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Original Research

Hear-and-avoid for unmanned
air vehicles using convolutional
neural networks

Dirk Wijnker1, Tom van Dijk1, Mirjam Snellen2,
Guido de Croon1 and Christophe De Wagter1

Abstract

To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is

created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional

neural network is used to perform air traffic detection. Due to restrictions on flying unmanned air vehicles close to

aircraft, the data set has to be artificially produced, so the unmanned air vehicle sound is captured separately from the

aircraft sound. They are then mixed with unmanned air vehicle recordings, during which labels are given indicating

whether the mixed recording contains aircraft audio or not. The model is a convolutional neural network that uses the

features Mel frequency cepstral coefficient, spectrogram or Mel spectrogram as input. For each feature, the effect of

unmanned air vehicle/aircraft amplitude ratio, the type of labeling, the window length and the addition of third party

aircraft sound database recordings are explored. The results show that the best performance is achieved using the Mel

spectrogram feature. The performance increases when the unmanned air vehicle/aircraft amplitude ratio is decreased,

when the time window is increased or when the data set is extended with aircraft audio recordings from a third party

sound database. Although the currently presented approach has a number of false positives and false negatives that is still

too high for real-world application, this study indicates multiple paths forward that can lead to an interesting perfor-

mance. Finally, the data set is provided as open access.
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Introduction

More and more UAVs are entering the air every day,

both for professional as well as for recreational pur-

poses. Safety and regulations are subjects undergoing

intense study nowadays in the UAV industry, as UAVs

form a hazard for people, other (air) traffic, buildings,

etc. For this research, the focus is on the collisions

between UAV and manned air traffic. For example,

emergency helicopters sometimes fly low in UAV-

permitted airspace. Part of this problem can be

solved by establishing flight rules, but a backup solu-

tion based on technology is desired. Technology

becomes even more important when UAVs have to

operate fully autonomously, as required by many

future applications. A project initiated by Single

European Sky ATM Research (SESAR) that aims to

increase air traffic safety regarding to UAVs is called
percevite.a Using multiple lightweight, energy-efficient
sensors, collisions should be avoided in order to protect
UAVs and their environment. One such a sensor is a
microphone, which fulfills the task of ‘hear-and-avoid’,
meaning that it should detect and avoid air traffic by
sound. The goal of this research is to create a safer
airspace by creating this hear-and-avoid algorithm.
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The first feasibility study for hear-and-avoid has
been performed by Tijs et al.1 In that research, an
acoustic vector sensor is used to detect other flying
sound sources. de Bree and de Croon2 also used an
acoustic vector sensor in order to detect sound on-
board UAV for military purposes. However, neither
has used deep artificial neural networks to separate
aircraft and UAV sounds. Other research groups
have tried to identify the position of other UAVs
using sound recorded from a UAV. Basiri and Schill,
and Basiri et al.3–6 tried to determine the position of a
UAV in a swarm of UAVs. The transmitting UAV
sends a chirp sound in the air that has frequencies dif-
ferent than the UAV’s ego-sound, which can be picked
up quite well while flying. They also do tests with
engines of the receiving UAV turned off and the trans-
mitting UAVs not transmitting the chirp anymore.
Here too, the engine sounds of the transmitting UAV
can help localize the platform. The ‘hear-and-avoid’
algorithm can be seen as a follow-up of these
researches, and will address the identification of other
air traffic by its original sound while also having the
motors of the UAV producing sound. Harvey and
O’Young7 show that with two microphones, the detec-
tion of another UAV can be performed at such a dis-
tance that is double the distance needed to prevent a
head-on collision. Furthermore, research is performed
focusing only on the UAV sound by Marmaroli et al.8

They have created an algorithm that is able to denoise
the ego-sound of the UAV based on the knowledge
about the propeller revolutions per minute (RPM).

One of the reasons that there is not a large amount
of research performed on audio analysis for UAVs is
that there are alternatives that provide traffic informa-
tion, such as ADS-B, GPS, vision, etc. However, all
alternatives have their disadvantages and do not fully
eliminate the chance of a collision. For example, ADS-
B requires a system in an aircraft that is not always
present or turned on. For vision-based sense-and-
avoid, its images can be disturbed due to speed, rain,
fog, darkness, objects, etc. Sound, on the other hand, is
inevitable for motorized aircraft, so it is a promising
method. Moreover, microphones are lightweight, easy
to use, omnidirectional and only weakly influenced by
weather. The challenge that sound brings in this appli-
cation is that many different sounds are present, such
as the UAV ego-noise, wind, air traffic, ground traffic
sounds and environmental sounds.

In this research, the following situation is studied: a
UAV, which is carrying a single microphone, flies
around and should detect incoming or passing aircraft
based on sound. The detection of aircraft will be real-
ized by means of a convolutional neural network
(CNN). The performance of CNN on sound classifica-
tion was found to be promising in McLoughlin et al.,

Phan et al.9,10 and Zhang et al.11 Detections could be
used to warn a human operator or to simply land when
other (manned) air traffic is present. The required data-
set, which consists of audio recordings taken on a UAV
including aircraft sound, did not exist and was artifi-
cially created. It is made open-source.12 The CNN uses
three audio features as input: Mel frequency cepstral
coefficients (MFCCs), spectrograms and Mel spectro-
grams. Four variables are changed in the data sets to
discover their influence: the window length, the ampli-
tude ratio UAV/aircraft, the type of labeling and the
use of third party database recordings.

