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Abstract
Modern mobile networks must adapt to rapidly changing traffic
patterns and increasing user demands. A key challenge is under-
standing where user traffic terminates and how these destinations
vary over time. This thesis addresses this challenge by introducing
an open-source, modular analysis framework that analyzes pas-
sive Internet traffic traces, enriches them with geolocation and
organizational metadata, and infers latency stability and routing
dynamics, in order to characterize the infrastructures that terminate
user traffic and assess their performance and reliability over time.
The results show a long-term shift towards content-centric traffic,
highlight geographic and temporal variations in performance, and
demonstrate that content networks typically offer greater stability
than enterprise or research destinations. These findings support
adaptive traffic management strategies in 5G and future 6G net-
works.

1 Introduction
Next-generation mobile networks, from 5G evolving towards 6G,
are transforming communication infrastructure design and opera-
tion. Traditional static resource provisioning, specifically dimen-
sioning networks for peak loads, leads to inefficiencies during off-
peak periods and struggles to accommodate the exponential growth
in data demand and new application requirements. Recent industry
forecasts underscore this trend: global mobile data traffic is pro-
jected to reach about 370 exabytes per month by 2030, growing
at a compound annual growth rate (CAGR) of 25%, with 5G con-
nections comprising more than half of all mobile links and early
6G deployments on the horizon [1–3]. Emerging applications such
as immersive augmented reality (AR), autonomous vehicles, and
large-scale Internet of Things (IoT) deployments demand ultralow
latency and high throughput, pushing networks to become highly
adaptable and intelligent in how they manage resources. Meet-
ing these demands requires shifting from static provisioning to
dynamic, predictive resource management strategies informed by
accurate traffic analysis.

A crucial aspect of adaptive network management is understand-
ing where user traffic is going, namely the termination endpoints,
and how these destination patterns change over time. Previous re-
search has contributed extensively to the modeling and forecasting
of Internet traffic. Navarro-Ortiz et al. [4] provide a comprehen-
sive survey of 5G usage scenarios and traffic models, while Alawe
et al. [5] and Papagiannaki et al. [6] demonstrate how machine
learning and statistical techniques, respectively, can forecast traffic
trends. In particular, deep learning models and time series forecast-
ing have been shown to achieve low-error predictions of mobile
traffic. However, most of these studies focus on predicting aggre-
gate traffic volume and do not address where traffic is terminating.
Others, such as Candela et al. [7] and Feldmann et al. [8], have
explored spatial and temporal variations in Internet routing, in-
cluding geographic locality and the effects of global events such
as the COVID-19 pandemic. However, few studies integrate these
dimensions or resolve the fine-grained destination infrastructure
that user traffic targets.

This gap is significant: knowing which autonomous systems
(ASes), content delivery networks (CDNs), or cloud providers termi-
nate user flows, and how those patterns shift, is critical for informed,
adaptive network control. For instance, if a network operator knows
that a large fraction of traffic terminates at unstable or high-latency
endpoints, they may proactively reroute traffic or provision addi-
tional resources. Conversely, highly stable and responsive destina-
tions, such as CDN edge nodes, may be prioritized for low-latency
services. In this context, infrastructure-aware traffic characteriza-
tion becomes essential for technologies such as traffic steering,
network slicing, and predictive resource allocation.

This research investigates the following central question:

How can user traffic be characterized in terms of its
termination across various infrastructures, and what
temporal patterns can be observed in these traffic
flows?

From this broad inquiry, we derive three specific research sub-
questions (RSQs):

(1) How can the termination points of user traffic be system-
atically identified across different types of network infras-
tructure?

(2) What insights can be gained by geolocating and attributing
user traffic flows to specific content providers, CDNs, cloud
data centers, or other infrastructure categories?

(3) What temporal trends manifest in where traffic terminates,
for example, patterns linked to time-of-day, day-of-week,
or seasonal variations in dominant destinations?

In order to bridge the aforementioned gap and address the re-
search questions, we develop a reproducible methodology that com-
bines passive trafficmeasurement with external metadata to capture
the spatial and temporal characteristics of user traffic destinations.
This work contributes both technical methods and empirical in-
sights that enable infrastructure-aware traffic analysis and support
adaptive management strategies in modern mobile networks.

The key contributions of this thesis are the following:

• MANTA framework: An open-source, modular system
for infrastructure-aware traffic analysis that enriches pas-
sive flow data and integrates data-plane and control-plane
metrics to classify destinations, assess latency stability, and
quantify routing volatility using only public datasets and
tools.

• Latency KPI: A passive, privacy-preserving technique for
estimating round-trip time (RTT) from TCP timestamps,
used to derive prefix-level latency stability metrics without
injecting probe traffic.

• Control-plane KPI: A BGP-based stability assessment
that quantifies route churn, update frequency, and visibility
diversity to evaluate the reliability of traffic destinations
over time.

• Composite volatility scoring: A unified metric that inte-
grates latency variability and BGP path churn to identify
unstable prefixes and support risk-aware traffic decisions.



