝑎 ∈ S𝑛 and a right multiplication by an element
𝑏 ∈ Aut(Coup(𝐸)) (in arbitrary order). So, for all (𝑎, 𝑏) in its domain, 𝜃(𝑎, 𝑏) is indeed an automorphism of Cay(S𝑛, 𝑇). We can show
that the map 𝜃 is a group homomorphism that is injective.

Theorem 3.1. For 𝑛 ≥ 3, the mapping 𝜃 is a group homomorphism from S𝑛 × Aut(Coup(𝐸)) to Aut(Cay(S𝑛, 𝑇)) that is injective.

Proof. We start by showing that 𝜃 is indeed a group homomorphism. Let (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ S𝑛 × Aut(Coup(𝐸)). Then, for all 𝜏 ∈ S𝑛:

𝜃
(

(𝑎1, 𝑏1)(𝑎2, 𝑏2)
)

(𝜏) = 𝜃
(

(𝑎1𝑎2, 𝑏1𝑏2)
)

(𝜏) = 𝑎1𝑎2𝜏(𝑏1𝑏2)−1 = 𝑎1𝑎2𝜏𝑏
−1
2 𝑏−11

𝜃((𝑎1, 𝑏1))𝜃((𝑎2, 𝑏2))(𝜏) = 𝜃(𝑎1, 𝑏1)(𝑎2𝜏𝑏−12) = 𝑎1𝑎2𝜏𝑏
−1
2 𝑏−11 .

Hence, 𝜃 is a group homomorphism. To prove injectivity, assume that (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ S𝑛 ×Aut(Coup(𝐸)) are such that 𝜃((𝑎1, 𝑏1)) =
𝜃((𝑎2, 𝑏2)). Then, 𝑎1𝜏𝑏−11 = 𝑎2𝜏𝑏−12 for all 𝜏 ∈ S𝑛. In particular, this must hold for 𝜏 = id, from which it follows that 𝑎1𝑏−11 = 𝑎2𝑏−12 ,
and hence, 𝑎2 = 𝑎1𝑏−11 𝑏2. Substituting this into 𝑎1𝜏𝑏−11 = 𝑎2𝜏𝑏−12 , yields

𝑎1𝜏𝑏
−1
1 = 𝑎1𝑏

−1
1 𝑏2𝜏𝑏

−1
2 ∀𝜏 ∈ S𝑛, or equivalently, 𝜏𝑏−11 𝑏2 = 𝑏−11 𝑏2𝜏 ∀𝜏 ∈ S𝑛.

This implies that 𝑏−11 𝑏2 ∈ 𝑍(S𝑛) ∶= {𝑔 ∈ S𝑛 ∶ 𝑔ℎ = ℎ𝑔 ∀ℎ ∈ S𝑛}. It is well-known that the center 𝑍(S𝑛) is trivial for 𝑛 ≥ 3, hence
𝑏1 = 𝑏2. From this, it simply follows that also 𝑎1 = 𝑎2, hence 𝜃 is injective. □

Theorem 3.1 shows that the image of S𝑛 × Aut(Coup(𝐸)) under 𝜃 is a subgroup of Aut(Cay(S𝑛, 𝑇)), which is isomorphic to
S𝑛 × Aut(Coup(𝐸)) by the injectivity of 𝜃.

The group S𝑛 × Aut(Coup(𝐸)) is the full automorphism group if the mapping 𝜃 is a bijection. A sufficient condition for this
to be true is the normality of Cay(S𝑛, 𝑇). We call the Cayley graph Cay(S𝑛, 𝑇) normal if the subgroup of all automorphisms by
left multiplication by elements of S𝑛, i.e., {(𝜏 ↦ 𝑎𝜏) ∶ 𝑎 ∈ S𝑛}, is a normal subgroup of Aut(Cay(S𝑛, 𝑇)). It has been shown by
Ganesan [58] that Cay(S𝑛, 𝑇) is normal if and only if Aut(Cay(S𝑛, 𝑇)) ≅ S𝑛 × Aut(Coup(𝐸)). Moreover, several sufficient conditions
for normality have been derived in the literature [59,60]. It was recently shown by Gijswijt and De Meijer [61] that almost all
graphs of the form Cay(S𝑛, 𝑇) are normal, which immediately implies the following result.

Theorem 3.2 ([61]). Let Coup(𝐸) be connected and not equal to the 4-cycle 𝐶4 or the complete graph 𝐾𝑛. Then, Aut(Cay(S𝑛, 𝑇)) ≅
S𝑛 × Aut(Coup(𝐸)).

In case Coup(𝐸) is 𝐶4 or 𝐾𝑛, the automorphism group of Cay(S𝑛, 𝑇) is also known, see [59, Section 3] and [60, Theorem 1.1],
respectively.

In the settings that are interesting for our application, Coup(𝐸) is not equal to 𝐶4 or 𝐾𝑛 (indeed, this would imply a very small
number of qubits or a trivial NNCP instance, respectively). Therefore, Theorem 3.2 applies in the sequel.
6

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
3.2. Automorphism group of 𝑋

Now that we established the full automorphism group of Cay(S𝑛, 𝑇), we focus on the automorphism group of the entire graph 𝑋.
Indeed, we need to take the arc structure in-between the subgraphs 𝐻𝑘 into account. We start by showing how these arcs restrict
the automorphism group of a single subgraph, after which we combine these results to obtain Aut(𝑋).

Each 𝐻𝑘 corresponds to a gate 𝑔𝑘 acting on two qubits in 𝑄. The set of outgoing arcs 𝐷𝑘 consists of arcs leaving qubit orders 𝜏
where 𝜏−1(𝑔𝑘) ∈ 𝐸, see (3). Since this arc structure needs to be preserved, the automorphisms of interest must setwise fix the qubit
orders with this property. For all 𝑘 ∈ [𝑚], let

𝐹 𝑘 ∶= {𝜏 ∈ S𝑛 ∶ 𝜏−1(𝑔𝑘) ∈ 𝐸}. (5)

Instead of the automorphism group of Cay(S𝑛, 𝑇), we are only interested in its subgroup that setwise fixes 𝐹 𝑘. That is,
Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) ∶=

{

𝜌 ∈ Aut(Cay(S𝑛, 𝑇)) ∶ 𝜌(𝐹 𝑘) = 𝐹 𝑘
}

.

For each 𝑆 ⊆ [𝑛], let S𝑛(𝑆) = {𝜏 ∈ S𝑛 ∶ 𝜏(𝑆) = 𝑆}, which is clearly a subgroup of S𝑛. Now, if Coup(𝐸) = 𝐾𝑛, it follows that
𝐹 𝑘 = S𝑛 and Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) = Aut(Cay(S𝑛, 𝑇)). The following results establish a characterization of Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) when
Coup(𝐸) ≠ 𝐾𝑛.

Theorem 3.3. Let Coup(𝐸) be connected and not equal to 𝐶4 or 𝐾𝑛. Then, Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) is isomorphic to S𝑛(𝑔𝑘) × Aut(Coup(𝐸)).

Proof. Let 𝜃 be the group homomorphism defined in (4). We now consider its restriction to the subgroup S𝑛(𝑔𝑘) × Aut(Coup(𝐸)),
which we denote by 𝜃𝑟. Then its image 𝜃𝑟(S𝑛(𝑔𝑘) × Aut(Coup(𝐸))) is clearly a subgroup of Aut(Cay(S𝑛, 𝑇)). Since 𝜃 is injective by
Theorem 3.1, so is 𝜃𝑟, and thus 𝜃𝑟(S𝑛(𝑔𝑘) × Aut(Coup(𝐸))) is isomorphic to S𝑛(𝑔𝑘) × Aut(Coup(𝐸)).

We now prove that the set 𝜃𝑟(S𝑛(𝑔𝑘) × Aut(Coup(𝐸))) is a subgroup of Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘). Let 𝑎 ∈ S𝑛(𝑔𝑘) and 𝑏 ∈ Aut(Coup(𝐸)).
Then 𝜃𝑟(𝑎, 𝑏) is the mapping 𝜏 ↦ 𝑎𝜏𝑏−1. Now, let 𝜏 ∈ 𝐹 𝑘, i.e., 𝜏−1(𝑔𝑘) ∈ 𝐸. Using the fact that 𝑎(𝑔𝑘) = 𝑔𝑘 and 𝑏 maps pairs in 𝐸 to
pairs in 𝐸, we obtain

(𝑎𝜏𝑏−1)−1(𝑔𝑘) = (𝑏𝜏−1𝑎−1)(𝑔𝑘) ∈ 𝐸,

which implies 𝑎𝜏𝑏−1 ∈ 𝐹 𝑘. So, 𝜃𝑟(𝑎, 𝑏) ∈ Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘), from where it follows that 𝜃𝑟(S𝑛(𝑔𝑘) × Aut(Coup(𝐸))) is a subgroup of
Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘).

Next, we show that it is actually the full automorphism group. It suffices to show that any element in Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) is of the
form 𝜃𝑟(𝑎, 𝑏) for some 𝑎 ∈ S𝑛(𝑔𝑘) and 𝑏 ∈ Aut(Coup(𝐸)). Let 𝜌 ∈ Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘). By Theorem 3.1, we know that 𝜌 ∶ 𝜏 ↦ 𝑎𝜏𝑏−1

for some 𝑎 ∈ S𝑛, 𝑏 ∈ Aut(Coup(𝐸)). Suppose 𝑎 ∉ S𝑛(𝑔𝑘). Let 𝑔𝑘 be the pair {𝑞1, 𝑞2}. Then there exist 𝑘1, 𝑘2 such that 𝑎(𝑘1) = 𝑞1
and 𝑎(𝑘2) = 𝑞2, with {𝑘1, 𝑘2} ≠ {𝑞1, 𝑞2}. Now, we select two pairs of vertices 𝑒 ∈ 𝐸 and 𝑓 ∉ 𝐸 as follows. If |{𝑘1, 𝑘2, 𝑞1, 𝑞2}| = 3,
take 𝑒 and 𝑓 such that they share one vertex, otherwise take 𝑒 and 𝑓 disjoint. The only cases in which such selection is not possible,
is when the subgraph induced by any three distinct vertices is a clique or for each edge in 𝐸 the graph resulting from deleting the
edge is a clique. The only connected coupling graphs that satisfy either of these properties are 𝐶4 and 𝐾𝑛. However, these graph
structures are forbidden by the theorem statement.

Now, take any 𝜏 ∈ S𝑛 such that
𝜏(𝑒) = {𝑞1, 𝑞2} and 𝜏(𝑓) = {𝑘1, 𝑘2}.

As 𝜏−1({𝑞1, 𝑞2}) = 𝑒 ∈ 𝐸, it follows that 𝜏 ∈ 𝐹 𝑘. However,
𝜌(𝜏)−1({𝑞1, 𝑞2}) = (𝑎𝜏𝑏−1)−1({𝑞1, 𝑞2}) = 𝑏𝜏−1𝑎−1({𝑞1, 𝑞2}) = 𝑏𝜏−1({𝑘1, 𝑘2}) = 𝑏(𝑓) ∉ 𝐸,

since 𝑏 maps non-edges to non-edges in Coup(𝐸). We conclude that 𝜌(𝜏) ∉ 𝐹 𝑘, which implies that 𝜌 ∉ Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘). Since this
is a contradiction, each automorphism in Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘) is in 𝜃𝑟(S𝑛(𝑔𝑘) × Aut(Coup(𝐸))). □

Let 𝐺𝑘sub denote Aut(Cay(S𝑛, 𝑇), 𝐹 𝑘). If 𝑋 consists of only one subgraph, 𝑋 has vertex set {𝑠} ∪ 𝑉 1 ∪ {𝑡} and one can verify that in
that case {id{𝑠}}×𝐺1sub×{id{𝑡}} is Aut(𝑋). Now, suppose 𝑋 has two subgraphs. Then, 𝐻1 corresponds to gate 𝑔1 and 𝐻2 corresponds
to a possibly different gate 𝑔2. In the sequel, we study how this affects the automorphism group of 𝑋.

To that end, we need two intermediate results. For a set 𝑆 ⊆ [𝑛], let 𝐶(S𝑛(𝑆)) denote the centralizer subgroup of S𝑛(𝑆) which is
defined as

𝐶(S𝑛(𝑆)) =
{

𝜏 ∈ S𝑛 ∶ 𝜏𝜋 = 𝜋𝜏 for all 𝜋 ∈ S𝑛(𝑆)
}

. (6)

When 𝑛 ≤ 2, we know that S𝑛 is abelian and thus 𝐶(S𝑛(𝑆)) = S𝑛. Otherwise, we show that the centralizer subgroup is contained in
S𝑛(𝑆).

Lemma 3.4. Let 𝑛 ≥ 3. Then, we have 𝐶(S𝑛(𝑆)) ⊆ S𝑛(𝑆) for all 𝑆 ⊆ [𝑛].

Proof. Since S𝑛(𝑆) = S𝑛([𝑛] ⧵ 𝑆), we may assume that |𝑆| ≥ 2. Now, let 𝜏 ∈ 𝐶(S𝑛(𝑆)) and assume for the sake of contradiction
that 𝜏 ∉ S𝑛(𝑆). Then there exist distinct 𝑖, 𝑗 ∈ 𝑆 such that 𝜏(𝑖) ∉ 𝑆. Now, consider the transposition (𝑖 𝑗). We have (𝑖 𝑗)𝜏(𝑖) = 𝜏(𝑖),
while 𝜏(𝑖 𝑗)(𝑖) = 𝜏(𝑗). Hence, 𝜏 and (𝑖 𝑗) do not commute, while (𝑖 𝑗) ∈ S (𝑆). Therefore, 𝜏 ∉ 𝐶(S (𝑆)), which is a contradiction. □
𝑛 𝑛

7

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Exploiting Lemma 3.4, we can show the following result for general sets 𝐹 of the form (5).

Theorem 3.5. Let 𝑖, 𝑗 ∈ [𝑛], 𝑛 ≥ 3, and let 𝐹 = {𝜏 ∈ S𝑛 ∶ {𝜏−1(𝑖), 𝜏−1(𝑗)} ∈ 𝐸}. Let 𝑎, 𝑏 ∈ S𝑛 and suppose that 𝑎𝜏𝑏−1 = 𝜏 for all 𝜏 ∈ 𝐹 .
Then 𝑎 = 𝑏 = id.

Proof. Observe that for all 𝜏1, 𝜏2 ∈ 𝐹 we have:

𝜏1𝑏𝜏
−1
1 = 𝑎 = 𝜏2𝑏𝜏

−1
2 .

Now, let us fix an edge 𝑒 ∈ 𝐸. We can write any element 𝜋 ∈ S𝑛(𝑒) in the form 𝜋 = 𝜏−1𝜏′ for some 𝜏, 𝜏′ ∈ 𝐹 . To verify this, observe
that since 𝑒 ∈ 𝐸 there exist elements in 𝐹 that map 𝑒 to {𝑖, 𝑗}. By combining two such elements 𝜏 and 𝜏′, the composition 𝜏−1𝜏′
always maps 𝑒 back to 𝑒. On the complement [𝑛] ⧵ 𝑒 we find all possible permutations in 𝐹 , so we can always find 𝜏, 𝜏′ ∈ 𝐹 such
that 𝜏−1𝜏′ acts like 𝜋 on the set [𝑛] ⧵ 𝑒.

Let 𝜏1, 𝜏2 ∈ 𝐹 be such that 𝜋 = 𝜏−11 𝜏2. Then we know 𝜏1𝑏𝜏−11 = 𝜏2𝑏𝜏−12 , which can be rewritten as 𝜋−1𝑏𝜋 = 𝑏. As 𝜋 ∈ S𝑛(𝑒) was
chosen arbitrarily, it follows that 𝜋−1𝑏𝜋 = 𝑏 for all 𝜋 ∈ S𝑛(𝑒), and thus 𝑏 ∈ 𝐶(S𝑛(𝑒)). We now apply Lemma 3.4 with 𝑆 = 𝑒. Since
𝑛 ≥ 3, it follows that 𝑏 ∈ S𝑛(𝑒).

