
Automated Fault Localization for
Service-Oriented Software Systems

Automated Fault Localization for
Service-Oriented Software Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
woensdag 27 mei 2015 om 10:00 uur

Door

Cuiting CHEN

Master of Computer Science
Dresden University of Technology, Germany

geboren te Fujian, China.

This dissertation has been approved by the

promotor: Prof. dr. A. van Deursen and

copromotor: Dr. A.E. Zaidman

Composition of the doctoral committee:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. A.E. Zaidman Delft University of Technology, copromotor
Dr. H.-G. Gross Esslingen University of Applied Sciences, Germany

Independent members:
Prof. dr. T. Xie University of Illinois at Urbana-Champaign, USA
Dr. M.I.A. Stoelinga University of Twente, The Netherlands
Prof. dr. C. Witteveen Delft University of Technology
Prof. dr. E. Visser Delft University of Technology

This work was carried out as part of the Jacquard ScaleItUp project. This project
was supported by the Netherlands Organization for Scientific Research (NWO).

SERG

Published and distributed by: Cuiting Chen
E-mail: cuiting.c.chen@gmail.com
ISBN: 978-94-6186-471-0

Copyright c© 2015 by Cuiting Chen
Cover: Image ’Bookshelf Spectrum 1.0’ by Pietro Bellini.
Printed and bound in The Netherlands by CPI Wörmann Print Service.

Dedicated to my beloved mama
献给我亲爱的妈妈

Acknowledgments

In this special occasion, I would like to express my heartfelt appreciation to all
people who have contributed to the success and happiness of my Ph.D. journey.

First of all, I would like to thank my promoter and my two daily-supervisors:
Arie van Deursen, Hans-Gerhard Gross and Andy Zaidman. Arie, thank you for
your kindness, your support, and your consideration. I always feel lucky to have
the opportunity to pursue my PhD in your research group. In particular, I would
also like to thank you for offering me the postdoc position, which has significantly
reduced the pressure from both career and life for me. Gerd, thank you for your
advice and supervision. You pointed me the directions when I did not know how
to go further. This thesis would not have been completed like this without your
advice, your support and your hard work. Andy, thank you for always being there
to support me. Your patience and consideration are amazing. You always consider
the needs of your students and do your best to supervise them. The advices and
encouragements you have given to me are not only on work, but also on life. You
are also in my list of the best people I have met.

Besides my promoter and two daily-supervisors, I would like to extend my grat-
itude to other members of my defense committee: Prof. Dr. Tao Xie from University
of Illinois at Urbana-Champaign, Dr. Marielle Stoelinga from University of Twente,
Prof. Dr. Cees Witteveen from TU Delft and Prof. Dr. Eleco Visser from TU Delft.
Thank you for accepting to be in my committee, reviewing the dissertation and
providing valuable feedback.

I would also like to thank Prof. Dr. Serge Demeyer. I was deeply encouraged
when you came to talk to me, in order to complete our conversation happened two
years ago during the banquet of ICSE’12. Your attitude to students shows me why
you are a great professor.

My thanks also go to the current and former members of the Software En-
gineering Research Group. Cor-Paul and Tiago, you both are great officemates.
Thank you for all amazing chats, for all generous sharing of technology and expe-
rience, and for all positive words when I was facing some difficulties. Danielle, my
first conference trip was also shared with you, thank you so much for being the
local guide in Milan, and also for all Italian style of compliments. To other mem-
bers of the SERG group: Alberto Bacchelli, Ali, Anja, Bas, Eric Bouwers, Felienne
(for translating the propositions and the summary), Fenia (for lots of baby stuff),

vii

Georgios, Hans, Hennie, Kees, Martin, Michaela, Moritz, Nicolas (for teaching me
driving and charging my car), and Rini: thank you all for your kindness, support,
consideration, and for teaching me lots of western things.

I would like to thank the supporting staffs in the software technology depart-
ment. Esther, Tamara, Ilse, and Rina, thank you for considerate administrative
supports. Paulo, Munire, and Stephen, thank you for excellent technical supports,
especially, when rescuing my laptop after the water-pouring accident.

Many thanks go to my friends who I met in Delft. Claudia and Xin, thank you
so much for being my paranymphs, and Ang-Ang’s emergency contacts in daycare.
Also, thank you for always helping me and always being willing to help me. Eric
Piel, I really appreciate your patience to answer lots of trivial questions from me.
Adele, I enjoy all hangouts and chats with you very much, you are always able to
give me considerate and positive feedbacks. Ke, thank you for all help, especially,
for sharing the cover design of thesis. Qiaole, thank you for inviting me (a sofa-
potato) for dinners, I enjoyed them and learnt various games. Alberto and Zhutian,
I am deeply touched when you told me you are coming to my defense from UK. I
am looking forward to reuniting with you and seeing your lovely daughter Diana.
I am very thankful to all of you. Because of you, Delft lets me feel more like home
than other cities.

I also owe special thanks to Paula, thank you for helping me to learn more
about myself, and helping me to get out of the most difficult situation I have ever
had in my entire life.

To my family and relatives:
致我的家人和亲人们：

首先，我要感谢我的父母和弟弟。爸爸妈妈：谢谢你们无私的爱，谢谢你
们辛苦的养育，严格的教导，一直不变的支持、尊重和包容。我爱你们。弟
弟：小时候，我经常因为小事情对你很凶，而你总是信任我。长大后，越来越
多的是我向你询问做人做事的分寸。不管相隔咫尺或天涯，我们都是一家人。

我要感谢一直关心我爱护我的整个大家族。我感谢大伯一家：你和哥哥们
一直关心我的学业和生活，在我困惑的时候为我指点迷津。我感谢外公外婆舅
舅阿姨和姑奶奶们，谢谢你们在我求学过程中的各种支持，照顾和帮助。外
公，我相信你一定在看着我拿到学位的那一刻，并为我感到高兴。我感谢上海
叔公一家的关心和帮助，每次到上海你们的热情都让我感动。叔公，我托福培
训的时候你每天为我送饭的情景让我至今难以忘怀。限于篇幅，请原谅我仅用
这寥寥数语来向你们大家致以我心里最诚挚的谢意。

最后，我要感谢我现在的小家庭。安安她爸，谢谢你为这个小家庭做出的
所有努力。安安，你是我的人间四月天。我感谢你来到我的生命里，跟你一起
的每一天都是新的，充满了希望、惊喜和期待。是你让我明白并去努力做到要
珍惜当下，要充实快乐地度过每一天。我爱你！

viii

Contents

Acknowledgements vii

1 Introduction 1

1.1 Background . 2

1.2 Problem Statement . 4

1.3 Research Methodology . 7

1.4 Contributions . 8

1.5 Related Work . 9

1.6 Thesis Outline . 10

1.7 Origin of Chapters . 10

2 Research Infrastructure 13

2.1 Monitoring for Service-Oriented Systems 13

2.2 Assessment Vehicles . 17

2.3 Summary . 25

3 Spectrum-based Fault Diagnosis for Service-Oriented Systems 27

3.1 SFL for service-oriented systems . 29

3.2 Experimental Setup . 32

3.3 Results and Discussion . 33

3.4 Related work . 37

3.5 Summary . 38

ix

4 Effects of Monitoring Topology on Spectrum Based Diagnosis 41

4.1 Topology Effects . 42

4.2 GA for Topology Optimization . 43

4.3 Experiments . 44

4.4 Discussion . 52

4.5 Related Work . 54

4.6 Summary . 55

5 Diagnosis Improvement Through Increased Monitoring Granularity 57

5.1 Background . 59

5.2 Problem Statement and Approach . 62

5.3 System Simulations . 65

5.4 Case Study . 67

5.5 Runtime Overhead . 70

5.6 Discussion and Lessons Learned . 77

5.7 Related work . 80

5.8 Summary . 82

6 Diagnosis Improvement Through Invocation Monitoring 85

6.1 Problem Statement and Approach . 87

6.2 System Simulations . 89

6.3 Case Study . 94

6.4 Discussion . 96

6.5 Related work . 97

6.6 Summary . 98

7 Conclusion 99

7.1 Summary of Contributions . 99

7.2 The Research Questions Revisited . 100

7.3 Recommendations for Future Work . 103

Bibliography 105

Summary 115

Samenvatting 117

Curriculum Vitae 119

x

1.
Introduction

Service-oriented computing (Papazoglou et al., 2007) has lately attracted huge at-
tention by the software industry. A service-oriented software system uses loosely-
coupled and self-contained services as system components and it can adapt to fast-
changing business requirements. For example, with the support of dynamic discov-
ery and Service Level Agreement (SLA) management, a service can be deployed
into the system at operation time. This enables a service-oriented system to recon-
figure to assemble new functionality, in order to meet the changed requirements.
Services can also be updated or removed from the system, which promotes the dy-
namic nature of a service-oriented system. In addition, a service is usually running
at its provider’s infrastructure. Thus, the service-oriented system that integrates
the service may only use it, but does not own it (Turner et al., 2003).

The two main features of service-oriented systems, i.e., loosely-coupling and
highly-dynamic, can bring challenges to their quality assurance (Allauddin et al.,
2011). Specifically, checking the interaction between services and the integra-
tion of services is difficult. This is mainly attributable to their loose coupling, late
(runtime) binding, and deployment in many application contexts. Runtime test-
ing (Brenner et al., 2006), which aims to test systems at operational time, can
alleviate the detection of failures in highly dynamic systems. However, it requires
specific architectures that support it (Gonzalez-Sanchez et al., 2010b), and side-
effects need to be eliminated, for example, interference with normal system oper-
ation (Greiler et al., 2009).

In order to meet quality of service requirements, service-oriented systems should
be able to recover from failures when they are detected. Its inherent features en-
able it to reconfigure itself by replacing the faulty service with a healthy one at
runtime. In addition, to further prevent future problems, the developers of faulty
services can also be informed to fix the fault. Therefore, localizing the real faulty
service becomes a critical task for the quality assurance of a service-oriented sys-
tem. Particularly, when a failure is detected in the system, the service where the
error is observed may not be causing it, since a fault can be propagated from the
previously activated services (Novotny et al., 2012). Thus, besides the need for
monitoring facilities integrated into the service-oriented system and its underly-
ing platform (Baresi et al., 2004a), we also need a fault localization technique to

1

2 Chapter 1. Introduction

identify the actual faulty service in the system.

Due to the dynamic nature of a service-oriented system, the required fault
localization should be applied to a running service-oriented system at operation
time. Although the additional fault localization always comes with a performance
cost, the disturbance to regular performance of the diagnosed system should be
reduced as much as possible. Among existing fault localization approaches, two
categories can be distinguished: model-based approaches and spectrum-based ap-
proaches (Abreu et al., 2009a).

Model-based techniques calculate the diagnosis by comparing the model, which
describes expected behavior deduced from the prior knowledge of a system, with
actually observed behavior of the system. Spectrum-based fault localization (SFL)
techniques only use the dynamic component coverage information and the pass/-
fail results to generate a rank of likely faulty components.

Since the model-based approaches build models with prior system information,
such as component dependencies, their diagnosis performance is generally more
precise when compared to SFL. However, the system modeling is usually based on
the static information of the system, and the model-based approaches would take
much more calculation effort for diagnosis (Mayer and Stumptner, 2008).

In contrast to the model-based approaches, the SFL approaches are more light-
weight (Zoeteweij et al., 2007b). They do not require prior static system informa-
tion or modeling of the system, and only take the dynamic trace information as
source for diagnosis. Therefore, the spectrum-based fault localization techniques
can better meet the requirements of online diagnosis for service-oriented systems.
The main contribution of this thesis is to apply SFL to service-oriented systems to
pinpoint the actual faulty service automatically.

1.1 Background
Service-Oriented Software Systems
A service-oriented software system is a software system developed following the
principles of Service-Oriented Architecture (SOA), which is a style of system archi-
tecture designed to support fast-changing business requirements (Josuttis, 2007a).

The basic component of SOA is a service, which is a self-contained unit repre-
senting business functionality. Generally, a service is designed to be stateless, thus,
users of services do not depend on the state of service providers. A service also
has explicitly defined interfaces, which are described in the Web Service Descrip-
tion Language (WSDL). A service can be invoked through its published interfaces
over a network connection. The service is governed by a set of service contracts,
i.e., Service-Level Agreements (SLAs). The messages exchanged between services
are typically defined by XML Schema. Furthermore, a service is loosely-coupled
and users of a service can only see the public interfaces of the service, while the

1.1. Background 3

location, the implementation technology or the current status of the service are
invisible to users.

Based on the above design concepts, the communication between services is
guaranteed through open standards, such as WSDL, XML Schema and SLAs, which
are independent from technologies required by services. Therefore, services im-
plemented with different languages or running on various hardware platforms or
operating systems, can interact with each other.

Besides the open standards for communication, SOA also provides some tech-
niques, such as service registry and enterprise service bus (ESB), to enable dynamic
search, dynamic localization, or dynamic routing for services. Hence, a service can
be deployed into a service-oriented system any time during operation. It can also
be updated or removed at runtime. This means that interactions between services
can become highly dynamic.

Because of the loosely-coupled and highly-dynamic features, a service-oriented
system is able to adapt to fast-changing business requirements quickly by combin-
ing new services or updating existing services in the system dynamically.

Spectrum-based Fault Localization
SFL is a statistics-based technique that automatically infers a diagnosis from symp-
toms. The diagnosis is a ranking of potentially faulty components (block, source
code line, etc.) in a system, with the most likely faulty one ranked top. The symp-
toms are observations about component involvement in a system execution, plus
pass/fail information about that execution (Gonzalez-Sanchez et al., 2011). Com-
ponent involvement is expressed in terms of block-hit-spectra (hence its name),
producing for each execution a binary coverage value per component (Reps et al.,
1997)(Zoeteweij et al., 2007c). Further, each system execution (test), is associated
with a binary verdict (pass=0, fail=1) from an oracle. Several tests lead to an activ-
ity matrix, representing coverage of each component over time. The binary verdicts
lead to an output vector. The diagnosis is calculated through applying a similarity
coefficient (SC) to each component activation vector and the outcome vector. The
similarity denotes the likelihood of a component being the faulty one, and, there-
fore, determines its position in the ranking. Any SC may be used; however, the
Ochiai SC has been found to work best (Abreu et al., 2006). This technique mimics
how a human diagnostician would infer a diagnosis from observing which parts of
a system were involved in producing a failure.

SFL is illustrated in Table 1.1 by means of a Java program. This example is com-
prised of components C0 − C10 with a source code line as component granularity.
It is exercised with six tests/transactions, leading to the component activation for
each transaction t1 − t6 noted down in the activity matrix. Four transactions have
failing test outcomes (1); two have passing test outcomes (0), noted in the output
vector. The Ochiai SC is calculated for the output vector and each component acti-
vation vector. Then, the similarity values are brought in a descending order. This

4 Chapter 1. Introduction

Table 1.1: Illustration of SFL

Component Character counter t1 t2 t3 t4 t5 t6 SCo
public int count(String s){ [Activity Matrix]

C0 int upper = 0 ; int lower = 0; int digit = 0; int other = 0; 1 1 1 1 1 1 0.82
C1 for(int i = 0; i<s.length(); i++){ 1 1 1 1 1 1 0.82
C2 char c = s.charAt(i); 1 1 1 1 1 1 0.82
C3 if(c >= ’A’ && c <= ’Z’) 1 1 1 1 0 1 0.89
C4 upper += 2; 1 1 1 1 0 0 1.00
C5 else if(c >= ’a’ && c <= ’z’) 1 1 1 1 0 1 0.89
C6 lower++; 1 1 0 0 0 0 0.71
C7 else if(Character.isDigit(c)) 1 0 1 0 0 1 0.58
C8 digit++; } 1 0 1 0 0 1 0.58
C9 other = s.length()-upper-lower-digit; 1 1 1 1 1 1 0.82

C10 return other; 1 1 1 1 1 1 0.82
}
Output vector (verdicts) 1 1 1 1 0 0

results in component 4 being ranked top with 100% likelihood, which represents
the location of the fault in this example system.

Online Monitoring vs. Online Testing
Instead of performing proactive online testing, we favor passive online monitor-
ing plus online diagnosis for identifying residual defects. Monitoring is less in-
trusive, requires fewer assumptions about the system, and is easier to incorporate
into a service-oriented system. Many modern service platforms such as Apache’s
Axis21, Redhat’s JBoss2, or eBay’s Turmeric3 come equipped with extensive mon-
itoring/profiling frameworks that can be adapted to diagnosis. Our case system
makes use of Turmeric’s monitoring functionality.

The disadvantage of monitoring is that errors hiding in seldom-used parts of a
service-oriented system are difficult to trigger by normal execution. They would
have to be triggered on purpose through specific tests. Furthermore, such errors
are unlikely to be identified. However, this is not an urgent issue, since only those
services or parts thereof which are actually used in a particular application, will be
exercised and monitored.

1.2 Problem Statement
The main research problem addressed in this dissertation is to diagnose service-
oriented systems automatically at runtime. Due to the dynamic nature of service-
oriented systems, the traditional offline techniques for fault tolerance become inef-
ficient. For example, since services can be deployed at runtime, some faults, such
as execution faults, are more likely to cause failures during runtime (Bruning et al.,

1http://axis.apache.org
2http://www.redhat.com/products/jbossenterprisemiddleware/
3https://github.com/ebayopensource/turmeric-runtime

1.2. Problem Statement 5

2007). When a failure is detected, it is necessary to trace the failure back to its ac-
tual cause. In the meanwhile, the fault localization should not bring too much
disturbance to the system’s runtime performance. Therefore, in this thesis, we pro-
pose to apply spectrum-based fault localization (SFL), which is a statistics-based
and light-weight diagnosis technique, to service-oriented systems.

For the purpose of disturbing system operations as little as possible, the online
diagnosis should only be activated when a failure happens. Hence, as the first step
of applying SFL to service-oriented systems, we focus on the following research
question:

RQ3.1: How can a failure be detected in an operational service-oriented
system?

In Chapter 3, we will illustrate an online monitoring technique for service-
oriented systems to obtain data on their dynamic behavior and actual usage. Based
on the monitoring data, a failure can be detected at runtime for service-oriented
systems.

Since SFL requires an activity matrix and an output vector to calculate diag-
nosis, it is necessary to monitor the service system at runtime and obtain the in-
formation of service transactions containing service involvement and the results
of all transactions to form an activity matrix and an output vector. In Chapter 3,
we present how we adapt the concepts of SFL into the service-context, in order to
apply SFL to a service-oriented system:

RQ3.2: How can spectrum-based fault localization be applied in a service-
oriented system in order to trace a failure back to its respective root cause?

To evaluate how many correct diagnoses SFL is able to perform in a service-
oriented system, we will conduct experiments in Chapter 3 to answer the following
research question:

RQ3.3: How well does spectrum-based fault localization perform in a
service-oriented system in terms of correctness of the diagnosis?

SFL is a diagnosis technique based on the information of component coverage
during system transactions. In a service-oriented system, a monitoring technique is
used to collect the activity information for components. We refer to the placement
of monitors as the monitoring topology of the diagnosed system. Since monitors
can be put anywhere in a service-oriented system, it is better to put the monitors
in those places which can facilitate the diagnosis. This represents an optimiza-
tion problem to create an optimal monitoring topology for diagnosing a service-
oriented system. Among existing meta-optimization heuristics, we prefer genetic
algorithms, because they are adequate for our problem domain and easy to apply.

6 Chapter 1. Introduction

With this understanding, we focus on the following research question in Chap-
ter 4:

RQ4.1: How can genetic algorithms be used to optimize monitoring topolo-
gies for spectrum-based diagnosis?

Knowing the characteristics of optimal monitoring topologies for diagnosis can
guide us to place monitors in the most suitable positions. This can facilitate the
application of SFL on a service-oriented system by improving the accuracy of di-
agnosis without adding needless overhead. Thus, we will answer the following
research question in Chapter 4:

RQ4.2: What are characteristics of monitoring topologies that are opti-
mal for spectrum-based diagnosis?

The phenomenon of tight interaction between services can cause suboptimal
diagnoses. Tight interaction means several services are always invoked together
in transactions. If two services are always invoked together and one of them is
faulty, the diagnosis would be such that both services will be convicted, leading to
incorrect or inconclusive diagnoses. Such diagnoses would bring extra unnecessary
inspection cost for the system, in order to find the real faulty service. Since chang-
ing the architecture of a service-oriented system to eliminate tight interactions is
not realistic, an optional solution to diagnose a service-oriented system with tight
interaction correctly is to change the monitoring granularity of a service-oriented
system. Based on this understanding, we focus on the following research question
in Chapter 5:

RQ5.1: How and to which extent does the monitoring granularity affect
the calculation of a diagnosis with spectrum-based fault localization?

When applying SFL to a service-oriented system, services or service operations
can be taken as the diagnosis components, i.e., the monitoring granularity is on
the level of service or service operation. Unfortunately, the granularity of service
or service operation is very coarse. This brings the following challenge:

RQ5.2: How can we increase the monitoring granularity?

In Chapter 5, we will increase the monitoring granularity by injecting monitors
into the service implementation. This solution has a limitation in that it requires
the ownership of a service. Therefore, in Chapter 6, we propose to include other
contextual information of service transactions into the diagnosis:

1.3. Research Methodology 7

RQ6.1: To which extent can the usage of information expressing activa-
tion of links between services improve diagnosis?

We will add the link invocation activation information into the diagnosis in
Chapter 6. We will perform simulations and a case study to explore the effect of
topology information on diagnosis, and we will aim to find the characteristics of a
topology which can improve diagnosis:

RQ6.2: How does topology, i.e. the organization of the invocation links
between services, affect diagnosis, and are there general characteristics of
topology that improve diagnosis?

While the diagnosis can facilitate the fault tolerance of a service-oriented sys-
tem, it also brings a performance penalty to the running service-oriented system.
In order to analyze the trade-off between the diagnosis and its overhead, it is nec-
essary to measure the runtime overhead caused by the diagnosis for a service-
oriented system. Since the diagnosis engine is detached from the service-oriented
system in our approach, the overhead of diagnosis is mainly from the monitoring in
the system. To assess the overhead of monitoring at different levels of granularity,
we focus on the following research question in Chapter 5:

RQ5.3: What is the overhead caused by the monitoring of various levels
of granularity?

1.3 Research Methodology
To answer our research questions, we use different research methods. Research
questions 3.1, 3.2 and 3.3, which aim at applying SFL to diagnose service-oriented
system, are studied following the case study research method (Yin, 2014).

We conduct a case study on a real service-oriented system, i.e., SFL-Stonehenge4,
to answer the research questions. The main reasons for choosing the SFL-Stonehenge
system are: (1) the system is a real world example extended from Apache Stone-
henge5 and built on eBay’s Turmeric SOA platform6; (2) the SFL-Stonehenge sys-
tem is open-source and can be used as a benchmark, so other researchers can
compare our approaches with theirs and verify our findings.

Research questions 4.1 and 4.2 aim to find the effects of the monitoring topol-
ogy on SFL diagnosis for service-oriented systems. To answer these questions, we
set up a large number of experiments with the SFL simulator7 developed at Delft

4https://github.com/SERG-Delft/sfl-stonehenge
5https://cwiki.apache.org/STONEHENGE/
6https://github.com/ebayopensource/turmeric-runtime
7https://github.com/SERG-Delft/sfl-simulator

8 Chapter 1. Introduction

University of Technology to validate our approach. The main reason for using the
simulator is because it allows us to set up various complex monitoring topologies
quickly and easily, which is infeasible for a real service-oriented system.

For research questions 5.1, 5.2, 6.1 and 6.2, which aim to improve diagnosis
for service-oriented system with tight interactions, we follow a mixed-methods ap-
proach (Creswell and Clark, 2010), i.e., the combination of experiment and case
study. Firstly, we conduct experiments with the SFL simulator for a trial of our
approaches. After receiving results from the simulations, we implement our ap-
proaches in the case system and perform case studies to obtain a deeper under-
standing of our findings. Research question 5.3 is about measuring monitoring
overhead when applying SFL to service-oriented systems, and is also answered by
performing a case study.

1.4 Contributions
The contributions of this thesis are as follows:

A case study system for research related to service-oriented systems (Chap-
ter 2). We perform a small literature survey about case study systems being used
in service-oriented research, and find that the service-oriented community is lack-
ing a standard case study. Therefore, we propose the SFL-Stonehenge, an open-
source service-based Java software system, as a possible standard case study for
researchers working in the area of service-oriented systems.

A simulator for diagnosing a service-oriented system with spectrum-based
fault localization (Chapter 2). We introduce a novel simulator for spectrum-based
fault localization, which is used to study the effects of changing the observation
granularity on the calculation of the diagnosis in many different system configura-
tions. The simulator can be used for assessing different system topologies quickly
and easily.

Application of spectrum-based fault localization to service-oriented soft-
ware systems (Chapter 3). We discuss the requirements of applying spectrum-
based fault localization to service-oriented systems and show how such require-
ments can be realized in a concrete service platform. We demonstrate the appli-
cation of online spectrum-based fault localization in a real service-oriented system
and evaluate to which extent online spectrum-based fault localization can pinpoint
faulty service operations automatically.

Formulation of general characteristics of optimal monitoring topologies
for spectrum-based fault localization (Chapter 4). We apply genetic algorithms
to study the optimality of monitoring topologies through spectrum-based fault lo-
calization. We define a set of fitness functions for the application, and derive a set
of general characteristics of topologies that improve spectrum-based diagnoses.

Analysis of service diagnosis improvement through increased monitoring
granularity (Chapter 5). We describe an approach and implementation for in-

1.5. Related Work 9

creasing the monitoring granularity in services, and show how this can improve
the accuracy of diagnosing faulty services. We use a simulator to study the effects
of changing the monitoring granularity on the calculation of the diagnosis in many
different system configurations. We also evaluate our approach and implementa-
tion in a case study and discuss its implications.

Assessment of monitoring overhead for service-oriented system (Chap-
ter 5). We implement various levels of monitoring required for spectrum-based
fault localization in a service-oriented system. We measure their runtime overhead
on a running system at different levels, and compare the monitoring overhead at
the service communication level and at the service implementation level.

Improving Service Diagnosis Through Invocation Monitoring (Chapter 6).
We propose to extend monitoring to include the invocation links between the
services, and derive an algorithm to incorporate link invocation information in
spectrum-based fault localization. We show through simulations and a case study
with a real system under which circumstances service monitoring alone inhibits the
correct detection of a faulty service, and how and to which extent the inclusion of
invocation monitoring can lead to improved service diagnosis.

1.5 Related Work
There are some studies relevant to diagnosis for service- oriented software systems.
Chen et al. present Pinpoint (Chen et al., 2002), a similar diagnosis approach plus a
tool using similarity coefficients in order to infer a diagnosis from system activation
and component involvement. However, even though their title suggests otherwise,
they do not address the specific issues of diagnosing services, i.e. the problems of
inter-service diagnosis, and the fact that services are used in different contexts.

Yan, et al. (Yan and Dague, 2007; Yan et al., 2009), propose a model-based ap-
proach to diagnose orchestrated Web service processes. Modeling is done through
discrete event systems, which imposes a heavy burden on the user of the tech-
nique. Zhang et al. (Zhang et al., 2009, 2012a) describe approaches for diagnos-
ing quality-of-service problems in service-oriented architectures. However, their
diagnosis approaches cannot adapt well to the dynamic nature of SOA, due to the
static information they used. Moreover, their bayesian-based approaches are more
heavyweight compared to spectrum-based approaches. Additionally, the authors
measure the execution time for diagnosis, but their main purpose is to compare the
performance of their two approaches, and they did not assess the overhead caused
by diagnosis to the performance of service system. Mayer and colleagues (Mayer
et al., 2010a, 2012), describe a similar diagnosis approach that is based on ana-
lyzing execution traces of failed transactions. However, the models they used for
diagnosis are rather complex, and proper evaluation is still pending.

10 Chapter 1. Introduction

1.6 Thesis Outline
The outline of this thesis is as follows: Chapter 2 introduces the basic techniques
used in this thesis to support our research. Chapter 3 presents the application of
SFL for service-oriented systems. Chapter 4 introduces how the monitoring topol-
ogy can affect the spectrum-based diagnosis for service-oriented systems. Chap-
ter 5 contains an approach to increase monitoring granularity to solve the failed
diagnosis when SFL is applied to diagnose a service-oriented system with tight in-
teractions. In addition, this chapter also presents the runtime overhead caused
by the required monitoring techniques for service-oriented systems. Chapter 6 de-
scribes another approach to solve the tight interaction problem for SFL diagnosis
by including the monitoring of invocation links between services.

1.7 Origin of Chapters
Each of the chapters in this thesis has been published in at least one peer-reviewed
publication. Most of the publications have been co-authored with Hans-Gerhard
Gross and Andy Zaidman. The following list gives an overview of these publica-
tions:

Chapter 2 contains materials published at the 1st International Workshop on Qual-
ity Assurance for Service-Based Applications (QASBA’11) (Chen et al., 2011),
the 16th European Conference on Software Maintenance and Reengineering
(CSMR’12) (Espinha et al., 2012a), and the 7th International Conference on
Software Security and Reliability (SERE’13) (Chen et al., 2013a).

Chapter 3 has been published in the proceedings of the 5th International Confer-
ence on Service-Oriented Computing and Applications (SOCA’12) (Chen et al.,
2012).

Chapter 4 contains our work appeared in the proceedings of the 24th International
Workshop on the Principles of Diagnosis (DX’13) (Chen et al., 2013c).

Chapter 5 comprises our findings submitted to the Software Quality Journal. This
chapter is an extension of our previous work published at the 7th Interna-
tional Conference on Software Security and Reliability (SERE’13) with the most
distinguished paper award (Chen et al., 2013a). The previous article is fo-
cused on the improvement of the diagnosis through increasing the monitor-
ing granularity with a preliminary overhead assessment. The main extension
of this chapter is the addition of a detailed analysis of runtime overhead
caused by the different levels of monitoring.

Chapter 6 contains material published at the 13th International Conference on Qual-
ity Software (QSIC’13)(Chen et al., 2013b).

1.7. Origin of Chapters 11

Additional Publications
The author has been involved in the following publications which are not directly
included in this thesis:

• Comparing Diagnostic Performance of Ochiai and Relief in Service-oriented Systems,
which appeared in the proceedings of the 24th International Workshop on
the Principles of Diagnosis (DX’13). This paper is refereced as (Chen et al.,
2013d).

• Spicy Stonehenge: Proposing a SOA Case Study, which appeared in the 4th Inter-
national Workshop on Principles of Engineering Service-Oriented Systems (PE-
SOS’12). This paper is referenced as (Espinha et al., 2012b).