• Use-case-driven insights: Demonstrated applications of
infrastructure-aware metrics for traffic steering, slice place-
ment, cache replication, and SLA validation in 5G/6G net-
works.

The remainder of this paper is structured as follows: Section 2
reviews related work on traffic analysis, latency estimation, and
control-plane dynamics. Section 3 presents the methodology. Sec-
tion 4 outlines the core analytical contributions and how they ad-
dress the defined research questions. Section 5 describes the ex-
perimental setup and summarizes key results. Section 6 discusses
ethical and responsible research considerations. Section 7 reflects
on the broader implications of the findings, highlights limitations,
and suggests potential extensions and directions for future work.
Finally, Section 8 concludes the thesis.

2 Related work
Effective solutions for adaptive, predictive traffic management re-
quire both a solid understanding of prior research and recognition
of open gaps. A range of studies have addressed Internet trafficmod-
eling, forecasting, and spatial analysis, often with promising results.
However, most lack a unified, infrastructure-aware perspective that
can directly inform operational decisions. Here, we review existing
work on traffic prediction, spatial attribution, and measurement
methodologies, emphasizing their relation to our goals.

Traffic modeling and prediction. A substantial body of work
focuses on modeling traffic demand and forecasting future load.
Early efforts by Papagiannaki et al. [6] applied statistical models
(e.g., ARIMA) to predict long-term backbone traffic trends. More
recent work has explored fine-grained, dynamic predictions suit-
able for mobile networks. Alawe et al. [5] used machine learning
to forecast traffic in a 5G core network, demonstrating improved
accuracy and scalability. Similarly, Kochetkova et al. [9] showed
that classical time-series models (seasonal ARIMA, Holt-Winters)
can achieve low error rates for short-term (hour-ahead) 5G traffic
forecasting. Deep learning approaches have also shown promising
results: Aouedi et al. [10] provide a comprehensive survey of RNN-,
CNN-, and GNN-based methods for next-generation traffic forecast-
ing. These studies confirm that accurate forecasting is crucial for
enabling proactive resource management in 5G/6G systems. How-
ever, they predominantly focus on predicting aggregate volume
and do not resolve traffic endpoints or infrastructure types.

Spatial and infrastructure-aware traffic analysis. Under-
standing where traffic flows terminate, i.e., the spatial distribution
of destinations and the nature of those endpoints, is increasingly
important. Candela et al. [7] conducted a worldwide study on the
geographic locality of Internet routes, revealing performance im-
plications of local vs. distant routing. Feldmann et al. [8] examined
pandemic-induced changes in traffic patterns, showing significant
shifts in application usage and diurnal trends. Bajpai et al. [11]
performed a longitudinal analysis of the MAWI backbone dataset,
documenting decade-long changes in traffic composition, such as
increased HTTPS and VPN traffic. These works underscore the
value of passive datasets (e.g., CAIDA [12] and MAWI [13]) for
understanding traffic evolution and performance. However, few
studies integrate destination classification, control-plane behavior,

and temporal variability into a single analytic framework, a gap
our approach addresses.

Adaptive networking and control-plane insight. Recent re-
search has begun to bridge traffic analysis with adaptive network
control. Emerging frameworks, particularly for 5G/6G, emphasize
dynamic resource allocation based on predicted demand. Network
slicing, for instance, enables virtualized network instances that
adapt to traffic forecasts. Surveys by GSMA [3], Cisco [2], and Er-
icsson [1] emphasize predictive analytics as a core component of
future mobile infrastructure. Cui et al. [14] envision AI-driven 6G
network management systems that continuously optimize based
on real-time traffic signals. Yet, these visions often overlook desti-
nation specificity, where traffic is going, and how reliably it gets
there.

Moreover, many prior efforts treat control-plane and data-plane
measurements in isolation. Our work instead ties BGP instability
metrics (e.g., path churn, AS path diversity) to observed traffic des-
tinations. This is motivated by recent studies such as Darwich et
al. [15], who report that traffic-engineering events account for 39%
of BGP updates and nearly 44% of routing convergence time, demon-
strating how dynamic routing behavior can impact performance.
Incorporating this control-plane visibility into traffic engineering
enables more intelligent decisions, such as avoiding unstable paths
or deprioritizing volatile prefixes.

Summary. Prior research provides a strong foundation for traf-
fic forecasting and spatial analysis. However, few studies offer an
integrated view linking when, where, and how traffic terminates
across infrastructure. Our work fills this gap with a reproducible
methodology that incorporates passive RTT, BGP stability, and
infrastructure-level classification to inform adaptive management
in future networks.

3 Methodology
This section presents the methodological foundation of this study,
structured around the MANTA framework introduced earlier. The
goal is twofold: first, to explain the motivation for building this
framework: why this particular approach was used to answer the
research questions, as well as reasons behind key decisions; and
second, to detail how the framework is built, what data it uses,
and how each source incrementally contributes new dimensions of
insight.

