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Towards High-speed Computational Scattered Light Imaging
by Introducing Compressed Sensing for Optimized

Illumination

Franca auf der Heidena, Oliver Münzera, Simon van Staalduineb, Katrin Amuntsa, Markus
Axera, and Miriam Menzela, b

aInstitute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, DE
bDepartment of Imaging Physics, Delft University of Technology, 2628 CJ Delft, NL

ABSTRACT

We propose the application of Compressed Sensing to Computational Scattered Light Imaging to decrease
measurement time and data storage. Computational Scattered Light Imaging (ComSLI) determines three-
dimensional fiber orientations and crossings in biomedical tissues like brain tissue. Currently, conventional
ComSLI is time-consuming and generates large data. Compressed Sensing reconstructs signals with fewer sam-
ples than required by the Shannon-Nyquist theorem with minimal perceptual loss, significantly reducing the
number of measurements. We introduce an optimized illumination strategy for ComSLI based on the Discrete
Cosine Transform and validate it by reconstructing characteristic scattering patterns in vervet brain tissue,
thereby demonstrating the feasibility of Compressed Sensing in ComSLI.

Keywords: Scattered Light Imaging, Scatterometry, Neuroimaging, Brain Structure, White Matter, Nerve
Fibers, Compressed Sensing, Discrete Cosine Transform

1. INTRODUCTION

The nerve fiber architecture in post-mortem brain sections can be mapped using Computational Scattered Light
Imaging (ComSLI), a novel imaging technique introduced by Menzel et al1 that exploits scattering properties of
fibrous tissue. In particular, ComSLI can determine nerve fiber orientations from densely packed white matter
with a micrometer resolution and can not only resolve single fiber tract orientations, but also fiber crossings.
Previous experiments have shown that ComSLI yields meaningful results for a variety of tissue types and stains.2

When light passes vertically through fibrous tissue and the wavelength is of approximately the diameter of the
fibers (i.e., light in the visible spectrum for nerve fibers), a scattering pattern emerges for every image pixel,
containing information about the three-dimensional fiber orientations and crossings3 . In ComSLI, the light path
is flipped: By illuminating the whole sample at once but under different angles (i.e., square by square in an N×N
grid of illumination squares), the scattering patterns for every image pixel can be reconstructed from the N×N
measurement images.4

However, ComSLI scatterometry is time-consuming: With a typical exposure time of about one second per
illumination square and a typical gridsize of 64×64 squares, the measurement of one image set already takes
more than an hour, yet without regard to data processing of the measurement hardware. Furthermore, ComSLI
scatterometry produces huge amounts of data with up to 100GB per image set. Therefore, it is crucial to reduce
both the measurement time and the amount of saved data. Compressed Sensing is a promising approach to
reduce the amount of required ComSLI measurements significantly by illuminating the sample not square by
square, but with a reduced number of selected illumination images. In this paper, we show that Compressed
Sensing can be applied to ComSLI. We develop the mathematical background for Compressed Sensing in ComSLI
and perform first measurements on vervet brain tissue as a proof-of-concept.
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2. MATHEMATICAL BACKGROUND

2.1 Compressed Sensing

Compressed Sensing allows the reconstruction of a signal with fewer single images than required by the Shannon-
Nyquist theorem under the condition that the signal is sparse.5 Furthermore, it has been shown that approxi-
mately sparse signals, i.e. compressible signals, can also be nearly recovered. By following a non-linear method
called ”Compressed Sensing” and performing a set of those measurements that have the highest impact on the
recovery of the actual signal, measurement efforts can be reduced drastically with no or little perceptual loss.6

In ComSLI, this condition is fulfilled: The illumination images can be understood as matrices with a gridsize
N×N that contains only zeros except for one non-zero entry, representing the single illuminated square (compare
Fig. 1b)). Those N× N matrices form a mathematical basis and will be referred to as ”Euclidean illumination”
in the following. To obtain a different orthogonal set of matrices that is compressible, the original matrices
are transformed into the frequency domain by applying a Discrete Cosine Transformation (DCT) of type II
(DCT-II).7,8 The DCT-II is defined as:
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The obtained matrices represent N×N new illumination images characterized by periodic fluctuations in
intensity (different gray values) with increasing frequency. It is important to note that these matrices may
contain both positive and negative entries. Light intensity can inherently only take positive values; therefore
the positive and the negative part of the matrix are measured separately, resulting in two illumination matrices
per transformed matrix. This approach may appear counter-intuitive since it doubles the number of required
measurements. However, during Compressed Sensing, only the low-frequency illumination matrices need to be
measured, such as the lowest 2×8×8 coefficients in a 64×64 grid. Assuming the signal is compressible, higher
coefficients can be assumed to be zero. Therefore, this approach is still beneficial, reducing the number of
required measurements from 4096 to 128, which is a reduction by a factor of 32. The calculated matrix entries
are upscaled to 255 so that the LED intensities cover the full available display range from 0 to 255. Fig. 1b)
shows exemplary illumination matrices.