2.
Research Infrastructure

This chapter presents the grounding techniques required by the research in the follow-
ing chapters. (1) The highly dynamic and loosely coupled nature of a service-oriented
system leads to the challenge of understanding and maintaining it. To obtain insight
into the runtime topology of a SOA system, we propose a framework-based runtime
monitoring approach to trace the service interactions during execution. The approach
can be transparently applied to all web services built on the framework and reuses
parts of information and functionality already available in the framework to achieve
our goals. (2) Maintenance research in the context of Service Oriented Architecture
(SOA) is currently lacking a suitable standard case study that can be used by scientists
in order to develop and assess their research ideas, and for comparison, and bench-
marking purposes. For this reason, we built upon an existing open-source system and
make it available for other researchers to use. This system is SFL-Stonehenge. (3) Per-
forming experiments with a fully fledged case study is tedious. Every new experiment
requires extensive adaptation to new experimental requirements. This lead us to de-
velop a simulator for applying spectrum-based fault localization to service-oriented
systems.1

2.1 Monitoring for Service-Oriented Systems . 13

2.2 Assessment Vehicles . 17

2.3 Summary . 25

2.1 Monitoring for Service-Oriented Systems
Today, many organizations deploy services for realizing their landscapes of infor-
mation technology. They aim at exploiting the ability of service technologies to
integrate existing legacy components, and to better cope with changing business
requirements. These are two core demands of industry which are addressed ad-
equately through highly dynamic and loosely coupled service-oriented architec-

1This chapter is based on our papers published in theInternational Workshop on Quality Assur-
ance for Service-Based Applications (QASBA’11) (Chen et al., 2011), the 16th European Conference
on Software Maintenance and Reengineering (CSMR’12) (Espinha et al., 2012a) and the 7th Interna-
tional Conference on Software Security and Reliability (SERE’13) (Chen et al., 2013a).

13

14 Chapter 2. Research Infrastructure

tures (SOA) (Papazoglou et al., 2006). In particular, services can be discovered,
bound, and executed during operation time, enabling (online) evolution (Gold
et al., 2004).

However, loose coupling and the highly dynamic nature of service-based soft-
ware systems also present challenges in the maintenance and evolution processes.
For example, the actual configuration of a system realized with services, and the
usage of its parts, can only be seen at runtime (Canfora and Di Penta, 2009a).
Although online maintenance and evolution is technically well supported, sys-
tem comprehension, a key prerequisite for conducting maintenance and evolu-
tion (Zaidman et al., 2010), is not (Gold et al., 2004). Understanding complex
SOA in order to plan and implement maintenance and evolution, is still one of the
major challenges for software engineers (Moe and Carr, 2001).

Information that can be derived statically is not enough for understanding and
visualizing how a SOA is deployed at runtime, and how the services interact in
order to realize the business goals of various users. Instead, or in addition, run-
time monitoring should be employed as the primary means to obtain data on the
dynamic behavior of a SOA and its usage. In this way, software engineers can get a
better understanding of the service-based software system and, consequently, they
can plan and perform necessary system maintenance and evolution activities more
adequately and timely. By also adding the usage information of individual services
to the extracted views, the engineers can better plan maintenance, thus reducing
the disturbances to the nominal system operation of an entire IT infrastructure.
Moreover, online monitoring can facilitate SOA governance through supporting
load balancing, identifying performance bottlenecks, or usage profiling.

In this section, it is our goal to support software engineers by creating high-level
views of how services (dynamically) interact, i.e., the runtime topology. In order
to realize this, we first identify the associated monitoring data, will subsequently
help engineers in the (online) maintenance and evolution of service oriented archi-
tectures. Furthermore, in order to acquire the required information, we propose
to extend existing service frameworks to support monitoring, and to be able to
exploit information readily available inside these frameworks. For example, the
addressing information used to send and receive requests and responses can be ex-
tracted to reversely reason about the invocation sequences and activities of users.
That way, engineers can update and maintain parts of the SOA with low current
usage, or they can defer maintenance to periods with expected low usage, thereby
minimizing disturbance. Some of the data required for planning and realizing such
maintenance activities are already provided by SOA frameworks through logging
mechanisms contained in many platforms. Moreover, additional mechanisms can
be integrated into frameworks, in order to provide required data according to var-
ious comprehension goals. For example, a framework can be extended to add a
sequence id to SOAP messages, which provides the order of messages caused by an
invocation traversing different machines.

2.1. Monitoring for Service-Oriented Systems 15

BookingWS

inputReq

HousingWS

search

FlightWS

search

Hotel1WS

Hotel2WS

AirComp1

AirComp2

AirComp3

User1

only flight

User2

flight+hotel

R21

R11

R12

R13

R15

R14

R22

R23

R16

Figure 2.1: SOA system Scenario

Approach
Goal Our basic goal is to support the comprehension process of complex SOA
systems. In particular, we are interested in understanding the runtime topology of
services, which entails obtaining insight into how services work together to execute
a particular functionality. Recovering this type of information calls for a dynamic
analysis approach, which means monitoring the SOA system during runtime. An
additional benefit of adopting a dynamic analysis approach is that we are able to
follow an on-demand comprehension strategy, i.e., we only deal with information
relevant to the execution scenario and to the part that we want to understand (Cor-
nelissen et al., 2009). In order to accomplish this dynamic analysis, we aim to
integrate monitoring techniques into web service frameworks, as to leverage all
available information inside the framework for monitoring. This approach (1) can
be transparently applied to all web services built on the framework, and (2) parts
of information and functionality already existing in the framework can be reused
to achieve our goals.

Figure 2.1 presents the runtime scenario of a service-based system: customers
with different inputs invoke different sets of services. In particular, depending on
whether a customer requires a flight or a flight/hotel combination, a different set of
services is invoked. In order to reconstruct the runtime topology of a SOA system,
i.e., how services interact at runtime, we at least need to obtain the following data
from the web service framework:

service id: before we deduce the interactions between services, we should first
be able to identify the services involved. The service name is not enough,
as there may be different services sharing the same name. Moreover, those

16 Chapter 2. Research Infrastructure

services can be described in the same service description file with different
target namespaces. Therefore, in order to uniquely identify a service, we
propose a simple scheme using the combination of the URI of the service
description file, the target namespace and the service name as the service id.

interface id: to further know which function a user is invoking in a service, it is
also necessary to log the name of the invoked service interface. However, a
service can contain two operations, i.e., interfaces, with the same name and
different parameters. For example, earlier versions of WSDL, one of the most
common web service description languages, support operation overloading.
Hence, the information of parameters is also required to distinguish an oper-
ation.

process id: in order to trace an invocation traversing a set of web services, a spe-
cific identifier named process id is needed to link all requests and responses
involved.

sequence id: as service-based systems are frequently deployed in a distributed
context, using only time stamps to deduce the invocation sequence of the
services might be problematic, since physical clocks in various machines may
deviate from each other. This problem can be mitigated by using either a
logical clock (Lamport, 1978) or vector clock (Fidge, 1988; Mattern, 1989), or
by a simple mechanism, which involves adding a sequence id to the message
being sent to the next service. For each request that comes into the SOA sys-
tem, a new sequence id counter is created and each time this request causes
a new message to be sent to another service, the sequence id is incremented.

SOA frameworks Generally, a web service consists of three major parts: a lis-
tener, a proxy, and the service implementation (Snell et al., 2001). When a web
service is created based on a service framework, typically the service developers
only need to implement the core business logic in the service implementation, and
the other two parts are realized in the framework. The listener detects incom-
ing and outgoing messages passing through the server and the proxy deals with
messaging and addressing.

Once the listener receives an incoming request, it will forward the message to
the proxy, which will parse the request to obtain the information of the invoking
service and interface. Then the content of the request is delivered to the target
service. After the service sends back the response, the proxy will decode the re-
sponse and the listener will dispatch the result to the invoker. In order to execute
the invocation properly, the service framework stores the addressing information
to dispatch requests and responses at runtime. In addition, each service creates a
specific instance of itself for each invocation, and an object id is assigned to the
instance for the aim of identification.

Hence, some information required to rebuild the runtime topology of the sys-
tem, such as the information for the service id and the interface id, is already in-

2.2. Assessment Vehicles 17

side the framework. However, obtaining the other information elements from the
framework requires extra work. Generally, a framework does not offer a process id
for each message. Thus, we can either extend the framework to enable the new id
generation, or reuse the existing ids inside the framework. For example, it is fea-
sible to reuse the object id of the service firstly invoked in a sequence as a process
id (the mechanism to determine the first invoked service will be considered in fu-
ture work). The framework keeps passing the id to all following messages involved
in the same activity. After logging the information, we can identify all messages
containing the same process id as belonging to the same invocation. For the se-
quence id, however, a particular mechanism should be added into the framework
to guarantee its delivery and incrementation.

Service frameworks typically have a logging system in place to track abnormal
behavior that might arise. It is our aim to reuse these monitoring mechanisms and
extend them for our purposes.

2.2 Assessment Vehicles
Stonehenge System
While the actual term Service-Oriented Architecture (or SOA) was first coined in
the mid 1990’s by Gartner (Natis, 2003; Josuttis, 2007b), the ideas behind it,
namely building software systems that are composed out of loosely coupled, in-
teroperable components or services, goes back further. It was, however, the tech-
nology of web services, launched in 2000 as a set of standards to allow computers
to communicate with each other (Josuttis, 2007b), that acted as a catalyst for
both industry and academia to really start investigating the possibilities of Service-
Oriented Architectures. In particular, SOAs promise to (1) allow businesses to be
more flexible as business needs change and (2) ease evolution due to the loosely
coupled nature of the system (Gold et al., 2004).

When looking at the past decade of research in service-orientation, we can ob-
serve that although a lot of fruitful research has been carried out (e.g., see (Bena-
tallah and Motahari Nezhad, 2008; Benbernou et al., 2008)), many of the research
efforts are isolated in nature. While this isolation is not bad per se, it does hin-
der progress. Symptomatic of the isolated nature of research in this area is the
absence of a common case study that can be used as a benchmark. Indeed, Sim
et al. report that benchmarking, when embraced by a community, has a strong
positive effect on the scientific maturity of a discipline (Sim et al., 2003). In par-
ticular, it allows to easily compare solutions and to perform replication studies. In
many fields of software engineering, researchers have resorted to benchmarking
in order to compare approaches and ultimately advance the field. Prime examples
being the aspect-mining community that settled on JHotDraw as a standard case
study (Ceccato et al., 2006), or the refactoring community that introduced the LAN
simulation (Demeyer et al., 2002).

18 Chapter 2. Research Infrastructure

In order to unify the SOA community around a single case study, we propose
a system that is at the same time realistic, easy to understand and which most
researchers should be able to use as a “standard case study system”. The system we
propose — SFL-Stonehenge2— is based on Apache Stonehenge3 and consists of an
application composed out of several web services. The open-source nature of SFL-
Stonehenge and its availability should stimulate researchers in the area of SOA,
that normally resort to small examples built specifically for the context of their
research, to choose for SFL-Stonehenge, thus enabling the benchmarking process
that the community needs.

Background Research

Table 2.1: Selected SOA research papers with case studies

Paper Complexity Impl. Tech. Availability

(Barbon et al., 2006) 3 web services Unknown No
(Pistore and Traverso, 2007) 1 web service Unknown No
(Domenico and Carlo, 2007) 1 web service with 3 interfaces Unknown No
(Heward et al., 2010a) 1 web service Unknown No
(Marconi and Pistore, 2009) 2 services Unknown Industry, API avail.
(Ardissono et al., 2006) 3 web services Unknown No
(Baresi et al., 2004b) Unknown Unknown No
(Mahbub and Spanoudakis, 2005) Unknown Unknown No
(Momm et al., 2007) Unknown, KIM4 project Unknown No
(Nasr et al., 2011) 700+ services J2EE, IBM WebSphere etc. Industry case
(Ahmad and Pahl, 2011) Unknown Unknown No
(Schmerl et al., 2011) 120+ services Apache CXF etc. No
(Bertolino et al., 2009) 1 service: AECS5 Unknown Industry, API avail.
(Denaro et al., 2009) del.icio.us6 and OpenSocial7 Unknown Industry, API avail.

In our reconnaissance of the research area of Service-Oriented Architectures,
we noticed that there is no standard case study being used by researchers. Fur-
thermore, during our exploration of the field we also got the impression that a
wide variety of small and/or closed source systems were being used as case stud-
ies for evaluating the research. In order to get a better feeling of how research in
the area of SOA is conducted, we have performed a small literature survey where
we specifically focused on the software systems that are being used in case study
research.

In order to characterize the case study systems being used in SOA research, we
compiled Table 2.1, which represents a small subset of research papers in the area
of SOA. The papers that we selected for this overview originate from:

2https://github.com/SERG-Delft/sfl-stonehenge
3https://cwiki.apache.org/STONEHENGE/
4http://kim.cio.kit.edu/
5http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
6http://delicious.com/help/api
7http://code.google.com/apis/opensocial/docs/0.7/reference

2.2. Assessment Vehicles 19

• The state-of-the-art report on service monitoring from the European S-Cube8

project on software services (Benbernou et al., 2008). We selected this survey
because our research goals are aligned with many of the papers mentioned
in this report.

• A selection of recent papers published at venues like CSMR, ICSE and ES-
EC/FSE, from which we expect a thorough validation.

The 14 papers listed in Table 2.1 are all representatives of research following
the case study methodology (Wohlin et al., 2000). We now list some of our obser-
vations:

Self-created case study systems. From this selection of papers we noticed that
some authors created their own simple non-industrial examples as case systems,
which contain a very small number of services, e.g., (Domenico and Carlo, 2007)
and (Ardissono et al., 2006) have one and three services respectively. It is arguable
whether these small case study systems are representative of real service-based
software systems. Some self-created systems also appear more complex. For ex-
ample, Baresi et al. (Baresi et al., 2004b) describe an IT certification system which
gives enrolled students a chance to try a certification test for free. However, the
paper only describes the conceptual details of the system.

An important issue with self-created systems is that their set-up might be fa-
voring the researched technology, which becomes extra hard to verify when these
self-created systems are not publicly available. Looking at Table 2.1 we see that
unfortunately, almost all systems are not publicly available.

Closed-source systems. Some researchers are cooperating with industry and
have the chance to get a real-world system as their research vehicle. For example,
Momm et al. (Momm et al., 2007) apply their approach to a practical scenario
developed in a project aiming to redesign a university’s business process; Nasr
et al. (Nasr et al., 2011) provide an industry case study supported by a business
service IT company. Also, in the paper by Pistore et al. (Pistore and Traverso, 2007),
the authors mention that their approach was applied to some real applications, but
no more details are provided.

Industrial case studies are extremely important in software engineering re-
search, however, due to the closed-source nature of these software systems they
cannot be obtained by other researchers. This means their results cannot be re-
produced or compared, which strengthens our call for a common case study to
compare techniques on.

Implementation technology. During this survey, we also focus on investigating
the implementation technologies used in those case study systems, such as the

8http://www.s-cube-network.eu

20 Chapter 2. Research Infrastructure

programming language, the underlying frameworks, the communication protocols,
etc. These pieces of information are necessary in different situations, e.g., (1) when
practitioners want to use the experimental results and want to verify whether the
results are applicable in specific circumstances or (2) when researchers want to
replicate a study or perform a meta-analysis (Kitchenham et al., 2002).

However, as Table 2.1 shows, most papers do not provide implementation de-
tails. The notable exceptions are paper (Schmerl et al., 2011) and paper (Nasr
et al., 2011), which clearly mention that their systems are built on the Apache
CXF framework and the IBM WebSphere respectively. In the case of industrial case
studies, sometimes the APIs are open, but the implementation techniques are kept
confidential.

Summary and recommendations. The small survey that we present in this sec-
tion makes it clear that comparative studies or replications are difficult to perform
considering the fact that many (implementation) details are not presented in the
papers considered. While this is perfectly understandable in the case of closed-
source software systems, this is less so in other cases. These observations reinforce
our stance that the SOA (maintenance) community would benefit from having a
standard case study in order to benchmark solutions.

When reflecting on the case studies that we came across during our small sur-
vey, we established a number of details that we would ideally want to know from
all case studies:

• The implementation technology (e.g., the programming language or the com-
munication protocol) and the used frameworks.

• The complexity of the service-based system (e.g., the number of services or
interfaces).

• The availability of the system.

With these criteria in mind, we will introduce and describe Stonehenge, the
standard case study system that we propose in the next section.

Stonehenge
Apache Stonehenge is a simulation of the stock market consisting of a web applica-
tion and several web services. Stonehenge provides the possibility to buy and sell
shares in a single stock market, with a single currency. Apache Stonehenge was
built as a joint cooperation between Microsoft and the Apache Software Founda-
tion to showcase service interoperability between different technologies.

Our goal, however, is not to explore the field of interoperability but that of
maintenance in SOA, and all that it entails. We chose Stonehenge as it provides
a real world example of how services can interact together to compose a software
system. However, conscious of its size, we decided to extend it in order to make

2.2. Assessment Vehicles 21

Users Web
Application

BusinessAccount
Service

Stonehenge
Database

BusinessOP
Service

BusinessStock
Service

ExchangeCheck
Service

ExchangeCurrency
Service

BusinessBasic
Service

Configuration
Service

OrderProcessor
Service

Quote
Service

<external>
currency exchange

service

Stock
Database

Figure 2.2: Architecture of the extended SFL-Stonehenge

it more realistic and complex. We have extended it with several new features to
make the system more complex on what concerns business logic and number of
services. That is, we added the possibility to maintain several wallets in different
currencies, to exchange money amongst the different currencies, to enable users to
buy and sell stocks in different currencies with automatic currency exchange and
to use real-world data from the stock market. The result of our changes is called
SFL-Stonehenge which relies substantially on the business logic of the original im-
plementation. We have also ported the original JAX-WS-based implementation to
the Turmeric SOA platform9 due to our research goals.

Motivation

In our background research we have established that in service-oriented research
there is no case study which researchers can use to compare their approaches and
results. For this reason, we decided to bring forth a system that meets the criteria
needed for a standard case study. For such a system we feel it is necessary that: a)
it reproduces the behavior of a real-world system, b) is large or at least provides
many extension possibilities that all researchers can build upon and c) it must be
easy to port to different frameworks.

With SFL-Stonehenge we feel we have met these three criteria. SFL-Stonehenge
provides similar behavior to that of the stock market, it is already fairly large in
number of services and we plan on extending it to make it even more similar to a
real system. This way, we believe SFL-Stonehenge can become the standard sys-
tem which every researcher in this field can use as the “common software system"
mentioned in (Sim et al., 2003).

22 Chapter 2. Research Infrastructure

System Description
Figure 2.2 illustrates the architecture for the SFL-Stonehenge which is comprised
of 10 web services including one external currency exchange service, plus a web
application for user interaction and two databases. In this section we provide an
overview of what each service does and further into the section, what data is stored
in each table.

Services:

• The ConfigurationService acts as a registry for all the deployed instances of
the other services. All the other services need, therefore, to know in advance
the endpoint of at least one instance of the ConfigurationService.

• The Business-? Services mediate the interaction of the web application with
the business logic of the system. For this reason, the Business-? Services
contain all the operations the web application is capable of performing. For
example, BusinessBasicService and BusinessAccountService provide the
functions for user authentication, login, and the user account. Busines-
sOPService and BusinessStockService are used for buying and selling stock,
and checking orders and market summaries.

• The OrderProcessorService is solely responsible for processing the buying
and selling of shares. It is meant to be invoked by the BusinessOPService
whenever a user performs a purchase or sale of shares in the web application.

• The ExchangeCurrencyService makes use of Google’s API for currency ex-
change. This service can be invoked whenever the user explicitly requests
for currency to be exchanged from a wallet in a certain currency into another
wallet, with a different currency. It can be also invoked by OrderProcessorSer-
vice when the user buy a stock in a currency different to the stock’s currency,
the system will automatically calculate and apply the correct exchange rate.

• The ExchangeCheckService are responsible for checking the user’s input for
ExchangeCurrencyService. It can check if the input currencies are valid or the
user has enough amount of money to exchange.

• The QuoteService is in fact composed of two services. Referring to Fig-
ure 2.2, the service described as Quote Service is a normal pull-based service
with a SOAP interface that the OrderProcessorService can invoke to obtain
data about specific stocks on-demand. On the other hand we also have the
Quote Data service which performs two tasks: 1) it fills the Stock Database ta-
ble with data and continuously updates it with data from Yahoo Finance, and
2) it provides a publish/subscribe interface (implemented using the ZeroMQ

9https://github.com/ebayopensource/turmeric-runtime

2.2. Assessment Vehicles 23

library) which other services, such as the OrderProcessorService can bind to
in order to be notified for price changes in specific stock symbols.

Databases:

• The Stonehenge Database contains the information necessary for the ba-
sic operation of the system. Namely it contains user information, including
how much money and which stocks each user owns. It also contains informa-
tion about the services’ endpoints and the mapping between service instances
(which instance should each service use).

• The Stock Database contains solely information about stock prices. This
table is kept separately as it is meant to be filled by an external service which
continuously checks whether there are new data from Yahoo Finance and
pushes them to the database.

With these services we can then have different usage scenarios. These are sum-
marized in Table 2.2.

Table 2.2: Features available for SFL-Stonehenge

Currently available features

Purchase and sale of stocks
Price information about stock symbols
Wallets in different currencies
Automatic conversion of currencies
Management of service endpoints
User registration

In addition, we show five typical system transactions that can be performed
with SFL-Stonehenge. For example, the service operation "BusinessOPService.sell"
invokes the ConfigurationService service to get the url locations of the OrderPro-
cessorService service, and it continues to invoke the OrderProcessorService service
through the returned urls to submit an order of selling some stocks, which requires
access to the QuoteService service to get the realtime price of the stocks and then
update the wallet in the user’s account with the returned money.

1. BusinessBasicService.login -->
ConfigurationService.getBSAccountLocations
BusinessAccountService.getAccountProfile
BusinessAccountService.updateAccountForLogin

2. BusinessBasicService.logout -->
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateAccount

3. BusinessBasicService.register -->

24 Chapter 2. Research Infrastructure

ConfigurationService.getBSAccountLocations
BusinessAccountService.getAccountProfile

4. BusinessOPService.sell -->
ConfigurationService.getOPSLocations
OrderProcessorService.submitOrder -->

ConfigurationService.getQSLocations
QuoteService.getQuotes
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateWallet

5. ExchangeCurrencyService.exchCurrency -->
ConfigurationService.getECheckLocations
ExchangeCheckService.checkCurrency
ExchangeCheckService.checkAmount
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateWallet

SFL Simulator
Performing experiments with a fully fledged case study is tedious. Every new exper-
iment requires extensive adaptation to new experimental requirements. This led
us to the development of a simulator, its source code is available for download10.
It has been developed in Ruby, and used for assessing different system topolo-
gies quickly and easily. It provides functions for setting up component topologies,
executing the topologies thereby gathering coverage information, and calculating
diagnoses. In particular, setting up a system topology in the simulator is easy and
flexible, and the simulator can run a large number of experiments for each system
topology in a very short time.

A topology is created by defining a number of components. Each component is
defined by the component name, component health, and failure probability. Health
denotes the probability that a component will not produce an error when it is
executed. 1.0 represents a healthy component, while a value in the range (0.0,
1.0) represents a faulty component with intermittent fault behavior. 0.0 denotes no
fault intermittency, i.e., the component will always produce an error if activated.
Failure probability denotes the likelihood of a component to propagate an error
into a failure, i.e. the fault observation. 1.0 means that if a component encounters
an error, this component will issue a failure, and the simulated execution will be
stopped. This can also be used to discriminate fatal failures (i.e. component health
< 1.0 and failure probability = 1.0) from warnings (i.e. failure probability = 0.0).
In the case of a warning, the system execution will continue normally and issue a
failed transaction at the end.

Components in a topology can be connected through defining a link between
them with an associated invocation probability. This denotes the likelihood that a
linked component will be invoked during execution. 1.0 denotes that two compo-
nents will always be invoked together (i.e., representing tight coupling), and 0.0
determines that a link is never exercised.

10https://github.com/SERG-Delft/sfl-simulator

2.3. Summary 25

Figure 2.3: Topology of the case system produced by the SFL Simulator

Based on the topology with components and invocation links, the simulator
can be controlled to perform executions. This requires that one or several entry
points (components or links) are activated. Every activation of the topology leads
to a particular control flow according to the initially defined probabilities, thereby
generating coverage and pass/fail information. These observations are collected
and used in order to calculate a diagnosis.

For illustration purposes, Figure 2.3 displays an example topology of our case
study system (as shown in Figure 2.2) produced by the SFL simulator. It shows
components (i.e. the services as boxes) with health and failure probabilities, h and
f, respectively, and link nodes (as ovals) with their respective transaction probabil-
ities. Figure 2.3 also shows a particular instance after 200 transactions from the
Web Application (denoted as “Web" at the left hand side of the figure). The whole
numbers in the link nodes denote the frequencies of invocations, and the thickness
of each line also indicates this.

The usage of the SFL simulator for the research described in this thesis was
twofold. First, we used it to develop our approaches described in the following
chapters. Second, we applied it to simulate our original case system described in
Section 2.2, for an initial assessment of our ideas in a more realistic setup.

2.3 Summary
In this chapter, we have presented a framework-based monitoring approach for
service-oriented software systems, to facilitate the conprehension and maintainence
for service-oriented systems. We have also proposed an open source SOA system

26 Chapter 2. Research Infrastructure

named SFL-Stonehenge, which we developed out of an existing application, and
now put forward as standard case study system. Furthermore, we have introduced
a SFL simulator, which can be used to easily and quickly assess the application of
spectrum-based fault localization technique to various types of service topologies.

3..
Spectrum-based Fault Diagnosis

for Service-Oriented Systems
Due to the loosely coupled and highly dynamic nature of service-oriented systems,
the actual configuration of such systems only fully materializes at runtime, rendering
many of the traditional quality assurance approaches useless. In order to enable
service-oriented systems to recover from and adapt to runtime failures, an important
step is to detect failures and diagnose problematic services automatically.

This chapter presents a lightweight, fully automated, spectrum-based diagnosis
technique for service-oriented software systems that is combined with a framework-
based online monitor. An experiment with a case system is set up to validate the
feasibility of pinpointing problematic service operations. The results indicate that this
approach is able to identify problematic service operations correctly in 73% of the
cases.1

3.1 SFL for service-oriented systems . 29
3.2 Experimental Setup . 32
3.3 Results and Discussion . 33
3.4 Related work . 37
3.5 Summary . 38

Service-oriented software systems offer many benefits in realizing flexible, in-
teroperable, and adaptable distributed infrastructures for information technology.
These benefits are mainly attributable to the loose coupling of services, facilitated
through underlying modern communication platforms, and their natural disposi-
tion to dynamic deployment, reconfiguration, and evolution. However, this nature
of service-oriented system also presents many challenges (Greiler et al., 2009),
particularly concerning quality assurance. The fact that service-based applications
only fully materialize when deployed in production, i.e., ultra-late binding (Ben-
nett et al., 2000), renders many of the traditional (offline) quality assurance meth-
ods inefficient (Canfora and Di Penta, 2006). In particular, many failures only

1This chapter is originally published in the proceedings of the 5th International Conference on
Service-Oriented Computing and Applications (SOCA’12) (Chen et al., 2012).

27

28 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

emerge during operation time, triggered through runtime re-configuration or re-
deployment of services (Canfora and Di Penta, 2006), or resulting from incompat-
ibilities in service versioning (Papazoglou, 2008).

Although, by their very nature, service-oriented systems provide all the ingredi-
ents necessary to recover from and adapt to operation time failures (Di Nitto et al.,
2008), there is no standard means in those systems to detect and diagnose emerg-
ing problems automatically, and make propositions as to what to recover and where
to adapt? The fact that a problem is detected in a particular service does not neces-
sarily mean that this service is corrupt and should be exchanged. Faults located in
other services may propagate through the system and cause an otherwise healthy
service to break (Mohamed and Zulkernine, 2008).

Automated software fault diagnosis can be applied to service-oriented systems
in order to trace a detected problem back to the service where it originated. Fault
diagnosis refers to the detection of a failure, i.e., a discrepancy between expected
and observed behavior, plus the localization of its root cause, i.e., the fault that
caused an erroneous system state (Zoeteweij et al., 2007a). Being able to perform
automated fault diagnosis in an operational service-oriented system with minimal
performance impact demands a fault localization technique with ultra-low com-
putational overhead such as spectrum-based fault localization (SFL) (Piel et al.,
2011), and inbuilt monitoring approaches for detecting failures.

In this chapter, we identify, discuss and address the issues concerning the appli-
cation of SFL as fully automated diagnosis technique in service-oriented systems.
Our research focuses on diagnosing problems emerging from combinations of ser-
vices and their interactions, rather than identifying faulty code blocks in the ser-
vices themselves. A specific issue arises through the fact that a single service is
typically part of many application contexts, participating in many business goals,
and, therefore, interacting with potentially many other services. This diversity in
service interactions cannot typically be assessed a priori, and it cannot be guaran-
teed that all permutations of service connections will not eventually lead to residual
defects in the overall system. We concentrate on the following research questions:

RQ3.1: How can a failure be detected in an operational service-oriented system?
This is concerned with extracting relevant information from a running service-
oriented system for initiating diagnosis.

RQ3.2: How can spectrum-based fault localization be applied in a service-oriented
system in order to trace a failure back to its respective root cause? This
focuses on identifying and providing the right input for SFL in a service-
oriented system.

RQ3.3: How well does spectrum-based fault localization perform in a service-
oriented system in terms of correctness of the diagnosis?

3.1. SFL for service-oriented systems 29

The main contributions of this chapter can be summarized as follows. We
demonstrate the application of online SFL in service oriented systems, discuss the
requirements of such an application and show how it can be realized in a con-
crete service platform. We evaluate to which extent online SFL can pinpoint faulty
service operations automatically in a case system.

The chapter is organized as follows. Section 3.1 focuses on the concepts and
implementation of SFL for service-oriented systems. Section 3.2 describes the case
system and the setup of the experiment. Section 3.3 discusses the experimental re-
sults and the limitations of the approach. Related work is presented in Section 3.4.
Finally, Section 3.5 concludes this chapter.

3.1 SFL for service-oriented systems
Concepts of SFL for service-oriented system
Applying SFL in service-oriented systems requires the SFL concepts to be adapted
to the service context.

Component granularity
A service is the basic unit that can be restarted, exchanged, or otherwise treated
in a service-oriented system, in case it is convicted in a diagnosis. It is a natural
choice for determining the component granularity. Alternatively, a service opera-
tion, which represents a business functionality of a service, may denote the finer
level of the component granularity. The component granularity affects the monitor
required for measuring the component involvement (see below).

System activation
In traditional, monolithic systems a component instance will always be activated
or exercised from within its own application context. Subordinate components
deeper in the call graph will be activated from superordinate components, and
those will be activated from users in the system context. Here, the notion of a
system execution is obvious.

In service-oriented systems, this is not the case. Because a service instance
serves many applications, it will not be activated exclusively from within one ap-
plication context, but from a potentially arbitrary number of other applications in
other contexts. To apply SFL in a service-oriented system, a system execution needs
to be made explicit through introduction of a unique transaction ID. This allows a
clear separation of system executions in the activity matrix of SFL.

Component involvement
In the basic SFL approach, component involvement is measured through coverage
tools. However, in service-oriented systems, coverage is a delicate issue. Because
of its inherent distributed nature, there is no single controlling authority that is
able to produce service coverage information, by overseeing all service invocations

30 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

Data Store

Web Services

Turmeric platform
<monitoring

data>

(3)
Diagnosis

Engine

 SFL activity
matrix

<monitoring
data>

(1)
System

Activation
<oracles>

(2)
SFL Monitor

<activation data>

diagnosis

<Ochiai SC>

Figure 3.1: Monitoring and diagnosis architecture

and associating them with the different application contexts in which a service is
used. This can only be done by the services themselves, or an underlying service
framework. Applying SFL in service-oriented system requires dedicated monitors
that observe the service communication and associate the services/operations with
their corresponding transaction IDs.