The remainder of the article is structured as follows.
The generation of the data set is explained in Section
Audio acquisition, including how the individual sound
recordings are obtained, how those are processed and
mixed to recordings that include both UAV and air-
craft sound. Secondly, the features and the model are
described in Section Aircraft audio event recognition.
The results for each of the models are shown in Section
Results and discussed in Section Discussion.

Audio acquisition

A database that contains audio recordings, recorded on
UAVs, of the UAV ego-sound and closely approaching
aircraft forms the basis of any learning system. Because
it was not available, a database was created that con-
sists of (preprocessed) sound recordings (of UAVs, air-
craft and rotorcraft) and labels, which indicate whether
only UAV sound is present or UAV and aircraft sound
are present. The data set is provided open access.12

Sound recordings

The current Dutch regulations on UAV prevent the
UAV to come in the vicinity of a flying manned air-
craft. In order to still have a representative database of
UAV sounds that include passing aircraft, the UAV
sounds and aircraft sounds are recorded separately
and mixed afterwards. Three types of recordings have
been used: self-made recordings using a microphone on
a UAV, general aviation aircraft recordings using a
microphone array and aircraft recordings obtained
from a third party audio database.

Recordings of the UAV sounds. The UAV sounds are
recorded in the Cyberzoo indoor flight testing facility
of the TU Delft. An 808 micro camerab is placed under
a Parrot Bebop UAV, so that its body already blocks
part of the UAV ego-sound. Between the UAV and the
microphone, foam is used to absorb the mechanical
vibrations. During the recordings, the UAV performed
rotations and movements around its pitch, roll and yaw
axes at different speeds. After recording, the data are
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cropped to remove the silences at the beginning and at

the end. These recordings are complemented with

audio recordings from a mobile phone that filmed the

UAV from a close distance. Effectively a total of

20min of UAV recordings are used.

Recordings of general aviation flights. Since the most prob-

able group to come in contact with UAVs is general

aviation (GA) rotor- and aircraft, flyover data have

been obtained at the biggest GA airfield of the

Netherlands, Lelystad Airport, in collaboration with

the Aircraft Noise and Climate Effects (ANCE) section

of the TU Delft.
As Lelystad airport is expanding to a larger airfield,

the runway is being extended, but the new part is not in

use yet. This part of the runway is therefore a perfect

place to obtain recordings as the aircraft would fly

straight over the so-called “acoustic camera”.
The acoustic camera, designed and built by the TU

Delft13 consists of an array with eight bundles of eight

PUI AUDIO 665-POM-2735P-R microphones. The

bundles are arranged in a spiral shape for optimal

beamforming purposes. The microphones are covered

in a foam layer to decrease the noise due to wind.

Moreover, the array is covered in foam in order to

absorb ground reflections. All the bundles are con-

nected to a data acquisition box (DAQ) which samples

the data at 50 kHz and sends it to the connected com-

puter. Not only the DAQ is connected to the computer,

but also an ADS-B receiver in order to receive aircraft

position information. However, the ADS-B did not

produce useful information as none of the GA aircraft

broadcast ADS-B information. Moreover, a mobile

phone camera is placed in the center of the array to

capture the flyover on video, but these data are not

used for this research. The setup of the acoustic

camera is shown in Figure 1.

In total, 75 recordings are created, which consist of
background noise recordings and flyovers. One record-
ing sometimes consists of more than one flyover.
Effectively, 75 GA aircraft and 9 helicopter flyovers
are captured. The background noise consists of micro-
phone noise, noise due to wind, distant traffic and a
distant motor race track.

The data from every microphone are checked to
make sure it worked correctly. One of the 64 micro-
phones is faulty, so its data are not used. For this
research, only the recording of one microphone is
necessary.

Recordings obtained from a third party audio database. With
regard to creating a data set that is representative for
the possible air traffic sounds that a UAV could
encounter, it had to consist of more than only flyover
data. For example, other background noise could influ-
ence the detection performance. Therefore, also a (free)
audio databasec is consulted to obtain helicopter and
(propeller) aircraft sounds. Only the sound samples
that are of sufficient quality and which are not mixed
with (too much) other background noise are selected
manually.

Data preprocessing

All the separate recordings are manually checked
before adding them together. For both the UAV
recordings and the third party database aircraft record-
ings, only the in-flight part is kept. The recordings
obtained at Lelystad airport are used entirely, and we
manually labelled every second of data in the record-
ing, indicating whether it consists of only background
noise or includes aircraft sound. The recordings from
Lelystad Airport include noise introduced by the
microphones and the wind. A first-order Butterworth
low-pass filter is used to remove the high-frequency
noise. Most of the time, the aircraft sound information
is in the frequency region lower than 100Hz. Only
during a flyover aircraft, sound information comes
above this value. In order to capture the higher fre-
quency content during a flyover but also to remove
much of the wind noise during the rest of the time,
the cut-off frequency is set on 2.5 kHz.