It should be mentioned that instead of using a DCT, a Discrete Fourier Transformation (DFT) could have
been employed. The advantage of using a DCT is the faster decrease of the coefficients than the corresponding
DFT coefficients. Furthermore, the DFT requires twice as many measurements to consider not only the negative
parts, but also the positive and negative imaginary parts of the calculated matrices.
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3. MATERIALS AND METHODS

3.1 Tissue Preparation

All measurements were performed on an unstained coronal section of a vervet monkey brain section with a
thickness of 60 µm that is embedded in 20% glycerin. The brain was removed from the skull within 24 hours
after death and fixated with a buffered solution of 4% formaldehyde to prevent decay and stored at a temperature
of 4◦C. Then, the brain was immersed in a solution of 10% glycerin and then 20% glycerin for cryoprotection,
each for several days. Afterward, the brain was frozen to a temperature of -80◦C, cut into thin sections of 60 µm
with a large-scale cryostat microtome (Leica Microsystems, Germany) along the coronal plane, mounted onto
glass slides, thawed, embedded in 20% glycerin, and finally cover-slipped and sealed for subsequent measurements.

3.2 Setup

Fig. 1a) sketches the measurement principle of Computational Scattered Light Imaging. The essential components
are a light source that is capable to illuminate the sample under various angles, the tissue section and a camera.
Additionally, adequate shielding from ambient light and stray light is required. A large LED display (Absen
Polaris 3.9pro In/Outdoor LED Cabinet) with a size of 50×50cm2 was used as the light source. The LED
display consists of 128×128 individually controllable RGB LEDs that have a pixel pitch of 3.9mm. It achieves an
overall brightness of 5000 cd/m2 according to the manufacturer. Each illumination square consists of 2×2 pixels,
resulting in a grid of 64×64 = 4096 illumination squares in the pixel-based Euclidean illumination matrix. White
RGB light was used for the measurements. The inner 12 ×12 LEDs right below the camera must remain dark for
all illumination matrices as their direct brightness outshines the straylight signal. The tissue sample was placed
on a specimen stage at a height of 17 cm above the center of the LED display. The maximum angle of incidence
(that can be obtained from every azimuth, neglecting the corner LEDs) is therefore tan−1(25 cm/17 cm) ≈ 56◦.

The camera (SVS-VISTEK HR455CXGE ) has 9568 × 6380 pixels with a sensor size of 36 × 24mm², resulting
in a sensor pixel size of 3.76 × 3.76 µm². The above-average sensor pixel size results in a higher light sensitivity of
the camera that has proven to be beneficial in Compressed Sensing, as slight intensity differences in the measured
images can have a great influence on the Compressed Sensing evaluation. For the measurements, an entocentric
objective was used (Qioptiq OPTEM Lower Lens 1.25/160mm) with a focal length of 160mm, an object-space
resolution of 1.67 µm/px and a field of view of 1.6 ×1.1 cm2. The whole setup was thoroughly shielded from
ambient light in a dark enclosure. Additionally, a black cone was mounted over the objective lens to prevent
internal reflexes. A black paper mask was placed on the section, covering everything but the field of view, in
order to prevent reflections from the glass surface of the specimen slide.

3.3 Gamma Correction

In contrast to the Euclidean illumination, wherein each LED exhibits either full intensity or is switched off, the
Compressed Sensing illumination relies heavily on the correctly displayed color value of the illumination squares
for the accurate reconstruction of scattering patterns. The relation between the displayed and the detected color
value should ideally be linear. However, if a non-linear relationship exists, gamma correction is required and either
the illumination matrices or the measured images need to be gamma corrected for the subsequent evaluation.
Here, the gamma correction was applied directly to the displayed illumination matrix to prevent unpredictable
error propagation in the measured images. To determine the appropriate factor for gamma correction, a series
of 256 images with grey values ranging from 0 to 255 was generated and displayed on the LED screen. A plastic
diffuser plate was placed on the specimen stage. The exposure time was selected such that the brightest gray
value produces an intensity slightly below the point of overexposure, resulting in an exposure time of 350ms
with a gain of 3dB. To improve the Signal-to-Noise Ratio, two measurements were taken and averaged. The
correction factor γ is defined by