Oracle
The oracle turns a system activation into a pass/fail-verdict. Runtime errors, ex-
ceptions, warnings and logs are natural choices for realizing oracles. These obser-
vations of the system state are readily available through the platforms managing
the communication between individual services, or they are initiated through the
business logic, i.e., the services themselves.

In summary, applying SFL in a service-oriented system requires that services
participating in the processing of a transaction can be associated with a pass/fail
observation from an oracle, thereby forming an activity matrix and an error vector.
The computation of their similarity yields a diagnosis.

Implementation of SFL for service-oriented systems
The first step in applying SFL to a service-oriented system requires online mon-
itoring to obtain information about each user transaction with the system. The
second step involves the construction of a diagnosis engine that maintains the SFL
activity matrix, and calculates the diagnosis. Third, component granularity is set
to the service operation, because it permits a more fine-grained diagnosis. The SFL
implementation for our case study is summarized in Fig. 5.1 and explained in the
following sub-sections.

System Activation
Typically, a system is invoked through its user interface. However, in our case,
user interaction is automated in order to evaluate our approach. We use SoapUI2

to create XML templates of SOAP messages which are required for calling the ser-
vices. Then, the templates are passed to JMeter3 in order to generate multiple user
requests that are exercised automatically.

2http://www.soapui.org
3http://jmeter.apache.org

3.1. SFL for service-oriented systems 31

Online Monitoring
Online monitoring follows a framework-based approach detailed in Section 2.1,
realized in Turmeric4, eBay’s open source service framework. Turmeric offers many
inbuilt features supporting the implementation of online monitoring required in
our approach, and it confines the necessary amendments for online SFL to the
absolute minimum, yielding a slender implementation.

Turmeric’s internal communication is based on a pipelined architecture and
controlled by two components. The Service Provider Framework (SPF) carries all
messages sent to and received from a service at the service’s provided interface,
and the Service Invocation Framework (SIF) carries all messages sent to and re-
ceived by a service at its required interface. These components handle all incoming
and outgoing communication of a service. All messages sent to and received from
a service are funneled through these four pipelines, where each can be accessed
through a custom built handler, i.e, our online monitor. That way, we can retrieve
the (unique) transaction ID, the message content, and the service plus the opera-
tion name that created the message. The transaction ID denotes all messages that
belong to one transaction. This is very specific to Turmeric and essential in our ap-
proach for deducting service involvement, and, consequently, creating an activity
matrix. In addition to the information encoded in the message, we retrieve infor-
mation about which pipeline handled the message. With this setup, we are able to
determine service operation involvement in a transaction.

Another monitoring requirement is the observation of exceptional behavior in
the service-oriented system. This is used as oracle by the diagnosis engine (ex-
plained later in Section 3.1), but it is also realized in the four handlers already
introduced. All services in our case system are designed to log their occurring ex-
ceptions in a data store. The handlers constantly monitor the data store for new
exceptions. Once an exception is detected, it will be associated with the correct
transaction through the transaction ID in the data store.

In summary, we use the following monitoring data:

• Transaction ID: Turmeric generates a unique ID to associate messages in-
volved in the same transaction.

• Service and operation name: the name of a component in the diagnosis is
made up of the service name plus the operation name.

• Message body: the content of the message can be checked for failures.
• Exception: indicates that a transaction threw an exception.
• Pipeline: information about which pipeline handled the message; this distin-

guishes between requests and responses in provided and required interfaces.

4https://github.com/ebayopensource/turmeric-runtime

32 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

Diagnosis Engine
This denotes the core component of our SFL implementation. It automatically
reads the monitoring data from the data store, generates service involvement from
each transaction, creates the output vector with the verdicts, and calculates a diag-
nosis by applying the Ochiai similarity coefficient.

A transaction is associated with a transaction ID, and it refers to a test case
in the basic SFL approach (shown in Table 1.1). It translates to a column in the
activity matrix by associating a ‘1’ with a service operation that took part in the
transaction, and a ‘0’ with one that did not.

The output vector with the pass/fail verdicts comes from applying a built-in
oracle. For demonstration purposes, we decided to focus on serious faults that
either cause services to crash, or represent unexpected behavior of a service, or
a faulty internal state. In general, any arbitrary oracle can be used as long it
distinguishes a passing transaction from a failing one. Our oracle operates in three
phases (for simplicity):

1. Serious problems that cause a complete service to crash result in missing
responses from the service. The first phase of the oracle checks whether a
service request generates a response, or not. If no response is returned, the
oracle issues a fail.

2. If there is a response, the next phase assesses potential exception entries in
the data store (generated by the monitor). If the transaction is associated
with an exception, this second oracle phase will issue a fail.

3. Otherwise, the third phase will check the correctness of the message content,
and the internal data states of the services involved. In case of deviations
from the expectations encoded in this last phase, the oracle will issue a fail.

In all other cases, the transaction is assigned a pass.

Once the activity matrix and the output vector are complete, the similarity co-
efficient can be applied to calculate the likelihood of each service operation to be
the faulty one in the range [0..1]. Sorting the service operations according to
decreasing similarity coefficients results in the diagnosis.

3.2 Experimental Setup
We devised a case study based on Stonehenge case system detailed in Section 2.2
to demonstrate how online SFL can be applied in service oriented architectures,
and validate to which extent SFL helps to pinpoint problematic service operations.

We created 160 faulty versions of our case system outlined in Fig.2.2, by apply-
ing the PIT mutation tool5. For each faulty version, we applied JMeter to execute
48 web service requests consecutively to cover all service operations. Upon com-
pletion of all transactions for one faulty system version, the diagnosis engine was

5http://pitest.org/

3.3. Results and Discussion 33

invoked to parse the monitoring data, identify the failures in the system, and cre-
ate an activity matrix with an output vector. Then, it was assessed whether the
resulting diagnosis correctly pinpoints the faulty service operation. The whole ex-
periment was designed for the single fault case, i.e., we ensured that each version
of the system contains only one fault.

Fault Injection
In our experiment we focused only on the correct functioning of the service-oriented
architecture. Non-functional aspects were not considered. We were interested only
in detecting a failure in the system, and tracing it back to its root cause in a service,
or service operation. The scope of faults seeded into the system was, therefore, lim-
ited to this aspect. However, in general, SFL is able to identify and trace back all
types of faults.

There are many mutation tools available such as µJava, Jumble, or Javalanche.
However, we chose PIT, because it mutates the byte-code, rather than the source
code. This represents a quick way to mutate code, and it is also safe, i.e., generation
of invalid programs is avoided. Moreover, PIT provides extensive documentation,
a wide range of useful mutators (i.e., mutation operations)6, and a comprehensive
reporting function. Its only drawback comes from the fact that it maintains its
mutated classes in memory, so that we have to extend it with the ability to save the
mutants as files.

Only the service implementation classes are mutated, and not the platform
or library code. The mutation operations applied to a subject depend on what
PIT finds in the service’s implementation logic. Several mutators may be applied
per implementation class, of which we choose one for generating one fault in the
system. This is due to the single fault scenario, and it explains the high number of
faulty system versions. For every version of the system, we replace the original class
with its respective mutated one in the service’s .war-file, and execute the system.
All nine internal services shown in Fig. 2.2 are mutated that way.

Table 3.1 shows six mutators that PIT applies to the services of our system. In
addition, the total number of each type of mutation applied in the system is shown,
the kind of failure produced by this mutation, and the phases of the oracle used.

3.3 Results and Discussion
Using the experimental setup described in Section 3.2, we conducted an experi-
ment in order to assess to which extent our approach can diagnose faulty service-
oriented systems.

6http://pitest.org/quickstart/mutators/

34 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

Table 3.1: Active Mutators in the experiment
ID Mutator # Error in the system Oracle

1 Negate Conditionals 44 wrong internal state or
response, null or run-
time exception

1-3

2 Return Values 50 wrong response, null
or runtime exception

1-3

3 Conditionals Boundary 3 wrong internal state or
response

3

4 Void Method Call 60 wrong internal state 3
5 Math Mutator 1 wrong internal state 3
6 Increments Mutator 2 wrong response 3

Experimental Results
A diagnosis refers to a component ranking according to the similarity coefficients.
If the diagnosis is not accurate, it might well rank healthy services before the
faulty one. Accuracy of a diagnosis can be measured through residual diagno-
sis cost (Gonzalez-Sanchez et al., 2010a), i.e., the cost of unnecessarily treating
healthy services before arriving at the real faulty one.

We are not so much interested in the accuracy of an individual diagnosis,
but rather look at the overall diagnosis capability of our proposed approach in
a service-oriented architecture. We refer to this as the correctness of the diagnosis.
This is a stronger criterion than residual diagnosis cost, but it simplifies the analy-
sis. Here, a correct diagnosis is achieved, if the real faulty service is always ranked
at the top. If the faulty service is ranked lower (e.g., 2nd, 3rd, ...), we consider the
diagnosis to be incorrect.

Table 3.2: Experimental Results
Services Applied # of Diagnosis Correct

Mutators Mut. Correct Incor. Diagn.

BusinessAccountService 2,4 7 7 0 100%
BusinessBasicService 1,2,4 27 23 4 85%
BusinessOPService 1-4 19 14 5 75%
BusinessStockService 2 8 8 0 100%
ConfigurationService 2 9 9 0 100%
ExchangeCheckService 1-3 8 8 0 100%
ExchangeCurrencyService 1,2,4 24 3 21 13%
OrderProcessorService 1-5 41 28 13 68%
QuoteService 1-4,6 17 17 0 100%

Table 3.3: Reasons for Incorrect Diagnoses
Services Incorrect No Acti- Tight

Diagnoses vation Interaction
on Failure

BusinessBasicService 4 2 2
BusinessOPService 5 1 4
ExchangeCurrencyService 21 2 19
OrderProcessorService 13 4 9

3.3. Results and Discussion 35

Table 3.2 summarizes the diagnosis results for our extended version of SFL-
Stonehenge7. For each service, the table indicates the type of the mutation opera-
tions used (IDs displayed in Table 3.1), the total number of mutations performed,
the correctly and incorrectly performed diagnoses, and the percentage of correct
diagnoses.

In total, 117 out of the 160 faulty system versions are diagnosed correctly, yield-
ing a 73% success rate for our experiment. Faulty versions of five out of the nine
services used in our system can always correctly be diagnosed by SFL. However,
the mutants of four services cannot be diagnosed so successfully. A careful analysis
of these cases presents a number of issues to be discussed in the following.

Reasons for Incorrect Diagnoses
We can identify two significant reasons for why diagnoses are incorrect (summa-
rized in Table 3.3):

(1) No activation of the fault: if the fault in a service implementation is not trig-
gered, e.g. through user interaction with the system, there will be no failure, and,
consequently, the diagnosis will be incorrect. This is the case in five system ver-
sions, and it must be regarded as a general problem in all passive monitoring-based
approaches. Residual defects in a service-oriented system can only be diagnosed
when they are actually triggered and detected.

(2) Tight service interaction: this presents a particular challenge in SFL. When
services are always invoked together, the similarity coefficient will assign the same
value to all tightly linked services. They are treated as if they were one combined
service. However, in our case system, a peculiar situation can be observed. Some
services work together in combination in one transaction and make it fail, while
they participate as individuals in other transactions that pass. Here, these services
are not treated as if they were one combined faulty service, and it is attributable
to the calculation of the similarity between the outcome vector and the activity
vector. Involvement in a passing transaction weighs more than non-involvement
in a failing transaction. Services that participate in a failing transaction may be
convicted by the similarity coefficient, but if one service participates in a passing
transaction, its conviction will be exonerated, which leads to an incorrect diagnosis
in such cases. Table 3.3 indicates that this happens quite often in our example
system.

Multiple Faults
Initially, we stated that we are only interested in the single fault case, and the
Ochiai similarity coefficient represents a single-fault approach. However, in our
example system, we observe that one mutation in a service implementation may
affect more than one service operations. Since the granularity is at the service
operation-level, rather than at the service-level, we actually introduce multiple

7https://github.com/SERG-Delft/sfl-stonehenge

36 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

faults into our system. This problem is attributable to a mismatch between the
granularity of the fault injection and the granularity of the diagnosis. SFL always
ranks one of the faulty service operations at the top (but not all of them), meaning
it finds the fault. Which of the several faulty service operations will be ranked top,
depends on its number of activation. According to our definition of correctness, we
treat this result as a correct diagnosis.

Discussion and Lessons Learned
The experiment demonstrates the feasibility of applying online SFL to diagnose
service-oriented systems. The results indicate that our approach is able to pinpoint
problematic service operations with high correctness in many cases.

Methodological Limitations
The experimental results also demonstrate that no activation of a fault causes in-
correct diagnoses, i.e., in our evaluation. In a real setting, a fault that is not acti-
vated does not exist, and it highlights a fundamental problem in all coverage-based
quality assurance approaches. The online monitor can only passively wait for the
system invocations to appear. Monitoring cannot actively initiate relevant trans-
actions to cover a fault. In order to trigger such residual defects, it is possible to
conduct online testing and compensate the deficiency of monitoring by actively
running test cases to add the required coverage. However, this is out of the scope
of our current research, and it will be considered in the future.

We also observe that tight service interaction can influence the diagnosis. Ser-
vice operations that are always invoked together in passing as well as in failing
transactions, actually behave as if they were one single component, and the di-
agnosis treats them as such. If one component contains the fault, every one of
its tightly coupled peers will also receive the blame for this fault according to the
diagnosis. This is an interesting observation, and it raises the question of what
an adequate architecture is. Could services be designed in order to become better
diagnosable, e.g. increase their cohesion? Or, can their interactions be designed in
different ways, as to permit more variety in their invocations, e.g. increase their
coupling, so that alternative invocation paths may yield more or better diagnostic
information? These are also interesting questions for future work.

A special case of tight coupling comes from service operations that always coop-
erate in failed transactions, but pass when invoked individually. This is attributable
to how the similarity coefficient is biased towards convicting services that partic-
ipate in faulty transactions, and exonerating services that participate in passing
transactions. Future research should carefully assess the relation between the ar-
chitecture and the similarity coefficient applied, and evaluate to which extent ad-
ditional information can improve the diagnosis. This is also related to the previous
discussion.

Although, in this work, we specifically target the single fault case for demon-

3.4. Related work 37

stration purposes, we acknowledge the fact that this is not realistic. The Ochiai co-
efficient is limited to the single fault. Even though Ochiai identifies the root cause
of the failure, it cannot pinpoint all operations involved in exhibiting it. In this
case Ochiai fails to convict all faulty operations, which is to be expected. Heavy-
weight, bayesian- and model-based diagnosis approaches (Abreu et al., 2009b) do
work in the multiple fault case. However, it remains to be evaluated in future work
how such techniques can be applied online and in the context of service-oriented
architectures.

Implementation Limitations
A fundamental concern that we have not considered in our experiment is the per-
formance overhead incurred, through incorporating online diagnosis in a service-
oriented system. In our current setting, only the monitoring is performed online.
The other steps are done by the diagnosis engine which is completely detached
from the service-oriented system, and are, therefore, not creating any overhead in
the services. Monitoring is heavily based on Turmeric’s internal profiling mecha-
nisms. These are permanently activated in the framework. The handler code we
added is marginal, but obviously not negligible. In future work, we intend to mea-
sure not only our own overhead incurred by the handlers, but, more importantly,
also assess the performance overhead of Turmeric’s internal profiling mechanisms.
This is an important research question for the future, since many modern service
frameworks come well equipped with similar monitoring and profiling tools.

Other implementation limitations also concern the service platform we chose,
i.e. Turmeric. For example, our first oracle phase checks for missing responses.
This is very specific to Turmeric. A Turmeric service is supposed to always return a
message. Otherwise, it indicates a serious problem.

Another issue which is not documented in the experimental results is the fact
that our online monitoring implementation cannot fully support asynchronous
communication in our case system. During the implementation of our example sys-
tem, we realized that the SFL monitor sometimes misses a service response coming
from an asynchronous invocation. This might be attributable either to faulty behav-
ior of Turmeric, or due to an undocumented feature of Turmeric. In any case, this
makes the diagnosis fail, and eventually, we resigned from including asynchronous
service invocations. In future work, we will definitely aim at resolving these issues
and include asynchronous service invocation.

3.4 Related work
Chen et al. present Pinpoint (Chen et al., 2002), a tool based on similarity co-
efficients. However, they do not address the problems of inter-service diagnosis
(that services are used in different contexts), and use a weaker similarity coeffi-
cient. Zhang et al. (Zhang et al., 2012b) propose a hybrid approach, combining a
matrix- (Zhang et al., 2009) and a Bayesian-based probabilistic diagnosis method

38 Chapter 3. Spectrum-based Fault Diagnosis for Service-Oriented Systems

for SOA systems. Since the dependency matrix is generated before operation, the
diagnosis cannot adapt well to the dynamic nature of SOA. Even though, the au-
thors considered various ways to reduce the computational complexity, bayesian
approaches are still heavyweight compared to spectrum-based approaches. Mayer
et al. (Mayer et al., 2010b) diagnose faults in business processes for SOA systems.
Their approach requires partial information of process executions by reasoning
about possible activities in system behavior. However, the models for diagnosis are
rather complex, and proper evaluation is still pending.

Grosclaude describes a model-based monitoring approach for component-based
systems, and suggests to use transactions IDs in order to associate messages sent
between components (Grosclaude, 2004). This is also proposed by (Chen et al.,
2002), and we see it as a standard approach to determine which service takes part
in which system transaction. Although slightly less related, Zhang et al. (Zhang
et al., 2009) present a framework for diagnosing QoS problems in SOA through
monitoring service states. Another interesting approach is introduced by Heward
et al. (Heward et al., 2011), in which they propose an algorithm for optimization
of monitoring configurations for web services. They use an optimization algorithm
in order to reduce the monitoring overhead in a service-based system, something
that would also benefit our proposed techniques.

3.5 Summary
The goal of our work presented in this chapter is to demonstrate a first realization
of automated online fault diagnosis for service-oriented architectures. Referring to
our original research questions, we looked at:

RQ3.1: How a failure can be detected in an operational service-oriented system
We enabled framework-based monitoring, reusing the tools of an existing service
platform, i.e. Turmeric, for transaction tracing. In addition, we devised a three-
phased oracle using the monitoring in order to associate failure information with
the transaction traces. Both monitor and oracle generate component involvement
and pass/fail information required in fault diagnosis.

RQ3.2: How spectrum-based fault localization can be applied in a service-oriented
system
The fault localization technique is implemented in a dedicated (external) diagnosis
engine for efficiency. This accesses the information generated by the monitor and
the oracle and turns that into an activity matrix and an output vector, and then,
calculates the diagnosis.

3.5. Summary 39

RQ3.3: How well spectrum-based fault localization can identify faults seeded into
service implementations
The results confirm the feasibility of the approach, and indicate a high success rate
of the diagnoses, i.e., 73% correctness. The fraction of incorrect diagnoses can be
explained after careful analysis, which results in a number of feasible directions for
future work.

The limitations of our current approach are readily recognized: diagnosis based
only on passive monitoring and implementation-specific monitoring, influence on
the diagnosis through the service topology, and the single fault case. Our next steps
in future work will address multiple faults in a service-oriented system, which is
more realistic. Later, we will assess the performance overhead, in order to optimize
the monitoring and the oracle (Chapter 5). Finally, it would be interesting to see
how different topologies of service-oriented system affect the accuracy of diagnosis
(Chapter 4).

4.
Effects of Monitoring Topology on

Spectrum Based Diagnosis
Spectrum-based fault localization (SFL) is a statistical fault diagnosis technique that
infers diagnoses from runtime observations. It works by monitoring system transac-
tions, and comparing activity information with pass/fail observations. SFL requires
the monitors, which recover the activity data, to be organized to produce optimal
information for the diagnosis. This organization is termed topology.

Optimality of monitoring topology for diagnosability represents a search or opti-
mization problem amenable to be addressed by meta-heuristic algorithms. In order
to study the effects of topology on the production of diagnoses through SFL, we use
genetic algorithms (GA) to generate topologies that lead to improved diagnosability.
We illustrate how monitoring topologies affect the diagnosability of systems, and how
GA can help to study these effects. We derive general characteristics of topologies to
facilitate SFL-based diagnoses.1

4.1 Topology Effects . 42
4.2 GA for Topology Optimization . 43
4.3 Experiments . 44
4.4 Discussion . 52
4.5 Related Work . 54
4.6 Summary . 55

Spectrum-based fault localization (SFL) is a lightweight statistics-based auto-
matic diagnosis approach that can be applied to identify misbehaving system parts
(Chapter 3). It works by automatically inferring a diagnosis from symptoms (Abreu
et al., 2009a). The diagnosis is a ranking of potentially faulty system components
and the symptoms are observations about component involvement in system ac-
tivation, plus pass/fail information for each activation (Gonzalez-Sanchez et al.,
2011). The activation of the system is expressed in terms of a binary activity ma-
trix representing for each component whether it has been involved in a transaction.

1This chapter contains our work published at the 24th International Workshop on the Principles
of Diagnosis (DX’13) (Chen et al., 2013c).

41

42 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

The pass/fail information is expressed in terms of a binary output vector. A diagno-
sis is determined by calculating the similarity between each component’s activation
vector and the output vector. A component whose activity vector is more similar to
the output vector is more likely faulty than other components, and ranked higher
as suspect.

The application of SFL creates a particular challenge, i.e. the placement of
the monitors for gathering component involvement information. We refer to this
placement as the monitoring topology of the diagnosis system. In principle monitors
may be placed anywhere in the monitored system. However, the places should be
selected carefully to yield the best results in terms of calculating correct diagnoses.
Typical places are in or around the system components, or collections of system
components, or between them. Finding monitoring topologies that lead to high
diagnosability represents a difficult optimization problem amenable to be solved
by meta-heuristic algorithms, such as genetic algorithms. This brings us to the
formulation of the following research questions:

RQ4.1: How can genetic algorithms be used to optimize monitoring topologies
for spectrum-based diagnosis?

RQ4.2: What are characteristics of monitoring topologies that are optimal for
spectrum-based diagnosis?

One contribution of this chapter is the application of GA, including the definition of
adequate fitness functions, in order to study the optimality of topologies for better
diagnosability. Another contribution is the formulation of general characteristics of
topologies that improve SFL-based diagnoses. Optimization of topology is a well-
known problem domain to be addressed by genetic algorithms, e.g. (Chapman
et al., 1994), however, the use of GA in spectrum-based software fault localization
is novel, in particular the formulation of the fitness introduced.

The remainder of this article is organized as follows. Section 4.1 introduces SFL
and how it is affected by topology. Section 4.2 illustrates how GA can be applied for
SFL topology optimization. Section 4.3 outlines our experiments performed, and
Section 4.4 presents the discussion of their results, and lessons learned. Finally,
Section 4.5 lists the related work, and Section 4.6 summarizes and concludes the
Chapter and gives an outlook on future work.

4.1 Topology Effects
Table 4.1 illustrates how the monitoring topology affects SFL. The three topolo-
gies shown are comprised of six components, C1 – C6. In Topology A and B,
every component represents a monitor collecting component activation informa-
tion. In Topology C, component C3 is split to represent two monitors, i.e. C3.1 and
C3.2. Component C4 is faulty with health h=0.0, all other components are healthy

4.2. GA for Topology Optimization 43

Table 4.1: Activity and Similarity Coefficient (SC) for 3 example topologies

Topology A
Comp. Activity Matrix for Topology A SCo
C6 00 0.000
C2 1000111101000001100001010010110000000100 0.592
C5 1001111101111100110110001010111000100100 0.742
C4 11 1.000
C3 11 1.000
C1 11 1.000
Output 11

Topology B
Comp. Activity Matrix for Topology B SCo
C6 00 0.000
C2 0000000000000100001000000011000010000100 0.340
C5 0011101001100000001110101011100100101001 0.668
C1 11 0.949
C3 1111101111111011111111111111111111111111 0.973
C4 1111101111111010111111111111011111111111 1.000
Output 1111101111111010111111111111011111111111

Topology C
Comp. Activity Matrix for Topology C SCo
C6 00 0.000
C2 1010000000000000000100000010000000000000 0.344
C5 0001000000110001101110010100111000000000 0.445
C3.2 1001001000000111001011110110111001110101 0.601
C1 11 0.689
C3.1 1001100100111001110110111010110000100110 0.851
C4 1001000100001011110110111010010001100110 1.000
Output 1001000100001011110110111010010001100110

(h=1.0). The invocation probabilities between the components are represented by
the numbers noted down at the arrows. Topology A shows a particular system char-
acteristic, with components C1, C3, C4, and C6 being tightly coupled, indicated by
the 1.0 invocation probabilities. This represents a specific inhibiting factor for the
calculation of the diagnosis as shown by the poor component ranking in the corre-
sponding activity matrix. Components C1, C3, C4 get attributed the same ranking,
rendering this diagnosis ambiguous. Topology B represents a relaxation of the
tight couplings between components C1, C3, C4, and C6 to a lower value of 0.9.
This leads to a better Similarity Coefficient SCo calculation and a correct diagnosis
of the faulty service for Topology B. The same effect is achieved, if a component is
split up into two observation points (C3.1 and C3.2 in Topology C). The calculation
of the SCo for Topology C is also correct and unambiguous. This simple example
suggests that topology has a major influence on the calculation of a diagnosis with
SFL. The goal of this chapter is to study these effects with the help of GA, and
derive general characteristics of topologies resulting in high diagnosability.

4.2 GA for Topology Optimization
We favor genetic algorithms over other optimization heuristics, since they are ad-
equate for our problem domain (Chapman et al., 1994) and easy to apply. GA

44 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

represent a group of optimization techniques, loosely related to the mechanisms of
natural evolution with reproduction and selection (Goldberg, 1989). The parame-
ters of the optimization problem are encoded as binary string (chromosome). Each
chromosome represents an individual in a pool of solutions (population). During
reproduction, pairs of individuals are selected for recombination and some parts of
their chromosomes form a new individual. This is termed crossover and controlled
by the crossover operator according to probability Pc. After recombination, indi-
vidual bits of the new chromosome are mutated by a mutation operator according
to a low mutation probability Pm. The resulting new individuals are assessed with
the fitness function. This measures how well an individual solves the original prob-
lem. Fitter individuals have a higher chance to reproduce. This is controlled by the
so-called selection operator. The fittest individuals remain in the population and
build the basis for the next generation.

In SFL, the topology is represented in the activity matrix. It expresses for ev-
ery observation point (monitor), whether it has been activated in a transaction or
not. The coverage of the topology can be expressed as one binary string, making
a mapping to a GA-chromosome straightforward. Every line in the activity matrix
becomes a substring of the chromosome. The fitness distinguishes good from poor
solutions, and it represents the adequacy of a topology to support the calculation
of a diagnosis. Diagnosability can be expressed in terms of the extent to which
all diagnoses carried out on an activity matrix coming from that topology, are cor-
rect diagnoses. In other words, if a topology is organized such that every faulty
component can be identified correctly, the topology may be referred to as highly
diagnosable. This can be achieved by consecutively setting all components used in
the activity matrix to be faulty, and then calculating the similarity coefficient for
each fault scenario. This yields a value representing how well a topology facilitates
the discovery of faults in components. Topologies leading to higher fitness values
will lead to better pinpointing of all faulty components.

The ruby-method f_high (Fitness A in Table 4.2) represents the basic fitness
function yielding high overall SC. First, in the so-called genotype-phenotype trans-
fer, the GA chromosome is translated into the problem domain, i.e. the binary
gene-string is transformed into a binary activity matrix. Second, each component
activation vector is set to be the output vector, and the SC is calculated. Third, the
SC values are summed up.

4.3 Experiments
We performed a number of experiments in order to have GA generate highly di-
agnosable topologies, and then to derive general characteristics for diagnosable
topologies. The genetic algorithm used for these experiments can be downloaded.2

It uses the following rudimentary operators.

2https://github.com/SERG-Delft/rusiga

4.3. Experiments 45

Table 4.2: Fitness A: high overall SC
Fitness A: high overall SC
def f_high(chrom, act)

genotype -> phenotype transfer
activity = Array.new
while (a=chrom.take(act)) != [] do

activity << a
chrom = chrom.drop(act)

end
SC calculation
sc = Array.new
activity.each do |output_vec|

activity.each do |activity_vec|
sc<<ochiai(activity_vec, output_vec)

end
end
fitness: sum up sc values
fitness = sc.inject{|sum,x| sum + x}
return fitness

end

Two individuals are selected for recombination based on tournament selection
(Miller and Goldberg, 1995). This chooses Nt individuals from the population
randomly, and returns the fittest in this tournament. The actual recombination is
done according to the uniform crossover operator (Syswerda, 1989). It determines
for every bit in the chromosome, according to a probability Pc, whether the value
for the new individual (offspring) is taken from the first or from the second parent.

The other GA-parameters depend on the complexity of the particular problem
size to be solved. The population size Np, and the tournament size Nt are set to
different values in the different experiments, reflecting the chromosome size of the
respective problem, i.e. according to the size of the activity matrix (or based on
experience). Bigger activity matrices represent larger search spaces and require
bigger populations for better sampling of the search space. Experiments with large
topologies are possible but would require more space for presentation. Therefore,
the topologies shown are limited to five components. Experiments with larger
numbers of components yield similar results. The GA maintains and evolves the Np

fittest individuals. Crossover probability Pc is set to 0.5 in all experiments, and mu-
tation probability Pm is set to a low value of 0.001. These were determined through
initial experiments and found to provide acceptable results. Every experiment was
repeated 20 times. There may be better GA implementations or operators to chose
from, however, the ones introduced here are sufficient to produce usable results.

Assessing the Setup.
The first experiments performed serve as assessment in terms of whether or to
which extent the GA is able to generate highly diagnosable activity matrices. We
assume a diagnosable topology is represented by high overall SC values. This can
be tested by iteratively setting the output vector in the fitness function equal to
each component’s activation vector (Fitness A in Table 4.2). Each component is set
to be faulty in the calculation of the SC (single fault case), resulting in SCo = 1

46 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

Table 4.3: Assessment of the experimental setup
100 Generations, 40 Activations
Np=120, Nt=6, Pc=0.5, Pm=0.001
best random individual (fitness=16.75)

C1 1010101001111001011111000110101110100100
C2 0011101100110000101101101010110011110101
C3 1001010011011111110000111101100010111011
C4 0101101110011001100101101011100010110001
C5 0101111111001001010101001110101010101001

best final individual (fitness=24.88)
C1 0111101110111111101111101111111110110101
C2 0111101110111111101111101111111110110111
C3 0111101110111111101111101111111110110111
C4 0111101110111111101111101111111110110111
C5 0111101110111111101111101111111110110111

for this comparison, and we expect the GA to produce activity matrices in which
all component activations are alike. An example is shown in Table 4.3, above. The
first activity matrix (fitness=16.75) represents the best random individual from the
first generation. The second activity matrix (fitness=24.88) represents the fittest
individual after 200 generations. The success of this optimization example is quite
obvious. All component activity vectors are highly similar, representing a highly
diagnosable activity matrix expressed by the calculation of high overall SC. In fact,
the most optimal solution in this example is fitness=25, when all combinations of
component activity vector and output vector yield a 1.0 as SC value, i.e., when they
are identical. In this example, the fittest individual is only 1 bit flip away from the
optimal solution, i.e. in the penultimate spectrum of C1.