By repeating this argument for all 𝑒 ∈ 𝐸, it follows that 𝑏 ∈ ⋂

𝑒∈𝐸 S𝑛(𝑒). As Coup(𝐸) is connected, we conclude that 𝑏 = id, from
which it immediately follows that 𝑎 = id as well. □

Let 𝜌 ∈ Aut(𝑋) where 𝑋 consists of two subgraphs. The case 𝑛 ≤ 2 leads to a trivial NNCP instance. Therefore, we may assume
that 𝑛 ≥ 3. Then the restriction of 𝜌 to 𝐻1 is an element of 𝐺1sub. In particular, each 𝜏1 ∈ 𝐹 1 is mapped to 𝜌(𝜏1) ∈ 𝐹 1 (here the
superscript 1 is added to indicate that 𝜏1 is a vertex of 𝐻1). In order to maintain the arc structure of 𝐷1, it follows that the restriction
of 𝜌 to 𝐻2 should not only be an element of 𝐺2sub, it should also pointwise fix the elements 𝜌(𝜏2) for all 𝜏2 ∈ 𝐹 1. Applying the result
of Theorem 3.5, the restriction of 𝜌 to 𝐻2 should be the same automorphism as the restriction to 𝐻1. On top of that, this restriction
must also be in 𝐺2sub. Thus, 𝜌 is of the form (id{𝑠}, 𝜋, 𝜋, id{𝑡}) with 𝜋 ∈ 𝐺1sub ∩𝐺

2
sub. Extending this argument to larger 𝑘, let us define

the following groups:

𝐺sub ∶=
𝑚
⋂

𝑘=1
𝐺𝑘sub ≅

𝑚
⋂

𝑘=1
S𝑛(𝑔𝑘) × Aut(Coup(𝐸)), (7)

𝐺𝑋 ∶=

{

(id{𝑠}, 𝜌,… , 𝜌, id{𝑡}) ∈ {id{𝑠}} ×
𝑚
∏

𝑘=1
Aut(𝐻𝑘) × {id{𝑡}} ∶ 𝜌 ∈ 𝐺sub

}

. (8)

By construction, 𝐺𝑋 is the full automorphism group Aut(𝑋) in case Coup(𝐸) is connected and not equal to 𝐶4 or 𝐾𝑛. Observe that
if these conditions are not met, 𝐺𝑋 is still a subgroup of Aut(𝑋).

To get rid of the intersection in the definition of 𝐺sub, we exploit the notion of the gate graph (𝑄,𝑈) of a quantum circuit 𝛤 ,
see Definition 2.3. If 𝑔𝑘1 is in 𝐶 with 𝑔𝑘1 = {𝑞1, 𝑞2}, this implies that the set {𝑞1, 𝑞2} must be setwise fixed by all permutations in
the group S𝑛(𝑔𝑘1). If also 𝑔𝑘2 ∈ 𝐶 with 𝑔𝑘2 = {𝑞2, 𝑞3}, there is no other option than fixing 𝑞1, 𝑞2 and 𝑞3 elementwise in the group
intersection S𝑛(𝑔𝑘1) ∩ S𝑛(𝑔𝑘2). From this observation, we can partition all qubits in 𝑄 based on whether they belong to a connected
component of size one, two or at least three in the gate graph (𝑄,𝑈). This leads to the introduction of the fixing pattern of 𝛤 .

Definition 3.6. Let 𝛤 = (𝑄,𝐶) be a quantum circuit on 𝑛 qubits. We define the fixing pattern of 𝛤 as the partition  ∶= {𝑆1,… , 𝑆𝑙}
of 𝑄 such that each 𝑆𝑖 is either:

• a single qubit contained in a connected component of the gate graph (𝑄,𝑈) of size at least 3;
• a pair of qubits {𝑞1, 𝑞2} that forms a connected component in the gate graph (𝑄,𝑈);
• the set of all isolated vertices in the gate graph (𝑄,𝑈), which we denote by the free set in  .

Moreover, we define 𝑓 as the size of the free set, 𝑝 as the number of pairs and 𝑐 (= 𝑛 − 2𝑝 − 𝑓) to be the number of qubits in a
connected component of size at least 3 in (𝑄,𝑈).

Observe that  can be easily constructed by a scan of the connected components of (𝑄,𝑈). The extreme cases are  = {𝑄} if 𝛤
contains no gates, whereas  = {{𝑞1},… , {𝑞2}} if (𝑄,𝑈) is connected. The group ∩𝑚𝑘=1S𝑛(𝑔𝑘) consists of all permutations that setwise
fix the elements in  . To simplify notation, we define

S𝑛() ∶= {𝑎 ∈ S𝑛 ∶ 𝑎(𝑆𝑖) = 𝑆𝑖 for all 𝑖 ∈ [𝑙]}.

We know that 𝐺sub ≅ S𝑛() × Aut(Coup(𝐸)), which implies that

𝐺𝑋 ≅ S𝑛() × Aut(Coup(𝐸)). (9)

It follows from a simple counting argument that |S ()| = 2𝑝𝑓 !.
𝑛

8

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
3.3. Orbit and orbital structure of group action on 𝑋

The elements of 𝐺𝑋 act on the vertices and arcs of 𝑋. In this section we study this group action in terms of its induced orbit
and orbital structure, which will become of key importance in the symmetry reduction explained in Section 4.

Each automorphism in 𝐺𝑋 maps the vertex set of 𝑋 to itself. Given a vertex 𝜏 ∈ 𝑉 , the orbit of 𝜏 is the set of vertices to which
𝜏 is mapped to by the elements in 𝐺𝑋 , i.e., all vertices 𝜌(𝜏) with 𝜌 ∈ 𝐺𝑋 . The set of orbits forms a partition of 𝑉 , which is written
as the quotient 𝑉 ∕𝐺𝑋 .

Similarly, 𝐺𝑋 acts on the arc set 𝐴 by 𝜌((𝜏1, 𝜏2)) = (𝜌(𝜏1), 𝜌(𝜏2)) for all 𝜌 ∈ 𝐺𝑋 . We denote the set of orbitals by 𝐴∕𝐺𝑋 . Note that
arcs in the same orbital have their initial vertices in the same orbit. It is therefore natural to first understand the orbit structure of
the action of 𝐺𝑋 on 𝑉 .

Let Orb(𝜏) denote the orbit of vertex 𝜏 ∈ 𝑉 . It follows from the construction of 𝐺𝑋 that Orb(𝑠) = {𝑠} and Orb(𝑡) = {𝑡}. Moreover,
the subgraphs 𝐻𝑘, 𝑘 ∈ [𝑚], are invariant under the action of 𝐺𝑋 on 𝑋. For that reason, we can restrict ourselves to identifying the
orbits within each subgraph 𝐻𝑘 under the action of 𝐺sub. Since all subgraphs are identical, this provides the orbit description for
the entire graph 𝐺𝑋 .

Similar as before, we use 𝜏 to denote a vertex, as each vertex represents a qubit order in S𝑛. For all 𝑘 ∈ [𝑚] and all 𝜏 ∈ 𝑉 𝑘, we
obtain

Orb(𝜏) =
{

𝜌(𝜏) ∶ 𝜌 ∈ 𝐺sub
}

=
{

𝑎𝜏𝑏−1 ∶ 𝑎 ∈ S𝑛(), 𝑏 ∈ Aut(Coup(𝐸))
}

. (10)

We also define the stabilizer subgroup with respect to 𝜏 under the action of 𝐺sub as
Stab(𝜏) ∶=

{

𝜌 ∈ 𝐺sub ∶ 𝜌(𝜏) = 𝜏
}

≅
{

(𝑎, 𝑏) ∈ S𝑛() × Aut(Coup(𝐸)) ∶ 𝑎𝜏𝑏−1 = 𝜏
}

.
(11)

The condition given in (11) for (𝑎, 𝑏) to act as a stabilizer can be rewritten as 𝑎 = 𝜏𝑏𝜏−1. Thus, a pair (𝑎, 𝑏) ∈ S𝑛() × Aut(Coup(𝐸))
corresponds to an element in Stab(𝜏) if and only if the permutation 𝜏𝑏𝜏−1 is in S𝑛() and 𝑎 = 𝜏𝑏𝜏−1. This implies that for all 𝑆𝑖 ∈ 
we must have 𝜏𝑏𝜏−1(𝑆𝑖) = 𝑆𝑖, or equivalently, 𝑏(𝜏−1(𝑆𝑖)) = 𝜏−1(𝑆𝑖). Hence, 𝑏 setwise fixes the inverse fixing pattern in  with respect
to 𝜏. Let us define the subgroup 𝐵𝜏 of Aut(Coup(𝐸)) that consists of all such elements, i.e.,

𝐵𝜏 ∶=
{

𝑏 ∈ Aut(Coup(𝐸)) ∶ 𝑏
(

𝜏−1(𝑆𝑖)
)

= 𝜏−1(𝑆𝑖) ∀𝑖 ∈ [𝑙]
}

. (12)

Since for each 𝑏 ∈ 𝐵𝜏 , there exists exactly one element 𝑎 ∈ S𝑛() such that 𝑎𝜏𝑏−1=𝜏, we know

Stab(𝜏) ≅ {(𝑎, 𝑏) ∶ 𝑏 ∈ 𝐵𝜏 , 𝑎 = 𝜏𝑏𝜏−1}, (13)

in particular, we have |Stab(𝜏)| = |𝐵𝜏 |.
As 𝐵𝜏 is a subgroup of Aut(Coup(𝐸)), it acts on the edge set of Coup(𝐸). The orbital of an edge {𝑖, 𝑗} ∈ 𝐸 under this group action

is the set of all edges {𝑏(𝑖), 𝑏(𝑗)} with 𝑏 ∈ 𝐵𝜏 . We denote by the quotient 𝐸∕𝐵𝜏 the set of orbitals under this group action.
We can show that if 𝜏1 and 𝜏2 belong to the same orbit, then the subgroups 𝐵𝜏1 and 𝐵𝜏2 are conjugate subgroups. Moreover, the

quotients of their actions on 𝐸 have the same cardinality.

Lemma 3.7. Let 𝜏1 and 𝜏2 be two qubit orders with 𝜏2 = 𝑎𝜏1𝑏−1 for some 𝑎 ∈ S𝑛() and 𝑏 ∈ Aut(Coup(𝐸)). Then,
(i) 𝐵𝜏2 = 𝑏𝐵𝜏1𝑏

−1;
(ii) there exists a bijection from 𝐸∕𝐵𝜏1 to 𝐸∕𝐵𝜏2 given by left multiplication with 𝑏.

Proof.
(i) Exploiting the fact that 𝑎−1(𝑆𝑖) = 𝑆𝑖 for all 𝑖 ∈ [𝑙], we obtain

𝐵𝜏2 =
{

𝑏2 ∈ Aut(Coup(𝐸)) ∶ 𝑏2
(

𝜏−12 (𝑆𝑖)
)

= 𝜏−12 (𝑆𝑖) ∀𝑖 ∈ [𝑙]
}

=
{

𝑏2 ∈ Aut(Coup(𝐸)) ∶ 𝑏2
(

(𝑎𝜏1𝑏−1)−1(𝑆𝑖)
)

= (𝑎𝜏1𝑏−1)−1(𝑆𝑖) ∀𝑖 ∈ [𝑙]
}

=
{

𝑏2 ∈ Aut(Coup(𝐸)) ∶ 𝑏2𝑏𝜏
−1
1 𝑎−1(𝑆𝑖) = 𝑏𝜏−11 𝑎−1(𝑆𝑖) ∀𝑖 ∈ [𝑙]

}

=
{

𝑏2 ∈ Aut(Coup(𝐸)) ∶ 𝑏−1𝑏2𝑏
(

𝜏−11 (𝑆𝑖)
)

= 𝜏−11 (𝑆𝑖) ∀𝑖 ∈ [𝑙]
}

=
{

𝑏𝑏1𝑏
−1 ∈ Aut(Coup(𝐸)) ∶ 𝑏1

(

𝜏−11 (𝑆𝑖)
)

= 𝜏−11 (𝑆𝑖) ∀𝑖 ∈ [𝑙]
}

= 𝑏𝐵𝜏1𝑏
−1.

(ii) This fact follows directly from (𝑖), by observing that

𝑏 Orb𝐵𝜏1 (𝑖) =
{

𝑏𝑏1𝑏
−1(𝑏(𝑖)) ∶ 𝑏1 ∈ 𝐵𝜏1

}

=
{

𝑏2(𝑏(𝑖)) ∶ 𝑏2 ∈ 𝐵𝜏2
}

= Orb𝐵𝜏2 (𝑏(𝑖)).

One easily verifies that left multiplication by 𝑏 gives a bijection. □
9

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
As a consequence of the well-known orbit–stabilizer theorem, we establish the following relation between Orb(𝜏) and Stab(𝜏):

|Orb(𝜏)| =
|𝐺sub|

|Stab(𝜏)| =
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

|𝐵𝜏 |
. (14)

Of course, Orb(𝜏) does not depend on the particular choice of the representative 𝜏 in the orbit.
To increase our understanding of Orb(𝜏), we rewrite (10) as follows:

Orb(𝜏) = S𝑛()𝜏Aut(Coup(𝐸)) =
⋃

𝜏∈S𝑛()𝜏
𝜏Aut(Coup(𝐸)). (15)

In other words, if S𝑛() is trivial, then the orbit partition of 𝑉 𝑘 is given by the left cosets of Aut(Coup(𝐸)) in 𝐺sub. Otherwise, each
orbit is the union of several left cosets of Aut(Coup(𝐸)) in 𝐺sub, where the union is determined by the elements in the right cosets
of S𝑛() in 𝐺sub.

Of particular importance in the symmetry reduction is the number of orbits in each subgraph. We let 𝑉 𝑘∕𝐺𝑋 denote the set of
orbits of vertices in 𝑉 𝑘 under the action of 𝐺𝑋 , although we formally refer to the action of 𝐺𝑋 restricted to 𝑉 𝑘. We allow for this
slight abuse of notation, in order to simplify the terminology in Section 4.

Theorem 3.8. The number of orbits of 𝑉 𝑘 under 𝐺𝑋 is |𝑉 𝑘∕𝐺𝑋 | =
∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 !⋅|Aut(Coup(𝐸))| .

Proof. Let (𝑉 𝑘)𝜌 denote the set of vertices in 𝑉 𝑘 that are (pointwise) fixed by 𝜌 ∈ 𝐺𝑋 . Then, Burnside’s lemma implies that
|𝑉 𝑘∕𝐺𝑋 | =

∑

𝜌∈𝐺𝑋
|(𝑉 𝑘)𝜌|

|𝐺𝑋 |

. The sum in the numerator counts for every group element the number of vertices that are fixed.
Alternatively, we can also sum over all vertices and count the number of group elements that stabilize the vertex. This leads to

|𝑉 𝑘∕𝐺𝑋 | =

∑

𝜏∈S𝑛 |Stab(𝜏)|
|S𝑛() × Aut(Coup(𝐸))| =

∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| . □

We now shift our focus to the analysis of the orbital structure of the arcs of 𝑋 under the action of 𝐺𝑋 . Recall that 𝐴 consists
of two types of arcs: arcs within a subgraph (the sets 𝐴𝑘, 𝑘 ∈ [𝑚]) and the arcs between the subgraphs (the sets 𝐷𝑘, 𝑘 ∈ {0} ∪ [𝑚]).
Since the sets 𝐴1,… , 𝐴𝑘 are identical and each set is invariant under the group action 𝐺𝑋 , we can restrict our focus to the action
of 𝐺sub on a single subgraph. The orbital of an arc (𝜏, 𝜏𝜎) ∈ 𝐴𝑘 corresponding to transposition 𝜎 = (𝑖 𝑗) ∈ 𝑇 is given by

Orb((𝜏, 𝜏𝜎)) ∶=
{

(𝜌(𝜏), 𝜌(𝜏𝜎)) ∶ 𝜌 ∈ 𝐺sub
}

=
{(

𝑎𝜏𝑏−1, 𝑎𝜏𝜎𝑏−1
)

∶ 𝑎 ∈ S𝑛(), 𝑏 ∈ Aut(Coup(𝐸))
}

=
{(

𝑎𝜏𝑏−1, 𝑎𝜏𝑏−1(𝑏(𝑖) 𝑏(𝑗))
)

∶ 𝑎 ∈ S𝑛(), 𝑏 ∈ Aut(Coup(𝐸))
}

,

where the last line follows from the fact that 𝑏(𝑖 𝑗)𝑏−1 = (𝑏(𝑖) 𝑏(𝑗)). This expression of Orb((𝜏, 𝜏𝜎)) implies that all arcs within the
same orbital start at vertices within the same orbit and end at vertices within the same orbit (where the start- and end-orbits can
differ). Moreover, the transpositions to which the arcs in Orb((𝜏, 𝜏𝜎)) correspond are related via Aut(Coup(𝐸)), as the following
lemma illustrates.

Lemma 3.9. Let 𝜏 ∈ S𝑛. There exists a bijection between the orbitals starting from Orb(𝜏) and the orbitals in 𝐸∕𝐵𝜏 .