All the recordings are resampled to a sample rate of
8 kHz as there is no important information present
above the Nyquist frequency of 4 kHz and it decreases
the size of the data set significantly, which shortens the
computational time. Secondly, the sound recordings
are normalized by scaling the amplitude between �1
and 1, so that the amplitude of two recordings is sim-
ilar. Before mixing aircraft and UAV sounds, data aug-
mentation is applied to all the separate aircraft and
UAV recordings in order to increase the size of the

Figure 1. The acoustic camera on the runway of Lelystad
Airport.
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data set. Three types of data augmentation are applied:
addition of white noise, increase in pitch and decrease
in pitch. The white noise is a randomly generated
Gaussian distribution with mean 0 and a variance of
0.005. The pitch is increased and decreased by two
semitones on the 12-tone. An increase of two semitones
relates to 12=2

ffiffiffi
2

p �1:12 times the original frequency.
After augmentation, the data set is four times its orig-
inal size.

Mixing the recordings

In order to get sound samples that include both aircraft
and UAV sound, the following mixing procedure is
used. First, the whole data set is split up in a test set
and in a training set. All the augmented versions of a
sound sample are always in the same set as their orig-
inal sound sample to ensure that the two sets are
uncorrelated.

Secondly, each recording from Lelystad airport is
combined with a randomly selected UAV recording
of the same set. Mixing consists of adding a segment
of the Lelystad airport sound sample, which has a
random length, to one of the UAV recordings on a
random starting position. The mixed sample therefore
never consists of only aircraft sound. The total length
of each mixed sample is equal to the length of the UAV
recording, which is different for each recording.

Mixing the third party database recordings is done
slightly differently than the method described for the
Lelystad recordings because the third party database
recordings contain aircraft sound 100% of the time.
The difference between the two mixing methods is
that not only a part of the recording is added to the
UAV sound sample, but the whole recording is added
instead (at a random starting position).

The detection model in this paper requires the inputs
to be of equal length (more on this in Section Model).
As this is not the case for the combined samples, the
third step is to cut the combined samples to equal
lengths. To maximize the amount of data in the sets,
the cutting length is set to 51 , which is equal to the
length of the shortest combined sound sample.

The amplitude ratio when mixing the UAV and air-
craft sound is not always 1:1. In this work, four UAV/
aircraft amplitude ratios will be used, namely 0:1
(which means no UAV sound), 1:1 (equal amplitudes),
1:4 (aircraft sound amplitude is four times larger) and
1:8 (aircraft sound amplitude is eight times larger).
Most of the time, a ratio of 1:4 is used. This ratio is
obtained as follows. Assuming the average sound pres-
sure level (SPL) of a UAV at 1 m distance is 76 dBd and
that of an aircraft at 300 m distance is 88 dB,e the
difference between the SPLs of the two sounds is
12 dB. Equation (1) shows how the SPL is calculated

from the pressure p1 (which is the amplitude in the

waveform) of a sound and a reference pressure p0.

Taking the amplitude of the UAV waveform as refer-

ence pressure and the aircraft waveform as p1, an SPL

of 12 is obtained when the aircraft waveform is four

times larger. If the ratio 1:4 is corresponding to an

airplane on 300 m distance, 1:1 corresponds to a dis-

tance of 1200 m and 1:8 to a distance of 150 m, follow-

ing equation (2). In this equation, r2 is the distance of

interest, r1 is the original distance, SPL1 is the SPL at r1
and SPL2 is the SPL at r2.

SPL ¼ 20log
p1
p0

(1)

r2 ¼ r1 � 10
jSPL1�SPL2 j

20 (2)

Labels

Each second of a mixed sample is given a binary label,

indicating whether there is other aircraft sound present

(1) or not (0). The recordings from Lelystad airport are

labeled manually before mixing. There are two types of

labeling, called nearby detection labeling and distant

detection labeling. Nearby detection labeling is partly

based on listening to the sound, and partly on looking

at the spectrogram. The spectrogram, which is shown

in Figure 2 and elaborated on in Spectrogram, shows

the amount of frequency content over time. Nearby

detection labeling gives label 1 when a peak is visible

in the spectrogram. By ear this is noticeable as more

high frequency content is heard.

Figure 2. Spectrogram of a flyover recording. The exact flyover
is between 100 and 110 s, which can be recognized by a yellow
peak and a Doppler shift around 100Hz. Also before and after
the peak, the aircraft sound is present, which is visible by the
horizontal line around 100Hz.
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Distant detection labeling is purely based on hear-
ing. The frames in which a human is able to separate
noise from aircraft sounds are labeled 1. This time it
cannot be based on the spectrogram as the aircraft
sound is either not visible on the spectrogram (when
it is blended in too much with the background noise) or
it is visible (as a line on a single frequency caused by the
propeller’s rotational speed) but the background noise
is louder than the aircraft sound. An example of the
latter is shown in Figure 3, at which the horizontal line
around 100Hz is also present when no label is given.

The time instances that are not labeled one are
labeled zero, so also the background noise from the
Lelystad recordings is given the same label as when
there is no other aircraft sound present. In Figure 3,
the areas in the spectrogram that are labeled as 1 are
indicated in red for nearby detection labeling and green
for distant detection labeling.