Even though, this experiment is successful in terms of assessing our experimen-
tal setup, it is useless in diagnosis, because the activity matrix represents a topology
in which all components are tightly coupled. If C1 is invoked, all other components
will also always be invoked, leading to components C1 to C5 being assigned the
same ranking (SC = 1.0; compare with Topology A in Table 4.1), and resulting in
an ambiguous diagnosis. As a consequence, we have to extend the adequacy crite-
rion for topologies: “A topology is diagnosable, if it facilitates the detection of all
faults in a system, and their unambiguous identification," i.e. it must not generate
duplicate top SCo.

Topologies for Discriminable Diagnoses.
In this experiment, the fitness function from the previous setup is adjusted to award
topologies higher fitness, which result in high overall SC, but also lead to discrim-
inable diagnoses, thereby addressing ambiguity. The fitness function f_discrim
(Fitness B in Table 4.4) illustrates this extension. It awards individuals that lead
to one top ranked component, and a number of lower-ranked components. More-
over, it can be configured to minimize (diff=:low) or maximize (diff=:high)
the difference between the top ranked and all lower-ranked components. Table 4.5
shows examples for both optimization goals.

Adjusting diff to :high leads to a large number of ‘0’s in the final activity ma-

4.3. Experiments 47

trix compared to a random activity matrix from the early generations, representing
a lot of unique component activation. This means that discriminable diagnoses,
indeed, can be supported by the topology of the system, and that inactivity of the
components, indicated through the many zeroes, supports this. In other words,
high diagnosability can be achieved through inactivity observations, or through
activation of components in isolation, which is the opposite of tight component
coupling. This is an interesting result, because for the topology it means, that hav-
ing components which may be activated individually rather than in combination
with other components, helps separating system executions, and thus, improves
the diagnosability of the system. This comes from how the SCo calculates simi-
larity. Completely inactive spectra are ignored by the SCo, but spectra with fewer
activations provide more useful information for SFL than spectra with more activa-
tions. For example, a spectrum with ai = [0,0, 0,0, 1] is more useful than another
one with a j = [1, 1,1, 1,0], because if the transaction ai fails, this will result in the
only one activated component in ai being blamed more. This outcome may seem
like "the bleeding obvious," but, because complete decoupling of all components
is not realistic in real systems, in the future, we will have to assess whether or to
which extent a GA may be able to generate optimal monitoring locations that help
to exploit this property, at least to a certain extent.

Table 4.4: Fitness B: discriminable SC
Fitness B: discriminable SC
def f_discrim(chrom, act, diff=:high)

genotype -> phenotype transfer
same as f_high()
...
SC calculation
same as f_high()
...
fitness: discriminiable SC
highest_sc = (sc.sort!)[-1]
pivot = sc.find_index(highest_sc)
low_sc = sc[0..pivot-1]
top_sc = sc[pivot..-1]
sum_top = top_sc.inject {|sum,x| sum+x}
sum_low = low_sc.inject {|sum,x| sum+x}
return sum_top - sum_low if diff==:high
return sum_low - sum_top if diff==:low

end

Setting diff to :low shows different results. Even though the activity matrix
contains many ’1’s, indicating tight coupling between the components, conclusive
diagnoses can be calculated, if the topology can provide just enough discriminative
information, e.g. some ’0’s in some spectra. Looking only at the failing spec-
tra in which each component was activated, would lead to ambiguous diagnoses
(comparable with Topology A in Table 4.1). Because there is slight variation in
other spectra to compensate for the tight coupling, the information contained in
the activity matrix is just diverse enough in order for the diagnosis algorithm to

48 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

Table 4.5: Examples for discriminable diagnoses
30 Generations, 40 Activations

Np=50, Nt=3, Pc=0.5, Pm=0.001; diff=:high
fitness=-2.98 (best random individual)

C1 1110100010001000101100111001110100100011
C2 1000101000100100100110100000000011001110
C3 1111010000100101100001000100100101110000
C4 1001001111110111100111110111011000010100
C5 0100110111000010010110110011010000101001

fitness=4.606 (best individual after 30 gen.)
C1 0000100000001000000000001100000011100010
C2 0110000000000100000010100001000100001100
C3 0000000001000010001000000010000000000001
C4 0001001100100001000100000000000000010000
C5 1100010110010000110001010000111000000000

30 Generations, 40 Activations
Np=50, Nt=3, Pc=0.5, Pm=0.001, diff=:low

fitness=7.092 (best random individual)
C1 1001111101010000100011101111100100011101
C2 1011011000010110111100111101110110011010
C3 1100111001010110101100101111111010101110
C4 0101101110001000101010101101101001110011
C5 1010001001000110101100011001111101101011

fitness=12.978 (best individual after 30 gen.)
C1 1011111001011111100010111111100111111111
C2 1111111011011111101110111111100111111011
C3 1111111011011111101000111111111111111011
C4 0111101011011100101010111111100101111111
C5 1111100011011111101000111111100111111011

come up with an unambiguous ranking. An increase in observation diversity can
be achieved by adding observation points. One approach could be the inclusion
of observations representing the invocation links between the components. An-
other approach is the instrumentation of the components themselves in order to
acquire more diverse observations. This second approach has been demonstrated
to improve diagnosis considerably for service-based systems (Chen et al., 2013a).
In any case, both approaches also raise the question of the optimal number of
observation points for high diagnosability w.r.t. low monitoring overhead, to be
addressed in future work.

Topologies for Intermittent Fault Behavior.
In the previous experiments, activation of a faulty component always lead to a fail-
ure. Here, we would like to assess to which extent topology influences the quality
of the diagnosis when components exhibit intermittent fault behavior. Intermit-
tency, i.e. a component fails occasionally, is quite common in software, and it is
not attributable to random faults (as in hardware). Even though, software exhibits
deterministic fault behavior, intermittency comes from the mismatch between the
monitoring granularity and the activation granularity (basic block level). Hence,
intermittency presents a monitoring topology issue.

Fitness function f_randinterm (Fitness C in Table 4.6) realizes intermittency
through removing all ‘1’s from each output vector except for a number of randomly
chosen ones (e.g. 3 random failure observations). This yields similar results as
presented in Table 4.5, with diff set to :high and :low, respectively, so we
omitted an example. Consecutively using each activation vector as output vector,
leads the optimization to be focused only on the generation of high/low differences
between top ranked activations and the lower ranked activations, thereby ignoring
the intermittency target.

Amending the fitness function by focusing on only one faulty component, leads
to a more differentiated outcome (through Fitness D, in Table 4.7). Table 4.8 shows
two examples with five constant failures seeded into the output vector, and with
diff set to :high and :low, respectively. Looking at the two examples, the so-

4.3. Experiments 49

Table 4.6: Fitness C: random intermittency
Fitness C: random intermittency
def f_randinterm(chrom, activ, diff=:high)

genotype -> phenotype transfer
same as f_high()
...
SC calculation
sc = Array.new
activity.each do |output_vec|

output_vec.remove_all_ones_except_rand(3)
activity.each do |activity_vec|

sc<<ochiai(activity_vec,output_vec)
end

end
fitness: discriminable
same as f_discrim()
...

end

Table 4.7: Fitness D: constant intermittency
Fitness D: constant intermittency
def f_constinterm(chrom, activ, diff=:high)

genotype -> phenotype transfer
same as f_high()
...
SC calculation with const. output vector
output_vec = [0,0,0,1,0,0,0,0,0,1,0,0,0,...]
activity.each do |activity_vec|

sc<<ochiai(activity_vec,output_vec)
end
fitness: discriminable
same as f_discrim()
...

end

lution of the GA to the intermittency problem is both cunning and ironic: “in an
optimal topology, faulty components should only be executed when they are guaran-
teed to fail," which avoids intermittency altogether and is not very useful. Further,
when diff is set to :high, it becomes apparent that when the failing component,
C5 in this example, is activated, none of the other components is activated, suggest-
ing again, that the ability to activate components in isolation is advantageous. And
when diff is set to :low, ambiguous diagnoses can be resolved through additional
observations, i.e. through the very few additional ’1’s in the bottom activity matrix.
This confirms our previous observations. Intermittency cannot be addressed with
this kind of experiment.

Freely Evolved Topologies.
Up to this point, we have had the GA evolve topologies based on a predefined
output vector with seeded faults. That way, we could define the interesting error
scenarios, and have the GA generate optimal activity matrices. In this experiment,
we let the GA not only evolve the activity matrices, but also their corresponding
output vectors. It means, we have no control over the number of failure obser-

50 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

Table 4.8: Examples for fault intermittency
200 Generations, 40 Activations

Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:high
fitness=0.377 (best random individual)

C1 0000110011100110100000001000101100110001
C2 0001011111000100001001010111011110101111
C3 1100101010101110110101001101000010110001
C4 1001100110111100101100010000011011111110
C5 1010010010110111110111000010011001111001
O 0111000000000000000000000000000000000110

fitness=1.0 (best individual after 200 gen.) SCo
C1 0000101111000000110100111011111000110000 0.00
C2 1000010101010001101001000111110100010000 0.00
C3 0000010011111011011110100011000110110001 0.00
C4 0000111111110010011000101110000001111001 0.00
C5 0111000000000000000000000000000000000110 1.00
O 0111000000000000000000000000000000000110

200 Generations, 40 Activations
Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:low

fitness=1.105 (best random individual)
C1 1111110000110000100011111100010011110010
C2 1111100100010001000111100001100000010011
C3 0111100111101010101101000110000011110101
C4 0111110100100011101000111000111100000101
C5 0111010010010100100100101010001111110110
O 0111000000000000000000000000000000000110

fitness=2.652 (best individual after 200 gen.) SCo
C1 0111000000001000000000000000000000000110 0.91
C2 0111100000000000000000000000000000000110 0.91
C3 0111000001000000000000000000000000000110 0.91
C4 0111000000000000000000000000000000000110 1.00
C5 0111000010000000000000000000000000000110 0.91
O 0111000000000000000000000000000000000110

vations generated in the output vector, and we cannot tell whether the diagnosis
is correct, because we cannot seed any particular faults. For these experiments,
a 6th component is added to the GA chromosome representing the output vector,
and Fitness E in Table 4.9 is used for evaluation of the individuals. The fitness
function is slightly different compared to the earlier ones, because of the output
vector taking part in the evolution. Setting diff to :low results in a selective pres-
sure favoring many failure observations to be produced as shown in the example
activity matrix on the top right hand side of Table 4.10. Because the number of
failing transactions is unrealistically high for real software systems, we set diff to
:high, resulting in much lower number of failure observations. This is shown in
the example activity matrix on the bottom right hand side of Table 4.10.

Two noteworthy results can be observed in this second case. First, as noted
earlier, being able to activate components individually supports the diagnosis. Sec-
ond, intermittency can be dealt with. The faulty component, C3 in this example,
is sometimes invoked without resulting in a failed transaction. This leads to the
SCo < 1.0. In fact, when C3 is invoked in isolation, it fails, if it is invoked in com-
bination with any of the other components it passes. This is a clear indicator of a
missing observation point, either in the component C3 itself, or in one of its peers

4.3. Experiments 51

Table 4.9: Fitness E: Freely evolved topologies
Fitness E: freely evolved
with output vector
def f_discrout(chrom, act, diff=:low)

genotype -> phenotype transfer
same as f_discrim()
...
SC calculation
ouput -> last comp act vector
output = activity_matrix[-1]
activity_matrix.delete_at(-1)
sc = Array.new
activity_matrix.each do |activ|

sc << ochiai(activ, output)
end
fitness: discriminable SC
top_sc = (sc.sort!)[-1]
top_cnt = sc.count(top_sc)
low_sc = sc[0..-2]
sum_low = low_sc.inject {|sum,x| sum+x}
return (top_sc - sum_low) / top_cnt if diff==:low
return (sum_low - top_sc) / top_cnt if diff==:high
#return (sum_low - top_sc) / (top_cnt + output.count(1))
favor. low num. of failures

end

Table 4.10: Examples for Freely evolved topologies
200 Generations, 40 Activations

Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:low
C1 1111111111111111111111111111111101111111 0.97
C2 1011111111111111110111111111111111111111 0.98
C3 1011111111111111111111111111011111111111 0.98
C4 1011111111111111111111111111111111111111 1.00
C5 1011111111111111111111111111111101111111 0.98
O 1011111111111111111111111111111111111111

200 Generations, 40 Activations
Np=200, Nt=3, Pc=0.5, Pm=0.001; diff=:high

C1 1100011100000001100101011000101010010000 0.00
C2 0100000001101000000010000010101110000001 0.00
C3 0101100001000100001000100010010001100000 0.80
C4 0111000001000010010000010001000010010111 0.00
C5 1000001001100001110100001110001010011000 0.00
O 0000100000000100001000100000010001100000

which is invoking it individually. Translated to a real system it means, that if C3 is
invoked from an external (unmonitored) system, it is exercising a different internal
route, than if it was called from one of its monitored peers. In future work, we will
assess to which extent missing observation points can inhibit proper diagnosis.

Freely Evolved Topologies with Fewer Failures.
Even when diff is set to :low, we can get useful results, when the fitness function
favors individuals with low number of failures. We can amend the Fitness E shown
in Table 4.9 by adding a scaling factor, i.e. output.count(1), shown in the last
line of the fitness function’s code, penalizing individuals with high numbers of
failures. Table 4.11 shows an example with a an activity matrix containing only

52 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

Table 4.11: Freely evolved topologies, fewer faults
200 Generations, 40 Activations

Np=100, Nt=3, Pc=0.5, Pm=0.001; diff=:low
fitness=0.081 (best random individual)

C1 0011010100111001111111111001010001000111
C2 0011110101001011000100111010010101110111
C3 0011111100001100111100001110000100110111
C4 0110010010001111010000011001100000100111
C5 0110101101000001000100110110110001111001
O 0010111000110111000000100101010001101111

fitness=0.44 (best indiv. after 200 gen.) SCo
C1 0010100100100100000001100000100000110000 0.316
C2 0000111010101100001100100000010000010000 0.289
C3 0000101000010011011100000000000010000110 0.302
C4 0010100001100000000000011100000001100011 0.302
C5 0110100010000010001001000110000000100010 0.302
O 0000100000000000000000000000000000000000

one failure.

Remarkable, again, is the high number of zeroes indicating that monitoring of
inactivity is advantageous for high diagnosability. This is in line with our earlier
results. However, the result shown in Table 4.11 also hints to another interesting
topological issue. Even though, all components are activated together in case of
the failing transaction, representing tight interaction of the components in the fault
case, the activity matrix contains enough discriminative information in order to
reach an unambiguous diagnosis. This is, again, a strong indicator that the ability
of a monitoring topology to observe various combinations or patterns of component
invocations will help in reaching unambiguous diagnoses. The other occasional
activations lead to sufficiently diverse information in order to being able to separate
the tight coupling of the components on failure.

From this observation, we can deduce that not only diverse coverage benefits
diagnosability, but moreover, also distinct coverage. In other words, topologies
with more diverse execution routes, covering distinct components, facilitate di-
agnosability. In the topology, this can be achieved through monitoring not only
activation or non-activation of a particular entity, i.e. the fact that something has
been used, but also through monitoring the context in which something has been
used, i.e. incoming and outgoing combinations of activations. In other words,
the fact that something has been covered through various routes, or in particular
sequences, which can be monitored, has an influence on the diagnosability of a
topology. In the future, we will take a closer look at the influence of the traces
leading to an activity matrix, rather than merely the activations themselves.

4.4 Discussion
Revisiting the Research Questions
In the introduction, we asked ourselves how genetic algorithms can be used to study
the effects of the monitoring topology on the diagnosability of systems. We will now

4.4. Discussion 53

address this problem by providing answers to the two research questions formu-
lated:

RQ4.1: How can genetic algorithms be used to optimize monitoring topolo-
gies for spectrum-based diagnosis? The topology of a system is represented by
an activity matrix, whereby, for each observation point, it expresses whether that
point has been activated. The coverage of all observation points can be expressed
as a binary string, making a mapping to a GA-chromosome straightforward. For
the fitness, we propose several approaches. First, a function that expresses the
diagnosability of a monitoring topology, i.e., the extent to which all diagnoses car-
ried out on an activity matrix coming from that topology, are correct diagnoses.
In the fitness function, each component is set to be faulty per diagnosis. Then,
the fitness function calculates to which extent all similarity coefficients combined
from all runs represent correct and distinguishable diagnoses. This yields a value
representing how well a topology facilitates the discovery of each potential fault in
every component. This basic fitness function can be amend in order to address the
different optimization criteria required in the different experiments, e.g. favor high
or low differences in the SCo, or favor output vectors with low number of failures.

RQ4.2: What are characteristics of monitoring topologies that are optimal
for spectrum-based diagnosis? According to the fitness function, a topology is
a “good" or a diagnosable topology, if it facilitates the detection of all faults in a
system in an unambiguous manner. The application of GA hints at a number of
routes to satisfying this fitness goal. Our results show that

• being able to invoke components in isolation is beneficial for diagnosabil-
ity, because it helps separate component involvement in system executions
better.

• adding observation points (monitors) in the system, and including the moni-
toring of inactivity, helps separating system executions, which also facilitates
the diagnosability of the system.

• including monitoring of the system context (for example, external compo-
nents from other systems, incoming and outgoing activations, etc.) can sup-
port diagnosability through incorporating different invocation routes.

• including tracing information which represents combinations or distinct pat-
terns of component coverage, may suport SFL-based diagnosis.

All these items also raise the question of the optimal number of observation points
for high diagnosability w.r.t. low monitoring overhead.

54 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

Lessons Learned
Besides the more general characteristics of diagnosable topologies stated above,
the application of GA taught us a lot about the behavior of the SFL approach. It is
interesting to see how a search heuristic cannot only help to provide solutions, but
also point to issues, both known, and unknown.

In the initial assessment of our setup, the GA generated topologies with tightly
coupled components. This was due to our poor fitness definition. We knew already
that tight component interaction is bad for diagnosability of a topology, and the GA
was, in fact, pointing to this issue, so that in subsequent experiments, the fitness
function could be adjusted.

The fact that having fewer activations within a spectrum provides better infor-
mation for SFL than more activations was not obvious initially. Creating monitoring
topologies that lead to such observations is, therefore, an essential goal for future
work.

Finally, from the last experiments we can deduce that the context of activity is
an important factor in the calculation of a diagnosis. In other words, if a compo-
nent is activated, which route did this activation take? We knew already that intro-
ducing more information into the calculation of the SC yields better diagnoses. But
this points to very particular information to be included, i.e., the activation paths
through the system. In future work, we will derive the activation sequences from
the traces generated by the monitors and encode this in the activity matrix.

Threats to Validity
In this initial application of GA to studying the effects of topologies on diagnos-
ability, we have used activity matrices instead of real topologies. An activity matrix
represents component involvement in system transactions and must be regarded as
a simplification of a topology. It does not explicitly express the links between com-
ponents. We can, therefore, only infer very general characteristics of potentially
diagnosable topologies.

In the experiments, we have only looked at a low number of observation points
(monitors), and at a low number of observations (spectra). We are aware of the
fact that the number of observations and observation points affect the achievable
results, but we decided to treat the generation of variable numbers of observation
points as a problem in its own right, to be addressed in the future.

4.5 Related Work
Literature describing the application of genetic algorithms to the optimization of
topologies is abundant. For instance, Kumar et al. (Kumar et al., 1995) propose
a general approach based on GA to design network topologies for distributed sys-
tems, in order to achieve network reliability; Madeira et al. (Madeira et al., 2005)

4.6. Summary 55

develop a computational model to optimize topologies of linear elastic structures
with GA; the authors of (Granelli et al., 2006) use GA to optimize the topology of
hardware circuit against parallel flows.

In software engineering, the authors of (Hadaytullah et al., 2010), (Räihä et al.,
2008), and (Räihä et al., 2011) propose to apply multi-objective GA to automat-
ically synthesize software architectures. The architectural patterns are used for
mutations and the quality metrics are used as fitness function to assess each ar-
chitecture. Their research results conclude that their approach of architecture syn-
thesis based on GA is able to produce a set of reasonable architectural solutions.
However, only two quality attributes, i.e. modifiability and efficiency, were con-
sidered in their approach to generate software architectures. Lutz (Lutz, 2001)
use meta-heuristics to evolve good hierarchical decompositions. Decomposition is
related to our problem of placing monitors at strategically optimal locations.

Harman (Harman and Clark, 2004) states that “metrics are fitness functions
too". We acknowledge this by defining fitness functions for diagnosability. Kim
and Park (Kim and Park, 2009) propose the application of reinforcement learning
in self-managing systems. In particular, they mention software architecture. Our
approaches are intended to contribute to self-adaptive and self-managing systems.

Piel et al. (Piel et al., 2011) apply spectrum-based fault localization techniques
together with online monitoring to recover health information and pinpoint prob-
lematic components for self-adaptive systems. Abreu et. al. (Abreu et al., 2009b)
present a diagnosis approach combining spectrum-based fault localization and
model-based diagnosis techniques, which is able to locate multiple faulty com-
ponents with relatively low cost.

4.6 Summary
In this chapter, we outlined how genetic algorithms can be used to study the effects
of monitoring topologies on SFL-based diagnoses. We defined a simple one-to-one
mapping between the chromosome of a genetic algorithm and an activity matrix
to be used by SFL, plus several fitness functions representing diagnosability. Ac-
tivity matrices were used as simplifying models for real topologies. Explorative
experiments revealed a number of general characteristics of topologies that sup-
port diagnosability, and we learned to better understand how topology affects the
calculation of diagnoses.

The vision of our research is that, eventually, we would like to be able to have
a search heuristic generate the most optimal monitoring topology in terms of high
diagnosability for any arbitrary existing system. In the future, therefore, we will
have to look at how real topologies can be encoded for GA, instead of merely using
activity matrices representing topologies. This can be done either with the help of a
topology simulator(Section 2.2), or with real systems. Other issues to be addressed
in the future are the inclusion of context information (derived from traces) in the

56 Chapter 4. Effects of Monitoring Topology on Spectrum Based Diagnosis

calculation of the diagnosis, and the inclusion of more monitors. This last aspect
represents a multi-objective optimization problem in its own right, i.e. generate
topologies for optimal diagnosability with minimal monitoring overhead.

5..
Diagnosis Improvement Through

Increased Monitoring Granularity
Due to their loosely coupled and highly dynamic nature, service-oriented systems
offer many benefits for realizing fault tolerance and supporting trustworthy comput-
ing. They enable automatic system reconfiguration when a faulty service is detected.
Spectrum-based fault localization (SFL) is a statistics-based diagnosis technique that
can be effectively applied to pinpoint problematic services. However, SFL exhibits
poor performance in diagnosing services which are tightly interacted. Previous re-
search suggests that an increase in the number of monitoring locations may improve
the diagnosability for tight interaction.

In this chapter, we analyze the trade-offs between the diagnosis improvement
through increased monitoring granularity and the overhead caused by the introduc-
tion of more monitors, when diagnosing tightly-interacted faulty services. We apply
SFL in a service-based system, for which we show that 100% correct identification
of faulty services can be achieved through the increased monitoring granularity. We
assess the overhead with increased monitoring granularity and compare this with the
original monitoring setup. Our experimental results show that the monitoring at the
service communication level causes relatively high overhead, whereas the monitoring
overhead at a finer level of granularity, i.e. at the service implementation level, is
much lower, but highly dependent on the number of monitors deployed.1

5.1 Background . 59

5.2 Problem Statement and Approach . 62

5.3 System Simulations . 65

5.4 Case Study . 67

5.5 Runtime Overhead . 70

5.6 Discussion and Lessons Learned . 77

5.7 Related work . 80

5.8 Summary . 82

1This chapter comprises our findings submitted to the Software Quality Journal. An earlier
version of this chapter was published at the 7th International Conference on Software Security and
Reliability (SERE’13) with the most distinguished paper award (Chen et al., 2013a).

57

58 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

The dynamic features inherent to service-oriented software systems, such as on-
line deployment of services, and runtime reconfiguration and evolution, facilitate
fault tolerance mechanisms in a natural way, and it makes the handling of emerg-
ing problems straightforward. If a faulty service misbehaves during operation, it
can be exchanged for another healthy service through simple runtime reconfigura-
tion (Bennett et al., 2000; Canfora and Di Penta, 2006). However, before a service
may be exchanged, it must be determined with certainty that this service, indeed,
represents the root cause of the failing system, and that it is not merely propagat-
ing an error from somewhere else (Mohamed and Zulkernine, 2008). Even though
service-oriented systems provide all the ingredients necessary to recover from and
adapt to operation time failures (Di Nitto et al., 2008), adequate runtime diagnosis
approaches that accurately identify a faulty service are still missing. Diagnosis for
services has been proposed in the past (Yan and Dague, 2007; Yan et al., 2009),
but the techniques are mainly based on static system modeling, disregarding the
dynamic nature of service-based systems.

Chapter 3 demonstrates that spectrum-based fault localization (SFL), which is
a statistics-based diagnosis technique, can be applied effectively to pinpoint faulty
components in service-based systems. SFL works by automatically inferring a diag-
nosis from observed symptoms (Abreu et al., 2009a). The diagnosis is a ranking of
potentially faulty components, i.e. the services in a service-based system, and the
symptoms are observations about service involvement in system activation, i.e. the
service transactions, plus pass/fail information for each transaction (Chapter 3 and
(Gonzalez-Sanchez et al., 2011)). SFL is based on the assumption that a service is
more likely to be faulty, if it participates more in failing transactions, and it mimics
how a human diagnostician would exonerate parts of a system that cannot be used
to explain a particular failure observation.

Although SFL represents an adequate technique for diagnosing faulty services,
experiments performed for our previous work in Chapter 3 show that incorrect di-
agnoses are more likely, if services are tightly interacted. In other words, if a service
S1 always invokes another service S2 and one of the services is faulty, the diagnosis
would be such that both services S1 and S2 will be convicted, leading to incorrect
or inconclusive diagnoses. In a traditional setting with a human diagnostician, this
is not so much of an issue. Since it would mean that more services would have to
be inspected, in order to determine the true root cause of failure, thereby merely
increasing the residual diagnosis cost (Gonzalez-Sanchez et al., 2010a). However,
in the case of a service-based system acting fault-tolerance autonomously, it would
mean that reconfiguration or other self-healing activities would have to be applied
to more suspects, thereby unnecessarily treating services that are actually healthy.

Careful analysis of the experiments performed for Chapter 3 reveals that the
difficulty of tight coupling for the SFL approach can be resolved either by the ar-

5.1. Background 59

chitecture of the system and how services interact or by the granularity of the
observations used for SFL. Whereas, in the first instance, it would be rather dif-
ficult to try and rearrange the architecture in order to decouple services for any
individual system configuration; in the second instance, it would be relatively easy
to introduce more monitoring points in the architecture, and thus increase the level
of monitoring granularity, that would be sufficient to support the calculation of a
conclusive diagnosis.

As a consequence, the goal of this chapter is to explore the effects of changing
the level of monitoring granularity, and assess its impact on the calculation of a
diagnosis and on the performance of a running service-oriented system. In this
chapter, we concentrate on the following concrete research questions:

RQ5.1: How and to which extent does the monitoring granularity affect the calcu-
lation of a diagnosis with spectrum-based fault localization?

RQ5.2: How can we increase the monitoring granularity?

RQ5.3: What is the overhead caused by the monitoring of various levels of granu-
larity?

We make the following contributions. We describe an approach and implemen-
tation for increasing the monitoring granularity in services, and show how this can
improve the accuracy of diagnosing faulty services. We use a SFL simulator to
study the effects of changing the monitoring granularity on the calculation of the
diagnosis in many different system configurations. We assess the overhead of our
approach and implementation in a real case study and discuss its implications.

The remainder of this chapter is organized as follows: Section 5.1 presents the
research field and techniques related to our approach. Section 5.2 outlines why
tight service interaction inhibits the calculation of a diagnosis by SFL, and why in-
creased monitoring granularity is adequate to alleviate this problem. Section 5.3
introduces the SFL Simulator and explains how it can be used to assess the perfor-
mance of our proposed approach quickly. Section 5.4 describes the case study used
to assess our proposed approach. Section 5.5 presents the experiments measuring
the runtime overhead caused by the monitoring of different levels of granularity.
Section 5.6 discusses the experimental results and the limitations. Finally, Sec-
tion 5.7 presents related work and Section 5.8 concludes the chapter.

5.1 Background
SFL for Service-based Systems
Applying SFL in service-based systems requires the SFL concepts to be adapted to
the service context. This has implications in terms of the component granularity,
system activation, component coverage and the verdicts. The service represents the

60 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

natural component granularity. It is the basic unit that can be restarted, exchanged,
or otherwise treated, in case an error is detected. Alternatively, a service operation,
which represents a business functionality of a service, may denote a finer level of
granularity.

Due to the loosely-coupled nature of services, activation in service-based sys-
tems is not so obvious. A service instance may serve many application contexts. In
other words, a service will not be exclusively activated from within one application
context, but from a potentially arbitrary number of other applications operating in
other contexts, i.e. the contexts of all clients that depend on a service. Applying
SFL in a service-based system, therefore, requires a system activation to be made
explicit through a unique transaction ID, which separates the service activations of
different application contexts.

Component involvement in transactions is typically measured through cover-
age tools. However, since there is no single controlling authority that can produce
service coverage information, involvement of a service in a transaction must be pro-
duced differently. To apply SFL in service-based systems requires dedicated moni-
tors, which observe the service communication and associate the services or their
operations with the corresponding transactions invoking the services or their oper-
ations. This can either be done by the services themselves or through modern ser-
vice frameworks. For example, Apache’s Axis2, Red Hat’s JBoss, or eBay’s Turmeric
come well-equipped with extensive monitoring facilities that can be adopted to
producing service involvement information.

A transaction’s pass/fail information comes from an oracle. Runtime errors,
exceptions, warnings and logs are natural choices for realizing oracles in service-
based systems. They are readily available through the platforms managing the
communication between services, or they are initiated through the business logic,
i.e., the services themselves.

Implementation of SFL for Service-based Systems
This section presents the implementation of the aforementioned SFL concepts for
service-based systems. Firstly, the service operation is set as component granularity
for diagnosis, because it permits a more fine-grained diagnosis. Secondly, activa-
tion of the service-based system used for our experiments is outlined. Thirdly,
online monitoring is required, in order to recover the service involvement in trans-
actions, and in order to calculate the verdicts. In addition, a diagnosis engine is
built in order to maintain the SFL activity matrices and calculate the diagnoses. The
organization of our SFL implementation for service-based systems is presented in
Fig. 5.1, and it is briefly summarized in the following (more details in Chapter 3).

Typically, services would be activated at the application interface through user
interaction. However, in our case, system activation is automated through vari-
ous third-party tools for evaluation purposes, or through custom-built clients for
assessing overhead. There are some existing tools, which provide easy access to

5.1. Background 61

Figure 5.1: Monitoring and diagnosis architecture based on Turmeric

services, such as SoapUI and JMeter. Such tools are used to create SOAP messages
and execute them automatically, thereby mimicking real user interaction coming
from different application contexts. On top of that, our service-oriented system
is built on eBay’s open source service framework Turmeric2. This framework pro-
vides stub code for each service, which allows developers to build customized client
applications to invoke the services.