Proof. It suffices to consider the orbital partition of the arcs leaving 𝜏, i.e., 𝛿+(𝜏, 𝐴𝑘). If 𝐵𝜏 is trivial, the stabilizer subgroup of 𝜏 in
𝐺sub is trivial, implying that no two arcs in 𝛿+(𝜏, 𝐴𝑘) belong to the same orbital. In that case, 𝐸∕𝐵𝜏 is just the partition of 𝐸 under
the identity map. If 𝐵𝜏 is nontrivial and 𝑏 ∈ 𝐵𝜏 maps the edge corresponding to 𝜎1 to a different edge corresponding to 𝜎2, then the
distinct arcs (𝜏, 𝜏𝜎1) and (𝜏, 𝜏𝜎2) belong to the same orbital under 𝐺sub. If 𝑏 ∈ 𝐵𝜏 maps the edge corresponding to 𝜎1 to itself, then
the orbital containing (𝜏, 𝜏𝜎1) has a smaller cardinality. These three cases are depicted in Fig. 1. We conclude that the arcs (𝜏, 𝜏𝜎1)
and (𝜏, 𝜏𝜎2) belong to the same orbital if and only if the edges corresponding to 𝜎1 and 𝜎2 in Coup(𝐸) belong to the same orbital in
𝐸∕𝐵𝜏 . □

The following result regards the cardinality of the set of orbitals of 𝐴𝑘 under the action of 𝐺𝑋 restricted to 𝐴𝑘. By slight abuse
of notation, we again denote this set by the quotient 𝐴𝑘∕𝐺𝑋 .

Theorem 3.10. The number of orbitals of 𝐴𝑘 under 𝐺𝑋 is |𝐴𝑘∕𝐺𝑋 | =
∑

𝜏∈S𝑛 |𝐵𝜏 |⋅|𝐸∕𝐵𝜏 |
2𝑝𝑓 !⋅|Aut(Coup(𝐸))| .

Proof. Since the arcs belonging to an orbital all start from vertices in the same orbit, it suffices to enumerate over all orbits and
count the number of orbitals starting from that orbit. It follows from Lemma 3.9 that the number of distinct orbitals starting from
Orb(𝜏) is |𝐸∕𝐵𝜏 |, where the choice of 𝜏 to represent Orb(𝜏) does not affect this quantity, see Lemma 3.7. We now sum over all
Orb(𝜏) ∈ 𝑉 𝑘∕𝐺𝑋 :

|𝐴𝑘∕𝐺𝑋 | =
∑

Orb(𝜏)∈𝑉 𝑘∕𝐺𝑋

|𝐸∕𝐵𝜏 |

=
∑ 2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

|𝐵 |

⋅
|𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

Orb(𝜏)∈𝑉 𝑘∕𝐺𝑋 𝜏

10

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Fig. 1. Graphical overview of orbital structure within a subgraph 𝐻𝑘. Each line type (solid, dotted, dashed and curled) corresponds to another
orbital. Case I (left): 𝐵𝜏1 is trivial. Case II (middle): 𝐵𝜏1 is nontrivial and the orbital of 𝜎1 under 𝐵𝜏1 contains 𝜎2. Case III (right): 𝐵𝜏1 is nontrivial,
but the orbital of 𝜎1 under 𝐵𝜏1 only consists of 𝜎1.

=
∑

Orb(𝜏)∈𝑉 𝑘∕𝐺𝑋

|Orb(𝜏)| ⋅
|𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

=

∑

𝜏∈S𝑛 |𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| .

In the third equality we used (14), as well as the fact that the sum of |Orb(𝜏)| ⋅ |𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 | over all orbits equals the sum of
|𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 | over all vertices, since |𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 | is constant for all 𝜏 within an orbit, see Lemma 3.7. □

To study the orbital representation of 𝐷𝑘 under the action of 𝐺𝑋 , we distinguish between the case 𝑘 = 0 and 𝑘 ∈ [𝑚]. For 𝑘 = 0,
𝐷𝑘 contains all arcs between 𝑠 and 𝑉 1. Therefore, each orbital of 𝐷0 under 𝐺𝑋 consists of all arcs starting from 𝑠 and ending at
vertices in an orbit of 𝑉 1. The arcs in 𝐷𝑘, 𝑘 ∈ [𝑚], correspond to ordered pairs (𝜏𝑘, 𝜏𝑘+1), where 𝜏 represents the same qubit order
in 𝐻𝑘 and 𝐻𝑘+1. Such an arc exists in 𝐷𝑘 whenever 𝜏𝑘 ∈ 𝐹 𝑘, see (5). The orbital of (𝜏𝑘, 𝜏𝑘+1) is the set

Orb((𝜏𝑘, 𝜏𝑘+1)) = {(𝜌(𝜏𝑘), 𝜌(𝜏𝑘+1)) ∶ 𝜌 ∈ 𝐺sub}

= {(𝑎𝜏𝑘𝑏−1, 𝑎𝜏𝑘+1𝑏−1) ∶ 𝑎 ∈ S𝑛(), 𝑏 ∈ Aut(Coup(𝐸))}.

Let 𝐷𝑘∕𝐺𝑋 denote the set of orbitals of the group action of 𝐺𝑋 restricted to 𝐷𝑘. Since 𝜏𝑘 and 𝜏𝑘+1 represent the same qubit orders
in 𝐻𝑘 and 𝐻𝑘+1, respectively, all arcs within Orb((𝜏𝑘, 𝜏𝑘+1)) start and end at vertices in the same orbit. This leads to the following
result.

Theorem 3.11. The number of orbitals of 𝐷0 under 𝐺𝑋 is |𝐷0∕𝐺𝑋 | =
∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 !⋅|Aut(Coup(𝐸))| . For 𝑘 ≠ 0, the number of orbitals of 𝐷𝑘 under
𝐺𝑋 is |𝐷𝑘∕𝐺𝑋 | =

∑

𝜏∈𝐹𝑘 |𝐵𝜏 |
2𝑝𝑓 !⋅|Aut(Coup(𝐸))| .

Proof. The first part follows directly from Theorem 3.8. For the second part, observe that we have 𝐷𝑘 = {(𝜏𝑘, 𝜏𝑘+1) ∶ 𝜏𝑘 ∈
𝑉 𝑘, 𝜏𝑘+1 ∈ 𝑉 𝑘+1, 𝜏𝑘 ∈ 𝐹 𝑘}, where 𝐹 𝑘 is defined in (5). The cardinality of 𝐷𝑘∕𝐺𝑋 is equal to the number of orbits of 𝐹 𝑘 under
the action of 𝐺𝑋 restricted to the vertices in 𝐹 𝑘. The cardinality of 𝐹 𝑘∕𝐺𝑋 can be derived similarly as in the proof of Theorem 3.8,
leading to

|𝐷𝑘∕𝐺𝑋 | = |𝐹 𝑘∕𝐺𝑋 | =
∑

𝜏∈𝐹 𝑘 |𝐵𝜏 |
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| . □

The results of Theorems 3.8, 3.10 and 3.11 are summarized in Table 1. Moreover, we simplify the cardinalities of the quotients
for the special case where 𝐵𝜏 is trivial for all 𝜏 ∈ S𝑛.

In practical situations, it is often appropriate to possess an orbit (resp. orbital) representation of some set under a group action.
Such representation contains exactly one element from each orbit (resp. orbital). In the sequel, we let (𝑉 𝑘∕𝐺𝑋) ⊆ 𝑉 𝑘 denote an
orbit representation of S𝑛 under the group action 𝐺sub. We can obtain (𝑉 𝑘∕𝐺𝑋) by exploiting (15). First, one can efficiently obtain
a representation of left cosets of Aut(Coup(𝐸)) in S𝑛, see e.g., Dixon and Majeed [62]. This coset representation can be compressed
to an orbit representation by a merge operation of multiple left cosets. For each representative 𝜏, we enumerate the elements of the
right coset of S𝑛() containing 𝜏. This provides the representatives of left cosets that belong to the same orbit.

An orbital representation (𝐴𝑘∕𝐺𝑋) can be obtained by exploiting the proof of Theorem 3.10. We know that each orbital can
be represented by the orbit from where the arcs in the orbital start, combined with a representative element from the quotient
𝐸∕𝐵𝜏 , where 𝜏 belongs to the orbit. Hence, (𝐴𝑘∕𝐺𝑋) = {(𝜏, 𝜎) ∶ 𝜏 ∈ (𝑉 𝑘∕𝐺𝑋), 𝜎 ∈ (𝐸∕𝐵𝜏)}, where (𝐸∕𝐵𝜏) is an orbital
representation of the edges in 𝐸 under the action of 𝐵𝜏 . As the coupling graph is typically small, (𝐸∕𝐵𝜏) can be obtained by
enumeration.

Finally the orbital representation (𝐷𝑘∕𝐺𝑋) follows from the subset of (𝑉 𝑘∕𝐺𝑋) associated with the orbits in the set 𝐹 𝑘,
i.e., (𝐷𝑘∕𝐺𝑋) = {(𝜏𝑘, 𝜏𝑘+1) ∶ 𝜏𝑘 ∈ (𝑉 𝑘∕𝐺𝑋), 𝜏𝑘 ∈ 𝐹 𝑘}.

The orbit and orbital representations can be found more easily when the underlying coupling graph is known, see Section 5.
11

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Table 1
Overview of the orders of quotients 𝑉 𝑘∕𝐺𝑋 , 𝐴𝑘∕𝐺𝑋 and 𝐷𝑘∕𝐺𝑋 in terms of the cardinality of
𝐵𝜏 .
 Quotient Order Order when 𝐵𝜏 is

trivial for all 𝜏 ∈ S𝑛

 𝑉 𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|
𝑛!

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

 𝐴𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

∑

𝜏∈S𝑛 |𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|
𝑛! ⋅ |𝐸|

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

 𝐷0∕𝐺𝑋

∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|
𝑛!

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

 𝐷𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]
∑

𝜏∈𝐹 𝑘 |𝐵𝜏 |
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

2|𝐸|(𝑛 − 2)!
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

4. Symmetry reduction for the NNCP

In this section we show how the automorphism results derived in Section 3 can be exploited to reduce the size of the NNCP
introduced in Section 2.2.

In Section 4.1 we exploit the subgroup 𝐺𝑋 , see (9), in order to reduce the linear programming formulation (SPP) in terms of
the number of variables and constraints. In Section 4.2 we show how this reduced LP can be rewritten as a generalized network
flow problem. The backward reconstruction of optimal qubit orders from the reduced model is the topic of Section 4.3, where
we also provide a pseudo-code on the construction of the symmetry-reduced NNCP formulation. The relationship with a dynamic
programming algorithm is the topic of Section 4.4.

4.1. Reduced LP formulation

The elements in 𝐺𝑋 act on the vertex and arc set of 𝐺. For any arc 𝑒 ∈ 𝐴 and any 𝜌 ∈ 𝐺𝑋 , let 𝜌(𝑒) denote the ordered pair to
which 𝑒 is mapped to by 𝜌, which is again in 𝐴 since 𝜌 is an automorphism. Now, let 𝑥 ∈

∏𝑚
𝑘=1 R

𝐴𝑘 and 𝑦 ∈
∏𝑚

𝑘=0 R
𝐷𝑘 be feasible

for (SPP). We define the Reynolds operator 𝜓 that maps 𝑥 (resp. 𝑦) to the average of the images of 𝑥 (resp. 𝑦) under the action of
𝐺𝑋 on 𝐴. That is,

𝜓(𝑥) ∶= 1
|𝐺𝑋 |

∑

𝜌∈𝐺𝑋

𝑥𝜌 and 𝜓(𝑦) ∶= 1
|𝐺𝑋 |

∑

𝜌∈𝐺𝑋

𝑦𝜌, (16)

where 𝑥𝜌 and 𝑦𝜌 are defined as 𝑥𝜌𝑒 = 𝑥𝜌(𝑒) and 𝑦𝜌𝑒 = 𝑦𝜌(𝑒) for all arcs 𝑒. As 𝐴𝑘 for all 𝑘 ∈ [𝑚] and 𝐷𝑘 for all 𝑘 ∈ {0} ∪ [𝑚] are invariant
under the action of 𝐺𝑋 on 𝐴, it follows that 𝜓(𝑥) ∈ ∏𝑚

𝑘=1 R
𝐴𝑘 and 𝜓(𝑦) ∈ ∏𝑚

𝑘=0 R
𝐷𝑘 . We now prove the following result, which is a

special case of a general result on symmetries of LPs due to Bödi et al. [50], see also Gatermann and Parrilo [51].

Theorem 4.1. Let (𝑥, 𝑦) ∈ ∏𝑚
𝑘=1 R

𝐴𝑘 ×
∏𝑚

𝑘=0 R
𝐷𝑘 be feasible (resp. optimal) for (SPP). Then, (𝜓(𝑥), 𝜓(𝑦)) is also feasible (resp. optimal)

for (SPP).

Proof. As the flow conservation constraints hold for (𝑥, 𝑦) and 𝜌 preserves the arc structure of 𝑋, the pair (𝑥𝜌, 𝑦𝜌) also satisfies
these constraints for all 𝜌 ∈ 𝐺𝑋 . It follows that (𝑥𝜌, 𝑦𝜌) is feasible for (SPP) for all 𝜌 ∈ 𝐺𝑋 . Observe that the pair (𝜓(𝑥), 𝜓(𝑦)) is a
convex combination of (𝑥𝜌, 𝑦𝜌) over the elements of 𝐺𝑋 . Because the feasible set of (SPP) is convex, it follows that (𝜓(𝑥), 𝜓(𝑦)) is
also feasible for (SPP).

The objective function of (SPP) can be written as 𝑓 (𝑥, 𝑦) ∶=
∑

𝑒∈𝐴 𝑥𝑒. Since arcs are mapped to arcs by all 𝜌 ∈ 𝐺𝑋 , we have
𝑓 (𝑥𝜌, 𝑦𝜌) = 𝑓 (𝑥, 𝑦). We then obtain:

𝑓 (𝜓(𝑥), 𝜓(𝑦)) =
∑

𝑒∈𝐴
𝜓(𝑥)𝑒 =

1
|𝐺𝑋 |

∑

𝜌∈𝐺𝑋

∑

𝑒∈𝐴
𝑥𝜌𝑒 =

1
|𝐺𝑋 |

|𝐺𝑋 |
∑

𝑒∈𝐴
𝑥𝑒 = 𝑓 (𝑥, 𝑦).