3.1 Motivation and design rationale
Characterizing where and how Internet traffic terminates, and how
these patterns evolve over time is critical for understanding in-
frastructure dependencies, assessing performance bottlenecks, and
enabling adaptive resource allocation in 5G and future 6G net-
works [1, 3]. Yet, existing methodologies often fall short in sup-
porting this level of visibility and operational insight. Common
limitations include:

• Lack of destination-layer granularity:Most traffic mod-
eling and forecasting approaches focus on predicting aggre-
gate traffic volume across network segments or at coarse
geographic levels [4, 5]. This neglects the identification
and classification of traffic endpoints, such as CDNs, data



centers, or ISPs, which are vital for understanding service
reliance and interconnection needs.

• Dependence on proprietary or active measurement
tools: Commercial telemetry platforms and active probing
systems (e.g., ping-based latency monitoring or synthetic
test traffic) often restrict scalability, incur operational over-
head, or lack transparency. Suchmethodsmay be unsuitable
for longitudinal, wide-scale studies or may be blocked by
firewalls and endpoint configurations [8, 16].

• Limited integration of control-plane visibility: Traffic
analyses are frequently limited to the data plane, ignoring
how BGP-level dynamics affect path stability and prefix
reachability [7, 14]. Without insights into routing churn
or visibility, it is difficult to understand the reliability and
resilience of destination paths.

To address these gaps, this study proposes a fully passive, infra-
structure-aware framework that operates entirely on publicly avail-
able data. The design of this framework is shaped by four guiding
principles:

1. Reproducibility and transparency. To ensure that the analy-
sis can be replicated or extended by other researchers and operators,
the framework relies entirely on publicly available datasets and
open-source tooling as you will see in Subsection 3.2. These were
deliberately selected for their wide adoption and long-term com-
munity trust, ensuring that results are based on authoritative and
accessible inputs. The methodology is designed to be modular and
auditable, with outputs that can be directly traced back to source
datasets.

2. Practical implementation choices. The framework is im-
plemented entirely in Python for accessibility and flexibility, using
well-supported, public libraries. Python was chosen for its large
ecosystem of data processing tools, ease of use in rapid prototyp-
ing, and readability for reproducibility. A Jupyter Notebook-based
environment complements the pipeline by supporting interactive
exploration, visualization, and debugging, making the system suit-
able for both research and operational contexts.

3. Infrastructure-level insight. Unlike many prior works that
treat destinations as opaque endpoints, this framework classifies
traffic at the AS and prefix level, and maps each to a functional role.
This supports analyses that differentiate traffic to CDNs, access ISPs,
cloud providers, and enterprise networks, critical for interpreting
infrastructure reliance and optimizing network adaptation.

4. Integration of passive KPIs. The pipeline infers round-trip
time (RTT) using TCP timestamps embedded in the traffic, avoiding
the need for active probes or synthetic traffic. Additionally, BGP
path dynamics are integrated to assess control-plane stability for
each prefix, providing a cross-layer view of destination performance
and reliability.

Alternative design considerations. Alternative approaches,
such as using commercial telemetry platforms, NetFlow data, or
active probing tools were intentionally avoided due to limitations
in accessibility, privacy, or realism. Proprietary platforms often
lack transparency, while active probing introduces synthetic traf-
fic and may be blocked or rate-limited. Similarly, NetFlow lacks

the packet-level detail needed for precise latency estimation or
timestamp-based inference. The chosen architecture prioritizes
openness, depth, and extensibility without sacrificing operational
relevance.

Building on these principles, the next subsection details the
architecture and implementation of the proposed solution.

3.2 MANTA Framework
The MANTA framework is implemented as a modular pipeline
in Python, designed to process passive Internet traffic traces and
enrich them with spatial, organizational, and performance-related
metadata. Built with extensibility and parallelism in mind, the sys-
tem follows a layered enrichment model in which each process-
ing stage contributes an independent dimension of insight. The
framework is modular by design: each component can be executed
independently, reused across datasets, or adapted to different van-
tage points. This flexibility supports deployment in a wide range
of contexts, including research, network operations, and policy
analysis.

The remainder of this subsection details the core stages of the
pipeline:

1. Passive traffic trace collection. The analysis begins by sourc-
ing packet-level Internet traffic traces from two publicly available,
high-quality datasets: MAWI [13] and CAIDA [12].

The MAWI archive provides anonymized daily traces of trans-
Pacific traffic captured on Japan’s WIDE backbone. For this study,
all MAWI data was sourced from Samplepoint-F, a long-standing
monitoring location situated at the transit link between the WIDE
backbone and a major upstream ISP. Samplepoint-F is widely used
in academic work due to its consistency, bidirectional vantage point,
and its ability to capture representative backbone traffic without
aggressive sampling or filtering. Traces were selected across dif-
ferent years, months, and days to ensure temporal diversity and
robustness. Each trace includes real-world IPv4 packet headers
with minimal transformation, making them ideal for infrastructure-
focused traffic analysis.