For the third party sound database, the whole air-
craft recording is always labeled as a one, as each of the
sound samples is selected on only having aircraft
sounds. Again, all the time instances in the mixed
recording that are not one are labeled zero.

Aircraft audio event recognition

The aircraft sound will be detected by a framework that
exists of a feature extractor and a classifier. The fea-
tures capture important sound information and reduce
the dimensionality of the data. They are the inputs
for the classifier. Thereafter, the classifier determines
whether the sound sample contains aircraft sound
or not.

Feature extraction

Three features are extracted from the combined sound
samples using Python library Librosa.14 First there are

the Mel Frequency Cepstral Coefficients (MFCCs)15

which are chosen because of their popularity in one
of the biggest domains in machine hearing, automatic
speech recognition (ASR). The two other features, the
spectrogram and Mel spectrogram, are visual represen-
tations of the sound samples. Content-based analysis of
images is already quite developed,16 and therefore the
image of a sound might be a good starting point.

For every feature, each frame in the time dimension
has a length of 1 s. One second is a rather large frame
but it chosen to reduce in dimensionality. The window
moves over the sound sample with a step of 1 s. All the
sound samples are 51 se long, and thus from each
sound sample, 51 separate frames are obtained in the
time dimension.

MFCC

The cepstrum is a domain which represents the rate of
change in multiple frequency bands. MFCCs are the
coefficients of which the cepstrum is composed. It has
the ability to separate convoluted signals in the time
domain.f This domain is therefore often used in speech
recognition, to separate the vocal pitch and the vocal
tract. The coefficients are obtained by taking the loga-
rithm of the amplitude spectrum, converting this to the
Mel scale and taking the Discrete Cosine Transform
(DCT). The Mel scale, which is expressed as a function
of frequency (f) in equation (3), is a scale that approx-
imates the human perception of frequency. This scale
emphasizes the low frequencies (<1 kHz), which is also
the frequency range in which most of the UAV/aircraft
sound information is present. The full transformation
from time domain signal to MFCC is shown in equa-
tion (4)17

MðfÞ ¼ 2595log 1þ f

700

� �
(3)

MFCCðdÞ ¼
XK
k¼1

logXkð Þcos d k� 1

2

� �
p
k

� �

for d ¼ 0; 1; . . . ;D

(4)

where Xk is the discrete Fourier transform (DFT)
obtained in equation (5) of which the frequency belong-
ing to each k is warped to the Mel scale by equation (3).
D is the total number of coefficients and N is the
number of data point in the time frame. The number
of coefficients used in this research is 20.

Xk ¼
XN�1

n¼0

Xne
�2pi

N kn for k ¼ 1; 2; . . . ;N (5)

Figure 3. Spectrogram showing nearby detection labeling (red)
and distant detection labeling (green).
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Spectrogram

Spectrograms are visual representations of the energy

per frequency plotted against time, of which the Mel

spectrogram uses the Mel scale of equation (3) on the

frequency axis. A typical flyover spectrogram (without

UAV sound) is shown in Figure 2. In this figure, the

point where the aircraft is passing the array is between

100 and 110 s, which is visible with the large yellow

peak and a Doppler shift (the sigmoid-shaped line

around 1 kHz). It also shows that when the aircraft is

further away, it lacks in high frequency content (due to

atmospheric attenuation). That means most of the time

only the aircraft’s low frequency content is heard by the

UAV in combination with low frequency noise.
The spectrograms are calculated following equation

(6), which is the magnitude to the power p of the short-

time Fourier transform (STFT). Usually the power

spectral density (PSD) is chosen, for which p¼ 2. It

uses a window function w½n�, in this case the Hann

window of 1 s, of which m is the index of the position

in the window function with length N, discrete frequen-

cy k, signal x½n� at time n

Spectrogram ¼
X1

n¼�1
x½n�w½n�m�e�i2pkn

N

�����
�����
p

(6)

Model

The previously described features are the input for a

deep artificial neural network: the convolutional neural

network (CNN). It has shown best performance for

sound event recognition tasks in McLoughlin et al.,

Phan et al.9,10 and Zhang et al.11 and.11 The basic

CNN used in this research is shown in Figure 4. The

network is created with the Python libraries Keras18

and Tensorflow.19

Even though the features consist of 51 s of UAV/

aircraft sound, the input for the CNN is a smaller

time window which slides over the time axis. The

smaller time window is used as otherwise the detection

output of a frame could be dependent on data from

later frames, due to the fully connected layer.

Multiple window lengths are used, as shown in

Results. In the basis, however, the window size is 3 s.

This window slides over the feature’s time axis with a

step of 1 s.
The first layers of the CNN are convolutional layers.