Thus, if (𝑥, 𝑦) is optimal for (SPP), then so is (𝜓(𝑥), 𝜓(𝑦)). □

An implication of Theorem 4.1 is that we may restrict the feasible set of (SPP) to the subspace

𝐺𝑋 ∶=

{

(𝜓(𝑥), 𝜓(𝑦)) ∶ (𝑥, 𝑦) ∈
𝑚
∏

𝑘=1
R𝐴𝑘 ×

𝑚
∏

𝑘=0
R𝐷𝑘

}

, (17)

which is also denoted as the fixed point subspace in [50]. By construction of the Reynolds operator (16), the entries in 𝜓(𝑥) belonging
to the same orbital are equal. Therefore, the subspace 𝐺𝑋 is spanned by the incidence vectors of orbitals of 𝑋. In Section 3.3 we
derived the orbital structure of the action of 𝐺𝑋 on 𝑋. Recall that 𝐴𝑘∕𝐺𝑋 denotes (the index set of) the collection of orbitals of 𝐴𝑘
under the action of 𝐺𝑋 . Now, if we denote the 𝑖th orbital of 𝐴𝑘 by 𝑊 𝑘

𝑖 , we obtain

𝐴𝑘 =
⨆

𝑊 𝑘
𝑖 for all 𝑘 ∈ [𝑚], (18)
𝑖∈𝐴𝑘∕𝐺𝑋

12

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
where ⊔ denotes the disjoint union of sets. In a similar fashion, the arc sets 𝐷𝑘, 𝑘 ∈ {0} ∪ [𝑚] can be partitioned into its collection
of orbitals. If 𝑍𝑘

𝑖 denotes the 𝑖th orbital of 𝐷𝑘, then

𝐷𝑘 =
⨆

𝑖∈𝐷𝑘∕𝐺𝑋

𝑍𝑘
𝑖 for all 𝑘 ∈ {0} ∪ [𝑚]. (19)

Now, the subspace 𝐺𝑋 can be rewritten as:

𝐺𝑋 =
𝑚
∏

𝑘=1

(

Span{1𝑊 𝑘
𝑖

∶ 𝑖 ∈ 𝐴𝑘∕𝐺𝑋}
)

×
𝑚
∏

𝑘=0

(

Span{1𝑍𝑘𝑖 ∶ 𝑖 ∈ 𝐷𝑘∕𝐺𝑋}
)

, (20)

which implies that the characteristic vectors of the orbitals form a basis for 𝐺𝑋 .
Also the orbits of each of the vertex sets 𝑉 𝑘 under the action of 𝐺𝑋 induce a partition of 𝑉 𝑘. Let 𝑉 𝑘∕𝐺𝑋 denote (the index set

of) the collection of orbits of 𝑉 𝑘 under 𝐺𝑋 . The 𝑢th orbit of 𝑉 𝑘 is denoted by 𝑂𝑘𝑢 , with 𝑢 ∈ 𝑉 𝑘∕𝐺𝑋 . Then,

𝑉 𝑘 =
⨆

𝑢∈𝑉 𝑘∕𝐺𝑋

𝑂𝑘𝑢 ∀𝑘 ∈ [𝑚]. (21)

To write the symmetry-reduced equivalent of (SPP) explicitly, we need some further terminology. Let the out-degree 𝑑+(𝜏,𝑊 𝑘
𝑖)

(resp. in-degree 𝑑−(𝜏,𝑊 𝑘
𝑖)) denote the number of arcs in orbital 𝑊 𝑘

𝑖 that start (resp. end) at vertex 𝜏, i.e.,

𝑑+(𝜏,𝑊 𝑘
𝑖) ∶=

|

|

|

{

(𝜏, 𝜏𝜎) ∈ 𝑊 𝑘
𝑖 ∶ 𝜎 ∈ 𝑇

}

|

|

|

and 𝑑−(𝜏,𝑊 𝑘
𝑖) ∶=

|

|

|

{

(𝜏𝜎, 𝜏) ∈ 𝑊 𝑘
𝑖 ∶ 𝜎 ∈ 𝑇

}

|

|

|

,

for all 𝑖 ∈ 𝐴𝑘∕𝐺𝑋 and 𝑘 ∈ [𝑚]. Since 𝑑+(𝜏1,𝑊 𝑘
𝑖) = 𝑑+(𝜏2,𝑊 𝑘

𝑖) for all orbitals 𝑖 when 𝜏1 and 𝜏2 belong to the same orbit, it makes
sense to define 𝑑+(𝑊 𝑘

𝑖) (∶= 𝑑+(𝜏,𝑊 𝑘
𝑖) for any (𝜏, 𝜏𝜎) ∈ 𝑊 𝑖

𝑘) as the orbital out-degree in 𝑊 𝑘
𝑖 . In a similar fashion we define 𝑑−(𝑊 𝑘

𝑖).
From Lemma 3.9 we know that there is a single case in which 𝑑+(𝜏,𝑊 𝑘

𝑖) > 1. Namely, two distinct arcs (𝜏, 𝜏𝜎1) and (𝜏, 𝜏𝜎2) with
𝜎1 = (𝑖 𝑗) are both in the same orbital 𝑊 𝑘

𝑖 if and only if there exists a 𝑏 ∈ 𝐵𝜏 such that 𝜎2 = (𝑏(𝑖) 𝑏(𝑗)). This corresponds to case II
in Fig. 1. Hence, we have

𝑑+(𝜏,𝑊 𝑘
𝑖) =

|

|

|

{

𝑏({𝑖, 𝑗}) ∶ 𝑏 ∈ 𝐵𝜏
}

|

|

|

 for some (𝜏, 𝜏(𝑖 𝑗)) ∈ 𝑊 𝑘
𝑖 ,

𝑑−(𝜏,𝑊 𝑘
𝑖) =

|

|

|

{

𝑏({𝑖, 𝑗}) ∶ 𝑏 ∈ 𝐵𝜏
}

|

|

|

 for some (𝜏(𝑖 𝑗), 𝜏) ∈ 𝑊 𝑘
𝑖 .

Indeed, these equal the number of elements in an orbital of Coup(𝐸) under the action of 𝐵𝜏 . Moreover, we also define 𝑑+(𝑍0
𝑖)

(resp. 𝑑−(𝑍𝑚
𝑖)) as the number of arcs in orbital 𝑍0

𝑖 (resp. 𝑍𝑚
𝑖) starting from 𝑠 (resp. ending at 𝑡). For these degrees one can verify

that 𝑑+(𝑍0
𝑖) = |𝑍0

𝑖 | and 𝑑−(𝑍𝑚
𝑖) = |𝑍𝑚

𝑖 |.
For any vertex 𝜏, we let 𝛿+(𝜏, 𝐴𝑘∕𝐺𝑋) (resp. 𝛿−(𝜏, 𝐴𝑘∕𝐺𝑋)) denote the set of orbitals that contain an arc starting (resp. ending)

at vertex 𝜏. That is,
𝛿+(𝜏, 𝐴𝑘∕𝐺𝑋) ∶=

{

𝑖 ∈ 𝐴𝑘∕𝐺𝑋 ∶ (𝜏, 𝜏𝜎) ∈ 𝑊 𝑘
𝑖 for some 𝜎 ∈ 𝑇

}

,

𝛿−(𝜏, 𝐴𝑘∕𝐺𝑋) ∶=
{

𝑖 ∈ 𝐴𝑘∕𝐺𝑋 ∶ (𝜏𝜎, 𝜏) ∈ 𝑊 𝑘
𝑖 for some 𝜎 ∈ 𝑇

}

.

Similar definitions hold for 𝛿+(𝜏,𝐷𝑘∕𝐺𝑋) and 𝛿−(𝜏,𝐷𝑘∕𝐺𝑋). Again, observe that if 𝜏1 and 𝜏2 belong to the same orbit 𝑂𝑘𝑢 , then
𝛿+(𝜏1, 𝐴𝑘∕𝐺𝑋) = 𝛿+(𝜏2, 𝐴𝑘∕𝐺𝑋). For that reason, it makes sense to define 𝛿+(𝑂𝑘𝑢 , 𝐴𝑘∕𝐺𝑋), which is equal to 𝛿+(𝜏, 𝐴𝑘∕𝐺𝑋) for any
𝜏 ∈ 𝑂𝑘𝑢 . In a similar fashion, we define 𝛿−(𝑂𝑘𝑢 , 𝐴𝑘∕𝐺𝑋), 𝛿+(𝑂𝑘𝑢 , 𝐷𝑘∕𝐺𝑋) and 𝛿−(𝑂𝑘𝑢 , 𝐷𝑘∕𝐺𝑋) for all 𝑢 ∈ 𝑉 𝑘∕𝐺𝑋 and 𝑘 ∈ [𝑚].

The symmetry reduced equivalent formulation of (SPP) is obtained by replacing every variable 𝑥𝑒 in 𝐻𝑘 by a variable 𝜆𝑘𝑖
corresponding to the orbital 𝑊 𝑘

𝑖 to which arc 𝑒 belongs. Similarly, we replace every variable 𝑦𝑒 in 𝐷𝑘 by a variable 𝜃𝑘𝑖 corresponding
to the orbital 𝑍𝑘

𝑖 to which arc 𝑒 belongs. As a consequence, the flow conservation constraint corresponding to vertices that belong
to the same orbit becomes equivalent, hence we only keep one per orbit. The remaining linear programming problem we denote by
(RSPP) and is given by

min
𝑚
∑

𝑘=1

∑

𝑖∈𝐴𝑘∕𝐺𝑋

|𝑊 𝑘
𝑖 |𝜆

𝑘
𝑖

s.t.
∑

𝑖∈𝐷0∕𝐺𝑋

𝑑+(𝑍0
𝑖)𝜃

0
𝑖 = 1,

∑

𝑖∈𝐷𝑚∕𝐺𝑋

𝑑−(𝑍𝑚
𝑖)𝜃

𝑚
𝑖 = 1

∑

𝑖∈𝛿−(𝑂𝑘𝑢 ,
𝐷𝑘−1∕𝐺𝑋)

𝜃𝑘−1𝑖 +
∑

𝑖∈𝛿−(𝑂𝑘𝑢 ,
𝐴𝑘∕𝐺𝑋)

𝑑−(𝑊 𝑘
𝑖)𝜆

𝑘
𝑖 =

∑

𝑖∈𝛿+(𝑂𝑘𝑢 ,
𝐷𝑘∕𝐺𝑋)

𝜃𝑘𝑖 +
∑

𝑖∈𝛿+(𝑂𝑘𝑢 ,
𝐴𝑘∕𝐺𝑋)

𝑑+(𝑊 𝑘
𝑖)𝜆

𝑘
𝑖 ∀𝑢 ∈ 𝑉 𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

0 ≤ 𝜆𝑘𝑖 ≤ 1 ∀𝑖 ∈ 𝐴𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

0 ≤ 𝜃𝑘𝑖 ≤ 1 ∀𝑖 ∈ 𝐷𝑘∕𝐺𝑋 , 𝑘 ∈ {0} ∪ [𝑚].

(RSPP)

Observe that |𝑊 𝑘
𝑖 |, 𝑑

+(𝑍0
𝑖) and 𝑑−(𝑍𝑚

𝑖) for all appropriate 𝑘 and 𝑖 are proportional to the size of an orbit in one of the subgraphs,
which is in turn proportional to |Aut(Coup(𝐸))|, see (14). For highly symmetric coupling graphs, the order of this automorphism
13

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
group becomes very large, leading to extreme coefficient values in (RSPP). This may lead to numerical instability when solving such
program.

To improve practical performance, we apply a scaling operation prior to solving the program. We first multiply both sides of the
flow conservation constraints by |Aut(Coup(𝐸))| for all 𝑢 ∈ 𝑉 𝑘∕𝐺𝑋 and 𝑘 ∈ [𝑚]. After that, we apply the following substitution:

𝜆
𝑘
𝑖 ∶= |Aut(Coup(𝐸))|𝜆𝑘𝑖 for all 𝑖 ∈ 𝐴𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚],

𝜃
𝑘
𝑖 ∶= |Aut(Coup(𝐸))|𝜃𝑘𝑖 for all 𝑖 ∈ 𝐷𝑘∕𝐺𝑋 , 𝑘 ∈ {0} ∪ [𝑚].

This leads to the equivalent linear program (RSPP′). Observe that the new upper bounds on 𝜆𝑘𝑖 and 𝜃
𝑘
𝑖 are omitted in this program.

Indeed, the out-degree of 𝑠 and in-degree of 𝑡 needs to be 1, which implicitly enforces an upper bound of 1 on all 𝜃0𝑖 and 𝜃
𝑚
𝑖 . Since

all variables and coefficient values are nonnegative and flow conservation holds throughout the program, we can without loss of
generality omit the upper bounds on the variables. Hence, the coefficients of this program no longer depend on |Aut(Coup(𝐸))|.

min
𝑚
∑

𝑘=1

∑

𝑖∈𝐴𝑘∕𝐺𝑋

|𝑊 𝑘
𝑖 |

|Aut(Coup(𝐸))|𝜆
𝑘
𝑖

s.t.
∑

𝑖∈𝐷0∕𝐺𝑋

𝑑+(𝑍0
𝑖)

|Aut(Coup(𝐸))| 𝜃
0
𝑖 = 1,

∑

𝑖∈𝐷𝑚∕𝐺𝑋

𝑑−(𝑍𝑚
𝑖)

|Aut(Coup(𝐸))| 𝜃
𝑚
𝑖 = 1

∑

𝑖∈𝛿−(𝑂𝑘𝑢 ,
𝐷𝑘−1∕𝐺𝑋)

𝜃
𝑘−1
𝑖 +

∑

𝑖∈𝛿−(𝑂𝑘𝑢 ,
𝐴𝑘∕𝐺𝑋)

𝑑−(𝑊 𝑘
𝑖)𝜆

𝑘
𝑖 =

∑

𝑖∈𝛿+(𝑂𝑘𝑢 ,
𝐷𝑘∕𝐺𝑋)

𝜃
𝑘
𝑖 +

∑

𝑖∈𝛿+(𝑂𝑘𝑢 ,
𝐴𝑘∕𝐺𝑋)

𝑑+(𝑊 𝑘
𝑖)𝜆

𝑘
𝑖 ∀𝑢 ∈ 𝑉 𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

0 ≤ 𝜆
𝑘
𝑖 ∀𝑖 ∈ 𝐴𝑘∕𝐺𝑋 , 𝑘 ∈ [𝑚]

0 ≤ 𝜃
𝑘
𝑖 ∀𝑖 ∈ 𝐷𝑘∕𝐺𝑋 , 𝑘 ∈ {0} ∪ [𝑚]

(RSPP′)

Recall that the NNCP is in general -hard [18]. Based on the LP formulation (RSPP′), we are able to unfold some special cases
where the problem turns out to be polynomial time solvable. The condition that provides the key to this complexity result is the
order of the automorphism group of the coupling graph.

Since all permutations in 𝐵𝜏 should setwise stabilize the sets 𝜏−1(𝑆𝑖) for all 𝑖 ∈ [𝑙], it follows that 𝐵𝜏 is a subgroup of S𝑛(),
where  ∶= {𝜏−1(𝑆1),… , 𝜏−1(𝑆𝑙)}. The order of S𝑛() is 2𝑝𝑓 !, which implies that |𝐵𝜏 | ≤ 2𝑝𝑓 !. This leads to the following complexity
result.

Theorem 4.2. The NNCP is polynomial time solvable on coupling graphs with automorphism groups of order 𝛺((𝑛 − 𝑏)!), where 𝑛 is the
number of vertices in the coupling graph and 𝑏 is a constant independent of 𝑛.

Proof. The number of variables in (RSPP) equals 𝑚|𝐴1∕𝐺𝑋 |+|𝐷0∕𝐺𝑋 |+𝑚|𝐷1∕𝐺𝑋 |. Based on Table 1 and the inequalities |𝐵𝜏 | ≤ 2𝑝𝑓 !,
|𝐸∕𝐵𝜏 | ≤ |𝐸| and |𝐹 𝑘| ≤ 2|𝐸|(𝑛 − 2)! for all 𝜏 ∈ S𝑛 and 𝑘 ∈ [𝑚], we have

𝑚
∑

𝜏∈S𝑛 |𝐵𝜏 | ⋅ |𝐸∕𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| +
∑

𝜏∈S𝑛 |𝐵𝜏 |

2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| +
𝑚
∑

𝜏∈𝐹 1 |𝐵𝜏 |
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

≤ 𝑚 2𝑝𝑓 !|𝐸|𝑛!
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| +

2𝑝𝑓 !𝑛!
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))| +

𝑚 2|𝐸|(𝑛 − 2)!2𝑝𝑓 !
2𝑝𝑓 ! ⋅ |Aut(Coup(𝐸))|

= 𝑂
(

𝑚 |𝐸| 𝑛!
|Aut(Coup(𝐸))|

)

.

Whenever |Aut(Coup(𝐸))| = 𝛺((𝑛− 𝑏)!), the number of variables in (RSPP) is 𝑂 (

𝑚|𝐸|𝑛𝑏
)

. Since 𝑏 does not depend on the input, the
number of variables in the reduced instance is polynomial in 𝑛, 𝑚 and |𝐸|. □

The implication of Theorem 4.2 does not solely restrict to trivial NNCP classes, such as the ones with a coupling graph that is
complete. An example of a less trivial class of coupling graphs having a sufficiently large automorphism group are the bicliques,
i.e., the complete bipartite graphs.

Corollary 4.3. The NNCP is polynomial time solvable on the biclique 𝐾𝑀,𝑁 with 𝑀 of fixed size. In particular, the NNCP on the star
𝐾1,𝑁 is polynomial time solvable.

4.2. Reduced combinatorial formulation

Similar to (SPP) being an LP formulation of a shortest path problem, we show in this section that (RSPP) and (RSPP′) also
have a combinatorial interpretation. Such combinatorial approaches often have the potential to induce efficient algorithms that
14

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
are favoured over solving their LP formulation. In order to simplify notation, we work with (RSPP) in this section, although the
construction for (RSPP′) is similar.

To view (RSPP) as a combinatorial problem, we consider the so-called quotient graph of 𝑋 under the action of 𝐺𝑋 . In its most
general form, a quotient graph of a graph 𝑋 is induced by an equivalence relation on the vertices of 𝑋. We below provide the
formal definition for the particular case where the equivalence relation is induced by an automorphism group of 𝑋.

Definition 4.4 (Quotient Graph). Let 𝑋 = (𝑉 ,𝐴) be a directed graph and let 𝐺 be a subgroup of Aut(𝑋). Then the quotient graph of
𝑋 under 𝐺 is the graph  = ( ,) with  ∶= 𝑉 ∕𝐺 and  ∶= 𝐴∕𝐺 ⊆  ×  .

Since all arcs within an orbital of 𝑋 start at vertices in the same orbit and end at vertices in the same orbit, the quotient graph
is well-defined. Observe that  can contain loops and multi-arcs, even if 𝑋 is simple.