The CAIDA anonymized Internet traces, by contrast, were col-
lected from backbone links operated by Tier-1 ISPs in the United
States. For this project, all CAIDA data was taken from the NYC
Equinix monitor, one of the most stable and well-documented van-
tage points in the CAIDA trace set. The NYC site offers high-volume
visibility into inter-domain transit traffic within a key North Ameri-
can exchange point, adding geographic and topological complemen-
tarity to the MAWI traces. CAIDA’s dataset is valued for its method-
ological rigor, reliable timestamping, and consistent IP anonymiza-
tion.

Together, these datasets provide complementary perspectives:
MAWI offers a view from an academic-transit border in East Asia,
while CAIDA delivers a North American core-Internet perspective.
This dual vantage point enables robust cross-regional comparisons
and strengthens the generalizability of findings across global Inter-
net infrastructure.

2. Packet ingestion and flow assembly. Raw PCAP files are
ingested using the Scapy library. Packets are filtered to retain only
IPv4 transport-layer traffic (TCP and UDP). Each packet is parsed



to extract fields such as source/destination IPs, ports, protocol,
TTL, timestamps, and TCP-specific headers, creating unidirectional
flows. To ensure scalability, the ingestion stage is parallelized using
Python’s multiprocessing module, enabling concurrent processing
of multiple trace files or batch segments. To maintain consistency
across samples and ensure computational feasibility, processing
for each file is capped at the first one million usable packets (i.e.,
those matching the protocol filter). This constraint was chosen to
balance representativeness with practical limits on runtime and
memory usage during repeated or large-scale runs. The threshold is
a configurable parameter and can be increased or removed in future
analysis depending on available resources and desired granularity.

3. Enrichment with IP metadata. Destination IPs are enriched
using offline snapshots of GeoLite2 [17] and IPInfo Lite [18] data-
bases. These sources provide country, city, latitude/longitude, ASN,
and organizationmetadata. GeoLite2, developed byMaxMind, offers
one of the most widely used and trusted IP geolocation databases
in the research and commercial sectors. The GeoLite2 database is
accessed using the geoip2 library, which enables efficient batch
querying and structured metadata extraction. IPInfo Lite serves as
a secondary source, enhancing coverage and accuracy. A fallback
strategy ensures that if one source fails to resolve an IP, the other
is used. Enrichment functions are wrapped for batch efficiency
and reusability, and missing or ambiguous entries are flagged for
post-filtering.

4. Prefix and ASN attribution. Using the CAIDA’ Routeviews
Prefix-to-AS dataset [19], destination IPs are matched to BGP-
announced prefixes and their corresponding origin ASNs. This
step is implemented with a prefix trie (pytricia), enabling efficient
longest-prefix matching across millions of entries. Each flow is
tagged with the most specific prefix available, and stored with its
AS number and origin organization. CAIDA’s prefix-to-AS mapping
offers authoritative, real-time snapshots of the global routing table,
making it ideal for attributing traffic accurately to originating ASes.

5. Infrastructure classification. EachASN ismapped to a func-
tional category (NSP, Content, Cable/DSL/ISP, Enterprise, Educa-
tional/Research, Non-Profit, Route Server, Network Services, Route
Collector, Government) using a static snapshot of PeeringDB’s
public JSON API [20]. Mappings are resolved into canonical roles
to support higher-level grouping and visualization. For example,
Amazon and Akamai ASNs are collapsed into a “Content” class.
This classification gives semantic context to the traffic and enables
infrastructure-layer interpretation.

6. Passive RTT estimation. Round-trip time (RTT) is inferred
passively using TCP timestamp options (TSval, TSecr) extracted
from bidirectional flows. When both directions of a TCP connection
are observed in the trace, the echoed timestamp (TSecr) from a
returning packet is matched with a previously seen TSval, allowing
for the computation of RTT based on capture timestamps.

To ensure robustness:
• Only valid TSval/TSecr pairs are considered, with RTT

constrained to 0–5 seconds.
• A timestamp map is maintained for each flow direction to

resolve symmetry and deduplicate matches.

• At least five RTT samples are required per prefix to ensure
statistical confidence.

For each prefix, the system computes:
• Mean RTT (𝜇RTT)
• Standard deviation (𝜎RTT)
• Instability index (𝜎/𝜇)

This step yields a latency performance profile for each destination
prefix without requiring active probes or instrumentation.

7. Control-plane path analysis. Both 8-hourly RIB (Routing
Information Base) snapshots and 5-minute BGP update dumps,
from RIPE RIS collector RRC06 [21], were parsed using the high-
performance tool bgpscanner, executed on Ubuntu. For every desti-
nation IP in the passive flow dataset, the following steps are exe-
cuted:

• Prefix matching: Each destination IP is matched against the
longest-prefix entry in BGP update logs and RIBs using pre-
fix tries built with PyTricia.This enables precise attribution
of control-plane dynamics to the corresponding flows.