Iout = p · Iγin (5)

with p being a fitting parameter. γ = 2.641± 0.008 was determined using a least square fit as shown in Fig. 1c).
The fitting range was limited to a gray value range from 35 to 235 to safely exclude any under- and overexposed
pixels. The illumination matrices were then corrected using the inverse exponent γ−1 = 0.38.
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Figure 1. a) Sketch of ComSLI measurement. An illumination square or illumination image illuminates the sample under
an angle. The camera detects the vertically scattered light from the sample. b) Euclidean illumination images are
transformed to DCT-II illumination images by applying a two-dimensional DCT-II transformation to the illumination
matrix. The transformed matrices are split up into two matrices, representing the positive and the negative values. This
is required because it is impossible to illuminate with negative intensity values and results in twice as many illumination
images when no further compression is applied. c) Gamma correction of the light source. The measured gamma factor
must be applied to the illumination images so that all intensities are displayed correctly.

3.4 Tissue Measurements

For the measurement, a brain area was chosen that contains the parts of the corpus callosum, the corona radiata
and the fornix. These regions were chosen due to their well-known fiber architecture, rendering them well-suited
for initial studies of Compressed Sensing in ComSLI. The corpus callosum primarily contains flat, parallel, in-
plane fiber bundles while the corona radiata is characterized by multiple interwoven fiber bundles that form
distinctive fiber crossings. The fornix consists of inclinated fibers, i.e. fiber orientations with an out-of-plane
component.

Two ComSLI measurements were conducted: The first measurement employed Euclidean illumination, per-
forming 64×64 = 4096 measurements for the image set with white RGB light, an exposure time of 1000ms, a
gain of 0 dB, an image depth of 16 bits. Each image is measured twice for averaging. The second measurement
was performed with DCT illumination, resulting in 2×64×64 = 8192 measurements with white RGB light. The
exposure time for DCT illumination can be much lower because the patterns have a higher overall brightness than
the Euclidean patterns. However, the exposure time decrease is not directly proportional because the number
and intensity of illuminated squares varies for the DCT patterns. Therefore, the exposure time was chosen so
that the brightest patterns do not lead to overexposure, leading to an exposure time of 400ms, a gain of 0 dB,
an image depth of 16 bits and averaging over 2 images.
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3.5 Generation of Scattering Patterns

The measured images were processed as established by Menzel et al.:4 The scattering patterns for every pixel were
generated by arranging the measured intensities in a 64×64 grid, corresponding to the order in the measurement.
This was done for every 50-th pixel while averaging over a kernel of the 10×10 surrounding pixels. In case of
the Euclidean illumination, the resulting 64×64 images represent the real-space scattering patterns for every
evaluated kernel. The shape of the scattering pattern corresponds directly to the fiber orientations. To illustrate
why it is not useful to reduce the amount of coefficients directly in the Euclidean measurement instead of using
the more complex Compressed Sensing illumination, the Euclidean measurement was also downsampled from
64×64 pixels to 32×32, 16×16 and 8×8 pixels for two exemplary scattering patterns.

Figure 2. Reconstruction of Euclidean scattering patterns from DCT images. Two transformed scattering patterns of size
64 ×64 can be reconstructed from the DCT illumination, one from the positive illumination images and one from the
negative illumination images. When the negative coefficients are subtracted from the positive coefficients and an inverse
DCT-II is applied, the scatttering patterns are reconstructed. In case of compression, all coefficients except for the first
N× N (here: N=8) are zero. This results in a blurred scattering pattern. A polar integral is used to calculate the line
profiles, leaving out the innermost and outer pixels (denoted with radii d1 and d2).

3.6 Reconstruction of DCT Scattering Patterns

In case of the DCT illumination, the positive and negative image sets were initially treated separately, using
the same rearrangement procedure as in Euclidean illumination. The results are 2×64×64 images per evaluated
kernel, one derived from the positive DCT illumination, one derived from the negative DCT illumination. Those
images contain both negative and positive values. In order to extract information regarding the fiber directions
from those images, the real-space scattering patterns need to be reconstructed. Fig. 2 illustrates the algorithm
for an exemplary scattering pattern from the corpus callosum: The intensity values of the negative DCT image
were subtracted from the intensity values of the positive DCT image, resulting in an image that corresponds to
the DCT transform of a scattering pattern obtained with Euclidean illumination.