Let  = ( ,) be the quotient graph of 𝑋 under 𝐺𝑋 . Since the source vertex 𝑠 and the sink vertex 𝑡 are in isolated orbits, the
vertices 𝑠 and 𝑡 are again in  . By abuse of notation, we again denote these vertices as 𝑠, 𝑡 ∈  . Since the constraints and variables
in (RSPP) correspond to orbits and orbitals of 𝑋 under 𝐺𝑋 , respectively, the problem (RSPP) is an optimization problem on the
quotient graph  . Now, for all (𝑗,𝓁) ∈  we define the following flow variable 𝑓𝑗𝓁 :

𝑓𝑗𝓁 ∶=

⎧

⎪

⎨

⎪

⎩

𝑑+(𝑍0
𝑖)𝜃

0
𝑖 if (𝑗,𝓁) corresponds to 𝑍0

𝑖 ,
𝜃𝑘𝑖 if (𝑗,𝓁) corresponds to 𝑍𝑘

𝑖 , 𝑘 ∈ [𝑚],
𝑑+(𝑊 𝑘

𝑖)𝜆
𝑘
𝑖 if (𝑗,𝓁) corresponds to 𝑊 𝑘

𝑖 , 𝑘 ∈ [𝑚].
(22)

Moreover, we define for all (𝑗,𝓁) ∈  a cost vector

𝑤𝑗𝓁 ∶=

⎧

⎪

⎨

⎪

⎩

|𝑊 𝑘
𝑖 |

𝑑+(𝑊 𝑘
𝑖)

if (𝑗,𝓁) corresponds to 𝑊 𝑘
𝑖 , 𝑘 ∈ [𝑚],

0 otherwise,
(23)

and an upper bound vector

𝑢𝑗𝓁 ∶=

⎧

⎪

⎨

⎪

⎩

𝑑+(𝑍0
𝑖) if (𝑗,𝓁) corresponds to 𝑍0

𝑖 ,
1 if (𝑗,𝓁) corresponds to 𝑍𝑘

𝑖 , 𝑘 ∈ [𝑚],
𝑑+(𝑊 𝑘

𝑖) if (𝑗,𝓁) corresponds to 𝑊 𝑘
𝑖 , 𝑘 ∈ [𝑚].

(24)

Finally, for all (𝑗,𝓁) ∈  we define a multiplier 𝑝𝑗𝓁 :

𝑝𝑗𝓁 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑−(𝑊 𝑘
𝑖)

𝑑+(𝑊 𝑘
𝑖)

if (𝑗,𝓁) corresponds to 𝑊 𝑘
𝑖 , 𝑘 ∈ [𝑚],

𝑑−(𝑍𝑚
𝑖) if (𝑗,𝓁) corresponds to 𝑍𝑚

𝑖 ,
1 otherwise.

(25)

We now substitute 𝑓𝑗𝓁 , 𝑤𝑗𝓁 and 𝑝𝑗𝓁 for all orbitals (𝑗,𝓁) ∈  into (RSPP). This yields an equivalent linear programming problem
that has the structure of a minimum cost generalized network flow problem:

min
∑

(𝑗,𝓁)∈
𝑤𝑗𝓁𝑓𝑗𝓁

s.t.
∑

(𝑗,𝓁)∈𝛿+(𝑠)
𝑓𝑗𝓁 = 1,

∑

(𝑗,𝓁)∈𝛿−(𝑡)
𝑝𝑗𝓁𝑓𝑗𝓁 = 1

∑

(𝑗,𝓁)∈𝛿+(𝑣)
𝑓𝑗𝓁 =

∑

(𝑗,𝓁)∈𝛿−(𝑣)
𝑝𝑗𝓁𝑓𝑗𝓁 ∀𝑣 ∈  ⧵ {𝑠, 𝑡}

0 ≤ 𝑓𝑗𝓁 ≤ 𝑢𝑗𝓁 ∀(𝑖, 𝑗) ∈ .

(GNFP)

A generalized flow is a flow starting from a sink 𝑠, conserving the flow at each vertex and ending at a source 𝑡, where along each arc
(𝑗,𝓁) only a fraction of 𝑝𝑗𝓁 of flow is moved from 𝑗 to 𝓁. This fraction, called the multiplier, can also be larger than one, which means
that the flow is increased along the arc. The problem (GNFP) aims to send a generalized flow of one from 𝑠 to 𝑡 that has a minimal
cost with respect to the cost vector 𝑤. The minimum cost generalized network flow problem is solvable in weakly polynomial time
by the algorithm of Wayne [63]. This is the only known combinatorial algorithm for this problem in the literature.

4.3. Symmetry-reduced NNCP algorithm

In this section we show how an optimal solution to (RSPP) or (GNFP) can be used to find an optimal sequence of qubit orders
for the NNCP. Moreover, we briefly present an overview of the entire solution approach in terms of a pseudo-code.

By construction, solving (RSPP) or (GNFP) provides the optimal cost of a shortest path in 𝑋. However, because of the reduction,
the solutions of (RSPP) or (GNFP) do no longer correspond itself to paths. Let (𝜆, 𝜃) be an optimal solution to (RSPP) (in case of
15

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
solving (GNFP), we can obtain (𝜆, 𝜃) from the flow variable 𝑓 by (22)). Now, we define (𝑥, 𝑦) ∈ ∏𝑚
𝑘=1 R

𝐴𝑘 ×
∏𝑚

𝑘=0 R
𝐷𝑘 as follows:

𝑥 ∶=
⎛

⎜

⎜

⎝

∑

𝑖∈𝐴𝑘∕𝐺𝑋

𝜆𝑘𝑖 1𝑊 𝑘
𝑖

⎞

⎟

⎟

⎠

𝑚

𝑘=1

and 𝑦 ∶=
⎛

⎜

⎜

⎝

∑

𝑖∈𝐷𝑘∕𝐺𝑋

𝜃𝑘𝑖 1𝑍𝑘𝑖

⎞

⎟

⎟

⎠

𝑚

𝑘=1

. (26)

It follows from the construction that the pair (𝑥, 𝑦) corresponds to an optimal solution of (SPP). Hence, it is a convex combination of
characteristic vectors of (𝑠, 𝑡)-paths in 𝑋. Let 𝑋sup denote the subgraph of 𝑋 induced by the support of (𝑥, 𝑦). Then, 𝑋sup is an acyclic
graph. Namely, if there would exist a cycle in 𝑋sup, due to the orientation of the arcs in 𝑋, it can only consist of arcs within one
subgraph. Since these arcs all have a positive cost, the solution (𝑥, 𝑦) can be improved by excluding the cycle from it. By a similar
argument, it follows that any (𝑠, 𝑡)-path in 𝑋sup must be optimal. Namely, if there is an (𝑠, 𝑡)-path in the support with a strictly larger
cost than the optimum, we can improve the solution (𝑥, 𝑦) by excluding this path from it.

These observations imply that any (𝑠, 𝑡)-path in 𝑋sup is optimal. Finding such path can be done without actually constructing
𝑋sup. Starting from 𝑠, we select an arbitrary arc from an orbital in 𝐷0∕𝐺𝑋 that is in the support of 𝜃0. This arc leads to a new
vertex 𝜏. From the orbit where 𝜏 belongs to, we again select an orbital leaving this orbit that has a support in the optimal solution
(𝜆, 𝜃). Within this orbital, there is at least one arc starting from 𝜏 and we select such an arc arbitrarily if there are multiple. We
continue doing this, which will eventually lead to the sink vertex 𝑡. It follows from the discussion above that this (𝑠, 𝑡)-path provides
an optimal qubit ordering for the NNCP.

We end this section by giving an overview of the symmetry-reduced NNCP algorithm. The approach is given in pseudo-code in
Algorithm 1. We emphasize that it does not rely on the use of algebraic software, nor does it require a construction of the full graph
𝑋.

Algorithm 1 Symmetry-reduced NNCP algorithm
Input: NNCP instance 𝛤 = (𝑄,𝐶) and coupling graph Coup(𝐸) = (𝐿,𝐸).
1: Construct gate graph (𝑄,𝑈) and fixing pattern  .
2: Construct orbit representation  of S𝑛 under the action 𝐺sub.
3: Initialize quotient subgraph sub = (sub , sub) with sub indexed by  and sub = ∅.
4: for 𝜏 ∈  do
5: Determine 𝐵𝜏 and (𝐸∕𝐵𝜏)
6: for {𝑖, 𝑗} ∈ (𝐸∕𝐵𝜏) do
7: Construct an arc in  between 𝜏 and the orbit to which 𝜏(𝑖 𝑗) belongs, and add it to sub.
8: Compute the cardinality of Orb(𝜏, 𝜏(𝑖 𝑗)) and its out- and in-degree in Orb(𝜏) and Orb(𝜏(𝑖 𝑗)), respectively.
9: end for
10: end for
11: Initialize the quotient graph  = ( ,) where  consists of 𝑚 copies of sub, a source 𝑠 and a sink 𝑡, and  consists of all arcs within the subgraphs sub. Add to

 all arcs between 𝑠 and the first subgraph.
12: for 𝑔𝑘 ∈ 𝐶 do
13: Determine (𝐷𝑘∕𝐺𝑋).
14: if 𝑔 is the 𝑚th quantum gate then
15: For all orbit representatives 𝜏 ∈ (𝐷𝑘∕𝐺𝑋), add arcs from Orb(𝜏) to sink vertex 𝑡.
16: else
17: For all orbit representatives 𝜏 ∈ (𝐷𝑘∕𝐺𝑋), add arcs from Orb(𝜏) to same orbit in next subgraph.
18: end if
19: end for
20: Obtain optimal (𝜆, 𝜃) pair via solving either (RSPP), (RSPP′) or the generalized network flow problem (GNFP).
21: Find an optimal sequence of qubit orders 𝜏𝑘 , 𝑘 ∈ [𝑚] by identifying any (𝑠, 𝑡)-path in the support of (𝑥, 𝑦), where (𝑥, 𝑦) are defined as in (26).
Output: 𝜏𝑘, 𝑘 ∈ [𝑚]

4.4. Dynamic programming algorithm

Suppose we additionally assume that S𝑛() is trivial, i.e., the fixing pattern only consists of singletons. Notice that this assumption
holds for most quantum circuits, as the gate graph (𝑄,𝑈) is often connected even if the number of gates is small. In that case, the
subgroup 𝐵𝜏 is trivial for all 𝜏 ∈ S𝑛, implying that the problem (GNFP) can be solved more efficiently. Indeed, we then have
𝑑+(𝑊 𝑘

𝑖) = 𝑑−(𝑊 𝑘
𝑖) = 1 for all orbitals 𝑊 𝑘

𝑖 , hence 𝑝𝑗𝓁 = 1 for all 𝑊 𝑘
𝑖 . Now, for all (𝑗,𝓁) ∈ 𝛿−(𝑡) we replace 𝑝𝑗𝓁𝑓𝑗𝓁 by a new variable,

say 𝑔𝑗𝓁 , that is upper-bounded by 𝑑−(𝑍𝑚
𝑖). After these modifications, the resulting problem equals the LP formulation of a shortest

path problem, for which strongly-polynomial time algorithms exist [56].
In fact, due to the layered structure of the quotient graph  = ( ,), the shortest path problem can be solved by a dynamic

programming algorithm, which we briefly describe below.
As S𝑛() is trivial, each orbit Orb(𝜏) can be written as 𝜏Aut(Coup(𝐸)), see (15). Hence, the orbits under the action of 𝐺𝑋

correspond to the left cosets of Aut(Coup(𝐸)) in S𝑛 and the orbit representation  is in fact a representation of left cosets of S𝑛
in Aut(Coup(𝐸)). Now, we define for each gate 𝑘 ∈ [𝑚] and each representative 𝜏 ∈  the integer

𝑁(𝑘, 𝜏) ∶= the optimal number of SWAP gates to be inserted up to gate 𝑔𝑘 if the qubit order prior to applying gate 𝑔𝑘 is 𝜏,
where we set 𝑁(𝑘, 𝜏) = ∞ if qubit order 𝜏 does not comply with gate 𝑔𝑘. Now, the values 𝑁(𝑘, 𝜏) are computed by the following
dynamic programming iteration. Define 𝑁(0, 𝜏) = 0 for all 𝜏 ∈  and let

𝑁(𝑘, 𝜏) =

{

∞ if 𝜏−1(𝑔𝑘) ∉ 𝐸,
{ { }}
min 𝑁(𝑘 − 1, 𝜏), min𝜏∈⧵{𝜏} 𝑁(𝑘 − 1, 𝜏) + 𝑇 (𝜏, 𝜏) otherwise,

16

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Table 2
Summary of NNCP symmetry reduction characteristics for a set of special coupling graphs.
 Architecture 𝑛 |𝐸| Graph structure Aut(Coup(𝐸)) |𝐵𝜏 |

Cycle 𝐶𝑁 𝑁 𝑁

Example of 𝐶6

2𝑛 1 (unless the NNCP instance is trivial, see Theorem 5.1)

Biclique 𝐾𝑀,𝑁 𝑀 +𝑁 𝑀𝑁

Example of 𝐾2,3

S𝑀 × S𝑁 (if 𝑀 ≠ 𝑁) 2𝑝−𝑝̂𝑓1!𝑓2!, where 𝑝̂, 𝑓1 and 𝑓2 follow from Theorem 5.2

Star 𝐾1,𝑁 𝑁 + 1 𝑁

Example of 𝐾1,6

S𝑛−1 2𝑝−𝑝̂𝑓1!𝑓2!, where 𝑝̂, 𝑓1 and 𝑓2 follow from Theorem 5.2

for all 𝑘 ∈ [𝑚] and 𝜏 ∈ , where
𝑇 (𝜏, 𝜏) ∶= min{𝐽𝑇 (𝜏, 𝜏) ∶ 𝜏 ∈ 𝜏Aut(Coup(𝐸))},

with the metric 𝐽𝑇 as defined in (2). Thus, 𝑇 (𝜏, 𝜏) denotes the minimum distance 𝐽𝑇 between any pair of representatives of the
cosets containing 𝜏 and 𝜏. The dynamic programming algorithm relies on the fact that the shortest path from 𝑠 to qubit order 𝜏 in
layer 𝑘 can be computed by considering all connections between qubit orders of layers 𝑘− 1 and 𝑘. To transform qubit order 𝜏 into
𝜏, a total number of 𝑇 (𝜏, 𝜏) SWAP gates need to be inserted, whereas no additional SWAP gates are needed if 𝜏 is already selected
as the qubit order in the previous layer 𝑘 − 1. The optimal solution to the NNCP is given by min𝜏∈𝑁(𝑚, 𝜏).

The efficiency of the dynamic programming algorithm relies on the number of representatives in  and the complexity of
computing the distance 𝑇 . For example, when the coupling graph is the star graph, we have || = 𝑛 and 𝑇 (𝜏1, 𝜏2) = 1 for
all 𝜏1, 𝜏2 ∈  with 𝜏1 ≠ 𝜏2. The latter follows from the fact that each representative is fully characterized by the qubit that is placed
on the center location of the star graph and that only one SWAP gate is necessary to place any other qubit on this center location.
For the cycle graph, however, || is still exponentially large, although the metric 𝐽𝑇 on cyclic coupling graphs can be computed
in polynomial time [55]. For general coupling graphs, even the computation of 𝐽𝑇 , and thus of 𝑇 , is -hard [64], limiting the
applicability of this dynamic programming algorithm. In such cases, the symmetry-reduced NNCP algorithm described in Algorithm
1 is favoured.

In case S𝑛() is not trivial, the above dynamic programming algorithm is still valid, although the approach does not exploit
all symmetries in the underlying instance. In contrast, the method described in Algorithm 1 does make use of the full symmetry
information of the problem.

5. Special coupling graphs

Of key importance in the formulation discussed in Section 4 are the orbit and orbital representation of the subgraphs, which
rely on the subgroups 𝐵𝜏 . These objects heavily depend on the specific coupling graph. In this section we demonstrate how these
objects are obtained for three specific structured coupling graphs: the cycle graph, the biclique graph and the star graph.

As mentioned before, other graph types that are frequently used in the topology of quantum architectures are the linear array
and two-dimensional grid graphs. In [31], the symmetry of the linear array (whose automorphism group has size 2) is exploited in
a shortest path formulation of the NNCP. The symmetry-reduction of the NNCP on square grid graphs is described in [65]. Since
these graphs have only small automorphism groups, symmetry-reduction techniques are less powerful on such coupling graphs. For
that reason, we exclude them from the analysis in this paper, but we refer the interested reader to the above-mentioned papers for
further details.