• BGP update analysis: For matched prefixes, the update
stream is scanned to compute:
– Total number of BGP updates (bgp_events) referencing

the prefix
– Count of distinct AS paths observed over time
– Path change count, tracking how many times the AS

path changed chronologically
• RIB snapshot analysis: Each prefix is also checked against

RIB entries to determine:
– If it is present in the RIB (in_rib)
– Total number of distinct AS paths
– Most recent AS path and its hop count

RRC06 was selected for its vantage point at Japanese IXPs (DIX-
IE, JPIX), providing visibility into APAC routing dynamics relevant
to the MAWI traces.

8. Output generation and aggregation. All processed flows are
exported to structured CSV files, tagged with enrichment metadata
and per-flow performance indicators. Aggregation scripts gener-
ate prefix and ASN level summaries, which are used for temporal
analysis, categorical breakdowns, and visualization. Plots are gen-
erated using matplotlib, seaborn and plotly, and support filtering
by infrastructure role, geographic region, and organization.

4 Infrastructure-aware flow analysis for
adaptive network management

This section presents the core analytical contributions of our work
and details how they address the research sub-questions introduced
in Section 1. Our analysis spans multiple dimensions of network be-
havior: identifying where user traffic terminates, assessing latency
stability in the data plane, quantifying routing dynamics in the
control plane, combining these perspectives into a unified volatil-
ity metric, and last but definitely not least: how we did all of the
above. These components are complemented by practical use cases
that demonstrate how the resulting metrics can inform adaptive
traffic management and infrastructure decision-making in 5G/6G
networks.



4.1 Infrastructure-enriched analysis pipeline
for traffic termination insight

MANTA enriches passive traffic traces with infrastructure metadata
to reveal where traffic terminates and which types of networks
are responsible for delivery. By classifying flows using publicly
available geolocation, ASN attribution, and infrastructure role data
(as detailed in Section 3), the system resolves destinations into
operationally meaningful categories.

This directly answers RSQ1, enabling operators and researchers
to observe traffic distribution across infrastructure roles and regions.
The pipeline’s modular design and reliance on public data ensure
reproducibility across vantage points and datasets.

Use case illustration: A mobile operator notices rising evening
latency. MANTA reveals that the majority of affected flows target
a CDN cluster exhibiting high RTT variability and frequent BGP
changes. Acting on this, the operator shifts traffic to more stable
CDN endpoints and reallocates resources in anticipation of peak
load, demonstrating how infrastructure-aware analytics can guide
real-time adaptation.

4.2 Prefix-level RTT variance as a latency KPI
To assess data-plane performance, we derive a passive latency sta-
bility metric for each destination prefix using round-trip time (RTT)
estimates inferred from TCP timestamps, a methodology originally
proposed by Veal et al. [22]. Instead of relying on active probes,
MANTA aggregates flow-level RTT observations and computes
key statistics per prefix: the mean RTT, standard deviation, and an
instability index. More details on this can be found in Section 3).

This addresses RSQ2 by highlighting prefixes with consistently
low latency, typically associated with CDN or cloud infrastructure,
as well as those with high variability due to congestion, subopti-
mal routing, or geographic dispersion, as also noted in forecasting
surveys that link latency variability to underlying infrastructure
and routing diversity [10]. Temporal aggregation further supports
RSQ3 by surfacing diurnal and weekly trends in prefix-level latency
behavior. Similar patterns have been observed in long-term back-
bone traffic analysis by Bajpai et al. [11], who document structural
shifts and daily variation in Internet usage using MAWI trace data.

Applications:

• Prioritize low-volatility destinations for latency-sensitive
traffic

• Perform passive SLA monitoring without injecting test traf-
fic

• Detect early-stage latency regressions in production envi-
ronments

This method is fully passive and privacy-preserving, making it
well-suited for real-time deployment in operational networks.

4.3 BGP path stability as a control-plane KPI
MANTA also evaluates control-plane stability by analyzing BGP
dynamics for each observed destination prefix, using update streams
and RIB snapshots from RIPE RIS [21]. We quantify:

• BGP (AS path) churn—how often the routing path changes
• Update frequency and temporal clustering
• Route visibility—presence and diversity in routing tables

This complements the latency analysis by addressing RSQ2 from
a routing perspective and supports RSQ3 through temporal analysis
of path variability. Darwich et al. [15] show that BGP dynamics,
particularly frequent updates and path changes, are often the result
of instability or aggressive traffic engineering, reinforcing the need
to monitor control-plane behavior over time.

Operational benefits:

• Prefer destinations with stable, predictable routing
• Flag unstable prefixes for cautious or deferred traffic place-

ment
• Assess control-plane health and resilience trends over time

By integrating these control-plane KPIs with flow-level metrics,
the framework bridges routing behavior and end-user performance.

4.4 Composite infrastructure volatility scoring
To synthesize performance and stability dimensions, we define a
composite volatility score for each prefix:

𝑉 (𝑝) = 𝛼 · 𝜎RTT
𝜇RTT

+ 𝛽 · BGP_Churn(𝑝)

This index combines data-plane variability and control-plane
instability, helping operators detect unreliable destinations that
may degrade user experience. Prior work by Alawe et al.[5] and
Kochetkova et al.[9] highlights the importance of forecasting traffic
and performance fluctuations in mobile networks, particularly un-
der volatile routing and congestion conditions. A higher score flags
prefixes with erratic latency or frequent path changes, supporting
risk-aware traffic steering and resource allocation.

