
Testing
Computation-in-Memory
Architectures Based on
Emerging Memories

by

Surya Nagarajan
to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday November 28, 2019 at 13:30

Student number: 4743385
Thesis number: Q&CE-CE-MS-2019-21
Project duration: December 1, 2018 – November 28, 2019
Thesis committee: Prof. dr. ir. S. Hamdioui TU Delft, supervisor

Dr. ir. M. Taouil, TU Delft
Dr. ir. T. G. R. M. van Leuken, TU Delft
Ir. M. C. R. Fieback TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Many alternative computer architectures that use emerging devices are under investigation to ad-
dress the challenges current architectures and technologies face. Computation-in-memory (CIM)
architectures are one among these alternative that tries to solve these challenges by performing
computations in the memory structure as opposed to transferring the data to a central processing
unit.One class of these CIM architectures employs memristive devices. These are non-volatile de-
vices that store data as a resistance, and are highly compatible with traditional CMOS process. Many
research centers and companies are prototyping such architectures. Efficient and high-quality test
solutions are required for these architectures, which is the subject of this thesis.

This thesis presents a methodology for testing any CIM architecture, focusing on their mem-
ory and computation configurations, and applies this methodology to an existing CIM architecture
as an example. The configurations are tested in the mentioned order for maximum fault coverage,
while minimizing test development complexity. The testing method is structural rather than func-
tional, thereby maximizing and guaranteeing fault coverage. To create accurate tests, device-aware
testing is employed to model these defective devices. As a case study, the methodology is applied to
scouting logic, a bit-wise logic CIM architecture that performs operations on data stored in memris-
tors. Defects in the memory array as well as in the peripheral circuitry were injected and simulated
to obtain realistic faults. The resultant fault analysis shows that there exist faults that are unique
to the computation configuration and are not observed in the memory configuration. This implies
that testing a CIM architecture only as a memory will lead to test escapes. Hence, the proposed test
solution tests both the memory and computation configuration, and detects all faults.

iii

Acknowledgements

I would like to thank Prof. Said Hamdioui, my supervising professor for this thesis for his constant
monitoring and support. I learnt a good deal about getting presenting topics with clarity and asking
the right questions, which would automatically steer the direction of research in any case. Second, I
would like to thank my daily supervisor Moritz Fieback who guided me through this thesis. I enjoyed
the numerous discussion sessions, which made the learning process quite fruitful. I would also like
to thank Mehdi Tahoori and Rajendra Bishnoi for their feedback during the implementation of this
work.

Next, I would like to thank my friends who have been with me through thick and thin. They
had made my two years in Netherlands memorable, even though they might not have been here in
person. In particular, I would like to thank Prajish, Anand and Gautham for being my roommates
and making me feel less homesick on a daily basis. I would also like to thank Pradeep, Abhairaj,
Manasa and Siddharth for being there at the 9th floor when everything went down. A special thanks
to San and Prithvi for their constant support and love. Even though they live far away, M.A.S.S. and
PROMICE had provided me constant support and I am grateful for knowing them.

I will always be grateful for my family, for without their constant support and motivation I do
not see myself in the position I am.

Last but not least, I would like to thank caffeine, adrenaline, Kanye West and heavy metal music
for existing.

Thank you!

Surya Nagarajan
Delft, November 2019

v

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 1

1.2 Need for high quality test . 5

1.3 State of the art in CIM Testing . 6

1.4 Contributions. 6

1.4.1 Discussion of Test approach for CIM architectures 6

1.4.2 Systematic Approach for Testing CIM Architectures 6

1.4.3 Application of systemic approach to Scouting Logic. 7

1.4.4 Simulation Setup for Test Development for Scouting logic 7

1.4.5 Publications. 7

1.5 Organization . 7

2 Memristor based CIM 9
2.1 CIM Introduction. 9

2.2 Classification of CIM . 11

2.3 Memristor Cell . 12

2.3.1 STT-MRAM . 13

2.3.2 PCRAM . 13

2.3.3 ReRAM. 14

2.3.4 Memristor Array Architecture . 16

2.3.5 Production of ReRAM Devices . 17

3 CIMArchitecture Testing 19
3.1 Introduction . 19

3.2 Test Methods . 20

3.2.1 Functional Testing . 20

3.2.2 Structural testing . 20

vii

viii Contents

3.3 Memory Testing . 21

3.3.1 Defects . 21

3.3.2 Faults . 23

3.3.3 Testing . 27

3.4 CIM test methodology . 29

3.4.1 Testing in Memory Configuration . 29

3.4.2 Testing in Computation Configuration . 29

3.4.3 Scouting Logic . 29

4 Defect and Fault modelling for Scouting Logic based CIMArchitectures 31
4.1 Circuit Setup . 31

4.2 Defect modeling . 35

4.2.1 Defect modeling for memory configuration . 36

4.2.2 Defect modeling in computation configuration 37

4.2.3 Defect Injection. 37

4.2.4 Experimental Setup . 38

4.3 Fault Modeling and Analysis. 39

4.3.1 Fault Modeling and Analysis for Memory Configuration 39

4.3.2 Fault modeling and Analysis for Computation configuration 61

5 Tests for Scouting Logic 87
5.1 Tests in Memory Configuration . 87

5.1.1 Memory array . 87

5.1.2 Address Decoder . 88

5.1.3 Sense Amplifier . 89

5.1.4 Test Sequences for Memory Configuration . 90

5.2 Tests in Computation configuration . 92

5.2.1 Memory Array. 92

5.2.2 Address Decoder . 93

5.2.3 Sense Amplifier . 93

6 Conclusions 99
6.1 Summary . 99

6.2 Discussions . 100

6.3 Future Research . 101

A Testing Scouting Logic-Based Computation-in-Memory Architectures 103

B Testing Computation-in-Memory Architectures Based on EmergingMemories 111

Contents ix

C Rebooting Computing: The Challenges for Test and Reliability 123

Bibliography 131

List of Figures

1.1 Reliability Wall . 2

1.2 Leakage Wall . 2

1.3 Cost Wall . 3

1.4 Memory Wall [33] . 4

1.5 Leakage Wall [68] . 4

2.1 CIM architecture - overview . 10

2.2 CIM configurations . 11

2.3 CIM Classification . 12

2.4 MTJ Cell structure . 13

2.5 PCM Cell Structure . 14

2.6 OxRAM and CBRAM . 15

2.7 I-V Curve for ReRAM . 15

2.8 Resistance range in Memristors . 16

2.9 1R memristor cell . 17

2.10 1S1R memristor cell . 17

2.11 1T1R memristor cell . 17

2.12 ReRAM Production Process . 17

3.1 Structural testing approach . 21

3.2 Device oriented modeling method . 23

3.3 Address Decoder faults . 26

3.4 Fault Classification . 27

3.5 Memory array setup [80] . 30

3.6 References of primitive operations [80] . 30

4.1 Structural testing approach . 31

4.2 Simulation Architecture . 32

4.3 1T1R . 32

4.4 Word in array . 32

4.5 Bitline Decoder . 33

4.6 Bitline Decoder - Waveforms . 33

xi

xii List of Figures

4.7 Select Line Driver . 33

4.8 Select Line Driver - Waveforms . 34

4.9 Address Decoder . 35

4.10 WL Decoder . 35

4.11 Sense Amplifier . 36

4.12 Operation reference . 36

4.13 Scouting logic relative resistance and references . 36

4.14 Sense Amplifier Internal Nodes . 37

4.15 Model Parameters . 38

4.16 WL Decoder fault with different defect strengths . 58

4.17 Sense Amplifier Faults . 60

4.18 Fault location in address decoder for two port memory 84

5.1 Defect-free and over-formed cell . 88

5.2 Test Unique faults in 2 Port Memories . 94

List of Tables

2.1 Front-End-of-Line Process . 18

3.1 Complete single-cell static fault primitives. 26

3.2 March test notations . 28

4.1 Truth Table - Bitline Decoder . 34

4.2 Defect Location in the Memory cell . 38

4.3 Heat Map Example . 40

4.4 Heat Map Defect-1 Configuration 1 . 40

4.5 Heat Map Defect-1 Configuration 2 . 40

4.6 Heat Map Defect-1 Configuration 3 . 41

4.7 Heat Map Defect-1 Configuration 4 . 41

4.8 Heat Map Defect-2 Configuration 1 . 41

4.9 Heat Map Defect-2 Configuration 2 . 41

4.10 Heat Map Defect-2 Configuration 3 . 42

4.11 Heat Map Defect-2 Configuration 4 . 42

4.12 Heat Map Defect-3 Configuration 1 . 42

4.13 Heat Map Defect-3 Configuration 2 . 43

4.14 Heat Map Defect-3 Configuration 3 . 43

4.15 Heat Map Defect-3 Configuration 4 . 44

4.16 Heat Map Defect-4 Configuration 1 . 44

4.17 Heat Map Defect-4 Configuration 2 . 44

4.18 Heat Map Defect-4 Configuration 3 . 44

4.19 Heat Map Defect-4 Configuration 4 . 45

4.20 Heat Map Defect-5 Configuration 1 . 45

4.21 Heat Map Defect-5 Configuration 2 . 45

4.22 Heat Map Defect-5 Configuration 3 . 45

4.23 Heat Map Defect-5 Configuration 4 . 46

4.24 Heat Map Defect-6 Configuration 1 . 46

4.25 Heat Map Defect-6 Configuration 2 . 46

4.26 Heat Map Defect-6 Configuration 3 . 46

xiii

xiv List of Tables

4.27 Heat Map Defect-6 Configuration 4 . 47

4.28 Heat Map Defect-7 Configuration 1 . 47

4.29 Heat Map Defect-7 Configuration 2 . 47

4.30 Heat Map Defect-7 Configuration 3 . 47

4.31 Heat Map Defect-7 Configuration 4 . 48

4.32 Heat Map Defect-8 Configuration 1 . 48

4.33 Heat Map Defect-8 Configuration 2 . 48

4.34 Heat Map Defect-8 Configuration 3 . 48

4.35 Heat Map Defect-8 Configuration 4 . 49

4.36 Heat Map Defect-9 Configuration 1 . 49

4.37 Heat Map Defect-9 Configuration 2 . 49

4.38 Heat Map Defect-9 Configuration 3 . 49

4.39 Heat Map Defect-9 Configuration 4 . 50

4.40 Heat Map Defect-10 Configuration 1 . 50

4.41 Heat Map Defect-10 Configuration 2 . 50

4.42 Heat Map Defect-10 Configuration 3 . 50

4.43 Heat Map Defect-10 Configuration 4 . 51

4.44 Heat Map Defect-11 Configuration 1 . 51

4.45 Heat Map Defect-11 Configuration 2 . 51

4.46 Heat Map Defect-11 Configuration 3 . 51

4.47 Heat Map Defect-11 Configuration 4 . 52

4.48 Heat Map Defect-12 Configuration 1 . 52

4.49 Heat Map Defect-12 Configuration 2 . 52

4.50 Heat Map Defect-12 Configuration 3 . 52

4.51 Heat Map Defect-12 Configuration 4 . 53

4.52 Heat Map Defect-13 Configuration 1 . 53

4.53 Heat Map Defect-13 Configuration 2 . 53

4.54 Heat Map Defect-13 Configuration 3 . 53

4.55 Heat Map Defect-13 Configuration 4 . 54

4.56 Heat Map Defect-14 Configuration 1 . 54

4.57 Heat Map Defect-14 Configuration 2 . 54

4.58 Heat Map Defect-14 Configuration 3 . 54

4.59 Heat Map Defect-14 Configuration 4 . 55

4.60 Heat Map Defect-15 Configuration 1 . 55

4.61 Heat Map Defect-15 Configuration 2 . 55

List of Tables xv

4.62 Heat Map Defect-15 Configuration 3 . 55

4.63 Heat Map Defect-15 Configuration 4 . 56

4.64 Heat Map Defect-16 Configuration 1 . 56

4.65 Heat Map Defect-16 Configuration 2 . 56

4.66 Heat Map Defect-16 Configuration 3 . 56

4.67 Heat Map Defect-16 Configuration 4 . 57

4.68 Heat Map Defect-17 Configuration 1 . 57

4.69 Heat Map Defect-17 Configuration 2 . 57

4.70 Heat Map Defect-17 Configuration 3 . 57

4.71 Heat Map Defect-17 Configuration 4 . 58

4.72 Heat Map Forming defect Configuration 1 . 59

4.73 Heat Map Forming defect Configuration 2 . 59

4.74 Heat Map Forming defect Configuration 3 . 59

4.75 Heat Map Forming defect Configuration 4 . 59

4.76 Heat Map with computation Defect-1 Configuration 1 62

4.77 Heat Map with computation Defect-1 Configuration 2 62

4.78 Heat Map with computation Defect-1 Configuration 3 62

4.79 Heat Map with computation Defect-1 Configuration 4 63

4.80 Heat Map with computation Defect-2 Configuration 1 63

4.81 Heat Map with computation Defect-2 Configuration 2 63

4.82 Heat Map with computation Defect-2 Configuration 3 64

4.83 Heat Map with computation Defect-2 Configuration 4 64

4.84 Heat Map with computation Defect-3 Configuration 1 64

4.85 Heat Map with computation Defect-3 Configuration 2 64

4.86 Heat Map with computation Defect-3 Configuration 3 65

4.87 Heat Map with computation Defect-3 Configuration 4 65

4.88 Heat Map with computation Defect-4 Configuration 1 65

4.89 Heat Map with computation Defect-4 Configuration 2 66

4.90 Heat Map with computation Defect-4 Configuration 3 66

4.91 Heat Map with computation Defect-4 Configuration 4 66

4.92 Heat Map with computation Defect-5 Configuration 1 67

4.93 Heat Map with computation Defect-5 Configuration 2 67

4.94 Heat Map with computation Defect-5 Configuration 3 67

4.95 Heat Map with computation Defect-5 Configuration 4 67

4.96 Heat Map with computation Defect-6 Configuration 1 68

xvi List of Tables

4.97 Heat Map with computation Defect-6 Configuration 2 68

4.98 Heat Map with computation Defect-6 Configuration 3 68

4.99 Heat Map with computation Defect-6 Configuration 4 69

4.100Heat Map with computation Defect-7 Configuration 1 69

4.101Heat Map with computation Defect-7 Configuration 2 69

4.102Heat Map with computation Defect-7 Configuration 3 70

4.103Heat Map with computation Defect-7 Configuration 4 70

4.104Heat Map with computation Defect-8 Configuration 1 70

4.105Heat Map with computation Defect-8 Configuration 2 71

4.106Heat Map with computation Defect-8 Configuration 3 71

4.107Heat Map with computation Defect-8 Configuration 4 71

4.108Heat Map with computations Defect-9 Configuration 1 71

4.109Heat Map with computations Defect-9 Configuration 2 72

4.110Heat Map with computations Defect-9 Configuration 3 72

4.111Heat Map with computations Defect-9 Configuration 4 72

4.112Heat Map with computations Defect-10 Configuration 1 73

4.113Heat Map with computations Defect-10 Configuration 2 73

4.114Heat Map with computations Defect-10 Configuration 3 73

4.115Heat Map with computations Defect-10 Configuration 4 74

4.116Heat Map with computation Defect-11 Configuration 1 74

4.117Heat Map with computation Defect-11 Configuration 2 74

4.118Heat Map with computation Defect-11 Configuration 3 75

4.119Heat Map with computation Defect-11 Configuration 4 75

4.120Heat Map with computation Defect-12 Configuration 1 75

4.121Heat Map with computation Defect-12 Configuration 2 76

4.122Heat Map with computation Defect-12 Configuration 3 76

4.123Heat Map with computation Defect-12 Configuration 4 76

4.124Heat Map with computation Defect-13 Configuration 1 77

4.125Heat Map with computation Defect-13 Configuration 2 77

4.126Heat Map with computation Defect-13 Configuration 3 77

4.127Heat Map with computation Defect-13 Configuration 4 77

4.128Heat Map with computation Defect-14 Configuration 1 78

4.129Heat Map with computation Defect-14 Configuration 2 78

4.130Heat Map with computation Defect-14 Configuration 3 78

4.131Heat Map with computation Defect-14 Configuration 4 79

List of Tables xvii

4.132Heat Map with computation Defect-15 Configuration 1 79

4.133Heat Map with computation Defect-15 Configuration 2 79

4.134Heat Map with computation Defect-15 Configuration 3 80

4.135Heat Map with computation Defect-15 Configuration 4 80

4.136Heat Map with computation Defect-16 Configuration 1 80

4.137Heat Map with computation Defect-16 Configuration 2 80

4.138Heat Map with computation Defect-16 Configuration 3 81

4.139Heat Map with computation Defect-16 Configuration 4 81

4.140Heat Map with computation Defect-17 Configuration 1 81

4.141Heat Map with computation Defect-17 Configuration 2 82

4.142Heat Map with computation Defect-17 Configuration 3 82

4.143Heat Map with computation Defect-17 Configuration 4 82

4.144Heat Map with computation Forming defect Configuration 1 83

4.145Heat Map with computation Forming defect Configuration 2 83

4.146Heat Map with computation Forming defect Configuration 3 83

4.147Heat Map with computation Forming defect Configuration 4 83

4.148Unique defects in two port memory Address decoders 84

5.1 Sensitized FP with Maximum Coverage - ETD . 91

5.2 Defect Coverage in ETD test sequence - Memory configuration 91

5.3 Sensitized FP with Maximum Coverage - HTD . 92

5.4 Defect Coverage in HTD test sequence - Memory configuration 93

5.5 Sensitized FP with Maximum Coverage for Computation Configuration - ETD 95

5.6 Defect Coverage in ETD test sequence - Computation Configuration 96

5.7 Sensitized FP with Maximum Coverage for Computation Configuration - HTD 96

5.8 Defect Coverage in HTD test sequence - Computation Configuration 97

List of Abbreviations

BE Bottom Electrode
BEOL Back-End-of-Line
CBRAM Conductive Bridge random access memory
CIM Computation-in-memory
CMOS complementary metal-oxide-semiconductor
DRAM Dynamic Random Access Memory
DUT Device under Test
ETD Easy to Detect
FEOL Front-End-of-Line
FP Fault Primitive
HRS High Resistance state
HTD Hard to Detect
ILP Instruction level parallelism
LRS Low Resistance state
MOSFET Metal-oxide-semiconductor field-effect transistor
OxRAM Oxide random access memory
PCM Phase chage memory
ReRAM Resistive Random Access Memory
SRAM Static Random Access Memory
STT-MRAM Spin-transfer-torque magnetic random access memory
TE Top Electrode
VDD Operation Voltage
VLSI Very large scale integration

xix

1
Introduction

This chapter introduces the thesis. First the motivation of the thesis is discussed. Then, the state of the
art in CIM architecture testing is discussed. This is followed by the contributions of the thesis. Finally
the organisation of this thesis is briefed.

1.1. Motivation
Modern computing systems are a collection of different sub-systems that make up the system as
a whole. These sub-systems are arranged in different layers of abstraction [40]. The abstractions
range from the device-level components, such as metal–oxide–semiconductor field-effect transis-
tors (MOSFET) which form the basic logic-gates (such as the NAND and NOR logic gates) to operat-
ing systems that the users interact with [40]. MOSFET technology has paved the way for the devel-
opment of complementary metal-oxide-semiconductor (CMOS) fabrication process. This enabled
the development of integrated circuits which have more than a million transistors in them, all while
having low static power consumption and high noise immunity [63]. In all layers of abstraction,
there has been constant research and development to create the most efficient computing system
in terms of power, area and performance [33]. However, with the recent development in the fields of
medical imaging, meteorological sciences and DNA sequencing, there has risen a need for high per-
formance computers that are able to solve large problems with minimum effort possible [24] [18].

While the aforementioned problems can be solved with existing computing technologies, there
are several shortcomings of present day computers and their architectures. These serve as hin-
drances for improving the computing performance to keep up with the ever growing demand for
computation and data analysis [33]. These hindrances are commonly known as "performance lim-
iting walls" in different performance aspects. These walls exist for both the underlying CMOS tech-
nology and the computer architecture that make up the computing system [26] [4]. CMOS technol-
ogy faces the following walls:

1. Reliability Wall - As traditional CMOS based devices are scaled down to smaller nanoscale
dimensions, the resulting production variations, operational variations, and defects cause
higher failure rates and tend to reduces the lifetime of computing systems. This can be vi-
sualised in the bathtub diagram shown in Figure 1.1 where there is an increase in failure rate
as the sizes of the devices are scaled down [4].

2. Leakage Wall - To keep in check the power density of the devices, it was necessary to reduce

1

2 1. Introduction

Figure 1.1: Reliability Wall [4]

the operating voltages of the devices. This enabled the integration of more and more devices
in a small space. Unfortunately, reducing the operating voltage (VDD) reduces the threshold
voltage of the CMOS inverter as well. This has in-turn led to an increase in sub-threshold
leakage in these devices [34]. This means that for smaller devices, the leakage power is larger
than the active power in some cases. Figure 1.2 [1] shows the leakage power and the active
power consumed as the technology size is reduced [34].

Figure 1.2: Leakage Wall [3]

3. Cost Wall - There is a clear increase in the production costs over the years for the CMOS de-
vices as their geometric size is reduced to nanoscale [78], while there the cost per gate has
been decreasing [2]. However, the decrease in cost per device more than compensated from
90nm technology that there was an overall decrease in the prices. There is however a consid-
erable amount of increase in yield loss as a large number of transistors are integrated into a

1.1. Motivation 3

single chip, which contributes to the increase in the overall cost of the device for smaller de-
vices [55]. This has lead to the plateauing of the cost of production for smaller devices [36].
The cost trend with time is shown in the Figure 1.3 [36].

Figure 1.3: Cost Wall [36]

In addition to these limitations in the CMOS devices, there are also the following walls for the
Von-Neumann architecture itself. These type of computer systems have distinct control unit, pro-
cessing unit and memory that stores data and instructions. These kind of architectures are used
predominantly in all computing systems nowadays [62][26].

1. Memory Wall - Some applications might require a large amount of data to be transferred
between the memory and the processing unit in the Von-Neumann architecture. But the
memory bandwidth has not increased as much as the processor throughput over the years,
as shown in the Figure 1.4. Although cache memory mechanisms have been introduced to
reduce the data access time, they are limited in size [33] [41]. This serves as a bottleneck for
applications where there is a large amount of data transfer, which takes more time than com-
putations. Hence overall throughput of the system has not increased [61].

2. Power Wall - While the performance of the processing unit has seen a significant increase over
the years thanks to the increase in the frequency, the power consumption has also increased.
This leads to overheating in the system [33]. The trend for the speed of the processor and the
power consumed over the years is shown in Figure 1.5. The operation frequency of computing
systems have reached a limit because of the available power.

3. Instruction level parallelism (ILP) Wall - While there is parallelism shown in the CPU level
with the help of pipelining, and processor level with multi-threading and multi-core systems,
the problems that need to be solved are not solvable with parallelism. This increases the
power consumption of the computing system to solve the problems [33]. This stagnation can
be seen in the Figure 1.5, where the instruction level parallelism has flat-lined.

4 1. Introduction

Figure 1.4: Memory Wall [33]

Figure 1.5: Leakage Wall [68]

The combination of these walls in modern computing systems has urged researchers to look
towards novel methods of optimization, including modified architectures. Computation in mem-
ory (CIM) architectures have been developed as alternatives to traditional architectural solutions.

1.2. Need for high quality test 5

These CIM architectures work around the memory wall by performing logic operations in the mem-
ory, thus reducing memory transfers and thereby improving performance. With CIM architectures,
massive parallelism is achieved because of the repeated structure possible with the memory cells
that are present in these architectures. CIM architectures have been realised with DRAM [48] and
SRAM [70] memory cells as well as employing emerging memory technology, as described next.

The walls in CMOS technology have also increased the interest in device level alternatives that
have lower static leakage and lower cost. The realization of memristors devices on silicon has paved
the way for development of new logic and architecture designs that have minimal static power dissi-
pation, because of their non-volatile nature. Memristive devices are the physical implementations
of memristors. Memristors were first conceptualized by Chua in 1971 as a missing two-terminal
circuit element, along the lines of the resistor, inductor and capacitor [14]. The Memristor is char-
acterized by the relation between the charge and the magnetic flux [14]. As the name suggests, one
of the unique property of memristors is that they behave like a non-linear resistor with memory. The
first practical memristor in modern times was developed by the research group of Stanley Williams
at the Hewlett-Packard labs in 2008 [66]. It was realised as a metal/oxide/metal cross-point device
with TiO2 making up the oxide layer. Since then, there has been significant amount of research
dedicated towards improvement of the devices. These include experimenting with different metal
oxides, fine tuning physical properties for better yield and towards development of the circuits and
architectures using these memristors that could solve real world problems. Many different kinds of
memristive devices have been identified and produced, namely resistive RAM (ReRAM) [77], phase
change memory (PCM) [76] and spin-transfer-torque magnetic RAM (STT-MRAM) [86].

These memristors, by virtue of their non-volatile nature, can be employed in creating alternative
computer architectures which can be used to reduce, if not eliminate, the need for data movement
between the memory and the computation unit. In our research, we concentrate on the CIM ar-
chitectures based on memristive technologies because of the multiple advantages gained including
low power consumption, non-volatility of the data in the memristor among others [26]. Since indi-
vidual memristor devices are used for the computation of logic, massive amounts of parallelism can
be achieved in the system, leading to improved efficiency.

1.2. Need for high quality test
The memristive devices themselves are not with their downside. Since research is still at a nascent
stage with respect to the development of the memristor technology, many issues such as variations,
faults etc., exist, that need to be tackled. The growth in popularity of memristor based CIM architec-
tures has lead to huge developments in the area, such as improvement in reliability and faster op-
eration timings because of selecting appropriate materials for producing memristive devices [83].
Memristive devices have a different production process as opposed to traditional CMOS devices,
which makes them susceptible to defects that have not been studied yet. Studying, testing and de-
tecting these defects and faults that arise in memristor-based system is essential in order to make
sure that the end product can be considered consumer grade.

A characteristic feature of the CIM architectures based on memristive devices is their reliance of
CMOS technology to control the operations of memristive devices. This includes operations such
as driving the necessary voltages, writing logical values on the memristors, computing logic values
based on the values in the memristors etc. There is also the added possibility of new defect that
can occur in the memristor devices because of the interactions between the CMOS devices and
memristors. These need to be accounted for during the testing of a memristor based circuit.

All these factors contribute towards potential failure of devices that are based on CIM architec-
tures. This creates the need for high quality tests for these devices. These tests determine if the CIM

6 1. Introduction

architecture based circuits are devoid of any known defects and if they are fit for consumer oper-
ation. In order to detect these defects, complete analysis of these architectures have to be made.
Since these CIM architectures act as a memory and computing unit, tests have to be developed
for these different modes of operations as well. Therefore, a structural test approach is needed for
these devices. This forms the basis of this thesis, where we explore these architectures and device
and create tests for the faults that might occur in them.

1.3. State of the art in CIM Testing
In the literature, there only exist limited works which revolves around the testing CIM architecture
[15, 69]. In Tsai et al.s work, 8T cell SRAM based CIM structures are tested. However, it does not
address the peripherals of the CIM architecture in the test sequences created, and it does not ad-
dress tests for different CIM architectures based on other emerging memory devices [69]. While
Emara et al.s work [15] tests for Memristor Ratioed Logic [44], it fails to expand on the same for
other logic types. There are also works which test only the emerging memory technologies, based
on which CIM architectures are developed. These works test ReRAM [31, 32] and STT-MRAM [56],
thermally assisted switching MRAM (TAS-MRAM) [6] but only as standalone devices. The tests from
these publications focus only on the defects and faults in a singular device and provide solutions for
them. However, these test cannot, for example, take into account the interaction between two cells
when performing a computing operation.

These publications have also been found to not take into account the physical behaviour of the
defective devices while simulations, and use linear resistors as the defect model. This goes against
the definition of these memristive device showing non-linear resistive characteristics. This leads
to inaccurate fault models from the defect injections, which in turn lead to inaccurate tests [17]. A
novel approach named the Device aware test approach models the physics of the defective device
and is employed in this thesis to get accurate fault models and thereby better tests[16].

Through this thesis, the following goals are achieved: A methodology for CIM architectures test-
ing is created that make use of emerging devices (RRAM, STT-MRAM, etc.) as well as traditional
memory cells (DRAM, SRAM) in their core. The method of testing of these devices must make use of
device aware testing to ensure the right modelling of the devices used. The method takes all opera-
tions, both memory and computation, into account, as well as the peripheral circuits when defining
a test.

1.4. Contributions
The following contributions are made in this thesis:

1.4.1. Discussion of Test approach for CIM architectures

For testing of VLSI systems, there are two kinds of test approaches that are generally followed. These
are Functional testing and Structural testing. This work systematically discusses the feasibility of
applying these approaches to CIM architectures and concludes that structural testing is the more
suitable method for testing CIM architectures.

1.4.2. Systematic Approach for Testing CIM Architectures

The functional operations in the CIM architectures are identified and the architecture itself is di-
vided into two configurations based on the type of operation that is performed on the memristor
devices:

1.5. Organization 7

• Memory configuration where one or more memory device is accessed for either reading the
data stored in them or writing data into them.

• Computation configuration where the data in one or more memory devices are accessed and
some logic or arithmetic operation is performed on them.

These configurations are studied and a systematic approach for testing all CIM architectures is pro-
posed in this work.

1.4.3. Application of systemic approach to Scouting Logic

The test approach is verified on Scouting logic [80], a CIM architecture that is able to perform bit-
wise logic OR, AND and XOR operations on the data present in the memristor devices. The de-
fects and the fault models in both memory and computation configuration in scouting logic are
discussed. Tests are developed for faults observed in simulating the circuit after injecting defects.

1.4.4. Simulation Setup for Test Development for Scouting logic

In order to develop the tests for both configurations of scouting logic, the following steps were taken:
Fault primitive modelling for both memory and computation configurations, setting up netlists in
the Cadence Spectre language and injecting defects in them for simulations, automation of the sim-
ulation in a cluster using Mathworks MATLAB and bash scripting, extraction of the simulated data
and identifying the tests to be performed.

1.4.5. Publications

Parts of this thesis have been used in the following publications, which have been included in the
appendices:

1. A. Bosio, I. O’Connor, G. S. Rodrigues, F. K. Lima, E. I. Vatajelu, G. Di Natale, L. Anghel, S.
Nagarajan, M. C. R. Fieback, S. Hamdioui "Rebooting Computing: The Challenges for Test
and Reliability," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019, pp. 8138-8143.

2. S. Hamdioui, M. C. R. Fieback, S. Nagarajan, M. Taouil "Testing Computation-in-Memory Ar-
chitectures Based on Emerging Memories", in 2019 International Test Conference, Washington
D.C, U.S.A, 2019.

3. M. Fieback, S. Nagarajan, R. Bishnoi, M. Tahoori, M. Taouil, S. Hamdioui "Testing Scouting
Logic-Based Computation-in-Memory Architectures", submitted for European Test Sympo-
sium, Tallinn, Estonia, 2020.

1.5. Organization
The rest of this work is organized into the following chapters.

Chapter 2 introduces and discusses memristive device based CIM architectures in detail. After
this, the CIM architectures are classified based on the location of where computations reside. This
is then followed by a detailed explanation of ReRAM cells.

Chapter 3 gives an introduction to testing electronics. Then, the different test methods em-
ployed in testing electronic devices are introduced. This is followed by detailed explanation of the

8 1. Introduction

memory testing. Then it proposes the systematic approach that can be used to test CIM architec-
tures.

Chapter 4 details the fault analysis of Scouting logic, describing the experimental setup and
faults in each component.

Chapter 5 gives the tests that were developed for scouting logic, both in memory and computa-
tion configurations.

Chapter 6 concludes the work by summarizing each of the chapters, followed by discussions and
suggestions for possible future work.

2
Memristor based CIM

This chapter introduces the memristor based CIM architectures and their classifications, and explains
in detail the memristor cell. A general introduction to CIM architectures is presented in Section 2.1.
Then, the classification of the CIM architectures is introduced in Section 2.2. Section 2.3 presents the
memristor cell, which forms the building block of these CIM architectures.

2.1. CIM Introduction
As described earlier, traditional Von-Neumann architectures have to transfer data from the memory
to the central processing unit (CPU). This is an overhead to the overall time taken for the compu-
tation of data. In addition, it also accounts for high energy consumption and naturally creates an
upper limit to the amount of data that can be transferred. In order to reduce or at best eliminate this
overhead, Computation-in-Memory (CIM) architectures were developed. A CIM architecture is one
that actively tries to eliminate the cost of data transfer between the memory and computation unit
and has the potential to perform computations with massive parallelization by processing the data
in the memory. CIM architectures have been realised with DRAM and SRAM memories in the past
[81] [48] [5] [70]. However with the commercial production of the memristor devices, architectures
that make use of these devices have seen a rise in popularity [26].

How these CIM architectures can be part of the computing system is still under discussion [46].
The ideal case for the implementation would be to completely get rid of traditional computer ar-
chitecture based sub-units such as an adder or multiplier and replace them with CIM architectures.
But this cannot be achieved with the available technology because of the relatively low amount of
development in the CIM architectures which can perform these complex tasks. One proposed way
of integrating CIM architectures is to use them as accelerators with existing computing cores and
memories as shown in Figure 2.1-a. The CIM accelerator accesses the data from the main memory
and is controlled by the control units in the main CPU. Reduced memory access time between the
CIM die and the memory would mean high amount of data traffic and hence higher rate of calcu-
lations in the CPU. The use case for these accelerators is easily illustrated when there is a need for
repeated calculations or a loop in the program, that can be off-loaded to the accelerator. For exam-
ple, a loop in a program that repeatedly reduces an equation based on simple calculations on a data
stored in a fixed memory location. CIM architectures enable parallelism in the system, i.e. if there
can be a part of the program that needs iterative computations, it can be processed in the CIM ac-
celerator and the other parts of the program can be executed in the conventional CPU in the system,
as shown in Figure 2.1-b. This can be achieved by modifying the instruction set to accommodate

9

10 2. Memristor based CIM

macro-instructions in the system, which can be generated at the compiler level. This instruction
can be sent from the CPU to the CIM core, where the instruction is executed. The instruction would
point to the cell where an operation needs to take place and instruct which operation has to be per-
formed on them. The final results are then returned to the main CPU to complete the program. The
data produced in the intermediate steps of these iterations can be stored in the crossbar-array itself
or in dedicated registers. While storing the intermediate results in the cross-bar can be resource
efficient, they can also make the CIM accelerator to run at less than optimum speeds because of the
overhead from the write operations used to store of data. We will now focus further on the internal
architecture of the CIM accelerator.

Figure 2.1: CIM architecture - overview [27]

CIM architectures using emerging memories tend to resemble an SRAM memory device in term
of their architecture. In the core of the architecture, There is a very dense crossbar array, which
is made of these memristor devices. In place of the SRAM cells in a regular SRAM architecture,
memristive devices are present in CIM architectures. Owing to this similarity, we shall henceforth
refer to the memristor devices in an array as being part of a memristor cells. The memristor cells are
accessed with the help of peripheral circuits which include address decoders to identify the group
of cells where operations are performed and the bit-line drivers which provide voltages to the cells
to set the value of data in the memory and to enable computations in them. These structures would
vary for each type of logic that is implemented in the CIM architecture. In addition to the drivers and
decoders, there would also exist communication interfaces that would help with the commands to
be sent to the CIM unit.

Due to the dual functionalities of the architecture,there would be changes in the circuits that
build up the architecture in order to enable both memory operations and computation operations.
The CIM architectures operate in two configurations:

• Memory configuration where one or more memory cells is accessed only for either reading
the data that is stored in them or to write new values into these devices.

• Computation configuration where some logic or arithmetic operation is performed on the
memory units separately or in combination with another memory cell. In these configura-
tions, some architectures need changes in the driving circuits, the address decoders and the
sensing circuits to facilitate the operations.

The Figure 2.2 shows these configurations and their operations. If we consider these memory
and computation configurations as sets of operations, it can be seen that the memory configuration
is a subset of the computation configuration. The results produced by computation operations are

2.2. Classification of CIM 11

CIM architecture

Memory
Configuration

Computation
Configuration

1.Read
2.Write

1.Read
2.Write
3.Compute

Figure 2.2: CIM configurations

either stored in the memory cells themselves or are available via peripherals as direct outputs in the
form of electrical signals. This means that there needs to be a write operation in the former case
and a read operation in the latter. Thus, it can be concluded that the computation configuration is
a super-set of the memory configuration. This relation would play a role in the decision making for
the test methodology explained in Chapter 3.

2.2. Classification of CIM
This section classifies the CIM architectures based on where the inputs for computation are ob-
tained from and where data is stored post calculation. The CIM unit can store computation results
in one of only two places (i) the crossbar array itself or (ii) the peripherals of the CIM crossbar array.
From this the CIM architectures can be split in the following manner [46]:

• CIM-Array (CIM-A): In CIM-A, the computation result is stored in the array after their pro-
duction. The examples of such architectures include Snider [65], IMPLY [9], MAGIC [45] etc.
These CIM-A architecture based cores may have significant changes in the memory array as
opposed to regular memory structure in the crossbar. This is because some logic types such
as MAGIC demand an array structure different from that of an SRAM.

• CIM-Peripheral (CIM-P): in CIM-P, the computation result is produced within the peripheral
based on electrical properties of one or more memory cells. For example the amount of cur-
rent that passes through the device after an operation. These architectures thus have special
circuits in their periphery that can perform logical operations. Example of these kinds of ar-
chitectures include Pinatubo [50] and Scouting logic [80]. The memory cells still play a huge
role in these architectures as they are involved in the generation of a base electrical value,
which the peripherals use to perform the operation. For some logic types this would mean
that a series of operations have to be performed in one or more of these memory cells in order
to obtain a logic value.

While this distinction is made with the location of results, there exists a sub-division that can be
made by studying where the inputs for these logical operations are stored. Logical and arithmetic
operations generally operate on two input operands. This means that there has to be minimum one
operand in the crossbar array. The second operand can be obtained from either the memory itself
or in the form of a external voltage depending on the architecture. The former method has resistive
inputs in the system and the latter input method has a hybrid set of inputs as it has both resistive and
voltage inputs. This results in the classification of the CIM architecture mentioned above to have
four sub-classes: CIM-Ar and CIM-Ah for architectures that store the results of the computation

12 2. Memristor based CIM

Computation-
in-Memory

(CIM)

CIM-A CIM-P

- Output is produced in array
- Output representation: resistive

- Output is produced in periphery
- Output representation: voltage

Inputs Representation Inputs Representation

resistive
CIM-Ar

hybrid
CIM-Ah

resistive
CIM-Pr

hybrid
CIM-Ph

- Snider[65]
- IMPLY [9]
- MAGIC [45]

- Resistive Accu-
mulator [58]
- Majority Logic
[19]

- Pinatubo[50]
- MPIM[35]
- Scouting[80]

- Vector-Matrix
Mult. [73, 82]
- Vector-Matrix-
Matrix Mult.
[74]

Figure 2.3: CIM Classification

in the array and have resistive and hybrid inputs respectively, and CIM-Pr and CIM-Ph where the
results are obtained in the peripherals and have their inputs taking the resistive and hybrid forms
respectively. The Figure 2.3 shows the various CIM logic architectures classified with the four sub-
classes. This classification aids in the analysis of these architectures for test development, which
will be discussed later in Section 3.

2.3. Memristor Cell
It is important to understand the operation of a memristive device before we can venture further
into the test development. Here we discuss the three different types of memristive devices that have
been fabricated and that can be used in the CIM architecture.

The three major non-volatile memoristor devices are STT-MRAM, PCRAM and ReRAM. All these
memristor devices have common features: These are two terminal devices that act as non-volatile
memories and they can be in one of many ’resistance states’. The states are determined by the
resistance provided by these devices in the circuit. The resistance state boundary where there is
minimal resistance to current in the circuit is the low resistance state (LRS) of the cell, also known
as the ’On state’. Similarly, the state boundary where there is a large resistance is the high resistance
state (HRS) and is known as the ’Off state’. LRS and HRS are dependant on the material of the device,
process variations, noise factors and ambient conditions. The operation that switches the state of
the cell from the HRS to the LRS is called as the "Set" operation, and the switching of the states in
the opposite way is called as the "Reset" operation. The switching between these states is achieved
with the help of some form of electrical stimulus, but the mechanism that is behind these operation
varies between each of the different type of devices. We shall now look at the working principles
behind each of these devices.