In Compressed Sensing, the main objective is the reduction of required measurements, i.e. omitting higher-
order illumination matrices from the measurement. To simulate the acquisition of measurements with fewer
illumination matrices, all coefficients except for the first N× N coefficients were set to zero, being equivalent to
a compressed measurement with a reduced number of illumination matrices. To demonstrate the capabilities
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of compressing, this was done for 64×64 coefficients (that is, a full uncompressed measurement), 32×32, 16×16
and 8×8 coefficients (Fig. 2).

An inverse DCT-II using the scipy.fft module can retrieve the corresponding real-space scattering pattern9

and was applied to every scattering pattern, both for the compressed and the uncompressed scattering patterns.
Theoretically, the scattering patterns contain only positive intensity values. In practice, the calculated scattering
patterns contain a portion of negative values. Therefore, only the positive intensity values were taken into account
for the subsequent analysis. The result are compressed and uncompressed Euclidean illumination that contain
direct information about fiber directions.

3.7 Generation of Line Profiles

The center of the scattering pattern shifts depending on the scattering pattern position in the field of view. For
the correct calculation of the line profiles, this offset is corrected based on the distance between consecutively
lit LED squares, and the pixel pitch of the optical setup. A polar integral is used to calculate the line profiles
by summing up the pixel intensities going from an inner circle with diameter d1 towards an outer diameter d2.
The inner circle is large enough to contain the either dark (for Compressed Sensing illumination) or overexposed
(for Euclidean illumination) pixels that are directly below the camera. The scattering pattern is sampled for 360
consecutive angles as shown in Fig. 2, starting at an angle ϕ0 = 0◦ and going counterclock-wise around a circle.
To enable a comparison of the obtained line profiles, the intensity values were normalized using

Inorm =
I − Imin

Imax − Imin
(6)

Subsequently, the line profiles were visualized by plotting the normalized intensity values against the correspond-
ing angles ϕ, ranging from 0° to 360° in steps of 1°.

4. RESULTS

The subsequent sections present scattering patterns derived from three distinct brain regions characterized by
their distinct nerve fiber orientations. These scattering patterns serve as examples for typical fiber orientations
encountered in ComSLI, i.e. flat fibers, crossing fibers and inclinated fibers, and as a demonstration of both the
potential and the current limits of Compressed Sensing in ComSLI. As a reference, the first column shows the
scattering pattern obtained through the Euclidean illumination patterns. Subsequent columns exhibit increasing
degrees of compression, starting with the uncompressed DCT measurement (64×64) up to a highly compressed
measurement with only 8×8 coefficients. Notably, the scattering patterns acquired from the DCT measurement
feature a dark square in the image center corresponding to the cut-out in the original DCT illumination images.
The intensity values are displayed with a viridis color map for better visualization. Additionally, line profiles for
each scattering pattern in various stages of compression are provided for comparison.

4.1 Downsampling of Euclidean Illumination

To illustrate why the amount of measurements can not simply be reduced by reducing the Euclidean illumination
from 64×64 squares to fewer squares, the Euclidean measurement was downsampled for two exemplary scattering
patterns from the corona radiata and the corpus callosum, as shown in Fig. 4. While the pixels of the scattering
pattern become larger, the characteristic features of the patterns start to disappear. The fiber directions and
crossing are still recognizable in the 32×32 scattering pattern but lost with higher levels of reduction.
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Figure 3. Coronally cut section (section no. s506) of a vervet monkey (Vervet1818) brain (left). For the evaluation, a
region that contains parts of the corpus callosum (cc), the corona radiata (cr) and the fornix (f) has been chosen for
the evaluation (right). These regions are exemplary for typical fiber orientations encountered in ComSLI, i.e. in-plane,
parallel fibers in the corpus callosum (cc), crossing fibers in the corona radiata (cr) and parallel, out-of-plane fibers in the
fornix (f).