There are two subsequent sets of layers, each consisting

of two convolutional layers, followed by a max pooling

layer. The convolutional layers use the rectified linear

unit (ReLU) as activation function and it applies zero

padding to the input. After the two sets, the output is

flattened in order to be able to connect it with the

output layer, a fully connected layer. For the output,

a sigmoid activation function is used, which scales the

output (as a float) between 0 and 1. The binary dis-

crimination threshold determines whether this output

becomes a 1 or a 0, so whether an aircraft is present or

not, respectively. The network is based on Zhang

et al.11 and its parameters are modified based on pre-

liminary test results.
Training the network is performed by means of a

binary cross-entropy loss function and the Adam opti-

mizer Kingma and Ba.20 The Adam optimizer param-

eters are the same as in the original paper, so a learning

rate of 0.001, b1 ¼ 0:9; b2 ¼ 0:999; � ¼ 10�8, and no

decay. After each pooling layer, dropout is used in

order to prevent overfitting of the training data. The

parameters for the CNN are shown in Table 1.

Results

Each feature is combined with the CNN, so in total

three models are tested. They are trained and tested

on multiple data sets, which are listed in Table 2. To

check the influence of certain parameters in the data set

or in the model, four parameters are altered during the

runs: the window length, the labeling type, the ratio in

amplitude between the UAV and aircraft sound and

whether third party database recordings and Lelystad

airport recordings are used or only the Lelystad airport

recordings.
There is one basis run, for which the window length

is 3 s, the labeling is nearby detection labeling, the

UAV/aircraft ratio is 1:4 and there are no third party

Figure 4. Architecture of the CNN. The input is a moving time
window over the spectrogram, Mel spectrogram or MFCC. The
output a binary value indicating whether aircraft sound is present
or not.

Table 1. Model parameters of the CNN from Figure 4.

Parameter CNN

Convolution units first set 32

Convolution units second set 64

Kernel size 3� 3

Pooling size 2� 2

Dropout probability 1 0.25

Dropout probability 2 0.5

6 International Journal of Micro Air Vehicles



database recordings involved. For all the other runs,

only one variable of the basis run is changed each time.
The window length is either 3, 10, 15 or 20 s. The

Lelystad airport recordings are labeled manually, in

two manners, as explained in Section Labels. For dis-

tant detection labeling, the training is performed with
distant detection labeling and the testing is performed

with nearby detection labeling. The idea behind this

method is that the model could learn aircraft sound

when it is not so obviously present, so that detection
when the aircraft is obviously present is outstanding.

The amplitude ratio between the UAV and the aircraft

is tested when no UAV sound is present, and for the

ratios 1:1, 1:4 and 1:8. Lastly, the third party database
sounds are either added to the data set or omitted.

From here on, each specific run is indicated by the

number of the run given in Table 3. The performance

of the models is compared for each of the variables
(window length, label type, etc.). This comparison is

based on the receiver operating characteristic (ROC)

curve. The ROC curve shows the true positive rate

(TPR) against the false positive rate (FPR) for all pos-
sible binary discrimination thresholds. The area under

the curve (AUC) is a measure of accuracy of the binary

classifier. In this research specifically, especially the

region of low FPR is important, as it shows how
many times the UAV would falsely decide to warn

the operator or descend. For each point on the ROC

curve, the desirable discrimination threshold can be

extracted, which determines whether the output from

the model is classified with label 1 or label 0.

Influence of the UAV/aircraft ratio

Runs 1, 2, 3 and 4 are simultaneously plotted for the

CNNs in Figure 5. In general, the best performance is

achieved for the cases where there is no UAV sound
present (run 1). If the UAV’s ego-sound is added to the

aircraft sound with an amplitude ratio of 1:1 (run 2),

the performance is the worst in all cases. The figures

show that amplifying the aircraft sound increases

performance; however, there is little increase between

the ratio 1:4 and 1:8. The expected result is that the less

UAV content is present, the more the performance

would converge to the result of run 1. Only for the

MFCC and Mel spectrogram, this trend is visible in

the lower FPR region. Looking at the AUC, the

MFCC and the spectrogram show no convergence to

the ratio of 0:1. In the case of the Mel spectrogram,

there is only a difference visible between the ratio of 1:1

and the others.

Influence of the third party database recordings

In the basis run, only the recordings from Lelystad

airport are used. This means that all the recordings

have (fairly) the same background noise and types of

airplanes and they use the same recording equipment.

In order to check how much the models rely on these

characteristics, they are trained and tested with the

third party database recordings as well for this run.
Figure 6 shows that for all the models, the addition

of the third party database recordings improves the

performance of the model. Only for the very low

FPR (<0.01), the basis run performs better for the

MFCC-CNN and the Mel spectrogram-CNN.

Influence of labeling

The third type of modification made in the data set

relates to which labels are used for training. For all

cases, the nearby detection labeling is used for testing.

For training, however, one run uses distant detection

labeling and one run uses nearby detection labeling.

When an aircraft is approaching, the lower frequencies

of its generated sound reach the ear first. This low fre-

quency content is in the same range as the background

noise. It is therefore expected that for distant detection

labeling a better separation is found in the model

between drone and aircraft and therefore would also

better perform for the nearby cases. Figure 7, however,

does not prove this hypothesis. This time, for all

Table 2. Overview of the variables that are changed for each
run, including their corresponding values and the values of the
standard case, the basis run.

Variables Basis values Variations

UAV/Aircraft ratio 1:4 0:1 1:1 1:8

Third party

database used

No Yes

Labeling type Nearby

detection

Labeling

Distant

detection

labeling

Window length (s) 3 10 15 20

Table 3. The number of each run with their corresponding
changed variable and the corresponding value.