2.3. Memristor Cell 13

2.3.1. STT-MRAM

The spin-transfer-torque magnetic device is based on the magnetic torque switching that occurs in
an atom because of electron spin under the influence of an electric field [8]. A STT-MRAM device
consists of two dielectric materials, one with a magnetic moment of free polarity and other with a
fixed polarity. These layers are separated by a thin tunneling insulation layer as shown in Figure 2.4.
When a current of sufficient amplitude is applied to the device, a change in the angular momentum
of the device occurs, that in turn changes the magnetisation of the free layer in the device. If the
magnetisation of the free layer is in the same direction of the device, a high amount of current passes
through the bulk, which is seen as a Low resistance state (LRS). If the direction is the opposite, then
it is in the High resistance state (HRS).

STT-MRAM has high endurance, high scalability and high retention rate than other memristive
devices [83]. However, STT-MRAM Devices have very low on resistance to off resistance ratio, which
can make it difficult for state identification in some cases, where the on and off resistances are in the
range 10−100Ω. Because of their large size, their package density is often lower than other forms
of memristors [8]. The production of these devices have poor process compatibility with that of
mainstream silicon CMOS devices, which creates a cost barrier due to the extra investment.

Figure 2.4: MTJ Cell structure [8]

2.3.2. PCRAM

Phase change devices is primarily made up of chalcogenide glass-based elements such as GeSbTe,
Sb2Ti3 and AgInSbTe. An example of SbTe based phase change device is shown in the Figure 2.5
[76]. These materials have the property of changing their phase from crystalline, which represents
low resistance state, to an amorphous form, which is the high resistance state. This phase change
occurs with Joule heating, applied in the form of electric field or voltage. The transformation from
LRS to HRS occurs when the material is heated above its melting point and then rapidly cooled
down to room temperature. The "Set" operation is achieved by heating the material at a specific
temperature between its critical point and melting point. The heating of the device is performed
using a heating filament through which the current is passed [76].

PCRAM has a very large on resistance to off resistance ratio. This could mean that they could be
used for multi-bit operations [83]. But the key challenges in PCRAM are large melt currents required
to trigger the phase change, and the time it takes for the crystallization of the PCRAM material which
can be more than 50 ns.

14 2. Memristor based CIM

Figure 2.5: PCM Cell Structure [76]

2.3.3. ReRAM

The family of Resistive RAM consists of two different types of physical devices exhibiting different
underlying physics. But, these devices operate in a similar fashion, have many common charac-
teristics and a similar structure [12, 77, 83]. All ReRAM cells are made up of a metal top electrode
and a metal bottom electrode which sandwich a switching medium where a Conductive Filament is
formed. The two different types of ReRAM cells are explained as follows:

• OxRAM: The Oxide RAM consists of a top and bottom electrode with the bulk of the device
made up of one of TiO2 [75], ZnO [59], HfO2[60], which act as the switching material. When
there is certain amount of voltage applied across the device, a conductive filament made up
of oxygen valencies is formed in the bulk that connects the top electrode and the bottom
electrode.

• CBRAM: In the conductive bridge RAM, the conductive filament is made up of metal atoms
which are formed by fast-diffusive Ag or Cu ions migrating into the solid-electrolyte [83].
These conductive filaments provide a path for current to flow, driving the device to a low re-
sistance phase.

The Figure 2.6 shows the two types of ReRAM. The only difference between these cells in terms
of the characteristics is that the ratio between the resistances at the on and off state which is higher
in CBRAM devices. The endurance of OxRAM devices, however, are higher than that of CBRAM
devices. For all comparison purposes with other types of memristor devices these two devices are
grouped together as ReRAM.

The ReRAM devices have high compatibility with the CMOS process, low write time compared to
other memristor devices, and low voltage requirement for read and write operations. While the ratio
between on and off resistances are quite high, they also show intermediate resistance values with
high precision, making them the perfect candidate for CIM architectures that have computations
in the analog domain [47]. Because of these factors and the availability of well established models

2.3. Memristor Cell 15

Figure 2.6: OxRAM and CBRAM [83]

for these ReRAMs we use these devices in the CIM architectures in our simulations. The operations
and characteristics of the ReRAM devices are discussed below.

Figure 2.7: I-V Curve for ReRAM [79]

The I-V curve for ReRAM devices is shown in Figure 2.7. Here, it can be seen that when a posi-
tive voltage VW is applied to the ReRAM device, the current increases slightly at first. At a threshold
voltage (Vth), there is a sudden increase in the current that flows through the device. Here, there is
enough energy in the switching material to break the bonds between the metal and oxygen ions, in
the case of an OxRAM device. The free oxygen ions are attracted to the positively charged electrodes
and start to form the conductive filament (CF). The CF is formed all the way from the positive elec-
trode to the bottom electrode. This chain of ions facilitate the flow of the electrons through the de-
vice and hence the resistance of the device decreases, pushing it to the LRS. When the applied volt-
age is removed from the cell, the conductive filament stays intact, making the device non-volatile.
The voltage at which the transformation takes place is called the set threshold voltage (VSET). Simi-
larly, when a negative voltage is applied to the device that is more negative than the reset threshold
voltage (VRESET), some ions in the conductive filament move back into the oxide. this reduces the
size of the CF and breaks the chain of ions that connect the electrodes together, thus reverting back
to the HRS. At the moment of fabrication of the device, there is no free oxide that can create the link
through which the current can flow. Hence a process step where this CF is formed is required. This

16 2. Memristor based CIM

step in the production of the device is called CF Forming. In this step, a voltage much larger VSET

is applied to the memristor device. This voltage, called the forming voltage (Vform) is dependant
on the thickness of the switching material in the device. The forming of the cell happens along the
grain boundaries that form in the poly-crystalline switching material [64].

H 1 U 0 L
R [Ω]

Figure 2.8: Resistance range in Memristors

The logical states in the ReRAM devices are shown in the Figure 2.8. The states are derived from
the resistance of the device after a set or reset operation. As the resistance of the device is in a con-
tinuous range and varies with the write cycle, separate states for the logical values whose resistances
do not lie within the exact limits of the HRS and LRS are defined. The state that corresponds to the
HRS is the logical ’0’ and the state that corresponds to the LRS is the logical ’1’. The state of the
device when the resistance is less than that of the logical ’1’ is called as ’H’. Similarly, the state of the
cell where the resistance is higher than that of the logical ’0’ is called as ’L’. The state that is between
the LRS and HRS resistance range is the undefined state, denoted by ’U’. These states have been
seen in defective ReRAMs, whose detection is an important part of the test development.

2.3.4. Memristor Array Architecture

The CIM architectures have the memristive devices in the crossbar. These devices can be arranged
in different architectures. These are briefed as below:

• 1R configuration: In the 1R configuration (Figure 2.9), each memristor cell has only the mem-
ristive device. It translates to the devices being connected end to end in the array.

• 1S1R: Here (Figure 2.10)the cells consist of a selector that is connected to the bottom elec-
trode. These selectors can include tunneling diodes,PT diodes etc.

• 1T1R: In this configuration (Figure 2.11), the memristor device is connected on one end with
a three terminal MOSFET device that can effectively control the current passing through the
cell.

1T1R architecture is the preferred option because of the following reasons: the 1R configuration
is susceptible to sneak path currents, which are caused in the array. Sneak paths are undesirable
paths for the current which runs parallel to the intended path of the current in the array [87]. These
sneak paths exist in the 1R configuration because of the lack of gating in the cells. There could be a
path in the array that can have a lesser resistance that the intended access path in the array and can
cause wrong addressing. This effect can be reduced with the usage of the 1S1R architecture for the
array. This makes use of a rectifying diode or a bidirectional selector connected to the memristor
device. But there are issues with maintaining stability with the cells, as there could be unstable
oscillatory behaviour caused by the switching of the device or the selector. This is alleviated by the
use of 1T1R architecture, which uses a transistor that is connected in series with the memristive
device. This makes it a requirement to have three bit line addressing for the memory cells. Although
this increases the addressing complexity and the area of the cell itself, there is a pay-off in having
cells whose current can be controlled.

2.3. Memristor Cell 17

Figure 2.9: 1R memristor cell Figure 2.10: 1S1R memristor cell

SL

WL

int

BL

Figure 2.11: 1T1R memristor cell

The Figure 2.11 is a representation of a typical 1T1R cell. Here BL, WL and SL represent the bit
line, word line and select line which enable the accessing and operations to be performed in the
cell. When a positive voltage is applied to the WL, the NMOS gate opens, which allows current to
pass from the BL through the device to the internal node (int in Figure 2.11) to the select line.

2.3.5. Production of ReRAM Devices

The production process of the ReRAM device in the 1T1R cell configuration is shown in Figure 2.12
and described here in detail. There are three steps that form the production process of the ReRAM
device: Front-End-of-Line (FEOL), Back-End-of-Line (BEOL) and CF formation. The FEOL is the
formation of the MOSFET device in the 1T1R cell structure, while the BEOL is the formation of the
memristor itself. The final step is the forming of the CF, which is dependant on the oxide layer
thickness at the end of the BEOL. We now look at each of these steps in detail.

Figure 2.12: ReRAM Production Process

FEOL:

The standard production process that is taken up for the FEOL is called as "Gate first" process. the
steps in the FEOL is given in the Table 2.1. These processes are preceded by the selection of the
wafer to be used, Chemical-mechanical planarization and the cleaning of the wafer using plasma,
dry-physical or super-critical fluid methods [39]. Details of these processes are out of scope and
readers are encouraged to refer to [63]. After these processes, the ReRAM cell is fabricated in the
BEOL processes which are explained in the next subsection.

18 2. Memristor based CIM

Table 2.1: Front-End-of-Line Process [43]

S.No Process steps
1 Shallow trench isolation (STI)
2 High-k gate deposition
3 Dual metal-gate deposition
4 Poly-silicon gate deposition
5 Poly-silicon/metal etch
6 Source/Drain formation
7 Salicide/contact etch stop deposition
8 First interlayer dielectric (ILD) film deposition
9 Polishing

10 Contact formation

BEOL:

After the FEOL process, the lower metal layers of the BEOL are manufactured. These are extended up
to where the memristors are fabricated. First the BE has to be constructed. The BE is patterned and
etched, followed by its planarization with chemical mechanical polishing. On top of the smoothed
BE, the switching material is deposited uniformly, using atomic layer deposition to ensure unifor-
mity [38]. Coating the oxygen layer is performed with care, as the larger number of grain boundaries
that form between the poly-crystalline switching material, the wider the range of the resistance of
the cell. Next the oxide is deposited with a capping layer made of TiN metal. This layer is inserted
to deplete the O atoms in the switching material to act as an oxygen reservoir [77]. After this the TE
is deposited and etched to remove excess depositions. With the ReRAM device built, it is isolated
(passivation) and connected to the metal layers (metallization).

CF Forming

As mentioned, the grain boundaries between the poly crystalline material create the path for the CF
to be formed. Thus the BEOL step plays an important role in this step of the production process,
as the lesser grain boundaries in the switching layer, the higher the resistance in the device. The
forming step can be seen as a dielectric soft breakdown [77]. After the CF forming process, the cell
is in logical state ’1’ and can be used as a memory and logical unit. During the forming process,
the forming current,Iform should be kept constant throughout the operation. In order to reduce the
variability of the device after forming, different schemes are followed. These apply a sequence of
pulses with varying pulse width and voltage [52]. The best way to form was found to employ trape-
zoidal waveforms that had their voltage cutoff when the expected switching behaviour is achieved
[22].

These manufacturing processes are points where defects arise in the cell and in the peripherals.
These defects cause the failure of CIM devices. The defects are discussed in Section 3.3.

3
CIM Architecture Testing

Chapter 2 gave an introduction to CIM architectures and memristor cells used in them. This chapter
provides background on electronic testing. The first section gives an introduction to testing, followed
by definitions of basic terms in electronics testing. Section 3.2 gives a brief about the different test
methods available for electronics testing. The last section deals solely with testing of CIM based archi-
tectures.

3.1. Introduction
There are billions of transistors that are packed in a modern electronic design. This level of com-
pactness can cause a lot of faulty devices if precision is not followed. They can sometimes fail even
when care is taken to produce well fabricated devices. This is where the testing of the electronic de-
vices comes into picture. The testing of these products after their production not only detects failed
devices, after which diagnosis can identify the cause of the failure. It is of utmost importance to test
components that would be used in critical applications such as military and automotive industry.
Testing of these devices also plays a vital role in consumer goods as well, as they provides market
advantages and overall customer satisfaction.

The general procedure followed in the testing of products is as follows: the manufactured goods
are put under a test program, where devices are tested as pass or fail. The failed devices are diag-
nosed to find where the failure has occurred. When the failure is found, it would be used to fix either
the design of the circuit or tweak the production method.

According to Micheal L. Bushnell, there are several roles taken up by testing process in electronic
circuits[54]. these are listed as follows:

• Detection: The tests are used to detect the devices that do not work or are not up to the stan-
dards set by the company.

• Diagnosis: The devices that have failed are studied to identify the specific cause of the prob-
lem which resulted in the failure.

• Device characterization: It is imperative to understand the device operation and correct er-
rors in the design and come up with a test procedure, which is performed during testing.

• Failure mode analysis (FMA): Through the use of different test and instruments such as op-
tical and electron microscopes, the cause of failure is detected and the process of production
is rectified[54].

19

20 3. CIM Architecture Testing

Before we look in detail the process of finding defective devices, a few definitions from [54] have
to be introduced:

• Device under test (DUT): The circuit system that needs to be verified to be fault free.

• Defect: A defect in an electronic system is the unintended difference between the imple-
mented hardware and its intended design. These could include process defects, material de-
fects, age defects and package defects.

• Error: A wrong output signal produced by a defective system is called an error. A defect causes
an error.

• Fault: A representation of a defect at the abstracted function level is called a fault.

In order to create tests that would be able to detect the faults that are found in the devices, the
internal circuits have to be studied beforehand and suitable tests for the devices have to be gener-
ated. Care has to be taken with these tests as the potential ’escape’ of a fault can cause faulty devices
to pass the test. These tests have to consider all possible defects, including parametric faults and if
their functionality is as required by the end user. There are other concepts that are related to testing
of components, but we concentrate on the testing methodologies for memories because CIM archi-
tectures are essentially memories which can do computations in them. For more information on
testing electronic devices Micheal L. Bushnell’s book [54] is recommended. In this thesis, the test
developed is for the purpose of detection, to verify is the system developed matches the require-
ments set by the designer. The tests confirm the presence of a defect in the memory architecture.

3.2. Test Methods
This section deals with the different types of testing procedures that are taken up in order to verify
the DUT for correctness.

3.2.1. Functional Testing

Functional testing makes use of functional tests that would check all possible inputs to the DUT
to find if they produce the correct results. This means that for a circuit with n inputs a total of 2n

inputs are possible. This is a very costly operation, which would be impractical for high values of
n. There is also the added disadvantage of not knowing where there actual defect is in the circuit,
which makes the diagnosis process highly resource consuming. On top of all of this, there is no
guarantee that these functional tests cover most of the faults that can be present in the DUT.

3.2.2. Structural testing

In Structural testing, the initial assumption is that the DUT has been manufactured according to
specification. This means that unless there are defects that have come up during the manufactur-
ing, the device would have no errors and would function properly. These tests are called structural
because they rely on the specific structure of the circuits. With structural testing, it is possible to
create algorithms that can test the devices for the specific faults are found to be in the system.

The Structural testing process can be streamlined into the following steps:

1. The netlist of the DUT is obtained and studied to identify potential defects. These defects are
understood and adequately modelled.

3.3. Memory Testing 21

Defects &
Netlist

Defect
Modelling

Fault
modellig
&Analysis

Fault
Space

Test
Generation

CIM
Test

Defect

Models

Verified

Fault Space

Figure 3.1: Structural testing approach

2. A set of possible faults that in the system based on individual components in the circuit is
defined. This set is called the Fault space.

3. Defect models are then injected into to the netlist to observe the faulty behaviour caused by
these defects.

4. All faulty behaviour observed is then combined to form fault models.

5. These fault models are verified against the fault space to identify missing faults, by injecting
all possible defects in the system. This step is called as fault analysis.

6. Tests are generated for the realistic set of faults that occur in DUT.

The above process is shown in Figure 3.1. There might be cases where structural testing does
not provide as much fault coverage as required by specification. In those cases, functional tests can
be employed to improve the fault coverage[11]. In the next section, we deal with the special case of
memory testing with memristive devices.

3.3. Memory Testing
As mentioned, the CIM architectures that use memristor cells of 1T1R architecture resemble an
SRAM array architecture. It consists of peripheral that allow accessing of the cells to read and write
data and also compute logic. Thus it is only natural that we discuss about the testing methodology
for ReRAM devices and for the peripheral units that are made up of MOSFET technology devices.
The Subsection 3.3.1 discusses about the failures that can occur in the memory unit, followed by
Subsection 3.3.2 which discusses the faults that occur in the memory unit because of these defects.
Then the tests for these fault types that are available are introduced.

3.3.1. Defects

Despite efforts to manufacture devices with high precision, there are always defects in the process.
These can be in the form of parametric variations or physical irregularities that hinder the opera-
tion of the cell. Defects in the memory cell can occur in both the transistor component, memristor
component and the metal interconnects between them. With the peripherals, it can occur in the
transistors or the interconnects. In this section, the defects that occur in these locations are dis-
cussed.

Defects in MOSFET components (FEOL)

The study of defects that occur in the MOSFET transistors is a well established research field. The
variation sources which cause defects were classified by Kuhn et al. as historical and emerging [42].

22 3. CIM Architecture Testing

Historical sources are those which have been studied for a long time. These include patterning prox-
imity effects, line roughness, polish variations and gate variations (in dielectric thickness, charge
variation, traps etc.). Emerging sources are those which were seen to have lesser impact in the past,
but have become of high significance lately. These include random dopant fluctuations, strain re-
lated variations etc. Long-term variation management is required to understand and keep these
variation sources in check.

Defects in Memristor Device

Defects in the memristor device include those that occur in the FEOL, BEOL and CF forming. FEOL
defects are similar to those discussed in Section 3.3.1. The Defects in each step discussed in the
BEOL production phase described in Section 2.3.5 are discussed here:

• While the metal layer is extended to the layer where the memristor is to be constructed, stan-
dard defects that occur in CMOS production can be present. These were discussed in Section
3.3.1. These include wire opens or shorts, change in wire resistances due to line-width rough-
ness.

• Next, in the construction of the BE, there can be variations with the area of the device due to
line edge roughness. This causes lowering of the resistance of the device, which can lead to
wrong logical states being stored. Smaller devices also have difficulties with the forming of CF
[64].

• During the chemical-mechanical polishing of the device, there can be defects that are caused
in the device due to the roughness of the BE. This can lead to variations in the device which
results in faulty behaviour.

• In the switching material, the CF is formed along the grain boundaries of the poly-crystal.
Since the distribution of the grain-boundaries varies with every device, the resistance range
of the device varies as well.

• During the etching of the TE, there may be re-deposition of metal in the device, which could
reduce resistance and forming voltage [57] [7].

CF Forming Defects

In the forming of the memristor device, two defects can occur [16]. First is the oxide breakdown,
which can be compared to time dependant gate-oxide breakdown in MOSFET devices. This leads to
the device to be permanently in the LRS state. If the defect is of a less severe form, then the device
would be able to switch back to HRS, but the resistance range of the cell would have shifted below
its nominal range. These devices are called as overformed devices[72]. The second type of defect
that can occur is the failure of the CF forming step. This makes the device stuck in HRS.

Defects in peripherals

The ReRAM device is highly compatible with the MOSFET production process and operates in the
same voltage region. Hence, for the peripheral devices that drive the ReRAM devices, MOSFET tech-
nology is employed. The defects in these devices have been studied extensively as mentioned in
Section 3.3.1.

3.3. Memory Testing 23

Figure 3.2: Device oriented modeling method

Defect modeling

The defects mentioned above are then modelled, as mentioned in Figure 3.1. Initially these defects
were modelled as linear resistors that would help to realise opens and shorts in the memristor de-
vices and in the peripheral circuits [37]. But since the memristor device is not linear, it is not advised
to use linear resistor for modeling them. This resulted in the development of the device-aware defect
modeling [16]. The Figure 3.2 explains the process of creating device-aware models with ReRAM as
an example. First, the impact of the defect on the technology parameters are studied. for example,
how a defect changes the length of the CF. Then these effects are fed to the electrical model to find
their effect on the electrical parameters. The accuracy of the model is further tuned if real data is
available. With this, an optimal electrical defect model is obtained.

3.3.2. Faults

From the defects that are modelled, the next step is to model the faults and analyse them. Fault
modeling is based on two steps:(i)Fault space definition and (ii)fault space validation, using defect
injection and circuit simulation. The fault space is a set of all possible faults that can occur in the
device.This can be analytically generated given the knowledge of the operations that happen in the
device. After the space is identified, the fault analysis takes place. Here sensitizing stimulus for
each of these faults are developed and applied to an electrical model of the device to identify the
response to the stimuli. Then a model that can accurately capture the defect in the cell is taken and
the process is repeated. Based on the type of fault that is observed, the faults are classified as Easy
to detect (ETD) or Hard to detect (HTD) faults. The classification helps in creating the tests for the
system easier. This process can be classified into three steps, according to Fieback et al.et al., as
follows [16]:

• Sensitize: Provide a set of inputs that will trigger the defective behaviour.

• Observe: The response of the defective behaviour in the system is observed.

• Classify: Here the faults are classified as ETD or HTD faults.

Fault Space

Since the peripheral circuit is specific to the CIM architecture, we do not go in detail about the same.
Nonetheless, we introduce the fault space and faults for some common peripheral circuits. While

24 3. CIM Architecture Testing

testing CIM architectures consisting of ReRAM cells, the fault space in the array is limited to single-
cell faults. These faults can be sensitized by at most one operation on the cell or by performing more
than one operation on the cell. The former is called as a static single-cell fault and latter is called
as a dynamic single-cell fault. In case there exist a fault where there is more than one cell involved,
then it is called a coupling fault. These faults are also considered in the fault space.

Before the simulation of the faults to find suitable tests, a method to describe the actions of these
faults in the cell has to be defined. The most common way to describe a fault in a memory cell is by
Fault Primitives(FP [28]. These fault primitives are compact notations that take the form 〈S/F/R〉.
The components in the notation for ReRAM memories are explained below:

• S denotes the sensitizing sequence of the fault that is being tested. It could be a set of op-
erations or the state of the cell which causes the fault. Mathematically it is represented as
S = x0O1x1 . . .Oi xi . . .On xn . Here xi denotes the state of the cell, i.e., xi ∈ {0,1}. Oi denotes the
operation that takes place in the cell i.e, Oi ∈ {r,w}, where r and w indicate a read and write
operation on the cell respectively. n is the number of operations that take place in the cell.

• F is the state of the cell after the operations in the sensitizing sequences denoted in S are
performed. The values that can be in the cell were discussed in Section 2.3.3. Mathematically,
this is represented as F ∈ {H,1,U,0,L}.

• R (Read output) denotes the output of a read operation, if the last operation in S is a read
operation. The set of values that R takes is given by R ∈ {0,1,?,−}. Here ’?’ denotes a random
read value in the sensing circuit. For example, this can happen when the sensing current is
too close to the sense amplifiers’ reference current. ’−’ denotes that the last operation in the
sensitizing sequence S is not a read operation.

With the above, the fault space for the memory array can be defined. This is possible because
the S, F and R elements in the notation give all the possible combinations of inputs and outputs that
can occur in the memory cell. In case there are new operations that can be performed in the cell,
they are added to the FPs, for example with computations. These added cases will be discussed later.
Complex faults that involve multiple operations (i.e, dynamic faults) and faults that affect multiple
cells (e.g., coupling faults) can be defined in a similar way by extending the appropriate part of the
FP [54]. For example, a dynamic fault is given by the example 〈0w0w0/0/−〉, where the S component
consists of consecutive operations, making it static. A coupling fault occurs between multiple cells,
when a defect in one cell causes unwanted changes in the neighbouring cell [54].

The fault space for the peripherals is all the possible faults that might occur in them. This means
that the fault space consists of the combination of all possible input operations and their effect on
the system. For example, for an address decoder the fault space included all the possible faults that
could occur in the addressing of the memories in the array. The faults in these peripheral units
would be addressed in the section 3.3.2.

Fault Models

Based on the above fault primitives, the faults are defined for the memory cell. These are given in the
Table 3.1, where all single-cell static FPs are listed with their names. The naming of the FPs follow
the naming scheme given as:

F P = {read impact}{cell behaviour}{initial state}{F } (3.1)

3.3. Memory Testing 25

In equation 3.1, read impact is conditional and is applicable only if a read operation is the sen-
sitizing operation for the fault. This can be either an ’incorrect’ (I) or ’random’ (R) read impact. The
cell behaviour gives which operation and the resulting fault effect in the cell. The operations are
read (R) or write (W), and are extended when there is a need for additional operations. The fault
effects are given as follows: (i) Destructive(D) where the cell has it’s state changed when under an
operation that is not supposed to change the state of the cell. (ii) Transition (T) where the cells do
not undergo the transition that is required by the operation that is being performed on them. (iii) if
both of the above can not describe the fault effect then the cell behaviour is left empty.

An example of these faults is given as follows:

RRDF 01 = < 0r 0/1/? > (3.2)

Equation 3.2 is a random read destructive fault that changes the state of the cell while giving a
random read operation in the output.The case of dynamic faults is explained with an example:〈1r1w0/L/−〉
is described with as 2d-WTF1L. The prefix nd- indicates that it is a dynamic fault, where n is the
number of operations in S. The name of the fault is derived from the last operation performed.
While this naming scheme works for all faults, they take an exception with state faults, where no
operations are performed on the cells. They are described as:

F P = SP {i ni t i al }{F } (3.3)

For example, SF01 = 〈0/1/−〉 is a state fault where the state of the cell flips from logic ’0’ to logic
’1’.

Faults in Peripherals

In order to ensure complete coverage of tests, the faults in the peripherals have to be considered
as well. These faults are dependant on the specific type of peripheral component used in the CIM
architecture. These components inlcude voltage drivers, decoders for bitline, control registers and
circuitry etc based on the type of CIM architecture used. However we concentrate mainly on the
address decoders and sense amplifiers, two common peripherals in CIM architectures, as they are
much more complex circuits that the others mentioned and have predefined fault model. The ad-
dress decoder obtains the control signals and decodes it to select the particular memory cell and
the sense amplifier deduces the value stored in the memory cell. We look at the faults that occur in
them respectively as follows.

Address Decoder faults have been studied well [71]. The fault space includes all the faults that
can occur while an addressing operation. The faults in address decoders can be classified as static
or dynamic. Static faults are caused by completely broken interconnects in the lines that connect
to the memristor cell or the line that connects the transistor to the memristor in the cell. These
can also be caused by low ohmic bridges between the connections. These consists of four possible
faults[71], as shown in Figure 3.3. These faults are given the following names:

• Fault 1 is No-access(AFna), where the address does not access the cell it is associated with.

• Fault 2 is Multiple cells(AFmc), where an address access more than one cell.

• Fault 3 is Multiple addresses(AFma), where a cell can be accessed by multiple addresses.

• Fault 4 is Other cells(AFoc), where an address accesses other cells in addition to the cell they
are supposed to access.

26 3. CIM Architecture Testing

Table 3.1: Complete single-cell static fault primitives.

S F R FP notation Name # S F R FP notation Name

1 0 1 - 〈0/1/−〉 SF01 27 0r0 1 0 〈0r0/1/0〉 RDF01

2 0 L - 〈0/L/−〉 SF0L 28 0r0 1 ? 〈0r0/1/?〉 RRDF01

3 0 U - 〈0/U/−〉 SF0U 29 0r0 1 1 〈0r0/1/1〉 IRDF01

4 0 H - 〈0/H/−〉 SF0H 30 0r0 L 0 〈0r0/L/0〉 RDF0L

5 1 0 - 〈1/0/−〉 SF10 31 0r0 L ? 〈0r0/L/?〉 RRDF0L

6 1 L - 〈1/L/−〉 SF1L 32 0r0 L 1 〈0r0/L/1〉 IRDF0L

7 1 U - 〈1/U/−〉 SF1U 33 0r0 U 0 〈0r0/U/0〉 RDF0U

8 1 H - 〈1/H/−〉 SF1H 34 0r0 U ? 〈0r0/U/?〉 RRDF0U

9 0w1 0 - 〈0w1/0/−〉 WTF00 35 0r0 U 1 〈0r0/U/1〉 IRDF0U

10 0w1 L - 〈0w1/L/−〉 WTF0L 36 0r0 H 0 〈0r0/H/0〉 RDF0H

11 0w1 U - 〈0w1/U/−〉 WTF0U 37 0r0 H ? 〈0r0/H/?〉 RRDF0H

12 0w1 H - 〈0w1/H/−〉 WTF0H 38 0r0 H 1 〈0r0/H/1〉 IRDF0H

13 1w0 1 - 〈1w0/1/−〉 WTF11 39 1r1 0 0 〈1r1/0/0〉 IRDF10

14 1w0 L - 〈1w0/L/−〉 WTF1L 40 1r1 0 ? 〈1r1/0/?〉 RRDF10

15 1w0 U - 〈1w0/U/−〉 WTF1U 41 1r1 0 1 〈1r1/0/1〉 RDF10

16 1w0 H - 〈1w0/H/−〉 WTF1H 42 1r1 1 0 〈1r1/1/0〉 IRF11

17 0w0 1 - 〈0w0/1/−〉 WDF01 43 1r1 1 ? 〈1r1/1/?〉 RRF11

18 0w0 L - 〈0w0/L/−〉 WDF0L 44 1r1 L 0 〈1r1/L/0〉 IRDF1L

19 0w0 U - 〈0w0/U/−〉 WDF0U 45 1r1 L ? 〈1r1/L/?〉 RRDF1L

20 0w0 H - 〈0w0/H/−〉 WDF0H 46 1r1 L 1 〈1r1/L/1〉 RDF1L

21 1w1 0 - 〈1w1/0/−〉 WDF10 47 1r1 U 0 〈1r1/U/0〉 IRDF1U

22 1w1 L - 〈1w1/L/−〉 WDF1L 48 1r1 U ? 〈1r1/U/?〉 RRDF1U

23 1w1 U - 〈1w1/U/−〉 WDF1U 49 1r1 U 1 〈1r1/U/1〉 RDF1U

24 1w1 H - 〈1w1/H/−〉 WDF1H 50 1r1 H 0 〈1r1/H/0〉 IRDF1H

25 0r0 0 ? 〈0r0/0/?〉 RRF00 51 1r1 H ? 〈1r1/H/?〉 RRDF1H

26 0r0 0 1 〈0r0/0/1〉 IRF00 52 1r1 H 1 〈1r1/H/1〉 RDF1H

Dynamic faults are caused by partial opens and shorts in the circuit, which translate to delays
in the circuit. They can be either activation delays (ActD) where the activation of a line is delayed or
deactivation delay (DeActD) where the deactivation of a line is delayed. These can also lead to one
of the static faults based on the location and timing of the delay.

Figure 3.3: Address Decoder faults (AX and AY are addresses and CX and CY are cells that are addressed by
them respectively.)

Sense amplifier faults have also been covered by researchers. These faults are again grouped as
static and dynamic [71]. The Static faults are caused by opens and shorts in the circuit or low ohmic
bridges. An example of these static faults is the SA stuck-at fault (SASF). Here, a sense amplifier
always outputs the same result irrespective of the inputs fed to it. Dynamic faults are caused by
partial opens and shorts in the circuit. They consist of two types:

1. Unbalanced SA Fault(USAF), where the sense amplifier tends to give an incorrect answer for
equal inputs supplied to it because of the asymmetry in their internal circuits [84].

3.3. Memory Testing 27

Faults

Strong Faults Weak Faults

Easy-to-detect Hard-to-detect

Figure 3.4: Fault Classification

2. Slow SA Fault(SSAF), where the signal timing of the sense amplifier is not synchronised with
the clock of the system [20].

Fault Classification

Faults are classified as being either strong faults or weak faults. Strong faults are those which can
be sensitized and detected using specific sensitizing sequences. These tend to result in functional
faults in the system. On the other hand, weak faults do not result in functional faults, but rather in
parametric faults such as change in voltage swing rate etc. These faults are not detected by sensi-
tizing sequences and hence require special methods to have them detected. Based on the nature of
faults and the effort that is needed to detect them, the faults are further classified as Easy-to-detect
(ETD) and Hard-to-detect(HTD) faults, as shown in Figure 3.4. Following is the criteria for these
faults to be identified as ETD or HTD:

• Detection of the ETD faults are guaranteed by the application of read/write or other common
operations that are performed in the cell. for example, 〈1r1/0/0〉 is a easy to detect fault.

• Detection of the HTD faults are not always guaranteed by these common operations, but there
is a possibility that they can detect them. These need of additional tests or structures such as
stress tests or DfTs to find them. For example, 〈1r1/U/?〉 is a hard to detect fault.

Classification of these fault models into ETD and HTD eases test development processes. We
now look at the different test approaches that available for each of these types of faults.

3.3.3. Testing

Tests for ETD Faults

For ETD Faults, the primary test is the March test[71]. These tests were defined by Suk and Reddy
as finite operation sequences that detect functional faults in memories if only one type of fault is
present [67]. The tests can be applied in either an increasing order of memory address (denoted
by ⇑), a decreasing order (denoted by ⇓) or it may be irrelevant (m). The set of operations that are
performed in a cell before it can be performed in the next cell is called a march element [54]. These
are distinguished by semicolons separating them, with each march element enclosed in parenthesis.
The entire march sequence is enclosed in braces. for example, the MATS+ march test [71] is written
as

m (w0);⇑ (r0,w1);⇓ (r1,w0)}

28 3. CIM Architecture Testing

Here there are three march elements: M0 :m (w0), M1 :⇑ (r0,w1), and M2 :⇓ (r1,w0). These ele-
ments are performed in the cell before proceeding to the next cell. The Table 3.2 gives the notations
used in a match test. The march test is the preferred method for testing because of its O(n) com-
plexity (where n is the number of memory bits), regularity and symmetry [54].

Table 3.2: March test notations

Notation Description
r Memory action: A read operation.
w Memory action: A write operation.
r0 Memory action: Read ’0’ from the memory location.
r1 Memory action: Read ’1’ from the memory location.
w0 Memory action: Write ’0’ to the memory location.
w1 Memory action: Write ’0’ to the memory location.
↑ Write ’1’ to a cell containing ’0’ or the cell has a rising transition.
↓ Write ’0’ to a cell containing ’1’ or the cell has a falling transition.
l Complement the contents in the cell.
⇑ Increasing memory addressing order.
⇓ Decreasing memory addressing order.
m Addressing order does not matter.
⇒ Write value x to a cell already containing x
∀ Denotes any memory write operation

< ... > Denotes a particular fault, described by ...

Several extensive March tests have been described to test the memory elements which are made
up of the memristor devices [13][51][53]. While these march tests cover faults for the memory op-
erations, they cannot be used as such for CIM architectures as there will be faults that would not be
covered by these tests.

Tests for HTD Faults

In order to test for HTD faults, the primary methods that are available are as follows:

• Some HTD faults can be identified by march tests, but these would require the addition of
stresses[20]. These stresses can be algorithmic (changed initial states of the cell, fast address-
ing etc.) or environmental (voltage and speed variations) in nature.

• In case these tests are not enough, then Design for testability (DfT) is employed. Here a special
circuit is added to the architecture in order to identify defective cells. For example Hamdioui
et al. have created a scheme where they have exploited the access time duration and supply
voltage level of the ReRAM cells in order to detect unique faults where the device is in the
undefined ’U’ state[25].

With these tests and methods, it is possible to get the desired amount of fault coverage with
memory architectures that are based on ReRAM memories. But it is unknown if these methods
can be used for ReRAM based CIM architectures, where the cells are also subjected to a new set of
operations, based on the logic type used. Hence it is required to investigate the testing methodology
for the CIM architectures. This is presented in Chapter 4.

3.4. CIM test methodology 29

3.4. CIM test methodology
A CIM core operates in one of the two configurations given below:

1. Memory Configuration, where the CIM architecture can only read and write data to the mem-
ory devices.

2. Computation Configuration, where the data stored in one or more memory device is used to
perform some logic or arithmetic operation.

The hardware in the computing configuration of a CIM architecture can be seen as a modifi-
cation of the hardware in its memory configuration. This leaves some gap in the defects covered
if only the memory configuration is to be tested. This rules out common tests of regular memo-
ries to be applied to these CIM architectures. The computation configuration alone should not be
tested as it can leave out faults in the components which arise only in the memory configuration,
but do not affect the computation action. Hence it is required that both memory and computation
configurations are tested for these CIM architectures.

As memory configuration is a subset of computing configuration as explained in Section 2.1,
it has to be tested first. Testing computing configuration first can miss faults that can be detected
easily in the memory configuration, which has a lower operational complexity. The tests performed
are named Memory configuration tests and Computation configuration tests. The test development
in these configurations is explained below:

3.4.1. Testing in Memory Configuration

Here, only the hardware used to perform memory operations are enabled. Testing in this configu-
ration depends on the type of memory device used. If well established devices such as DRAM and
SRAM are used, then test development is easier. It becomes difficult if emerging devices such as
ReRAM, PCMRAM and STT-MRAM are used, as their operation model is new and have to be stud-
ied. The models used to describe these devices have not always been accurate as found by [17]. For
these kinds of devices, device aware testing has to be employed to accurately model the defects in
the memory device [17].

3.4.2. Testing in Computation Configuration

Here, testing strongly depends on the hardware that enables computation in the CIM device. This
varies with the underlying logic design that is employed in each of these architectures. In order to
test for the computation configuration, we need to first identify the hardware that forms the com-
putation configuration. After these changes are studied, structural testing approach is used to find
the faults in the device and thus develop tests in this configuration. The next section examines the
computation configuration changes in Scouting logic based CIM architecture, a CIM-P architecture.

3.4.3. Scouting Logic

Scouting logic is a bit-wise logic that is able to perform OR, AND, and XOR operations. It performs
them by modifying the read operation [80]. For a memristor device, the read operation is performed
by applying a voltage Vr across its terminals and comparing the resulting current(Iin) to the refer-
ence current(Iref) in the sense amplifier. If Iin is greater than Iref, the output of the sense amplifier
becomes Vdd (logic 1). if the opposite is true, then logic 0 is obtained. The value of the reference Iref

is fixed during the designing of the circuit, based on the resistance of the memristive device used
and consequently the resulting Iin obtained by applying a voltage.

30 3. CIM Architecture Testing

Figure 3.5: Memory array setup [80] Figure 3.6: References of primitive operations [80]

Logic operations in scouting logic architecture are realized by extending this idea to reading two
memristive cells (M1 and M2) in the same bit line as shown in Figure 3.5 [80]. These cell have a
equivalent resistance of (M1||M2). This resistance determines the input current (Iin) to the sense
amplifier when a voltage of Vr is passed through them. As the equivalent resistance is limited to
one of three values possible (RL/2, RH/2 and RL||RH ≈ RL), the input current is also limited to three
possible values. By adjusting the value of Iref, different logic gates can be realised as shown in Figure
3.6 [80]. For logic AND operation, the reference current should be between Vr/RL and 2Vr/RL. Logic
OR is realized by setting the reference current between 2Vr/RH and Vr/RL. Finally, logic XOR is
realized by setting two reference currents, one between 2Vr/RL and Vr/RL, and the other between
Vr/RL and 2Vr/RL.

Here the changes between the memory and computation configurations are in the memory ar-
ray and in the peripheral circuits, namely the sense amplifier and the address decoder circuits. Two
cells have to accessed at the same time in order to enable these logical operations. Multiple cell
access is a unique configuration change from the memory configuration and can cause errors in the
memory array. The sense amplifier is also modified to change its reference current when it receives
an instruction. An address decoder that is similar to a multi-port memory address decoder is in
place to access two cells simultaneously. This is different than a regular memory address decoder.

With these examples, we summarize the testing methodology for CIM architectures. First the
CIM architecture in consideration has to be studied to distinguish between its memory configu-
ration and computation configuration. Then, the memory configuration is tested using structural
testing followed by analysis of the computation configuration. In structural testing, the defects in
the configuration are identified and faults are modelled accordingly. Then the faults are simulated
and their occurrence is validated. Then appropriate tests are then devised for these configurations.
We apply this methodology to scouting logic in Chapter 4.