Table 2 provides an overview of certain important characteristics of each of the considered coupling graphs. Details are provided
in the subsections below.

5.1. Cycle graph 𝐶𝑁

Let 𝐶𝑁 = (𝐿,𝐸) be the cycle on 𝑁 vertices, i.e., 𝐿 = [𝑁] and 𝐸 = {{𝑖, 𝑖 + 1} ∶ 𝑖 ∈ [𝑁 − 1]} ∪ {𝑁,1}. Then 𝑛 = |𝐿| = 𝑁 . It is
well-known that the automorphism group of 𝐶𝑁 is given by 2𝑛, the dihedral group of order 2𝑛, see e.g., Godsil and Royle [66].
This group consists of all reflections and rotations of the regular polygon of order 𝑛. It follows from Theorem 3.2 that Cay(S , 𝑇) is
𝑛

17

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
normal when 𝑁 ≥ 5 and, as a consequence, its full automorphism group is isomorphic to S𝑛×2𝑛. The Cayley graph Aut(Cay(S𝑛, 𝑇))
with 𝑇 induced by 𝐶𝑁 is in the literature known as the modified bubble-sort graph, see e.g., [67].

The first step in studying the orbit and orbital structure of 𝑋 under 𝐺𝑋 is the identification of 𝐵𝜏 . It can be proven that 𝐵𝜏 is
trivial under a very mild condition. Recall that 𝑐 is the number of qubits in a connected component of size at least three in (𝑄,𝑈),
see Definition 3.6.

Theorem 5.1. Suppose 𝑐 ≥ 3. Then 𝐵𝜏 is trivial for all 𝜏 ∈ S𝑛.

Proof. Let 𝜏 ∈ S𝑛. If the gate graph (𝑄,𝑈) contains a connected component of size at least three, then the fixing pattern  contains at
least three single-element sets, say {𝑖}, {𝑗} and {𝓁}. Since 𝐵𝜏 is the subgroup of 2𝑛 that setwise stabilizes the sets 𝜏−1(𝑆1),… , 𝜏−1(𝑆𝑙),
it follows that any 𝑏 ∈ 𝐵𝜏 must pointwise fix 𝜏−1(𝑖), 𝜏−1(𝑗) and 𝜏−1(𝓁). However, the only element in 2𝑛 that fixes more than two
elements is the identity element. Thus, 𝐵𝜏 is trivial. □

Observe that the condition of Theorem 5.1 is not restrictive. Namely, when 𝑐 < 3, the quantum circuit does not have overlapping
quantum gates. This implies that a trivial qubit assignment is possible without the need of any inserted SWAP gates, making the
NNCP instance trivial.

5.2. Biclique graph 𝐾𝑀,𝑁 and star graph 𝐾1,𝑁

The biclique graph 𝐾𝑀,𝑁 is given by 𝐿 = [𝑀] ⊔ [𝑁] and 𝐸 = {{𝑖, 𝑗} ∶ 𝑖 ∈ [𝑀], 𝑗 ∈ [𝑁]}. The induced partition of the vertex set
𝐿 we denote by the sets 𝐿𝑀 and 𝐿𝑁 . We assume here that 𝑀 < 𝑁 . Any independent setwise permutation of vertices in 𝐿𝑀 and 𝐿𝑁
forms an automorphism of the graph, hence Aut(Coup(𝐸)) ≅ S𝑀 × S𝑁 . The corresponding Cayley graph Cay(S𝑛, 𝑇) is in the literature
known as the generalized star graph, see e.g., [52]. With respect to the structure of the subgroups 𝐵𝜏 , we prove the following result.

Theorem 5.2. Let 𝜏 ∈ S𝑛. Let  ′ denote the fixing pattern obtained from  by replacing any 𝑆 ∈  with |𝑆| ≥ 2 by
𝑆1 = {𝑖 ∈ 𝑆 ∶ 𝜏−1(𝑖) ∈ 𝐿𝑀} and 𝑆2 = {𝑖 ∈ 𝑆 ∶ 𝜏−1(𝑖) ∈ 𝐿𝑁}.

Then 𝐵𝜏 ≅ S𝑛( ′). Moreover, let 𝑝̂ denote the number of pairs {𝑖, 𝑗} for which 𝜏−1(𝑖) ∈ 𝐿𝑀 and 𝜏−1(𝑗) ∈ 𝐿𝑁 , let 𝑓1 denote the number of
elements in the free set that are mapped to 𝐿𝑀 by 𝜏−1, and let 𝑓2 = 𝑓 − 𝑓1. Then,

|𝐵𝜏 | = 2𝑝−𝑝̂𝑓1!𝑓2!.

Proof. Let  ∶= {𝜏−1(𝑆1),… , 𝜏−1(𝑆𝑙)} be the partition of [𝑛] defined by  shifted over 𝜏−1. Then, 𝐵𝜏 is the subgroup of S𝑛() which
are also automorphisms of 𝐾𝑀,𝑁 . Since any automorphism of 𝐾𝑀,𝑁 setwise fix the vertices in 𝐿𝑀 and 𝐿𝑁 , we obtain 𝐵𝜏 by splitting
each set of  into its subset in 𝐿𝑀 and its subset in 𝐿𝑁 , leading to the partition ′. The partition  ′ is exactly ′ shifted over 𝜏,
leading to 𝐵𝜏 ≅ S𝑛( ′). The second part of the statement follows from counting the number of elements in S𝑛( ′). □

The special case where 𝑀 = 1 is commonly known as the star graph 𝐾1,𝑁 . Its induced Cayley graph is studied in [67]. Since we
consider this coupling graph extensively in the numerical results of Section 6, we add this case explicitly to Table 2.

6. Computational results

In this section we test our symmetry-reduced NNCP formulation on a set of instances for the coupling graphs discussed in
Section 5. We compare the result against the nonreduced shortest path formulation (SPP).

We first describe the design of our numerical tests in Section 6.1, after which we discuss the results on real and random instances
in Sections 6.2 and 6.3, respectively.

6.1. Design of computational experiments

For our experiments we consider both realistic as well as randomly generated quantum circuits on different coupling graphs.
As described in Section 2, we are justified to make two assumptions on the quantum circuits under consideration, imposing a
preprocessing strategy in case these assumptions are not met:

1. Single-qubit gates can be ignored for the NNCP, since these do always comply with the adjacent interaction constraints.
Without loss of generality, we therefore remove the single-qubit gates from the circuits in the preprocessing phase.

2. All gates that act on more than two qubits are decomposed into gates that act on one or two qubits. Nielsen and Chuang [1]
have shown that these gates are universal, and that any quantum gate can therefore be decomposed into one- or two-qubit
gates. There exists a large number of different decomposition strategies, leading to possibly different quantum gates (with
the same functionality, however). As the choice of the optimal decomposition strategy is outside the scope of our research,
we always choose the same strategy, namely the method considered in [11,31].
18

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
The quantum circuits that we consider in this paper consist of general one- or two-qubit gates, multiple-control Toffoli gates up to
size five, Peres gates and multiple-control Fredkin gates up to size four. In the Appendix we consider the decomposition of these
gates into one- or two qubit gates, following the approach from [11,31]. After that, we remove all single-qubit gates from the circuit.
The preprocessed circuit that remains, will be the quantum circuit 𝛤 = (𝑄,𝐶) that we take as an input to our approach.

We consider the following two instance classes:

• Real data: Realistic quantum circuits that we consider are obtained from the RevLib library [68]. This data set consists
of quantum gates of (well-known) reversible functions considered in the quantum literature. Due to the assumptions of the
preprocessing phase, we only consider instances consisting of the above-mentioned gates, see the Appendix for an overview.
This leads to a set of 84 instances with 𝑛 ∈ {5,… ,17} and 𝑚 ∈ {7,… ,112}.

• Random data: We also consider synthetic quantum gates in order to also test our approach on circuits consisting of more
qubits and gates. We apply two strategies:

– Random Class I : Given 𝑛 and 𝑚, we create a random circuit on 𝑛 qubits consisting of 𝑚 two-qubit gates. Each gate acts
on two distinct qubits that are chosen uniformly at random from [𝑛], independently from the other gates.
For each combination of 𝑛 ∈ {20,30,… ,100} and 𝑚 = {2𝑛,4𝑛}, we consider 5 randomly generated instances of this type.
This leads to a test set of 90 instances.

– Random Class II : Given 𝑛 and 𝑚, we first create a random circuit on 𝑛 qubits consisting of 𝑚 gates selected from: Toffoli
gate (on 3, 4 or 5 qubits), Fredkin gate (on 3 or 4 qubits), Peres gate, or a general two-qubit gate. The latter class includes
the CNOT, SWAP and controlled-𝑉 or -𝑉 † gates. Each gate type is selected with equal probability, and the qubits on which
each gate acts are chosen uniformly at random from [𝑛]. After that, we apply the preprocessing approach explained above
to convert each circuit to an equivalent circuit of two-qubit gates. This leads to quantum gates with possibly more realistic
patterns than Random Class I.
For each combination of 𝑛 ∈ {20,30,… ,100} and 𝑚 ∈ {𝑛,2𝑛}, we consider 5 randomly generated instances of this type,
leading to a test set of 90 instances. After the preprocessing step, the values of 𝑚 increase and are within 117 ≤ 𝑚 ≤ 1872.

We solve the NNCP for each quantum circuit on the following coupling graphs:

• Cycle graph: The undirected cycle 𝐶𝑁 on 𝑁 = 𝑛 qubits, see Section 5.1.
• Star graph: The star graph 𝐾1,𝑁 with 𝑁 = 𝑛 − 1, see Section 5.2.
• Biclique graph: The biclique graph 𝐾𝑀,𝑁 with 𝑀 = 2 and 𝑁 = 𝑛 − 2, see Section 5.2.

For each combination of quantum circuit and coupling graph, we solve the unreduced LP-formulation (SPP) and the reduced
scaled formulation (RSPP′). The unreduced formulation is implemented by a full construction of the graph 𝑋 = (𝑉 ,𝐴). For the
reduced formulation, we follow the steps of Algorithm 1, which is based on the results from Sections 3–5. Preliminary experiments
have shown that the performance between the nonscaled and scaled formulations, (RSPP) and (RSPP′), respectively, is very similar.
However, as the size of the coefficients in (RSPP) grows with the order of the automorphism group of Coup(𝐸), the LP formulation
becomes unstable for the star and biclique graphs when 𝑛 ≥ 11 or 𝑛 ≥ 12, respectively. Therefore, we only use the more robust
scaled version (RSPP′) in our tests.

In Section 4.4 we have shown that under certain circumstances the shortest path problem in the quotient graph  can also be
solved efficiently by a dynamic programming algorithm. Since in our experiments the group S𝑛() is often nontrivial for the random
classes and the metric 𝑇 is not straightforward to compute on the cycle graph, we restrict our computational study to the linear
programs (SPP) and (RSPP′).

Experiments are carried out on a PC with an Intel(R) Core(TM) i7-8700 CPU, 3.20 GHz and 8 GB RAM. Our methods are
implemented in Julia 1.8.4 using JuMP v1.6.0 [69] to model the mathematical optimization problems. We use the LP solver of
Mosek 10.0 [70] to solve our models in the default configuration. The maximum computation time (including the construction time
of the program) is set to 2 h.

6.2. Results on RevLib instances

Tables 3, 4 and 5 show the results for the RevLib instances on the cycle, star and biclique graph, respectively. The columns ‘𝑛’
and ‘𝑚’ show the number of qubits and quantum gates in the preprocessed circuit. The column ‘OPT’ shows the optimal value of the
NNCP instance, i.e., the minimum number of inserted SWAP gates in order to make the quantum circuit compliant. The columns
‘time (𝑅𝑆𝑃𝑃 ′)’ and ‘time (𝑆𝑃𝑃)’ show the computation time (i.e., clocktimes) in seconds to solve the reduced model (RSPP′) and
the base model (SPP), respectively. The values are rounded to three decimals. The columns ‘#var (𝑅𝑆𝑃𝑃 ′)’ and ‘#const (𝑅𝑆𝑃𝑃 ′)’
denote the total number of variables and constraints after the symmetry reduction. The column ‘reduction #var (%)’ shows the
relative reduction in the number of variables compared to the base model, i.e., #var (𝑆𝑃𝑃)−#var (𝑅𝑆𝑃𝑃 ′)

#var (𝑆𝑃𝑃) ⋅100%, rounded to two decimal
places. The final column shows the same relative reduction for the number of constraints. Whenever a given instance is not solvable
(including construction) within the time limit of 2 h, or whenever an instance leads to a shortage of memory, we report a ‘–’ in the
tables.

It turned out that the 62 instances with 𝑛 = 5 are very easy to compute for both models (𝑆𝑃𝑃) and (𝑅𝑆𝑃𝑃 ′). For that reason,
results on these instances are not depicted in Tables 3, 4 and 5. The total relative reduction in the number of variables and constraints
on the instances with 𝑛 = 5 turns out to be at least 90% and 89.8%, respectively.
19

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Table 3
Results on the ‘RevLib’ instances on the cyclic coupling graph. We compare the performance of the base model (𝑆𝑃𝑃) with the reduced model
(𝑅𝑆𝑃𝑃). Times are clocktimes given in seconds.
 Benchmark 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time (𝑆𝑃𝑃) #var (𝑅𝑆𝑃𝑃 ′) #const (𝑅𝑆𝑃𝑃 ′) Reduction

#var (%)
Reduction
#const (%)

 graycode6_47 6 5 0 0.000 0.172 1980 3602 91.67 91.62
 graycode6_48 6 5 0 0.016 0.172 1980 3602 91.67 91.62
 decod24-enable_124 6 21 5 0.047 0.937 8124 15122 91.67 91.65
 decod24-enable_125 6 21 4 0.047 0.906 8124 15122 91.67 91.65
 decod24-bdd_294 6 24 8 0.062 1.203 9276 17282 91.67 91.66
 mod5adder_129 6 71 27 0.157 4.563 27324 51122 91.67 91.66
 mod5adder_128 6 77 32 0.172 4.250 29628 55442 91.67 91.66
 decod24-enable_126 6 86 34 0.188 5.500 33084 61922 91.67 91.66
 xor5_254 6 5 3 0.016 0.188 1980 3602 91.67 91.62
 ex1_226 6 5 3 0.016 0.187 1980 3602 91.67 91.62
 4mod5-bdd_287 7 23 8 0.469 36.203 61080 115922 92.86 92.86
 alu-bdd_288 7 28 7 0.641 51.031 74280 141122 92.86 92.86
 ham7_106 7 49 20 1.172 91.672 129720 246962 92.86 92.86
 ham7_105 7 65 32 1.485 135.625 171960 327602 92.86 92.86
 ham7_104 7 83 38 1.984 181.734 219480 418322 92.86 92.86
 rd53_137 7 66 33 3.750 146.811 174600 23762 92.24 92.86
 rd53_139 8 36 14 22.672 – 754200 90722 93.75 93.75
 rd53_138 8 44 20 26.266 – 921240 110882 93.75 93.75
 mini_alu_305 10 57 – – – – – – –
 sys6-v0_144 10 62 – – – – – – –
 rd73_141 10 64 – – – – – – –
 parity_247 17 16 – – – – – – –

For the cycle graph, one can clearly see that the bottleneck in the computational limit is the number of qubits 𝑛. It follows from
Table 3 that our approach is able to solve instances up to roughly 8 qubits, while the base model can only solve instances up to 7
qubits. The total computation time of (RSPP′) is often negligible and below 30 s for the instances that can be solved. For the base
model the total computation times are significantly higher, with a maximum difference of about a factor 100. This can be explained
by the large reduction in the total number of variables and constraints, which are both above 91% for all instances.

For the star graph, we conclude from Table 4 that the reduced model can easily handle the full set of RevLib instances. The
computation times are negligible for almost all instances and always below 0.2 s. This can be explained by the order of Aut(Coup(𝐸))
being factorial in 𝑛, implying that the model (RSPP′) scales linearly in both 𝑚 and 𝑛. The relative reductions with the base model
are enormous, i.e., above 99% in terms of the number of variables and constraints on all instances. For the unreduced model, the
largest instance we can solve has 𝑛 = 8 and 𝑚 = 36, which could not be solved on the cycle coupling graph. This can be explained
by the fact that the star graph on 𝑛 vertices has one edge less than the cycle graph on 𝑛 vertices, resulting in the Cayley graph
containing significantly fewer edges. The computational frontier, however, is reached already at the next instance, for which the
base model runs into memory issues.