Run # Variation

1 UAV/Aircraft ratio: 0:1

2 UAV/Aircraft ratio: 1:1

3 Basis run

4 UAV/Aircraft ratio: 1:8

5 Database used: Yes

6 Distant detection labeling

7 Window length: 10

8 Window length: 15

9 Window length: 20
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features, the performance deteriorates when distant

detection labeling is used.

Influence of the window length

The window length of the CNN determines how many

seconds of history are used to determine whether the

sound contains aircraft sound or only UAV sound. The

more history the sound contains, the better the devel-

opment of (possible) aircraft sound can be captured. It

is therefore expected that with a larger window length,

a better performance is achieved. However, eventually

the performance of longer time windows are expected

to converge as history from long ago does not give

useful information in detecting aircraft sound in the

present.
This hypothesis is confirmed for the CNNs

using Mel spectrogram, spectrogram and MFCC in

Figure 8. Improvement in AUC between a 3-s

window and a 10-s window is shown in each of the

subfigures. For window lengths of more than 10 s,

the AUC hardly changes. For the spectrogram-CNN,

there is a clear difference in the low FPR region

between the 10 and 15 s.

Comparison of the features

So far, the results are only shown per feature. In order

to show which feature works best, the features have

been compared for the basis run in Figure 9. The

results show that the Mel spectrogram performs best,

followed by the MFCC. The spectrogram performs

worst compared to the other two.
Even though the results are only set out for one run,

this is true in general for the other runs. For the runs

with a UAV/aircraft ratio of 0:1, 1:1, and distant detec-

tion labeling (run 1, 2 and 6), the MFCC is equally

accurate as the Mel spectrogram. For the runs with

an increase window size (run 7,8 and 9), the spectro-

gram is slightly better than the MFCC.
Moreover, a ROC curve with the binary discrimina-

tion threshold based on the pure energy of the signal is

shown in Figure 9. This curve is used to see whether the

model just checks the amount of energy in the signal or

if it uses more elaborate features. The AUC gives away

(a) (b)

(c)

Figure 5. ROC curves showing the influence of the UAV/aircraft ratio for each feature. Best accuracy is achieved for the ratio 0:1
(no UAV sound present). The more UAV content is added, the worse the performance. (a) MFCC-CNN for different UAV/aircraft
amplitude ratios. (b) Mel spectrogram-CNN for different UAV/aircraft amplitude ratios. (c) Spectrogram-CNN for different UAV/
aircraft amplitude ratios.
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directly that the performance is significantly worse than

the CNNs, so the model does not base its outputs

simply on the amount of energy in the signal.

Especially in the low FPR region (<0.1), the TPR is

significantly lower than for the CNNs.

Visualization of the output

In order to clarify the output of the model, one of the

runs is used to visualize the outputs. In Figure 10, the

spectrogram of one sample of the basis run test set is

shown, along with the expected label (in red), the

output of the network (in black) and the binary dis-

crimination threshold belonging to an FPR of 0.1

(in purple). This example shows a decent detection

result in which the results in the time window for

which the label is 1 (between 28 and 40 s) are correctly

above the threshold (except for the first second). The

rest of the output is always under the threshold and

therefore not detected as an aircraft.
The correctness of the result of Figure 10,

however, is not observed for all cases of the test set.

False positives and false negatives are appearing as

well, such as shown in Figure 11. In Figure 11, the

time span between 30 and 45 s should be given a label

of 1, but the model output is still under the threshold,

except for 1 s. Also, the point at second 3 is just above

the threshold, whereas it should be labeled 0. On the

other hand, also for the human eye, the presence of an

aircraft is better visible in the spectrogram of Figure 10

than in the spectrogram of Figure 11, due to the

Doppler shift and the increase in energy (which can

be seen by the increase of the yellow content) in

Figure 10.
In order to confirm that the model can recognize

closest point of approach (CPA) such as shown in the

spectrogram, all the audio samples of the test set of the

basis run are centered around the CPA (if any). For

each second in the range of 10 s before the CPA and

10 s after the CPA, the mean values and standard devi-

ation of the model output are taken. Those values are

shown in Figure 12. Each dot represents the value of

the mean, each bar the standard deviation from the

mean. Figure 12 shows that at the CPA, the output

(a) (b)

(c)

Figure 6. ROC curves showing the influence of the third party database recordings for each of the features. For all features, the
performance increases using the third party database recordings. (a) MFCC-CNN with and without third party database recordings.
(b) Mel spectrogram-CNN with and without third party database recordings. (c) Spectrogram-CNN with and without third party
database recordings.
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value is usually the highest. Furthermore, the larger the

time distance from the CPA, the lower the mean and

standard deviation. There is, however, relatively much

spread in the output of the network.