4
Defect and Fault modelling for Scouting

Logic based CIM Architectures

This chapter deals with fault analysis of the two configurations in Scouting logic, a CIM-Pr archi-
tecture based logic. This serves as an example of applying the proposed methodology to a CIM ar-
chitecture. Section 4.1 gives a detailed account of the experimental setup for the scouting logic. This
is followed by examining the faults in the memory configuration in Section 4.3.1. This followed by
examining the faults in the computation configuration in Section 4.3.2.

Scouting logic based CIM architecture is tested using structural testing method. The steps in
structural testing was explained earlier and are repeated here again for clarity. The Figure 4.1 gives
the block diagram for the flow of structural testing. This chapter deals with defect modeling and
netlist, fault modeling, fault space and fault analysis for scouting logic based architecture. In the
next chapter, the tests are developed for these faults found to improve the defect coverage.

Defects &
Netlist

Defect
Modelling

Fault
modellig
&Analysis

Fault
Space

Test
Generation

CIM
Test

Defect

Models

Verified

Fault Space

Figure 4.1: Structural testing approach

We start with explaining the netlist in Section 4.1. This is followed by the defect modeling in
memory and computation configurations. Finally, fault analysis in memory and computation con-
figurations are discussed.

4.1. Circuit Setup
The architecture for scouting logic resembles that of a regular ReRAM design, with modifications in
the address decoder and the sense amplifier. This architecture is shown in Figure4.2 [80].

The memory array are arranged in words of consisting of three memory cells. These are accessed
with the help of word line (WL), bit line (BL) and select line (SL), as shown in Figure 4.3. The words

31

32 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

WL0

WL1

WL2

SL0

SL1

SL2

B
L0

0
B

L0
1

B
L0

2

B
L1

0
B

L1
1

B
L1

2

B
L2

0
B

L2
1

B
L2

2

W00

W10

W20

W01

W11

W21

W02

W12

W22

Cell Array

BL Driver

W
L

D
ec

o
d

er
s

SL
D

ri
ve

r

Sense Amplifiers

CS

CS

Row Address A
Row Address B

WLEN

Data In

SENOperation

Data Out

Write/Read

Col. Addr.
Decoder

Column
Address

CS

Control
Logic

Data Out

Opcode

Operation
WLEN

Write/Read
SEN

Data In

Figure 4.2: Simulation Architecture

are selected with the help of WL decoders, BL driver and SL driver. The array used in our simulations
consist of 9 words, which are arranged in a 3x3 manner. This means that there are 27 individual cells
that are present in the array, with 9 words in each row. The defects for the simulation are injected
individually in the 26th cell of the array, when counted row-wise.

SL

WL

int

BL

Figure 4.3: 1T1R

WL

BL_00BL_01BL_02

Cell2 Cell1 Cell0
SL

Figure 4.4: Word in array

The column decoder drives the column select (CS) line. This line is used in the BL driver to
select the corresponding column, with the RESET signal and Datain signals, as shown in Figure 4.5.
The Datain signals dictate the value to be written to the words. The waveforms for different levels
of these signal and the corresponding output for the Bit line is shown in Truth table 4.1. In order to

4.1. Circuit Setup 33

enable the buffer to the bit line, the write enable line has to be activated with a delay. This is shown
in the waveform in Figure 4.6.

DATA
RESET

COL

RESET

COL

BL

WEN

Figure 4.5: Bitline Decoder

Figure 4.6: Bitline Decoder - Waveforms

The select line is activated by the WLInput line, in combination with the RESET signal. How the
signal WLInput is generated is explained in the next paragraph. SL is driven to ’0’ when the cell is
set and while reading, and to ’1’ when the cell has to be reset. This is shown in the Figure 4.8, where
the input signals and the corresponding output signal are shown, while Figure 4.7 shows the circuit
diagram for the SL driver.

RESET
WL Input SL

Figure 4.7: Select Line Driver

The peripherals and array components mentioned above do not differ for both memory and
computation configurations. However, in order to perform computation, there are changes made in
the address decoder and sense amplifier. The address decoders are shown in Figure 4.9. The circuit

34 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

DATA RESET COL W E N BL

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Table 4.1: Truth Table - Bitline Decoder

Figure 4.8: Select Line Driver - Waveforms

is based on the standard address decoder circuit, making use of NOR and NAND gates to select
the appropriate output signal. It decodes the address it receives from the control circuit(shown
in figure as A1,A2etc.,) and selects the appropriate WL. The WL decoder shown in Figure 4.10 has
two identical address decoders named Address decoder A and B respectively. These need to act in
parallel for scouting logic operations such as AND and OR as they require two cells in the same BL to
be open simultaneously. In order to have WL access for both these address decoders, an OR gate is
introduced as shown in 4.10. This output, WL input is then provided as an input to the buffer which

4.2. Defect modeling 35

is enabled by WLEN.

X0

Y0

WL0A

A0

A1

A2

A3

..
.

Xm

Ym

WLmA

A0

A1

A2

A3

Figure 4.9: Address Decoder

..
.

..
.

WLEN

WL1

WL0

WLm

A
d

d
r.

D
ec

.A
A

d
d

r.
D

ec
.B

..
.

WL0A

WL1A

WLmA

..
.

WL0B
WL1B

WLmB

Row
Addr. A

Row
Addr. B

Figure 4.10: WL Decoder

The sense amplifier is adapted from Zhao et al., and is shown in Figure 4.11 [85]. The nodes A
and B in the CMOS inverter couple are pre-charged by PMOS transistors P3 and P4 when there is
no operation in the cell. Once the SA is enabled, the SEN and CS signals are triggered to turn off P3
and P4, and turn on NMOS transistors N3, N4, N5 and N6. This connects the sense amplifier to the
array through the column and turns off the pre-charge connections. This allows nodes A and B to
discharge through BL and BLref. The resistance of these nodes determine the rate of discharge in the
cell. if RBL < RBLref, then BL will discharge faster. This is translated into node B being charged and
A being discharged rapidly simultaneously. After some time, this result is captured as the operation
outcome. Similarly, if RBL > RBLref, then node A discharges and node B charges rapidly, causing the
opposite value to be saved. The Figure 4.14 gives the voltage level for the internal nodes A and B
while a read operation takes place. It can be seen that the B discharges while A remains the same
due to the positive feedback loop operation in the inverter pair. Logic AND and OR operations are
enabled with a reference circuit, shown in Figure 4.12. This provides two resistances, RAND and ROR,
that are selected with the help of the Oper ati on signal. These resistances have predetermined val-
ues that depend on the combined resistance of the cells in the array. This is illustrated in Figure 4.13.
In the figure, it can be seen that the range of the logic values against the references. For example, ’0’
means a logic ’0’ in the cell and it is present in the high resistance end of the figure. ’11’ means the
resistance is a combination of two cell each having logic ’1’. When the references are set wrong with
respect to the combined resistances of the cells under study, there could be wrong reading faults in
the sense amplifier. For example, if the reference of RAND is not set between ’11’ and ’10’ resistance
ranges, then there could be an incorrect computation taking place. This reference can be used in the
memory configuration as well, as the reference resistance for the read operation and the OR logic
are the same. That is, Rread = ROR.

4.2. Defect modeling
Defect that occur during the production phase of devices were discussed earlier in Chapter3. These
defects have to be modeled electrically in order to be injected in the netlist and simulated to find
the effect of their presence in the circuit. This is done in the defect modeling phase of structural
testing. We take a look at the defect modeling in the memory configuration first, followed by the
defect modeling in the computation configuration.

36 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

P1 P2

P3 P4

N1 N2

N3 N4

N5 N6

SEN SEN

SEN SEN

CS CS

BL BLref

VDD VDDVDD VDD

A B

Figure 4.11: Sense Amplifier [85]

N7 N8

C

ROR

D

RAND

BLref

Operation Operation

Figure 4.12: Operation reference

R[Ω]

‘0’‘00’‘1’‘11’
‘10’/
‘01’

Rread

ROR

RAND

Figure 4.13: Scouting logic relative resistance and references

4.2.1. Defect modeling for memory configuration

The defects in Scouting logic can occur in the production of the ReRAM cell and the peripheral
circuits. In the ReRAM cell, the defect can occur in any of the three phases of production: FEOL,
BEOL and CF forming. The defects in FEOL discussed in Section 3.3.1 have always been modeled
as linear resistors [37] [25]. The same holds true for defects that are formed during the build up of
the metal layer from the FEOL to the BE of the memristor. All defects in the peripherals are modeled
with linear resistors. The different defects are modeled by changing the resistance of the linear
resistance injected as the defect. For example, a short is modeled with as a linear resistance with
low resistance and a open is modeled witha linear resistance with high resistance. In order to model
the forming defect that occurs in the CF formation phase in a ReRAM device, we make use of the
device-aware defect modeling approach.

We use DAT to model the forming step in the ReRAM devices [17]. Here the forming current Iform

is related to the length of the CF, lCF and to the thickness of CF, φT. From [21], we obtain the median
resistance of the device as a function of Iform by interpolation. This median resistance is used to
obtain the standard deviation of the resistance, based on Equation (1) from [21]. These resistance
values are used to model lCF and φT. These parameters are modelled according to Equations (3) -
(5) in [17].

The ReRAM device model used by Li et al. makes uses of all the above mentioned parameters as
input [49]. It has two different equations for the SET and the RESET operation, which are based on
the device parameters given in the Figure 4.15 adapted from [49].

The model is created in Verilog-A, and is fitted and calibrated to match the measurements of real

4.2. Defect modeling 37

Figure 4.14: Sense Amplifier Internal Nodes

devices produced. In order to do that, the parameters lCF and φT are varied and the corresponding
mean resistance is found out. Then they are fitted against the real device measurements found in
[21] and Iform is obtained from it. Iform is varied between 5µA and 34.1µA to obtain a wide range of
resistances. With this a model that accurately describes the forming defect is obtained.

With the address decoder, a linear resistor is used as the defect model [30] [20]. Both strong and
weak faults for the address decoder can be modeled using linear resistors by varying the resistance
used [30]. In the sense amplifier, fault analysis is performed by assuming a linear resistor as the
defect model. Similar to the address decoder, it can be proven that a linear resistance can cause
both strong and weak faults.

4.2.2. Defect modeling in computation configuration

The defects are modeled for the computation configuration in the same way as the memory config-
uration. There will be no changes in the cause of the defects in these components hence a change
in defect models is not required. Thus, we use linear resistors for the shorts, opens and bridges with
the peripheral units that are modified for the computation configuration. The ReRAM is modeled
as using DAT method to include the forming defect, and a linear resistance is used to model the
defects that occur during the FEOL and BEOL phases of the production in ReRAM.

4.2.3. Defect Injection

In order to perform a complete fault analysis for the memory array, the defects need to be injected
in the netlist. Forming defect was injected using the model described above and all other faults were
analysed by injecting potential defects in the form of resistances in the memory cell. Table 4.2 gives
the location of the different defects that were injected into the circuit. These defects were swept for
a strength ranging from 1Ω to 100 MΩ in a logarithmic scale in 10 steps. The defects in the array
interconnects are modeled with the memory cell as series resistances in the connections. For the
different resistances, ETD faults and HTD faults are expected to observed in the simulated scouting

38 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Figure 4.15: Model Parameters [49]

logic architecture, based on the location and strength of the defect.

S.No Defect Resistance Location
1 BL and WL
2 BL and SL
3 BL and internal node
4 BL and VDD
5 BL and GND
6 Series with BL
7 WL and SL
8 WL and internal node
9 WL and VDD

10 WL and GND
11 Series with WL
12 SL and internal node
13 SL and VDD
14 SL and GND
15 Series with SL
16 Internal node and VDD
17 Internal node and GND

Table 4.2: Defect Location in the Memory cell

4.2.4. Experimental Setup

The above circuit was setup using HSPICE and the ReRAM memory device was modelled in Verilog-
A. The defects are injected with varying inputs using a MATLAB script that generated a new netlist
that specified the timings of the different input signal as required by the operation that takes place.
The netlist was simulated using Cadence spectre circuit simulator in the command line. A batch
process of these simulations were pushed to the server. In order to obtain only the required results

4.3. Fault Modeling and Analysis 39

out of all the possible simulation results, a .mdl file was created. An .mdl file is based of the measure-
ment descriptive language of Cadence, which enables the user to acquire measurements from the
simulation at specified times. The results of such simulations were then parsed using MATLAB to
obtain the results, which gave all the faults that were observed, as will be discussed in the following
sections.

4.3. Fault Modeling and Analysis
This section deals with the modeling of the faults that occur in these devices. First the fault space for
each configuration is defined and then fault verification is performed where we obtain all sensitized
defects in the circuit. These faults would be used to develop the test for each configuration.

4.3.1. Fault Modeling and Analysis for Memory Configuration

The fault space for the different parts of the scouting logic architecture in memory configuration
have already been explained in Section 3.3.2. We will now investigate the sensitized fault space for
different defects injected in the array and also about the sensitized fault space in the peripherals.

Sensitized Fault space: Array

We now look at the faults that are sensitized in the memory configuration for the several defects
mentioned in Table 4.2. These defects affect the operation in the memory structure, causing faults
to be sensitized. These faults are represented as heat maps. We present an example heat map in
Table 4.3 which is generated for Defect 1. The Black boxes indicate that there are no faults seen
for the operations in the y-axis if a defect of strength given in the x-axis were to be injected in the
circuit. White boxes indicate that the faults seen are easy to detect and the gray boxes indicate that
the faults are hard to detect. The boxes themselves contain the state of the cells and the read output
value of each of these operations. That is, the F/R component of the FPs introduced in Section
3.3.2 are indicated for every fault that was observed. In case of coupling faults, the unique fault
combinations are mentioned in the tables for the sake of legibility. The faults sensitized are not
only dependant on the cells that have been injected with defects, but also by the nature of the cells
which form their neighbouring cells for the computation configuration. Hence they are simulated
with different data combinations in the neighbouring cells. These give rise to four different array
patterns which can provide different outputs. Tables 4.4 - 4.7 show the four different combinations
for the memory configuration operations. In the first combination, the cells in the word that resides
above the word with the defective cell is in a state opposite to the initial state of the defective cell.
For example, it the defective cell is in the state ’1’, then all the cells in the word above the word
containing the defective cell would be in state ’0’. All the other cells in the array in this combination
are in state ’0’. In the second combination, the states of the cells in the word above the word are in
the same state while the other cells in the array are in state ’0’. The third and fourth combinations
are an extension of combinations 1 and 2, but the state of the other cells in the array are ’1’. With
these combinations, the effects of the defect on the neighbouring cells can also be studied.

We shall now look at the different defects that were injected in the memory configuration, and
analyse the faults that are obtained in these simulations.

40 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.3: Heat Map Example

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 1 (Tables 4.4 - 4.7) is a resistive bridge between the wordline and the bitline. When the
defect resistance is low, it acts as a bridge and it loses its voltage driving capability as the defect resis-
tance increases. While performing a 0r 0 operation, the bitline reaches higher potential comparable
to the SET voltage (VSET) and thus sets the state of the cell to ’1’ causing a read disturb fault RDF0-
(1). This effect vanishes at a high defective resistance (1.6 MΩ. In case of a 1w0 operation, all the
common word line is driven to GND by the bit line that is connected to via the defective resistance.
This causes no operation to take place in the cells, and they remain in the ’1’ state, causing a write
transition fault WTF0-(1). This effect can be seen in all the cells in the word where the same word
line is used to activate the gate of the transistor. This operation can also cause incomplete transi-
tions in the cell, which causes the cell to reach an undefined state ’U’ because of the partial opening
of the cells. For a 1r 1 operation, the bit line is at a higher voltage than the RBLref arm of the sense
amplifier at lower defective resistances and hence the RBLref arm discharges faster. This causes an
incorrect read fault (IRF-1(1)) in the sense amplifiers in the defective word.

Table 4.4: Heat Map Defect-1 Configuration 1

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/– U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.5: Heat Map Defect-1 Configuration 2

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 41

Table 4.6: Heat Map Defect-1 Configuration 3

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.7: Heat Map Defect-1 Configuration 4

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 2(Tables 4.8 - 4.11) is a resistance that is injected between the bitline and the select line.
This causes an incorrect read fault for 0r 0 as the bitline is short to the select line and hence the
ReRAM cell is not registered at the sense amplifier for RDef < RON. This defect also causes a coupling
fault only in cells in the ’0’ state which are in the same word line as the defective cell to be set to
state ’1’ even though no operation is performed on these cells during a 0w0, 1w0, 1w1 and 0w1
operations. A write transition fault is also seen for 1w0 and 0w1 operations as the bitline and select
line are shorted. A transition fault to undefined region WTF-1(U) is seen in the defective cell for
RDef = 3.59kΩ as the voltage is not powerful enough to drive the transition 1w0.

Table 4.8: Heat Map Defect-2 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 0;1/- 0/- 0;1/- 0/- 0;1/- 0/- 0;1/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.9: Heat Map Defect-2 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 0;1/- 0/- 0;1/- 0/- 0;1/- 0/- 0;1/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1;U/- 1;U/- 1/- U/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

42 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.10: Heat Map Defect-2 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1;U/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.11: Heat Map Defect-2 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1;U/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 3 (Tables 4.12 - 4.15) is injected as a resistance between the bitline and the node between
the ReRAM device and the transistor, referred to as the internal node. We observe an incorrect read
fault with the operation 0r 0 for RDef less than the resistance offered by a cell in logic ’0’. This is
because the current for measurement takes the shortest path, which is provided by the defective
resistance. This defect also causes Write transition faults when the defective resistance RDef is lesser
that the resistance of the states. When RDef is in the same order as the resistance, it causes a write
transition fault to undefined region, as seen in operation 1w0. The fault ceases to exist when the
defect is of a higher resistance than the target state of the transition.

Table 4.12: Heat Map Defect-3 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 43

Table 4.13: Heat Map Defect-3 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.14: Heat Map Defect-3 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 4 (Tables 4.16 - 4.19) is a short between the bit line and VDD. The defective resistance
adds up to be part of the read operations which makes the effective resistance to the sense amplifier
to be RDef+Rcell when the defective resistance is in the same order of the cell in state ’1’. This causes
Incorrect read faults when 1r 1 is performed and an destructive read when 0r 0 is performed on the
defective cell. Because of the presence of the voltage, 0w0 causes write destructive fault WDF-0(1)
and operation 1w0 causes write transition fault WTF-0(1) as the defective cell would be set to logic
’1’ by the short.

44 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.15: Heat Map Defect-3 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.16: Heat Map Defect-4 Configuration 1

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.17: Heat Map Defect-4 Configuration 2

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.18: Heat Map Defect-4 Configuration 3

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 5 (Tables 4.20 - 4.23) is a short between the bit line and GND. A transition from ’0’ to
’1’ does not take place for smaller values of RDef as the voltage that is at the bitline would be not
high enough to set the ReRAM device to state ’1’. Along the same reasoning, the operation 1w1
would result in a write destructive fault as the cell would be in state ’0’ from the reset operation that
precedes a set operation, as mentioned in Chapter 2. The 0r 0 would result in incorrect read fault as
the RBLref arm of the sense amplifier would be at a higher potential than the RBL arm of the sense
amplifier due to the direct short it has with GND. This causes the output of the sense amplifier to be
’1’ irrespective of the state of the cell where the read operation is performed. This would not affect
the 1r 1 operation and hence a fault would not be captured.

4.3. Fault Modeling and Analysis 45

Table 4.19: Heat Map Defect-4 Configuration 4

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.20: Heat Map Defect-5 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.21: Heat Map Defect-5 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.22: Heat Map Defect-5 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 6 (Tables 4.24 - 4.27) is a resistance injected in series with the bit line. It is worth noting
that this defect also doubles as a resistance injected in series with the internal node as it would make
no difference. The resistance which sensitize faults in this defect is always in an order that is greater
than or equal to the resistance of the ON state. For resistance ranges in the order of mega Ohms, the
defect serves as an open, which causes the sense amplifier output to be always ’1’ as the RBLref arm
of the sense amplifier would discharge first. This is reflected in the incorrect read faults with 0r 0
operation. For resistance in the same range of the ReRAM resistances in logical state ’0’ and ’1’, the
total resistance of the unit under consideration becomes RDef+Rcell. This causes the sense amplifier

46 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.23: Heat Map Defect-5 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

to give the output ’0’, which registers as an incorrect read fault for 1r 1 operation. During the write
operations, the resistance is serves as a voltage drop which hinders the set operation. This causes
write transition faults for operation 0w1 for high defect resistances. During the reset operation
(1w0) there is also a write transition fault, for the same reason.

Table 4.24: Heat Map Defect-6 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.25: Heat Map Defect-6 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.26: Heat Map Defect-6 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 47

Table 4.27: Heat Map Defect-6 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
1w0 1/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 7 (Tables 4.28 - 4.31) is a defective resistance between word line and the select line. This
causes the set operation 0w1 and the reset operation 1w0 do not occur as the transistor gate does
not open properly. However, the 1w1 operation shows a Write destruction fault as the operation is a
combination of two transitions and the cell gets stuck in state ’0’. The read operations change with
the defect resistance, as with lower defect resistance, the discharge is much faster, which causes
a fault in 0r 0 and with defect resistance that is higher, the gate partially opens, which causes an
incorrect read fault in the operation 1r 1.

Table 4.28: Heat Map Defect-7 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 U;1/- U/- 1;1/- 1/-
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.29: Heat Map Defect-7 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0
1w1 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.30: Heat Map Defect-7 Configuration 3

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/-
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

48 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.31: Heat Map Defect-7 Configuration 4

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/-
1w1 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 8 (Tables 4.32 - 4.35) is a bridge between the word line and the internal node. This causes
the the bottom electrode of the ReRAM device to be at a higher voltage than usual. This causes a
Write destructive fault to the logic state ’L’ for the operation 0w0 as the cell is pushed much further
into the HRS because of the higher voltage. This is remains valid as long as the defective resistance
is low. By the same operational logic, the operation 1w0 has a write transition fault to state ’L’. Both
read operations push the state of the device to ’L’ as well, which gives a read destructive fault for
operation 0r 0 and a incorrect read destructive fault for operation 1r 1

Table 4.32: Heat Map Defect-8 Configuration 1

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.33: Heat Map Defect-8 Configuration 2

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.34: Heat Map Defect-8 Configuration 3

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 49

Table 4.35: Heat Map Defect-8 Configuration 4

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 9 (Tables 4.36 - 4.39) is a short between the word line and VDD. This causes the word
line to be activate for the entire duration of the write operations. However, this does not cause any
strong faults in the defective cell as this does not affect the operations in the cell. However, as the
word line is activate, the neighbouring cells in the first two combinations would change their states
from ’0’ to ’1’.

Table 4.36: Heat Map Defect-9 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/-
0r0
1w0 0;1/- 0;1/- 0;1/-
1w1 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.37: Heat Map Defect-9 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/-
0r0
1w0 0;1/- 0;1/- 0;1/-
1w1 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.38: Heat Map Defect-9 Configuration 3

0
1
0w0
0w1
0r0
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

50 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.39: Heat Map Defect-9 Configuration 4

0
1
0w0
0w1
0r0
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 10 (Tables 4.40 - 4.43) is a short between the wordline and GND. This causes no operation
to take place in the cells and thus no transitions are possible with this defect in the cell. This causes
incorrect read faults with 0r 0 and 1r 1 operations. The IRF occurs in 0r 0 when the resistance of the
defect is low enough that the cell is not open by the WL, whereas it occurs in 1r 1 for resistances
where the cell is only partially open. When it is partially open, the resistance of the transistor is high
enough to give incorrect read faults in the sense amplifier. This explains the presence of the defect
for only one resistance value in the defect.

Table 4.40: Heat Map Defect-10 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.41: Heat Map Defect-10 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.42: Heat Map Defect-10 Configuration 3

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 51

Table 4.43: Heat Map Defect-10 Configuration 4

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 11 (Tables 4.44 - 4.47) has a series resistance with the word line. This causes the cell to
not open at high resistances, effectively behaving like an open. This causes incorrect read faults for
the 0r 0 operation. This effect is not seen in operation 1r 1 as the sense amplifier gives an output of
’1’ when there is no input, which registers as no fault with the operation.

Table 4.44: Heat Map Defect-11 Configuration 1

0
1
0w0
0w1
0r0 0/1 0/1
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.45: Heat Map Defect-11 Configuration 2

0
1
0w0
0w1
0r0 0/1 0/1
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.46: Heat Map Defect-11 Configuration 3

0
1
0w0
0w1
0r0 0/1 0/1 0/1
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

52 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.47: Heat Map Defect-11 Configuration 4

0
1
0w0
0w1
0r0 0/1 0/1
1w0
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 12 (Tables 4.48 - 4.51) connects the internal node and the select line with a resistor, ef-
fectively introducing a parallel resistor across the transistor. This causes the internal node to be
at a higher voltage than usual during reset operations. This manifests as a Write destructive fault
WDF-0(L) for 0w0 operation and as a write transition fault WTF-0(L) for the operation 1w0.

Table 4.48: Heat Map Defect-12 Configuration 1

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.49: Heat Map Defect-12 Configuration 2

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.50: Heat Map Defect-12 Configuration 3

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 53

Table 4.51: Heat Map Defect-12 Configuration 4

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 13 (Tables 4.52 - 4.55) has a short between the select line and VDD. This causes write
transition faults with the operation 0w1 as the cell could not be reset by the circuit. This effect is
seen in both the defective cell and other cells in the same word. By extension , this also causes a write
destructive fault in 1w1 operation as a set operation has both set and reset operations combined.
During read operation, the sense amplifier is pushed to give an output ’0’ as a result of this defect.
This gives an incorrect read fault with 1r 1 operation.

Table 4.52: Heat Map Defect-13 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0
1w0
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.53: Heat Map Defect-13 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0
1w0
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.54: Heat Map Defect-13 Configuration 3

0
1
0w0 0;U/- 0;U/- 0;U/- 0;U/-
0w1 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/-
0r0
1w0 0;U/- 0;U/- 0;U/- 0;U/-
1w1 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

54 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.55: Heat Map Defect-13 Configuration 4

0
1
0w0 0;U/- 0;U/- 0;U/- 0;U/-
0w1 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/-
0r0
1w0 0;U/- 0;U/- 0;U/- 0;U/-
1w1 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 14 (Tables 4.56 - 4.59) has a short between the select line and GND. A reset operation
1w0 is affected by this defect and is seen as a write transition fault WTF-0(1) in case of lower defect
resistance, and as a WTF-0(U) for a higher defect resistance. There are faults in the neighbouring
cells in the same row as the defective cell, as the residual current that flows through the bit lines
change the state of these cells to state ’1’.

Table 4.56: Heat Map Defect-14 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/- 1;1/-
0r0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.57: Heat Map Defect-14 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/- 1;1/-
0r0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.58: Heat Map Defect-14 Configuration 3

0
1
0w0
0w1
0r0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 55

Table 4.59: Heat Map Defect-14 Configuration 4

0
1
0w0
0w1
0r0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 15 (Tables 4.60 - 4.63) has a series resistance with the select line. This causes faults where
the write transitions do not occur for high defect resistance, as the resistance of the cell now equals
the sum of resistance of the cell and the defect. This thus causes WTF-0(0) and WTF-1(1) in opera-
tions 0w1 and 1w0 respectively. The operation 1r 1 is also affected by this, as the resistance of the
cell now causes lesser current to flow through the cell and hence desired output is not achieved.

Table 4.60: Heat Map Defect-15 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.61: Heat Map Defect-15 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.62: Heat Map Defect-15 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

56 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.63: Heat Map Defect-15 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 16 (Tables 4.64 - 4.67) shorts the internal node of the cell to VDD. This causes the state of
the cell to flip to ’L’ irrespective of the operation performed in them. This is seen as state faults (SF-
0(L) and SF-1(L)) in the simulations. This also causes write transition faults (WTF-0(L) and WTF-
1(L)) and write destruct faults (WDF-0(L) and WDF-1(L)). This defect also causes read destructive
faults and incorrect read destructive faults in the operation.

Table 4.64: Heat Map Defect-16 Configuration 1

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.65: Heat Map Defect-16 Configuration 2

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
1w0 L/- L/- L/- L/- L/- L;1/- L;1/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.66: Heat Map Defect-16 Configuration 3

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 57

Table 4.67: Heat Map Defect-16 Configuration 4

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 17 (Tables 4.68 - 4.71) shorts the internal node of the cell to GND. This causes defective
cells in array to have a write destructive fault WDF-0(1) while performing a 0w0 operation, as the
residual current that flows through the ReRAM device is strong enough to push the state of the
device to logic ’1’. For the 1w0 the device is not reset to logic ’0’, hence it causes a write transition
fault WTF-0(1). It is worth noting that both transition and destructive faults seen have a fault where
the state of the defective cell ends up in the undefined state ’U’ for RDef = 27.84kΩ.

Table 4.68: Heat Map Defect-17 Configuration 1

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.69: Heat Map Defect-17 Configuration 2

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.70: Heat Map Defect-17 Configuration 3

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

58 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.71: Heat Map Defect-17 Configuration 4

4 0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Forming Defect (Tables 4.72 - 4.75) can be split into three phases: Under forming, over forming
and the accurate forming phases. In the under formed state, the cell is in a perpetually high resistant
state. This is because the conducting filament has not been fully developed, and the cell behaves
as if in the HRS region. This causes ETD faults in the 0w1, 0r 0, 1w1 and 1r 1 operations. The fault
in operation 0r 0 is due to the limited points of fitting used int the forming model. This point of
inflection from an extremely high resistance to a low resistance causes simulation inaccuracies. The
states of these cells in the under formed cells is ’L’. As the forming current increases, the cell moves
from being in the ’L’ state to ’U’ state. This then gets to the right phase, where there are no errors
in the memory operations. When the cell becomes over formed it is pushed to the ’H’ state. This is
seen in the 1w0 operation, where the state of the cell is in ’1’ and ’H’.

Sensitized Fault space: Peripherals

We shall now look at the sensitized fault space for the peripherals. All the faults in the fault space for
the address decoders can be sensitized by defects. This has been studied and discussed in Section
3.3.2. Hence we do not repeat it here. The same applies for the sense amplifiers in the memory con-
figuration. We shall look at some demonstrative faults in the address decoder and sense amplifier
for the sake of clarity.

Address Decoder: An open defect in the WL translates an address delay (ADF) fault for resistance
Rdef = 40 kΩ while it causes a Address fault no access (AFna) for resistance Rdef = 4 MΩ. This is
illustrated in Figure 4.16, where the defect-free WL is also illustrated for comparison.

0 2 4 6 8 10 12 14 16
0

1

2

3

Time [ns]

Vo
lta

ge
[V

]

WL, Defect-free
WL, Rdef = 40 kΩ, ActD, DeactD
WL, Rdef = 4 MΩ, AFna

Figure 4.16: WL Decoder fault with different defect strengths

Sense Amplifier: Consider a resistive open defect Rdef between N2 and N4 in Figure 4.11. This
leads to slow discharge of node B as there is more resistance in the path. if Rdef < 18.8kΩ, the defect
causes a slow operation in the sense amplifier, while a defect strength of Rdef ≥ 18.8kΩwould cause
the sense amplifier to always switch to the wrong value when the CS and SEN signals are open. The

4.3. Fault Modeling and Analysis 59

Ta
b

le
4.

72
:H

ea
tM

ap
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
1

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

I f
o

rm
1e

-6
2e

-6
3e

-6
4e

-6
5e

-6
6e

-6
7e

-6
8e

-6
9e

-6
10

e-
6

11
e-

6
12

e-
6

13
e-

6
14

e-
6

15
e-

6
16

e-
6

17
e-

6
18

e-
6

19
e-

6
20

e-
6

21
e-

6
22

e-
6

23
e-

6
24

e-
6

25
e-

6
26

e-
6

27
e-

6
28

e-
6

29
e-

6
30

e-
6

31
e-

6
32

e-
6

33
e-

6
34

e-
6

35
e-

6

Ta
b

le
4.

73
:H

ea
tM

ap
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
2

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

I f
o

rm
1e

-6
2e

-6
3e

-6
4e

-6
5e

-6
6e

-6
7e

-6
8e

-6
9e

-6
10

e-
6

11
e-

6
12

e-
6

13
e-

6
14

e-
6

15
e-

6
16

e-
6

17
e-

6
18

e-
6

19
e-

6
20

e-
6

21
e-

6
22

e-
6

23
e-

6
24

e-
6

25
e-

6
26

e-
6

27
e-

6
28

e-
6

29
e-

6
30

e-
6

31
e-

6
32

e-
6

33
e-

6
34

e-
6

35
e-

6

Ta
b

le
4.

74
:H

ea
tM

ap
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
3

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

I f
o

rm
1e

-6
2e

-6
3e

-6
4e

-6
5e

-6
6e

-6
7e

-6
8e

-6
9e

-6
10

e-
6

11
e-

6
12

e-
6

13
e-

6
14

e-
6

15
e-

6
16

e-
6

17
e-

6
18

e-
6

19
e-

6
20

e-
6

21
e-

6
22

e-
6

23
e-

6
24

e-
6

25
e-

6
26

e-
6

27
e-

6
28

e-
6

29
e-

6
30

e-
6

31
e-

6
32

e-
6

33
e-

6
34

e-
6

35
e-

6

Ta
b

le
4.

75
:H

ea
tM

ap
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
4

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

U
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

I f
o

rm
1e

-6
2e

-6
3e

-6
4e

-6
5e

-6
6e

-6
7e

-6
8e

-6
9e

-6
10

e-
6

11
e-

6
12

e-
6

13
e-

6
14

e-
6

15
e-

6
16

e-
6

17
e-

6
18

e-
6

19
e-

6
20

e-
6

21
e-

6
22

e-
6

23
e-

6
24

e-
6

25
e-

6
26

e-
6

27
e-

6
28

e-
6

29
e-

6
30

e-
6

31
e-

6
32

e-
6

33
e-

6
34

e-
6

35
e-

6

60 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

former case gives rise to USAFs and SSAFs, while the latter leads to SASF. This is shown in the Figure
4.17, along with a defect free signal.

20 22 24 26 28 30 32 34

0

1

2

3

Time [ns]

Vo
lta

ge
[V

]
SEN
B defect-free
B Rdef = 18 kΩ, SSAF, USAF
B Rdef = 18.8 kΩ, SASF

Figure 4.17: Sense Amplifier Faults

4.3. Fault Modeling and Analysis 61

4.3.2. Fault modeling and Analysis for Computation configuration

This section deals with fault modeling in the computation configuration. We look at the fault mod-
eling followed by fault analysis of the components in the scouting logic based CIM architecture for
the computation configuration.

Fault modeling: Array

The fault space for the memory array in the computation configuration is strongly dependant on the
crossbar design and architecture of the system. In the case of scouting logic based architecture, the
memory array acts akin to a dual port memory as it allows for simultaneous access of two memory
cells in the same column. This gives rise to new faults, which need to be defined. The FP notation
introduced in Section 3.3.2 has to be expanded in order to accommodate these faults. We build on
the notation developed for dual-port memory faults [29].

We denote the new FP as 〈S1 : S2 / F1 : F2 / R〉OP. The elements in the FP are as follows:

1. S1 : S2 denote the sensitizing operations in the cells that are under consideration. The symbol
’:’ in between them signifies that the operations S1 and S2 are performed simultaneously.

2. F1:F2 denote the final state of the cells after the operations.

3. R is the read value from the sense amplifier.

4. OP is the operation that is performed in the cell. These include AND, OR and XOR for the
scouting logic and varies with the logic architecture used.

For example, 〈0a01 : 1a12 / 11 : 12 / 0〉AND describes a cell (cell 1) that flips its state from ’0’ to
’1’ when an AND operation is performed on it. The result of the AND operation is ’0’ as expected.
This fault can occur if cell 1 is overformed. In that case, the HRS and LRS if the cell is lowered. If
such a cell is used for logic computations, it causes the equivalent resistance to move too close or
even lower than RAND in the sense amplifier. This causes a fault 〈0a01 : 1a11 / 11 : 12 / 0〉AND. While
naming of these faults is an open question, this thesis used the following method to name faults
in the computation configuration: Faults caused by computation operations are prefixed with C(x)
where C is the x denotes the type of computation operation performed on the cell, in place of the
cell behavior of an FP as explained in Section 3.3.2. For example, C(a)DF-1/0 is a computation
destructive fault with an AND operation with the states of the cell shown to change from ’1’ to ’0’,
effectively causing a destruction.

Sensitized Fault space: Array

This subsection presents the faults that were sensitized in the computation configuration for the
various defects injected. The heat maps are combined with the operations in the memory con-
figuration for ease. The combinations are different for the computation configuration, where the
opposite word is the first initiated in the word adjacent to the word containing the defective cell and
then it is followed by the operation with the other word initiated with the same word. For example,
the first combination is 0o0 : 1o1 and the second combination is 0o0 : 0o0. The third and fourth
combinations have other cells in the array to be ’1’.

62 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Defect 1 (Tables 4.76 - 4.79) causes a C(a)DF-0(1)-24 fault while performing the operation 0a0
and C(o)DF-0(1) fault while performing 0o0 operation. These are attributed to the same cause as
the 0r 0 operation in the memory configuration: A higher bitline voltage which can set the state of
the cell to ’1’ while operations are performed in the defective cell. An Incorrect computation fault
is seen with 1a1 and 1o1 operations on the defective cell and these are similar to the 1r 1 fault in
the memory configuration: A voltage higher than the sense amplifier arm is seen at the bitline and
hence there is an incorrect computation fault. However, it is interesting to note the different faults
that arise in the case of 0o0 for specific neighbouring cell configurations, as the voltage is not too
high to cause of Destructive fault but is high enough to cause an incorrect computation fault. This
is seen when the defective resistance RDef = 0.15MΩ and when the cell which is the other operand
of the logical operation is in a ’1’ state.

Table 4.76: Heat Map with computation Defect-1 Configuration 1

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0
0o0 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;1/0 1;1/1 0;1/0 0;1/0 0;1/0 0;1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;1/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.77: Heat Map with computation Defect-1 Configuration 2

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0
0o0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.78: Heat Map with computation Defect-1 Configuration 3

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0
0o0 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;1/0 1;1/1 0;1/0 0;1/0 0;1/0 0;1/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1;U/- 1/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;1/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 63

Table 4.79: Heat Map with computation Defect-1 Configuration 4

0
1
0w0
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0
0o0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 2 (Tables 4.80 - 4.83) results in incorrect computation for the operation 0a0 because of
the short between the bitline and word line. The defect also causes incorrect computation fault with
operations 1a1 and 0o0 when the other operand for the logic operation is in logic ’0’.

Table 4.80: Heat Map with computation Defect-2 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 0;1/- 0/- 0;1/- 0/- 0;1/- 0/- 0;1/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.81: Heat Map with computation Defect-2 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 0;1/- 0/- 0;1/- 0/- 0;1/- 0/- 0;1/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1;U/- 1;U/- 1/- U/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 3 (Tables 4.84 - 4.87) causes incorrect computation fault with operation 0a0 for all pos-
sible logical operands. The defective resistance provides the current that is would give an output
of ’1’ for an AND operation irrespective of the state of the neighbouring cells. This results in an
IC(a)F-0(0) fault. The same principle applies to 1a1 and 0o0 operations when the other operand for
computation in state ’0’.

64 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.82: Heat Map with computation Defect-2 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1;U/- 1/- U/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.83: Heat Map with computation Defect-2 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;U/- 1;U/- 1/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.84: Heat Map with computation Defect-3 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.85: Heat Map with computation Defect-3 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 65

Table 4.86: Heat Map with computation Defect-3 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.87: Heat Map with computation Defect-3 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 4 (Tables 4.88 - 4.91) causes computation destruction faults when the defective cell is in
state ’0’ and a computation operation is performed on it in the presence of the short. When the
defective cell is in state ’1’ already, there is an incorrect computation fault due to the presence of the
voltage in the bitline. These defects, however, do not cause faults when the defective resistance RDef

is much higher in order than the resistance of state ’0’.

Table 4.88: Heat Map with computation Defect-4 Configuration 1

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1 1;1/0
0o0 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;1/0 1;1/1 1;1/0 1;1/1 1;1/1
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1 1;1/0
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

66 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.89: Heat Map with computation Defect-4 Configuration 2

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/1 1;0/0
0o0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/1 1;0/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.90: Heat Map with computation Defect-4 Configuration 3

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1 1;1/0
0o0 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;0/0 1;1/0 1;1/1 1;1/0 1;1/1 1;1/0 1;1/1 1;1/1
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1 1;1/0
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/0 1;1/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.91: Heat Map with computation Defect-4 Configuration 4

0
1
0w0 1/- 1/- 1/- 1/-
0w1
0r0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
0a0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/1 1;0/0
0o0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/1 1;0/0
1w0 1/- 1/- 1/- 1/- U/-
1w1
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 5 (Tables 4.92 - 4.95) pushes the read output of the sense amplifier to be ’1’ always. This
was explained in the section describing the faults sensitized in the memory configuration. As logi-
cal computation in computation configuration is analogous to read operation in scouting logic, we
extend the same logic to explain the faults present in the computation configuration. The operation
0a0 gives a incorrect computation fault for all possible operand combinations as the output is al-
ways ’1’. The operations 1a1 and 0o0 show incorrect computation faults when the state of the other
operand for computation is logic ’0’.