This augments RSQ2 by offering a single, actionable metric to
rank destination volatility and supports network adaptation strate-
gies aimed at reliability.

4.5 Policy-oriented use cases for 5G/6G
networks

Together, these metrics support adaptive management decisions
critical to next-generation mobile networks. Example use cases
include:

• Traffic steering: Route interactive or real-time traffic to
low-volatility destinations to reduce jitter and delay.

• Slice placement: Deploy latency-critical services on in-
frastructure with stable RTT and BGP profiles.

• Cache replication: Mirror content to destinations with
low volatility scores to improve delivery reliability.

• SLA enforcement:Monitor passive metrics to ensure com-
pliance for priority traffic without active probes.

These examples show how MANTA’s insights translate into
concrete, policy-driven actions, helping networks evolve toward
predictive, resilient operation. This aligns with visions outlined by
Cui et al.[14], who describe AI-driven architectures for dynamic
6G network control, and by Navarro-Ortiz et al.[4], who emphasize
the need for intelligent traffic management strategies in emerging
mobile networks.



5 Experimental setup and results
This section describes the experimental environment used to im-
plement and run MANTA, followed by a presentation and analysis
of the key results obtained from applying the framework.

5.1 Experimental Setup
The MANTA analysis environment was implemented using a com-
bination of Python modules and Jupyter notebooks. Core devel-
opment was conducted on Windows 11 (64-bit), using PyCharm
as the integrated development environment and Miniconda3 to
manage the Python environment. All processing was performed
using Python 3.10.

Control-plane analysis stages were executed using bgpscanner
on an Ubuntu 22.04 virtual machine to ensure compatibility and
performance. The setup supported efficient batch processing, trace
selection, and visualization workflows using locally stored datasets
and offline metadata snapshots.

By combining an interactive, modular design with a reproducible
environment and full local control over data sources and libraries,
the experimental setup ensured analytical traceability and adapt-
ability for future studies.

5.2 Results
We evaluate MANTA’s output across four dimensions: ASN des-
tination roles, geographic RTT stability, role-based volatility, and
AS path diversity. Each result maps directly to our research sub-
questions (RSQs), with cross-layer enrichment enabling interpreta-
tion at both infrastructure and temporal levels.

Figure 1: Top 5 ASN types by flow share (MAWI, 2009–2025,
April 1st, 14:00 JST)

5.2.1 Longitudinal evolution of ASN yypes. Figure 1 illustrates how
traffic destinations evolved over 16 years. Early traffic patterns were
dominated by ISP ASNs, but this began shifting in 2018 as content
and cloud networks expanded rapidly, likely due to CDN prolifera-
tion and streaming service growth. NSPs maintained consistently
high shares, while enterprise and research networks exhibited pe-
riodic spikes, likely linked to episodic events or organizational
migrations. These trends substantiate RSQ 1, confirming both the
centralization of user traffic around large infrastructure providers
and the classification fidelity of MANTA’s enrichment pipeline.

This shift illustrates the growing role of CDNs and hyperscale
clouds in handling user traffic, which aligns with industry observa-
tions of Internet centralization and its operational implications [16].
As content providers become dominant endpoints, peering policies
and traffic engineering strategies must increasingly account for
fewer but more critical interconnection points. (Additional break-
downs using CAIDA data are included in Appendix A.)

Figure 2: Geographical RTT instability by country (Content
ASNs, 2015-03-30 – 2015-04-05, 14:00 JST)

Figure 3: Geographical RTT instability by country (Content
ASNs, 2025-03-31 – 2025-04-06, 14:00 JST)

5.2.2 Geographical RTT instability distribution over time. Figures 2
and 3 depict the evolution of RTT instability over a decade. On
average, the volatility index nearly tripled between 2015 and 2025.
Japan’s score rose from 1.66 to 5.29; Brazil and Australia remained
consistently volatile, and new hotspots emerged in North America
and Southeast Asia. These shifts may reflect increased traffic loads,
uneven infrastructure growth, or route complexity introduced by
CDN overlays.

Another contributing factor could be the proliferation of content
distribution architectures: while CDNs reduce average latency for
well-connected users, they can also increase variability by widening
the performance gap between regions with nearby caches and
those without. Furthermore, growing inter-regional traffic flows
and multi-homing of content platforms likely contributed to more
frequent route changes and asymmetric paths, reinforcing temporal
and geographic instability. Similar trends have been reported in
public Internet metrics dashboards [16]. These findings enhance
RSQ 2 by showing country-level performance variance, and address
RSQ 3 through longitudinal comparison. They also underscore the
need for geographically aware traffic engineering, particularly the
deployment of edge caches or interconnection hubs in emerging
hotspots.