Turmeric also provides many inbuilt features to support the (online) collec-
tion of system data required for applying SFL in service-based systems. These
features facilitate the integration of online monitoring code, in order to record
the component coverage for SFL with minimum amendments, resulting in a slen-
der monitoring design. The message-handling mechanism of Turmeric is based
on a specific pipelined architecture. All incoming and outgoing messages will go
through the pipelines and will be processed by a group of default handlers. The
default handlers can be extended by adding custom-built handlers for monitor-
ing, i.e. our Turmeric monitors, dedicated to obtaining transaction information
required by SFL. For each service message, the Turmeric monitors will parse the
message context to get the transaction ID, the message content, the service and
operation names and other information referring to the transaction. The custom-
built monitors in the pipelines publish to a Redis in-memory data base instance3 in
order to forward the collected data asynchronously to the diagnosis engine. The
diagnosis engine subscribes to the respective monitoring data via Redis and per-
forms the SFL calculations offline. That way, the monitoring data from messages
belonging to the same transaction can be easily traced, resulting in the involvement
of service operations in a unique transaction to be used in the diagnosis.

Verdicts are generated based on the monitoring data from Turmeric monitors.
A set of oracles is applied to determine the result of each transaction with pass or
fail, based on the message content. The monitors also check upcoming exceptions,
or other noteworthy events and outcomes during system operation. Any of these
noteworthy occurrences can be associated with a unique transaction ID, and used
to judge the transaction.

The actual diagnosis is conducted offline in a diagnosis engine. It is designed

2https://github.com/ebayopensource/turmeric-runtime
3We use the publish/subscribe feature for optimal performance; see http://redis.io/.

http://redis.io/

62 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Service Topology A Monitoring Topology A Diagnosis Component Topology A

Figure 5.2: Example topology illustrating tight service interaction

Table 5.1: Activity Matrix for Topology A
Component Activity for Topology A (fatal failure) Ochiai SC

S5 00000000000000000000 0.000
S1 00000000110000000100 0.280
S4 10111000000110001110 0.728
S0 11111111111111111111 0.922
S3 10111011101111111111 1.000
S2 10111011101111111111 1.000

Output 10111011101111111111

as a separately operating application that collects all monitoring data to get ser-
vice activities and produce verdicts by applying oracles. Activities and verdicts are
transformed into an activity matrix and an output vector for further calculation of
a diagnosis. This implementation is summarized in Fig. 5.1.

5.2 Problem Statement and Approach
One of the main targets of this chapter is to study how tight service interaction in-
hibits the calculation of a diagnosis, and how adjusting the monitoring granularity
can help overcome this limitation. In order to explain the tight service interaction
problem we make use of a service topology. An example can be found on the left-
hand side in Figure 5.2. A topology is created by defining a number of components.
Each component is defined by the component name, component health, and failure
probability. Health denotes the probability that a component will not produce an
error when it is executed: 1.0 represents a healthy component, while a value in the
range (0.0, 1.0) represents a faulty component with intermittent fault behavior. A
health value of 0.0 denotes no fault intermittency, i.e., the component will always
produce an error if activated. Components in a topology can be connected through
defining a link between them with an associated invocation probability.

Besides the service-topology, we also look at the monitoring topology, which is
basically a representation of where the monitors are in the service topology. In the
most basic case of Figure 5.2, where each component has exactly one monitor, the
monitoring topology corresponds to the service topology.

The diagnosis component topology then represents a virtual service topology in

5.2. Problem Statement and Approach 63

Table 5.2: Activity Matrix for Topology B
Component Activity for Topology B (fatal failure) Ochiai SC

S5 00000000000000000000 0.000
S1 01000000000001010001 0.471
S4 11001001000111110100 0.745
S0 11111111111111111111 0.949
S2 11101111111111111111 0.973
S3 11101111110111111111 1.000

Output 11101111110111111111

which the components of the service topology are split up in subcomponents in case
multiple monitors per component are placed. This diagnosis component topology
can discern multiple calling paths within a component in the service topology.

The Problem of Tight Service Interaction
First, we explain how tight interaction aggravates diagnosis. Consider the topology
on the left-hand side in Fig. 5.2, which is comprised of six services, S0 – S5, with
service S3 being the faulty one with low health (h=0.0). All other services are set
to be 100% healthy. Services S2 and S3 are tightly interacted, indicated through
the 1.0 invocation probability between them. It means once service S2 is invoked,
service S3 will also be invoked, leading to the same activity status for the two
services. This creates a problem for the diagnosis, when each service gets only one
monitor, as illustrated in the monitoring topology shown in the middle of Fig. 5.2.
There is a one-to-one mapping between the service topology and the topology of
the monitors, hence the topology of the diagnosis components, shown on the right-
hand side of Fig. 5.2. There is a one-to-one mapping between the service topology
and the topology of the monitors, hence the topology of the diagnosis components,
shown on the right-hand side of Fig. 5.2.

The activity matrix and diagnosis results for this monitoring setup (produced
with the SFL simulator4, described in Section 2.2) are presented in the table in
Tab. 5.1. Due to the tight interaction between services S2 and S3, the diagnosis
not only convicts the real faulty service, S3, but also its tightly-interacted peer,
the service S2. As indicated by the Ochiai Similarity Coefficients (SC) in Tab. 5.1,
the two services are assigned the same values (SC = 1.0), and thus, the same
rank in the diagnosis. In this diagnosis, both services are, in fact, treated as one
single diagnosis component. This ambiguity would bring extra effort to service
maintainers to identify the real faulty service, however, in case of automatic service
recovery, both services would have to be treated, thereby treating an otherwise
healthy service (S2). Therefore, only the results, which rank the real faulty service
highest and uniquely in the diagnosis, can be considered correct. In this example,
tight interaction between services produces an ambiguous result, however, in some
cases, tight interaction can also lead to incorrect diagnoses.

4https://github.com/SERG-Delft/sfl-simulator

64 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Service Topology B Monitoring Topology B Diagnosis Component Topology B

Figure 5.3: Example topology illustrating potential solution 1

Service Topology C Monitoring Topology C Diagnosis Component Topology C

Figure 5.4: Example topology illustrating potential solution 2

Table 5.3: Activity Matrix for Topology C
Component Activity for Topology C (fatal failure) Ochiai SC

S5 00000000000000000000 0.000
S1 00000000000000010100 0.000

S2.1 10001101001001000000 0.679
S4 00000001011111011000 0.686
S0 11111111111111111111 0.806

S2.2 10110001111111001000 0.920
S3 10111101111111001000 1.000

Output 10111101111111001000

Solving Tight Service Interaction – Potential Solution 1
A possible solution to deal with this insufficiency of diagnosis in the case of tight
service interactions would be to reduce the invocation probabilities between such
services. In other words, create a system, in which not every invocation of service
S2 will subsequently lead to the invocation of service S3. Service Topology B in
Fig. 5.3 illustrates such an architecture. The invocation probability between the
two initially tightly-interacted services is reduced to 0.9. Without having to change
the monitoring setup, this slight adjustment in the invocation probability leads to
enough decoupling of the services, and to the introduction of sufficiently more
discriminative information in the observations. Thus, a correct diagnosis can be
calculated in the related activity matrix for the Diagnosis Component Topology B
in the table shown in Tab. 5.2.

5.3. System Simulations 65

Solving Tight Service Interaction – Potential Solution 2 (Our Ap-
proach)
In real systems, the invocation probabilities between individual services cannot be
adjusted arbitrarily, because they are determined by the business logic, and the
input parameters coming from the external system context, i.e. the system’s us-
age profile. In order to retrieve similar discriminative power in the observations, a
feasible adjustment in the monitoring topology must be invented that leads to sim-
ilar results as shown for Service Topology B. Experiments with the SFL Simulator
suggest that this may be achieved through increasing the number of observation
points (monitors) in the service topology. This boils down to logically splitting
services into sub-components, or simply adding components, and associating indi-
vidual monitors to these sub-components. This increases the level of detail, i.e. the
monitoring granularity used for the similarity coefficients, and helps discriminate
service invocations that follow different internal invocation paths. By defining a
monitoring topology that separates services into finer-grained sub-components, we
retrieve finer-grained coverage information, and finer-grained potential commu-
nication paths between the sub-components, with potentially different invocation
probabilities between them. The assumption that we do make here is that we
have access to the internals of the services to actually implement this finer-grained
monitoring.

This increase in the monitoring granularity is illustrated in Fig. 5.4. Here, Ser-
vice Topology C corresponds to Service Topology A shown in Fig. 5.2, with S2 and
S3 being tightly interacted, and S3 being the faulty service. In contrast to Moni-
toring Topology A, the new Monitoring Topology C is changed in such a way, that,
instead of using only one monitor, two monitors (M2.1 and M2.2) are associated
with service S2. Each of the monitors is in charge of different paths through Ser-
vice S2. So, in terms of monitoring, Service S2 is split into two sub-components:
S2.1 and S2.2, as shown in the diagnosis component topology in Fig. 5.4. Both
sub-components lead to two separate observable paths from S2 into S3, and the
corresponding activity matrix is also changed, as shown in Tab. 5.3. In this way,
the diagnosis is able to produce a correct and unambiguous result. This example
illustrates that adding more observation points can improve diagnosis for service-
oriented systems with tight interactions. However, whether, and to which extent
the increasing of monitoring granularity can affect diagnosis depends on careful
selection of the observation locations. This requires further investigation when
performing a case study (Section 5.4)

5.3 System Simulations
Simulation Results
To assess our approach in a more realistic setup, we imitated our case study system
with the SFL Simulator. In contrast to the topology shown in Fig. 2.3, which is only

66 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Table 5.4: Simulation Results for Service Diagnosis

Services Component # of Diagnosis % Correct
Granularity Activations Correct Incorrect Diagnosis

ExchangeCurrencyService i1 Interface 50 8 42 16%
i2 Sub-comp 50 39 11 78%

OrderProcessorService i1 Interface 50 13 37 26%
i2 Sub-comp 70 47 23 67%

Table 5.5: Reasons for Incorrect Diagnoses in Simulation

Services Component Incorrect Fault not Other
Granularity Diagnoses Activated Reasons

ExchangeCurrencyService i1 Interface 42 16 26
i2 Sub-comp 11 5 6

OrderProcessorService i1 Interface 37 5 32
i2 Sub-comp 23 5 18

displaying top-level services (due to space limitations), in the simulator, we used a
more detailed system model that includes the service interface level. This follows
the original design of the case study system presented in Section 2.2. In addition,
the link probabilities used in the simulations are based on the service implemen-
tation logic plus test data applied. The system health (or failure intermittency)
is determined based on the number of fault activations during testing of the real
system.

In the original experiments, two services could be identified to exhibit the prob-
lem of tight service interaction, i.e. the ExchangeCurrencyService and the OrderPro-
cessorService, resulting in incorrect diagnoses. The results of the simulations per-
formed for these two services are shown in Table 5.4. The simulations are based on
two levels of detail. The first level of granularity assessed is the service interface
level (indicated as i1 in Table 5.4), and this corresponds to our original experi-
ments described in Chapter 3. The second level is more detailed and separates
service interfaces into finer grained sub-components (indicated as i2 in Table 5.4).
The ExchangeCurrencyService is split into 5 subcomponents, and the OrderProces-
sorService is into 7 subcomponents. The sub-components, which are associated
with individual monitors, are determined following roughly the main execution
paths through these services. Their respective invocation probabilities defined in
their links are derived experimentally from the original system in the case study.
Since the simulation is made for single-fault case, i.e., only one component/sub-
component can be set as faulty in one activation, so the number of activations in
the simulation (Table 5.4) is set to 50 and 70 for two services, respectively, in order
to retrieve sufficient fault coverage.

The low values for correctly performed diagnoses for granularity i1 shown in

5.4. Case Study 67

Table 5.4 illustrate the poor performance of SFL for tightly coupled services. A
diagnosis is considered to be correct, if the true faulty component is correctly and
unambiguously identified by SFL. In the initial setup (with interface-level gran-
ularity, i1), this can only be achieved in 16% and 26% of the cases for the two
tightly coupled services. The simulation results for the finer-grained level of mon-
itoring granularity (i2, shown in Table 5.4) are much improved, up to 78% and
67%. However, the improvement is poorer than expected. In fact, they are worse
than the results from the experiments performed for the real case study described
later (Table 5.8). This requires some explanation:

1. Compared to the case study, fewer faults are activated in the simulation (as
shown in Table 5.5), leading to missing diagnoses. The chance of execut-
ing some faults is low through the combination of failure and invocation
probabilities defined in the simulation. In other words, some faults that are
activated in the case study are not activated in the simulation.

2. Even though the number of activations corresponds to the real system, the
random activations between the components is more diverse. The simulation
uses random invocations according to predefined probabilities in order to
exercise the topology. The probabilities are retrieved experimentally from the
real case study, but they cannot absolutely reflect the usage profile imposed
by the real test cases. This leads to statistically significant deviations of the
executions in the simulation compared to the real system.

3. The monitoring granularity in the real case system is increased compared
with the simulation (see Section 5.4). The simulator allows to define topolo-
gies with finer-grained sub-components, however, estimating the link prob-
abilities and health values of these finer-grained sub-components becomes
increasingly difficult.

All in all, the simulator always produces worse results when compared to the
real case study. This is mainly due to the fact that it builds system topologies based
on probabilities, i.e., an approach being tested positive in simulation is more likely
to receive positive results in real system. Therefore, using the simulator for trial
test can easily assess an approach without implementing it in a real system. In
our experiment, the simulations confirm the positive effect of introducing more
observation points for the calculation of the diagnosis. In the following section, we
describe how our approach is evaluated in a real system.

5.4 Case Study
Conducting the Case Study
Because the focus in this chapter is on tight service interaction, in the case study,
again, we look at the two services, the ExchangeCurrencyService and the OrderPro-

68 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Table 5.6: Active Mutators in the Experiment

ID Mutator Error in the system

1 Negate Conditionals wrong internal state or response, null
or runtime exception

2 Return Values wrong response, null or runtime exception
3 Conditionals Boundary wrong internal state or response
4 Void Method Call wrong internal state
5 Math Mutator wrong internal state

Table 5.7: Mutators used in the two Tightly Interacted Services

Services Mutators (from Table 5.6) # of Mutations

ExchangeCurrencyService 1 5
(24 mutated versions) 2 7

4 12

OrderProcessorService 1 15
(41 mutated versions) 2 1

3 1
4 23
5 1

cessorService, which present tight interactions with other services. We apply the
PIT mutation tool in order to create 65 faulty system versions, 24 faulty versions
for the ExchangeCurrencyService, and 41 faulty versions for the OrderProcessorSer-
vice. Table 5.6 summarizes the type of mutations applied with PIT, and it briefly
states the purpose of each mutator used, and the error it generates in the system.
Table 5.7 illustrates the kind of mutators applied to the two services. The different
numbers of mutations per mutator come from the presence or absence of specific
code features in the service implementations that PIT manipulates.

For each of the 65 faulty system versions, we use JMeter to execute 48 web
service requests as test scenarios in order to cover all service operations. Upon
completion of all transactions for one faulty system version, the diagnosis engine is
invoked to parse the monitoring data, identify the failures in the system, and create
an activity matrix with an output vector. Then, it is assessed whether the resulting
diagnosis pinpoints the service correctly that contains the seeded fault. The whole
experiment is designed for the single fault case. We ensure that each of the 65 ver-
sions of the system contains only one fault, either in the ExchangeCurrencyService
or in the OrderProcessorService.

The conduction of the case study is split up into two instances, i1 and i2. In
instance i1, we invoke the original case system with monitoring enabled at the ser-
vice interface level of granularity. The monitoring is provided through the Turmeric
framework, mentioned in Section 5.1 and detailed in Chapter 3. In instance i2, we
invoke the same system and use the same Turmeric-based monitoring. Addition-
ally, we also put monitors in the service implementation codes at the code block

5.4. Case Study 69

level of granularity. Basically, we split the service implementation into several code
blocks, and put an observation point at the end of each block. The observation
point is also a Redis-based publisher. Once a code block is executed to the end, the
ID of the code block will be published to Redis. Based on the time sequence, the
application is able to associate the monitoring data from the code block monitors
with the transaction information from Turmeric monitors. We determine the code
blocks based on the internal control-flow structure of the service implementations.
In some cases, we separate the blocks for better isolation of tightly-interacted code
sections. This results in 10 monitored sub-components for each of the two services
under consideration. That way, we are able to increase the number of observation
points in instance i2 to the finer level of granularity required for correct diagnoses.
The additional monitoring introduces more and more diverse coverage informa-
tion, which we expect will yield better suited activity matrices, thus, leading to
better diagnoses. The results of these experiments are presented in the following
sub-section.

Case Study Results
Table 5.8 and Table 5.9 summarize the results of the case study for both instances,
i.e. i1 for service interface monitoring granularity and i2 for code block monitoring
granularity. Table 5.8 shows the correctness of diagnoses at both levels of monitor-
ing granularity for each faulty service version. A diagnosis is considered correct, if
the faulty service or one of its sub-components is ranked top, and no other service
receives the same ranking, i.e. the diagnosis is correct and unique.

The improvement of the finer-grained monitoring granularity over the original
coarser-grained granularity is substantial. Both services with incorrect diagnoses
in our original case study can now be diagnosed correctly and unambiguously as
the faulty services to a very high degree, i.e. 92% and 90% shown in Table 5.8.
Actually, the faults injected in both services can always be diagnosed correctly,
leading to 100% correct diagnoses. This becomes apparent when we look at the
reasons for the incorrect diagnoses shown in Table 5.9. In the first instance, i1, 19
plus 9 out of the total number of incorrect diagnoses of the two services produced
wrong results because of tight interaction on failure. This represents our original
problem, and the table indicates that it can be resolved entirely through increasing
the monitoring granularity for the considered services in the second instance, i2. In
both instances, i1 and i2, 2 plus 4 out of the total number of incorrect diagnoses are
due to the faults in the services not being activated. In other words, in these cases
no test execution was able to cover the faults introduced through the mutations.
In general, diagnosis can only be initiated when a fault is actually detected. This
is not attributable to our diagnosis technique, but a fundamental problem of all
coverage-based quality assurance approaches.

Therefore, we can claim that all faults can be diagnosed correctly and unam-
biguously in our case study, if they can be detected, i.e. they are propagated into

70 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Table 5.8: Experimental Results for Service Diagnosis

Services Component # of Diagnosis % Correct
Granularity Mutations Correct Incorrect Diagnosis

ExchangeCurrencyService i1 Service Interface 24 3 21 13%
i2 Code Block 24 22 2 92%

OrderProcessorService i1 Service Interface 41 28 13 68%
i2 Code Block 41 37 4 90%

Table 5.9: Reasons for Incorrect Diagnoses in Experiment

Services Component Incorrect No Acti- Tight
Granularity Diagnoses vation Interaction

on Failure

ExchangeCurrencyService i1 Service Interface 21 2 19
i2 Code Block 2 2 0

OrderProcessorService i1 Service Interface 13 4 9
i2 Code Block 4 4 0

failure. The lower values of 92% and 90% shown in Table 5.8 are a consequence
of intermittent fault behavior of the services, a common property of software.

5.5 Runtime Overhead
Experimental Setup
An important aspect of our proposed diagnosis technique is the runtime overhead
it imposes on the service-based system. Since the diagnosis engine is detached
from the executing system, we focus on the overhead of the runtime monitoring
required for SFL. In the experiments, we aim to measure the time overhead caused
by the code block monitor, the time overhead caused by the Turmeric monitor, and
the time overhead caused by the data-logging (publishing to Redis) in the Turmeric
monitor.

We chose a set of requests based on diversity in service interactions that they
will create, to invoke the ExchangeCurrencyService (ECS) and the OrderProces-
sorService (OPS). Both services have four fundamentally different associations
with other services, e.g. the BusinessAccountService or the ConfigurationService,
which are interesting for performance measurements. Additionally, we also add the
BusinessAccountService (BAS) to the overhead experiments, in order to measure
overhead under diverse scenarios. This service does not invoke any other subse-
quent services. That way, we can collect performance data for a range of different
scenarios, i.e. with a variable number of services involved in various shorter and
more extensive transactions.

The service-based system is repeatedly invoked with diverse requests and under

5.5. Runtime Overhead 71

various monitoring configurations set up. For each invocation, we measure the
end-to-end response time for the request. Then we compare the response time of
the exactly same request under different monitoring setups. Therefore, we are able
to observe the time overhead caused by Turmeric monitor or code block monitor.

For service activation, we used self-created service clients to invoke the services,
instead of JMeter (which we used in the case study described in Section 5.4).
The reason is that service clients are able to produce more reliable performance
measurement. When we compare the standard deviations of 15 requests over 1000
runs for both JMeter and self-developed service clients, it becomes apparent that
for 12 requests the spread obtained from our own service clients is much smaller
than when using JMeter. These results are shown in Table 5.10. Eventually, we
decided to drop JMeter in favor of our own developed clients.

Table 5.10: Standard Deviation of Experimental Results in Milliseconds

Tool BAS_1 BAS_2 BAS_3 BAS_4 BAS_5 BAS_6 BAS_7 ECS_1 ECS_2 ECS_3 ECS_4 OPS_1 OPS_2 OPS_3 OPS_4

Client 3.383 7.501 16.498 4.165 9.906 14.360 9.346 178.954 16.622 21.408 12.340 99.929 22.185 37.281 26.561
Jmeter 11.108 28.237 22.445 21.238 32.805 42.031 47.468 209.220 9.143 26.714 13.545 113.760 28.661 23.106 19.369

Overhead Results
Table 5.11 shows the average response times for activating the ECS and OPS ser-
vices 1000 times. The requests to both the ECS and OPS services may involve
other services to complete. In other words, the request will initially invoke the ECS
or the OPS, but the invoked service will continue to call other services, in order
to complete a transaction. Thus, part of end-to-end response time from the ECS
or OPS services can be attributed to the communication between all involved ser-
vices. The total number of invoked Turmeric monitors depends on the number of
involved services. When the Turmeric monitors are enabled, a request to a service
will activate two Turmeric monitors, namely (1) one at the side of service request
and (2) the other one at the side of service response. If the first service invokes
another subsequent service, four additional Turmeric monitors will be activated to
handle the message at (1) the side of the client request for the invoking service,
(2) the side of service request for the invoked service, (3) the side of service re-
sponse for the invoked service, and (4) the side of client response for the invoking
service. Table 5.11 lists the number of activated Turmeric monitors for each ser-
vice request. Among the listed requests, ECS_2 only gets two Turmeric monitors,
that is because this request only invokes the ECS, it does not make the ECS invoke
other services. When code block monitors are enabled in the system, there will be
10 code block monitors deployed for each of the two services, in order to improve
the diagnosis accuracy for the services as detailed in Sec 5.4. However, different
requests will activate different parts of service implementation, so that different

72 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

code block monitors will be invoked. The numbers of actually invoked code block
monitors for each request are also listed in Table 5.11.

The four center columns in Table 5.11 termed "Monitors", present the average
response times for each service request to the service-oriented system according
to four monitoring strategies, i.e. all monitors disabled ("None"), only code block
monitors enabled ("Code Block"), only Turmeric monitors enabled ("Turmeric"),
both monitoring strategies enabled ("Turmeric & Code Block"). Notable are the
relatively long response times for the requests ECS_1 and OPS_1. Based on a
further investigation into network traffic during an experiment with Wireshark5,
we observed that the first request that makes a service to invoke another new
service always consumes extra overhead. Since for the first request the service
needs to establish a connection to the other service, and the following requests
can directly reuse the connection if they are invoking the same service and the
connection data is still buffered in the system memory. Both ECS_1 and OPS_1
requests are the first ones that the ECS and OPS services start with, respectively,
and both requests invoke a large set of services as compared with their following
requests. Therefore, the response times from both requests are much longer.

The three columns on the right-hand side in Table 5.11, termed "Impact (%)",
show the impact of monitoring overhead for various monitoring setups compared
to the system without any monitoring at all ("None"). The values indicate that
Turmeric monitoring causes the most overhead in the system, while the overhead
from code block monitoring is minute and may be ignored. An outlier case is
the service request ECS_2, in which the impact from only Turmeric monitors is
slightly larger than the impact from both Turmeric and code block monitors. In
addition, we also observed two negative impact results from the service request
ECS_4 and OPS_2. They are caused by the limitation of overhead measurement in
our experiments, which is discussed in Sec. 5.6.

The overhead results presented in Table 5.11 are different from the results ob-
tained in our previous overhead experiments outlined in our earlier article (Chen
et al., 2013a). In this other article, the experiments were only aimed at getting an
initial feeling of the potential overhead caused by various monitoring strategies,
and we had to circumvent a few flaws in the implementation. The monitors were
not decoupled from the data base maintaining the activity matrices, thereby adding
considerable overhead through a sub-optimal synchronous implementation. More-
over, earlier we used the EMMA coverage tool6 for realizing the code block mon-
itors. However, it also causes overhead in itself, because it uses code instrumen-
tation, plus coverage information could only be generated when the application
server was shutting down, which lead to an awkward data collection procedure at
the end of each experiment. Both implementation issues are now being resolved by
using the publish/subscribe facility of Redis. Now, coverage information is simply

5http://www.wireshark.org/
6http://emma.sourceforge.net/

5.5. Runtime Overhead 73

published to Redis the moment it is available, and a monitor is realized through a
single ultra-fast Redis operation. In our opinion, the application of an in-memory
publish/subscribe tool like Redis represents an optimal monitoring solution.

Table 5.11: Average End-to-End Response Time from ECS and OPS Services in
Milliseconds over 1000 Transactions

Service # of Monitors Impact (%)
Request Turm. C.B. None Code Block Turmeric Turmeric Code Block Turmeric Turmeric

Moni. Moni. & Code Block & Code Block

ECS_1 14 6 2996.034 3002.367 3055.052 3065.618 0.21% 1.97% 2.32%
ECS_2 2 2 49.664 50.657 56.928 56.927 2.00% 14.63% 14.62%
ECS_3 14 5 72.58 74.456 118.256 120.189 2.58% 62.93% 65.60%
ECS_4 10 4 47.577 47.357 66.477 66.878 -0.46% 39.72% 40.57%

OPS_1 18 8 870.442 878.675 987.537 995.058 0.95% 13.45% 14.32%
OPS_2 18 7 135.504 130.494 177.714 180.371 -3.70% 31.15% 33.11%
OPS_3 18 8 310.94 320.227 351.423 353.64 2.99% 13.02% 13.73%
OPS_4 18 8 147.765 152.587 202.53 206.669 3.26% 37.06% 39.86%

The overhead measurements shown in Table 5.11 are also influenced by com-
munication between several involved services which leads to a large spread for
the overhead values measured. Furthermore, the number of code block monitors
is fixed for the concern of diagnosis. We conduct a similar experiment with the
BAS service, because the requests to the BAS service will not cause it to invoke
subsequently associated other service(s). This experiment helps us foresee the
likely impact of inter-service communication overhead. For the request to the BAS
service, two Turmeric monitors handle the service messages at the side of service
request and service response, respectively. When code block monitoring is enabled,
we deploy different numbers of code block monitors in various service interfaces
of BAS, in order to discover the relation between the number of code block mon-
itors and the overhead they cause. For instance, the request BAS_1 will invoke a
service interface, which contains 10 code block monitors, and the request BAS_3
will invoke another service interface with 100 code block monitors. The number of
activated monitors for each request to the BAS service are listed in Table 5.12.

Table 5.12 presents the average end-to-end response times of 1000 invocations
of BAS. Since the requests only invoke one service, the response times are much
lower than those found in Table 5.11, with the exception of the first service re-
quest (BAS_S). The BAS_S request invokes the same service interface as the request
BAS_1, however, it is the first request that the service client starts with in each ex-
periment. As the first request in the whole experiment, it requires the service client
to load the runtime libraries offered by the Turmeric platform to initialize the com-
munication with a Turmeric service, and it establishes the connection to the derby
database that our service-oriented system is using. These two parts consumes the
major part of the time overhead from the BAS_S request. Due to the unreliable
deviation caused by the initialization step, we exclude the results from the BAS_S

74 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

request in the following analysis.

The impact percentages shown in Table 5.12 expose more details about the
monitoring overhead. The impact through Turmeric monitoring is still obvious to
see. However, the impact of code block monitoring increases with the number of
code block monitors, which is to be expected. The overhead of a single code block
monitor is relatively low and may be ignored. However, using many monitors,
i.e. up to 100, in the same service, increases the overhead from the code-block
monitors to values similar to the ones exhibited by the Turmeric monitors.

Table 5.12: Average End-to-End Response Time from BAS Service in Milliseconds
over 1000 Transactions

Service # of Monitors Impact (%)
Request Turm. C.B. None Code Block Turmeric Turmeric Code Block Turmeric Turmeric

Moni. Moni. & Code Block & Code Block

BAS_S 2 10 1113.402 1146.469 1309.721 1315.575 2.97% 17.63% 18.16%
BAS_1 2 10 12.967 15.278 22.027 24.165 17.82% 69.87% 86.36%
BAS_2 2 1 45.087 45.851 60.424 60.606 1.69% 34.02% 34.42%
BAS_3 2 100 34.709 45.985 47.437 59.931 32.49% 36.67% 72.67%
BAS_4 2 10 28.63 30.229 34.876 35.619 5.59% 21.82% 24.41%
BAS_5 2 1 49.45 48.868 53.709 54.341 -1.18% 8.61% 9.89%
BAS_6 2 10 47.722 50.738 63.41 66.886 6.32% 32.87% 40.16%
BAS_7 2 100 25.637 32.611 39.17 44.635 27.20% 52.79% 74.10%

Based on the results presented in Table 5.11 and Table 5.12, we calculated
the real value of overhead caused by the monitoring for each service. Table 5.13
presents the overhead for code block monitors. In the BAS service, the overhead
corresponds to the number of code block monitors. The maximum overhead caused
by one code block monitor is 0.8ms; 10 code block monitors can cause overhead
from 0.7ms to 3.5ms; and when the number of code block monitors is increased up
to 100, the overhead also increases by 5.5ms and 12.5ms. Although, the overhead
from one and 10 code block monitors are similar, we can still see a linear increase
in overhead with an increase in the number of code block monitors. In the ECS and
OPS services, the number of activated code block monitors is very low, i.e., less than
10. In four out of six cases, the total overhead from code block monitor is small.
However, in two cases, the caused overhead is comparable to the overhead of 100
code block monitors in the BAS service. These two cases come from the results
of ECS_1 and OPS_1, respectively. As mentioned before, both requests cause very
long response times. Furthermore, the deviations of response times caused by
both requests are also very large, i.e., 178.954 ms for ECS_1 and 99.929 ms for
OPS_1, as shown in Table 5.10. Although the results for code block monitoring
from both requests are relatively larger than that of other requests, they can be
ignored, when compared to the base response time results and their deviations.
Therefore, it is possible that the large deviations may influence the results for code
block monitoring.