4.3. Fault Modeling and Analysis 67

Table 4.92: Heat Map with computation Defect-5 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0
1w1 0/- 0/- 0/- 0/-
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.93: Heat Map with computation Defect-5 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.94: Heat Map with computation Defect-5 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0 0;1/1 0;1/0
0o0
1w0
1w1 0/- 0/- 0/- 0/-
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.95: Heat Map with computation Defect-5 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1 0/1
0a0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
0o0 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1 0;0/1
1w0
1w1 0/- 0/- 0/- 0/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

68 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Defect 6 (Tables 4.96 - 4.99) has faults only in the 1a1 operation when the other operand is logic
’1’ and in the operation 1o1 when the other operand is logic ’0’. In the former, the both these cases,
the added resistance in the bitline limits the voltage to the sense amplifier, which causes an incorrect
read fault in the sense amplifier.

Table 4.96: Heat Map with computation Defect-6 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
0a0
0o0
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.97: Heat Map with computation Defect-6 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
0a0
0o0
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.98: Heat Map with computation Defect-6 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
0a0
0o0
1w0 U/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 69

Table 4.99: Heat Map with computation Defect-6 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0 0/1 0/1 0/1 0/1
0a0
0o0
1w0 1/- 1/- 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 7 (Tables 4.100 - 4.103) has faulty 1a1 and 1o1 operations when the other operands in the
other cells are in state ’0’. This is because the cell is not open properly which causes the operations
to fail.

Table 4.100: Heat Map with computation Defect-7 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 U;1/- U/- 1;1/- 1/-
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.101: Heat Map with computation Defect-7 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0
1w1 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

70 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.102: Heat Map with computation Defect-7 Configuration 3

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/-
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.103: Heat Map with computation Defect-7 Configuration 4

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/-
1w1 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 8 (Tables 4.104 - 4.107) causes the state of the cell to move to HRS, which is denoted as
logic state ’L’. This is also seen in the computation operations, as operations 0a0 and 0o0 cause
computation destruction faults. These also cause coupling faults in the other operand, as the volt-
age that is obtained due to the bridge drives the state of this cell to ’1’. With the operations 1a1 and
1o1, there is computation destruction fault to state ’L’ seen as well.

Table 4.104: Heat Map with computation Defect-8 Configuration 1

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
0a0 L;1/0 L;1/0 L;1/0 L;1/0
0o0 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 0;1/0 0;1/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
1a1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 U;1/0 U;1/1
1o1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 U;0/0 U;1/0 U;1/1 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 9 (Tables 4.108 - 4.111) does not cause any fault in the computation configuration as well,
as the bitline for the other columns are pulled down during computation configuration operations.

4.3. Fault Modeling and Analysis 71

Table 4.105: Heat Map with computation Defect-8 Configuration 2

2 0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
0a0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 0;1/0
0o0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 0;1/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
1a1 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 U;1/0 U;0/0 1;1/0 1;0/1
1o1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 U;1/0 U;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.106: Heat Map with computation Defect-8 Configuration 3

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
0a0 L;1/0 L;1/0 L;1/0 L;1/0
0o0 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 0;1/0 0;1/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
1a1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 U;1/0 U;1/1
1o1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 U;0/0 U;1/0 U;1/1 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.107: Heat Map with computation Defect-8 Configuration 4

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0 L/0 L/0 L/0 L/0
0a0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 0;1/0
0o0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 0;1/0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1;1/0 1/0 1/0
1a1 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 U;1/0 U;0/0 1;1/0 1;0/1
1o1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 U;1/0 U;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.108: Heat Map with computations Defect-9 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/-
0r0
0a0
0o0
1w0 0;1/- 0;1/- 0;1/-
1w1 1;1/- 1;1/- 1;1/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

72 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.109: Heat Map with computations Defect-9 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/-
0r0
0a0
0o0
1w0 0;1/- 0;1/- 0;1/-
1w1 1;1/- 1;1/- 1;1/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.110: Heat Map with computations Defect-9 Configuration 3

0
1
0w0
0w1
0r0
0a0
0o0
1w0
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.111: Heat Map with computations Defect-9 Configuration 4

0
1
0w0
0w1
0r0
0a0
0o0
1w0
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 10 (Tables 4.112 - 4.115) causes faults in computation for operations 1o1 and 1a1. For
operation 1o1, the faults are seen when the other operand for computation is a logic ’0’. The output
for this logic operation (1 OR 0) should be ’1’. However, as the gate is not open in the transistor
due to the defect, the cell containing logic state ’1’ does not contribute towards the calculation of
the logic and hence a fault is registered. Similarly, for 1a1 the defect causes faults when the other
operand is in logic ’1’ and since the defective cell does not contribute towards logic calculation, an

4.3. Fault Modeling and Analysis 73

incorrect computation is observed.

Table 4.112: Heat Map with computations Defect-10 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.113: Heat Map with computations Defect-10 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.114: Heat Map with computations Defect-10 Configuration 3

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

74 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.115: Heat Map with computations Defect-10 Configuration 4

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0 0;0/1 0/1 0;0/1 0/1 0;0/1 0/1
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 11 (Tables 4.116 - 4.119) has a similar operation to defect 10 in the computation configu-
ration. That is, the operation 1o1 fail when the other operand is at logic state ’0’ and the operation
1a1 fails when the other operand is at logic ’1’. The reason is the same as for defect 10.

Table 4.116: Heat Map with computation Defect-11 Configuration 1

0
1
0w0
0w1
0r0 0/1 0/1
0a0
0o0
1w0
1w1
1r1
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.117: Heat Map with computation Defect-11 Configuration 2

0
1
0w0
0w1
0r0 0/1 0/1
0a0
0o0
1w0
1w1
1r1
1a1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 75

Table 4.118: Heat Map with computation Defect-11 Configuration 3

0
1
0w0
0w1
0r0 0/1 0/1 0/1
0a0
0o0
1w0
1w1
1r1
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.119: Heat Map with computation Defect-11 Configuration 4

0
1
0w0
0w1
0r0 0/1 0/1
0a0
0o0
1w0
1w1
1r1
1a1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 12 (Tables 4.120 - 4.123) causes the RBL arm of the sense amplifier to discharge faster due
to the bypassing of the transistor by the defect. This causes the operation 1a1 to fail when the other
operand is in logic ’0’, as the output is a ’1’ because of the defect.

Table 4.120: Heat Map with computation Defect-12 Configuration 1

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
0a0
0o0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

76 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.121: Heat Map with computation Defect-12 Configuration 2

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
0a0
0o0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.122: Heat Map with computation Defect-12 Configuration 3

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
0a0
0o0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.123: Heat Map with computation Defect-12 Configuration 4

0
1
0w0 L/- L/- L/- L/- L/- L/-
0w1
0r0
0a0
0o0
1w0 L/- L/- L/- L/- L/- L/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 13 (Tables 4.124 - 4.127)as an extension of the read operation, the fault in the computation
configuration of the defect causes the output of the computation to be at ’0’ if only the defective
cell is open. Because of the defect however, the operation 0o0 would be faulty and would result
in an incorrect computation fault when the other operand is in logic state ’1’. Similarly, incorrect
computation fault occurs during operation 1a1 while the other operand is in logic ’1’ and 1o1 for
both operand states in the complementary operand.

4.3. Fault Modeling and Analysis 77

Table 4.124: Heat Map with computation Defect-13 Configuration 1

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0
0a0
0o0 0;0/0 0;1/0 0;0/0 0;1/0 0;0/0 0;1/0 0;0/0 0;1/0
1w0
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0
1o1 1;1/0 1;1/0 1;1/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.125: Heat Map with computation Defect-13 Configuration 2

0
1
0w0
0w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
0r0
0a0 0;1/0 0;1/0 0;1/0 0;1/0
0o0 0;1/0 0;1/0 0;1/0 0;1/0
1w0
1w1 0;0/- 0/- 0;0/- 0/- 0;0/- 0/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.126: Heat Map with computation Defect-13 Configuration 3

0
1
0w0 0;U/- 0;U/- 0;U/- 0;U/-
0w1 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/-
0r0
0a0
0o0 0;0/0 0;1/0 0;0/0 0;1/0 0;0/0 0;1/0 0;0/0 0;1/0
1w0 0;U/- 0;U/- 0;U/- 0;U/-
1w1 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;1/0 1;1/0 1;1/0
1o1 1;1/0 1;1/0 1;1/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.127: Heat Map with computation Defect-13 Configuration 4

0
1
0w0 0;U/- 0;U/- 0;U/- 0;U/-
0w1 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/- 0;0/- 0;U/- 0/-
0r0
0a0 0;1/0 0;1/0 0;1/0 0;1/0
0o0 0;1/0 0;1/0 0;1/0 0;1/0
1w0 0;U/- 0;U/- 0;U/- 0;U/-
1w1 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/- 0;U/- 0;0/- 0/-
1r1 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0 1;1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

No faults were observed with defect 14 (Tables 4.128 - 4.131) in computation configuration, as
the select line is designed to be naturally at GND during computation.

78 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.128: Heat Map with computation Defect-14 Configuration 1

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/- 1;1/-
0r0
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.129: Heat Map with computation Defect-14 Configuration 2

0
1
0w0 0;1/- 0;1/- 0;1/- 0;1/-
0w1 1;1/- 1;1/- 1;1/- 1;1/-
0r0
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- 1;1/- 1/-
1w1 1;1/- 1;1/- 1;1/- 1;1/-
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.130: Heat Map with computation Defect-14 Configuration 3

0
1
0w0
0w1
0r0
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 15 (Tables 4.132 - 4.135) behaves in the same way as defect 11 and defect 10 as the resul-
tant faults for these defects are similar.

4.3. Fault Modeling and Analysis 79

Table 4.131: Heat Map with computation Defect-14 Configuration 4

0
1
0w0
0w1
0r0
0a0
0o0
1w0 1;1/- 1/- 1;1/- 1/- 1;1/- 1/- U;U/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.132: Heat Map with computation Defect-15 Configuration 1

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.133: Heat Map with computation Defect-15 Configuration 2

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 16 (Tables 4.136 - 4.139) causes incorrect computation faults and computation read de-
structive faults as all the cells are flipped to state ’L’.

80 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.134: Heat Map with computation Defect-15 Configuration 3

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
1a1
1o1 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0 1;0/0 1;1/0
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.135: Heat Map with computation Defect-15 Configuration 4

0
1
0w0
0w1 0/- 0/- 0/- 0/-
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/-
1w1
1r1 1/0 1/0 1/0 1/0 1/0 1/0
1a1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.136: Heat Map with computation Defect-16 Configuration 1

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
0a0 L;1/0 L;1/0 L;1/0 L;1/0 L;1/0 1;1/0
0o0 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/1 1;1/1
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
1a1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 1;1/0 1;1/1 1;1/0
1o1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 1;1/1 1;1/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.137: Heat Map with computation Defect-16 Configuration 2

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
0a0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 1;1/0 1;0/0 1;1/1 1;0/0
0o0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/1 L;0/0 1;1/1 1;0/0 1;1/1 1;0/0
1w0 L/- L/- L/- L/- L/- L;1/- L;1/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
1a1 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 1;1/0 1;0/1
1o1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

4.3. Fault Modeling and Analysis 81

Table 4.138: Heat Map with computation Defect-16 Configuration 3

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
0a0 L;1/0 L;1/0 L;1/0 L;1/0 L;1/0 1;1/0
0o0 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/1 1;1/1
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
1a1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 L;1/0 L;1/1 1;1/0 1;1/1 1;1/0
1o1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 L;0/0 L;1/0 L;1/1 1;1/1 1;1/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.139: Heat Map with computation Defect-16 Configuration 4

0 L/- L/- L/- L/- L/-
1 L/- L/- L/- L/- L/-
0w0 L/- L/- L/- L/- L/- L/-
0w1 L/- L/- L/- L/- L/-
0r0 L/0 L/0 L/0 L/0 L/0 1/0 1/1
0a0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 1;1/0 1;0/0 1;1/1 1;0/0
0o0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/1 L;0/0 1;1/1 1;0/0 1;1/1 1;0/0
1w0 L/- L/- L/- L/- L/- L/-
1w1 L/- L/- L/- L/- L/-
1r1 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 L;1/0 L/0 1/0
1a1 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 L;1/0 L;0/0 1;1/0 1;0/1
1o1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;1/0 L;0/1 L;0/1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Defect 17 (Tables 4.140 - 4.143) causes the same faults as defect 12 as logically, these defect be-
have the same for computation configurations. That is, the operation 1a1 causes an incorrect com-
putation fault when the other operand is ’0’. This fault occurs for lower defect resistance ranges of
RDef ≤ 60Ω.

Table 4.140: Heat Map with computation Defect-17 Configuration 1

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

82 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Table 4.141: Heat Map with computation Defect-17 Configuration 2

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.142: Heat Map with computation Defect-17 Configuration 3

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1 1;0/1 1;1/0 1;0/1 1;1/0 1;0/1 1;1/0
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Table 4.143: Heat Map with computation Defect-17 Configuration 4

0
1
0w0 1/- 1/- 1/- 1/- 1/- U/-
0w1
0r0
0a0
0o0
1w0 1/- 1/- 1/- 1/- 1/- U/-
1w1
1r1
1a1
1o1
RDef 1 7.7 6.01e+01 4.64e+02 3.593e+03 2.7825e+04 2.15e+05 1.66e+06 1.29e+07 1e+08

Forming Defect causes the defects that are similar to the memory configuration. The faults are
easy to detect in the operations 1a1 and 1o1 as the resistance is too high which would always result
in the sense amplifier giving the output ’0’. The operation 1a1 operation causes a fault with the
computation with the other operand in state ’0’, which is due to the resistance of the cell being high
enough that it causes a sense amplifier fault but is still registered as state ’1’.

4.3. Fault Modeling and Analysis 83
Ta

b
le

4.
14

4:
H

ea
tM

ap
w

it
h

co
m

p
u

ta
ti

o
n

Fo
rm

in
g

d
ef

ec
tC

o
n

fi
gu

ra
ti

o
n

1

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

0a
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

0o
0

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

1a
1

L;
1/

1
L;

1/
1

0;
1/

1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

1;
0/

1
1;

1/
0

1;
0/

1
1;

1/
0

1;
0/

1
1;

1/
0

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

1o
1

L;
0/

0
L;

1/
1

L;
0/

0
L;

1/
1

0;
0/

0
0;

1/
1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
I f

o
rm

1e
-6

2e
-6

3e
-6

4e
-6

5e
-6

6e
-6

7e
-6

8e
-6

9e
-6

10
e-

6
11

e-
6

12
e-

6
13

e-
6

14
e-

6
15

e-
6

16
e-

6
17

e-
6

18
e-

6
19

e-
6

20
e-

6
21

e-
6

22
e-

6
23

e-
6

24
e-

6
25

e-
6

26
e-

6
27

e-
6

28
e-

6
29

e-
6

30
e-

6
31

e-
6

32
e-

6
33

e-
6

34
e-

6
35

e-
6

Ta
b

le
4.

14
5:

H
ea

tM
ap

w
it

h
co

m
p

u
ta

ti
o

n
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
2

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

0a
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

0o
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

1a
1

L;
1/

0
L;

0/
0

L;
1/

0
L;

0/
0

0;
1/

0
0;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
1o

1
L;

0/
1

L;
0/

1
0;

0/
1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
I f

o
rm

1e
-6

2e
-6

3e
-6

4e
-6

5e
-6

6e
-6

7e
-6

8e
-6

9e
-6

10
e-

6
11

e-
6

12
e-

6
13

e-
6

14
e-

6
15

e-
6

16
e-

6
17

e-
6

18
e-

6
19

e-
6

20
e-

6
21

e-
6

22
e-

6
23

e-
6

24
e-

6
25

e-
6

26
e-

6
27

e-
6

28
e-

6
29

e-
6

30
e-

6
31

e-
6

32
e-

6
33

e-
6

34
e-

6
35

e-
6

Ta
b

le
4.

14
6:

H
ea

tM
ap

w
it

h
co

m
p

u
ta

ti
o

n
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
3

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

0a
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

L;
1/

0
L;

1/
0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

U
;1

/0
U

;1
/0

0o
0

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

L;
1/

1
L;

1/
1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

1a
1

L;
1/

1
L;

1/
1

0;
1/

1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

1;
0/

1
1;

1/
0

1;
0/

1
1;

1/
0

1;
0/

1
1;

1/
0

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

1o
1

L;
0/

0
L;

1/
1

L;
0/

0
L;

1/
1

0;
0/

0
0;

1/
1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
U

;1
/1

U
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
H

;1
/1

H
;1

/1
I f

o
rm

1e
-6

2e
-6

3e
-6

4e
-6

5e
-6

6e
-6

7e
-6

8e
-6

9e
-6

10
e-

6
11

e-
6

12
e-

6
13

e-
6

14
e-

6
15

e-
6

16
e-

6
17

e-
6

18
e-

6
19

e-
6

20
e-

6
21

e-
6

22
e-

6
23

e-
6

24
e-

6
25

e-
6

26
e-

6
27

e-
6

28
e-

6
29

e-
6

30
e-

6
31

e-
6

32
e-

6
33

e-
6

34
e-

6
35

e-
6

Ta
b

le
4.

14
7:

H
ea

tM
ap

w
it

h
co

m
p

u
ta

ti
o

n
Fo

rm
in

g
d

ef
ec

tC
o

n
fi

gu
ra

ti
o

n
4

0
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
L/

-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
U

/-
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

0w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

0r
0

L/
1

L/
1

0/
1

L/
0

L/
0

L/
0

L/
0

L/
0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

U
/0

0a
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

0o
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

L;
0/

0
L;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

1w
0

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

L/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

U
/-

1/
-

H
/-

H
/-

H
/-

1w
1

L/
-

L/
-

0/
-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

U
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

H
/-

1r
1

L/
1

L/
1

0/
0

U
/0

U
/0

U
/0

U
/1

U
/1

U
/1

U
/1

U
/1

U
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/1

H
/0

1a
1

L;
1/

0
L;

0/
0

L;
1/

0
L;

0/
0

0;
1/

0
0;

0/
0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
U

;0
/0

U
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
H

;0
/0

H
;0

/0
1o

1
L;

0/
1

L;
0/

1
0;

0/
1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
U

;0
/1

U
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
H

;0
/1

H
;0

/1
I f

o
rm

1e
-6

2e
-6

3e
-6

4e
-6

5e
-6

6e
-6

7e
-6

8e
-6

9e
-6

10
e-

6
11

e-
6

12
e-

6
13

e-
6

14
e-

6
15

e-
6

16
e-

6
17

e-
6

18
e-

6
19

e-
6

20
e-

6
21

e-
6

22
e-

6
23

e-
6

24
e-

6
25

e-
6

26
e-

6
27

e-
6

28
e-

6
29

e-
6

30
e-

6
31

e-
6

32
e-

6
33

e-
6

34
e-

6
35

e-
6

84 4. Defect and Fault modelling for Scouting Logic based CIM Architectures

Fault Modelling and Sensitized Fault space: Peripherals

Address Decoder Fault modeling for address decoder is similar to that in dual port memories[23].
This is due to the simultaneous access in the memory array. Faults seen the dual port memories
apply here as well, as these circuits have the same structure. These faults are seen in the dual-port
memories due to interaction between the two decoders are called port interference faults. Figure
4.18 gives the fault locations in the address decoders for two port memories[23].

Figure 4.18: Fault location in address decoder for two port memory

Fault location in address decoder for two port memory [23]

I1 and I2 are internal wires and Row X and Row Y are representative of the lines that drive the
lines in the memory array. There are three kinds of unique electrical behaviour that can occur in
these circuits. These are short between output lines (SOO), short between an internal and output
line (SIO) and Short between two internal lines (SII). Each of these cases there can be faults present
or absent based on the logical values in these lines. The faults that arise due to these connections
have been studied by Hamdioui and Van De Goor [23]. They are classified as faults that make use of
only one address decoder for their sensitization and faults that make use of both of the decoders to
be sensitized. The former are the faults in memory configuration and will be tested in the memory
configuration. The latter need the accessing by two address decoders in order to be detected. These
faults are described in Table 4.148.

Table 4.148: Unique defects in two port memory Address decoders

S.No Short Type Fault
1 SOO Column X is selected by AD 1 and Column Y is not selected by AD

2, but a cell in column x and column y are selected by AD 1 and
AD 2 respectively

2 SIO (Without inversion) Column X is selected by AD 1 and Column Z is selected by AD 2,
but a cell in column X is selected by AD 1 and cells in column Z
and Y are selected by AD 2, where Z6=Y

3 SIO (With inversion) Column X is not selected by AD 1 and Column Z is selected by AD
2, cells in column Z and Y are selected by AD 2, where Z6=Y

4.3. Fault Modeling and Analysis 85

Sense Amplifier Unique faults in the sense amplifier are caused by switching between the refer-
ences to perform logic operations. One unique fault has been identified in the scouting logic sense
amplifier is the Wrong reference fault where the fault is caused by the wrong reference being selected
in the sense amplifier. For example, an OR operation could take the place of an AND operation. This
can also happen in memory configuration, but this is captured as an SASF. Apart from the unique
faults, the faults that occur in the memory configurations are also applicable to the computation
configuration.

The Unique faults in the sense amplifier can occur due to a number of reasons: incorrect gate
signals, short between the two reference resistances and partial opening and closing of the gates in
the sense amplifier arm (shown in Figure 4.12. These faults could also be detrimental to the memory
operations, as they can cause read operations to fail as well in some cases. For example, if there is a
bridge between the arms of the reference circuit, then the read operation would fail, as the reference
is moved.

The fault analysis of the address decoder has been performed by Hamdioui and Van De Goor
[23]. These address decoder faults have been well analysed and hence not repeated. Fault analysis
of the sense amplifiers and the validation of their faults is an open question, as it requires the lay-out
data of the sense amplifiers to reliably predict fault locations in the circuit and simulate the defects
in the sense amplifier. This method is preferred over injecting resistive defects between all possible
nodes, as it grows to have a large amount of simulations, which are impractical for our purposes.

5
Tests for Scouting Logic

This chapter briefs about the tests that are required for the faults identified in Chapter 5. The first
section gives the tests for the components in their memory configurations and the second section gives
the test for the computation configuration.

5.1. Tests in Memory Configuration
The final step in test development is the development of tests for the faults that were identified in
Section 4.3.1 and 4.3.2. The tests should be performed for the memory configuration first, followed
by the computation configuration. The tests in the memory configuration are presented for the
three different components discussed in Section 4.3.1 are discussed below. These are based on the
test development methodology discussed in Section 3.3.

5.1.1. Memory array

The memory array, if containing defects, can sensitize both ETD and HTD faults. Different testing
strategies have to be employed for these faults, which are explained below:

ETD Faults

ETD faults are tested using their sensitizing sequence, which is given by the S component in their
FP. The tests are verified against the detection sequence from the F and R component in the FP. It
is worth nothing that a write sequence is always followed by a read sequence in order to detect a
fault in the memory cell. For example, 〈0w1/0/−〉 is tested using a March algorithm that contains a
march element given by m (r0,w1,r1). The r0 element is used to detect any faults in the cell prior to
this march element.

HTD Faults

HTD faults in the memory array cells containing ReRAM devices are generally related to faults in
which the state of the device is in one of the forbidden states (i.e., ’L’, ’H’ or ’U’) [17]. The detec-
tion of these defects require DfTs in the system. Hamdioui et al. have presented two schemes pro-
grammable DfT schemes that can identify these defective cells [25]. Since the state of the ReRAM
cell is determined by the duration and strength of the input flux, the two DfT schemes are developed
based on short write time (varying duration factor) and low write voltage (varying strength factor)
[25]. These DfT concepts are explained below:

87

88 5. Tests for Scouting Logic

0 1 2 3 4 5
0

1

2

3

Time [µs]

Vo
lta

ge
[V

]
0

10

20

30

H
1

U

0

R
es

is
ta

nc
e

[k
Ω

] WL [V]
Defect-free [kΩ]
Over-formed [kΩ]

Figure 5.1: Defect-free and over-formed cell

• Short Write Time-based DfT makes use of the write access time. It is the time for which the
memory device has to be accessed for a normal write operation. If the access time is not suf-
ficient enough, then the state change from ’0’ to ’1’ will not take place in the device. However
if the device was already in the Undefined state ’U’, there will be a change in state even at a
reduced access time. This is exploited with the Short write time scheme. Here a cell is sub-
jected to w1 operation followed by a weak write operation (ŵ0) where a shorter access time is
given for the write operation. This is followed by a r1 operation. The cells that have defects
would read a value ’0’ instead of ’1’, thus detecting the fault. if the cell is fault free, it would
not change in state. This is repeated for a sequence containing (ŵ1) in it.

• Low Write Voltage-based DfT makes use of the applied voltage value. This is the voltage drives
the states of the cell. This is set at 3 V in our case. If the voltage is reduced the state of the cell
will not change. But a cell that is already in the undefined state would have its state pushed to
a defined state. This is exploited in this scheme. The cell is first written to 1 (w1) and then a
weak write operation (ŵ0) where a low write voltage is applied. If the cell suffers from a defect
that puts it in the Undefined state, it would read a value of ’0’ instead of ’1’, and the fault will be
detected. If the cell is fault free, it would not change in state. This is repeated for a sequence
containing (ŵ1)in it.

This thesis extends the scheme to also detect cells that suffer from the forming defect where this
is over-formed. In these cells, the state of the cell would be in ’H’ instead of ’1’, as shown in Figure
5.1. After a RESET operation is applied to the overformed and the Defect-free cell, they move to the
’0’ and ’U’ state. This can then be captured by the DfT presented above to detect the over-formed
cell that is currently in the undefined state. When a short write time based DfT is used and the write
time is reduced to 1.5µs as shown in Figure 5.1, an over-formed cell would remain in the undefined
region and can be captured, whereas a defect free cell would flip to ’0’ state.

5.1.2. Address Decoder

The four static faults mentioned in 3.3.2 are ETD faults, while the two ADFs (ActD and DeActD) are
HTD faults. ETD faults are detected using a March test which contains the following two march
elements[71][20]: ⇑ (rx, . . . ,wx̄) and ⇓ (rx̄, . . . ,wx); here, x ∈ {0,1} and x̄ denotes the negation of x.
These march elements guarantee the detection of the ETD faults [54].

The address decoder delay faults (ADFs) may be detected with the help of march tests, but this
is not always guaranteed. ADFs are caused by opens in the wires in which the defect strength are in
the intermediate strength. The detection probability is strongly depends on the delay that is seen in
the signals [30]. The stronger the defect is, the larger the delay is in the circuit, thus making it easier
to identify the fault. There are two fundamental requirements for the detection of ADFs:

5.1. Tests in Memory Configuration 89

1. Sensitizing address transitions (SATs): These can be caused by an address pair or an address
triplet [30]. A sensitizing addressing pair(SAP) consists of a sequence of two addresses, say Af

and Ag, which cause an ADF in the circuit. When two SAPs are applied in sequence, they can
be combined to form a triplet for more efficiency.

2. sensitizing operation sequences (SOSs): To each address of a SAP or a SAT at least one operation
has to be applied, which gives rise to a sensitizing operation sequence(SOS). These have two
operations for a SAP with two addresses and three operations for a SAT with three transitions.

The addresses of the SAPs/SATs are generated using Addressing Methods(AMs). Some of these
methods used are discussed below:

1. Binary AM [30] where the addresses are accessed in an increasing manner. For example,
number of address lines N = 3, a binary AM would consists of the address sequences ⇑ Bin =
{0,1,2,3,4,5,6,7} and ⇓ Bin = {7,6,5,4,3,2,1,0}.

2. Address Complement AM (AC AM) [30] where the addresses are accessed in such a way a tran-
sition from either x → x̄ or x̄ → x are generated. for example for N = 3, the sequence is given
by ⇑ AC = {000,111,001,110,010,101,011,100} and ⇓ AC = {100,011,101,010,110,001,111,000}.
Here each address is followed by its one’s complement.

3. 2i AM [30] where the addresses are accessed using a binary counting sequence, with incre-
ments or decrements of j = 2i , where 0 ≤ i ≤ N −1. The sequence "0, 1, 2, 3, 4, 5, 6, 7" is the
⇑ 0 sequence for j = 1 and "7, 6, 5, 4, 3, 2, 1, 0" is for ⇓ 0 sequence.

4. H1 AM [30] where the addressing is generated as minimal set of SATs where the hamming
distance between the addresses is 1. For example, for the 3-bit code word "000", the SATs
generated are: {000, 001, 000}, {000, 010, 000} and {000, 100, 000}. These SATs combine to form
a SuperSAT : {000, 001, 000, 010, 000, 100, 000}.

These AMs are used to detect ActDs and DeactDs in the circuit based on the defects that are
present in them.

On the other hand, the Sensitizing Operation Sequences should consist of two operations Ox f ;O yg ,
where one operation applied to Af and the other to Ag. O denotes a read or write operation (O ∈
{r, w}. The expected or written data is denoted by x and y , such that x, y ∈ {1,0}. The operation in
one address of the SAP must be performed on data that is the complement of the data in the other
address. This is a necessity if the fault to be detected, as a failure in this operation indicates the
presence of a delay fault [30].

Since the scouting logic architecture has two separate decoders in the computing configuration
that can be used to access the memory cells, we have to repeat the testing process for individually.

5.1.3. Sense Amplifier

The static faults in the sense amplifier are ETD faults and hence can be easily detected using March
tests consisting of the two March elements: m(. . . , rx, . . .) and m (. . . , rx̄, . . .), with x ∈ {1,0}. These
March elements can also be combined to one March element for efficiency [20].

HTD faults in the sense amplifier consists of their dynamic faults, namely USAF and SSAF. These
can be detected by March tests but it does not provide guaranteed detection. This is because of the
varying defect resistances that can cause these faults. In order to detect them better, we make use of
special DfT. The sensitization and detection of these faults makes use of back-to-back operations to

90 5. Tests for Scouting Logic

the memory. Back-to-back operations employ two operations that take place in sequence without
any delay. These fast operations are achieved by two methods. First is storing different data values
in cells in the same bit line and reading them from the sense amplifier. If the sense amplifier is slow
or unbalanced, a wrong output is read. The second method makes use of fast-row addressing, where
the row adjacent to the row being addressed is also active, which tests for the sense amplifier at the
speed of switching the addressing the cells. For example, consider the March element m (rx,. . . ,wx̄);.
This can be used as the input sequence for the fast-row addressing to detect SSAFs. The read and
write operations are performed back-to-back and use data that are complementary to each other.
Special DfT that can work with the March tests have been researched, which are better at detecting
these faults [10].

5.1.4. Test Sequences for Memory Configuration

In order to generate the test that can cover the maximum number of defects with highest defect
strength with minimum cost, a reduction of the sensitizing sequences to incorporate the most cov-
erage of the defects is required. Since we are developing production tests, we do not need to pro-
duce tests that can capture all the faults, but rather produce tests that can capture all the defects
that could be in the circuit. The procedure for finding the test sequence for ETD faults in the array
is listed below.

• First, we make a heat maps with each of the defects, for varying operands and background
data. These heat maps give the strength of the defect injected and the operations that are
performed on the defective cell. An example of this heat map table is shown in Figure 4.4.

• Next, from the heat maps, we identify the operations that have the maximum coverage of
defect based on the defect strength for which each fault is activated. We only consider the
ETD faults for this example. This would give us the set of all operations that could be used to
generate a test that could detect the defects in the circuit.

• After this, the sequences are reduced to the least amount of sequences by eliminating overlaps
in the sequences that are employed in the test sequence. For example if two defects can be
detected by 1w1, then we make use of this sequence instead of two different ones for each
defect.

• From the above, a set of sequences that would be obtained. These are converted into march
sequences which have minimum operation cost.

The above procedure can be modified to include the HTD faults as well. This would give an
increased defect coverage due to the inclusion of tests to detect undefined state ’U’, and the extreme
states in the ReRAM namely ’L’ and ’H’. These faults would be tested for with the help of DfT as
mentioned.

Test for ETD Faults

The Table 5.1 was constructed using the steps mentioned above. It gives the list of sensitizing se-
quences that have the maximum defect coverage for each defect and do not contain HTD faults.
From this table, the test sequence is generated. The test sequence should consist of the operations
1r 1, 0r 0, 0w1 and 1w0. Based on these operations and the addressing requirements for the address
decoder and sense amplifier faults, the following test sequence is generated:

M1 m (w1) ; M2 ⇑ (r 1, w0) ; M3 ⇓ (r 0, w1) ; M4 m (r 1)

5.1. Tests in Memory Configuration 91

This sequence can test for ETD defects in both Sense amplifier and address decoder as well, as
it covers the required test pattern for those peripherals. It should be noted that since there are two
address decoders present in the circuit, there needs to be a repetition in place for testing both the
address decoders. The test time is 6n where n is the time taken for an operation. The Table 5.2 gives
the defect against the march elements that sensitize them and helps to identify the defects.

Table 5.1: Sensitized FP with Maximum Coverage - ETD

Defect
Num-

ber

0 1 0w0 0w1 0r0 1w0 1w1 1r1

1 〈0r0/1/0〉 〈1r1/0/1〉
2 〈0r0/0/1〉
3 〈0r0/0/1〉
4 〈0r0/1/0〉 〈1r1/0/1〉
5 〈0r0/0/1〉
6 〈1w0/1/−〉
7 〈0w1/0/−〉
8 〈1r1/0/1〉
9 〈0w0;0/0;1/−〉 〈0w1;0/1;1/−〉 〈1w0;0/0;1/−〉 〈< 1w1;0/1;1/−〉
10 〈0w1/0/−〉 〈1w0/1/−〉
11 〈0r0/0/1〉
12
13 〈1r1/0/1〉
14 〈< 0w0;0/0;1/−〉 〈< 0w1;0/1;1/−〉 〈1w0/1/−〉 〈1w1;0/1;1/−〉
15 〈1r1/1/0〉
16 〈0r0/1/0〉 〈1r1/L/0〉
17 〈0w0/1/−〉 〈1w0/1/−〉
Forming 〈1/L/−〉 〈0w1/L/−〉 〈1w1/L/−〉 〈1r1/L/1〉

Defect Number Sensitizing March Element Detecting March Element

Defect 1 M3, M4 M3, M4
Defect 2 M3 M3
Defect 3 M3 M3
Defect 4 M3, M4 M3, M4
Defect 5 M3 M3
Defect 6 M2 M3
Defect 7 M3 M4
Defect 8 M2, M4 M2, M4
Defect 9 M2, M3 M3, M4
Defect 10 M2,M3 M3, M4
Defect 11 M3 M3
Defect 12 - -
Defect 13 M2, M4 M2, M4
Defect 14 M2, M3 M2, M4
Defect 15 M2, M4 M2, M4
Defect 16 M3 M3
Defect 17 M3 M3
Forming Defect M3, M4 M4

Table 5.2: Defect Coverage in ETD test sequence - Memory configuration

92 5. Tests for Scouting Logic

Test for HTD Faults

The Table 5.3 extends the memory configuration test for HTD faults with using the same procedure.
We take into consideration which HTD fault is activated by these operations, so as to modify the test
sequence for the HTD faults. We make use of ŵ0 and ŵ1 operations to identify undefined states in
the cells in the March test for memory configuration with HTD given below:

M1 m (w0,r 0, w1,r 1, w0) ; M2 ⇑ (r 0, w1, ŵ0) ; M3 ⇓ (r 1, w0, ŵ1) ; M4 m (r 0)

The march element M1 in the test sequence shown above makes use of the back-to-back oper-
ations to detect HTD faults in the sense amplifiers. The HTD faults in the address decoder can be
found by using the different addressing schemes explained in Section 5.1.2. The Table 5.4 gives the
overview of coverage of the defects by the march elements. The time taken for the tests is 12n where
n is the time taken for an operation.

Table 5.3: Sensitized FP with Maximum Coverage - HTD

Defect
Num-

ber

0 1 0w0 0w1 0r0 1w0 1w1 1r1

1 〈0r0/1/0〉 〈1r1/0/1〉
2 〈0r0/0/1〉
3 〈1w0/U/−〉
4 〈0r0/1/0〉 〈1r1/0/1〉
5 〈0r0/0/1〉
6 〈1w0/U/−〉
7 〈0w1/0/−〉
8 〈1r1/0/1〉
9 〈< 0w0;0/0;1/−〉 〈< 0w1;0/1;1/−〉 〈< 1w0;0/0;1/−〉 〈< 1w1;0/1;1/−〉
10 〈1w0/U/−〉
11 〈0r0/0/1〉
12 〈0w0/L/−〉 〈1w0/L/−〉
13 〈1r1/0/1〉
14 〈< 0w0;0/0;1/−〉 〈< 0w1;0/1;1/−〉 〈1w0/1/−〉 〈1w1;0/1;1/−〉
15 〈1r1/1/0〉
16 〈0r0/1/0〉 〈1r1/L/0〉
17 〈0w0/U/−〉 〈1w0/U/−〉
Forming 〈1/U/−〉 〈0w1/U/−〉 〈1w0/U/−〉 〈1w1/U/−〉 〈1r1/U/1〉

5.2. Tests in Computation configuration
Here, we discuss the tests that need to be performed in the computation configuration. The faults
which would be tested for were discussed in Section 4.3.2. The approach in this configuration for
test development is similar to one in the memory configuration.

5.2.1. Memory Array

The tests in computing configuration of Scouting logic depends on the faults that are seen in the
same configuration. These faults are also classified as ETD and HTD faults and can be tested in
the same way in the memory configuration. There can however be faults that are unique to this
configuration which have to be tested. For example, a resistance in the BL between two memory
cells increases the overall resistance of the BL. This can cause an change in the effective resistance
that determines the logic operation in Scouting logic. The total resistance of the setup can increase

5.2. Tests in Computation configuration 93

Defect Number Sensitizing March Element Detecting March Element

Defect 1 M1, M2, M3, M4 M1, M2, M3, M4
Defect 2 M1, M2, M3, M4 M1, M2, M3, M4
Defect 3 M3 M4
Defect 4 M1, M2, M3, M4 M1, M2, M3, M4
Defect 5 M1, M2, M3, M4 M1, M2, M3, M4
Defect 6 M3 M4
Defect 7 M1, M2 M1, M3
Defect 8 M1, M3 M1, M3
Defect 9 M1, M2, M3, M4 M1, M2, M3, M4
Defect 10 M3 M4
Defect 11 M1, M2, M3, M4 M1, M2, M3, M4
Defect 12 M3 M4
Defect 13 M1, M2, M3, M4 M1, M2, M3, M4
Defect 14 M1, M2, M3, M4 M1, M2, M3, M4
Defect 15 M1, M3 M1, M3
Defect 16 M1, M2, M3, M4 M1, M2, M3, M4
Defect 17 M3 M4
Forming Defect M2, M3 M3, M4

Table 5.4: Defect Coverage in HTD test sequence - Memory configuration

so as to cause a fault where the OR operation results in a logic ’0’ even if there is a ’1’ in one of the
operands. The DfTs can help in identifying faulty memristive devices, for example when the result of
the computation operation gives a random output for every trial. This behaviour is seen when one
of the cells is in the undefined ’U’ state, and thus a short write time-based or low write voltage-based
DfT can detect these faulty cells and thereby the defect that causes them.

5.2.2. Address Decoder

The Address decoder structure for the computation configuration for scouting logic resembles the
address decoder circuit for dual-port memory systems as mentioned in Section 4.3.2 [23]. The tests
that are developed for the those memories can be easily adapted and used for testing unique address
decoder faults that were discussed. The test that is given by Hamdioui and Van De Goor, shown in
Figure 5.2, covers all the unique faults for the two port memories [23]. It has a complexity of O (R2),
where R is the number of rows in the array.