Figure 4: Monthly prefix volatility by ASN type (Jan–Jun
2025)

5.2.3 Temporal volatility across ASN categories. Figure 4 presents
prefix-level volatility scores by ASN type, using the composite index
from Section 4.4 (with 𝛼 = 𝛽 = 0.5). This score aggregates RTT
instability and BGP path churn into a unified metric for operational
reliability.

Enterprise destinations peaked at a volatility index of approxi-
mately 1.7 in March, signaling possible reconfigurations, routing
reshuffles, or sudden load migrations. This could be due to smaller
organizations lacking CDN-style redundancy or undergoing in-
frastructural transitions, such as migrating workloads to cloud
environments. In contrast, content ASNs remained stable (around
0.8) and gradually converged with enterprise values by June, both
ending near ∼ 1.0. This convergence may reflect infrastructural
normalization, expanded interconnectivity, or seasonal load balanc-
ing.

These findings directly support RSQ 2 by exposing volatility
differences across infrastructure roles and RSQ 3 by highlighting
evolving reliability trends. While seasonal effects (e.g., fiscal quar-
ter transitions) may explain some March volatility spikes, more
granular data would be needed for confirmation. Color gradients
in the figure match the volatility scale to aid visual interpretation.

5.2.4 Content AS path diversity vs. latency (6 months vs. one week).

Six-month overview. Figure 5 correlates AS path length and BGP
path diversity for content ASNs, with RTT encoded by color. The
dominant pattern shows short paths (3–5 hops), high diversity (5–6
distinct paths), and low RTTs (<50 ms). For instance, a prominent
cluster of ASNs at path length 4 and diversity 5 exhibit RTTs in the
20–40 ms range (blue-green), indicating well-connected, latency-
optimized networks. These results support RSQ 2 by linking net-
work topology with observed performance.

Weekday comparison. Figure 6 zooms into daily behavior. While
path length and diversity remain largely stable, several red outliers
(RTT >200 ms) emerge, suggesting transient congestion, routing
anomalies, or upstream policy shifts. These anomalies highlight
the importance of continuous monitoring, even in high-performing
networks. The core structural redundancy remains intact across
weekdays, reinforcing RSQ 3.

Figure 5: BGP path length vs. path diversity for content ASNs
(2025-01 – 2025-06, first day of each month, 14:00 JST)

Figure 6: Path length vs. path diversity for content ASNs
(2025-03-31 – 2025-04-06, every day, 14:00 JST)

Together, these analyses confirm that content providers exhibit
strong path diversity and low-latency delivery, with rare but opera-
tionally relevant deviations that MANTA can detect and contextu-
alize for real-time traffic management.

6 Responsible research
This study was conducted with a strong commitment to ethical
research practices and methodological transparency. Key consid-
erations include data privacy, reproducibility, responsible use of
public infrastructure, and reflection on the potential impacts of our
findings.

Ethical use of data. All data analyzed in this research was
passively collected, anonymized, and made publicly available by
respected organizations such as CAIDA and MAWI. No payload
content, user-identifiable information, or confidential metadata
was accessed or stored. The datasets used contain only header-level
information, stripped of any sensitive details, and all IP addresses
are anonymized in accordance with the providers’ data sharing
agreements. As a result, the work complies with general ethical



standards and data protection norms, including principles aligned
with GDPR and other privacy frameworks.

Privacy-preserving methodology. To further ensure ethical
compliance, our approach avoids any form of active probing or data
injection into networks. All measurements, including round-trip
time estimation and BGP churn analysis, are inferred passively
using existing traffic and control-plane records. This passive ap-
proach minimizes the risk of service disruption, avoids the creation
of synthetic load, and maintains network integrity during anal-
ysis. Moreover, the infrastructure classification and geolocation
enrichments are derived from publicly licensed datasets, with no
correlation to individual users or proprietary network data.

Reproducibility and transparency. A core design goal of the
MANTA framework is reproducibility. To that end, all components
of the analysis pipeline were built using open-source tools and pub-
licly available datasets. The use of Python and Jupyter Notebooks
allows others to replicate, inspect, or extend the methodology with
minimal setup. Each enrichment stage, from IP-to-ASN mapping to
BGP path stability metrics, is modular and well-documented. This
modularity supports reproducibility across different vantage points
and time frames and encourages adoption by other researchers or
practitioners.

Limitations and responsible interpretation. While themetho-
dology is robust, there are inherent limitations to consider. The
analysis is restricted to IPv4 traffic and depends on the presence of
TCP timestamps, excluding many encrypted or UDP-based flows.
Additionally, BGP stability metrics are derived from a single RIPE
RIS collector (RRC06), which may introduce regional bias. These
constraints are transparently documented and should inform cau-
tious interpretation and generalization of results. Claims regarding
infrastructure volatility, for example, are statistically grounded but
not deterministic, and must be validated in diverse network envi-
ronments before driving automated policy changes.

Social impact and operational responsibility. Understanding
traffic termination patterns and infrastructure volatility can sig-
nificantly improve adaptive traffic management and performance
optimization. However, there is a potential dual-use concern: such
insights might also be used to exploit routing instabilities or bypass
content delivery restrictions. As such, this research emphasizes
constructive use cases, such as improving latency, resilience, and
interconnection fairness, and encourages its adoption within the
context of ethical network operation and public interest.