5.5. Runtime Overhead 75

Table 5.13: Monitoring Overhead for Code Block Monitor in Milliseconds

Service # of Code Block Monitors Minimum Overhead Maximum Overhead

BAS 1 -0.582 0.764
BAS 10 0.743 3.476
BAS 100 5.465 12.494
ECS 2 -0.001 0.993
ECS 4 -0.401 -0.22
ECS 5 1.876 1.933
ECS 6 6.333 10.566
OPS 7 -5.01 2.657
OPS 8 2.217 9.287

Table 5.14 shows the overhead results for Turmeric monitors. Compared with
the overhead for code block monitors, it is more obvious to see the overhead of
Turmeric monitors increases along with the number of activated Turmeric moni-
tors.

Table 5.14: Monitoring Overhead for Turmeric Monitor in Milliseconds

Service # of Turmeric Monitors Minimum Overhead Maximum Overhead

BAS 2 4.259 16.148
ECS 2 6.27 7.264
ECS 10 18.9 19.521
ECS 14 45.676 63.251
OPS 18 33.413 117.095

We also investigate the amount of monitoring data produced by each request,
in order to see if the throughput of monitors affects their overhead. Table 5.15
presents the total size of monitoring data from two levels of monitoring for each
request. Combined with the impact percentages of code block monitoring shown
in Table 5.12, we notice that the data size and the impact of code block monitoring
for BAS requests have the same tendency, i.e., when the data size is large, the
impact percentage for the same request is also large, and vice versa. However, the
main reason behind this situation is that both the data size and the impact of code
block monitoring are tightly depending on the number of code block monitors. The
content of monitoring data from a code block monitor is the id of this code block,
so the monitoring data for all code block monitors in our system is always the same
size. If more code block monitors are activated, more data will be generated. If we
further calculate the data size and the impact per code block monitor for each BAS
request, as shown in Table 5.16, we can more clearly see that larger data size does
not cause larger impact (compare BAS_1 with BAS_4) for code block monitoring
in BAS. We apply the same analysis to the rest of results, and our conclusion is that
the size of monitoring data is not really a big issue in terms of overall monitoring
overhead.

76 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Table 5.15: The Size of Monitoring Data in Byte

Monitor BAS_1 BAS_2 BAS_3 BAS_4 BAS_5 BAS_6 BAS_7 ECS_1 ECS_2 ECS_3 ECS_4 OPS_1 OPS_2 OPS_3 OPS_4

Code Block 190 19 3K 270 21 270 3K 44 15 36 29 62 68 76 76
Turmeric 707 2K 915 805 782 2K 503 5K 548 6K 4K 10K 10K 10K 10K

Table 5.16: Data size vs impact per code block monitor for BAS(Just for illustra-
tion)

Monitor BAS_1 BAS_2 BAS_3 BAS_4 BAS_5 BAS_6 BAS_7

Data size 19 19 30 27 21 27 30
Impact % 1.7% 1.69% 0.32% 0.56% -1.18% 0.63% 0.27%

The Turmeric monitor that we implemented for the experiments in (Chen et al.,
2013a) caused a large amount of overhead. The major reason for this overhead
was due to the use of synchronous database access to record the monitoring data.
In the current implementation, we have changed the synchronous database access
to a Redis-based Publish/Subscribe messaging mechanism for the logging of mon-
itoring data, causing less overhead. The main function that Turmeric monitors
perform is to handle the incoming and outgoing messages, parse the context of a
message to get predefined data for SFL and log the monitoring data. In order to
investigate how much of the total overhead can be attributed to just the logging
of the data, we created two setups in which the Turmeric monitors are enabled to
handle service messages and no code block monitoring was activated. In the first
setup the Turmeric monitor is set without data logging, while in the second setup
the monitor does publish the monitoring data.

The third and fourth columns in Table 5.17 show the end-to-end response time
of each request measured in the system. The third column represents the case
with data logging activated, while the fourth column shows the setup where data
logging has been disabled. The overhead of the data logging part in the Turmeric
monitors is calculated and presented in the fifth column. In order to assess how
much the data logging part can impact the performance of the Turmeric monitor,
we calculated the overhead of Turmeric monitors for each request based on the
results in Table 5.12 and Table 5.11, and also presented in the Table 5.17. The
last column of Table 5.17 presents the percentage of overhead caused by the data
logging. In most cases, the data logging causes between 20% and 40% of the
overhead in the Turmeric monitoring.

5.6. Discussion and Lessons Learned 77

Table 5.17: Overhead for the logging part in Turmeric monitor in Milliseconds

of With Turmeric, No Code Block Monitoring Data Turmeric
Service Turm. Data logging Logging Monitor %
Requests Moni. Acticated Disabled Over. Overhead

BAS_1 2 22.027 18.745 3.282 9.06 36.23%
BAS_2 2 60.424 52.828 7.596 15.337 49.52%
BAS_3 2 47.437 45.798 1.639 12.728 12.88%
BAS_4 2 34.876 33.018 1.858 6.246 29.74%
BAS_5 2 53.709 51.922 1.787 4.259 41.96%
BAS_6 2 63.41 60.167 3.243 15.688 20.67%
BAS_7 2 39.17 36.939 2.231 13.533 16.49%

ECS_1 14 3055.052 2995.389 59.663 59.018 101.09%
ECS_2 2 56.928 54.036 2.892 7.264 39.81%
ECS_3 14 118.256 104.477 13.779 45.676 30.17%
ECS_4 10 66.477 60.841 5.636 18.9 29.82%

OPS_1 18 987.537 956.688 30.849 117.095 26.35%
OPS_2 18 177.714 165.165 12.549 42.21 29.73%
OPS_3 18 351.423 335.981 15.442 40.483 38.14%
OPS_4 18 202.53 181.418 21.112 54.765 38.55%

5.6 Discussion and Lessons Learned
Diagnosis Observations
From the simulations and the case study, we conclude that the monitoring granu-
larity has indeed an effect on the calculation of an SFL diagnosis. Furthermore, in-
creasing the monitoring granularity facilitates the calculation of correct and unam-
biguous diagnoses through introducing more and more diverse observations into
the statistics of the SFL diagnosis. The increase in coverage diversity has a positive
effect on the similarity coefficients produced, because it helps convict components
that participate more in failing transactions, and exonerate components that par-
ticipate more in passing transactions.

Initially we expected that we would not be able to achieve 100% correct di-
agnoses in our case study system. We thought that some of the tight couplings
between sub-components would subsist across service boundaries, thereby invali-
dating our decoupling effort. This was not case. However, in the case study, some
sub-components within the services are still tightly interacted, so that the sub-
components are assigned the same similarity coefficient in the diagnosis. In other
words, even though we can pinpoint the faulty service correctly, and this was our
original goal, in some cases, we cannot determine the location of the fault within
the service correctly. This comes from how we determine the finer-grained moni-
toring locations according to the predicate nodes in the service implementations.
Some of the monitored code blocks are still exercised in combination, and thus,
are tightly linked.

Here, an important lesson learned is that we can reduce tight coupling on the
higher level of granularity, i.e. between services, but we cannot remove it entirely

78 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

on the lower levels of granularity, e.g. within services. We acknowledge the fact
that topology plays a major role in the successful application of spectrum-based
fault localization in service-based systems. In the future, we will look at other
methods of topological separation, for example program slicing techniques (Weiser,
1981).

In addition, all experiments with both the simulator and the case study were set
up for diagnosing a single fault in a service-oriented system. It is often not realistic
that a software system only contains one fault. However, when applying online di-
agnosis for a service-oriented system, the diagnosis is activated immediately once
a system failure is observed, i.e., the monitoring data of the system for each round
of diagnosis only contains one failure. Within this context of single failure, the
approach of diagnosing a single fault for a running service-oriented system is prac-
tical and effective. Multiple faults in a service-oriented system can be found one
by one as long as they cause a failure.

Overhead Observations
In general, from the results of our overhead experiments, we observe that one
Turmeric monitor can cause more overhead than one code block monitor. The
overhead of Turmeric monitoring is always noticeable, whereas the overhead of
code block monitoring is only visible when many monitors are activated. A small
number of code block monitors in service-oriented system may be ignored in terms
of a potential performance impact they create. On the other hand, if the number
of code block monitors increases (e.g., 100), the caused overhead becomes compa-
rable to Turmeric monitors.

We are aware of the fact that every type of monitoring comes at a cost. How-
ever, assessing the cost through measurement of overhead can be affected by vari-
ous factors. From our experiments we found that the service-oriented system itself
may influence the measurement. Basically, the response time of a request is a
combination of service processing time, connection setup time, and message trans-
mission time (Repp et al., 2007). Services which have interactions with other
services always require more time in connection setup and message transmission.
The connection setup depends on the activity state of both services and their un-
derlying infrastructures. Transmission time depends on the quality of the network
used. Thus, these two parts can be very dynamic and it may bring deviations to
the overhead measurement. In our case system, most services are internal. They
are running on the same computer system, so the message transmission time boils
down to what is typically used in local socket communication. However, since
our system is also based on the Turmeric platform, the connection to an internal
service is setup with the Turmeric runtime library, we cannot guarantee that this
third-party library will not bring any variation to the connection setup or trans-
mission. Moreover, our system also uses an external service for real-time currency
exchange, and we are not able to monitor the activity state of this external service;

5.6. Discussion and Lessons Learned 79

plus all messages to the external service go through an external network connec-
tion. If the overhead caused by a monitor is too small, the connection setup or
communication times can completely hide it. For example, Table 5.12 shows neg-
ative impact by the code block monitors invoked during the execution of BAS_5.
This becomes obvious, if we check Table 5.13. It demonstrates that the overhead
caused by one code block monitor is less than 1 millisecond, and Table 5.10, in
which the standard deviation from the same request is nearly 10 milliseconds. The
same is true for the result of "101.09%" for ECS_1 in Table 5.17 and the observa-
tion that the impact of Turmeric monitoring is larger than that of both Turmeric
and code block monitoring for ECS_2 in Table 5.11.

We also determine that the data logging part inside the Turmeric monitoring
is less than half of overall performance impact of the Turmeric monitors. The rest
goes into intercepting and parsing of all incoming or outgoing messages. Even
though, it does not publish any data, the interception already causes a lot of over-
head in the monitoring.

Our experimental results show that a code block monitor consumes much less
overhead than a Turmeric monitor does. This finding leads to an straight-forward
idea for reducing monitoring overhead, which is completely replacing the Turmeric
monitors with code block monitors. Additionally, a code block monitor also pro-
duce much less monitoring data than a Turmeric monitor does, based on our cur-
rent implementation. A code block monitor only logs out the id of a code block,
while a Turmeric monitor offers service and operation data, transaction data, mes-
sage content, etc. If a code block monitor is implemented to get all those data, its
overhead will also increase. In addition, a Turmeric monitor spends more than half
of overhead on obtaining the required information from the Turmeric framework,
even though those data are readily inside the framework. The code block monitor
is staying inside the service implementation, where to fetch those required data
and how to keep them would be a set of new problems for code block monitor.
If code block monitors are equipped with all those functionalities, it will generate
more overhead than it currently does, and its overhead may become comparable
with or even more than that of Turmeric monitor. Therefore, replacing Turmeric
monitor with code block monitor is not a good solution to deal with monitoring
overhead.

Threats to Validity
We are aware of a number of threats that might invalidate our findings. We use
SFL-Stonehenge7 as case study. Although it is a realistic system, our results may
not be applicable to any arbitrary service-based system. In fact, the topology of a
system may have an effect on how well monitoring can be applied and diagnosis
can be performed, e.g., in the case of very few independent paths through the logic.
We see the topology problem as an important avenue for future work.

7https://github.com/SERG-Delft/sfl-stonehenge

80 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Currently we implement code block monitor with Redis pub/sub functionality.
It enables the diagnosis engine to receive the monitoring data from code block
monitors at runtime. However, the association between the monitoring data from
code block monitor and Turmeric monitor is based on timestamps, this approach
may not be applicable to service-oriented systems allowing concurrent transac-
tions.

A threat to our overhead experiments is the involvement of the external service
for currency exchange in our system. This service is out of our control. The con-
nection to the external service highly depends on its activity state. Its response can
be very slow if it is overloaded. Correspondingly, the performance of the external
service can affect the measurement of the end-to-end response time for those re-
quests which invoke the external service. In addition, the Turmeric runtime library
may also have an influence on the connection setup of services built on Turmeric
platform.

Another potential threat comes from the tools used for our work. We have
tested our own implementation as much as possible and compared the results of
our case study with the outcome obtained from the simulator. Although the results
are not the same, they are in a similar league, reassuring us that there are no major
flaws in our case study implementation.

Another important threat to external validity is that the results for the overhead
experiment might be dependent on the underlying technology, e.g., Turmeric or the
way that the code block monitor is implemented. In future work we will replicate
our experiment with different underlying technology to establish whether the ob-
tained overhead results are generalizable.

We are also aware of the fact that code block monitors can not be inserted
into the service implementation without access to the source code, which in turn
typically entails the ownership of the service. Service-based systems can integrate
external services that are not owned, thus precluding the application of our ap-
proach. However, for those companies which own large enterprise IT infrastruc-
ture and a lot of internal services running on it, such as eBay, Amazon and Google,
the placement of monitors inside services is both possible and useful.

5.7 Related work
In this section we briefly discuss the studies most relevant to diagnosis for service-
oriented software systems. In particular, we start of by looking into other work
that do diagnosis of service-based systems. Subsequently, we look into whether al-
ternative fault localization techniques are applied. Finally, we look into monitoring
for service-based systems and measurements for overhead of monitoring. Based
on this small survey, we believe that we are the first to study the combination of
(1) spectrum-based fault localization, (2) multi-level monitoring to overcome the
fault localization problem for tightly interacted services and (3) a detailed analysis

5.7. Related work 81

of overhead of multi-level monitoring for diagnosis.

Diagnosis for service-based systems
Chen et al. present Pinpoint (Chen et al., 2002), a similar diagnosis approach plus a
tool using similarity coefficients in order to infer a diagnosis from system activation
and component involvement. However, even though their title suggests otherwise,
they do not address the specific issues of diagnosing services, i.e. the problems of
inter-service diagnosis, and the fact that services are used in different contexts.

Yan, et al. (Yan and Dague, 2007; Yan et al., 2009), propose a model-based ap-
proach to diagnose orchestrated Web service processes. Modeling is done through
discrete event systems, which imposes a heavy burden on the user of the tech-
nique. Zhang et al. (Zhang et al., 2009, 2012a) describe approaches for diagnos-
ing quality-of-service problems in service-oriented architectures. However, their
diagnosis approaches cannot adapt well to the dynamic nature of SOA, due to the
static information they used. Moreover, their bayesian-based approaches are more
heavyweight compared to spectrum-based approaches. Additionally, the authors
measure the execution time for diagnosis, but their main purpose is to compare the
performance of their two approaches, and they did not assess the overhead caused
by diagnosis to the performance of service system. Mayer and colleagues (Mayer
et al., 2010a, 2012), describe a similar diagnosis approach that is based on ana-
lyzing execution traces of failed transactions. However, the models they used for
diagnosis are rather complex, and proper evaluation is still pending.

Fault localization
Wong et al. (Wong et al., 2010) discuss a number of code coverage-based heuristics
to be used in fault localization. Grosclaude describes a model-based monitoring ap-
proach for diagnosing component-based systems, and suggests to use transactions
IDs in order to associate messages sent between components (Grosclaude, 2004).
This is also proposed by (Chen et al., 2002), and we see it as a standard approach
to determine which service takes part in which system transaction. Chatzigian-
nakis and Papavassiliou (Chatzigiannakis and Papavassiliou, 2007) use principle
component analysis in order to identify faulty nodes in sensor networks.

Spectrum-based fault localization is a lightweight technique, but alternatives
exists. One such alternative are techniques that are model-based. Although out-
side the realm of service-based computing, Feldman et al. have proposed a greedy
stochastic algorithm for computing diagnoses within a model-based diagnosis frame-
work (Feldman et al., 2010). An important drawback of these model-based ap-
proaches is that we need to provide a correct model of the nominal behavior of
the entire service-based application, which is daunting. A second issue is the com-
binatorial explosion in the reasoning of model-based diagnosis that inhibits the
diagnosis of very large systems.

82 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Monitoring for service based systems
There are a large number of papers about monitoring for service systems, however,
most of them are missing overhead measurements, e.g., (Zulkernine et al., 2008;
Keller and Ludwig, 2003). Furthermore, among those that do have monitoring
overhead measurements, most of them are lacking a real and proper service system
for evaluation, e.g., (Baresi and Guinea, 2013). In what follows, we present some
of the monitoring solutions that have been presented.

Lin et al. (Lin et al., 2009) implement a middleware to monitor and diagnose
service systems. They use a self-created example business process to measure the
overhead of data collection. They do not provide detailed analysis of monitoring
impact and types of monitor. Heward et al. in (Heward et al., 2010b) quantify and
assess the performance impact of monitoring on a web service. Although they mea-
sure the performance impact under various monitoring setups, the testing vehicle
they used is a single service.

Moscinat and Bonder present ADULA, a framework for automated maintenance
of BPEL (Business Process Execution Language) processes (Mosincat and Binder,
2011). ADULA automatically detects and repairs service-level agreement (SLA)
violations caused by service performance degradation in a way transparent to the
user and to the BPEL engine. Their approach uses lightweight sampling monitoring
and allows for customizable violation detection. They have also implemented re-
pair policies, so that a service which violates the SLA can be replaced with another
services that does adhere to the SLA violation. Their approach has a clear focus on
performance and not on correctness.

Baresi et al. present a step towards self-healing compositions of service. Their
approach is to monitor the execution of a service composition and trigger a suit-
able reaction so that the system can continue its execution (Baresi et al., 2007).
The faulty behaviors that they consider are non-answering services and services
violating their contracts. Their approach thus heavily relies on a contract violation
being present. In contrast, our approach does not make assumptions towards con-
tract violations and is more geared towards detecting the actual defect in a service
composition.

5.8 Summary
The goal of this chapter is to investigate to which extent an increase in monitor-
ing granularity supports the diagnosis of faulty services and its impact on service-
oriented system. Referring to our research questions, we looked at:

RQ5.1: How and to which extent does the monitoring granularity affect the cal-
culation of a diagnosis with spectrum-based fault localization? First, we used a sim-
ulator to reason over different service topologies. Second, we performed an actual
case study on a service-oriented system, varying the level of monitoring granularity.
The main conclusion from both experiments is that increasing the level of moni-

5.8. Summary 83

toring granularity can indeed improve diagnosis. More precisely, in our case study
we could obtain up to 100% correct diagnoses. This comes through the increased
variability in the observations used for the activity matrix of the SFL technique.

RQ5.2: How can we increase the monitoring granularity? The natural choice
for placing monitors is at the service-level. However, this is so coarse-grained that
many cases cannot be correctly diagnosed. Increasing the level of observation-
granularity can then only be done by going into the services, changing their imple-
mentations. A brute force approach would be to monitor every single line of code.
However, we restrict the monitoring to the code block level, representing unique
execution branches through a service or proper isolation of tight coupling.

RQ5.3: What is the overhead incurred? Our case study demonstrates that we
are able to diagnose all faulty services correctly through increasing the monitor-
ing granularity. Yet, at the same time, we are also worried about the performance
overhead that the entire infrastructure adds. The total impact of monitoring on the
system performance depends on the number of used monitors. In detail, the moni-
toring at the service level, i.e., Turmeric monitoring, always causes more overhead
than the monitoring at a finer-grained level, i.e., code block monitoring. On the
other hand, when the number of code block monitors is small, the caused over-
head can be negligible, however, the overhead can also become comparable with
Turmeric monitoring if the number of code block monitors is increased.

Contributions Our work makes the following contributions:

1. We apply spectrum-based fault localization in the area of service-oriented
systems in order to pinpoint problematic services.

2. We introduce the problem of tight service interaction, an inhibiting factor to-
wards obtaining a good diagnosis of where the problematic service is located.

3. We present the SFL simulator, a simulation environment in which we can
simulate faulty behavior of services with a certain probability and which al-
lows us to study many service topologies with regard to the tight service
interaction problem.

4. We introduce the idea of intra-service fine-grained monitoring to overcome
the tight service interaction problem.

5. We present a case study with SFL-Stonehenge, a small real-world and open-
source case study to illustrate that fine-grained monitoring can indeed help
overcome the tight service interaction problem.

6. We perform an in-depth study on the performance overhead of our fine-
grained monitoring approach.

84 Chapter 5. Diagnosis Improvement Through Increased Monitoring Granularity

Future work Based on the finding that the overhead of code block monitoring
is tightly related to the number of its monitors and its overhead can become com-
parable with that of Turmeric monitoring, we plan to study where would be the
best place for monitors in a service-oriented system. Such monitor placement can
achieve the highest accuracy of diagnosis and the least disturbance to the service-
oriented system at runtime. In the case study, we did the placement of monitors
manually, but in future work, we would like to use some techniques, such as code
slicing, to make it automatic. Currently, the monitors for different granularities are
also deployed at compile time, we would like to enable dynamic monitoring in the
future. This can also facilitate the automation of monitor placement.

Another area of future research is verifying whether our approach would also
work for component-based systems.

6..
Diagnosis Improvement Through

Invocation Monitoring
Service oriented architectures support software runtime evolution through reconfig-
uration of misbehaving services. Reconfiguration requires that the faulty services can
be identified correctly. Spectrum-based fault localization is an automated diagnosis
technique that can be applied to faulty service detection. It is based on monitoring
service involvement in passed and failed system transactions.

Monitoring only the involvement of services sometimes leads to inconclusive diag-
noses. In this chapter, we propose to extend monitoring to include also the invocation
links between the services. We show through simulations and a case study with a
real system under which circumstances service monitoring alone inhibits the correct
detection of a faulty service, and how and to which extent the inclusion of invocation
monitoring can lead to improved service diagnosis.1

6.1 Problem Statement and Approach . 87

6.2 System Simulations . 89

6.3 Case Study . 94

6.4 Discussion . 96

6.5 Related work . 97

6.6 Summary . 98

Service-oriented architecture (SOA) is an architectural style that supports the con-
struction of dynamic, adaptable, and evolvable systems well (Canfora and Di Penta,
2009b). Evolution takes place simply through runtime reconfiguration and version-
ing of the services involved in a SOA, e.g. through exchanging a faulty service for
a healthy one (Bennett et al., 2000). Due to their highly dynamic nature, and
the ultra-late binding of the service instances, which is one of the inherent char-
acteristics of SOA (Lewis and Smith, 2008), traditional development-time quality
assurance approaches must be superseded by techniques targeting operation time.

1This chapter contains material published at the 13th International Conference on Quality Soft-
ware (QSIC’13) (Chen et al., 2013b).

85

86 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

Spectrum-based fault localization (SFL) is a statistics-based, automatic diagno-
sis technique that has been demonstrated to perform well in pinpointing critical
services during runtime (Chapter 3). It works by automatically inferring a diagno-
sis from observed symptoms (Abreu et al., 2009a). A diagnosis is a ranking of the
potentially misbehaving services, and the symptoms are observations about service
involvement in system transactions, plus pass/fail information for each transaction
(Chapter 3 and (Gonzalez-Sanchez et al., 2011)).

Even though SFL was found to perform well in service-oriented systems, there
are specific circumstances under which suboptimal diagnoses are achieved. A par-
ticular issue arises when service instances are tightly coupled. This means that
several services are (almost) always invoked in combination, thereby inhibiting
discriminative information to be produced in observations used by SFL, leading to
inconclusive or ambiguous diagnoses. In other words, tightly coupled services are
correctly pinpointed, but assigned the same rank in the diagnosis, as if they were
one single service in its own right. Another issue arises when services exhibit fault
intermittency. This means a service only fails sometimes when invoked.

Experiments performed for earlier work in Chapter 5 suggest that ambiguity
and intermittency can be resolved through incorporating more detailed informa-
tion to be used by SFL. One approach is the instrumentation of the services in
order to retrieve finer grained observations on the code block level of a service im-
plementation. This has been demonstrated to be successful in Chapter 5, but with
the limitation that each service must support the instrumentation. Another ap-
proach would be the inclusion of information expressing the invocations between
the services. We refer to these observations as invocation link activation observa-
tions. That way, the observations used by SFL do not only incorporate which ser-
vices have been involved in a particular transaction, but, additionally, which routes
through which invocation links between services were taken in a transaction. Our
hypothesis is that this additional information can help to improve SFL-based diag-
nosis.

From these considerations, we can formulate the following research questions
to be addressed in this chapter:

RQ6.1: To which extent can the usage of information expressing activation of links
between services improve diagnosis?

RQ6.2: How does topology, i.e. the organization of the invocation links between
services, affect diagnosis, and are there general characteristics of topology
that improve diagnosis?

The main contributions of this work are an approach and algorithm that can
be used to incorporate link invocation information in SFL, and a case study to
demonstrate the extent to which invocation link information can improve SFL-
based diagnoses.

6.1. Problem Statement and Approach 87

Figure 6.1: Example topology: illustration of the problem

The remainder of the chapter is organized as follows. Section 6.1 explains the
problem in detail, and how it can be addressed. Section 6.2 shows how system
simulations can be used to outline the approach and make an initial assessment.
Section 6.3 evaluates our approach with a real service-based system, and Section
6.4 discusses the results of the experiments performed. Finally, Sections 6.5 and
6.6 present the related work and conclude the chapter.

6.1 Problem Statement and Approach
The topology shown in Fig. 6.1 and its corresponding activity matrix and diagnosis
in Table 6.1 illustrate the problem addressed in this chapter. This topology is com-
prised of six healthy services with h = 1.0 and one faulty service S4 with h = 0.9,
representing low intermittent fault behavior. Intermittency of 0.9 means that if S4

is invoked, it will fail in 10% of the cases. Failure probability is set to f = 0.0
in all services, meaning that once a fault is activated, it will not be detected im-
mediately (i.e., turn into failure), making diagnosis more realistic and difficult.
Services S3, S4 and S6 are tightly coupled, indicated through the highest possible
invocation probabilities of their respective links between them (L34 = L46 = 1.0).
It means when S3 is invoked, its subsequent tightly linked services S4 and S6 will
also always be invoked.

A diagnosis in which only the activity of the services was considered would lead
to S4 and S6 being ranked top with SCo = 0.34, leading to an ambiguous result.
However, after introducing invocation link information into the calculation of the
diagnosis, as demonstrated in Table 6.1, the service S4 becomes more suspicious,
since it is associated with the top ranked invocation link L24. This is reasonable,
because all incoming and outgoing invocation links associated with a service rep-
resent more precise information about the activity of a service over time. Each
invocation link represents a specific path leading into a service or leaving the ser-
vice. If there are more paths to be observed, this leads to more varied activation
observations for the service through the different paths, and, therefore, to more ac-
curate information about which path lead to the activation of a fault. In the case of

88 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

Table 6.1: Activity matrix and diagnosis: illustration of the problem

Nodes Activity Matrix SCo

L24 00000010010100000010000000100000000100000100000000 0.436
S6 10100111110100111111011100101010000110001110010000 0.340
L46 10100111110100111111011100101010000110001110010000 0.340
S4 10100111110100111111011100101010000110001110010000 0.340
L12 00000010010100010011000001101000000100000100011000 0.320
S2 00000010010100010011000001101000000100000100011000 0.320
L56 00000000010000001000000100100000000000001000000000 0.258
S1 11 0.245
L13 10100111110100111101011100101010000010001010010000 0.241
S3 10100111110100111101011100101010000010001010010000 0.241
L34 10100111110100111101011100101010000010001010010000 0.241
L35 00000000110000111000011100100010000000001000010000 0.167
S5 00000000110000111000011100100010000000001000010000 0.167
S7 00000010100000001000010000000000000000000000010000 0.000
L47 00000010100000001000010000000000000000000000010000 0.000

Output 00000000000000000010000000100000000010000000000000

tightly-coupled services, but also when services exhibit intermittent fault behavior,
the additional information is beneficial for the diagnosis.

In other words, any of the links associated with a service represents a poten-
tially different path through the service, thereby increasing the observation gran-
ularity. This is similar to adding monitors inside the services without touching
their implementations, and we expect it can lead to similar results as reported in
Chapter 5, without having to instrument the service implementation. In fact, this
exploits topological information of the system, and it may be regarded as a first step
towards combining SFL with model-based diagnosis (de Kleer and Kurien, 2003).

The specification shown in Alg. 1 defines the algorithm used to exploit the
additional information introduced by the invocation link observations. It takes
as input the ranking R of services and invocation links produced by SFL and the
topological information A of the system, i.e. which service is associated with a link,
and returns a set of potentially faulty services as diagnosis D. If all SC in R are 0.0,
there was no observed failure. All services are considered to be healthy. If there
was a failure and each item in R with the highest SC is a service, it returns these
services as the diagnosis D. Otherwise, it means that some links ranked higher than
or equal to services, and we can exploit the invocation link information. In this
case, it extracts all links L that are ranking higher than or equal to the top-ranked
service, and then it checks which services have the highest number of associations
with those links. These services are stored in S. If S only contains one service,
i.e. |S| == 1, then the algorithm returns D with the service as potentially faulty
service. Otherwise, if there are more services with the same highest number of
associations, it selects the ones with the highest SC and returns them as diagnosis
D.

6.2. System Simulations 89

The algorithm determines the services with the highest number of associations
with higher- or equally highly-ranked links. An invocation link ranking higher
indicates that it is more likely to activate the fault and cause the failure. Therefore,
a service which is associated more with these higher-ranked links is more likely
to contain the fault than other services. In other words, services that are more
associated with higher-ranked links are more related to the paths traversing those
links which were covered when a fault was activated. Since a link cannot be faulty,
the service is convicted that participates more in these paths that lead to fault
activation.

In a nutshell, components that are more activated in failing transactions are
more likely faulty. Invocation links are components that cannot be faulty. Services
that are more associated with those assumed faulty links, are more likely faulty.

For example, service S4 in Fig. 6.1 has two associations with the higher-ranked
links L24 and L46, S6 has one association with the higher-ranked links, i.e. zero
associations with L24, and one association with L46. That way, we can say that
service S4 is more suspicious to be faulty than service S6, because service S4 is
participating more in transactions involving the assumed more likely faulty links
L24 and L46. Because links cannot be faulty, service S4 becomes the most likely
convict in this example case, which represents a correct diagnosis.

Algorithm 1 Diagnosis with invocation link information
function DIAGNOSE(R, A)

T, L, S, D← ;
sctop = getHighestSC(R)
if (sctop != 0.0) then

T ← {i|i.sc == sctop and i ∈ R}
if (∀i ∈ T and i is service) then

D← T
else

servicet r = getTopRankedService(R)
L← {l|l.sc ≥ servicet r .sc and l is l ink and l ∈ R}
S← getServicesWithHighestNumO f Assoc(L, A)
if (|S| == 1) then

D← S
else

scmax = getHighestSC(S)
D← {i|i.sc == scmax and i ∈ S}

return D

6.2 System Simulations
In order to validate our approach quickly and easily, we performed the initial as-
sessment with our SFL simulator2. It provides functions for setting up component

2https://github.com/SERG-Delft/sfl-simulator

90 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

C11

h=1.0
f=0.0

C0

h=1.0
f=0.0

C1

h=1.0
f=0.0

C2

h=1.0
f=0.0

C3

h=1.0
f=0.0

C6

h=0.9
f=0.0

C5

h=0.1
f=0.0

C4

h=0.9
f=0.0

C8

h=1.0
f=0.0

C9

h=1.0
f=0.0

C10

h=1.0
f=0.0

C7

h=1.0
f=0.0

Figure 6.2: Topology for the pilot simulation

topologies, executing the topologies thereby gathering coverage information, and
calculating diagnoses.