5.2.3. Sense Amplifier

A sense amplifier in the computation configuration has the same faults as one in the memory con-
figuration. Testing such faults in the computation configuration, however, requires special atten-
tion. This is because of the additional complexities in the rest of the circuit that add to the testing of
the sense amplifier. For example, in order to test a stuck-at sense amplifier fault, we need to access
two rows simultaneously. This is achieved by combining two March elements: mC−1

c=0 (..., r0i : rx j , ...)
and mC−1

c=0 (..., r1i : r1 j , ...), where x ∈ {0,1} and (i , j) are addresses indicating any two cells/words
in the same column. For example the fault SASF-1 will be detected by the operations r0i : r0 j as
this will return 1 instead of 0 in the presence of a short to VDD. The sequences can be stopped
when the first fault has been detected in the sense amplifier and does not have to be performed
for all i and j . Slow sense amplifier faults can be identified with back-to-back operations men-

94 5. Tests for Scouting Logic

Figure 5.2: Test Unique faults in 2 Port Memories

tioned in Section 5.1.3, with the changes being made in the operation sequence. The sequence
⇑C−1

c=0 (r1i : r1i+1, ..., r0i : rxi+1) has to be used in order to have several back-to-back AND operations
in the same bit line. Here, the cells should be able to produce a logic value of ’0’ and ’1’ in the same
bit line, so it is a necessity that at least one cell in the bit line has the logic value ’0’ stored in it. DfTs
can also be developed for these configurations to obtain better results. Development of these DfTs
is an open question.

Test for ETD Faults

We develop the test for computation configuration with ETD faults using the same method men-
tioned in Section 5.1.4. This test makes use of two rows at the same time, and hence special no-
tations are added to the regular march test elements for completeness. We address the cells in the
second row of computation using the symbol m n+1. This symbol instructs to address all the second
rows in the array and would be used in conjunction with read and write operations. In order to
explicitly mention the logic operation, we make use of the notation in the extended fault primitive
for computation configurations. For example, an operation ⇑ (o11 : o12) indicates an OR operation
between two cells indicated by 1 and 2 respectively.

The Table 5.5 gives the list of all the faults that are sensitized which have the highest fault cov-
erage amongst all the other defects. We also cover the memory configuration operations as they are
an extension of the computation configuration. Table 5.6 gives the march element that sensitizes
the fault and the march element that identifies the fault in tabular form. While constructing the
test sequence, we replace the operation r 0 with o01 : o02 and operation r 1 with a11 : a12. This is
possible by virtue of the scouting logic architecture and helps to speed up the test process in the
system, as twice the amount of cells are verified in the same time. Based on this and the Table XXX,
the following test sequence is generated:

M1 m (w1) ; M2 ⇓2 (a11 : a12) ; M3 m2 (w0); M4 ⇓2 (a11 : a02) ; M5 ⇓2 (o11 : o02)

The March elements 2 and 4 act as read operations as well, as they perform read 0 on both cells

5.2. Tests in Computation configuration 95

and read 1 and read 0 on the coupled cells. This improves the speed of operation. Along with this
test, the tests mentioned for the address decoder faults for dual memories should also be performed
to get the required result. The time taken for testing ETD faults with the given test sequence is 5n
where n is the time taken per operation.

Table 5.5: Sensitized FP with Maximum Coverage for Computation Configuration - ETD

Defect
Num-

ber

0 1 0w0 0w1 0r0 1w0 1w1 1r1 0a0 0o0 1a1 1o1

1 〈1a1 : 1a1/1 : 1/0〉
2 〈0a0 : 1a1/0 : 1/1〉
3 〈0a0 : 1a1/0 : 1/1〉
4 〈0a0 : 1a1/0 : 1/1〉 〈0o0 : 0o0/0 : 0/1〉
5 〈0a0 : 1a1/0 : 1/1〉
6 〈1o1 : 0o0/1 : 0/0〉
7 〈1o1 : 0o0/1 : 0/0〉
8 〈1o1 : 0o0/1 : 0/0〉
9 〈0w1;0/1;1/−〉
10 〈1a1 : 1a1/1 : 1/0〉 〈1o1 : 0o0/1 : 0/0〉
11 〈1o1 : 0o0/1 : 0/0〉
12 〈1a1 : 0a0/1 : 0/1〉
13 〈1a1 : 1a1/1 : 1/0〉 〈1o1 : 0o0/1 : 0/0〉
14 〈1w0/1/−〉
15 〈1r1/1/0〉
16 〈1a1 : 0a0/1 : 0/1〉
17 〈0w0/1/−〉 〈1w0/1/−〉
Forming 〈1w0/H/−〉 〈1o1 : 0o0/H : 0/0〉

Test for HTD Faults

We finally develop the test for the HTD faults in the computation configuration. Since the tests
for HTD faults rely on single cells being activated, we do not make use of the combined reads to
find the HTD faults. However, we do use the those operations for finding ETD faults with the test
sequence. The Table 5.7 gives the list of sensitized faults for HTD in the computing configuration.
The following test sequence was generated as a result.

M1 m (w1) ; M2 ⇓2 (a11 : a12) ; M3 ⇓1 (w0); M4 ⇓1 (a01 : a12);

M5 ⇓1 (w0); M6 (ŵ1,0o01 : 0o02) ; M7 ⇓2 (w1) ; M8 ⇓2 (ŵ0,0o01 : 1o12)

Here March sequence M4 contains the HTD test where the undefined state has to be tested for.
This would requires special DfT. The Address decoder HTD can be tested with one of the methods
introduced earlier and the sense amplifier test can be performed by using the sequence for the HTD
fault in the memory configuration. The ŵ1 operation should test for both states ’L’ and ’U’ which
have to be performed separately, as the timing for each of these short write operations would be
different. The time taken for the tests is 10n where n is the time taken per operation. Table 5.8 gives
the coverage of the defects injected, with the march element that sensitizes the fault and identifies
the fault.

96 5. Tests for Scouting Logic

Defect Number Sensitizing March Element Detecting March Element

Defect 1 M2 M2
Defect 2 M4 M4
Defect 3 M4 M4
Defect 4 M4 M4
Defect 5 M4 M4
Defect 6 M5 M5
Defect 7 M5 M5
Defect 8 M5 M5
Defect 9 M1 M2
Defect 10 M2, M5 M2, M5
Defect 11 M5 M5
Defect 12 M4 M4
Defect 13 M2, M5 M2, M5
Defect 14 M3 M4
Defect 15 M1 M2
Defect 16 M4 M4
Defect 17 M1 M2
Forming Defect M1, M5 M4, M5

Table 5.6: Defect Coverage in ETD test sequence - Computation Configuration

Table 5.7: Sensitized FP with Maximum Coverage for Computation Configuration - HTD

Defect
Num-

ber

0 1 0w0 0w1 0r0 1w0 1w1 1r1 0a0 0o0 1a1 1o1

1 〈1a1 : 1a1/1 : 1/0〉
2 〈0a0 : 1a1/0 : 1/1〉
3 〈1w0/U/−〉
4 〈0a0 : 1a1/0 : 1/1〉 〈0o0 : 0o0/0 : 0/1〉
5 〈0a0 : 1a1/0 : 1/1〉
6 〈1o1 : 0o0/1 : 0/0〉
7 〈1o1 : 0o0/1 : 0/0〉
8 〈1o1 : 0o0/1 : 0/0〉
9 〈0w1;0/1;1/−〉
10 〈1w0/U/−〉
11 〈1o1 : 0o0/1 : 0/0〉
12 〈0w0/L/−〉
13 〈1a1 : 1a1/1 : 1/0〉 〈1o1 : 0o0/1 : 0/0〉
14 〈1w0/1/−〉
15 〈1r1/1/0〉
16 〈1w0/L/−〉
17 〈0w0/U/−〉 〈1w0/U/−〉
Forming 〈1w0/U/−〉

5.2. Tests in Computation configuration 97

Defect Number Sensitizing March Element Detecting March Element

Defect 1 M2 M2
Defect 2 M4 M4
Defect 3 M5 M6
Defect 4 M4, M6 M4, M6
Defect 5 M4 M4
Defect 6 M8 M8
Defect 7 M8 M8
Defect 8 M8 M8
Defect 9 M1 M2
Defect 10 M5 M6
Defect 11 M8 M8
Defect 12 M7 M8
Defect 13 M2, M8 M2, M8
Defect 14 M5 M6
Defect 15 M2 M2
Defect 16 M5 M6
Defect 17 M5, M7 M6, M8
Forming Defect M5 M6

Table 5.8: Defect Coverage in HTD test sequence - Computation Configuration

6
Conclusions

This chapter concludes the thesis. First, the summaries of each of the previous chapters are presented.
then we discuss the implications, shortcomings. Finally potential future research related to the thesis
is presented.

6.1. Summary
This section summarizes every chapter in the thesis

Chapter 1 introduces the thesis, gives the motivation and sets the context for the rest of the
thesis. Problems faced with the advancement of computing towards high speed computing sys-
tems are presented as ’walls’ in the computer architectures and in the underlying CMOS devices.
The walls in CMOS technology are the reliability wall, leakage wall and cost wall, while the walls in
traditional Von-Neumann architecture are the memory wall, power wall and ILP wall. CIM archi-
tectures are introduced as an alternative computing paradigm that can potentially solve some of
the problems with traditional computing systems. These CIM architectures make use of memory
elements that can double as a computing unit, thus eliminating costly data transfer in some cases.
Memristive devices can be employed in these CIM architectures because of their non-volatility, low
power consumption among other properties. The need for testing these architectures is then elabo-
rated, followed by the state of the art in testing of these CIM architectures. Finally the contributions
followed by the structure of this thesis are described.

Chapter 2 explains CIM architectures, including their structure, classification, operation paradigms
(memory and computation configurations) and usage methods. Then, CIM architectures are classi-
fied based on the location where the results of computation are stored as either being CIM-A (results
stored in array) or CIM-P (results obtained in the peripheral). Further classification is made based
on the input method as being resistive or hybrid (input as both resistance and voltage). The basic
working concept of memristive devices are explained, along with their different types, namely STT-
MRAM, PCRAM, and ReRAM. These devices are focused because of their interesting properties that
make them a better device to be used in CIM architectures. ReRAM is further explained, with their
electrical behaviour and production process discussed.

Chapter 3 briefs about electronic testing, gives definitions for terms in electronic testing. The
test methods employed in testing the circuits, namely functional and structural testing, are intro-
duced. Structural testing is the method that should be followed while testing CIM architectures as
it reduces the effort in testing while promising similar test coverage. Memory testing is discussed

99

100 6. Conclusions

in detail as CIM structures are tested as memory units since it is part of their function. Here we
look also at the defects that occur in ReRAM memories and peripherals of a CIM architecture, the
fault space of these structures and the tests that help us capture the faults in them. Then, it gives
the methodology for testing CIM architectures and explains the reasoning behind the methodol-
ogy. Memory configuration and computation configuration of CIM architectures are introduced
and the importance of testing them separately is also discussed. We establish that the memory con-
figuration is a subset of the computation configuration, and it has to be tested first because of the
potential faults escaping the tests. This should be followed by the computation configuration tests.
Both configurations have to be tested by structural testing method.

Chapter 4 exhibits the methodology proposed in Chapter 3 by taking the example of scouting
logic. The experimental set-up used for the test development is explained. Then faults in memory
configuration for the different components are discussed. Then the faults in the computation con-
figuration for the components are discussed. Both of these sections exhibited the fault modeling
and fault analysis of the defects in different components for each component. Fault primitives in-
troduced in Chapter 3 are extended to incorporate faults that occur during computation operations.

Chapter 5 gives the tests that should be performed on the CIM architectures, in both memory
and computation configuration. The tests are decided based on the ease of testability of the faults.
The easy-to-detect (ETD) faults are tested with the help of March tests while hard-to-detect (HTD)
faults can be detected with March tests along with special tests, for example, with the help of DfTs,
to ensure the detection of these faults. The tests for ETD and HTD faults in these configurations
were presented.

6.2. Discussions
The following are the key points of discussion that are obtained from this thesis. CIM architectures
have to be tested for ensuring quality products be delivered to users. The lack of a dedicated testing
methodology for these architectures is a research field that should be looked into. This thesis serves
as a primer for the research in that direction. While the methodology was tested for scouting logic,
it can extended to other architectures as well.

• CIM architectures exist in two different configurations. These configurations arise from mod-
ification they have that enable transition from memory configuration to computer config-
uration and vice versa. It is of high importance to study these components which enable
this change in the architecture. If CIM architectures are not considered to be in two differ-
ent forms, it makes the testing approach very complex and may lead to erroneous tests to be
generated.

• It is not enough to test the memory configuration alone, as there might be faults in the com-
ponents that enable the computations. Similarly, the computing configuration alone cannot
be tested, as there could be a fault with the read and write operations. Hence both the config-
urations have to be tested. This comes from the need for completeness of the test in terms of
coverage of the defects that can occur in the CIM architecture, as seen in Section 3.4.

• The memory configuration has to be tested first as it is a subset of the computation configu-
ration, and if the computation configuration is tested first then there might be a fault that is
not identified in the computation configuration, that makes tests costly.

• Unique faults that could occur in the computation configuration due to the operations and
the interaction of the circuit elements in this configuration have to be considered while gen-
erating the tests for the CIM architecture in the computation configuration. These faults can

6.3. Future Research 101

affect the operation of not only the computation configuration, but also the memory config-
uration. Examples of these faults can be seen in Section 4.3.2.

• There can also be unique faults that occur in the CIM architecture because of its structure,
for example parallel access of the memristive array cells in case of scouting logic 3.4.3. These
faults have to be studied well. Faults in the peripherals in CIM architectures also exhibit faults
that are characteristic of their usage and design, for example, the WRF in the sense amplifier
(Section 4.3.2) and thus must be investigated.

• While known methods such as March tests can help detect the easy to detect faults in a device
(Section 5.1.4), research has to be directed towards better test methods and DfTs that can
detect HTD faults in the circuit.

6.3. Future Research
Based on the analysis in this thesis, the following recommendations are made for future research:

1. A combined test for the configurations can be created that is a combination of memory and
computation operations that is a efficient of testing. For example, the march elements can
combine both read, write and computation operations, thus increasing test efficiency.

2. The computation configuration operations can be used to speed up the fault detection in
the memory configuration using their parallel access property in some CIM architectures like
scouting logic. An AND operation between two cells that are in logic state ’1’ can find if the
cells are stuck at ’0’.

3. Improved models for the memristive devices will help in better detection of faults and test
development.

4. DfT schemes that specifically target these CIM architectures should be developed to ensure
better fault coverage.

A
Testing Scouting Logic-Based

Computation-in-Memory Architectures

This appendix contains the paper submitted for presentation at European Test Symposium, Tallinn,
Estonia 2020

103

Testing Scouting Logic-Based
Computation-in-Memory Architectures

Moritz Fieback1 Surya Nagarajan1 Rajendra Bishnoi1
1Computer Engineering Laboratory

Delft University of Technology
Delft, The Netherlands

{m.c.r.fieback, s.hamdioui}@tudelft.nl

Mehdi Tahoori2 Mottaqiallah Taouil1 Said Hamdioui1
2Chair of Dependable Nano Computing

Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract—Traditional CMOS-based von Neumann computing
architectures are facing severe challenges to meet requirements
of evolving applications such as ultra-low power edge computing.
Therefore, new computer architectures are under investigation.
One of these architectures is computation-in-memory (CIM)
based on memristive devices. It performs computing operations
in the memory itself, allowing for massive parallelism, and low
energy consumption. One implementation of this architecture is
based on Scouting logic; it requires the modification of a regular
memory structure to allow the execution of logic operations
within the memory. This paper discusses the fault models and
test of such an architecture. It demonstrates that unique faults
can occur during computing that cannot be detected by regular
memory tests. Further, the paper demonstrates that memory
faults are a subset of the computation faults, hence a test for the
computation functionality will detect all memory faults. Finally,
this paper shows that testing the computation functionality
reduces the overall test time.

Index Terms—test, computation-in-memory (CIM), in-memory
computing, emerging memories, RRAM

I. INTRODUCTION

Evolving applications such as big data require high per-
formance computer architectures. Unfortunately, traditional
CMOS-based von Neumann architectures have an increasing
difficulty in providing this performance, due to their limited
data throughput, limited instruction parallelism, and high leak-
age power consumption [1, 2]. To overcome these issues, new
computer architectures are being investigated. One of them is
computation-in-memory (CIM) based on memristive devices
[3]. These architectures can either operate as a regular memory
in the memory configuration, and as a computing device in
the computation configuration. Because the computations take
place in the memory, these architectures do not suffer from the
memory bottleneck and allow for massive parallel execution
of instructions. Further, the usage of memrisitve devices like
resistive RAM (RRAM), spin-transfer-torque magnetic RAM
(STT-MRAM), or phase-change memory (PCM), allows for
dense memory structures that do not suffer from high leakage
power consumption [2]. Scouting logic is an implementation of
CIM that can perform binary logic operations in the memory
itself [4]. To allow for the computation, changes are made to
a regular memory structure, e.g., modifications to the sense
amplifiers or address decoders. These changes introduce new
faults and hence require new test solutions to detect them.

Further, the usage of emerging memristive devices introduces
new failure mechanisms that require different test methods to
detect them compared to normal memory tests [5].

The testing aspects of CIM have not been well explored in
the literature so far. Tsai et al. addressed testing of 8T-SRAM
CIM [6]. The authors recognized that a CIM die needs to
be tested in both its memory and computation configuration
and presented test solutions for both of them. Emara et al.
developed a test for memristor ratioed logic, focusing on
transistor faults and memristive stuck-at faults [7]. However,
it has been shown that stuck-at fault models do not represent
all possible defects in a memristive device [8–10]. This is
mainly caused by the fact that these models do not take into
account the non-linear behavior of a defective device [8].
Therefore, a test based solely on these fault models will lead
to test escapes. Hamdioui et al. presented the outlines for a
structural test approach for memristive CIM devices, while
taking into account the more complex behavior of a defective
memristive device, but did not work out the details [11]. It
does not present what faults are actually sensitized, neither
does it present complete test solutions to detect these faults.

This paper discusses the test of Scouting logic-based CIM
in detail, including defects, fault models, and test solutions.
The contributions of this paper are:

• We present fault models and tests for Scouting logic-based
CIM devices.

• We demonstrate that unique faults can occur in the compu-
tation configuration.

• We demonstrate that memory faults are a subset of compute
faults. Hence, a test for the computation configuration also
detects all faults in the memory configuration.

• We show that the test for the computation configuration
faults is able to reduce the overall test time.

The computation configuration tests achieve 100% fault cov-
erage and up to 18% test time reduction.

The remainder of this paper is structured as follows. Sec-
tion II presents background information on Scouting logic-
based CIM. Section III presents the test methodology. Sec-
tion IV and Section V apply this methodology to develop a test
for the memory and computation configuration respectively.
Section VI discusses the results and draws a conclusion.

(a) Symbol

BE

TE

(b) CF

-1 0 1

-0.2

-0.1

0

0.1

0.2

I T
E

 [
m

A
]

V
TE

 [V]

V
RESET

V
SET

(c) I-V curve

H

1

U

0

L

R
[Ω

]

(d) Resistance

SL
WL

int

BL

(e) Bit-cell

Fig. 1: RRAM device

II. BACKGROUND

This section presents the basics of RRAM devices, the CIM
concept, and the implementation details of Scouting logic.

A. RRAM Device

RRAM devices are the storing elements in which data is
stored in terms of resistance states. Details of RRAM devices
such as symbol, conductive filament structure, I-V curve and
bit-cell structure are shown in Fig. 1. Fig. 1b shows that
the cell structure consists of a metallic oxide (green) that
is sandwiched between a top electrode (TE) and a bottom
electrode (BE) [12, 13]. When a sufficiently high positive
voltage (higher than Vset) is applied, some of the bonds
between the ions break and form a conductive filament (CF)
of vacancies (blue circles) that can conduct a current. In the
absence of the bias voltage, the CF remains intact, making
this device non-volatile. When a negative voltage (lower than
Vreset) is applied, some ions move back into the oxide region,
thus reducing the size of the CF. The size of the CF decides
the resistance state of the device. For instance, a larger and
smaller CF represent the low resistive state (logical ‘1’) and
high resistive state (logical ‘0’), respectively. These resistance
values can vary significantly due to defects or extreme process
variations. Therefore, there are three more device states, i.e.,
‘L’, ‘U’, and ‘H’ ranges corresponding respectively to extreme
low logic state (resistance beyond the spec), undefined state,
and extreme high logic state (resistance below the spec). A
typical 1T-1R bit-cell is shown in Fig. 1e, where BL, WL,
SL, and int indicate bit line, word line, select line, and internal
node, respectively.

B. Scouting Logic-Based CIM

CIM architectures integrate logic operations into memory
arrays in order to address the processor-memory data transfer
bottleneck in computing systems. Similar to any standard
memory, it comprises a memory array to store the data and
periphery circuitry to access the memory and control the
compute operations [3, 6]. The CIM core can operate in two
different configurations [11]: the memory configuration (mem.
config.) and the computation configuration (comp. config.).
Since the comp. config. also uses read and write operations
besides compute operations, it is a superset of the mem. config.

Scouting logic [4] is an implementation example of CIM
that can execute bit-wise logic OR, AND, and XOR. Unlike a
standard memory where a single bit-cell in a column is read
at a time, Scouting logic activates two bit-cells in a column

Fig. 2: Scouting logic operations [4]

(as two inputs of the gate) simultaneously. Fig. 2 shows an
example in which two bit-cells M1 and M2 are activated [4].
To perform a read operation, a suitable read voltage Vr is
applied to the input terminals of both bit-cells, and the current
(Iin) that is representing the equivalent parallel resistances
of the two bit-cells is sensed using a sense amplifier. This
current value is compared with a reference current (Iref) to
generate the final output value. By changing Iref of the sense
amplifier, different gates can be realized. Fig. 2 illustrates
the OR, AND and XOR logic operations along with standard
memory operations by adjusting the reference current values.

In this work, we have employed resistive RAM (RRAM)
to act as the memristive device as this technology has many
benefits such as high density, scalability, non-volatility, faster
accesses, CMOS compatibility, etc., that makes it suitable for
CIM operations. Implementation details can be found in [11].

III. CIM TEST METHODOLOGY

Since the CIM core operates in mem. as well as comp.
configs., it is required to test these two configurations before
enabling them. Hence, we need tests for the mem. config. and
comp. config. In the former case, only the memory function-
ality is tested. In the latter case, the hardware responsible for
the computing functionality is tested. These tests are described
in the following two sections. To guarantee a high defect
coverage, the tests should be structural [11].

In general, any structural test development process for ICs
has three steps [5]. The first step is to analyze defects thor-
oughly and develop defect models. These models are injected
into the netlist of the design. Second, the faulty behaviors are
observed after simulating that netlist with all possible defects
and defect strengths to verify the fault space. The final step is
the test generation step in which test patterns are generated that
sensitize and detect the faults in the verified fault space. This
test development approach is applied for both configurations.

RRAM crossbars comprise of memory arrays as well as
periphery components such as address decoders (ADs), sense
amplifiers (SAs), write circuitry, drivers and control logic.
Some of these components require modifications to make the
overall architecture suitable for Scouting logic. The compo-
nents that are modified, need to be tested in the comp. config.,
while unmodified components only need to be tested in the
mem. config. Most of the modifications need to be done for
the periphery components. For instance, in order to access
multiple rows, the decoder circuitry has to be doubled to allow
selecting two independent row. Additionally, changes in the
memory array, SA, and control logic designs are required.

Rop 1

int
BL

Rop 2

WL

Rop 3

SL

Rsh 1

Rsh 2

Rbr 1 Rsh 3

Rsh 4

Rbr 2Rsh 5 Rsh 6

Rbr 3Rbr 4

Rbr 5

Rbr 6

Rsh 7

Rsh 8

Fig. 3: Linear resistor defects

IV. MEMORY CONFIGURATION TEST

Next, we will cover defect modeling, fault modeling, and
test development for the CIM die in the memory configuration.

A. Defect Modeling

Defects may occur in three locations: the transistors, the
interconnections, and the RRAM devices. Some typical tran-
sistor defects are: lithographic variations, polish variations,
material impurity, pinholes, etc. [14]. These defects are typ-
ically modeled as linear resistor opens and bridges between
the nodes of a transistor. Interconnection defects are: line
edge roughness, irregular shapes, small particles, etc. These
defects lead to increased resistance or bridges. Therefore these
defects are also modeled as linear resistors between two nodes.
Defects in the RRAM device are related to the oxide and
electrode structures and have a strong effect on the conductive
filament directly after forming the initial CF [8]. Due to the
non-linear behavior of the RRAM device, these defects cannot
be accurately modeled by linear resistors [8]. Therefore, these
forming defects are modeled using the device-aware defect
modeling approach that takes into account the actual physics of
a defective device and appropriately models the behavior [5].

In this paper, we model transistor and interconnect defects
with linear resistors between two nodes, as shown in Fig. 3.
The strength of these defects (Rdef) is varied from 1 Ω
to 100 MΩ. The forming defects in the RRAM device are
modeled using the device-aware defect model from [5] with
forming current (Iform) between 1 µA and 35 µA.

B. Fault Modeling

Fault modeling consists of defining the fault space and
verifying it via defect model injection and circuit simulation.
The model that is injected depends on the type of defect that
is analyzed, as was described in the previous section.

1) Fault Space: We will define the fault space for the
memory array, address decoders and sense amplifiers.

Array: Faults in a memory array are typically described
using as a fault primitive (FP) in the 〈S/F/R〉 notation [15].
Here, S ∈ {0, 1, 0w0, 0w1, 1w0, 1w1, 0r0, 1r1} denotes the
sensitizing sequence, e.g., 0r0 denotes reading a ‘0’ from a
cell, and 1w0 denotes writing a ‘0’ to a cell containing a ‘1’,
F ∈ {L, 0,U, 1,H}) denotes the state of the cell after the
sensitizing operation is performed [5], and R ∈ {0, 1, ?−}

denotes the read output (? indicates a random read output, −
is used when S was a write operation). Using this notation, the
fault space for single cell faults can be described as was done
in [5]. However, it is possible that multiple cells are involved
in a fault. To describe the fault space, the 〈S/F/R〉 notation
needs to be extended, e.g., a coupling fault can be described
as 〈Sa; Sv/F/R〉, where Sa denotes the aggressor’s S and Sv

the victim cell’s [15].
Address Decoders: AD faults in a single decoder are well

studied and can be grouped in static and delay faults. Static
AD faults (AFs) will always lead to errors; they are [16]:
no access, multiple cells, multiple addresses, and other cells.
A defect may affect the timing of the AD and can sensitize
an activation delay fault (ActD), or deactivation delay fault
(DeactD) [17]. Due to these delays, other cells may be selected
as well, or no selection occurs at all.

Sense Amplifiers: SA faults can be grouped in static and
dynamic faults. Static faults are SA stuck-at faults (SASF)
where the SA always switches to one value, irrespective of its
inputs. Dynamic SA faults affect the switching behavior of the
SA. These faults consist of the slow SA fault (SSAF) where
the SA operation is too slow [18].

2) Validation of the Fault Space: Array: Fig. 4a graphically
describes the faults that are sensitized by the forming defect
for different strengths, while Fig. 4b does the same for defect
Rbr 6. The figures for the remaining defects of Fig. 3 are left
out due to space considerations. The colors in these graphs
relate to the class of the faults; a black box indicates that no
FP was sensitized, while white and gray colors indicate that an
FP was sensitized. The meaning of these colors is explained
in the next section. It can be seen that a defect of certain
strength can sensitize multiple faults. The combination of the
defect and its strength with the FPs it sensitizes is called a fault
class (FC). For example, take defect Rbr 6 with a strength of
465 Ω, then the fault class in the mem. config. contains the
faults with S = 0w0, 0w1, 1w0, 1w1, and 0r0. In order to
detect a defect with a certain strength, only one fault in the
FC needs to be detected.

Address Decoders: Both static and dynamic AD faults have
been shown to exist in Scouting logic-based CIM [11].

Sense Amplifiers: Both static and dynamic SA faults have
been shown to exist in Scouting logic-based CIM [11].

C. Test Development

To develop a suitable test, we classify the faults based on the
ease of their detection as easy-to-detect (ETD, white blocks) or
hard-to-detect (HTD, gray blocks) [5]. ETD faults will always
be sensitized by a given S and are guaranteed to be detected by
regular memory operations, for example in a march algorithm,
e.g., 〈0r0/1/0〉. HTD faults are not guaranteed to be sensitized
and detected with regular memory operations. For example, the
FP 〈1r1/U/?〉 is HTD, as it pushes the cell into the ‘U’ state
and causes a random read output. Since the outcome of the
read operation is not determined, a march algorithm cannot
guarantee detecting this fault. Therefore, other test solutions
are required to detect HTD faults, e.g., design-for-testability

0
1
0w0
0w1
1w0
1w1
0r0
1r1
0a0 : 0a0
0a0 : 1a1
1a1 : 0a0
1a1 : 1a1
0o0 : 0o0
0o0 : 1o1
1o1 : 0o0
1o1 : 1o1
Iform [µA] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(a) Sensitized FPs for forming defect

0
1
0w0
0w1
1w0
1w1
0r0
1r1
0a0 : 0a0
0a0 : 1a1
1a1 : 0a0
1a1 : 1a1
0o0 : 0o0
0o0 : 1o1
1o1 : 0o0
1o1 : 1o1
Rdefect [Ω] 1 8 60 465 3.6k 28k 215k 1.7M 13M 100M

(b) Sensitized FPs for defect Rbr 6

Fig. 4: Fault maps for forming defect and defect Rbr 6. A white square indicates an ETD fault, a gray one an HTD fault, and a black one fault-free

(DFT) circuits. Note that this classification also applies to AD
and SA faults, i.e., AFs and SASF are ETD, the others HTD.

The goal of a march algorithm is to maximize fault coverage
while minimizing test time. The left side of Table I describes
the FPs sensitized by the considered defects for the maximal
defect range in the mem. config. The S in the 〈S/F/R〉
notation denotes the sensitizing sequence in the top row of
the table. Note that multiple faults can be sensitized by a
single defect. For some defects, there is no single S that
sensitizes faults for the complete defect strength range, e.g.,
the forming defect. To detect this defect, multiple faults need
to be detected, which is indicated with an * in the table,
e.g., to detect all forming faults, both 1w0 and 0w1 need to
be applied as these sensitize the most faults fo this defect.
Finally, FPs printed in red are HTD faults. The detection of
these faults increase the fault coverage, e.g., detecting the gray
squares (HTD faults) in Fig. 4a increases the fault coverage
significantly, but detecting the gray square in Fig. 4b does not,
because 0r0 already sensitizes this fault.

1) Test for ETD Faults: The test for the ETD array faults
is a march algorithm that detects at least one of the ETD FPs
that are sensitized per defect in Table I. That is, the algorithm
detects at least one FP per FC. We select the FPs such that
the total execution time of the march algorithm is minimized,
while detecting all faults. This results in the following march
algorithm for ETD faults in the mem. config.:

March-ETD-Mem = M1 m (w0) ; M2 ⇓ (r0,w1) ;

M3 ⇑ (r1,w0) ; M4 m (r0) .

Here, ⇑ indicates an increasing addressing order, ⇓ a decreas-
ing order, and m any addressing order. Every sequence of
operations between the parentheses (. . .) is called a march
element with name My, with y ∈ N. It is performed on an
address before moving to the next. In this sequence, wx and
rx denote respectively a read and write operation on the cell
with value x, where x ∈ {0, 1}.

The fault coverage of this march algorithm is listed in
Table II as a percentage of all FCs that are sensitized in the
mem. config. for every defect. To illustrate, when analyzing
the forming defect in Fig. 4a, there are 8 forming currents
that do not sensitize a fault, hence there are 28 currents that do
sensitize a fault and thus there are 28 FCs for this defect.Since,
March-ETD-Mem detects all ETD faults, for the forming
defect this means that the algorithm has a fault coverage of
9/28. The coverage for AD and SA faults is similarly defined.

To illustrate the detection capabilities, consider defect Rsh 3
that sensitizes 〈0r0/0/1〉 (see Table I). M2 sensitizes and
detects this fault. Because this algorithm contains both r0 and
r1 operations, all static SA faults are detected as well. The
sequence also detects static AD faults in a single decoder with
M2, M3, and M4 [16]. However, in Scouting logic, there are
two row decoders and one column decoder. Hence, to detect
faults in both row decoders, the sequence must be applied
twice. This can be done efficiently by dividing the columns
equally over both row decoders. For example, if the array
has C columns, decoder A is used for all columns less than
C/2 and decoder B for all remaining columns. As there is
only one column decoder, the proposed test scheme will also
detect all static faults there. The test time of this algorithm is
N + 2N + 2N +N = 6N , where N is the execution time for
one operation on the whole address space.

2) Test for HTD Faults: In order to detect the HTD faults
in the array, we propose to use the DFT scheme in [19]. This
scheme applies weak write (ŵ) operations that decrease the
operation duration or write voltage to detect cells that are in
the ‘U’ state, but it can be extended to detect cells that are
in ‘L’ and ‘H’ as well. The write operation is modified so
that it pushes defective cells in a wrong state but defect-free
cells remain unaffected. For example, the fault 〈0w1/U/−〉
can be detected by performing a ŵ0 operation that puts the
defective cell into ‘0’. A defect-free cell does not have enough
time to switch back to ‘0’ and remains in ‘1’. When a r1 is
performed thereafter, the defective cell can be detected. Cells
in ‘L’ and ‘H’ can be detected in a similar way, e.g., the fault
〈1w1/H/−〉 can be detected by performing a ŵ0 operation so
that a defect-free cell switches to ‘0’, while the defective cell
remains in ‘H’ or ‘1’. By using weak write operations, the
HTD array faults can be detected by the following algorithm:

March-HTD-Mem = M1 m (w0) ; M2 ⇓ (r0,w1, ŵ0) ;

M3 ⇑ (r1,w0) ; M4 m (ŵ1, r0) .

The fault coverage of this algorithm is presented in Table II.
This algorithm detects all ETD and almost all HTD faults
in the array, SA and AD. It was shown in [17] that ActD
and DeactD are sensitized when certain address transitions are
made, e.g., by applying a H1 (Hamming distance between two
addresses of 1) addressing order. Therefore, these HTD AD
faults can be detected as well if the linear addressing order
is replaced by an H1 order, e.g., m is replaced by mH1 [17].
SSAF can be sensitized by applying a stressing sequence to
the SA that forces the output to switch quickly between ‘1’

TABLE I: Sensitized FPs that cover the maximal defect range. * indicates that a combination of faults needs to be detected, FPs printed in red are HTD faults.

S Memory Configuration S Computation Configuration
Defect 0 1 0w0 0w1 1w0 1w1 0r0 1r1 0a0:0a0 0a0:1a1 1a1:0a0 1a1:1a1 0o0:0o0 0o0:1o1 1o1:0o0 1o1:1o1

Forming
〈S/L/−〉*,
〈S/0/−〉*,
〈S/U/−〉*

〈S/L/−〉*,
〈S/0/−〉*,
〈S/U/−〉*

〈S/H/−〉*,
〈S/U/−〉*

〈S/L/−〉*,
〈S/U/−〉*

〈S/L/1〉*,
〈S/0/0〉*,
〈S/U/0〉*,
〈S/U/1〉*

〈S/U : 0/0〉 〈S/U : 1/1〉,
〈S/L : 1/0〉

〈S/U : 0/1〉,
〈S/L : 0/0〉 〈S/U : 1/1〉

Rbr 1
〈S/1/−〉,
〈S/U/−〉 〈S/0/1〉 〈S/0 : 1/1〉 〈S/1 : 0/1〉 〈S/0 : 0/1〉

Rbr 2 〈S/1/0〉 〈S/1/0〉 〈S/1 : 1/0〉 〈S/1 : 1/0〉
Rbr 3

〈S/L/0〉,
〈S/1/0〉 〈S/1 : 1/0〉 〈S/1 : 0/0〉

Rbr 4 〈S/0/−〉* 〈S/0/1〉 〈S/1/0〉* 〈S/1 : 1/0〉 〈S/1 : 0/0〉
Rbr 5 〈S/L/−〉 〈S/L/−〉
Rbr 6 〈S/0/1〉 〈S/0 : 1/1〉
Rop 1 〈S/1/−〉 〈S/1 : 0/0〉
Rop 2 〈S/0/1〉 〈S/1 : 0/0〉
Rop 3 〈S/1/0〉
Rsh 1

〈S/1/−〉,
〈S/U/−〉

〈S/1/−〉,
〈S/U/−〉

Rsh 2 〈S/1/1〉* 〈S/L/0〉* 〈S/1 : 1/1〉 〈S/1 : 1/1〉 〈S/1 : 1/1〉 〈S/1 : 1/1〉
Rsh 3 〈S/0/1〉 〈S/1 : 1/1〉 〈S/1 : 0/1〉 〈S/0 : 0/1〉
Rsh 4 〈S/1/0〉 〈S/1/0〉 〈S/1 : 1/1〉 〈S/1 : 1/1〉 〈S/1 : 1/1〉 〈S/1 : 1/0〉 〈S/1 : 1/1〉 〈S/1 : 1/1〉
Rsh 5 〈S; 0/1/−〉 〈S; 0/1/−〉 〈S; 0/1/−〉 〈S; 0/1/−〉
Rsh 6 〈S/0/−〉 〈S/1/−〉,

〈S/U/−〉 〈S/0/1〉 〈S/1 : 1/0〉 〈S/1 : 0/0〉
Rsh 7 〈S; 0/1/−〉 〈S; 0/1/−〉 〈S; 0/1/−〉 〈S; 0/1/−〉
Rsh 8 〈S/1/0〉 〈S/1 : 1/0〉 〈S/1 : 0/0〉

TABLE II: Fault coverage for the proposed tests

Memory Configuration Computation Configuration
Test ETD HTD ETD HTD
Array 77.3% 100% 81.8% 100%
Sense Amplifier 50.0% 100% 50.0% 100%
Address Decoder 33.3% 100% 50.0% 100%

and ‘0’, which defective SAs will fail to do. The algorithm
can be extended with such a stressing element, e.g., by adding
M5 m (r0,w1, r1) to the sequence. The test time is then 11N .

V. COMPUTATION CONFIGURATION TEST

Next, we will cover defect modeling, fault modeling, and
test development for the CIM die in the comp. config.

A. Fault Modeling

In this section, we define and verify the fault space in the
comp. config. for the array, ADs, and SAs.

1) Fault Space:
Array: In Scouting logic, a compute operation can be seen

as a special read operation in which two cells are read at
once by a single SA. This dual access causes new faults
in the memory array and hence requires a test solution.
To define the fault space for these computation faults, the
〈S/F/R〉 notation scheme needs to be extended to include
the compute operations as: 〈S1 : S2 / F1 : F2 / R〉. In this
notation, S1 and S2 describe the sensitizing sequence applied
to cell 1 and 2 respectively, : indicates that these sensitizing
operations are applied in parallel, F1 and F2 indicate the state
of the cells after the sensitizing operation, and R indicates
the read output. In addition, the operations in S are also
extended with the compute operations OR (o) and AND (a).
For example, consider 〈0a01 : 1a12 / 01 : H2 / 1〉. Here, an
AND operation is performed on two cells. After the operation
is performed, the value of cell 2 is flipped from ‘1’ to ‘H’ and
the SA gave a ‘1’ as output. This extended FP notation can
be used to define the fault space for all faults in the memory
array, both in the mem. config. and comp. config. Therefore,
it can be concluded that the fault space of the array in the
comp. config. is a superset of the fault space of the array in
the mem. config.

Address Decoders: In the comp. config., the two decoders
operate at the same time to select the operands for the

compute operation. The parallel operation of the two decoders
in the presence of a defect between them, can lead to port
interference faults (AFpi) [20]. That is, one decoder enables
a wrong word line only if the other decoder points to certain
address. These faults do not occur when the ADs are operated
independently. However, the AD faults that occur in the mem.
config. can also occur in the comp. config. Hence, we can
conclude that the AD fault space in the comp. config. is a
superset of the AD fault space in the mem. config.

Sense Amplifiers: The SAs in the comp. config. suffer from
the same faults as in the mem. config., except that these faults
can occur for every reference current individually. That is,
the AND reference current may suffer from SASF or SSAF
as well as the OR/read reference current. Therefore it can be
concluded that the SA fault space in the comp. config. is a
superset of the SA fault space in the mem. config.

2) Sensitized Fault Space:
Array: Fig. 4a and 4b also present faults that are sensitized

in the comp. config. We can conclude the following:
• March optimization: Many defects that sensitize faults

in the mem. config. also sensitize faults in the comp.
config., e.g., defect Rbr 6 sensitizes both 〈0r0/0/1〉 and
〈1a11 : 1a12 / 01 : 12 / 0〉 for the strength from 1 Ω to
3.6 kΩ, increasing the amount of faults in the FC. The
march algorithm can use either one of them and thus has
the potential to become more time efficient.