Finally, the results on the biclique coupling graph look very similar to the results on the star graph, see Table 5. The total
relative reduction between the models is extremely large, leading to all instances to be solvable within 0.25 s using (RSPP′). The
computation times are slightly larger than for the star graph, which can be explained by the smaller size of the automorphism group
of the biclique. For the unreduced formulation we can only solve up to 𝑛 = 7, while the reduction in computation time for the largest
instance solvable by (SPP) is about a factor 4700.

For all the RevLib instances, the gate graph (𝑄,𝑈) turns out to consist of a single connected component, and thus, the group
S𝑛() is trivial. This implies that all of the symmetry reduction results from the symmetries of the coupling graph.

6.3. Results on random instances

From Tables 4 and 5 we observe that the RevLib instances can be easily solved by our symmetry reduced formulation. To test
the performance on larger instances, we consider the random data set, consisting of quantum circuits with up to 100 qubits and
1837 quantum gates. For the cycle coupling graph, we have seen that we could only solve instances up to 𝑛 = 8. Therefore, we
do not include the cycle coupling graph anymore for the random data set. For the same reason, we do no longer consider the base
model (SPP).

Tables 6 and 7 show the performance of our symmetry-reduced NNCP formulation on Random Class I and Random Class II for
both the star and biclique coupling graph. Next to the total average solution time, which is given in the column ‘time (𝑅𝑆𝑃𝑃)’, we
show in the column ‘time constr.’ the average time that is required to construct the LP-instance. Also, we add the column ‘|S𝑛()|’,
which shows the average order of the subgroup S𝑛() (recall that this quantity only depends on the quantum circuit and not on the
coupling graph). Each row in the tables corresponds to the average value over 5 randomly generated instances of that type. In Fig.
2 we plot the averaged total computation time, i.e., construction and solution time, compared to 𝑛 and 𝑚 for both coupling graphs
and random classes.
20

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Table 4
Results on the ‘RevLib’ instances on the star coupling graph. We compare the performance of the base model (𝑆𝑃𝑃) with the reduced model
(𝑅𝑆𝑃𝑃). Times are clocktimes given in seconds.
 Benchmark 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time (𝑆𝑃𝑃) #var (𝑅𝑆𝑃𝑃 ′) #const (𝑅𝑆𝑃𝑃 ′) Reduction

#var (%)
Reduction
#const (%)

 graycode6_47 6 5 2 0.000 0.125 166 32 99.17 99.11
 graycode6_48 6 5 2 0.000 0.125 166 32 99.17 99.11
 decod24-enable_124 6 21 4 0.016 0.609 678 128 99.17 99.15
 decod24-enable_125 6 21 5 0.000 0.594 678 128 99.17 99.15
 decod24-bdd_294 6 24 8 0.000 0.672 774 146 99.17 99.16
 mod5adder_129 6 71 19 0.000 2.343 2278 428 99.17 99.16
 mod5adder_128 6 77 18 0.000 2.953 2470 464 99.17 99.16
 decod24-enable_126 6 86 19 0.016 2.718 2758 518 99.17 99.16
 xor5_254 6 5 0 0.000 0.109 166 32 99.17 99.11
 ex1_226 6 5 0 0.000 0.125 166 32 99.17 99.11
 4mod5-bdd_287 7 23 5 0.000 14.875 1019 163 99.86 99.86
 alu-bdd_288 7 28 11 0.000 16.141 1239 198 99.86 99.86
 ham7_106 7 49 20 0.015 28.328 2163 345 99.86 99.86
 ham7_105 7 65 18 0.000 36.157 2867 457 99.86 99.86
 ham7_104 7 83 18 0.015 57.516 3659 583 99.86 99.86
 rd53_137 7 66 10 0.000 38.521 2911 464 99.86 99.86
 rd53_139 8 36 15 0.047 7031.828 2096 290 99.98 99.98
 rd53_138 8 44 12 0.000 – 2560 354 99.98 99.98
 mini_alu_305 10 57 16 0.016 – 5254 572 100.00 100.00
 sys6-v0_144 10 62 26 0.015 – 5714 622 100.00 100.00
 rd73_141 10 64 27 0.000 – 5898 642 100.00 100.00
 parity_247 17 16 0 0.000 – 4401 274 100.00 100.00

Table 5
Results on the ‘RevLib’ instances on the biclique coupling graph. We compare the performance of the base model (𝑆𝑃𝑃) with the reduced model
(𝑅𝑆𝑃𝑃). Times are clocktimes given in seconds.
 Benchmark 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time (𝑆𝑃𝑃) #var (𝑅𝑆𝑃𝑃 ′) #const (𝑅𝑆𝑃𝑃 ′) Reduction

#var (%)
Reduction
#const (%)

 graycode6_47 6 5 1 0.015 0.250 655 77 97.92 97.86
 graycode6_48 6 5 1 0.000 0.235 655 77 97.92 97.86
 decod24-enable_124 6 21 4 0.016 1.500 2703 317 97.92 97.90
 decod24-enable_125 6 21 4 0.000 1.297 2703 317 97.92 97.90
 decod24-bdd_294 6 24 5 0.015 1.485 3087 362 97.92 97.91
 mod5adder_129 6 71 15 0.032 5.031 9103 1067 97.92 97.91
 mod5adder_128 6 77 14 0.031 5.016 9871 1157 97.92 97.91
 decod24-enable_126 6 86 16 0.031 5.844 11023 1292 97.92 97.91
 xor5_254 6 5 1 0.000 0.266 655 77 97.92 97.86
 ex1_226 6 5 1 0.000 0.265 655 77 97.92 97.86
 4mod5-bdd_287 7 23 4 0.016 72.110 5081 485 99.58 99.58
 alu-bdd_288 7 28 5 0.016 83.844 6181 590 99.58 99.58
 ham7_106 7 49 8 0.031 143.265 10801 1031 99.58 99.58
 ham7_105 7 65 14 0.031 217.359 14321 1367 99.58 99.58
 ham7_104 7 83 8 0.078 282.453 18281 1745 99.58 99.58
 rd53_137 7 66 10 0.047 223.981 14541 1388 98.14 99.58
 rd53_139 8 36 8 0.063 – 12556 1010 99.93 99.93
 rd53_138 8 44 10 0.062 – 15340 1234 99.94 99.94
 mini_alu_305 10 57 14 0.218 – 41997 2567 100.00 100.00
 sys6-v0_144 10 62 13 0.141 – 45677 2792 100.00 100.00
 rd73_141 10 64 14 0.095 – 47149 2882 100.00 100.00
 parity_247 17 16 1 0.108 – 65896 2178 100.00 100.00

For the star coupling graph, we see that we can easily solve all instances from Random Class I within on average 25 s, while at
most 90 s are needed to construct the model. For Random Class II, we can solve up to 𝑛 = 100, however, when 𝑚 is too large, the
PC runs out of memory. For the biclique coupling graph on Random Class I, we can solve instances up to 𝑛 = 40 within the time
span of 2 h, whereas for Random Class II the instances with large 𝑚 cannot be solved anymore.

The sum of solution and construction times on the biclique graphs is significantly higher than on the star graphs, see Fig. 2. The
tables reveal that the solution times on the former are an order of magnitude 2 higher. This can be explained by the difference in
the order of Aut(Coup(𝐸)), as explained in Section 6.2. The construction times, however, heavily deviate among the instances on
the star and the biclique coupling graph. Indeed, the smaller automorphism group increases the number of orbits. For each of these
orbits, one needs to evaluate the orbitals of the group action of 𝐵𝜏 on 𝐸. Hence, the negative effects of having a smaller number of
symmetries and a larger number of edges, strengthen one another and result in large construction times when 𝑛 and 𝑚 increase.
21

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Fig. 2. Overview of total average computation times (construction + solution time) of random instances with respect to 𝑛 and 𝑚. Each data
point displays the average over 5 randomly generated instances of that type.

Table 6
Results on the random instances on the star coupling graph. Each row shows the average values over 5 randomly generated instances. Times are
clocktimes given in seconds.
 Random Class I Random Class II
 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time constr. |S𝑛()| 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time constr. |S𝑛()|

20 40 29.6 0.031 0.088 1.2 20 125.6 35.0 0.119 1.425 1.2
20 80 65.2 0.056 0.134 1 20 365.6 80.8 0.334 0.712 1
30 60 52.4 0.106 0.274 1 30 255 59.6 0.544 1.189 1.4
30 120 101.2 0.243 0.551 1 30 564.6 126.4 1.350 2.940 1
40 80 72.4 0.282 0.820 1 40 302.2 76.6 1.150 2.482 30.6
40 160 144.4 0.631 1.556 1 40 652.4 159.8 3.150 8.081 1
50 100 91.2 0.569 1.971 5.6 50 441.4 104.6 3.272 7.223 2.6
50 200 184.6 1.312 3.336 1 50 854.8 203.8 8.091 16.474 1
60 120 112.8 1.025 3.349 2.4 60 471 122.8 5.737 13.121 27
60 240 222.4 2.447 6.162 1 60 1027.4 247.6 16.903 44.061 1
70 140 132.0 1.769 6.135 3 70 589.4 145.2 10.838 26.888 6
70 280 264.6 4.662 14.194 1 70 1223 292.8 31.875 149.451 1
80 160 151.0 3.313 10.704 1.4 80 722.4 171.6 23.634 97.156 6.28
80 320 304.2 7.775 21.305 1 80 1372.8 333.6 32.600 307.844 1
90 180 172.0 4.809 24.524 2.2 90 750 184.8 22.312 162.915 2016.6
90 360 343.8 14.681 42.293 1 90 1602.8 – – – 1
100 200 191.8 9.106 31.802 3.2 100 921.2 218.8 36.966 363.073 2021.4
100 400 385.0 21.066 85.295 1 100 1709.6 – – – 1

When comparing Random Class I and II, we do not observe significant structural differences. It seems to be primarily the
magnitude of 𝑛 and 𝑚 that influences the complexity of the instance. Due to the construction, 𝑚 grows more rapidly with respect
to 𝑛 for Random Class II than for Random Class I. This effect can be observed from Fig. 2, where we observe that for fixed 𝑛, an
instance from Random Class II on average requires more computation time.

We observe for both Random Class I and II that the average order of the subgroup S𝑛() is quite small, although the subgroup is
often not trivial. This implies that part of the symmetry reduction is due to the underlying relationship between the quantum gates
in the circuit. However, when comparing these average orders to the order of Aut(Coup(𝐸)) (which are (𝑛− 1)! and 2(𝑛− 2)! for the
star and biclique graph, respectively), still the vast majority of the reduction is due to the symmetries in the coupling graph.

The largest quantum circuit that we can successfully solve contains 100 qubits and 1047 quantum gates. Observe that the
unreduced model of this instance would embrace subgraphs of 100! vertices, hence solving this model is infeasible.

7. Conclusions

In this paper we study an exact method for solving the -hard NNCP in the gated quantum computing model by exploiting
symmetries in the underlying formulation.

Starting from the shortest path formulation introduced by [30], see (SPP), we study the algebraic structure of the underlying
graph in Section 3. This graph is composed of a series of Cayley graphs of the symmetric group S𝑛 generated by the transpositions in
the coupling graph of the quantum system. We show that S𝑛 × Aut(Coup(𝐸)) is the full automorphism group of such Cayley graphs
for almost all coupling graphs. Although the automorphism groups of specific Cayley graphs generated by transpositions have been
22

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Table 7
Results on the random instances on the biclique coupling graph. Each row shows the average values over 5 randomly generated instances. Times
are clocktimes given in seconds.
 Random Type I Random Type II
 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time constr. |S𝑛()| 𝑛 𝑚 OPT Time (𝑅𝑆𝑃𝑃 ′) Time constr. |S𝑛()|

 20 40 20.6 1.588 12.029 1.2 20 125.6 27.6 4.188 17.270 1.2
 20 80 43.4 2.590 14.217 1 20 365.6 66.8 15.113 30.584 1
 30 60 38.4 9.675 374.035 1 30 255 50.0 49.175 413.975 1.4
 30 120 71.2 18.322 390.226 1 30 564.6 107.2 115.350 829.710 1
 40 80 54.2 44.053 3872.272 1 40 302.2 61.7 168.276 2800.738 30.6
 40 160 109.4 66.884 3989.450 1 40 652.4 – – – 1

studied before in the literature, we do not make any assumption on the underlying coupling graph apart from being connected.
Next, we show how these subgroups are merged into a subgroup 𝐺𝑋 of the automorphism group of the entire graph, see (9). One
component of this subgroup is determined by the algebraic structure of the coupling graph, while the other component relies on
a so-called fixing pattern  following from the quantum gates in the circuit, see Definition 3.6. The orbit and orbital structures of
the action of this group on the graph are also studied, leading in particular to an overview of the cardinalities of the corresponding
quotients, see Table 1.

By exploiting the convexity of (SPP), we reduce the symmetries in the formulation by averaging over all symmetric solutions
using the Reynolds operator, see (16). This leads to a more compact equivalent formulation (RSPP) and its scaled variant (RSPP′).
We show that this formulation is equivalent to a generalized network flow problem (GNFP). Due to the in-depth analysis on the
orbit and orbital structure, these formulations can be explicitly constructed from scratch without the need to first construct the
exponentially large Cayley graphs. A direct theoretical implication of our approach are the complexity results of Theorem 4.2 and
Corollary 4.3. Although the general NNCP is -hard, these results reveal classes of polynomial time solvable special cases of the
NNCP.

The gain of using our approach compared to the base model (SPP) is most vibrant in case the fixing pattern is less restrictive and
the coupling graph is (highly) symmetric. We test our approach on three types of coupling graphs, for which we explicitly derive
the key ingredients of our formulation, see Table 2. Our numerical results show that the gain in efficiency due to the exploitation
of symmetries is very large. For each of the 84 real and 180 random instances, the total reduction in the number of variables and
constraints is at least 90% and 89.8%, respectively, and this number grows with 𝑛 and 𝑚. The computation times are significantly
reduced compared to the unreduced model, resulting in solving NNCP instances that are much larger than the ones considered so
far in the literature. The largest instance we can solve contains 100 qubits and 1047 quantum gates.

Given that we are only at the beginning of the quantum era, related optimization problems such as the NNCP are likely to
remain important in the near future. Based on the successful implementation of our symmetry-reduced solution approach, it would
be interesting to consider the NNCP on other quantum architectures having a large symmetry group.

Appendix. Quantum gates and their two-qubit decompositions

Since the NNCP is only well-defined when a quantum circuit consists solely of one- or two-qubit gates, we have to decompose
all gates that act on more than two gates. As indicated in Section 6, this task can be completed in lots of ways and performing this
decomposition optimally can be seen as a research problem in itself. In this paper we apply the decomposition method used in [11],
although the authors of [11] already indicated that this method might be open for improvement.

The quantum circuits that we consider in our experiments consist of the following types of quantum gates: one-qubit gates, two-
qubit gates, three-qubit Peres gates, three- and four-qubit Fredkin gates and three-, four- and five-qubit Toffoli gates. Commonly
used one-qubit gates are the Hadamard gate and the Pauli-gates, e.g., the Pauli-𝑋-gate. When applying the Hadamard gate to a
qubit in any state, it brings the qubit in a superposition state where it has an equal probability to be 0 or 1 upon measurement. The
Hadamard gate in a quantum circuit is depicted as 𝐻 . The Pauli-𝑋-gate is also known as the NOT gate and can be seen as its
quantum analog. The NOT-gate is depicted as .

The most commonly used two-qubit gates are depicted in Fig. 3. The controlled-NOT gate, also known as CNOT or Feynman gate,
acts on a control qubit and a target qubit. If the control qubit is in state |1⟩, a NOT-gate is applied to the target qubit, otherwise
nothing happens. The SWAP gate swaps the states of the two qubits where it acts on. The controlled-𝑉 and controlled-𝑉 † act similarly
to the controlled-NOT gate, with the only difference that the unitary operation 𝑉 or 𝑉 † is applied to the target qubit. The operation
𝑉 and 𝑉 † are the square root of the NOT-gate and its Hermitian conjugate, respectively. That is, if two controlled-𝑉 gates are placed
in succession, the result is similar to a controlled-NOT gate, while the identity gate is obtained when applying a controlled-𝑉 and
a controlled-𝑉 † gate in succession.

A Toffoli gate [71] is the multiple-control NOT gate. Acting on several control qubits and a single target qubit, a NOT gate is
applied to the target qubit if all the control qubits are in state |1⟩. The three-qubit Toffoli gate is depicted in Fig. 4, along with a
possible decomposition into two-qubit gates, following the approach of [6].