Precision and recall

The AUC gives a good overall indication for the accu-

racy of the model. However, in order to see how well

the model performs per point on the ROC curve, pre-

cision and recall are used. Precision is defined in equa-

tion (7), in which FP is the number of false positives

and TP is the number of true positives. For recall, also

the false negatives FN are used, such as shown in equa-

tion (8)

Precision ¼ TP

TPþ FP
(7)

Recall ¼ TP

TPþ FN
(8)

In this research, an important value is 1� recall for
the label 0. This value shows how many false positives

are present, so how often the UAV would falsely per-

form an avoidance maneuver. The recall for the label 1

is the second most important. It shows how well the

aircraft is detected when it is present. The reason that it

is less important than the 1� recall for label 0 is

because this value does not say when the false negatives

appear. It is expected that the closer the aircraft gets,

the better the detection performance. Figure 12 shows

that this is actually the case for this model. So if the

model does not detect the aircraft, it is probably not

too close, so it would not directly lead to a critical

situation. Precision shows how many of the predicted

labels are relevant, which is less important for this

application than the recall.
An example of the precision and recall and the con-

fusion matrix for the Mel spectrogram-CNN with the

window length 20 are shown in Tables 4 and 5, respec-

tively. As a very low FPR beneficial, but still aircraft

should detected, the point on the curve for which the

(a) (b)

(c)

Figure 7. ROC curves showing the influence of labeling type for each of the feature. Each run is tested with nearby detection
labeling. One run is using the nearby detection labeling for training as well and the other one uses the distant detection labeling during
training. (a) MFCC-CNN comparing the performance for different label types. (b) Mel spectrogram-CNN comparing the performance
for different label types. (c) Spectrogram-CNN comparing the performance for different label types.
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(a) (b)

(c)

Figure 8. ROC curves showing the influence of the window lengths for each feature. In general, the increase in window length
increases the performance, but it converges to the performance of a window length of 20 s. (a) MFCC-CNN for different window
lengths. (b) Mel spectrogram-CNN for different window lengths. (c) Spectrogram-CNN for different window lengths.

Figure 9. ROC curves of each feature for the basis run.
Also the energy of the signal is used as an input for the ROC
curve to show that the model does not base its output only
on the energy in the signal. The Mel spectrogram is the best
performing feature, MFCC second best, the spectrogram is
the worst feature and energy performs significantly worse than
all features.

Figure 10. Correct classification example of a sound sample. In
red is the expected label, in black the given output and in purple
the discrimination threshold. The left axis belongs to the spec-
trogram only, the right axis belongs to the output, the label and
the threshold lines. As the output is always under the purple line
when the label is 0 and above the purple line when the label is 1
(except for 1 s), this sample is accurately classified.
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ROC curve just separates from the Y-axis is chosen
(which is around an FPR of 0.01 and a TPR of 0.7).

Discussion

The results shown in Section Results are further dis-
cussed in this section. Starting with the different UAV/
aircraft amplitude ratios, Figure 5 shows in the lower
FPR region an expected trend, which is that the lower
the UAV amplitude is compared to the aircraft ampli-
tude, the better the aircraft is detected. That means, in
order to use this model for real-world application, it is
best to diminish the UAV’s ego-sound as much as pos-
sible, for example by means of the method of
Marmaroli et al.8

The addition of third party database recordings also
improves the performance, such as shown in Figure 6.
Those recordings consist of different background noise,
which could be easier for the model to distinguish from
the typical background noise from the Lelystad record-
ings. The basis run performed better in the very low
FPR (<0.01), but the corresponding TPR is too low to
be a good detector.

The fact that the different type of labeling performs
worse, which is shown in Figure 7, is unexpected. The
labels that are one for the distant detection labeling
consist of the ones from nearby detection labeling
plus some extra ones before and after. In other
words, the nearby detection labels are a part of the
distant detection labels. As the distant detection label-
ing includes the nearby detection labels, it is expected
that training with distant detection labeling at least
performs the same as training with nearby detection
labeling. However, the model performs worse
(or equal, for any FPR lower than 0.05) which means
that there is no benefit in using the distant detection
labeling. The consequence of using nearby detection
labeling over distant detection labeling is that the air-
craft is closer to the UAV when it is detected.

The trends shown in Figure 8, at which the window
length is increased, are not unexpected. The longer the
window length, the more information the model uses to
make a decision and therefore the performance is
better. This only works up to a certain amount since
sound information too far in the past can have nothing
to do with the present sound. Based on the presented
experiments, a window length between 15 and 20 s
should be used to be as accurate as possible.
Choosing a value above 20 s will not increase the
performance and makes it computationally more
expensive. Of course, also other forms of memory can
be explored, such as long short term memory 21 or
GRU.22

In the ideal situation, no false positives or false
negatives are present in the output of the detector.

Figure 11. Partly wrong classification example of a sound
sample. In red is the expected label, in black the given output and
in purple the discrimination threshold. The left axis belongs to
the spectrogram only, the right axis belongs to the output, the
label and the threshold lines. A false positive is shown at 3 s and
false negatives between 30 and 45 s (except second 40).

Figure 12. Means (dots) and standard deviations (bars) per
time distance from the center of a CPA in the spectrogram. It
shows that the closer the aircraft is, the better the detection
performance.

Table 4. Precision and recall of the Mel spectrogram-CNN
using window length 20.

Precision Recall

0 0.97 0.99

1 0.85 0.70

Table 5. Confusion matrix of the Mel spectrogram-CNN using
window length 20.