• Fault coverage: Defect Rbr 6 in the mem. config. sensitizes
FPs up to a strength of 3.6 kΩ, while in the comp. config.
FPs are also sensitized for strengths up to 28 kΩ. Therefore,
including this fault leads to higher fault coverage.
Address Decoders: Both static and both dynamic AD faults

have been shown to exist in Scouting logic-based CIM [11].
Sense Amplifiers: Both static and dynamic SA faults have

been shown to exist in Scouting logic-based CIM for both
references [11].

From the above paragraphs it follows that the fault space
of the comp. config. is always a superset of the fault space of
the mem. config. Therefore, a test that detects all faults in the
comp. config.also detects all memory faults. Hence, test time
can be reduced by only testing the comp. config. Further, the

second point above proves that the computation fault space
covers a larger defect space than the mem. config. Hence, a
high-quality CIM test should focus on testing the comp. config.

B. Test Development

This section presents a test for the ETD and HTD faults.
1) Test for ETD Faults: The right side of Table I lists

the compute faults that were sensitized per defect. As was
discussed above, march algorithms can be made more efficient
by adding compute operations. Besides the wider selection of
faults in an FC that can be included, the compute operations
can also be used to speed up parts of the algorithm. For
example, the execution time of a march element m (r0) can
be halved by performing an OR operation per two rows and
verifying the output to be ‘0’. That is, an OR operation is
performed first on row 0 and 1, second on row 2 and 3, etc.,
We denote this addressing as m2 (...).

The following algorithm uses compute operations to sensi-
tize faults and applies the proposed addressing scheme.

March-ETD-Comp = M1 ⇓ (w0) ; M2 ⇓2 (o0) ;

M3 ⇑ (r0w1r1o1) ; M4 m2 (o1a1) ;

M5 m (w0a0) ; M6 m2 (o0) .

The fault coverage of this algorithm is denoted in Table II. The
algorithm detects all comp. config. ETD array faults. Further,
it detects all SSAFs for the all references. With m2 addressing,
the test time is 9N instead of 11N , a speedup of 18%.

Static AD faults in a single decoder are sensitized and
detected by elements M1, M2, and M3. However, no AFpis
are detected by this algorithm. In [20] it was shown that the
detection of all AFpis requires that a sensitizing and detection
operation is applied to all combinations of addresses. The
algorithm in [20] has a test time of 2R + 8R2, where R
indicates the amount of rows. For Scouting logic, this can be
slightly reduced by applying an OR operation instead of two
subsequent r0 operations, resulting in the following algorithm
with execution time 3

2R + 7R2:

March-AFpi = M1 mc1∈R (w1) ; M2 mc1∈R (mc2∈R (r1c1,

r1c2,w0c1,w0c2, o0c1 : o0c2,w1c1,w1c2)) ;

M3 mc1,c2∈R (a1c1 : a1c2) .

Here, c1 and c2 indicate a selected cell within the same
column, and c1 6= c2. March-ETD-Comp can be modified to
detect AFpis, e.g., by performing the AFpi algorithm after M4.
The total test execution time then becomes: 9N + 1

2R + 7R2

(M1 in March-AFpi is not required, because the memory is
already initialized to ‘1’ by M3 in March-ETD-Comp).

2) Test for HTD Faults: From Table I, it follows that the
compute operations do not sensitize additional HTD faults that
cover more FCs, except for the forming defect. To detect the
HTD faults in the comp. config., we again apply the weak
write operations DFT [19] resulting in the following algorithm:

March-HTD-Comp = M1 ⇓ (w0) ; M2 ⇓2 (o0) ;

M3 ⇑ (r0w1r1o1) ; M4 m2 (o1a1) ;

M5 m (w0ŵ1r0a0) ; M6 m2 (o0) .

From Table II it follows that this algorithm detects all array
faults. Although it detects all SSAFs, an additional stressing
sequence is required to detect the SASFs for both reference
currents. A sequence that can do this stressing and can be
added at the end of the algorithm is: M7 m (o0,w1, o1) ; M8 m
(a1,w0, a0). The static AD faults can be detected in the same
way as in march-ETD-Comp. To detect the delay faults in
the ADs, H1 addressing should be used as well. With all
improvements to increase the fault coverage, the total test time
becomes 17N + 1

2R + 7R2.

VI. CONCLUSION

In this paper, we defined the fault space and presented tests
for the two operating configurations of a Scouting logic-based
CIM architecture. We proved that the fault space of the comp.
config. is a superset of the fault space of the mem. config.
by showing that there exist faults that can only occur in the
comp. config. and thus not be detected by regular memory
tests, leading to test escapes. We showed that our HTD test
for the comp. config. is able to 100% of the faults. Further, we
have also demonstrated how compute operations can be used
to speed up the execution of a march algorithm. For example,
we have demonstrated how the time it takes to verify whether
all cells are ‘0’ can be halved by applying OR operations,
resulting in a test time reduction up to 18%.

REFERENCES

[1] D. A. Patterson, “Future of Computer Architecture,” in BEARS, 2006.
[2] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” In

DATE, 2017, pp. 722–731.
[3] S. Hamdioui et al., “Memristor based computation-in-memory archi-

tecture for data-intensive applications,” in DATE, 2015.
[4] L. Xie et al., “Scouting Logic: A Novel Memristor-Based Logic

Design for Resistive Computing,” in ISVLSI, 2017.
[5] M. Fieback et al., “Device-Aware Test: A New test Approach Towards

DPPB Level,” in ITC, 2019.
[6] T.-L. Tsai et al., “Testing of In-Memory-Computing 8T SRAMs,” in

DFT, 2019.
[7] A. S. Emara et al., “Testing of memristor ratioed logic (MRL) XOR

gate,” in ICM, 2016.
[8] M. Fieback et al., “Testing Resistive Memories: Where are We and

What is Missing?” In ITC, 2018.
[9] C. Y. Chen et al., “RRAM defect modeling and failure analysis based

on march test and a novel squeeze-search scheme,” IEEE TC, 2015.
[10] S. Kannan et al., “Sneak-Path Testing of Crossbar-Based Nonvolatile

Random Access Memories,” IEEE TN, 2013.
[11] S. Hamdioui et al., “Testing Computation-in-Memory Architectures

Based on Emerging Memories,” in ITC, 2019.
[12] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, 2012.
[13] S. Yu et al., “Emerging Memory Technologies: Recent Trends and

Prospects,” IEEE SSCM, 2016.
[14] K. J. Kuhn et al., “Process Technology Variation,” IEEE TED, 2011.
[15] A. Van de Goor et al., “Functional memory faults: a formal notation

and a taxonomy,” in VTS, 2000, pp. 281–289.
[16] A. J. van de Goor, Testing Semiconductor Memories - Theory and

Practice. John Wiley & Sons, 1991.
[17] S. Hamdioui et al., “Opens and Delay Faults in CMOS RAM Address

Decoders,” IEEE TC, 2006.
[18] A. van de Goor et al., “Detecting faults in the peripheral circuits and

an evaluation of SRAM tests,” in ITC, 2004, pp. 114–123.
[19] S. Hamdioui et al., “Testing Open Defects in Memristor-Based

Memories,” 2015.
[20] S. Hamdioui et al., “Address decoder faults and their tests for two-

port memories,” in MTDT, 1998.

B
Testing Computation-in-Memory
Architectures Based on Emerging

Memories

This appendix contains the paper published at the International Test Conference - 2019: S. Ham-
dioui, M. C. R. Fieback, S. Nagarajan, M. Taouil "Testing Computation-in-Memory Architectures
Based on Emerging Memories", in 2019 International Test Conference, Washington D.C, U.S.A, 2019

111

Testing Computation-in-Memory Architectures
Based on Emerging Memories

Said Hamdioui Moritz Fieback Surya Nagarajan Mottaqiallah Taouil
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2628CD, Delft, The Netherlands

Email: S.Hamdioui@tudelft.nl

Abstract—Today’s computing architectures and device tech-
nologies are becoming incapable of meeting the increasingly
stringent demands on energy and performance posed by evolving
applications. Therefore, alternative novel post-CMOS computing
architectures are being explored. Some of these are Computation-
in-Memory (CIM) architectures based on memristive devices;
they integrate the processing units and the storage in the same
physical location (i.e., the memory based on memristive devices).
Due to their advanced manufacturing processes, use of new
materials, and dual functionality, testing such chips requires
specific schemes and therefore special attention. This paper
describes the need for testing CIM architectures, proposes a
systematic test approach, and shows the strong dependency of the
test solutions on the nature of the architecture. All of these will
be demonstrated using a design that is designed for computation-
in-memory bit-wise logical operations.

I. INTRODUCTION

In the past decades, the world has seen a phenomenal
increase in computing performance, resulting in smaller, faster,
and more energy efficient computers. However, today’s com-
puter architectures as well as the CMOS technology used to
manufacture them are facing major challenges such as memory
wall, power wall, leakage wall, and cost wall [1, 2]; these
make them economically not attractive for many evolving
applications which are extremely demanding, e.g., in terms of
MOPs/Watt. Therefore, continuing with delivering sustainable
benefits in the foreseeable future requires the exploration
of alternative (unconventional) computing architectures that
leverage novel post-CMOS device technologies such as mem-
ristive devices (e.g., resistive RAM (RRAM), phase change
memory (PCM), spin-transfer-torque magnetic RAM (STT-
MRAM)). One of these is a Computation-in-Memory (CIM)
architecture based on memristive devices [3, 4]; it is based on
integrating the processing units and the memory in the same
physical location. As a consequence, it signicantly reduces the
memory accesses and data movements while supporting mas-
sive parallelism, potentially resulting in orders of magnitude
improvement in terms of energy and computing efciency [5, 6].
Many companies (e.g., IBM, ARM), research institutes (e.g.,
IMEC), and universities are investigating and demonstrating
such an architecture [5]. There are still many issues that have
to be solved in order to get this computer technology mature
enough; examples are: endurance of the memristive devices,
variability, complexity of the control units within the CIM

core, etc [7, 8]. In addition, and like all other ICs, these CIM
dies need to be tested for manufacturing defects, in order to
guarantee sufcient outgoing product quality to the customer.
The manufacturing process of memristive-based CIM cores
involves additional steps and makes use of new materials [9],
which may lead to new failure mechanisms. In addition, a CIM
die acts both as a memory as well as a computing unit; and
hence, it has to be tested for both functionalities.

To the best of our knowledge, this is the first paper to
discuss the test needs for memristive device-based CIM ar-
chitectures. Nevertheless, there is some published work on
emerging memories (relying on memristive devices) upon
which CIM architectures are based. Most of this work is
based on modeling defects as linear resistors, injecting them
in the memory netlist in order to perform circuit simulation
and derive fault models, and thereafter test and design-for-
testability (DfT) solutions [10–16]. However, recent work has
demonstrated that using resistors to model defects in, for
example, RRAM and STT-MRAM is not accurate enough due
to the non-linearity of these devices [17, 18]. Inaccurate defect
modeling may lead to non-realistic fault models, and hence,
low-quality tests; this has enabled the development of Device-
Aware-Test approach [19].

This paper addresses the test aspects of CIM architectures
based on emerging memristive devices. It briefly discusses
the feasibility of functional and structural testing. In addition,
it provides a systematic and structural approach for testing,
and it highlights the need for testing the CIM die for its two
different functional configurations, once as a memory and once
as a computing unit. The paper also shows the dependency of
the test solutions on the nature of the CIM architecture itself
by demonstrating this test approach for a CIM design that
performs bit-wise logic operations.

The remainder of this paper is structured as follows. Sec-
tion II presents background information on CIM, including
a classification of different CIM architectures. Section III
presents the proposed structural test approach for CIM ar-
chitectures. Sections IV, V and VI apply this approach for
a case study based on bit-wise logical CIM implementation.
Section VII presents a discussion and conclusion.

Paper Invited 3.1
978-1-7281-4823-6/19/$31.00 ©2019 IEEE

INTERNATIONAL TEST CONFERENCE 1

(a) CIM core (b) CIM program

Fig. 1: CIM accelerator [5]

II. COMPUTATION-IN-MEMORY

In this section, we briefly present the concept of CIM archi-
tectures and classify them. Then, an implementation example
for each class is given; one of them will be used as case study
in this paper. However, in order to better understand these
implementations, the working principles of an RRAM (used
as a memristive device) will be be introduced first.

A. CIM Concept and Classification

The CIM architecture is based on integrating the processing
units and the storage in the same physical memory location. A
realistic implementation that many researchers are prototyping
is shown in Fig. 1a [5, 20, 21]; the CIM core may consist of
very dense memristive crossbar array and CMOS peripheral
circuitry. The CIM die takes over the memory-intensive com-
putation parts from the processor, thus significantly speeding
up the execution and reducing the energy consumption by
eliminating large amounts of data transfers. Fig. 1b illustrates
a program that could be executed efciently on a CIM ar-
chitecture; multiple loops can be executed within the CIM
core while the other parts of the program can be executed on
the conventional core. Each time a loop is invoked, the CPU
sends a macro-instruction to the CIM core which decodes and
executes it locally, and returns the final results.

As already mentioned, computing in the CIM core takes
actually place within the memory. Hence, the CIM core can
operate in two different configurations: memory and computa-
tion configuration. Fig. 2a shows these configurations, as well
as the operations that each configuration requires. Since the
computation configuration also uses read and write operations,
it is a superset of the memory configuration. Fig. 2b shows
a block diagram of a CIM die. In addition to the memory
core, it consists also of a communication interface. It is worth
noting that computations in the CIM core take place within the
memory core. Because a memory core consists of a memory
array and peripheral circuits, and depending on where the
result of the computation is produced, CIM architectures can
be divided into two classes [22]:

• CIM-Array (CIM-A): In CIM-A, the computation result is
produced within the array. Examples of such architectures
are PLiM [23], ReVAMP [24], CIM device [25], etc. The
CIM-A core typically requires a significant redesign of
the memory array to support computing, as conventional
memory cell layouts are typically optimized for storage
functionality only.

CIM Core

Memory
Configuration
1. Read
2. Write

Computation
Configuration
1. Read
2. Write
3. Compute

(a) CIM configurations

Array

Peripherals

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

Memory Core

CPU

(b) CIM block diagram

Fig. 2: CIM configurations and block diagram

• CIM-Periphery (CIM-P): In CIM-P, the computation result
is produced within the peripheral circuitry. Examples of
such architectures are PRIME [26], Pinatubo [27], CIM-
Accelerator [28], etc. This architecture focuses on special
circuits in the peripherals to realize, for example, bit-wise
logic operations [27, 29], matrix-vector multiplication [6,
30], etc. Even though the computational results are produced
in the peripheral circuits, the memory array could be a
significant component in the computations. For example, to
perform bit wise logic operations, multiple rows in the array
need to be simultaneously activated.
As CIM performs operations within the memory core, at

least part of the operands should be stored in the memory
array. In other words, the operator being executed within the
memory needs to have all operands stored in the array (as
resistive) or only part of the operands is stored in the array and
the other part is received via the memory port(s) (hence their
logic values are hybrid, i.e., resistive and voltage). This results
in four sub-classes: CIM-Ar, CIM-Ah, CIM-Pr and CIM-Ph;
the additional letters ‘r’ and ‘h’ denote the nature of the
inputs (operands), namely resistive and hybrid, respectively.
An example of CIMP-Ah and CIM-Pr will be discussed in
Subsection C and D.

B. RRAM Device Technology

RRAM devices are one of the most popular memristive
devices; they are non-volatile, two-terminal, non-linear devices
that can switch their resistance [7, 31, 32]. The symbol to
denote an RRAM device is shown in Fig. 3a, while the
structure of the device is shown in Fig. 3b; the structure
consists of a metallic oxide (green) that is stacked between two
electrodes (yellow, top (TE) and bottom electrode (BE)) [7,
32]. When a voltage higher than the set threshold (VTE>VSET)
is applied, some of the bonds between the metal and oxygen
ions break. The oxygen ions are attracted to the positively
charged electrode, leaving behind a chain of vacancies (blue
circles). This chain, called the conductive filament (CF), can
conduct a current. Even if the bias voltage is removed, the
CF will remain intact, making this device non-volatile. On
the contrary, when a negative voltage lower than the reset
threshold (VTE<VRESET) is applied, some of the ions move
back into the oxide, thus reducing the size of the CF. The shape
of the CF determines the resistance of the device; larger CFs
have a lower resistance. Fig. 3c shows the RRAM switching
behavior with a current-voltage graph.

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 2

(a) Symbol

BE

TE

(b) CF

-1 0 1

-0.2

-0.1

0

0.1

0.2

I T
E

 [
m

A
]

V
TE

 [V]

V
RESET

V
SET

(c) I-V curve

H

1

U

0

L

R
[Ω

]

(d) Resistance

SL
WL

int

BL

(e) 1T-1R

Fig. 3: RRAM device

Q

Z

P
P Q Z Znew

0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 0
0 0 1 1
0 1 1 0
1 0 1 1
1 1 1 1

Fig. 4: Majority logic

For memory applications, we distinguish two resistive
states: the low resistive state (LRS, SET state, or logical ‘1’),
and high resistive state (HRS, RESET state, or logical ‘0’).
As this resistance is continuous and slightly varies per write
cycle [7, 32], ranges that correspond to these two states are
defined. Fig. 3d shows these specs for the two logic ranges
(‘0’ and ‘1’), as well ranges outside the defined specs that
an RRAM device can enter due to defects or extreme process
variations [7]; these are ‘L’, ‘U’, and ‘H’ ranges corresponding
respectively to extreme low logic state (resistance beyond the
spec), undefined state, and extreme high logic state (resistance
below the spec); the states ‘L’, ‘U’, and ‘H’ have been seen in
defective RRAMs [19]. Fig. 3e presents a typical 1T-1R cell;
here, BL, WL, and SL indicate bit line, word line, and select
line respectively, while int is the internal node of the cell.

C. CIM-Ah: Majority Logic

The majority logic gate [3] shown in Fig. 4 is an imple-
mentation example of the CIM-Ah class using a memristive
device Z. It has three inputs: P and Q supplied as voltages
from the peripherals, and Z stored in the array; The output
Znew is produced after a majority operation is performed. The
output is ‘1’ if the majority of the inputs P , Q, and Z are ‘1’,
as described in the truth table. Here Q denotes the negation
of Q. The state of Z can only change to another state for
a limited amount of input combinations P and Q, as shown
in the truth table of the figure. This function can be used to
develop other logic functions, like imply or inversion.

D. CIM-Pr: Scouting Logic

Scouting logic [29] pictured in Fig. 5a is an implementation
example of CIM-Pr executing bit-wise logic OR, AND, and
XOR. The operands are initially programmed in the memory
cells M1 and M2. The operation is performed by selecting the
two cells simultaneously (by applying a read voltage Vr) and
comparing the resulting current (Iin) to a reference current
(Iref) using a dedicated sense amplifier (SA); the reference to
be used depends on the operation to be performed as shown
in Fig. 5b.

Fig. 5: Scouting logic operations [29]

III. TEST METHODOLOGY FOR CIM

This section presents a testing methodology for CIM cores.
However, the difference between functional versus structural
testing for such cores is first discussed.

A. Functional and Structural Testing

Tests for electronics can be classified into two categories:
functional and structural tests [33]. Functional tests aim at
checking the proper operation of the device-under-test, while
structural tests aim at checking if the device is manufactured
correctly. The question is which of these two approaches could
be used for CIM die testing.

Functional tests apply a range of input stimuli to a device
and observe if the corresponding output responses are correct,
as defined by the device operation. To illustrate this for a
CIM core, assume a functional test is used to test the CIM
core being able to perform bit-wise logic operations of two
operands. If we assume that the memory within the CIM core
has r-bit row addresses, then there are 2r·(2r − 1) possible
combinations of selecting two operands. Even if extremely
high test frequencies of 10 GHz are used, testing for all
these combinations would take more than 58 years per chip
for an address size of r=32. Besides being extremely time
consuming, detection of all faults is still not guaranteed. For
instance, the above case does not consider different values for
the operands.

Structural tests, in contrary to functional tests, verify if a
device is manufactured correctly; i.e., the device is free of
manufacturing defects such as broken connections. It assumes
that if the device is manufactured correctly, the device should
functionally work properly. These tests rely on fault models
that describe the faulty behavior of the device in the presence
of a defect. This makes it feasible to define how these faults
are sensitized and measure whether a test detects them or not.
Therefore, accurate fault models are the key enabler for high
quality structural test solutions. Note that structural tests do not
require all input combinations to be tested, but merely those
that sensitize the targeted faults models. Therefore, structural
tests are both faster and achieve a higher and measurable fault
coverage [33]. As a result, structural testing is more widely
adopted. Thus, a high-quality CIM test should be a structural
test, and will require accurate fault models reflecting the real
defect behavior of CIM dies. Nevertheless, functional tests
could be used to increase the fault coverage of faults that
cannot be detected with structural testing, as is recognized in
the community [34].

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 3

Defects &
Netlist

Defect
Modeling

Fault
Modeling
&Analysis

Test
Generation

CIM
Test

Defect
Models

Verified
Fault Space

Fault Space

Fig. 6: Structural test approach

B. CIM Test Approach

As already mentioned, a CIM core operates in two con-
figurations: memory configuration and computation config-
uration. Note that at least part of the CIM hardware used
in the computation configuration is not used in the memory
configuration. Hence, CIM cores cannot be tested as regular
memories. CIM cores have to be tested for both configurations.
As the computation configuration makes use of the memory,
the latter has to be tested first. Testing CIM cores has to be
performed as follows:

1) Memory Configuration Test: In this case, the mem-
ory functionality is tested; i.e., only the hardware that
is required to perform memory operations is enabled
and tested. Obviously, common memory test solutions
applicable to the type of memory can be used (e.g.,
RRAM, STT-MRAM, PCM). Note that testing CIM in
this configuration is an independent step, and does not test
all hardware involved in the computation configuration.

2) Computation Configuration Test: In this case, the
hardware responsible for all the computing functionalities
is tested. This hardware strongly depends on the CIM
architecture and the computing features it enables. For
example, testing a CIM die with (analog) vector matrix
multiplication features could be different than testing for
logic bit-wise operations.

Test development for any IC follows three known steps
illustrated in Fig. 6. First, the defects must be understood
and adequately modeled. The resulting defect models are
injected into the electrical netlist of the design. Second, this
netlist is simulated and the faulty behaviors are observed and
compiled into fault models. Ideally, before the fault analysis,
the complete fault space should be defined (when applicable).
During the fault analysis, the fault space is verified by
injecting every defect in the netlist, which results in a set
of realistic faults for that specific design or layout. Third,
test solutions for the realistic faults are generated. Applying
the above test development approach to CIM would mean
applying it two times; once for each CIM configuration (i.e.,
memory and computation).

Test development for CIM as memory: the memory core
of CIM can be any kind of memory such as conventional
ones (SRAM, DRAM) as well as emerging ones (RRAM,
PCM, STT-MRAM). Although testing of SRAM and DRAM
is very mature, testing of emerging memories is still under
investigation. They may need radically new approaches in
defect modeling; a defective non-linear device (e.g., an
RRAM device) cannot be accurately modeled with a linear
resistor in series or in parallel with a perfect device [18, 19].

Test development for CIM as computing unit: As already
mentioned, testing CIM in this configuration is strongly de-
pendent on the design of the architecture. Defining what to test
for implies the identification of the modified or new blocks
integrated with the memory core to realize the computing
functionality. To illustrate this, we will briefly analyze two
examples of CIM architectures: CIM-Ah and CIM-Pr as dis-
cussed in Section II.

CIM-Ah Majority Logic: realizing such functionality within
e.g. RRAM crossbar will need the modification of the fol-
lowing memory components: a) Memory array, b) BL and
SL drivers, and c) Control logic. CIM-A architectures require
always a redesign of the memory cells, as the conventional
memory cell dimensions and their embedding in the bit and
word line structure do not allow them to be used for logic.
A conventional memory cell is namely heavily optimized in
terms of processing stack and layout. Therefore, any modifica-
tions of the array require a new cell design and characterization
process for the new control voltages, currents, etc. In addition,
modifications in the periphery are needed to support the
changes in the cell. In case of CIM-Ah Majority Logic, the
write drivers and the control circuitry have to be redesigned
to support the required functionality; e.g., the control logic
needs to assure that the output of the sense amplifier can
be fed back into the array via the drivers for operations on
data from multiple cells. Therefore, testing CIM-Ah Majority
Logic requires the guarantee of testing the memory array, BL
and SL drivers, and the control logic. Note that the memory
array is tested both in the memory configuration as well as
in computation configuration; an access to the memory during
computation could lead to an erroneous bit flip of the cell.

CIM-Pr Scouting Logic: As Fig. 5a shows, realizing such
functionality, for example within RRAM crossbars, will need
the modification of the following memory components: a)
Memory array, b) Word line decoders, c) Sense amplifiers,
and d) Control logic. Even though the computational results
are produced in the peripheral circuits, the memory array
for CIM-P is a substantial component in the computation.
As the peripheral circuits are modified, the currents and
voltages applied to the memory array are typically different
than in the conventional memory. Obviously, the majority of
the changes take place in the peripheral circuits and minimal
to medium changes are required in the memory array. CIM-
Pr Scouting Logic activates two or more (but not many)
rows of a memory array simultaneously (similar to multi-
port memories) during computations. Hence, in addition to a
customized sense amplifier to perform the logic operation, this
architecture also requires modifications in the address decoder
to activate several rows at the same time. Note, however, that
modifications in the cell array could be minimal as the total
read current is still small. Therefore, testing CIM-Pr Scouting
Logic requires to test the memory array, sense amplifiers, the
decoders, and the control logic. Note also here that the memory
array is tested both in the Memory Configuration as well as
in Computation configuration; e.g., simultaneous access of the
memory array during computing may lead to a fault in a cell.

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 4

WL0

WL1

WL2

SL0

SL1

SL2

B
L
0
0

B
L
0
1

B
L
0
2

B
L
1
0

B
L
1
1

B
L
1
2

B
L
2
0

B
L
2
1

B
L
2
2

W00

W10

W20

W01

W11

W21

W02

W12

W22

Cell Array

BL Driver

W
L

D
ec

od
er

s

SL
D

riv
er

Modified Sense Amplifiers
for Scouting Logic

CS

CS

Row Address A
Row Address B

WLEN

Data-In

SENOperation

Data-Out

Write/Read

Col. Addr.
Decoder

Column
Address CS

Control
Logic

Opcode

Operation
WLEN

Write/Read
SEN

Data-In

Fig. 7: Simulation Architecture

..
.

..
.

WLEN

WL1

WL0

WLm

A
dd

r.
D

ec
.A

A
dd

r.
D

ec
.B

..
.

WL0A

WL1A

WLmA

..
.

WL0B
WL1B

WLmB

Row
Addr. A

Row
Addr. B

(a) WL Decoder

X0

Y0

WL0A

A0

A1

A2

A3

..
.

Xm

Ym

WLmA

A0

A1

A2

A3

(b) Address Decoder

Fig. 8: WL circuitry

IV. CIM-PR ARCHITECTURE

This section describes the implementation of CIM-Pr ar-
chitecture based on Scouting Logic [29], which will be used
to demonstrate the proposed test approach in the next two
sections. This architecture is shown in Fig. 7; it is based on a
regular RRAM design. Note that the majority of the building
blocks (subcircuits) remain unmodified; these consist of the
column address decoder, the BL driver, and the SL driver.
The column address decoder decodes the column address and
drives the corresponding column select (CS) line. The BL
driver drives the BL corresponding to the CS line with the
data in Data-In. To prevent the decoder from disturbing read
operations, its output is fed through a tri-state buffer that is
controlled by Write/Read. The SL driver controls the SLs
based on Data-In; the SL is ‘0’ when setting (w1) and reading,
and ‘1’ when resetting (w0) the cells.

However, in order to perform Scouting logic (i.e., bit-wise
logic operations on two operands), some sub-circuits needed
to be redesigned; these consist of: a) the WL decoder (that
should be able to select two wordlines simultaneously), b)
the SAs (that need to support appropriate logic functions; see
Fig. 5), c) the control circuitry (to provide appropriate control
signals based on the Opcode), and d) memory array. The latter
is typically optimized for storage and would undergo some
minimal modifications to allow for specific drive voltages and
read currents. As the modified subcircuits will need special
attention during testing, they will be briefly explained next;
we focus on WL decoders and SAs.
• WL Decoders: The WL decoder, shown in Fig. 8a, decodes

two Row Addresses A and B and drives the corresponding

P1 P2

P3 P4

N1 N2

N3 N4

N5 N6

SEN SEN

SEN SEN

CS CS

BL BLref

VDD VDDVDD VDD

A B

(a) Sense Amplifier [35]

N7 N8

C
ROR

D
RAND

BLref

Operation Operation

(b) Operation reference

Fig. 9: Sensing Circuitry

R[Ω]

‘0’‘00’‘1’
‘10’/
‘01’‘11’

Rread

ROR

RAND R‘11’+
Rdefect

R‘1’+
Rdefect

Equivalent
resistance

Reference
resistance

Fig. 10: Scouting logic relative resistance and references

WLs (i.e., address m drives WLm) for the selection of
the appropriate two words for a logic operation. Each
address can be used to select any of the WLs. Besides logic
gates, the WL decoder consists of two identical address
decoders. Fig. 8b illustrates such a 4-bit decoder; for each
input combination (e.g., A3A2A1A0=1111) one WL is se-
lected. Each two selected WLs per input combination (e.g.,
A3A2A1A0=B3B2B1B0=1111) are ORed, and the resulting
signal is ANDed with the WLEN signal to control the timing.

• Sense Amplifier: One possible modified SA design for
Scouting logic is shown in Fig. 9a, which is based on [35].
The two nodes A and B are precharged when no operation
takes place, i.e., SEN=‘0’. Once the SA is enabled via the
SEN and CS signals, the two nodes will be discharged via
BL and BLref. The time it takes to discharge the nodes
depends on the connected resistances to these nodes. For
example, if RBL<RBLref , BL will discharge faster. After
some time, the cross-coupled inverters begin to charge node
B, allowing for even faster discharging of node A and the
capturing of the operation outcome; we use node B in our
design. To enable OR and AND bit-wise logic operations,
the SA needs to have two corresponding reference currents,
IOR and IAND (see Fig. 5). These are implemented using
two different resistors, ROR and RAND, as shown in Fig. 9b.
The Operation signal is used to select a reference; Operation
is its logic complement. Fig. 10 shows the relative resistance
of these references with respect to the equivalent resistance
of the two cells being selected for the operation. In the mem-
ory configuration, the equivalent resistance is equal to the
resistance of the cell being read, while in the computation
configuration, it is equal to the parallel resistance of two
cells being accessed. Note that Rread=ROR.

V. CIM-PR MEMORY CONFIGURATION TEST

This section illustrates the test approach for the CIM-Pr core
in the memory configuration; it includes defect modeling, fault
analysis, and test generation; see Fig. 6.

A. Defect Modeling

The manufacturing process of a CIM core consists of three
production phases: the front-end-of-line (FEOL), the back-

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 5

end-of-line (BEOL), and CF forming. To accurately estimate
the impact of manufacturing defects on the circuit behavior,
these defects need to be understood and modeled such that
they can be used during circuit simulation for fault analysis.
Two classes of defect models exist; they are discussed next.

Linear resistor as defect model: During the FEOL phase,
transistors are fabricated on the wafer. Here standard transistor
defects may occur that are related to line edge roughness,
random dopant fluctuations, gate material granularity, etc. [36].
These defects may result, e.g., in reduced driving capabilities.
They can have an impact on the peripheral circuitry as well as
on the memory array, e.g., the SA becomes biased towards
one logical value. After the FEOL phase, the lower metal
layers are deposited in the BEOL phase. Lithographic issues
or misalignment may cause defects here, resulting in shorts or
opens in the wiring [37]. These defects again affect both the
peripherals and the memory array. For example, the address
decoder may wrongfully access multiple cells at the same time.
These defects have been always modeled as linear resistors
[11, 13] that act as a short or an open between two nodes.

Device-Aware defect models: The RRAM device is fabri-
cated between two metal layers. Defects that may occur can be
related to the electrode [38] and the oxide structure [39], which
do affect the memory array. After this step, the remaining
metal layers are deposited. To create a CF in the RRAM
device, a forming step is required; this step strongly depends
on the forming current (Iform) and may cause defects like over-
forming or non-forming [17]. Although it can be convincing
for modeling opens and shorts in interconnects, using linear
resistors for defect modeling has never been validated for any
device. It has recently been demonstrated that this assumption
is inaccurate for emerging technologies such as (RRAM) [17]
and (STT-MRAM) [40]; the results showed that the traditional
approach may even lead to wrong fault models. Hence, it is
incapable of delivering high-quality test solutions. This has
resulted in the development of device-aware defect modeling
approach [17, 19, 40]; it aims at accurately modeling physical
defects, by incorporating the way the defect impacts the
technology parameters (e.g., length, width) and thereafter the
electrical parameters (e.g., the critical switching current) of the
device [40]. This results in an electrical model of the defective
device (e.g. RRAM device). This model can be then used to
replace a defect free model at the circuit level to investigate its
impact on the memory behavior. Note that in case of Device-
Aware defect modeling, each defect may result in a different
electrical model of the device.

B. Fault Modeling

Fault modeling is ideally based on two steps: 1) fault
space definition, and 2) fault space validation using defect
injection and circuit simulation. The fault space identifies all
possible faults that can take place; i.e., any deviation from the
correct functional behavior of a memory. This can be done
analytically as the space of the potential memory operations
is defined. However, the space is huge and constraints should
be made in order to limit the space to a reasonable sized one.

Once the space is identified, the fault analysis can take place;
stimuli sensitizing each of the faults should be developed and
applied to an appropriate memory simulation model while the
defective device is replaced with its model. This should be
repeated for all possible defects. Next, we will illustrate the
above, first for the memory array and thereafter for the key
peripheral circuits (i.e., address decoder and sense amplifier).

Fault Modeling for memory array

Fault Space: Memory array faults can be described by Fault
Primitive (FPs) [41]. A fault is noted in the 〈S/F/R〉 notation.
In this notation, S denotes the sensitizing sequence for the
fault, i.e., S = x0O1x1 . . . Oixi . . . Onxn. Here, xi denotes
the cell state, i.e., xi ∈ {0, 1}, Oi denotes the operation
that takes place, i.e., Oi ∈ {r,w}, where r and w indicate
a read and write operation, respectively, and n is the number
of operations. F denotes the value that is stored in the cell
after S is performed, i.e., F ∈ {H, 1,U, 0,L}, where ‘U’
denotes the undefined state [41], ‘H’ the extreme logical 1
state, and ‘L’ the extreme logical 0 state, as demonstrated
by measurements performed on defective RRAM and STT-
MRAM devices [12, 18]. Finally, R (read output) describes the
output of a read operation if the last operation in S is a read
operation. R ∈ {0, 1, ?,−}, where ? denotes a random read
value (e.g., the sensing current is very close to sense amplifier
reference current), and ‘−’ denotes that R is not applicable,
i.e., when the last operation in S is a write operation.

Given the above S, F, and R, the fault space for the memory
array can be defined, like it was done in [19] for static single-
cell faults. More complex faults such as those involving more
than one operation (i.e., dynamic faults) or those involving
multiple cells (e.g., coupling faults) can be defined in a similar
manner by extending the FP notation [41].

Fault Analysis: some work on RRAM fault analysis is
presented in [12, 13, 42] where the defects were modeled as
a linear resistor (LR), and other work in [17, 19] where the
authors used Device-Aware (DA) defect modeling. We only
illustrate the results for the forming defect as presented in [19].
Table I lists the results of the static single-cell fault analysis;
the FPs sensitized when assuming LR (both as a series and
parallel resistor) and DA models for the forming defect are
shown. The results are obtained by simulating different sizes of
the defect. The table clearly highlights the difference between
the two approaches. The unique DA faults (7 out of 8 of
the realistic faults) cannot be sensitized with LR approach.
Moreover, the LR model approach triggers 8 unique faults
which are not realistic for forming defects, hence leading to a
waste of test time. Note that only 1 common fault is observed
by both approaches.

A complete fault analysis should consider each potential
defect in the memory array, model it using the DA approach,
and thereafter perform defect injection and circuit simulation.

Fault Modeling for some peripheral circuits

Address Decoder: Address decoder faults (AFs) in semi-
conductor memories are well studied. These faults can be

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 6

TABLE I: Validated faults using LR and DA models.

Range FPs DA LR series LR parallel
5 µA 〈1w0/L/−〉 Yes No No
[5; 13] µA 〈1/U/−〉, 〈1w1/U/−〉, 〈1r1/U/1〉 Yes No No
(13; 34] µA 〈0/L/−〉, 〈0r0/L/0〉, 〈0w1/L/−〉 Yes No No
(13; 34] µA; [4k; 40k] Ω 〈0w0/L/−〉 Yes Yes No
[12k; 16k) Ω 〈0w1/U/−〉 No Yes No
[16k;∞) Ω 〈0w1/0/−〉 No Yes No
[1.6k; 5k] Ω 〈1w0/U/−〉 No Yes No
(5k;∞) Ω 〈1w0/1/−〉 No Yes No
[8k;∞) Ω 〈1r1/1/0〉 No Yes No
[0; 12k] Ω 〈0w1/0/−〉, 〈0r0/0/1〉 No No Yes
[0; 3k] Ω 〈1w0/1/−〉 No No Yes
(3k; 20k] Ω 〈1w0/U/−〉 No No Yes
[0; 6] Ω 〈1w1/H/−〉 No No Yes
[0; 1] Ω 〈1r1/H/1〉 No No Yes

0 2 4 6 8 10 12 14 16
0

1

2

3

Time [ns]

Vo
lta

ge
[V

]

WL, Defect-free
WL, Rdef = 40 kΩ, ActD, DeactD
WL, Rdef = 250 kΩ, ActD, DeactD
WL, Rdef = 4 MΩ, AFna

Fig. 11: WL decoder faults

static or dynamic. Static AFs are mainly caused by completely
broken interconnects (e.g., wordline) or low ohmic bridges
between connections and consist of four possible faults [43]:
1) No-access (AFna): an address does not access its cell, 2)
Multiple cells (AFmc): an address uniquely accesses multiple
cells, 3) Multiple addresses (AFma): a cell is uniquely ac-
cessed by multiple addresses, and 4) Other cells (AFoc): an
address additionally accesses other cells. On the other hand,
dynamic or delay address decoder faults (ADFs) are caused
by partial opens and shorts; they consist of two possible faults
[44]: 1) Activation delay (ActD): the activation, e.g., of a
wordline, is delayed, and 2) Deactivation delay (DeActD): the
deactivation, e.g., of a wordline, is delayed. These faults may
lead to erroneously addressing of multiple cells at the same
time, or to shortening the cell access time which may cause a
e.g., a write operation to fail.

Fault analysis for address decoders has been studied also
very well by assuming a linear resistor as defect model [44,
45]. For example, Fig. 11 illustrates how an open defect in a
WL can cause AFna or ADFs, depending on the defect size.

Sense Amplifier: Sense amplifier faults in semiconductor
memories have been well studied [45, 46]. They can be divided
into static and dynamic faults. Static faults are assumed to be
caused by complete opens, low ohmic shorts to VDD or GND,
or low ohmic bridges [43]; they consist of the traditional SA
Stuck-at fault (SASF), an SASF means that the SA always
outputs the same value, independent of its inputs. Dynamic
faults are caused by partial opens and shorts and consist of
two faults: 1) Unbalanced SA fault (USAF) [46]: the SA has
a continuous tendency to switch to a certain value under equal
input conditions, rather than being balanced, and 2) Slow SA
fault (SSAF) [45]: the SA is too slow to switch, which may
result in incorrect read values.

Fault analysis for SAs has been performed by assuming
that any defect can be modeled as a linear resistor. Fig. 12
illustrates the faults that may occur when performing a r0
operation in an SA in the presence of an open defect (Rdef)
between transistors N2 and N4 of Fig. 9a. This defect leads
to a slower discharge of node B, as the path to GND now has

20 22 24 26 28 30 32 34

0

1

2

3

Time [ns]

Vo
lta

ge
[V

]

SEN
B defect-free
B Rdef = 18 kΩ, SSAF, USAF
B Rdef = 18.8 kΩ, SASF

Fig. 12: SA faults

a higher resistance. It can be seen that when Rdef < 18.8 kΩ,
the defect causes an unbalance in the SA and thus is slowing
down the sensing operation causing USAFs and SSAFs. When
Rdef ≥ 18.8 kΩ, the SA will always switch to the wrong value,
thus leading to an SASF.