Figure 4. Scattering patterns for two exemplary kernels, one from the corpus callosum and one from the corona radiata.
The Euclidean illumination matrix is downscaled, from the original 64×64 illumination squares down to only 8×8 illu-
mination squares. The characteristic features of the scattering pattern (i.e. the fiber directions and crossings) are lost in
the process; thereby demonstrating the need for a more complex approach to reduce measurement time and stored data.
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4.2 In-Plane Parallel Fibers

The corpus callosum primarily contains flat, parallel, in-plane fiber bundles. The characteristic scattering pat-
terns manifest as bar-shaped structures, with the long axis of the bar oriented orthogonally to the fiber direction.
The two different directions in the left and right part of the corpus callosum are visible for the Euclidean illu-
mination, but also up to the highest degree of compression. Although the bar blurs increasingly towards higher
degrees of compression, the angular direction persists. This observation is supported in the line profiles where
the two peaks broaden but keep their angular position at a distance of ≈ 180°, as expected for in-plane, parallel
fibers. At higher compression levels, cross-shaped periodic artefacts along the x- and y-axis become visible but
do not significantly influence the overall results.

Figure 5. Scattering patterns for two exemplary kernels in the corpus callosum with increasing compression levels. The
scattering pattern obtained with Euclidean illumination are shown as reference. The characteristic scattering pattern for
in-plane, parallel fibers present themselves as bar-shaped structure where the long axis is oriented orthogonally to the
fiber direction.
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Figure 6. Line profiles calculated from the scattering patterns for the corpus callosum. Two peaks are obtained from the
bar-shaped structure; the distance between the two peaks is ≈180°. The minima between the two peaks correspond to
the fiber direction. The peaks broaden towards higher levels of compression but their angular position remains stable and
discernible.
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4.3 Crossing Fibers

The corona radiata is characterized by several crossing fiber bundles. The scattering patterns of a coronally cut
brain section are dominated by two crossing in-plane fiber bundles that become visible as an X-shape. The two
X-bars correspond again to two fiber directions that are orthogonally oriented to the long axis of each bar. The
crossing angle matches up to the fiber bundles’ crossing angle. The X-shaped configuration is discernible by the
naked eye up to the highest compression levels even though the 8×8 scattering pattern has nearly lost its major
directions. Yet, the evaluation of line profiles decreases in precision as the X-shape blurs, the peaks broaden
and start to merge and shift as a result of blurriness. Again, artefacts associated with the compression become
visible as periodic patterns along the x- and y-axis.

Figure 7. Scattering patterns for two exemplary kernels in the corona radiata with increasing compression levels. The
scattering pattern obtained with Euclidean illumination are shown as reference. The characteristic scattering pattern for
in-plane crossing fibers have an X-shape where the long axis of each crossing bar is oriented orthogonally to the fiber
direction of one fiber bundle.
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Figure 8. Line profiles calculated from the scattering patterns for the corona radiata. Four peaks correspond to the
X-shaped structure of the corpus callosum and present two crossing fibers. Their angular position starts to shift and
merge up to higher levels of compression.
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4.4 Out-Of-Plane Fiber Inclinations

The fornix consists of inclinated fibers, i.e. fiber orientations with an out-of-plane component. This manifests
as a curvature of the bar-shaped scattering pattern that is characteristic for parallel in-plane fiber bundles. Two
scattering patterns are shown where one exhibits a stronger curvature than the other one. As seen in the corpus
callosum, the shape of the scattering pattern is stable in its general features such as direction and curvature.
The curvature can be observed with the naked eye even up to the highest stage of compression. The line profiles
yield distinct and similar peaks, with their distance deviation from 180° reflecting the curvature of the scattering
pattern and thereby inclination. Again, the peaks broaden towards higher compression levels but the overall
angular position remains stable. As before, compression artefacts are present.

Figure 9. Scattering patterns for two exemplary kernels in the fornix with increasing compression levels. The scattering
pattern obtained with Euclidean illumination are shown as reference. The characteristic scattering pattern for out-of-
plane (i.e. inclinated) parallel fibers shows a curvature that increases with higher inclination angles. The curvature can
be seen with the naked eye up to the highest level of compression.
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Figure 10. Line profiles calculated from the scattering patterns for the fornix. Two peaks correspond to the curved bar
structure; the distance between the two peaks deviates from 180° and is related to the out-of-plane inclination of the fiber.
The peaks broaden towards higher levels of compression but their angular position remains stable and discernible.
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5. DISCUSSION

Initial results for various scattering patterns suggest that Compressed Sensing based on a DCT-II is applicable in
ComSLI and feasible even for the highest investigated compression level of 8×8. The possibility to retrieve fiber
characteristics even from the most compressed scattering patterns shows the potential of Compressed Sensing.
However, the algorithm for the quantitative evaluation of the pattern requires optimization, especially for crossing
fibers. Those scattering patterns may be discernible with the naked eye, but the calculation of line profiles fails
for the highest compression level and results in shifted and merging peaks. Machine learning approaches can be
applied to improve recognition of scattering patterns that are difficult to analyze mathematically due to their
compression-related blurriness.