Predicted class

Actual class 0 1

0 2823 42

1 101 234
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Since the ROC curves in Figures 5 to 8 never have an
AUC of 1, this is not possible. Therefore, we aim to
have as little false positives and false negatives. In
Tables 4 and 5, a limit of one false positive in 100 s is
set. If after a false positive a warning is send to the
operator, once in 100 s he/she has to check whether
there is really other air traffic present, which is not
increasing the workload too much and therefore once
in a 100 s is a reasonable limit. If the UAV has to
descend (or even land) after a detection, a false positive
once in a 100 s is already a lot. So for those cases, a
filter should be applied which checks whether multiple
positive detections are found in a short-time frame. The
percentage of missed detections corresponding to this
false positive rate is 30%. Luckily, Figure 12 shows
that the closer the aircraft is, the better the accuracy,
so the missed detections will mostly appear in the early
stages of the detection.

Alongside the conclusions drawn from the results,
there are a few general comments to be made concern-
ing the research method.

Firstly, the data set should be extended. The record-
ings at Lelystad12 were performed on a single day and
single location. This can limit the types of background
noise contained in the data and can be of influence to
the results. The data set used in the basis case (run 3)
only contains the recordings from Lelystad airport.
This data set has in total 84 flyovers. The data augmen-
tation increases the data set times four, so 336 flyovers
are available for the data set. This is considered a rel-
atively small data set for machine learning purposes
such as this research. For comparison, ImageNet,g a
famous data set for image recognition, has 15 million
examples in total. In addition, the ratio of the data set
that includes aircraft sound and that only includes
background noise is not 50/50, due to the fact that
the cut-outs from the recordings are random. The
ratio aircraft/background in this data set is approxi-
mately 20/80. The problem with this ratio is that the
model could classify all the sound samples as back-
ground noise and still would have an accuracy of
80%. Another comment about the data set is that it
is artificially mixed, so the UAV and aircraft sound are
individually recorded. In the spectrogram, it is visible
where the aircraft sound is added to the UAV sound by
vertical lines at the stop and start. An example is shown
in Figure 13, at which the aircraft recording part stops
at 30 s. In order to avoid this effect, recordings should
be taken on a UAV, which flies close to flying aircraft.

So far, the only different scale used is the Mel scale.
Two features use this scale which mimics the way
humans perceive frequency. The comparison of the
Mel spectrogram and the spectrogram in Figure 9
shows that stretching the lower frequencies works
well in combination with the CNN. One idea is to

make a scale that stretches the lower frequencies even

more. As most of the distant aircraft sound lies in the
low frequency region, further stretching the lower fre-
quencies could show more important low frequency

sound information for the CNN.
What is more, is that there is not much difference in

type of background noise. Only two types of micro-
phones are used, the 808 micro camera microphone

and the microphone from the array. Different micro-
phones could show different noise content. Further
research in the quality of the microphones is

demanded. Also, the background noise is pretty con-
stant during the recordings, whereas on a flying UAV
this could differ considerably. Other background noise,

such as cars, trains, lawnmowers, etc., is not added.
Not only is there one composition of background

noise, but also only one type of UAV sound has
been used. In order to make a model for versatile appli-

cations, multiple UAV sounds should be included in
the data set. If the model is applied to only one
UAV, it is useful to use its specific model in training

the detection network. In this process it is also impor-
tant to check whether the ego-noise of the UAV is in
the same order of loudness as the Parrot Bebop used in

this research.
The fixed microphone array on the runway with

overflying aircraft, also limits the types of geometries
in the dataset. In a practical scenario, the UAV could

be at different position with respect to the aircraft.
Last but not least, the types of aircraft to detect are

limited. Differentiation between jets, propeller aircraft,
helicopters or ground vehicles can be of great impor-
tance to the UAV in order to decide upon the best

course of action.

Figure 13. Spectrogram of a mix of UAV and aircraft sound.
The end of the aircraft sound recording is visible on the
spectrogram at 30 s by the vertical line (which is the sudden
decrease in energy).
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Conclusion

Detection of air traffic sounds on a UAV could
increase the safety of the airspace. This paper builds
on existing sound features and classification methods,
but this time applied to combine UAV and aircraft
sound.

The three features used are the MFCC, spectro-
gram and Mel spectrogram, which are the input to a
CNN classifier. The best performance of the model is
obtained using the Mel spectrogram, which moves
over the sound recording with a 20-s window
length. The detection performance increases when
the aircraft is closer to the UAV. Longer time win-
dows give better performance up until a certain
window length, but also decrease the potential reac-
tion time for an avoidance maneuver. Secondly, the
model works best if as little UAV sound is present as
possible. Thirdly, the current method still gives too
many false positives for real-world application.
Improvements may be expected from a better filtering
over time (ignoring solitary peaks of the network’s
output), a more extensive data set, and potentially
additional information such as the commanded
RPMs of the UAV’s propeller(s). Finally, a more
realistic data set should include sound recordings of
aircraft taken from a (moving) UAV.
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Notes

a. www.percevite.org
b. http://www.chucklohr.com/808/
c. https://freesound.org/
d. https://www.youtube.com/watch?v=uprXhH6-FNI
e. http://airportnoiselaw.org/dblevels.html
f. http://research.cs.tamu.edu/prism/lectures/sp/l9.pdf
g. http://www.image-net.org/
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