C. Test Development

The output of the fault modeling (i.e., a set of fault models)
is crucial for the development of efficient and high-quality
test solutions. Faults can be classified in two categories [19]:
strong and weak faults. Strong faults cause functional errors
in the memory operation, and can be sensitized (and may be
detected) by a known sensitizing sequence. On the contrary,
weak faults do not result in any functional error; instead, weak
faults are parametric faults, e.g., reduced bit line swing. These
faults also need to be detected, as they may pose a reliability
risk, e.g., increased in-field failure rate. Moreover, depending
on the effort needed to detect them, faults can be divided
into easy-to-detect (ETD) and hard-to-detect (HTD) faults. The
detection of ETD faults can be guaranteed by applying write
and read operations, e.g., by using a March test [43]. However,
March tests cannot guarantee the detection of HTD faults,
although they may detect them. Guaranteeing their detection
may require additional effort; e.g., the use of a special Design-
for-testabilty (DfT) circuitry. An example of an ETD fault is
〈1r1/0/0〉, and an example of an HTD fault is 〈1r1/U/?〉;

In order to develop appropriate test solutions for the CIM
core in its memory configuration, first the obtained faults from
fault modeling should be analyzed and classified into ETD and
HTD faults and thereafter test solutions should be developed.
In the rest of this section, we will illustrate the above for the
previously discussed faults for the three components.

Memory Array: Let us consider the results shown in
Table I for the forming defect when using Device-Aware fault
modeling. The defect can sensitize in total 8 FPs, which can be
grouped into 4 fault classes, where a fault class is a set of FPs
sensitized by the same single defect with a certain range/size.
Inspecting the table reveals that only 〈0w1/L/−〉 is an ETD
fault, while the rest is HTD faults. Detecting 〈0w1/L/−〉 can
be easily done by a March element m (w0,w1, r1).

HTD faults in the memory array are typically related to
the cell being in a forbidden state (i.e., ‘H’, ‘U’, or ‘L’)
[19]. As already mentioned, March tests may detect some of
these faults; repeating tests targeting HTD faults with different
memory backgrounds and different address sequence [44, 45]
will increase the detection probability. For example, the FP
〈1/U/−〉 may be detected with a March element m (w1, r1).
However, detection is not guaranteed. Therefore, using DfT is
a common practice to further increase the chance of detecting

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 7

0 1 2 3 4 5
0

1

2

3

Time [µs]

Vo
lta

ge
[V

]

0

10

20

30

H
1

U

0

R
es

is
ta

nc
e

[k
Ω

] WL [V]
Defect-free [kΩ]
Over-formed [kΩ]

Fig. 13: Defect-free and over-formed cell

HTD faults. For example, the scheme in [13] uses shortened
write times and reduced write voltages to detect cells that
are in the ‘U’ state. This scheme can be modified to also
detect cells suffering from an over-formed defect; i.e., cells
whose state is ‘H’ instead of ‘1’ after forming, as illustrated
in Fig. 13. The figure shows a RESET operation on two cells
that are initially in ‘1’ and ‘H’ (i.e., a 1w0 operation) for
the defect-free and over-formed cell, respectively. From the
figure it follows that the defect-free cell switches quicker to
the correct resistance range than the over-formed cell. The
DfT is now used to shorten the write operation time to 1.5 µs
(indicated by the black dashed line in the figure). The defect-
free cell will have switched to ‘0’, while the over-formed cell
is still in ‘1’. A subsequent read operation on both cells will
reveal this, and thus the defective cell can be detected.

Address Decoder: The four static AFs (AFna, AFmc,
AFma, AFoc) belong to the ETD faults, while the two ADFs
(ActD, DeActD) belong to the HTD faults. It has been shown
that the detection of static AFs can be guaranteed by a March
test that contains the following two March elements [43, 45]:
⇑ (rx, . . . ,wx̄) and ⇓ (rx̄, . . . ,wx); here, x ∈ {0, 1} and x̄ de-
notes the negation of x. The ADFs, however, may be detected
by March tests; the detection probability strongly depends
on the delay [44]. Their detection requires: 1) Sensitizing
Address Transitions, and 2) Sensitizing Operation Sequences.
Sensitizing address transition(s) can be caused by an address
pair or an address triplet. For example, a Sensitizing Address
Pair consists of a sequence of two addresses Af and Ag which
have to be applied in sequence because ADFs are sensitized
by address transitions. These transitions are generated using
an Addressing Method such as Address Complement, The
H1 Addressing Method (H1 stands for hamming distance is
1), etc. [44]. On the other hand, the Sensitizing Operation
Sequence should be generated and applied to each of the
generated address pairs (Af , Ag); this sequence consists of two
operations (Oxf ;Oyg), one operation applied to Af and the
other to Ag. O denotes a read or write operation (O∈{r,w})
with expected or written data x, y∈{0, 1}. The operation on
Ag has to be performed with the complement of the data
value applied to Af in order to detect e.g., ActD; because
of the fault, Oxf may fail. It is worth noting that each of
the decoders should be tested individually; hence the test for
address decoders need to be repeated twice for our CIM core
in memory configuration.

Sense Amplifier: the static SASF belongs to the ETD
faults and its detection can be easily guaranteed by any
March test consisting of the two March elements (or a single
March element combining both of them): m (..., rx, ...) and

m (..., rx, ...), with x∈{0, 1} [45]. Detecting dynamic faults
(USAF, SSAF), which belong to the HTD faults may be done
with March tests, although special DfT can do a better job. The
sensitization and detection of SSAF requires the application of
back-to-back operations to the memory using 1) different data
values (0 and 1) and 2) fast-row addressing (i.e., each address
increment or decrement causes an adjacent physical row to
be accessed) [45]; back-to-back operations indicate that the
two operations take place after each other without any delay.
For example, a test consisting of the following March element
(using fast-row addressing) may detect SSAFs: m (rx, ...,wx);
the read and write are back-to-back and use different data. E.g.,
the operation w0 brings the bit lines in the worst case state for
the following r1 operation, applied to the next cell in the same
column. Special DfT which can be used to complement March
tests, can work better in detecting such faults. For example,
the DfT proposed in [47] to detect HTD faults in SRAMs can
be used here; it is based on monitoring the bit line swing at
the input of the SA.

VI. CIM-PR COMPUTATION CONFIGURATION TEST

This section presents the test approach for the CIM-Pr
core in the computation configuration. We follow again the
approach that was presented in Section III. Note that the CIM-
Pr under consideration is based on scouting logic.

A. Defect Modeling

Obviously, the same defect models apply for this configura-
tion as those discussed in the previous section; they are Linear
resistor and Device-Aware defect modeling. Linear resistors
are suitable for interconnect defects and have been also shown
to do a good job for transistor defects, while Device-Aware
defect modeling is suitable for the RRAM defects.

B. Fault Modeling

Next fault modeling will be applied first to the memory
array, then to the address decoders and sense amplifiers.

Memory Array: defining the fault space of memory array
in the computation configuration is still an open question
and can be strongly array design and architecture dependent
[48, 49]. The memory array in the computing configuration
acts as a special case of dual port memory; it allows for
simultaneous access of two cells/locations in the same col-
umn. Hence, this may give rise to new faults. For example,
accessing two cells simultaneously may unintentionally flip
the state of one of them. Defining the fault space will
need also the extension of the FP notation 〈S/F/R〉. We
can build on the notation developed for dual-port memory
faults [50]; we denote a FP due to the simultaneously access
as 〈S1 : S2 / F1 : F2 / R〉OP, where S1 and S1 specify the
sensitizing operations, ‘:’ denotes the fact that S1 and S1 are
applied simultaneously, F1 and F2 describe the value of the
accessed cells after the sensitizing operations, R gives the read
value, and OP specifies the operation performed (e.g., AND,
OR). For example, 〈1r11 : 1r12 / 11 : 12 / 0〉AND describes
an AND operation on two cells containing ‘1’ that results in

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 8

a wrong output ‘0’. To illustrate that such a fault is realistic,
consider an open defect (Rdefect) in the bit line that increases
its resistance slightly. When the AND operation takes place,
the equivalent resistance (see Fig. 10) Req = R‘11’ + Rdefect

can become higher than RAND and thus results in a wrong
read output. In the memory configuration, however, no fault
occurs as R‘1’ +Rdefect < Rread. Hence, this fault only occurs
in the computation configuration. Defining the complete fault
space and validating it, is still an open question.

Address Decoder: The Scouting logic computation config-
uration requires both address decoders to act simultaneously
to select the appropriate word lines. This configuration may
give rise to unique address decoder faults, and is quite similar
to dual-port memories [51]; also here two addresses should
be selected simultaneously. Hence, the same fault space and
fault models can apply. Such faults are called port interference
faults and are due to potential interference/bridges between the
two decoders (between wires of the two different decoders).
They differ from single AFs in the sense that they only
occur when two decoders are accessed simultaneously, and
not when operating sequentially. E.g., one of the decoder
erroneously select an additional world line when the inputs of
both decoders have defined value. Consider Fig. 8a and assume
the two addresses A1A2A1A0=‘1111’ and B3B2B1B0=‘1110’
are selected in a 4-bit WL decoders; these will drive WL0A
and WL1B simultaneously. If now a low ohmic bridge defect
exist between the node Y1 of the decoder circuit driving
WLB1 and the node X2 of the decoder circuit driving WLA2
(see Fig. 8a), then the simultaneous selection of WL0A and
WL1B will result in erroneous selection of WL2A, i.e., WL0,
WL1, and WL2 will be activated.

Sense Amplifier: The modified SA in the computation
configuration may suffer from similar faults as the SA in
the memory configuration. These faults (consisting of SASF,
USAF and SSAF) can take place in each of the computing
configurations of the SA including OR, AND, and XOR;
note that the modified SA uses different reference currents
to perform the different logic operations. The validation of
such faults using fault analysis is still an open question.

C. Test Development

Tests for the computation configuration focus on: 1) testing
the hardware that was not used during memory configuration
test and, 2) on testing of unique faults that may be sensitized
due to simultaneous access of the memory array (due to the
selection of the operands of the logic operation). The test
development approach in the computation configuration is
similar to that of the memory configuration. Next we will
illustrate the approach for (some of) the faults discussed in
previous subsection.

Memory Array: Defining the complete fault space and
validating it is still an open question. Nevertheless, we will
illustrate how to develop an appropriate test for such faults.
Let’s consider the fault 〈1r11 : 1r12 / 11 : 12 / 0〉AND dis-
cussed in the previous subsection. This is an ETD fault as it
produces a wrong output 0 instead of 1. If we assume that this

fault only takes place when two accessed cells/operands (in the
same column) are physically adjacent, then such a fault can
be detected by a March test containing e.g., the following two
March elements: ⇑C−1

c=0 (⇑R−2
r=0 (..., r1r,c : r1r+1,c, ...)). Note

that a nested addressing is used; R and C denote the number of
rows and columns of the array, respectively. For each column
c, cells at row r and r + 1 are simultaneously accessed by an
r1 operation. Note that before such operations are performed,
the cells have to be initialized with an appropriate data-
background [45] (i.e., the pattern of 1’s and 0’s as seen in the
memory array). For example, a solid 1 background (1111...
/1111... /1111...) satisfies this requirement.

Address Decoder: Tests developed for dual-port memory
address decoder faults (i.e., port interference faults) [51], can
be easily adapted and used for testing the unique address
decoder faults in computation configuration. Such tests have
a time complexity (in the worst case) of O

(
R2

)
where R is

the number of array rows.
Sense Amplifier: An SA in each of the computation con-

figuration (e.g., AND, OR) can suffer from the same faults
as an SA in the memory configuration; these faults consist
of SASF, USAF and SSAF. However, testing such faults will
require special attention. For example, to detect the ETD fault
SASF in the AND mode, a March test should contain the two
March elements (or a single March element combining both
of them): mC−1

c=0 (..., r0i : rxj , ...) and mC−1
c=0 (..., r1i : r1j , ...),

where x ∈ {0, 1} and (i, j) two addresses indicating any two
cells/operands in the same column. The fault SASF1 will be
detected by the parallel operations r0i : rxj as this will return
1 instead of 0, while SASF0 will be detected by the parallel
operations r1i : r1j as this will return 0 instead of 1. Note that
actually performing each of the two parallel operations once
is enough for the detection of SSAF, and there is no need to
repeat them for different address combinations (i, j). Next, we
show how we can detect the SSAF in the AND configuration.
As already mentioned in Section V, this fault is HTD and
may be detected by a March test when applying back-to-
back operations resulting in different data values (0 and 1)
and using fast-row addressing. For example, a test consisting
of the following March element (using fast-row addressing)
may detect SSAFs of the SA in the AND configuration:
⇑C−1
c=0 (⇑R−2

r=0 (r1r,c : r1r+1,c,w0r,c, r0r,c : r1r+1,c)); the two
parallel operations are back-to-back and result in different data
output. For example, the operation r0r,c : rxr+1,c results in
0 bringing the SA in the worst case state for the following
r1r,c : r1r+1,c operation that has to result in 1, applied to the
next cells in the same column. w0r,c is just a write operation.
Here also special DfT can be developed to complement March
tests, and even do a better job in detecting such faults.

VII. DISCUSSION AND CONCLUSION

This work highlighted the structural testing of CIM dies.
Although our case study was based on Scouting logic, the
approach is applicable to any CIM design.

Testing CIM dies solely as a memory is not enough, as each
computation configuration needs to be tested as well, where

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 9

the focus is on testing 1) the partial and completely non-tested
hardware during the memory test phase (this hardware consists
of the modified or newly added components to the memory),
2) the unique faults that could take place due to simultaneous
memory access (e.g., when executing a logic operation).

Although a lot of memory fault models and test solutions
can be reused for CIM in the computation configuration,
many new solutions are needed. These are strongly CIM
architecture dependent. For example, the test solutions for CIM
based on Scouting logic will differ from analog vector matrix
multiplication with ADCs. Clearly there are still many open
questions to be worked out such as:
• Fault modeling: defining the fault spaces for the different

CIM architectures in the computation configuration and
validating them using realistic design.

• Test solutions and optimization: developing appropriate test
solutions (test algorithms, DfT, BIST solutions, etc) for
the different architectures; optimizing the test approach by
exploring the combination of the test solutions for the
memory configuration and the computation configuration,
especially for production test.

ACKNOWLEDGMENT

This research on CIM architecture is supported by EC
Horizon 2020 Research and Innovation Program through
MNEMOSENE project under Grant 780215.

REFERENCES

[1] D. A. Patterson, “Future of Computer Architecture,” in BEARS, 2006.
[2] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” In

DATE, 2017.
[3] E. Linn et al., “Beyond von Neumann-logic operations in pas-

sive crossbar arrays alongside memory operations,” Nanotechnology,
vol. 23, 2012.

[4] S. Hamdioui et al., “Memristor based computation-in-memory archi-
tecture for data-intensive applications,” in DATE, 2015.

[5] S. Hamdioui et al., “Applications of Computation-In-Memory Archi-
tectures based on Memristive Devices,” in DATE, 2019.

[6] D. Fujiki et al., “In-Memory Data Parallel Processor,” in ASPLOS,
vol. 53, 2018.

[7] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, 2012.

[8] H. A. Du Nguyen et al., “On the Implementation of Computation-in-
Memory Parallel Adder,” IEEE TVLSIS, vol. 25, no. 8, 2017.

[9] Y. Chen et al., “Recent Technology Advances of Emerging Memo-
ries,” IEEE Des. Test, vol. 34, no. 3, 2017.

[10] S. Hamdioui et al., “Test and Reliability of Emerging Non-volatile
Memories,” in ATS, 2017.

[11] S. Kannan et al., “Sneak-Path Testing of Crossbar-Based Nonvolatile
Random Access Memories,” IEEE TN, vol. 12, no. 3, 2013.

[12] C. Y. Chen et al., “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE TC, vol. 64,
no. 1, 2015.

[13] S. Hamdioui et al., “Testing Open Defects in Memristor-Based
Memories,” IEEE TC, vol. 64, no. 1, 2015.

[14] Chin-Lung Su et al., “MRAM defect analysis and fault modeling,” in
ITC, 2004.

[15] J. Azevedo et al., “A Complete Resistive-Open Defect Analysis
for Thermally Assisted Switching MRAMs,” IEEE TVLSIS, vol. 22,
no. 11, 2014.

[16] X. Pan et al., “Modeling and test for parasitic resistance and capaci-
tance defects in PCM,” in NVMTS, 2012.

[17] M. Fieback et al., “Testing Resistive Memories: Where are We and
What is Missing?” In ITC, 2018.

[18] L. Wu et al., “Pinhole Defect Characterization and Fault Modeling
for STT-MRAM Testing,” in ETS, 2019.

[19] M. Fieback et al., “Device-Aware Test: A New test Approach Towards
DPPB Level,” in ITC, 2019.

[20] A. Sebastian et al., “Temporal correlation detection using computa-
tional phase-change memory,” Nat. Comm., vol. 8, no. 1, 2017.

[21] B. Chen et al., “Efficient in-memory computing architecture based on
crossbar arrays,” in IEDM, 2015.

[22] M. A. Lebdeh et al., “Memristive Device Based Circuits for
Computation-in-Memory Architectures,” in ISCAS, 2019.

[23] P.-E. Gaillardon et al., “The Programmable Logic-in-Memory (PLiM)
computer,” in DATE, 2016.

[24] D. Bhattacharjee et al., “Revamp: Reram based vliw architecture for
in-memory computing,” in DATE, 2017.

[25] S. Hamdioui et al., “Computing device for big data applications using
memristors,” in US Patent 9,824,753, 2017.

[26] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ACM
SIGARCH Comp. Arch. News, vol. 44, 2016.

[27] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC, 2016.

[28] H. A. D. Nguyen et al., “Memristive devices for computing: Beyond
cmos and beyond von neumann,” in VLSI-SoC, 2017.

[29] L. Xie et al., “Scouting Logic: A Novel Memristor-Based Logic
Design for Resistive Computing,” in ISVLSI, 2017.

[30] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nat.
Elec., vol. 1, no. 4, 2018.

[31] L. Chua, “Memristor-The missing circuit element,” IEEE TCT,
vol. 18, no. 5, 1971.

[32] S. Yu et al., “Emerging Memory Technologies: Recent Trends and
Prospects,” IEEE SSC, vol. 8, no. 2, 2016.

[33] M. L. Bushnell et al., Essentials of Electronic Testing for Digital
Memory & Mixed-Signal VLSI Circuits. Springer Science+Business
Media, 2000.

[34] H. H. Chen, “Beyond structural test, the rising need for system-level
test,” in VLSI-DAT, 2018.

[35] W. Zhao et al., “Synchronous Non-Volatile Logic Gate Design Based
on Resistive Switching Memories,” IEEE TCSI, vol. 61, no. 2, 2014.

[36] K. J. Kuhn et al., “Process Technology Variation,” IEEE TED, vol. 58,
no. 8, 2011.

[37] E. I. Vatajelu et al., “Challenges and Solutions in Emerging Memory
Testing,” IEEE TETC, 2017.

[38] H. Y. Lee et al., “Evidence and solution of over-RESET problem for
HfOX based resistive memory with sub-ns switching speed and high
endurance,” in IEDM, 2010.

[39] M. Lanza et al., “Grain boundaries as preferential sites for resistive
switching in the HfO2 resistive random access memory structures,”
Appl. Phys. Lett., vol. 100, no. 12, 2012.

[40] L. Wu et al., “Electrical Modeling of STT-MRAM Defects,” in ITC,
2018.

[41] S. Hamdioui et al., “An experimental analysis of spot defects in
SRAMs: realistic fault models and tests,” in ATS, 2000.

[42] Y.-X. Chen et al., “Fault modeling and testing of 1T1R memristor
memories,” in VTS, 2015.

[43] A. J. van de Goor, Testing Semiconductor Memories - Theory and
Practice. John Wiley & Sons, 1991.

[44] S. Hamdioui et al., “Opens and Delay Faults in CMOS RAM Address
Decoders,” IEEE TC, vol. 55, no. 12, 2006.

[45] A. van de Goor et al., “Detecting faults in the peripheral circuits and
an evaluation of SRAM tests,” in ITC, 2004.

[46] K. Zarrineh et al., “Defect analysis and realistic fault model exten-
sions for static random access memories,” in IWMTDT, 2000.

[47] G. C. Medeiros et al., “DFT Scheme for Hard-to-Detect Faults in
FinFET SRAMs,” in ETS, 2019.

[48] D. Niu et al., “Low power memristor-based ReRAM design with error
correcting code,” in ASP-DAC, 2012.

[49] B. Zhao et al., “Common-source-line array: An area efficient memory
architecture for bipolar nonvolatile devices,” ACM TODAES, vol. 18,
no. 4, 2013.

[50] S. Hamdioui et al., “Efficient tests for realistic faults in dual-port
srams,” IEEE TC, vol. 51, no. 5, 2002.

[51] S. Hamdioui et al., “Address decoder faults and their tests for two-
port memories,” in IWMTDT, 1998.

Paper Invited 3.1 INTERNATIONAL TEST CONFERENCE 10

C
Rebooting Computing: The Challenges for

Test and Reliability

This appendix contains the paper published at International Symposium on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems: A. Bosio et al., "Rebooting Computing: The Challenges
for Test and Reliability," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019, pp. 8138-8143.

123

Rebooting Computing:
The Challenges for Test and Reliability

A. Bosio1, I. O’Connor1, G. S. Rodrigues2, F. K. Lima2, E. I. Vatajelu3, G. Di Natale3,
L. Anghel3, S. Nagarajan4, M. C. R. Fieback4, S. Hamdioui4

1INL - École Centrale de Lyon, France – Email: alberto.bosio@ec-lyon.fr
2Instituto de Informatica, PGMicro - Universidade Federal do Rio Grande do Sul, Brazil – Email: gsrodrigues@inf.ufrgs.br

3Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France – Email: {firstname.lastname}@univ-grenoble-alpes.fr
4Computer Engineering Lab, Delft University of Technology, The Netherlands – Email: S.Hamdioui@tudelft.nl

Abstract—Today’s computer architectures and semiconductor
technologies are facing major challenges making them incapable
to deliver the required features (such as computer efficiency)
for emerging applications. Alternative architectures are being
under investigation in order to continue deliver sustainable
benefits for the foreseeable future society at affordable cost. These
architectures are not only changing the traditional computing
paradigm (e.g., in terms of programming models, compilers,
circuit design), but also setting up new challenges and directions
on the way these architectures should be tested to guarantee
the required quality and reliability levels. This paper highlights
the major open questions regarding test and reliability of three
emerging computing paradigms being approximate computing,
computation-in-memory and neuromorphic computing.

Index Terms—Alternative computing architectures, emerging
technology, fault model, test, reliability

I. INTRODUCTION

Energy and computer efficiency is undoubtedly one of the ma-
jor driving forces of current computer industry, which is relevant
not only for supercomputers, but also for small portable personal
electronics and sensors. However, today’s computing architectures
(mainly based on the CMOS technology) are facing major chal-
lenges making them unable to meet the requirements. Such chal-
lenges are: power wall, memory wall and Instruction Level Paral-
lelism wall [1], [2]. For example, the memory wall is due to the
increasing gap between processor and memory speeds, which limits
the data transfer time and leads to significant energy consumption
during the data transfer varying from 70% up to 90% of the
overall energy spent by the computing system [3]. Moreover, even
the dominating CMOS technology (which made manufacturing of
computers feasible) is suffering, especially nodes below 20 nm. At
this level the physical characteristics of such devices are leading to
high static power consumption, reduced reliability; not to mention
increased cost [4]. All of these have led to saturated computer
performance and the slowdown of the traditional device scaling,
making today’s computing systems unable to deliver the required
computing and energy efficiency. For example, artificial intelligence
is ready to provide solutions in many domains; however, the resource
and power demands of the underlying algorithms and implemen-
tations are way too high for the target applications. For instance,
the amazing performance of AlphaGo [5] required 4 to 6 weeks of
training executed on 2000 CPUs and 250 GPUs for a total of about
600kW of power consumption (while the human brain of a go player

*This work has been partially founded by CNRS PICS07968 project.

requires about 20W). Due to these limitations, many alternative
architectures and technologies (being able to deliver the required
demands at affordable cost) are under investigation; examples are
approximate computing [6]–[8], computation-in-memory [9]–[11],
and neuromorphic computing [12]–[14]. These will not only change
the way we used to design and program our computers, but also
the way we used to test them to provide the required quality and
reliability. Providing high-quality testing is a very critical step in
the commercialization of any electronic product responsible for
screening out all the defective chips before they are sold.

Testing and design-for-test for emerging computing paradigms
such as the three mentioned above is still in an infancy stage, and
almost no work is published in this field. Understating the related
challenges and setting up directions toward the development of effi-
cient solutions is of great importance in order to provide appropriate
solutions. This paper addresses the test and reliability related chal-
lenges for three emerging computing paradigms being approximate
computing, computation-in-memory, and neuromorphic computing.
It presents the actual state of the art and aims also at providing some
preliminary results and setting up some research directions.

The paper is structured as follows. Section II covers the design
of low-cost fault tolerant mechanisms exploiting the Approximate
Computing paradigm. Section III presents the Computation-in-
Memory paradigm and its test and reliability challenges and sets
up some directions. Section IV focuses on a comprehensive fault
model dictionary for HW-based Spiking Neural Networks with on-
line learning (during learning and inference) and methodologies test
for such faults. Finally Section V concludes the paper.

II. EXPLOITING APPROXIMATE COMPUTING FOR
IMPLEMENTING LOW-COST FAULT TOLERANT

MECHANISMS

Approximate computing has been proposed to achieve energy
efficient computation at the cost of accuracy reduction [15]. Hard-
ware designs can profit from approximation to generate circuits with
smaller area, thus reducing energy consumption and delay. Software
projects use approximation mainly to reduce memory footprint
and execution time. Approximation also impacts the system fault
tolerance due to its nature [16]. Approximate computing algorithms
already handle small inaccuracies generated by the approximation.
Thus, very small data corruption errors might not even be noticed by
the system as a whole. Some approximation strategies are also inher-
ently fault tolerant. Such is the case of successive approximation: an
approximation method that consists of loop executions generating an
ever-improving output. This approximation method can also work as
a fault tolerance mechanism by itself, given that an error affecting
one iteration of the loop can be corrected on the following ones
[17]. A designer can use loop perforation to balance execution time
and accuracy on successive approximation algorithms, which also978-1-7281-2260-1/19/$31.00 ©2019 IEEE

Fig. 1. Approximate TMR diagram.

impacts the fault tolerance of the system [17]. Another very common
approximation method is data size reduction [8], which consists of
representing data with less bits than usual. This method has little-
to-none impact on software execution time but can highly reduce
memory footprint.

Numerical and mathematical properties can also be used to pro-
vide valid functional approximation. Taylor series, for example, are
used in mathematics to represent a function as a sum of previously
calculated terms. The more terms are used, the more accurate the
approximation. This type of method can be applied both to software
and hardware designs, with different costs [18]. On hardware, the
price to pay for more accuracy is either more hardware area or
a higher delay: a designer might choose an implementation with
pipelines to make it faster (and bigger) or a smaller, loop-execution
circuit with a higher delay. On software, the price to pay for this
type of approximation is always the execution time. Even on parallel
systems, where multiple terms could be executed concurrently, this
execution would take processing resources that could otherwise be
used to improve the system’s performance. Naturally, this approxi-
mation method also has a high impact on the system fault tolerance:
using bigger hardware increases the probability of a fault, due to
a higher number of critical bits. Algorithms with higher execution
times are also known to have a higher susceptibility to errors [19],
given that they are exposed to more faults per second (in a real use-
case scenario of the system execution in a hazardous environment).

Approximate computing can also be used to reduce the costs
of traditional fault tolerance methods. Triple modular redundancy
(TMR) is one of the most studied fault tolerance and error masking
methods in the literature [19]. In its more traditional form, it consists
of triplicating a circuit or software code and implementing a checker
to verify the consistency of the three execution outputs. If one of the
outputs is different from the other two, it shall contain an error that
can be masked by the method by accepting the output from the other
redundancies as the correct one. Triplicating a whole portion of the
system, however, has a high cost (at least 300% area overhead, or
execution time for non-parallel software). Approximate computing
can be used to provide approximate low-cost redundancies, thus
reducing the fault tolerance method costs.

Approximate TMR (ATMR) consists of implementing a TMR
with approximate redundancies. It can be applied to both hardware
and software projects. Nevertheless, ATMR has to deal with the
accuracy loss inherent to approximation. On a traditional TMR
approach, the three output values can be compared and checked for
errors by a simple bitwise operation. However, an ATMR method
needs to handle a possible accuracy difference between the three
redundancies. One way of dealing with approximation on ATMR
is defining design spaces and assuring that, even in the absence
of faults, at least two results will always have the same output
[20]. This technique assures that a possible difference caused by
the approximation will not turn into an error in the absence of
faults. Another way of dealing with the approximation issue on the
ATMR checker is with difference thresholds. In this case, the ATMR
checker shall only consider an error if the difference between the
redundancies outputs is higher than a given threshold. This threshold

Fig. 2. (a) CIM as an accelerator (b) Example of a program

is defined by the system inaccuracy acceptance. Fig. 1 depicts an
example of ATMR compared to the TMR. It can be noticed that
ATMR will execute tasks R1’ and R2’ that are approximate version
of the task R0. In this way the overall execution time (t5) will be
lower than the TMR execution time (t7).

Some safety-critical systems, in special real-time systems, might
not need error masking. Real-time systems deal with data freshness
requirements, which define time intervals on which data is consid-
ered to be updated and valid. A navigation system, for example,
might present an error in the data that comes from a radar scan, but
because new data coming from a new scan will be generated soon the
erroneous data will be overwritten (or even become useless) shortly.
In those cases, error masking might be not only unnecessary but
also impracticable due to the short data freshness time interval. It is,
however, important for the user to know if the current data is to be
trusted or not. In an avionics system, for instance, a pilot must know
if the date he sees in a panel is trustworthy or not, and take safety
measures if needed. Approximation can be used to provide cheap
redundancy to mathematically predict if a certain data is inside a
possible window of value, and warn the user in the case where the
data is absurd [21].

III. COMPUTATION-IN-MEMORY: TEST AND RELIABILITY

Computation-in-Memory (CIM) is one of the alternative com-
puting architectures being explored in the light of emerging new
memristive device technologies [3], [22], [23]. CIM aims at elim-
inating the communication bottleneck while supporting massive
parallelism. Although, the ideal would be to fully integrate the
processing units and the memory in the same physical location, it is
not clear if this is technology-wise feasible. One potential realistic
implementation is to use the CIM die as an on-chip accelerator
as shown in Figure 2(a) [24]. The CIM die may consist of: (a) a
very dense crossbar memory array where memristive devices are
fabricated at each junction of the crossbar, and (b) a peripheral
circuitry (realized using CMOS technology) that is responsible for
the communication and control with the crossbar. The philosophy
behind the CIM accelerator is to get the intense memory access part
of an application (e.g., due to bad data locality, or big data sizes)
to be executed within the CIM die rather than by the CPU; this
leads to significant energy saving and performance improvement.
Figure 2(b) illustrates a program that could be executed efficiently
on this architecture; multiple loops can be executed on the CIM
die, while the other parts of the program can be executed on the
conventional core. Each time a loop is invoked, the CPU sends
a “macro-instruction” (complex instruction) to the CIM die which
decodes and executes it locally, before returning the results.

As the name indicates, CIM takes place within the memory core
(CIM die). As the CIM die consists of a memory array and the pe-
ripheral circuits, and depending where the result of the computation
is produced, CIM can be divided into two classes [25]:

• CIM-Array (CIM-A): the computing result is produced within
the memory array. Hence, the output should be stored in a
memristive device in the array in form of a resistance state.

• CIM-Periphery (CIM-P): the computing result is produced
within the peripheral circuitry. Given the fact that memory

periphery is based on CMOS technology, the nature of the
produced output is voltage.

It is worth noting that even though the computational results are pro-
duced in the array/peripheral circuits, the peripheral circuit/memory
array could be a substantial component in the computations. For
example, when multiple rows are activated simultaneously in the
array, different logic and arithmetic operations can be realized in the
periphery [11], [23], [26]. Hence, both CIM-A and CIM-P impact
the design of the memory, although the impact of CIM-A could be
more severe.

A. Test Challenges
CIM accelerators cannot be tested in the same way as traditional

memory structures. This stems from the fact that they operate in two
different configurations: memory and computation.

• In the Memory configuration, the CIM accelerator behaves like
a memory. Hence, testing the storage functionality is needed.

• In the Computation configuration, the CIM accelerator is able
to perform operations on the stored data. Hence, testing of the
computing functionality is needed.

The CIM accelerator switches between these configurations by mod-
ifying the way in which some components (e.g. the sense amplifiers,
decoders [26]) perform their function. To maximize fault coverage,
it must be ensured that a test targets both configurations. This
division of configurations directly leads to increased complexity in
the development of test solutions. Note that in theory both functional
and structural testing could be used; however, due to its efficiency
and measurable coverage, structural testing is more suitable. Next,
test challenges for the memory configuration and the computation
configuration are discussed.

Testing CIM as memory: CIM accelerator typically consists of
a crossbar memristive devices where each device could be e.g., a
RRAM, STT-MRAM or a PCM memory device. Although some test
and design-for-testability (DfT) schemes for such memories have
been developed [27]–[30], there are still many open questions. The
most important one arises from the lack of good defect models for
the memristive devices. Traditionally, fault modeling is based on
(linear) resistor injection and (SPICE) circuit simulation. However,
due to the non-linear nature of the memristive device, it becomes
questionable if the traditional approach could be sufficient. Recent
work on RRAM and STT-MRAM [31], [32] has revealed the need
of a new fault modeling approach in order to appropriately and
accurately model the fault behavior of memristive devices. In ad-
dition, it has demonstrated that the traditional approach may lead
to erroneous fault models; hence low quality solutions. Appropriate
defect modeling needs to incorporate the impact of a defect on the
technological parameters as well as on the electrical parameters of
the memristive device in order to derive the way one particular
defect manifest itself at the electrical/functional level. Clearly this
will result in new fault models which will require new test solutions
and Design-for-test (DFT) solutions. Depending on the nature of the
fault model and their detection conditions, different test schemes
may be needed. For example, the detection of a fault resulting into a
non-deterministic or random read value cannot be guaranteed with a
March test and a specific DFT will be needed. Furthermore, it is
worth to note that the most popular defects and their occurrence
probability (or importance) is not clear yet; obviously there is a lack
of industry data in the public domain which make it for researchers
harder to make the right trade-offs.

Testing CIM in the computing configuration: Testing CIM
for memory functionality does not necessarily cover the computing
functionality. For example, the peripheral circuit of the CIM die may
performs logic or arithmetic operations in the computing configura-
tion, while it acts just as a write or a read path in the memory config-
uration. To illustrate the additional complexity computing brings to

Fig. 3. Scouting logic

the testing of CIM die, let’s consider Scouting logic as an example,
shown in Figure 3 [26]. Figure 3(a) presents a simplified design
of a crossbar memory with 2 bits (M1 and M2), two wordlines
selectors (presented by S1 and S2), and a common sense amplifier
(SA) used to read the data. Reading a memory cell means selecting
the appropriate wordline and sensing the current through the SA.
By slightly modifying the SA design, Scouting logic enables the
execution of bit-wise OR, AND, and XOR logic functions; this is
done based on reading e.g. two rows simultaneously and activating
the required reference current for the SA in order to distinguish the
right outputs as shown in Figure 3 (b) for AND, OR and XOR. As the
example reveals, realizing the computation configuration requires
the design changes of at least in the address decoder and sense
amplifier; the address decoder (AD) should be able to select multiple
rows (for bits to be operated on) and the SA should be able to be set
in the right configuration to perform the selected logic operations
by choosing the right reference current to be compared to the read
current. Hence, for a CIM die with Scouring logic, additional tests
should be performed to detect potential defects in the ADs and the
SAs.

Testing CIM address decoder (AD): One can assume that fault
models and tests used for ADs in traditional multi-port memories
can be applicable here as well [33]. However, more accurate inves-
tigations to explore the impact of defects in AD on the computing
functionally and how they can be detected are still open questions.

Testing for SAs: Also here one can assume that the fault models
used to for SAs in traditional memories can be applied [34]; the
faults could be static (e.g., stuck-at-fault) or dynamic (e.g., a partial
open causing the SA to be slow). For tests, special algorithms should
be developed; these should be able to cover the faults and guarantee
that the configuration of the SA for different reference currents to
realize different logic operation is fault free.

The above example clearly shows that the development of fault
models and test solutions of CIM in its computing configuration
is quite complex and design dependent; hence it requires special
attention. For instance, if the periphery circuit is performing a
vector matrix multiplication, then the fault models and the test
solutions required may be different from those required by CIM
with Scouting logic. Testing for CIM in its computing configuration
means identifying the peripheral components with more than one
configuration, develop appropriate fault models, and thereafter test
solutions.

B. Reliability Challenges

Emerging memory technologies introduce new reliability chal-
lenges in the devices, that in turn affect the system reliability.
These reliability issues pose a limitation on the scalability of the
circuits, as they can generate read and write errors or have unwanted
device interactions. To achieve high-quality CIM, it is necessary to
understand what these new challenges are and what causes them. We
list the most important ones: endurance, variability, and retention.

1) Endurance: The endurance of a storage element is defined
as the number of switching cycles a device can perform until it

breaks down and becomes unable to switch. Emerging memory tech-
nologies have already shown better endurance than flash memories.
However, their endurance is still rather low in comparison with
SRAM and DRAM (1015 cycles for SRAM vs. 106⇠12 cycles for
emerging memories) [35]. Because CIM circuits access the storage
elements frequently, the device endurance needs to be increased in
order to have a highly reliable circuit [36].

2) Variability: The stochastic nature of the filament growth and
dissolution in an RRAM device causes cycle-to-cycle variability
[37]. That is, when a filament grows, its shape will differ with respect
to other cycles, and hence have a different resistance. The shape of
the filament depends on many factors. An important one of them is
the current that flows through the device when the filament is formed
[38]. If the variability of a device is too large, soft faults may occur.
For example, a storage element may store an unexpected logical
value. This in turn causes operational faults in the computation
configuration. Therefore, variability needs to be controlled. This can
be done by optimizing the device structure [39], or by applying write
verification schemes [40].

3) Retention: After a certain amount of time, the storage ele-
ment can fail to retain its data, e.g. when the RRAM filament has
dissolved, or the polarization of an Spin Transfer Torque (STT)
device has flipped. The time it takes for the failure to occur depends
on the operating or storing conditions of the device. Temperature
[36] and the applied voltages [41] have the most impact among
them. Higher temperatures and higher voltages lead to a decrease
of retention time. The retention capabilities can be improved by
optimizing the production process [42], but care should be taken to
prevent the loss of data.

IV. NEUROMORPHIC COMPUTING PARADIGMS AND
TEST/RELIABILITY ISSUES

In the post Von Neumann architectures context, neuromorphic
computing paradigm has a huge potential when it makes use of
emerging NV technologies (STT-MRAM, memristors), however,
reliable and testable HW designs enabling the neuromorphic com-
puting are still missing. The Spiking Neural Networks (SNN) are
widely studied nowadays due to the high level of realism they bring
to neural simulation, their energy efficiency and their ability for
on-line learning. The related bio-inspired learning rule is known
as STDP (Spike Based Dependent Plasticity) and is applied on
each synapse independently of the global state of the network.
In return, the synapse must be doted of computation capabilities.
A hardware implementation of an SNN requires architectural co-
localization of the processing and memory (non-Von Neumann ar-
chitecture). The circuits solutions used to implement silicon neurons
are application dependent, but the vast majority are built with a
temporal integration block, a spike generation block, a refractory
period mechanism, and a spike adaptation block [12]. Synapses are
required to exhibit plasticity (i.e., modulation in their efficacy) and
to support online learning algorithms, that manifest in changes in
their strengths. Emerging memory devices can be used as synaptic
elements thanks to their tunable conductivity, compatibility with
advanced CMOS fabrication process, low power consumption, non-
volatility and scalability. The synaptic conductance modulation can
be emulated using: (i) the analog approach (cumulative decrease
and increase of resistance), where multiple resistance states emulate
long-term potentiation and depression; or (ii) the binary approach,
uses two distinct resistance states per device associated with a
probabilistic programming scheme [13]. The strong restrictions on
the size of embedded Spiking Neural Network architectures (limited
silicon area and interconnectivity ability) require minimization of
the network redundancy which in turn reduces its the intrinsic fault
tolerance. We postulate that there is an acute need to evaluate
the reliability and perform manufacturing test of the neuromorphic

Fig. 4. Schematic representation of the SNN architecture under study, with
detailed view of the integrate and fire neuron and the artificial synapse.

hardware architectures to guarantee their correct operation and ro-
bustness. Our preliminary analysis supports this research hypothesis
by showing that fabrication- and environmental-induced parameter
variations affect the neuron/synaptic behavior, which in turn affects
the robustness of the SNN [14], [43]. Reliability analysis, post
fabrication test, design-for-test and design-for-reliability are com-
monly used when dealing with traditional computing architectures,
however, they are not common practice when dealing with neuro-
morphic structures. In this context, there are several research works
focusing on the fault tolerance (and how it can be improved) of
artificial neural networks (ANNs) [44], on boosting fault tolerance
of hardware implemented neural accelerators [45], and even on the
effect of fabrication-induced variability of memristive devices on the
behavior of deep networks [46] and SNNs [47]. These papers show
that faulty neurons have stronger impact on the neural network’s
behavior than faulty synapses. In addition, it is shown that the on-
line learning algorithm used in SNNs is efficiently mitigating the
effect of synapse variability on the network robustness. However, to
the best of our knowledge, the effect of continuous learning (i.e.,
updating of synaptic weights) on the network lifespan due to limited
synapse endurance has not yet been studied.