Future studies should investigate the origin of the compression artefacts that become visible as periodical
cross structures in the reconstructed compressed scattering patterns. Due to their symmetry, they may be a
result of compressing the central black square that is caused by the cut-out in the illumination (otherwise, the
black square has not yet shown any negative influence in the evaluation of the scattering patterns). Furthermore,
the small amount of negative values in the reconstructed scattering pattern needs to be investigated. If these
negative values stem from noise, a measurement with more repetitions may reduce them. Apart from that, they
do not seem to cause any visible problems in the signal analysis if simply set to zero.

The main reason for a Compressed Sensing approach in ComSLI is the reduction of measurement time and
stored data. Given that the scattering patterns are discernible at least by the naked eye up to the highest
compression level and that there is still room to improve the quantitative evaluation of line profiles, even an
8×8 compression seems a realistic goal. However, it may be of interest to initially consider a less compressed
measurement. Tab. 1 provides an overview of the required time and data for all stages of compression. For the
DCT-II, twice as many measurements as coefficients are required for the reconstruction of scattering patterns,
rendering an uncompressed (64×64) measurement pointless in comparison to the Euclidean measurement. Yet,
a compressed measurement with 32×32 images or less starts to become beneficial. The factor 2 is taken into
account in the second column of the table. The total measurement time is calculated under the assumption that
only one measurement image is taken per illumination image (repetitions = 1), with no time required to process
and store the image on the hard drive. Therefore, the total measurement time is an ideal lower limit. The actual
measurement time depends on the measurement software and processing hardware. The real measurement time
for the current setup is roughly twice as long as the theoretical lower limit. The total stored data assumes a
single-channel image with a bit depth of 16 bit and an image size of 9568×6380 pixels. Furthermore, it does not
take into account any further lossless compression of the measured images that may be applied to every image
(e.g., an LZW (Lempel-Ziv-Welch) algorithm10). Generally, it is possible to subsequently reduce the size of the
stored images using such an algorithm. The highest compression stage of 8×8 only requires 3% of data storage. In

Table 1. Estimated measurement time and data storage for various compression levels.

compression images exposure time total time data stored

Euclidean 4096 1000ms 68 minutes ≈ 500GB

64×64 8192 400ms 55 minutes ≈ 1000GB

32×32 2048 400ms 14 minutes ≈ 250GB

16×16 512 400ms 3 minutes ≈ 62.5GB

8×8 128 400ms > 1 minute ≈ 15.6GB

terms of total measurement time, the benefit is even higher: Due to the brighter DCT illumination, the exposure
time can be decreased, lowering the required measurement time down to only 1.5% of the original measurement
time. Even an uncompressed 64 × 64 is - in theory - quicker than the original Euclidean measurement.

However, the Compressed Sensing method presents some drawbacks; mainly the need for a high-quality cam-
era that is able to distinguish the subtle variations in intensity in the illuminated sample. Previous experiments
with a lower-quality camera (BASLER acA5472-17uc) have not been successful. Furthermore, a bright display
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and profound light shielding are absolutely required. So far, one of the strengths of ComSLI has been that
measurements are already possible with relatively inexpensive hardware. It seems that Compressed Sensing has
higher requirements upon the hardware.

6. CONCLUSION

In this paper, we presented the first steps towards implementing a Compressed Sensing application for Com-
putational Scattered Light Imaging, highlighting both the potential and the current constraints of the method.
The advantages of using a Discrete Cosine Transformation (DCT-II) were outlined and the mathematical back-
ground to generate the DCT-II illumination matrices from the standard Euclidean matrices was illustrated. First
measurements were taken as a proof-of-concept for various scattering patterns from different characteristic brain
regions. We found that it is possible to retrieve features like fiber directions, fiber crossings and fiber inclinations
from the compressed scattering patterns that remain discernible up to the highest level of compression. There-
fore, Compressed Sensing is a very promising approach to significantly reduce measurement time to only 1.5%
of the originally required time and the stored data to 3% of the originally required data in ComSLI. Thus, Com-
pressed Sensing opens the way to analyze a multitude features of the nerve fiber architecture with significantly
lower time and storage requirements.
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