Pilot Simulation
In order to investigate how invocation link activation information influences the
diagnosis for a service-based system, we used the SFL simulator to build a trial
topology (Fig. 6.2). It is comprised of 12 components with different incoming
and outgoing numbers of invocation links between them. Components C4, C5, and
C6 are set to be faulty, and they represent the study subjects on which we focus
our interest. From initial experiments, performed for Chapter 5, we figured that
the number of incoming and outgoing links might be significant for improving
diagnosis through adding invocation link information (compare with Fig. 6.1).
This comes from how additional invocation link monitors can separate the specific
invocation paths leading into and coming out of components.

The three faulty components shown in Fig. 6.2 represent extreme cases, i.e. a
component with one incoming link and several outgoing links (C4), a component
with several incoming links and one outgoing link (C6), and a component with
several incoming and outgoing links (C5). In order to study the effects of invocation
link activation information on diagnosis, the topology is executed according to
different criteria.

In each experiment, the failure probabilities of the components are varied, i.e.
Pf = 0.0 or Pf = 1.0, representing the probability that a failure can be detected
when a fault was triggered. In addition, the invocation probabilities Pi between
the concerned (faulty) components and their peers are varied, i.e. high interaction
probability Pi = 0.9, low interaction probability Pi = 0.1. This represents the prob-
ability that a component associated with this link is activated. In each experiment,
one of the components is set to be faulty with intermittency, i.e. low health h= 0.1
and high health h= 0.9, and it represents the probability that a faulty component
will fail when invoked.

6.2. System Simulations 91

Table 6.2: Pilot simulation (500 activations)

Topology Setup C4 C5 C6
Pf Pi h better worse better worse better worse

0.0 0.9 0.9 8.1% 3% 15% 0% 0.4% 0%
0.0 0.1 0.9 24.1% 3.4% 28.6% 2.9% 5.4% 0%
0.0 0.9 0.1 0% 0% 89% 0% 0.2% 0%
0.0 0.1 0.1 17.6% 2.7% 10.7% 0.2% 4.9% 2.2%

1.0 0.9 0.9 0% 47.9% 9.8% 0% 2.6% 0%
1.0 0.1 0.9 0% 3.6% 1.2% 1.2% 1.3% 1.3%
1.0 0.9 0.1 0% 0% 0% 0.2% 0% 0%
1.0 0.1 0.1 0.5% 8.7% 0% 1.7% 0% 0.7%

Table 6.2 summarizes the results of the experiments performed with these di-
verse topology setups. Every line in the table represents three experiments com-
prised of 500 diagnoses each. Every experiment was carried out with a specific
topology setup, indicated in the first three columns, and with every of the three
concerned components, C4, C5, or C6 set to be faulty. For each of the 500 activa-
tions, the simulator was set to calculate one diagnosis based on only component
activation observations, and another diagnosis based on both component and in-
vocation link activation observations. The result of a diagnosis can be classified as
correct, ambiguous or incorrect. A correct diagnosis pinpoints the faulty component
correctly and uniquely (no duplicate top rankings). An ambiguous diagnosis pin-
points the faulty component but includes other healthy components on the same
rank (duplicate top rankings). An incorrect diagnosis ranks any arbitrary healthy
component higher than the faulty component.

Table 6.2 shows for each of the concerned components the percentage of how
much better or worse the diagnoses become through incorporating invocation link
activation information compared with merely using component activation informa-
tion. The percentage is calculated based on the total number of failed transactions.
Better means that an initially incorrect or ambiguous diagnosis can be performed
correctly, through including invocation link information. Worse means that an ini-
tially correct diagnosis would become ambiguous or incorrect through including
invocation link information.

From Table 6.2, we can see that if the failure probability is low, i.e. Pf =
0.0 (top part of the table), using invocation link activation information is more
beneficial, in general. All concerned components show more better than worse
results. Component C5 scores the highest improvements, which, we believe, is
attributable to its high number of incoming and outgoing invocation links.

An interesting result that we did not anticipate initially is the poor performance
when the failure probability is high, i.e. Pf = 1.0. This is shown in the bottom
part of Table 6.2. In this case, invocation observation carries not merely useless,
but even misleading information. This comes from how the simulator treats failure

92 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

probability. It stops a transaction if a failure is detected in a component, thereby
dismissing all information about its outgoing invocation links. This leads to compo-
nent C4 issuing the worst results, because of its low overall number of considered
invocation links, i.e. only one incoming link. Because C5 and C6 have more incom-
ing links, that can be considered in the diagnosis, their results are not so bad. This
suggests that for the sake of diagnosability, real systems should have more invoca-
tion links between their components/services, and they should be built to recover
from failure and continue operation.

Other interesting observations are the effects of health on the calculation of
diagnoses. When failure probability is high, i.e. 1.0, and health is low, i.e. 0.1, it
means an activation always causes a failure immediately. In this case, C5 and C6 are
only becoming worse, i.e. invocation link activation information has no improve-
ment at all. In addition, the overall worst case can be observed for component C4

when failure probability, invocation probability and health probability are all high,
i.e. Pf = 1.0, Pi = 0.9 and h= 0.9.

From these simulations, we can conclude that using invocation link observa-
tions in SFL is beneficial if the topology is highly interconnected (many invocation
links between the services), and if a failure is detected, the system should recover
and continue its operation, if possible.

Simulation with a Real System
After having established a strong empirical relation between a high number of
incoming and outgoing invocation link activation observations and the quality of
an SFL-based diagnosis, the next step is to assess our approach through simulation
with a real system, which represents a more realistic setup compared to the pilot
simulation. We use a simulation of our case study system presented in Section 6.3.

The simulated system consists of a number of components, i.e. service inter-
faces, and invocation links between them. Two of the components that exhibit
poor diagnosability in the real system are set to be faulty with low intermittency
of h= 0.8, all other components are set to be healthy. The two poorly diagnosable
components are ExchangeCurrencyService and OrderProcessorService. In the follow-
ing, we refer to them as ECS and OPS, respectively. The invocation probabilities
between the components used for simulation are determined experimentally, based
on the implementation logic plus the test data used in order to execute the real sys-
tem. Failure probability in the simulation is set to 0.0, reflecting the behavior of
the real system, i.e. faults are not detected immediately.

The number of simulations is set to a high value, i.e. 2000, in order to cre-
ate a statistically significant data set. One problem with simulating real systems is
that the simulation of service and invocation link activation is completely random,
solely based on the predetermined probabilities, whereas, in the real system, in-
vocations follow distinct patterns coming from the system’s usage profile and the
business logic of the services. In order to retrieve a meaningful dataset in the simu-

6.2. System Simulations 93

Table 6.3: Determining the number of realistic simulation activations

Simulated Number of failed Deviation from
system activations, measured num. of failures

activations range (min – max) in the real System

100 62 – 82 10.00%
500 393 – 416 4.60%

1000 776 – 818 4.20%
2000 1585 – 1614 1.45%
5000 3985 – 4046 1.22%

lation, it is, therefore, essential to generate many activations. Table 6.3 shows how
an increase in the number of simulated activations eventually leads to a decrease in
deviation from the number of failures in the real system. A low number of activa-
tions in the simulation results in high deviation of the number of failed transactions
compared to the real system. Only at 2000 activations, the simulations lead to a
number of failures that is comparable to the failures generated in the case study
system, i.e. an acceptable deviation of 1.45% compared to executing the real sys-
tem. Any more activations in the simulation do not improve the deviation from the
real system significantly. Hence our choice of 2000 activations for the simulation.

In the simulation, the system is exercised with component activation obser-
vation enabled, and then with both, component and invocation link activation
observation enabled. Table 6.4 presents the total number of failures in the sim-
ulation, and how many of the failed activations lead to incorrect (inc), ambiguous
(amb) and correct (cor) diagnoses. For both services, diagnosis improves consid-
erably, when invocation activation information is included, i.e. an improvement
from 49.5% to 63.4% correct diagnoses for component ECS, and from 24.1% up to
52.6% correct diagnoses for component OPS.

Table 6.5 shows more details about how the inclusion of invocation link activa-
tion information makes diagnoses better or worse in the simulations. For service
ECS, 235 diagnoses (out of 1616) are better, of which 132 ambiguous diagnoses
can be turned into correct diagnoses (Amb→Cor), and also 103 incorrect diag-
noses can be turned into correct ones (Inc→Cor). However, 11 correct diagnoses
are turned into incorrect diagnoses (Cor→Inc). For service OPS, the improvement
is much better. Inclusion of invocation link activation information improves the di-
agnoses in 485 cases (out of 1703), 115 ambiguous diagnoses can be resolved, and
370 diagnoses can be corrected. We did not find any worse diagnoses for service
OPS. In future work, we will analyze these results carefully and try to determine
why some cases issue worse results. This may indicate a limitation of our approach
in terms of which kind of topology could be misleading the diagnosis.

94 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

Table 6.4: Simulation results for 2000 activations

of Component Activation Comp. + Invocation Activation
Comp. Fail. Inc Amb Cor Cor-% Inc Amb Cor Cor-%

ECS 1616 624 192 800 49.5% 577 15 1024 63.4%

OPS 1703 1165 127 411 24.1% 785 22 896 52.6%

Table 6.5: Detailed Distribution of Better and Worse Diagnoses through Invocation
Coverage

Better Diagnoses Worse Diagnoses
Services Total Amb→Cor Inc→Cor Total Cor→Amb Cor→Inc

ECS 235 132 103 11 0 11

OPS 485 115 370 0 0 0

6.3 Case Study
In order to evaluate our approach more thoroughly, we conducted an experiment
on our original case study SFL-Stonehenge3 introduced in Chapter 2, and adapted
it to the requirements implied by our problem statement. The system was extended
to deal with invocation link activation information.

Conducting the Case Study
The case study system is the same system that we used in the simulations with
two faulty services exhibiting poor diagnosability, i.e. ExchangeCurrencyService
(ECS) and OrderProcessorService (OPS). Both services also exhibit tight coupling
with their peers, and intermittent fault behavior. The goal of the case study is to
assess to which extent the inclusion of invocation link activation information can
improve their diagnosability.

We applied the PIT mutation tool4 in order to create 65 faulty service versions,
24 faulty versions of ECS and 41 faulty versions of OPS. For each of the 65 faulty
system versions, we use JMeter to execute 48 web service requests as test scenarios
in order to cover all service operations. Upon completion of all transactions for one
faulty system version, the diagnosis engine is invoked to parse the monitoring data,
identify the failures in the system, and create an activity matrix with an output
vector. The monitoring is provided through the Turmeric framework5, mentioned
in Section 3.1. Turmeric already logs all required transaction information, e.g.,
the traces of a service invoking other services. In other words, the invocation link
activation information is readily available in the existing monitors.

3https://github.com/SERG-Delft/sfl-stonehenge
4http://pitest.org/
5https://github.com/ebayopensource/turmeric-runtime

6.3. Case Study 95

Table 6.6: Diagnosis Results for SFL-Stonehenge

Serv. Interface Activation Serv. Iface + Link Activation
Service Pass Fail Inc Amb Cor Cor-% Inc Amb Cor Cor-%

ECS 2 22 19 0 3 13.6% 3 0 19 86.4%

OPS 4 37 9 2 26 70.3% 3 0 34 91.9%

In order to assess to which extent the additional invocation link activation in-
formation makes diagnoses better or worse for the two faulty services, we invoked
the diagnosis engine twice per execution. First, it creates activity matrices that
are only comprised of service interface activation data. Second, it creates activity
matrices that include both service interface activation data plus invocation link ac-
tivation data. The two data sets can then be compared. The whole experiment is
designed for the single fault case. We ensure that each of the 65 versions of the
system contains only one fault, either in ECS or in OPS.

Case Study Results
Table 6.6 summarizes the case study results. It shows for each of the two faulty
services, ECS and OPS, the total number of passed and failed transactions (pass/-
fail) in the experiment. Some transactions pass, because the faults introduced by
the mutations are not triggered. Then, it shows for the failed transactions, the
incorrect, ambiguous and correct diagnosis results based on the two activation cri-
teria, i.e., for service interface activation information on the left hand side, and for
both service interface plus invocation link activation information on the right hand
side. The results indicate considerable improvements in diagnoses that are based
on service activation information plus invocation link activation. ECS improves
from 13.6% up to 86.4% correct diagnoses, and OPS improves from 70.3% up to
91.9% correct diagnoses.

Table 6.7 shows details on how the diagnoses in the case study become better
or worse after including the invocation link activation information. For ECS, 17
diagnoses are improved from incorrect to correct. For OPS, 2 diagnoses are im-
proved from ambiguous to correct, 6 are improved from incorrect to correct. OPS
does not receive any worse result, while for service ECS, one diagnosis deterio-
rates, i.e. from correct to incorrect. Careful analysis of this single worse diagnosis
leads us to an explanation. The faulty service ECS is not only invoked by other
services, but also directly from the user. Since we did not take the invocation link
activations between users and services into account, this missing invocation link,
which actually always activates the fault, cannot help to improve the diagnosis.
This indicates the importance of including all the invocation links of the topology
in the calculation of diagnoses. Once this link is added, the incorrect diagnosis can
be corrected.

96 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

Table 6.7: Detailed Results for Better and Worse Diagnoses

Better Diagnoses Worse Diagnoses
Service Total Amb→Cor Inc→Cor Total Cor→Amb Cor→Inc

ECS 17 0 17 1 0 1

OPS 8 2 6 0 0 0

6.4 Discussion
In the simulations and the case study we could identify considerable improvements
by incorporating invocation link activation information into the calculation of SFL-
based diagnoses. Our approach works, because it applies the same rules of the basic
SFL that work for component activation information, also to the invocation link
activation information. That is, services that participate more in failing transactions
are more likely faulty, plus services that are more associated with links participating
more in failing transactions, are more likely faulty.

Revisiting the Research Questions
RQ6.1: To which extent can the usage of information expressing activation
of links between services improve diagnosis? Both simulation and case study
demonstrate that incorporating invocation link activation information in addition
to service interface activation information can significantly improve diagnoses per-
formed by spectrum-based fault localization. In the simulations of the case system,
correct diagnoses for service ECS could be improved by around 14 percent through
the additional observations, and for service OPS by around 29 percent. Interest-
ingly, the overall improvement in correct diagnoses in the real system is higher
than for the simulation, i.e. improvement for ECS by around 73 percent, and for
OPS by around 22 percent, when including the additional observations. We believe
this much better result in the real service-based system compared to its simulation
comes from the fact that the simulator generates completely random invocation
combinations between services, whereas, in the real system, service invocations
follow less dynamic combinations, according the system’s typical usage patterns.
In other words, in the real system, much less different paths are exercised leading
to a few prominent invocation patterns, whereas the simulation produces many
more different service invocation combinations (compare with Table 6.3). This is
an interesting observation which will be further researched in the future, i.e. can
the combination of usage profile plus its associated invocation patterns be used as
information in order to improve diagnosis?

When we compare the current results with the results of our earlier work pre-
sented in Chapter 5, in which we instrument the services themselves with addi-
tional observation points, it becomes apparent that including information about
the invocation links between services is inferior (about 10%–15% worse). For the

6.5. Related work 97

same case study system, this other approach could achieve 100% correct and un-
ambiguous service diagnoses in Chapter 5. However, the huge advantage of invo-
cation link observations is that they can be retrieved through the service platform,
whereas, for our earlier approach, the service implementations had to be amended,
which is not always possible. Therefore, it is essential to find other information ex-
ternal to services that can be used to achieve 100% correct diagnoses.

RQ6.2: How does topology, i.e. the organization of the invocation links be-
tween services, affect diagnosis, and are there general characteristics of topol-
ogy that improve diagnosis? Through the simulations and the case study, we
can demonstrate that the topology of the observation points has, indeed, an effect
on the quality of the diagnoses calculated by SFL. We compared the number of
correctly performed diagnoses for monitoring service interface activation vs. inter-
face plus invocation link activation, and observed considerable improvements. The
improvements come from how the additional invocation link activation informa-
tion helps split the topology into finer grained and separable units thereby helping
to discriminate better the various service invocation paths. The simulations sug-
gest that a high number of incoming and outgoing invocation links is beneficial,
however, through the case study we found that any more than one incoming and
outgoing link is already sufficient to improve the results. We believe, it is not so
much the total number of incoming and outgoing links which makes a difference,
but how those links lead to more diverse activation of the execution paths within a
service, thereby exploiting information similar to that generated by service-internal
monitors, as demonstrated in Chapter 5. These effects will be studied in future
work.

As general guideline for determining the monitoring topology of a service-based
system, we propose to split the monitoring of services into finer grained units rep-
resenting better the service’s different functions, and exploit additional information
better that is suitable to separate the execution paths of the transactions flowing
through the services.

6.5 Related work
Chen et al. present Pinpoint (Chen et al., 2002), a similar diagnosis approach plus
a tool using similarity coefficients in order to infer a diagnosis from system ac-
tivation and component involvement. However, even though their title suggests
otherwise, they do not address the specific issues of diagnosing services, i.e. the
problems of inter-service diagnosis, and the fact that services are used in different
contexts. Yan, et al. (Yan and Dague, 2007; Yan et al., 2009), propose a model-
based approach to diagnose orchestrated Web service processes. Modeling is done
through discrete event systems, which imposes a heavy burden on the user of the
technique. Zhang et al. (Zhang et al., 2009, 2012a) describe approaches for di-

98 Chapter 6. Diagnosis Improvement Through Invocation Monitoring

agnosing quality-of-service problems in service-oriented architectures. Mayer and
colleagues (Mayer et al., 2010a, 2012), describe a similar diagnosis approach that
is based on analyzing execution traces of failed transactions.

Wong et al. (Wong et al., 2010) discuss a number of code coverage-based
heuristics to be used in fault localization. Grosclaude (Grosclaude, 2004) describes
a model-based monitoring approach for diagnosing component-based systems, and
suggests to use transactions IDs in order to associate messages sent between com-
ponents. This is also proposed by (Chen et al., 2002), and we see it as a stan-
dard approach to determine which service takes part in which system transaction.
Chatzigiannakis and Papavassiliou (Chatzigiannakis and Papavassiliou, 2007) use
principle component analysis in order to identify faulty nodes in sensor networks.

Heward et al. in (Heward et al., 2011) describe an algorithm for optimization of
monitoring configurations for web services. They use their optimization algorithm
in order to reduce the monitoring overhead in a service-based system, something
that would also benefit our proposed techniques.

Li et al. (Li et al., 2008) describe an approach for control flow analysis and
coverage for web services. They use their approach for testing purposes. Bartolini
et al. (Bartolini et al., 2008) propose service coverage criteria that are based on
service invocation monitoring. Their approach is also used for testing. Baresi et
al. (Baresi et al., 2004b) introduce smart monitors for composed services, and
Moser et al. (Moser et al., 2008) and Spanoudakis et al. (Spanoudakis and Mahbub,
2006) describe non-intrusive monitors for service-based systems.

6.6 Summary
In this chapter, we demonstrate how the monitoring of invocation link activa-
tion improves the performance of spectrum-based fault localization for diagnos-
ing service-based systems. We devised an algorithm to deduce the faulty service
from invocation link activation information based on the same assumptions that
hold for the basic SFL approach. That is, a service that is associated more with an
invocation link that participates more in failing transactions is more likely faulty.
The pilot simulation revealed that the invocation links together with our algorithm
can improve the diagnosis for components with more diverse interactions. This is
even more the case, if the fault does not cause a failure immediately. Experiments
with simulations, and a case study, confirm that the invocation link information
can improve the diagnosis, in particular for real systems.

In the future, we are going to explore for which type of a topology can the
invocation link information used for better diagnosis, and which other context in-
formation, such as the system’s usage profile, can be also used for diagnosis.

7...
Conclusion

In this thesis, we have focused on applying Spectrum-based Fault Localization(SFL)
to diagnose Service-Oriented Systems at runtime. We have adapted the concepts
of SFL to the context of service-oriented systems, and we have realized our SFL
approach in service-oriented systems. To validate the performance of SFL in di-
agnosing service-oriented systems, we have conducted an experiment with a case
study on a service-oriented system.

With the preliminary attempt of applying SFL to service-oriented systems, we
discovered that the monitoring topology influences the accuracy of diagnosis for
service-oriented systems. Therefore, we have proposed to apply Genetic Algo-
rithms(GA) to find optimal monitoring topologies for diagnosing service-oriented
systems with SFL.

After carefully investigating failed diagnoses from the initial step of applying
SFL to service-oriented systems, we found that the main reasons for failed diag-
noses can be attributed to tight interactions between services and fault intermit-
tency of services. In order to improve diagnosis for such service-oriented systems,
we have proposed two possible solutions. One solution is to increase the moni-
toring granularity by adding monitors at the code block level into the service im-
plementation. The other solution is to include the monitoring of invocation links
between services into the SFL diagnosis.

Furthermore, we also measured the runtime overhead caused by the diagnosis
for service-oriented systems. Since the diagnosis engine in our implementation is
detached from the service-oriented system, the only part of the diagnosis that can
affect the runtime performance of service-oriented systems is from the online mon-
itoring for the service-oriented system. Hence, we have measured the monitoring
overhead at different levels of granularity. Below we present our contributions,
answers to research questions and suggestions for future work.

7.1 Summary of Contributions
The main contributions of this dissertation are:

• An open-source service-based Java software system SFL-Stonehenge, which
can be used as a possible standard case study for researchers working in the

99

100 Chapter 7. Conclusion

area of SOA (Chapter 2).

• A brief survey of existing research initiatives in the area of SOA from which
we extract criteria that need to be specified when performing a case study in
order to allow future comparison and/or replication (Chapter 2).

• An approach for applying online SFL to service-oriented systems (Chapter 3).

• An evaluation of the performance of online SFL for service-oriented systems
(Chapter 3).

• An approach for applying Genetic Algorithms to study the optimality of moni-
toring topologies that make service-oriented systems better diagnosable when
applying SFL (Chapter 4).

• A set of general characteristics of monitoring topologies that improve SFL-
based diagnoses (Chapter 4).

• A simulator for SFL-based diagnoses in various system topologies (Chap-
ter 5).

• An approach to improve the accuracy of diagnosis for service-oriented sys-
tems by increasing the monitoring granularity (Chapter 5).

• A simulation and a case study to validate the approach of increasing the
monitoring granularity (Chapter 5).

• A measurement of overhead caused by different levels of monitoring for ser-
vice diagnosis (Chapter 5).

• An approach and algorithm of including invocation link information to im-
prove the accuracy of SFL diagnosis for service-oriented systems (Chapter 6).

• A case study and a simulation to demonstrate the extent to which invocation
link information can improve SFL-based diagnoses (Chapter 6).

7.2 The Research Questions Revisited
RQ3.1: How can a failure be detected in an operational service-oriented system?
In Chapter 3, we have reused the existing framework-based monitoring technique
from the underlying service platform to obtain the information of service trans-
actions at runtime. To determine a transaction pass or fail, we have devised an
oracle together with the online monitoring to associate failure information with
the transaction traces.

7.2. The Research Questions Revisited 101

RQ3.2: How can spectrum-based fault localization be applied in a service-oriented
system in order to trace a failure back to its respective root cause?
In Chapter 3, we have used a monitor and oracle to collect component involvement
and pass/fail information. Based on this information, we have implemented a
dedicated (external) diagnosis engine to generate an activity matrix and an output
vector required by SFL and then calculate the diagnosis.

RQ3.3: How well does spectrum-based fault localization perform in a service-
oriented system in terms of correctness of the diagnosis?
In Chapter 3, we performed a case study to assess how many correct diagnoses SFL
is able to achieve in a service-oriented system. The results confirm the feasibility
of the SFL approach, and indicate a high success rate of the diagnoses, i.e., 72%
correctness.

RQ4.1: How can genetic algorithms be used to optimize monitoring topologies for
spectrum-based diagnosis?
In Chapter 4, we applied genetic algorithms to find monitoring topologies that
make service-oriented systems better diagnosable when applying SFL. The mon-
itoring topology of a system is represented by an activity matrix, which can be
expressed as a binary string and transformed into a GA-chromosome in a straight-
forward way. We also proposed a number of fitness functions. First, a function that
expresses the diagnosability of a monitoring topology, i.e., the extent to which all
diagnoses carried out on an activity matrix coming from that topology, are correct
diagnoses. In the fitness function, each component is set to be faulty per diagnosis.
Then, the fitness function calculates to which extent all similarity coefficients com-
bined from all runs represent correct and distinguishable diagnoses. This yields a
value representing how well a topology facilitates the discovery of each potential
fault in every component. This basic fitness function can be amended in order to
address the different optimization criteria required in the different experiments,
e.g. favor high or low differences in the SCo, or favor output vectors with low
number of failures.

RQ4.2: What are characteristics of monitoring topologies that are optimal for
spectrum-based diagnosis?
In Chapter 4, we defined a better diagnosable topology as a topology which allows
all faults in a system to be detected in an unambiguous manner. The application of
GA uncovers a number of routes to meet this fitness goal. Our results show that

• being able to invoke components in isolation facilitates diagnosability, be-
cause it helps separate component involvement in system executions better.

• adding monitoring points in the system and including the monitoring of in-
activity, helps separating system executions, which is also beneficial for the
diagnosability of the system.

102 Chapter 7. Conclusion

• including monitoring of the system context (external components from other
systems, incoming and outgoing activations) can support diagnosability through
incorporating different invocation routes.

• including tracing information which represents combinations or distinct pat-
terns of component coverage, may support SFL-based diagnosis.

RQ5.1: How and to which extent does the monitoring granularity affect the cal-
culation of a diagnosis with spectrum-based fault localization?
In Chapter 5, we studied the effects of the monitoring granularity on performing
SFL diagnosis. First, we performed simulations to reason over different service
topologies with a simulator. Second, we conducted an actual case study on a
service-oriented system, changing the level of monitoring granularity. The main
finding from both experiments is that increasing the level of monitoring granular-
ity can indeed improve diagnosis. More precisely, in our case study we could obtain
up to 100% correct diagnoses. This comes through the increased variability in the
observations used for the activity matrix of the SFL technique.

RQ5.2: How can we increase the monitoring granularity?
In Chapter 5, we increased the level of monitoring granularity by going into the
service implementations, since the instinctive choice of placing monitors at the
level of service operation is too coarse-grained, resulting in many cases that cannot
be correctly diagnosed. A brute force approach of placing monitors inside the
service implementation is to monitor every single line of code. However, in our
approach, we restricted the monitoring to the code block level, representing unique
execution branches through a service or proper isolation of tight interaction.

RQ5.3: What is the overhead caused by the monitoring of various levels of gran-
ularity?
In Chapter 5, we measured the monitoring overhead of different levels of granu-
larity. The total impact of monitoring on the system performance depends on the
number of used monitors. In detail, the monitoring at the level of service opera-
tion, i.e., Turmeric monitoring, always causes more overhead than the monitoring
at a finer-grained level, i.e., code block monitoring. On the other hand, when the
number of code block monitors is small, the caused overhead can be negligible,
however, the overhead can also become comparable with Turmeric monitoring if
the number of code block monitors is increased.

RQ6.1: To which extent can the usage of information expressing activation of links
between services improve diagnosis?
In Chapter 6, we performed simulations and a case study to demonstrate that in-
cluding the activation information of invocation links can significantly improve di-
agnoses performed by spectrum-based fault localization. In the simulations of the
case system, correct diagnoses for the ECS service could be improved by around 14

7.3. Recommendations for Future Work 103

percent through the additional monitoring, and for the OPS service by around 29
percent. In the real case system, the overall improvement in correct diagnoses is
higher than for the simulation, i.e. improvement for the ECS by around 73 percent,
and for the OPS by around 22 percent, when including the additional observations.
Therefore, incorporating the activation information of invocation link can indeed
improve SFL diagnosis when the diagnosed system has tight interaction problems.
Furthermore, the huge advantage of this approach is that it does not require in-
strumenting the service implementations.

RQ6.2: How does topology, i.e. the organization of the invocation links between
services, affect diagnosis, and are there general characteristics of topology that
improve diagnosis?
In Chapter 6, we conducted simulations and a case study to compare the number
of correct diagnoses for monitoring only the service interface versus the service
interface plus the invocation link, and observed considerable improvements. The
improvements came from how the additional activation information from the invo-
cation link helps split the topology into finer grained and separable units, thereby
helping to discriminate better the various service invocation paths. The simula-
tions suggested that a high number of incoming and outgoing invocation links is
beneficial, however, the case study illustrated that any more than one incoming
and outgoing link is already sufficient to improve the results. We believe, the total
number of incoming and outgoing links does not make so much difference, but
how those links lead to more diverse activation of the execution paths within a
service does. In addition, in Chapter 6, we proposed two general guidelines for
determining the monitoring topology of a service-based system. One is to split
the monitoring of services into finer grained units representing better the service’s
different functions. The other is to exploit additional information better that is
suitable to separate the execution paths of the transactions flowing through the
services.

7.3 Recommendations for Future Work
There are a number of interesting open issues for future work related to the topic
of this thesis. In the following we suggest several recommendations:

1. Improve Diagnosis Accuracy
Our work with diagnosis improvement has highlighted the fact that including
the activation information of invocation links can affect the diagnosis for service-
oriented systems. This calls for an investigation on adding other context informa-
tion, such as the system’s usage profile, into the calculation of the diagnosis.

2. Optimize Monitoring Topology
We have shown that the overhead of code block monitoring is tightly related to
the number of its monitors and its overhead can become comparable with that of

104 Chapter 7. Conclusion

Turmeric monitoring. Future work should study where would be the best place for
monitors in a service-oriented system, in order to achieve the highest accuracy of
diagnosis and the least disturbance to the service-oriented system at runtime.

3. Automate Monitor Placement
In our case studies, the monitors for different granularities were deployed into
the service-oriented system manually at compile time. Therefore, an issue left for
future work is to use some techniques, such as code slicing, to make the placement
of monitors automatic.

4. Explore Topology Effects
In Chapter 6, we have shown that the activation information of invocation links
can affect diagnosis. In the future, it is necessary to explore for which type of
topologies the invocation link information can be used for better diagnosis. This
issue is also open for other context information.

5. Detect Tight Interaction
Our experimental results have revealed a fact that tight interactions between ser-
vices can cause diagnosis to fail. A step before dealing with tight interaction is
to discover whether a service-oriented system has tight interactions. Thus, a task
for future work is to automatically detect tight interactions for a service-oriented
system.

6. For Component-based Systems
All research work done in this dissertation is for service-oriented systems. This
opens the door to verify whether our approaches would also work for component-
based systems.

Bibliography

Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund, A. J. C. (2009a). A practi-
cal evaluation of spectrum-based fault localization. J. Syst. Softw., 82(11):1780–
1792.

Abreu, R., Zoeteweij, P., and van Gemund, A. J. (2006). An evaluation of similarity
coefficients for software fault localization. In Proc. Int’l Symp. on Dependable
Computing (PRDC), pages 39–46. IEEE.