Performing post fabrication test on a hardware implemented
spiking neural network based on emerging memory devices is not
a trivial task. It involves testing the integrity and functionality of
the neurons and of the synaptic arrays. In addition, the emerging
technologies are facing various fundamental research and scientific
challenges that are mostly related to manufacturing yield and reli-
ability. They are built with novel materials and subjected to novel
operation modes. These all result in novel fault models translating
in new dependability issues and a shift in the test paradigm. The
defect rates, fault modeling and test solutions for emerging-memory
based RAM arrays have been (and still are) extensively studied
[48]. Nevertheless, there is no fault modeling, or post-fabrication
test solution provided dedicated to alternate operation modes of
the memory arrays (such as analog data storage in the case of
memristors, or stochastic programming in the case of spintronic
devices).

In this context, our work focuses on a fully-connected SNN, that
learns using the Spike Timing Dependent Plasticity (STDP) method
with lateral inhibition, with integrate-and-fire neuron and resistive
synapses. The considered architecture is illustrated in Fig. 4 and
described in detail in [49]. In order to achieve the ambitious goal of
designing robust and efficient hardware implemented SNNs, one has
to jointly-consider the characteristics of the SNN itself (connectivity,
neuronal activation function, learning rule and synaptic update), the
characteristic of the devices used to implement it (CMOS ON/OFF
current and threshold voltage, conductivity modulation and current-
compliance of the synaptic devices, etc.) and the environment in
which the circuit will be deployed.

In this section we present an overview of fault models pertinent
to an SNN with on-line unsupervised learning and the estimated
severity of fault injection with respect to the recognition error of the
affected neuromorphic architecture. We have defined fault models
to enable fault injection campaigns and to allow us to identify
scenarios of faulty operations, happening before and after the STDP
learning. So far, we have considered only permanent faults caused by
manufacturing defects and aging-related phenomena. Due to the fact
that there are a large number of SNN circuit implementations, and
the number keeps growing, we have defined fault models which do
not take into consideration the micro-architecture of the functional
units, i.e. neuron and synapse, only their behavior. In particular, we
have defined how the inputs and outputs of the functional interface
of the neurons and synapses can be affected by the faults, while
considering the hardware root causes that can lead to those faults.
These faults are similar to, for instance, the stuck-at, where the fault
is defined at the interface of a logic gate, without the knowledge of
the actual transistor-level implementation of the gate, but still being
representative of the majority of physical defects that may appear at
the transistor level. In this way we have defined the following fault
models: DSF (dead synapse fault), DPF (degraded plasticity fault),
SSA0, SSA1 (Synaptic stuck-at-0, Synaptic stuck-at-1), DNF (dead
neuron fault), ISLIF, OSLIF (input/output stuck lateral inhibition
fault), IDSF and ODSF (input/output delayed spike fault), IDSAF
and ODSAF (input/output delayed synapse activation fault), IDLIF
and ODLIF (input/output delayed lateral inhibition fault). A com-
plete description of the defined fault models is presented in [50].

Starting from the behavioral model of the SNN under study, we
have evaluated the functional accuracy of the SNN during inference
and learning under different scenarios of fault injection, in our
attempts to answer questions such as: which one is more detrimental
to the functionality of a Neural Network (NN): defective neuron or
defective synapse? How many of these critical components have to
fail such that the entire network fails? In which state does a certain
defect matter the most: learning or inference?

We have implemented a spiking neural network with learning
strategy based on spike-timing dependent plasticity. The network
is designed to solve the MNIST database [51], i.e., to be trained
to recognize hand written digits. This data base has 60000 examples
for the network training and 10000 examples for testing the network.
Each example consists in the image of a hand-written digit. The
hand-written digit is a 28x28 pixels image in grey-scale (256 tones
of grey from white to black). The information carried by each image
is transmitted to network in the form of spikes. The spike encoding is
performed by frequency encoding of each pixel’s tone of grey. With
this encoding, the black pixels carry no information, while the white
pixels carry the maximum amount of information, i.e., maximum
frequency (255 spikes per time unit). Each image is presented to the
network for 10 time units. In order to respond to the requirements of
this data base, the network is designed with 784 input neurons, one
for every image pixel. The input neurons are connected in a one-to-
all fashion (as illustrated in Fig. 4) to the output neurons.

The results of the fault injection campaign are summarized in Fig.
5. It is important to note that different faults have different effects if
they happen during the learning or during the inference stages of a
network operation. Indeed the synaptic faults (DSF, DPF and SSAx)
have a stronger influence during the inference stage of the SNN than
during the learning stage. This is due to the fact that the network
manages to learn around the faulty synapses due to the on-line
learning algorithm (STDP). If the fault occurs during the inference
stage, we observe a fast degradation of the recognition rate, due to
the fact that the network is found in the situation of recognizing
degraded patterns. The location of occurrence of synaptic faults is
also very important as stated in the most-right column of the table in
Fig. 4. Indeed, if a fault (DSF, DPF or SSA0) occurs on a minimum

Fig. 5. Summary of SNN accuracy under fault injection.

weight - depressed synapse no effect will be observed on the network
behavior. However, if a fault such as DSF, DPF or SSA0 occurs on a
maximum weight - excited synapse a strong effect will be observed
on the network behavior. The situation is the exact opposite for the
synapses affected by SSA1.

During neuron-related fault injection campaigns (DNFin,
DNFout, IDSF/ODSF, IDLIF/ODLIF and ISLIF/OSLIF) we observe
the opposite effect, i.e., a stronger influence during the learning
stage of the SNN than during the inference stage. This is due to
the fact that at this stage, the computation element is affected, which
means that during learning mode the injected fault leads to wrong
behavior learning, while a fault injected during the inference leads
to less recognition accuracy. Faults affecting the input neurons are
the most critical, since these neurons encode the information. The
effect of DNFin is strongly dependent on the location of the faulty
neuron. Faults affecting the output neurons are less catastrophic
due to the intrinsic redundancy of the SNN networks with STDP,
where a pattern is learned by multiple output neurons. Stuck-at fault
occurring at lateral inhibition stage is the most critical, since even a
single fault can cause full system failure. Indeed, if a OSLIF fault
occur on one neuron, it will prevent all other neurons from firing,
hence only a single pattern will be learned by the network containing
features from multiple patterns, making the network unusable.

This analysis represents a preliminary study of the fault tol-
erance of SNNs. Further evaluations are necessary to be able to
evaluate, with high confidence the reliability of a SNN. Multiple
fault injection scenarios need to be further performed to have a
full picture of the network accuracy: different locations, different
fault magnitudes should be studied as well as plausible clustering
scenarios and combinations between synaptic and neural faults. In
addition, the network should be evaluated under different application
scenarios (or databases with same dimensionalities) to evaluate the
fault effects also independently of the application.

V. CONCLUSION

In this paper we presented the test and reliability challenges for
three emerging computing paradigms being approximate computing,
computation-in-memory, and neuromorphic computing. Despite the
existence of some works, test and reliability for both emerging com-
puting architectures and technologies still needs to be systematically
addressed such as defect modelling, fault modelling, test generation
and test application. REFERENCES

[1] B. Hoefflinger, “Chips 2020,” The Frontiers Collection, 2012. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-23096-7

[2] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS
Annual Research Symposium (BEARS), College of Engineering, UC
Berkeley, US, 2006.

[3] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2015, pp. 1718–1725.

[4] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
Proc. Conf. Des. Autom. Test Eur. European Design and Automation
Association, 2017, pp. 722–731.

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[6] Q. Xu et al., “Approximate computing: A survey,” IEEE Design Test,
vol. 33, no. 1, pp. 8–22, 2016.

[7] L. Anghel et al., “Test and reliability in approximate computing,”
Journal of Electronic Testing, vol. 34, no. 4, pp. 375–387, Aug 2018.
[Online]. Available: https://doi.org/10.1007/s10836-018-5734-9

[8] S. Rehman et al., Heterogeneous Approximate Multipliers: Architectures
and Design Methodologies. Springer International Publishing, 2019,
pp. 45–66.

[9] J. Yu et al., “Memristive devices for computation-in-memory,” in Design,
Automation and Test in Europe DATE, 2018.

[10] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, no. 7290, p. 873, 2010.

[11] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC. IEEE,
2016.

[12] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers
in Neuroscience, vol. 5, p. 73, 2011. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2011.00073

[13] M. Suri et al., “Phase change memory as synapse for ultra-dense neuro-
morphic systems: Application to complex visual pattern extraction,” in
2011 International Electron Devices Meeting, Dec 2011, pp. 4.4.1–4.4.4.

[14] E. I. Vatajelu et al., “Reliability analysis of mtj-based functional
module for neuromorphic computing,” in 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS), July
2017, pp. 126–131.

[15] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium
(ETS), May 2013, pp. 1–6.

[16] G. S. Rodrigues et al., “Evaluating the behavior of successive approxi-
mation algorithms under soft errors,” in 2017 18th IEEE Latin American
Test Symposium (LATS), March 2017, pp. 1–6.

[17] G. S. Rodrigues et al., “Exploring the inherent fault tolerance of
successive approximation algorithms under laser fault injection,” in 2018
IEEE 19th Latin-American Test Symposium (LATS), March 2018, pp. 1–
6.

[18] G. S. Rodrigues et al., “Analyzing the use of taylor series approximation
in hardware and embedded software for good cost-accuracy tradeoffs,”
in Applied Reconfigurable Computing. Architectures, Tools, and Appli-
cations, N. Voros et al., Eds. Cham: Springer International Publishing,
2018, pp. 647–658.

[19] ——, “Performances vs reliability: how to exploit approximate com-
puting for safety-critical applications,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), July
2018, pp. 291–294.

[20] I. A. Gomes et al., “Exploring the use of approximate tmr
to mask transient faults in logic with low area overhead,”
Microelectronics Reliability, vol. 55, no. 9, pp. 2072 – 2076,
2015, proceedings of the 26th European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0026271415300676

[21] G. S. Rodrigues et al., “Arft: An approximative redundant technique for
fault tolerance,” in 2018 Conference on Design of Circuits and Integrated
Systems (DCIS), Nov 2018, pp. 1–6.

[22] E. Linn et al., “Beyond von Neumann-logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
2012.

[23] D. Fujiki et al., “In-Memory Data Parallel Processor,” in Proc. Twenty-
Third Int. Conf. Archit. Support Program. Lang. Oper. Syst. - ASPLOS
’18, vol. 53, no. 2. New York, New York, USA: ACM Press, 2018,
pp. 1–14.

[24] S. Hamdioui et al., “Applications of Computation-In-Memory Architec-
tures based on Memristive Devices,” in 2019 Des. Autom. Test Eur. Conf.
Exhib. IEEE, mar 2019, pp. 486–491.

[25] M. A. Lebdeh et al., “Memristive Device Based Circuits for
Computation-in-Memory Architectures,” in 2019 IEEE Int. Symp. Cir-
cuits Syst. IEEE, may 2019, pp. 1–5.

[26] L. Xie et al., “Scouting logic: A novel memristor-based logic design
for resistive computing,” in 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), July 2017, pp. 176–181.

[27] N. Z. Haron et al., “DfT schemes for resistive open defects in RRAMs,”
in DATE 2012. IEEE, mar 2012, pp. 799–804.

[28] C. Y. Chen et al., “RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Trans. Comput.,
vol. 64, no. 1, pp. 180–190, jan 2015.

[29] I. Yoon et al., “Test challenges in embedded stt-mram arrays,” in 2017
18th International Symposium on Quality Electronic Design (ISQED),
March 2017, pp. 35–38.

[30] X. Pan et al., “Modeling and test for parasitic resistance and capacitance
defects in pcm,” in 2012 12th Annual Non-Volatile Memory Technology
Symposium Proceedings, Oct 2013, pp. 73–76.

[31] M. Fieback et al., “Testing resistive memories: Where are we and what
is missing?” in 2018 IEEE International Test Conference (ITC), Oct
2018, pp. 1–9.

[32] L. Wu et al., “Electrical modeling of stt-mram defects,” in 2018 IEEE
International Test Conference (ITC), Oct 2018, pp. 1–10.

[33] S. Hamdioui et al., “Testing Address Decoder Faults in Two-Port
Memories: Fault Models, Tests, Consequences of Port Restrictions, and
Test Strategy,” Journal of Electronic Testing, vol. 16, no. 5, pp. 487–498,
2000. [Online]. Available: http://dx.doi.org/10.1023/A:1008320716847

[34] A. van de Goor et al., “Detecting faults in the peripheral circuits and an
evaluation of SRAM tests,” in International Conference on Test (ITC),
2004, pp. 114–123.

[35] S. Yu et al., “Emerging Memory Technologies: Recent Trends and
Prospects,” IEEE Solid-State Circuits Mag., vol. 8, no. 2, pp. 43–56,
2016.

[36] D. Ielmini, “Resistive switching memories based on metal oxides:
mechanisms, reliability and scaling,” Semicond. Sci. Technol., vol. 31,
no. 6, p. 063002, jun 2016.

[37] D. Garbin et al., “Resistive memory variability: A simplified trap-
assisted tunneling model,” Solid. State. Electron., vol. 115, pp. 126–132,
jan 2016.

[38] A. Fantini et al., “Intrinsic switching variability in HfO2 RRAM,” in
IMW 2013. IEEE, may 2013, pp. 30–33.

[39] Y. Fang et al., “Improvement of HfOx -Based RRAM Device Variation
by Inserting ALD TiN Buffer Layer,” IEEE Electron Device Lett.,
vol. 39, no. 6, pp. 819–822, jun 2018.

[40] Y. S. Chen et al., “Highly scalable hafnium oxide memory with
improvements of resistive distribution and read disturb immunity,” in
IEDM 2009. IEEE, dec 2009, pp. 1–4.

[41] C. Wang et al., “Conduction mechanisms, dynamics and stability in
ReRAMs,” Microelectron. Eng., vol. 187-188, pp. 121–133, feb 2018.

[42] Y. Y. Chen et al., “Improvement of data retention in HfO2/Hf 1T1R
RRAM cell under low operating current,” in IEDM 2013. IEEE, dec
2013, pp. 10.1.1–10.1.4.

[43] E. I. Vatajelu et al., “Fully-connected single-layer stt-mtj-based spiking
neural network under process variability,” in 2017 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH), July 2017,
pp. 21–26.

[44] E. B. Tchernev et al., “Investigating the fault tolerance of neural
networks,” Neural Computation, vol. 17, no. 7, pp. 1646–1664, 2005.
[Online]. Available: https://doi.org/10.1162/0899766053723096

[45] S. Kim et al., “Matic: Learning around errors for efficient low-voltage
neural network accelerators,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2018, pp. 1–6.

[46] L. Xia et al., “Fault-tolerant training enabled by on-line fault detec-
tion for rram-based neural computing systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2018.

[47] D. Querlioz et al., “Immunity to device variations in a spiking neural
network with memristive nanodevices,” IEEE Transactions on Nanotech-
nology, vol. 12, no. 3, pp. 288–295, May 2013.

[48] E. I. Vatajelu et al., “Challenges and solutions in emerging memory
testing,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1,
2019.

[49] L. Anghel et al., “Neuromorphic computing - from robust hardware
architectures to testing strategies,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Oct 2018, pp.
176–179.

[50] E. I. Vatajelu et al., “Special session: Reliability of hardware-
implemented spiking neural networks (snn),” in EEE VLSI Test Sym-
posium (VTS), 2019.

[51] Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov
1998.

Bibliography

[1] Efficient power management in the 90-nanometer foundry reference flow. URL http://www.
chipdesignmag.com/print.php?articleId=76?issueId=6.

[2] Technology and cost trends at advanced nodes. URL https://www.icknowledge.com/news/
Technology%20and%20Cost%20Trends%20a%20Advanced%20Node%20-%20Revised.pdf.

[3] An introduction to reducing dynamic power. URL https://semiengineering.com/
an-introduction-to-reducing-dynamic-power/.

[4] Shifting bathtub curve for reliability. URL https://ocw.tudelft.nl/wp-content/uploads/
Module_14_Reliability.pdf.

[5] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy. X-sram: Enabling in-memory boolean computations
in cmos static random access memories. IEEE Transactions on Circuits and Systems I: Regular
Papers, 65(12):4219–4232, Dec 2018. doi: 10.1109/TCSI.2018.2848999.

[6] Joao Azevedo, Arnaud Virazel, Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri-Sanial,
Jeremy Alvarez-Herault, and Ken Mackay. A Complete Resistive-Open Defect Analysis for
Thermally Assisted Switching MRAMs. IEEE TVLSIS, 22(11):2326–2335, November 2014. ISSN
1063-8210. doi: 10.1109/TVLSI.2013.2294080. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6701223.

[7] K Beckmann, J Holt, W Olin-Ammentorp, Z Alamgir, J Van Nostrand, and NC Cady. The effect of
reactive ion etch (rie) process conditions on reram device performance. Semiconductor Science
and Technology, 32(9):095013, 2017.

[8] Rajendra Kumar Bishnoi. Reliable Low-Power High Performance Spintronic Memories. PhD
thesis, Karlsruher Institut für Technologie (KIT), 2017.

[9] Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R Stewart, and
R Stanley Williams. ‘memristive’ switches enable ‘stateful’ logic operations via material im-
plication. Nature, 464(7290):873, 2010.

[10] G Cardoso Medeiros, M Taouil, MCR Fieback, LM Bolzani Poehls, and S Hamdioui. Dft scheme
for hard-to-detect faults in finfet srams. 2019.

[11] H. H. Chen. Beyond structural test, the rising need for system-level test. In VLSI-DAT, pages
1–4, April 2018. doi: 10.1109/VLSI-DAT.2018.8373238.

[12] Y. Chen. Reram: History, status, and future. IEEE Transactions on Electron Devices, pages 1–14,
2020. ISSN 1557-9646. doi: 10.1109/TED.2019.2961505.

[13] Y. Chen and J. Li. Fault modeling and testing of 1t1r memristor memories. In 2015 IEEE 33rd
VLSI Test Symposium (VTS), pages 1–6, April 2015. doi: 10.1109/VTS.2015.7116247.

[14] L. Chua. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5):
507–519, Sep. 1971. doi: 10.1109/TCT.1971.1083337.

131

http://www.chipdesignmag.com/print.php?articleId=76?issueId=6
http://www.chipdesignmag.com/print.php?articleId=76?issueId=6
https://www.icknowledge.com/news/Technology%20and%20Cost%20Trends%20a%20Advanced%20Node%20-%20Revised.pdf
https://www.icknowledge.com/news/Technology%20and%20Cost%20Trends%20a%20Advanced%20Node%20-%20Revised.pdf
https://semiengineering.com/an-introduction-to-reducing-dynamic-power/
https://semiengineering.com/an-introduction-to-reducing-dynamic-power/
https://ocw.tudelft.nl/wp-content/uploads/Module_14_Reliability.pdf
https://ocw.tudelft.nl/wp-content/uploads/Module_14_Reliability.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6701223
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6701223

132 Bibliography

[15] A. S. Emara, A. H. Madian, H. H. Amer, S. H. Amer, and M. B. Abdelhalim. Testing of memristor
ratioed logic (mrl) xor gate. In 2016 28th International Conference on Microelectronics (ICM),
pages 181–184, Dec 2016. doi: 10.1109/ICM.2016.7847939.

[16] M. Fieback, M. Taouil, and S. Hamdioui. Testing resistive memories: Where are we and what is
missing? In 2018 IEEE International Test Conference (ITC), pages 1–9, Oct 2018. doi: 10.1109/
TEST.2018.8624895.

[17] M.C.R. Fieback and Said Hamdioui. Device-aware testing: A new test approach towards dppb.
11 2019.

[18] Samuel H Fuller and Lynette I Millett. The Future of Computing Performance: Game Over or
Next Level? National Academy Press, 2011.

[19] Pierre Emmanuel Gaillardon, Luca Amarú, Anne Siemon, Eike Linn, Rainer Waser, Anupam
Chattopadhyay, and Giovanni De Micheli. The programmable logic-in-memory (plim) com-
puter. In Design, Automation & Test in Europe (DATE) Conference, pages 427–432, 2016.

[20] Ad.J. Goor, Said Hamdioui, and R. Wadsworth. Detecting faults in the peripheral circuits and
an evaluation of sram tests. pages 114– 123, 11 2004. ISBN 0-7803-8580-2. doi: 10.1109/TEST.
2004.1386943.

[21] Alessandro Grossi, E Nowak, Cristian Zambelli, C Pellissier, S Bernasconi, G Cibrario, K El Ha-
jjam, R Crochemore, JF Nodin, Piero Olivo, et al. Fundamental variability limits of filament-
based rram. In 2016 IEEE International Electron Devices Meeting (IEDM), pages 4–7. IEEE, 2016.

[22] Alessandro Grossi, Cristian Zambelli, Piero Olivo, Enrique Miranda, Valeriy Stikanov, Christian
Walczyk, and Christian Wenger. Electrical characterization and modeling of pulse-based form-
ing techniques in rram arrays. Solid-State Electronics, 115:17 – 25, 2016. ISSN 0038-1101. doi:
https://doi.org/10.1016/j.sse.2015.10.003. URL http://www.sciencedirect.com/science/
article/pii/S0038110115002828.

[23] S Hamdioui and AJ Van De Goor. Address decoder faults and their tests for two-port memories.
In Proceedings. International Workshop on Memory Technology, Design and Testing (Cat. No.
98TB100236), pages 97–103. IEEE, 1998.

[24] S. Hamdioui, M. Taouil, H. A. Du Nguyen, A. Haron, L. Xie, and K. Bertels. Memristor: the
enabler of computation-in-memory architecture for big-data. In 2015 International Confer-
ence on Memristive Systems (MEMRISYS), pages 1–3, Nov 2015. doi: 10.1109/MEMRISYS.2015.
7378391.

[25] S. Hamdioui, M. Taouil, and N. Z. Haron. Testing open defects in memristor-based memories.
IEEE Transactions on Computers, 64(1):247–259, Jan 2015. doi: 10.1109/TC.2013.206.

[26] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. M. Elsayed, H. Cor-
poraal, and K. Bertels. Memristor for computing: Myth or reality? In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2017, pages 722–731, March 2017. doi:
10.23919/DATE.2017.7927083.

[27] S. Hamdioui, H. A. Du Nguyen, M. Taouil, A. Sebastian, M. L. Gallo, S. Pande, S. Schaaf-
sma, F. Catthoor, S. Das, F. G. Redondo, G. Karunaratne, A. Rahimi, and L. Benini. Applica-
tions of computation-in-memory architectures based on memristive devices. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 486–491, March 2019. doi:
10.23919/DATE.2019.8715020.

http://www.sciencedirect.com/science/article/pii/S0038110115002828
http://www.sciencedirect.com/science/article/pii/S0038110115002828

Bibliography 133

[28] Said Hamdioui and Ad J Van De Goor. An experimental analysis of spot defects in srams: real-
istic fault models and tests. In Proceedings of the Ninth Asian Test Symposium, pages 131–138.
IEEE, 2000.

[29] Said Hamdioui and Ad J Van de Goor. Efficient tests for realistic faults in dual-port srams. IEEE
Transactions on Computers, 51(5):460–473, 2002.

[30] Said Hamdioui, Zaid Al-Ars, and Ad J Van de Goor. Opens and delay faults in cmos ram address
decoders. IEEE Transactions on Computers, 55(12):1630–1639, 2006.

[31] N. Z. Haron and S. Hamdioui. On defect oriented testing for hybrid cmos/memristor memory.
In 2011 Asian Test Symposium, pages 353–358, Nov 2011. doi: 10.1109/ATS.2011.66.

[32] N. Z. Haron and S. Hamdioui. DfT schemes for resistive open defects in RRAMs. In DATE,
pages 799–804, March 2012. ISBN 978-1-4577-2145-8. doi: 10.1109/DATE.2012.6176603. URL
http://ieeexplore.ieee.org/document/6176603/.

[33] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. El-
sevier, 2011.

[34] Bernd Hoefflinger. Chips 2020: a guide to the future of nanoelectronics. Springer Science &
Business Media, 2012.

[35] Mohsen Imani, Yeseong Kim, and Tajana Rosing. Mpim: Multi-purpose in-memory processing
using configurable resistive memory. In Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 757–763, 2017.

[36] Handel Jones. Whitepaper: Semiconductor industry from 2015 to 2025. International Business
Strategies, 2015.

[37] Sachhidh Kannan, Jeyavijayan Rajendran, Ramesh Karri, and Ozgur Sinanoglu. Sneak-path
testing of crossbar-based nonvolatile random access memories. IEEE Trans. Nanotechnol., 12
(3):413–426, May 2013. ISSN 1536-125X. doi: 10.1109/TNANO.2013.2253329. URL http://dx.
doi.org/10.1109/TNANO.2013.2253329.

[38] G. S. Kar, A. Fantini, Y. Chen, V. Paraschiv, B. Govoreanu, H. Hody, N. Jossart, H. Tielens, S. Brus,
O. Richard, T. Vandeweyer, D. J. Wouters, L. Altimime, and M. Jurczak. Process-improved rram
cell performance and reliability and paving the way for manufacturability and scalability for
high density memory application. In 2012 Symposium on VLSI Technology (VLSIT), pages 157–
158, June 2012. doi: 10.1109/VLSIT.2012.6242509.

[39] Werner Kern. 1 - overview and evolution of silicon wafer cleaning technology. In Karen A.
Reinhardt and Werner Kern, editors, Handbook of Silicon Wafer Cleaning Technology (Sec-
ond Edition), pages 3 – 92. William Andrew Publishing, Norwich, NY, second edition edition,
2008. ISBN 978-0-8155-1554-8. doi: https://doi.org/10.1016/B978-081551554-8.50004-5. URL
http://www.sciencedirect.com/science/article/pii/B9780815515548500045.

[40] Charles R Kime and M Morris Mano. Logic and computer design fundamentals. Prentice Hall,
2003.

[41] Aris-Kyriakos Koliopoulos, Paraskevas Yiapanis, Firat Tekiner, Goran Nenadic, and John Keane.
Towards automatic memory tuning for in-memory big data analytics in clusters. In 2016 IEEE
International Congress on Big Data (BigData Congress), pages 353–356. IEEE, 2016.

http://ieeexplore.ieee.org/document/6176603/
http://dx.doi.org/10.1109/TNANO.2013.2253329
http://dx.doi.org/10.1109/TNANO.2013.2253329
http://www.sciencedirect.com/science/article/pii/B9780815515548500045

134 Bibliography

[42] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari,
and S. Mudanai. Process technology variation. IEEE Transactions on Electron Devices, 58(8):
2197–2208, Aug 2011. doi: 10.1109/TED.2011.2121913.

[43] Kelin Kuhn, Chris Kenyon, Avner Kornfeld, Mark Liu, Atul Maheshwari, Wei-kai Shih, Sam
Sivakumar, Greg Taylor, Peter VanDerVoorn, and Keith Zawadzki. Managing process variation
in intel’s 45nm cmos technology. Intel Technology Journal, 12(2), 2008.

[44] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Friedman. Mrl — memristor
ratioed logic. In 2012 13th International Workshop on Cellular Nanoscale Networks and their
Applications, pages 1–6, Aug 2012. doi: 10.1109/CNNA.2012.6331426.

[45] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G Friedman,
Avinoam Kolodny, and Uri C Weiser. Magic - memristor-aided logic. IEEE Transactions on
Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

[46] Muath Abu Lebdeh, Uljana Reinsalud, Hoang Anh Du Nguyen, Stephan Wong, and Said Ham-
dioui. Memristive Device Based Circuits for Computation-in-Memory Architectures. In IS-
CAS, pages 1–5, May 2019. ISBN 978-1-7281-0397-6. doi: 10.1109/ISCAS.2019.8702542. URL
https://ieeexplore.ieee.org/document/8702542/.

[47] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien,
and M. . Tsai. Low power and high speed bipolar switching with a thin reactive ti buffer layer
in robust hfo2 based rram. In 2008 IEEE International Electron Devices Meeting, pages 1–4, Dec
2008. doi: 10.1109/IEDM.2008.4796677.

[48] Won Jun Lee, Chang Hyun Kim, Yoonah Paik, Jongsun Park, Il Park, and Seon Wook Kim. Design
of processing-“inside”-memory optimized for dram behaviors. IEEE Access, 7:82633–82648,
2019.

[49] Haitong Li, Peng Huang, Bin Gao, Bing Chen, Xiaoyan Liu, and Jinfeng Kang. A spice model
of resistive random access memory for large-scale memory array simulation. IEEE Electron
Device Letters, 35(2):211–213, 2013.

[50] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile
memories. In ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

[51] P. Liu, Z. You, J. Kuang, Z. Hu, H. Duan, and W. Wang. Efficient march test algorithm for 1t1r
cross-bar with complete fault coverage. Electronics Letters, 52(18):1520–1522, 2016. doi: 10.
1049/el.2016.1693.

[52] P. Lorenzi, R. Rao, and F. Irrera. Forming kinetics in HfO2 -based rram cells. IEEE Transactions
on Electron Devices, 60(1):438–443, Jan 2013. doi: 10.1109/TED.2012.2227324.

[53] Y. Luo, X. Cui, M. Luo, and Q. Lin. A high fault coverage march test for 1t1r memristor array. In
2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), pages 1–2,
Oct 2017. doi: 10.1109/EDSSC.2017.8126415.

[54] Vishwani D. Agarwal Micheal L. Bushnell. Essentials of Electronic Testing. Kluwer Academic
Publishers, 2000.

[55] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

https://ieeexplore.ieee.org/document/8702542/

Bibliography 135

[56] S. M. Nair, R. Bishnoi, M. B. Tahoori, H. Grigoryan, and G. Tshagharyan. Variation-aware fault
modeling and test generation for stt-mram. In 2019 IEEE 25th International Symposium on
On-Line Testing and Robust System Design (IOLTS), pages 80–83, July 2019. doi: 10.1109/IOLTS.
2019.8854376.

[57] Janice H. Nickel, John Paul Strachan, Matthew D. Pickett, C. Tom Schamp, J. Joshua Yang,
John A. Graham, and R. Stanley Williams. Memristor structures for high scalability: Non-linear
and symmetric devices utilizing fabrication friendly materials and processes. Microelectronic
Engineering, 103:66 – 69, 2013. ISSN 0167-9317. doi: https://doi.org/10.1016/j.mee.2012.09.
007. URL http://www.sciencedirect.com/science/article/pii/S0167931712005114.

[58] Stanford R Ovshinsky and Boil Pashmakov. Innovation providing new multiple functions in
phase-change materials to achieve cognitive computing. MRS Online Proceedings Library
Archive, 803, 2003.

[59] Debashis Panda and Tseung-Yuen Tseng. Perovskite oxides as resistive switching memories: A
review. Ferroelectrics, 471, 11 2014. doi: 10.1080/00150193.2014.922389.

[60] Debashis Panda, Chun-Yang Huang, and Tseung-Yuen Tseng. Resistive switching charac-
teristics of nickel silicide layer embedded hfo. Applied Physics Letters, 100, 03 2012. doi:
10.1063/1.3694045.

[61] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christo-
foros Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent ram. IEEE micro, 17
(2):34–44, 1997.

[62] David A. Patterson. Future of Computer Architecture. In BEARS, 2006.

[63] Jan M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996. ISBN 0-13-178609-1.

[64] Nagarajan Raghavan. Performance and reliability trade-offs for high-k rram. Micro-
electronics Reliability, 54(9):2253 – 2257, 2014. ISSN 0026-2714. doi: https://doi.org/
10.1016/j.microrel.2014.07.135. URL http://www.sciencedirect.com/science/article/
pii/S0026271414003370. SI: ESREF 2014.

[65] G Snider. Computing with hysteretic resistor crossbars. Applied Physics A, 80(6):1165–1172,
2005.

[66] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. The missing
memristor found. Nature, 453(7191):80–83, 2008. ISSN 1476-4687. doi: 10.1038/nature06932.
URL https://doi.org/10.1038/nature06932.

[67] Suk and Reddy. A march test for functional faults in semiconductor random access memories.
IEEE Transactions on Computers, C-30(12):982–985, Dec 1981. doi: 10.1109/TC.1981.1675739.

[68] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobb’s journal, 30(3):202–210, 2005.

[69] T. Tsai, J. Li, C. Hsu, and C. Sun. Testing of in-memory-computing 8t srams. In 2019 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–4, Oct 2019. doi: 10.1109/DFT.2019.8875487.

http://www.sciencedirect.com/science/article/pii/S0167931712005114
http://www.sciencedirect.com/science/article/pii/S0026271414003370
http://www.sciencedirect.com/science/article/pii/S0026271414003370
https://doi.org/10.1038/nature06932

136 Bibliography

[70] Tsai-Ling Tsai, Jin-Fu Li, Chun-Lung Hsu, and Chi-Tien Sun. Testing of in-memory-computing
8t srams. In 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–4. IEEE, 2019.

[71] Ad J Van de Goor and AJ Van De Goor. Testing semiconductor memories: theory and practice,
volume 225. J. Wiley & Sons, 1991.

[72] Elena Ioana Vatajelu, Peyman Pouyan, and Said Hamdioui. State of the art and challenges for
test and reliability of emerging nonvolatile resistive memories. International Journal of Circuit
Theory and Applications, 46(1):4–28, 2 2018. ISSN 1097-007X. doi: 10.1002/cta.2418. URL
https://doi.org/10.1002/cta.2418.

[73] Alvaro Velasquez and Sumit Kumar Jha. Parallel boolean matrix multiplication in linear time
using rectifying memristors. In IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1874–1877, 2016.

[74] Alvaro Velasquez and S. K. Jha. Computation of boolean matrix chain products in 3d reram. In
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4, 2017.

[75] E Vianello, O Thomas, G Molas, O Turkyilmaz, N Jovanović, D Garbin, G Palma, M Alayan,
C Nguyen, J Coignus, et al. Resistive memories for ultra-low-power embedded computing de-
sign. In 2014 IEEE International Electron Devices Meeting, pages 6–3. IEEE, 2014.

[76] H.-S. Philip Wong, Simone Raoux, Sangbum Kim, Jiale Liang, John P. Reifenberg, Bipin Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson. Phase change memory. Proceedings of the
IEEE, 98:2201–2227, 2010.

[77] H.-S. Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen,
Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai. Metal-Oxide RRAM. Proc. IEEE, 100
(6):1951–1970, June 2012. ISSN 0018-9219. doi: 10.1109/JPROC.2012.2190369. URL http:
//ieeexplore.ieee.org/document/6193402/.

[78] HSP Wong, C Ahn, J Cao, HY Chen, SW Fong, Z Jiang, C Neumann, S Qin, J Sohn, Y Wu, et al.
Stanford memory trends. tech. report, 2016.

[79] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels. Boolean logic gate exploration
for memristor crossbar. In 2016 International Conference on Design and Technology of Inte-
grated Systems in Nanoscale Era (DTIS), pages 1–6, April 2016. doi: 10.1109/DTIS.2016.7483889.

[80] Lei Xie, HA Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil, Mohammad AlFailakawi,
and Said Hamdioui. Scouting logic: A novel memristor-based logic design for resistive com-
puting. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 176–181, 2017.

[81] T. Yoo, H. Kim, Q. Chen, T. T. Kim, and B. Kim. A logic compatible 4t dual embedded dram
array for in-memory computation of deep neural networks. In 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pages 1–6, July 2019. doi: 10.1109/
ISLPED.2019.8824826.

[82] Jintao Yu, Hoang Anh Du Nguyen, Lei Xie, Mottaqiallah Taouil, and Said Hamdioui. Mem-
ristive devices for computation-in-memory. In Design, Automation & Test in Europe (DATE)
Conference, pages 1646–1651, 2018.

[83] S. Yu and P. Chen. Emerging memory technologies: Recent trends and prospects. IEEE Solid-
State Circuits Magazine, 8(2):43–56, Spring 2016. doi: 10.1109/MSSC.2016.2546199.

https://doi.org/10.1002/cta.2418
http://ieeexplore.ieee.org/document/6193402/
http://ieeexplore.ieee.org/document/6193402/

Bibliography 137

[84] K. Zarrineh, A. P. Deo, and R. D. Adams. Defect analysis and realistic fault model extensions
for static random access memories. In Records of the IEEE International Workshop on Memory
Technology, Design and Testing, pages 119–124, Aug 2000. doi: 10.1109/MTDT.2000.868625.

[85] Weisheng Zhao, Mathieu Moreau, Erya Deng, Yue Zhang, Jean-Michel Portal, Jacques-Olivier
Klein, Marc Bocquet, Hassen Aziza, Damien Deleruyelle, Christophe Muller, et al. Synchronous
non-volatile logic gate design based on resistive switching memories. IEEE Transactions on
Circuits and Systems I: Regular Papers, 61(2):443–454, 2013.

[86] Jian-Gang Zhu. Magnetoresistive random access memory: The path to competitiveness and
scalability. Proceedings of the IEEE, 96(11):1786–1798, 2008.

[87] Mohammed Affan Zidan, Hossam Aly Hassan Fahmy, Muhammad Mustafa Hussain, and
Khaled Nabil Salama. Memristor-based memory: The sneak paths problem and solutions.
Microelectronics Journal, 44(2):176 – 183, 2013. ISSN 0026-2692. doi: https://doi.org/10.
1016/j.mejo.2012.10.001. URL http://www.sciencedirect.com/science/article/pii/
S0026269212002108.

http://www.sciencedirect.com/science/article/pii/S0026269212002108
http://www.sciencedirect.com/science/article/pii/S0026269212002108

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Need for high quality test
	State of the art in CIM Testing
	Contributions
	Discussion of Test approach for CIM architectures
	Systematic Approach for Testing CIM Architectures
	Application of systemic approach to Scouting Logic
	Simulation Setup for Test Development for Scouting logic
	Publications

	Organization

	Memristor based CIM
	CIM Introduction
	Classification of CIM
	Memristor Cell
	STT-MRAM
	PCRAM
	ReRAM
	Memristor Array Architecture
	Production of ReRAM Devices

	CIM Architecture Testing
	Introduction
	Test Methods
	Functional Testing
	Structural testing

	Memory Testing
	Defects
	Faults
	Testing

	CIM test methodology
	Testing in Memory Configuration
	Testing in Computation Configuration
	Scouting Logic

	Defect and Fault modelling for Scouting Logic based CIM Architectures
	Circuit Setup
	Defect modeling
	Defect modeling for memory configuration
	Defect modeling in computation configuration
	Defect Injection
	Experimental Setup

	Fault Modeling and Analysis
	Fault Modeling and Analysis for Memory Configuration
	Fault modeling and Analysis for Computation configuration

	Tests for Scouting Logic
	Tests in Memory Configuration
	Memory array
	Address Decoder
	Sense Amplifier
	Test Sequences for Memory Configuration

	Tests in Computation configuration
	Memory Array
	Address Decoder
	Sense Amplifier

	Conclusions
	Summary
	Discussions
	Future Research

	Testing Scouting Logic-Based Computation-in-Memory Architectures
	Testing Computation-in-Memory Architectures Based on Emerging Memories
	Rebooting Computing: The Challenges for Test and Reliability
	Bibliography