The Peres gate [72] is obtained from a combination of a two-qubit controlled-NOT gate and standard controlled-NOT gate.
Following the approach from [73], the Peres gate can be decomposed into four two-qubit gates, as shown in Fig. 5.
23

F. de Meijer et al. Discrete Optimization 59 (2026) 100925

(a)
Controlled-
NOT.

(b)
SWAP.

(c)
Controlled-𝑉 .

(d)
Controlled-𝑉 †.

Fig. 3. Overview of commonly used two-qubit quantum gates.

Fig. 4. Decomposition of multiple-control Toffoli gate with two controls and a single target qubit.

Fig. 5. Decomposition of Peres gate on three qubits.

Fig. 6. Decomposition of Fredkin gate (controlled swap gate) with one control qubit.

Fig. 7. Decomposition of Fredkin gate (controlled swap gate) with two control qubits.

The Fredkin gate [74] operates on three qubits as a controlled-SWAP gate. If the state of the control qubit is |1⟩, then a SWAP
gate on the two target qubits is performed. The decomposition into two-qubit gates that we adapt here is the same as the one
considered in [11,68], see Fig. 6

Finally, we consider the four- and five qubit variants of the Fredkin and Toffoli gate. The functionality of these gates is similar
to their three-qubit implementation, only the number of control qubits is larger. The four-qubit Fredkin gate can be decomposed as
shown by [75], see Fig. 7. Fredkin gates on a larger number of qubits do not appear in our experiments.

Finally, the four- and five-qubit Toffoli gates are shown in Figs. 8 and 9. The decompositions shown here follow from the
construction derived in [6]. Toffoli gates on more than five qubits do not appear in our experiments.

Data availability

Data will be made available on request.
24

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
Fig. 8. Decomposition of multiple-control Toffoli gate with three controls and a single target qubit.

Fig. 9. Decomposition of multiple-control Toffoli gate with four controls and a single target qubit.

References

[1] M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New York, USA, 2010.
[2] A. Montanaro, Quantum algorithms: an overview, Npj Quantum Inf. 2 (15023) (2016).
[3] J. Rajakumar, J. Moondra, B. Gard, S. Gupta, C. Herold, Generating target graph couplings for the quantum approximate optimization algorithm from

native quantum hardware couplings, Phys. Rev. A 106 (2) (2022) 022606.
[4] H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469 (4) (2008) 155–203.
[5] Qiskit contributors, Qiskit: An open-source framework for quantum computing, 2023, http://dx.doi.org/10.5281/zenodo.2573505.
[6] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, P. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation,

Phys. Rev. 52 (1995) 3457–3467.
[7] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, H. Rahaman, Improved look-ahead approaches for nearest neighbor synthesis of 1D quantum

circuits, in: 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems, VLSID, IEEE, Delhi, NCR,
India, 2019, pp. 203–208.

[8] X. Cheng, Z. Guan, W. Ding, Mapping from multiple-control toffoli circuits to linear nearest neighbor quantum circuits, Quantum Inf. Process. (17) (2018)
169.

[9] Y. Hirata, M. Nakanishi, S. Yamashita, Y. Nakashima, An efficient conversion of quantum circuits to a linear nearest neighbour architecture, Quantum Inf.
Comput. 11 (2011) 142–166.

[10] A. Kole, K. Datta, I. Sengupta, A heurstic for linear nearest neighbor realization of quantum circuits by SWAP gate insertion using 𝑁-gate lookahead, IEEE
J. Emerg. Sel. Top. Circuits Syst. 6 (2016) 62–72.

[11] J. Mulderij, K.I. Aardal, I. Chiscop, F. Phillipson, A polynomial size model with implicit swap gate counting for exact qubit reordering, 2020,
arXiv:2009.08748.

[12] M.G. Alfailakawi, I. Ahmad, S. Hamdan, Harmony-search algorithm for 2D nearest neigbor quantum circuits realization, Expert. Syst. Appl. 61 (2016)
16–27.

[13] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, H. Rahaman, A novel approach for nearest neighbor realization of 2D quantum circuits, in:
2018 IEEE Computer Society Annual Symposium on VLSI, ISVLSI, IEEE, Hong Kong, 2018, pp. 305–310.

[14] B.S. Choi, R.V. Meter, An 𝛩(√𝑛)-depth quantum adder on a 2D NTC quantum computer architecture, J. Emerg. Technol. Coput. Syst. 8 (2012) 1–22.
[15] A. Farghadan, N. Mohammadzadeh, Mapping quantum circuits on 3D nearest-neighbor architectures, Quantum Sci. Technol. 4 (2019) 035001.
[16] R. Wille, L. Burgholzer, A. Zulehner, Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and h operations, in:

Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2019, pp. 1–6.
[17] D. Bhattacharjee, A. Chattopadhyay, Depth-optimal quantum circuit placement for arbitrary topologies, 2017, arXiv:1703.08540.
[18] M.Y. Siraichi, V.F. dos Santos, S. Collange, F.M.Q. Pereira, Qubit allocation, in: Proceedings of the 2018 International Symposium on Code Generation

and Optimization, CGO 2018, ACM, 2018, pp. 113–125.
[19] D. Venturelli, M. Do, E. Rieffel, J. Frank, Temporal planning for compilation of quantum approximate optimization circuits, in: Scheduling and Planning

Applications Workshop, SPARK, 2017, p. 58.
[20] G. Li, Y. Ding, Y. Xie, Tackling the qubit mapping problem for NISQ-era quantum devices, in: Proceedings of the 24th International Conference on

Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1001–1014.
[21] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, S. Sivarajah, On the qubit routing problem, 2019, arXiv:1902.08091.
[22] T. Itoko, R. Raymond, T. Imamichi, A. Matsuo, Optimization of quantum circuit mapping using gate transformation and commutation, Integration 70

(2020) 43–50.
[23] A.G. Fowler, S.J. Devitt, L.C.L. Hollenberg, Implementation of shor’s algorithm on a linear nearest neighbour qubit array, Quantum Inf. Comput. 4 (2004)

237–251.
[24] D.P. DiVincenzo, IBM, The physical implementation of quantum computation, Fortschr. der Phys. (48) (2000) 771–783.
[25] M. Pedram, A. Shafaei, Layout optimization for quantum circuits with linear nearest neighbor architectures, IEEE Circuits Syst. Mag. 16 (2016) 62–74.
[26] A. Shafaei, M. Saeedi, M. Pedram, Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures, in: 2013 50th

ACM/EDAC/IEEE Design Automation Conference, DAC, 2013, pp. 1–6.
[27] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, R. Drechsler, Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum

circuits, in: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Macao, 2016, pp. 292–297.
[28] J. Ding, S. Yamashita, Exact synthesis of nearest neighbor compliant quantum circuits in 2-D architecture and its application to large-scale circuits, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (5) (2019) 1045–1058.
25

http://refhub.elsevier.com/S1572-5286(25)00048-9/sb1
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb2
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb3
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb3
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb3
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb4
http://dx.doi.org/10.5281/zenodo.2573505
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb6
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb6
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb6
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb7
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb7
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb7
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb7
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb7
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb8
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb8
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb8
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb9
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb9
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb9
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb10
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb10
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb10
http://dx.arXiv:2009.08748
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb12
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb12
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb12
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb13
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb13
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb13
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb14
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb15
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb16
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb16
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb16
http://dx.darXiv:1703.08540
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb18
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb18
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb18
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb19
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb19
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb19
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb20
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb20
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb20
http://dx.arXiv:1902.08091
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb22
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb22
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb22
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb23
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb23
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb23
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb24
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb25
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb26
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb26
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb26
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb27
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb27
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb27
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb28
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb28
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb28

F. de Meijer et al. Discrete Optimization 59 (2026) 100925
[29] R. Wille, A. Lye, R. Drechsler, Exact reordering of circuit lines for nearest neighbor quantum architectures, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 33 (12) (2014) 1818–1831.

[30] A. Matsuo, S. Yamashita, Changing the gate order for optimal LNN conversion, in: A. De Vos, R. Wille (Eds.), Reversible Computation, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 89–101.

[31] J. Mulderij, Nearest Neighbor Compliance in Quantum Circuit Design, (Master’s thesis), Delft University of Technology, 2019.
[32] R. Van Houte, J. Mulderij, T. Attema, I. Chiscop, F. Phillipson, Mathematical formulation of quantum circuit design problems in networks of quantum

computers, Quantum Inf. Process. 19 (2020) 1–22.
[33] G. Nannicini, L.S. Bishop, O. Günlük, P. Jurcevic, Optimal qubit assignment and routing via integer programming, ACM Trans. Quantum Comput. 4 (1)

(2022) 1–31.
[34] A. Shafaei, M. Saeedi, M. Pedram, Qubit placement to minimize communication overhead in 2D quantum architectures, in: 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2014, pp. 495–500.
[35] A. Kole, K. Datta, I. Sengupta, R. Wille, Towards a cost metric for nearest neighbor constraints in reversible circuits, in: Reversible Computation (RC): 7th

International Conference, Grenoble, France, 2015, pp. 273–278.
[36] A. Kole, K. Datta, I. Sengupta, A new heuristic for 𝑁-dimensional nearest neighbor realization of a quantum circuit, IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 37 (1) (2017) 182–192.
[37] L. Liberti, Symmetry in mathematical programming, in: Mixed Integer Nonlinear Programming, Springer, 2012, pp. 263–283.
[38] F. Margot, Symmetry in integer linear programming, in: 50 Years of Integer Programming 1958-2008: From the Early Years To the State-of-the-Art,

Springer, 2009, pp. 647–686.
[39] F. Margot, Small covering designs by branch-and-cut, Math. Program. 94 (2003) 207–220.
[40] H.D. Sherali, J.C. Smith, Improving discrete model representations via symmetry considerations, Manag. Sci. 47 (10) (2001) 1396–1407.
[41] J. Lee, F. Margot, On a binary-encoded ILP coloring formulation, INFORMS J. Comput. 19 (3) (2007) 406–415.
[42] F. Margot, Pruning by isomorphism in branch-and-cut, Math. Program. 94 (2002) 71–90.
[43] F. Margot, Exploiting orbits in symmetric ILP, Math. Program. 98 (2003) 3–21.
[44] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Orbital branching, Math. Program. 126 (2011) 147–178.
[45] V. Kaibel, M. Pfetsch, Packing and partitioning orbitopes, Math. Program. 114 (1) (2008) 1–36.
[46] E.J. Friedman, Fundamental domains for integer programs with symmetries, in: Combinatorial Optimization and Applications: First International Conference,

COCOA 2007, Xi’an, China, August 14-16, 2007. Proceedings 1, Springer, 2007, pp. 146–153.
[47] J. Van Doornmalen, C. Hojny, A unified framework for symmetry handling, 2022, arXiv:2211.01295.
[48] A.W. Tucker, Solving a matrix game by linear programming, IBM J. Res. Dev. 4 (5) (1960) 507–517.
[49] A.W. Tucker, Combinatorial theory underlying linear programs, Recent. Adv. Math. Program. (1963) 1–16.
[50] R. Bödi, K. Herr, M. Joswig, Algorithms for highly symmetric linear and integer programs, Math. Program. 137 (1–2) (2013) 65–90.
[51] K. Gatermann, P.A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra 192 (1–3) (2004) 95–128.
[52] A. Ganesan, Cayley graphs and symmetric interconnection networks, 2017, http://dx.doi.org/10.48550/ARXIV.1703.08109, arXiv:1703.08109.
[53] M.C. Heydemann, Cayley graphs and interconnection networks, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry: Algebraic Methods and Applications,

Springer Netherlands, Dordrecht, 1997, pp. 167–224.
[54] Y. Ge, W. Wenjie, C. Yuheng, P. Kaisen, L. Xudong, Z. Zixiang, W. Yuhan, W. Ruocheng, Y. Junchi, Quantum circuit synthesis and compilation optimization:

Overview and prospects, 2024, arXiv:2407.00736.
[55] M.R. Jerrum, The complexity of finding minimum-length generator sequences, Theoret. Comput. Sci. 36 (1985) 265–289.
[56] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (3) (1987) 596–615.
[57] Y.Q. Feng, Automorphism groups of cayley graphs on symmetric groups with generating transposition sets, J. Combin. Theory Ser. B 96 (2006) 67–72.
[58] A. Ganesan, On the automorphism group of cayley graphs generated by transpositions, Australas. J. Comb. 64 (3) (2016) 432–436.
[59] A. Ganesan, Automorphism groups of cayley graphs generated by connected transposition sets, Discrete Math. 313 (2013) 2482–2485.
[60] A. Ganesan, Automorphism group of the complete transposition graph, J. Algebraic Combin. 42 (2015) 793–801.
[61] D. Gijswijt, F. de Meijer, Automorphism groups of cayley graphs generated by general transposition sets, Electron. J. Combin. 31 (3) (2024) 3–27.
[62] J.D. Dixon, A. Majeed, Coset representatives for permutation groups, Port. Math. 45 (1) (1988) 61–68.
[63] K.D. Wayne, A polynomial combinatorial algorithm for generalized minimum cost flow, Math. Oper. Res. 27 (2002) 445–459.
[64] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, T. Uno, Approximation and hardness for token swapping, 2016, arXiv:1602.05150.
[65] F. de Meijer, Integrality and Cutting Planes in Semidefinite Programming Approaches for Combinatorial Optimization (Ph.D. thesis), Tilburg University,

2023.
[66] C. Godsil, G.F. Royle, Algebraic graph theory, Graduate Texts in Mathematics, (207) Springer, 2001.
[67] S. Lakshmivarahan, J.S. Jho, S.K. Dhal, Symmetry in interconnection networks based on cayley graphs of permutation groups: A survey, Parallel Comput.

(19) (1993) 361–407.
[68] R. Wille, D. Große, L. Teuber, G.W. Dueck, R. Drechsler, RevLib: An online resource for reversible functions and reversible circuits, in: Int’L Symp. on

Multi-Valued Logic, 2008, pp. 220–225, RevLib is available at http://www.revlib.org.
[69] I. Dunning, J. Huchette, M. Lubin, JuMP: A modeling language for mathematical optimization, SIAM Rev. (2017) 295–320.
[70] MOSEK ApS, MOSEK optimization suite 10.0.40, 2022.
[71] T. Toffoli, Reversible Computing, Technical memo MIT/LCS/TM-151, MIT Lab for Computer Science, 1980.
[72] A. Peres, Reversible logic and quantum computers, Phys. Rev. A, Gen. Phys. 32 (1985) 3266–3276.
[73] W.N. Hung, X. Song, G. Yang, J. Yang, M. Perkowski, Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic

reachability analysis, IEEE Trans. Comput.-Aid. Des. 25 (2006) 1652–1663.
[74] E. Fredkin, T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21 (1982) 219–253.
[75] N. Alhagi, Synthesis of Reversible Functions Using Various Gate Libraries and Design Specifications, Technical report, Portland State University, 2000.
26

http://refhub.elsevier.com/S1572-5286(25)00048-9/sb29
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb29
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb29
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb30
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb30
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb30
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb31
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb32
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb32
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb32
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb33
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb33
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb33
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb34
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb34
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb34
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb35
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb35
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb35
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb36
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb36
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb36
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb37
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb38
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb38
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb38
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb39
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb40
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb41
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb42
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb43
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb44
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb45
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb46
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb46
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb46
http://dx.arXiv:2211.01295
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb48
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb49
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb50
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb51
http://dx.doi.org/10.48550/ARXIV.1703.08109
https://arxiv.org/abs/1703.08109
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb53
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb53
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb53
http://dx.arXiv:2407.00736
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb55
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb56
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb57
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb58
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb59
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb60
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb61
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb62
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb63
http://dx.darXiv:1602.05150
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb65
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb65
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb65
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb66
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb67
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb67
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb67
http://www.revlib.org
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb69
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb70
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb71
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb72
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb73
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb73
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb73
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb74
http://refhub.elsevier.com/S1572-5286(25)00048-9/sb75

	Exploiting symmetries in optimal quantum circuit design
	Introduction
	Main results and outline
	Notation

	Nearest neighbour compliance problem
	Mathematical formulation of the NNCP
	The NNCP as a shortest path problem

	Symmetries in X = (V,A)
	Automorphism group of Aut(Cay(S n, T))
	Automorphism group of X
	Orbit and orbital structure of group action on X

	Symmetry reduction for the NNCP
	Reduced LP formulation
	Reduced combinatorial formulation
	Symmetry-reduced NNCP algorithm
	Dynamic programming algorithm

	Special coupling graphs
	Cycle graph CN
	Biclique graph KM,N and star graph K1,N

	Computational results
	Design of computational experiments
	Results on RevLib instances
	Results on random instances

	Conclusions
	Appendix. Quantum gates and their two-qubit decompositions
	Data availability
	References