Abreu, R., Zoeteweij, P., and van Gemund, A. J. (2009b). Spectrum-based multiple
fault localization. In Proc. Int’l Conference on Automated Software Engineering,
pages 88–99. IEEE.

Ahmad, A. and Pahl, C. (2011). Customisable transformation-driven evolution
for service architectures. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR), pages 373–376. IEEE Computer Society.

Allauddin, M., Farooque, A., and Mehmooda, J. Z. (2011). A survey of quality
assurance frameworks for service oriented systems. International Journal of Ad-
vancements in Technology, 2(2):188–198.

Ardissono, L., Furnari, R., Goy, A., Petrone, G., and Segnan, M. (2006). Fault toler-
ant web service orchestration by means of diagnosis. In Proceedings of the Third
European Workshop on Software Architecture (EWSA), volume 4344 of LNCS,
pages 2–16. Springer.

Barbon, F., Traverso, P., Pistore, M., and Trainotti, M. (2006). Run-time monitor-
ing of instances and classes of web service compositions. In Proceedings of the
International Conference on Web Services (ICWS), pages 63–71. IEEE Computer
Society.

105

106 BIBLIOGRAPHY

Baresi, L., Ghezzi, C., and Guinea, S. (2004a). Smart monitors for composed ser-
vices. In Proceedings of the 2Nd International Conference on Service Oriented Com-
puting, ICSOC ’04, pages 193–202. ACM.

Baresi, L., Ghezzi, C., and Guinea, S. (2004b). Smart monitors for composed
services. In Proceedings of the International Conference on Service-Oriented Com-
puting (ICSOC), pages 193–202. ACM.

Baresi, L., Ghezzi, C., and Guinea, S. (2007). Towards self-healing composition of
services. In Contributions to Ubiquitous Computing, pages 27–46.

Baresi, L. and Guinea, S. (2013). Event-based multi-level service monitoring. In
Web Services (ICWS), 2013 IEEE 20th International Conference on, pages 83–90.

Bartolini, C., Bertolino, A., and Marchetti, E. (2008). Introducing service-oriented
coverage testing. In Automated Software Engineering - Workshops, 2008. ASE
Workshops 2008. 23rd IEEE/ACM International Conference on, pages 57–64.

Benatallah, B. and Motahari Nezhad, H. (2008). Service oriented architecture:
Overview and directions. In Börger, E. and Cisternino, A., editors, Advances in
Software Engineering, volume 5316 of LNCS, pages 116–130. Springer.

Benbernou, S., Hacid, L. C. M. S., Kazhamiakin, R., Kecskemeti, G., Poizat, J.-L.,
Silvestri, F., Uhlig, M., and Wetzstein, B. (2008). State of the Art Report, Gap
Analysis of Knowledge on Principles, Techniques and Methodologies for Monitor-
ing and Adaptation of SBAs. Deliverable # PO-JRA-1.2.1 of the S-Cube project.

Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., and Munro, M.
(2000). Service-based software: the future for flexible software. In Proc. Asia-
Pacific Software Engineering Conference (APSEC), pages 214–221. IEEE.

Bertolino, A., Inverardi, P., Pelliccione, P., and Tivoli, M. (2009). Automatic synthe-
sis of behavior protocols for composable web-services. In Proceedings of the joint
meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 141–150. ACM.

Brenner, D., Atkinson, C., Paech, B., Malaka, R., Merdes, M., and Suliman, D.
(2006). Reducing verification effort in component-based software engineering
through built-in testing. In Enterprise Distributed Object Computing Conference,
2006. EDOC ’06. 10th IEEE International, pages 175–184.

Bruning, S., Weissleder, S., and Malek, M. (2007). A fault taxonomy for service-
oriented architecture. In High Assurance Systems Engineering Symposium, 2007.
HASE ’07. 10th IEEE, pages 367–368.

Canfora, G. and Di Penta, M. (2006). Testing services and service-centric systems:
challenges and opportunities. IT Professional, 8(2):10 –17.

BIBLIOGRAPHY 107

Canfora, G. and Di Penta, M. (2009a). Service-oriented architectures testing: A
survey. In Software Engineering, volume 5413 of Lecture Notes in Computer Sci-
ence, pages 78–105. Springer.

Canfora, G. and Di Penta, M. (2009b). Service-oriented architectures testing: A
survey. In Software Engineering, volume 5413 of LNCS, pages 78–105. Springer.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., and Tourwé, T. (2006).
Applying and combining three different aspect mining techniques. Software
Quality Journal, 14(3):209–231.

Chapman, C., Saitou, K., and Jakiela, M. (1994). Genetic algorithms as an ap-
proach to configuration and topology design. Mech. Des., 116(4):1005–1012.

Chatzigiannakis, V. and Papavassiliou, S. (2007). Diagnosing anomalies and iden-
tifying faulty nodes in sensor networks. Sensors Journal, IEEE, 7(5):637 –645.

Chen, C., Gross, H.-G., and Zaidman, A. (2012). Spectrum-based fault diagnosis for
service-oriented software systems. In Proc. of the Int’l Conf. on Service-Oriented
Computing and Applications (SOCA). IEEE.

Chen, C., Gross, H.-G., and Zaidman, A. (2013a). Improving service diagnosis
through increased monitoring granularity. In 7th Intl Conf. on Software Security
and Reliability, page to appear, Washington, DC.

Chen, C., Gross, H.-G., and Zaidman, A. (2013b). Improving service diagnosis
through invocation monitoring. In 13th International Conference on Quality Soft-
ware (QSIC), pages 85–94.

Chen, C., Gross, H.-G., and Zaidman, A. (2013c). Using genetic algorithms to study
the effects of topology on spectrum based diagnosis. In Proceedings of the 24th
International Workshop on Principles of Diagnosis (DX), pages 166–173.

Chen, C., Omoro, B., Gross, H.-G., and Zaidman, A. (2013d). Comparing diagnostic
performance of ochiai and relief in service-oriented systems. In Proceedings of the
24th International Workshop on Principles of Diagnosis (DX), pages 39–44.

Chen, C., Zaidman, A., and Gross, H.-G. (2011). A framework-based runtime moni-
toring approach for service-oriented software systems. In Proceedings of the Inter-
national Workshop on Quality Assurance for Service-Based Applications (QASBA),
pages 17–20. ACM.

Chen, M., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. (2002). Pinpoint: prob-
lem determination in large, dynamic internet services. In Prod. Int’l Conf on
Dependable Systems and Networks (DSN), pages 595–604. IEEE.

108 BIBLIOGRAPHY

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke, R. (2009).
A systematic survey of program comprehension through dynamic analysis. IEEE
Transactions on Software Engineering, 35(5):684–702.

Creswell, J. W. and Clark, V. L. P. (2010). Designing and conducting mixed methods
research.

de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based diagnosis. In
Fault Detection, Supervision and Safety of Technical Processes, pages 25–36. IFAC.

Demeyer, S., Mens, T., and Wermelinger, M. (2002). Towards a software evolution
benchmark. In Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE), pages 172–175. ACM.

Denaro, G., Pezzè, M., and Tosi, D. (2009). Ensuring interoperable service-oriented
systems through engineered self-healing. In Proceedings of the joint meeting of the
European Software Engineering Conference and the Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 253–262. ACM.

Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., and Pohl, K. (2008). A journey
to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 15(3-4):313–341.

Domenico, B. and Carlo, G. (2007). Monitoring conversational web services. In
Proceedings of the 2nd international workshop on Service oriented software engi-
neering (IW-SOSWE), pages 15–21. ACM.

Espinha, T., Chen, C., Zaidman, A., and Gross, H.-G. (2012a). Maintenance re-
search in soa - towards a standard case study. In Proc. European Conf. on Software
Maintenance and Reengineering (CSMR), pages 391–396. IEEE.

Espinha, T., Chen, C., Zaidman, A., and Gross, H.-G. (2012b). Spicy stonehenge:
Proposing a soa case study. In Principles of Engineering Service Oriented Systems
(PESOS), 2012 ICSE Workshop on, pages 57–58.

Feldman, A., Provan, G. M., and van Gemund, A. J. C. (2010). Approximate
model-based diagnosis using greedy stochastic search. J. Artif. Intell. Res. (JAIR),
38:371–413.

Fidge, C. J. (1988). Timestamp in message passing systems that preserves partial
ordering. In Proceedings of the Australian Computing Conference, pages 56–66.

Gold, N., Knight, C., Mohan, A., and Munro, M. (2004). Understanding service-
oriented software. IEEE Software, 21(2):71–77.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learn-
ing. Addison Wesley.

BIBLIOGRAPHY 109

Gonzalez-Sanchez, A., Abreu, R., Gross, H.-G., and van Gemund, A. J. (2011).
Spectrum-based sequential diagnosis. In Proc. Int’l Conf. on Artificial Intelligence
(AAAI), pages 189–196. AAAI Press.

Gonzalez-Sanchez, A., Piel, E., Gross, H.-G., and van Gemund, A. (2010a). Pri-
oritizing tests for software fault localization. In Int’l Conf. on Quality Software,
pages 42–51. IEEE.

Gonzalez-Sanchez, A., Piel, E., Gross, H.-G., and van Gemund, A. (2010b). Run-
time testability in dynamic high-availability component-based systems. In Proc.
Int’l Conf. Advances in System Testing and Validation Lifecycle (VALID), pages 37
–42. IEEE.

Granelli, G., Montagna, M., Zanellini, F., Bresesti, P., and Vailati, R. (2006). A
genetic algorithm-based procedure to optimize system topology against parallel
flows. Power Systems, IEEE Transactions on, 21(1):333–340.

Greiler, M., Gross, H.-G., and Nasr, K. (2009). Runtime integration and testing for
highly dynamic service oriented ICT solutions – an industry challenges report.
In Testing: Academic and Industrial Conference - Practice and Research Techniques
(TAIC PART), pages 51–55.

Grosclaude, I. (2004). Model-based monitoring of component-based software sys-
tems. In Int’l Workshop on Principles of Diagnosis, pages 155–160.

Hadaytullah, Vathsavayi, S., Raiha, O., and Koskimies, K. (2010). Tool support
for software architecture design with genetic algorithms. In Proc. International
Conference on Software Engineering Advances (ICSEA), pages 359–366. IEEE CS.

Harman, M. and Clark, J. A. (2004). Metrics are fitness functions too. In Proc. of
the Int’l Symp. on Software Metrics (METRICS), pages 58–69. IEEE.

Heward, G., Han, J., Schneider, J.-G., and Versteeg, S. (2011). Run-time manage-
ment and optimization of web service monitoring systems. In Proc. Int’l Conf on
Service-Oriented Computing and Applications (SOCA), pages 1–6. IEEE.

Heward, G., Mueller, I., Han, J., Schneider, J.-G., and Versteeg, S. (2010a). As-
sessing the performance impact of service monitoring. In Australian Software
Engineering Conference (ASWEC), pages 192–201. IEEE Computer Society.

Heward, G., Mueller, I., Han, J., Schneider, J.-G., and Versteeg, S. (2010b). As-
sessing the performance impact of service monitoring. In Software Engineering
Conference (ASWEC), 2010 21st Australian, pages 192–201.

Josuttis, N. M. (2007a). Soa in practice – the art of distributed system design.

110 BIBLIOGRAPHY

Josuttis, N. M. (2007b). SOA in Practice: The Art of Distributed System Design.
O’Reilly.

Keller, A. and Ludwig, H. (2003). The wsla framework: Specifying and monitor-
ing service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81.

Kim, D. and Park, S. (2009). Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software. In Proceedings
of ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), volume 0, pages 76–85. IEEE.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and
Rosenberg, J. (2002). Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8):721–734.

Kumar, A., Pathak, R. M., Gupta, Y. P., and Parsaei, H. R. (1995). A genetic algo-
rithm for distributed system topology design. Comput. Ind. Eng., 28(3):659–670.

Lamport, L. (1978). Ti clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565.

Lewis, G. and Smith, D. (2008). Service-oriented architecture and its implications
for software maintenance and evolution. In Frontiers of Software Maintenance
(FOSM), pages 1–10. IEEE.

Li, L., Chou, W., and Guo, W. (2008). Control flow analysis and coverage driven
testing for web services. In Int’l Conf. on Web Services (ICWS), pages 473–480.
IEEE.

Lin, K.-J., Panahi, M., Zhang, Y., Zhang, J., and Chang, S.-H. (2009). Building
accountability middleware to support dependable soa. Internet Computing, IEEE,
13(2):16–25.

Lutz, R. (2001). Evolving good hierarchical decompositions of complex systems.
Journal of Systems Architecture, 47(7):613–634.

Madeira, J. A., Rodrigues, H., and Pina, H. (2005). Multi-objective optimization
of structures topology by genetic algorithms. Advances in Engineering Software,
36(1):21–28.

Mahbub, K. and Spanoudakis, G. (2005). Run-time monitoring of requirements
for systems composed of web-services: Initial implementation and evaluation
experience. Proceedings of the International Conference on Web Services (ICWS),
pages 257–265.

BIBLIOGRAPHY 111

Marconi, A. and Pistore, M. (2009). Synthesis and composition of web services. In
Bernardo, M., Padovani, L., and Zavattaro, G., editors, Formal Methods for Web
Services, volume 5569 of LNCS, pages 89–157. Springer.

Mattern, F. (1989). Virtual time and global states of distributed systems. In Pro-
ceedings of the Workshop on Parallel and Distributed Algorithms, pages 215–226.
Elsevier.

Mayer, W., Friedrich, G., and Stumptner, M. (2010a). Diagnosis of service failures
by trace analysis with partial knowledge. In Service-Oriented Computing, volume
6470 of LNCS, pages 334–349. Springer Berlin Heidelberg.

Mayer, W., Friedrich, G., and Stumptner, M. (2010b). Diagnosis of service failures
by trace analysis with partial knowledge. In ICSOC, pages 334–349.

Mayer, W., Friedrich, G., and Stumptner, M. (2012). On computing correct pro-
cesses and repairs using partial behavioral models. In 20th European Conference
on Artificial Intelligence (ECAI), pages 582–587.

Mayer, W. and Stumptner, M. (2008). Evaluating models for model-based debug-
ging. In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM Inter-
national Conference on, pages 128–137.

Miller, B. and Goldberg, D. (1995). Genetic algorithms, tournament selection and
the effects of noise. Technical Report 95006, IlliGAL Report, Dept. General Engi-
neering, University of Illinois at Urbana Campaign.

Moe, J. and Carr, D. A. (2001). Understanding distributed systems via execution
trace data. In Proceedings of the International Workshop on Program Comprehen-
sion (IWPC), pages 60–67. IEEE CS.

Mohamed, A. and Zulkernine, M. (2008). On failure propagation in component-
based software systems. In Proc. Int’l Conf. on Quality Software (QSIC), pages
402–411. IEEE.

Momm, C., Malec, R., and Abeck, S. (2007). Towards a model-driven development
of monitored processes. Internationale Tagung Wirtschaftsinformatik (WI2007),
Karlsruhe.

Moser, O., Rosenberg, F., and Dustdar, S. (2008). Non-intrusive monitoring and
service adaptation for ws-bpel. In Proc. Int’l Conf. on World Wide Web (WWW),
pages 815–824. ACM.

Mosincat, A. D. and Binder, W. (2011). Automated maintenance of service compo-
sitions with sla violation detection and dynamic binding. Int J Softw Tools Technol
Transfer, 13(2):167–179.

112 BIBLIOGRAPHY

Nasr, K. A., Gross, H.-G., and van Deursen, A. (2011). Realizing Service Migration
in Industry - Lessons Learned. Journal of Software Maintenance and Evolution:
Research and Practice (JSME).

Natis, Y. V. (2003). Service-oriented architecture scenario. Website last visited
November 30th, 2011.

Novotny, P., Wolf, A. L., and Ko, B. J. (2012). Fault localization in manet-hosted
service-based systems. In Proceedings of the 2012 IEEE 31st Symposium on Reli-
able Distributed Systems, SRDS ’12, pages 243–248.

Papazoglou, M. (2008). The challenges of service evolution. In Advanced Informa-
tion Systems Engineering, volume 5074 of LNCS, pages 1–15. Springer.

Papazoglou, M., Traverso, P., Dustdar, S., and Leymann, F. (2007). Service-oriented
computing: State of the art and research challenges. Computer, 40(11):38–45.

Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F., and Krämer, B. J. (2006).
Service-oriented computing: A research roadmap. In Cubera, F., Krämer, B. J.,
and Papazoglou, M. P., editors, Service Oriented Computing (SOC), number 05462
in Dagstuhl Seminar Proceedings.

Piel, E., Gonzalez-Sanchez, A., Gross, H., and van Gemund, A. (2011). Spectrum-
based health monitoring for self-adaptive systems. In Proc. Int’l Conf. Self-
Adaptive and Self-Organizing Systems (SASO), pages 99–108. IEEE.

Pistore, M. and Traverso, P. (2007). Assumption-based composition and monitoring
of web services. In Baresi, L. and Di Nitto, E., editors, Test and Analysis of Web
Services, pages 307–335. Springer.

Räihä, O., Koskimies, K., and Mäkinen, E. (2008). Genetic synthesis of software
architecture. In Proc. of the International Conference on Simulated Evolution and
Learning (SEAL), volume 5361 of LNCS, pages 565–574. Springer.

Räihä, O., Koskimies, K., and Mäkinen, E. (2011). Generating software architecture
spectrum with multi-objective genetic algorithms. In Third World Congress on
Nature & Biologically Inspired Computing (NaBIC), pages 29–36. IEEE.

Repp, N., Berbner, R., Heckmann, O., and Steinmetz, R. (2007). A cross-layer
approach to performance monitoring of web services. In Emerging Web Services
Technology, pages 21–32.

Reps, T., Ball, T., Das, M., and Larus, J. (1997). The use of program profiling
for software maintenance with applications to the year 2000 problem. In Eu-
ropean Softw. Engineering Conf. & Symp. on Foundations of Softw. Engineering
(ESEC/FSE), volume 1301 of LNCS, pages 432–449. Springer.

BIBLIOGRAPHY 113

Schmerl, B. R., Garlan, D., Dwivedi, V., Bigrigg, M. W., and Carley, K. M. (2011).
Sorascs: a case study in soa-based platform design for socio-cultural analysis. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
643–652. ACM.

Sim, S. E., Easterbrook, S. M., and Holt, R. C. (2003). Using benchmarking to
advance research: A challenge to software engineering. In Proceedings of the In-
ternational Conference on Software Engineering (ICSE), pages 74–83. IEEE Com-
puter Society.

Snell, J., Tidwell, D., and Kulchenko, P. (2001). Programming Web Services with
SOAP. O’Reilly Media.

Spanoudakis, G. and Mahbub, K. (2006). Non-intrusive monitoring of service-
based systems. International Journal of Cooperative Information Systems,
15(03):325–358.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Third Interna-
tional Conference on Genetic Algorithms, pages 2–9.

Turner, M., Budgen, D., and Brereton, P. (2003). Turning software into a service.
Computer, 36(10):38–44.

Weiser, M. (1981). Program slicing. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 439–449. IEEE Press.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2000). Experimentation in Software Engineering: An Introduction. Kluwer.

Wong, W. E., Debroy, V., and Choi, B. (2010). A family of code coverage-based
heuristics for effective fault localization. Journal of Systems and Software,
83(2):188–208.

Yan, Y. and Dague, P. (2007). Modeling and diagnosing orchestratedweb service
processes. In Proc. Int’l Conf on Web Services (ICWS), pages 51–59. IEEE.

Yan, Y., Dague, P., Pencole, Y., and Cordier, M.-O. (2009). A model-based approach
for diagnosing fault in web service processes. International Journal of Web Ser-
vices Research (IJWSR), 6(1):87–110.

Yin, R. K. (2014). Case study research design and methods.

Zaidman, A., Pinzger, M., and van Deursen, A. (2010). Software evolution. In
Laplante, P. A., editor, Encyclopedia of Software Engineering, pages 1127–1137.
Taylor & Francis.

114 BIBLIOGRAPHY

Zhang, J., Chang, Y., and Lin, K.-J. (2009). A dependency matrix based framework
for QoS diagnosis in SOA. In Proc. Int’l Conf on Service-Oriented Computing and
Applications (SOCA), pages 1–8. IEEE.

Zhang, J., Huang, Z., and Lin, K. (2012a). A hybrid diagnosis approach for
QoS management in service-oriented architecture. In Int’l Conf. on Web Services
(ICWS), pages 82–89. IEEE.

Zhang, J., Huang, Z., and Lin, K. (2012b). A hybrid diagnosis approach for qos
management in service-oriented architecture. In Proc. Int’l Conf. on Web Service
(ICWS), pages 82–89. IEEE.

Zoeteweij, P., Abreu, R., and A.J.C. van Gemund (2007a). Software fault diagnosis.
In IFIP Int’l Conf. on Testing of Communicating Systems: Hand-Outs for the Tutorial
Day of TestCom/FATES, pages 1–26. Tartu University Press.

Zoeteweij, P., Abreu, R., Golsteijn, R., and van Gemund, A. (2007b). Diagnosis
of embedded software using program spectra. In Engineering of Computer-Based
Systems, 2007. ECBS ’07. 14th Annual IEEE International Conference and Work-
shops on the, pages 213–220.

Zoeteweij, P., Abreu, R., Golsteijn, R., and van Gemund, A. J. (2007c). Diagnosis
of embedded software using program spectra. In Proc. Int’l Conf. and Workshops
on Engineering of Computer-Based Systems (ECBS), pages 213–220. IEEE.

Zulkernine, F., Martin, P., and Wilson, K. (2008). A middleware solution to mon-
itoring composite web services-based processes. In Congress on Services Part II,
2008. SERVICES-2. IEEE, pages 149–156.

Summary

Automated Fault Localization for Service-Oriented Software Systems

– Cuiting Chen –

In this thesis, we have focused on applying Spectrum-based Fault Localization
(SFL) to diagnose Service-Oriented Systems at runtime. We reused a framework-
based online monitoring technique to obtain the service transaction information.
We devised a three-phased oracle and combined this with monitoring to detect
system failures at runtime. Both monitor and oracle generate component involve-
ment and pass/fail information required by SFL. We conducted an experiment with
a case system to validate the performance of SFL in diagnosing service-oriented sys-
tems. The results show that SFL is able to identify faulty service operations in 73%
of the cases correctly.

With the preliminary attempt of applying SFL to service-oriented systems, we
discovered that the monitoring topology can influence the accuracy of diagnosis
for service-oriented systems. Therefore, we applied Genetics Algorithms (GA) to
find the optimal monitoring topologies for SFL diagnosis. With the assistance of GA
techniques, we have identified the following characteristics of optimal monitoring
topologies:

• invoking components in isolation

• more monitoring points, including the monitoring of inactivity

• including the monitoring of the system context

• including tracing information

Through a careful investigation of the failed diagnoses from the initial step
of applying SFL to service-oriented systems, we found that the main reasons for

115

116 Summary

failed diagnoses can be attributed to (1) tight interactions between services and
(2) fault intermittency of services. In order to improve the diagnosis, we have
proposed two possible solutions to deal with tight interaction. One solution is to
increase the monitoring granularity by adding monitors at the code block level
in the service implementation. The other solution is to include the monitoring
of invocation links between services into the SFL diagnosis. The former solution
is able to achieve 100% correct diagnoses, however, it requires the ownership of
services to place monitors inside the services. The latter solution can be done with
a more realistic set-up and it can also significantly improve the diagnoses.

We have also assessed the runtime overhead caused by the diagnosis for service-
oriented system. Since the diagnosis engine in our approach is detached from the
service-oriented system, the overhead of diagnosis imposed on the running service-
oriented system is from monitoring. We measured the monitoring overhead at
different levels of granularity, and found out that the monitoring at the service
communication level consumes high overhead, whereas the monitoring at the ser-
vice implementation level is much lower, but highly depends on the number of
monitors deployed.

Samenvatting

Geautomatiseerde Foutlocalisatie voor Service-geörienteerde Software
Systemen

– Cuiting Chen –

In dit proefschrift hebben we ons gericht op het toepassen van Spectrum-gebaseerde
Foutlocalisatie (SFL) om service-georiënteerde systemen te diagnosticeren tijdens
runtime. We hebben hiervoor een framework-gebaseerde online monitoring tech-
niek herbruikt om de service transactie informatie te verkrijgen. We hebben een
drie-fase orakel bedacht en gecombineerd met monitoring om systeemfouten tij-
dens de reguliere uitvoering op te sporen. Zowel de monitor als het orakel gener-
eren informatie met betrekking tot de betrokkenheid van de component en de
pass/fail informatie van de uitvoering die nodig is voor SFL. We hebben een exper-
iment uitgevoerd om de geschiktheid van SFL voor het diagnoseren van service-
georiënteerde systemen te valideren. De resultaten tonen dat SFL in 73% van de
gevallen in staat is om foutieve service operaties te identificeren.

Tijdens de eerste pogingen om SFL op service-georiënteerde systemen toe te
passen, ontdekten we dat de topologie van de verschillende monitors de nauwkeurigheid
van de diagnose kan beïnvloeden. Daarom hebben we genetische algoritmen (GA)
toegepast om de optimale topologie van monitors voor een SFL diagnose te bepalen.
Met de hulp GA technieken, hebben we de volgende kenmerken voor een optimale
monitor topologie geïdentificeerd:

• componenten moeten geïsoleerd worden opgeroepen

• monitors op meer punten plaatsen en ook inactiviteit monitoren

• de systeemcontext monitoren

• het toevoegen van tracing informatie

117

118 Samenvatting

Door een zorgvuldig onderzoek van de mislukte diagnoses uit de eerste stap
van het toepassing van SFL op service-georiënteerde systemen, vonden we dat de
belangrijkste redenen voor gefaalde diagnoses kunnen worden toegeschreven aan
(1) sterke interacties tussen bepaalde services en (2) intermitterende fouten van
services. Om de diagnose te verbeteren, hebben wij twee mogelijke oplossingen on-
twikkeld om om te gaan met service topologiën die sterke interacties vertonen. Een
eerste oplossing is om de granulariteit van het monitoren te verhogen door mon-
itors op het niveau van code blokken toe te voegen. De andere oplossing bestaat
erin om de invocatie links tussen services mee in rekening te brengen tijdens de
SFL diagnose. De eerste oplossing laat toe om 100% correcte diagnoses te verkri-
jgen, echter ze heeft als belangrijke voorwaarde dat de eigendomssituatie van de
services toelaat om monitors in de code te introduceren. De tweede oplossing is
meer realistisch uitvoerbaar en kan de diagnose ook gevoelig verbeteren.

We hebben bovendien ook de kost voor het online toepassen van SFL-gebaseerde
diagnose in kaart gebracht. Omdat de diagnose component van onze aanpak is
losgekoppeld van het service-georiënteerde systeem dat we willen diagnosticeren,
blijft de kost voor de diagnose beperkt tot de kost voor monitoring. We hebben
de kost voor monitoring bepaald op verschillende niveaus van granulariteit. Onze
resultaten laten zien dat monitoring op het niveau van service communicatie een
hoge kost kent, terwijl monitoren op het niveau van implementatie veel minder
kost, maar wel afhangt van het aantal monitors dat geplaatst wordt.

Curriculum Vitae

Cuiting Chen
Born: February 17th, 1984
in Fujian, China.

Education
2010 – 2015: Ph.D., Computer Science

Delft University of Technology, Delft, The Netherlands. Under the supervision
of Prof.dr. Arie van Deursen.

2007 – 2010: M.Sc., Computer Science
Dresden University of Technology, Dresden, Germany.

2001 – 2005: B.Sc., Electronic Engineering
Beijing Jiaotong University, Beijing, China.

Work Experience
November 2010 – March 2015: Assistant in Opleiding (AIO). Research Trainee

Software Technology Department, Delft University of Technology. Mekelweg
4, 2628CD Delft, The Netherlands.

July 2005 – March 2007: Electronic Engineer
MotherBoard R&D 1 Dept. Asustek(Suzhou), China

March 2005 – July 2005: Internship Field Application Engineer
OEM Dept. Asus(Beijing), China.

119

120 Curriculum Vitae

Review Experience
• Served as PC member for the 29th AAAI Conference on Artificial Intelligence

(AAAI’15)

• ACM Transactions on Software Engineering and Methodology (TOSEM)

Publications
• C. Chen, H.-G. Gross, A. Zaidman. Analysis of Service Diagnosis Improvement

through Increased Monitoring Granularity. Under Review.

• C. Chen, H.-G. Gross, A. Zaidman. Using Genetic Algorithms to Study the Ef-
fects of Topology on Spectrum Based Diagnosis. In Proceedings of the 24th
International Workshop on Principles of Diagnosis (DX’13), 2013.

• C. Chen, B. Omoro, H.-G. Gross, A. Zaidman. Comparing Diagnostic Performance
of Ochiai and Relief in Service-oriented Systems. In Proceedings of the 24th
International Workshop on Principles of Diagnosis (DX’13), 2013.

• C. Chen, H.-G. Gross, A. Zaidman. Improving Service Diagnosis through In-
vocation Monitoring. In Proceedings of the 13th International Conference on
Quality Software (QSIC’13), 2013.

• C. Chen, H.-G. Gross, A. Zaidman. Improving Service Diagnosis through In-
creased Monitoring Granularity. In Proceedings of the 7th International Con-
ference on Software Security and Reliability (SERE’13), 2013. Distinguished
Paper Award.

• C. Chen, H.-G. Gross, A. Zaidman. Spectrum-based Fault Diagnosis for Service-
Oriented Software Systems. In Proceedings of the 5th International Conference
on Service-Oriented Computing and Applications (SOCA’12), 2012.

• T. Espinha, C. Chen, H.-G. Gross, A. Zaidman. Spicy Stonehenge: Proposing a
SOA Case Study. In the International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS’12), 2012.

• T. Espinha, C. Chen, H.-G. Gross, A. Zaidman. Maintenance Research in SOA -
Towards a Standard Case Study. In Proceedings of the 16th European Confer-
ence on Software Maintenance and Reengineering (CSMR’12), 2012.

• C. Chen, A. Zaidman, H.-G. Gross. A Framework-based Runtime Monitoring Ap-
proach for Service-Oriented Software Systems. In Proc. of the Intl Workshop
on Quality Assurance for Service-Based Applications (QASBA’11), 2011.

121

	Acknowledgements
	Introduction
	Background
	Problem Statement
	Research Methodology
	Contributions
	Related Work
	Thesis Outline
	Origin of Chapters

	Research Infrastructure
	Monitoring for Service-Oriented Systems
	Assessment Vehicles
	Summary

	Spectrum-based Fault Diagnosis for Service-Oriented Systems
	SFL for service-oriented systems
	Experimental Setup
	Results and Discussion
	Related work
	Summary

	Effects of Monitoring Topology on Spectrum Based Diagnosis
	Topology Effects
	GA for Topology Optimization
	Experiments
	Discussion
	Related Work
	Summary

	Diagnosis Improvement Through Increased Monitoring Granularity
	Background
	Problem Statement and Approach
	System Simulations
	Case Study
	Runtime Overhead
	Discussion and Lessons Learned
	Related work
	Summary

	Diagnosis Improvement Through Invocation Monitoring
	Problem Statement and Approach
	System Simulations
	Case Study
	Discussion
	Related work
	Summary

	Conclusion
	Summary of Contributions
	The Research Questions Revisited
	Recommendations for Future Work

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