7 Discussion
This study presents a multi-dimensional view of how user traffic in-
teracts with Internet infrastructure. By passively analyzing packet
traces enriched with routing, geolocation, and organizational meta-
data, we characterized termination patterns, reliability, and tempo-
ral dynamics. These findings support infrastructure-aware traffic
engineering and offer a reproducible methodology for longitudinal
network observability.

Reflection on contributions andfindings. Weaddressed three
core questions: identifying traffic destinations (RSQ1), evaluat-
ing their performance and routing stability (RSQ2), and analyzing

their evolution over time (RSQ3). MANTA revealed that content
and cloud ASNs dominate traffic and exhibit low latency variance
and high path stability, while enterprise and research ASNs show
episodic volatility, likely due to less optimized peering or transi-
tional routing states. These trends align with a broader central-
ization of traffic among major providers, a shift observed in prior
work [8], though longer-term studies are still limited.

The composite volatility score, combining RTT variability and
BGP churn, emerged as an effective operational metric for iden-
tifying unstable prefixes. This supports latency-sensitive traffic
engineering, slice-aware placement, and SLA-aware routing deci-
sions. A noteworthy finding was the convergence of enterprise
volatility toward CDN levels over six months, possibly indicating
infrastructural upgrades, policy adjustments, or sampling bias. Like-
wise, the sharp increase in regional RTT variance over a decade
underscores the importance of geographically adaptive intercon-
nection strategies, especially in emerging markets.

These insights are not just diagnostic: network operators could
proactively integrate volatility scores into real-time policy engines
to reroute unstable flows or improve cache placement. Researchers,
in turn, may use MANTA for repeatable, cross-layer studies that
track infrastructure evolution in response to application and traffic
shifts.

Limitations and dataset context. Our analysis usedMAWI and
CAIDA traces, offering longitudinal depth and Tier-1 visibility, but
limited in scope, excluding mobile networks, enterprise WANs, and
most IPv6 traffic. CAIDA data ends in 2019, thus predating recent
architectural shifts such as AI workload distribution and edge-cloud
adoption. Sampling typically involved one trace per month or year,
which captures trends but limits detection of transient events. For
instance, the March spike in enterprise volatility might reflect a
singular routing anomaly or sampling artifact. Higher temporal
granularity would enhance statistical confidence.

Scope and methodological constraints.

Passive-only scope. All data was derived from passively observed,
anonymized IPv4 flows. This limits visibility into encrypted pro-
tocols, DNS logic, and flows not observed at the capture point.
Geolocation and attribution metadata were resolved offline, which
may lead to outdated or imprecise mappings.

Inference dependencies. RTT estimation depends on TCP timestamp
presence, excluding QUIC, UDP, and some TCP flows. BGP analysis
used a single RIS collector (RRC06), offering strong APAC coverage
but limited global perspective. These factors introduce sampling
bias and reduce generalizability to certain infrastructure types.

Comparison to related work. MANTA builds on prior work
in passive measurement and infrastructure classification (e.g., [7])
by unifying data-plane latency and control-plane churn within a
temporally aware pipeline. Unlike approaches focused on protocol
or volume, MANTA emphasizes infrastructure volatility and role
differentiation. To our knowledge, few passive systems offer this
level of granularity across both routing and performance metrics.

Futurework and recommendations. Key extensions toMANTA
include:



Broader coverage. Integrate mobile, enterprise, and IPv6 traffic to
enhance representativeness and assess diverse AS topologies.

Hybrid validation. Augment passive inference with lightweight
probing to validate RTT estimates and detect anomalies.

Encrypted application inference. Leverage TLS metadata or ML-
based flow features for privacy-preserving service classification
without payload inspection.

Operational feedback loops. Incorporate volatility metrics into SDN
controllers (e.g., ONOS, ODL) to support real-time adaptive routing
and service placement.

Responsible research considerations. All data usedwas anonymized
and publicly available. No user-level identifiers or payloads were ac-
cessed. The methodology prioritizes reproducibility, transparency,
and privacy throughout.

8 Conclusions
This thesis presented an infrastructure-enriched, passive traffic
analysis approach designed to support adaptive network manage-
ment in next-generation mobile systems. Addressing three core
research questions, we first developed methods to classify traffic
flows based on destination infrastructure, identifying where user
traffic terminates across entities such as CDNs, ISPs, and enterprise
networks (RSQ1). Using public geolocation and ASN metadata, we
observed a measurable and ongoing concentration of traffic toward
content and cloud providers, a trend that has important implications
for interconnection and traffic engineering strategies.

Second, we assessed the stability of these destinations by an-
alyzing passive indicators of performance and routing dynamics
(RSQ2). Our findings showed that content-centric infrastructures
generally exhibit lower volatility, both in RTT and BGP path churn,
than enterprise or research destinations. Third, by tracking these
metrics over time, we demonstrated that infrastructure reliability is
both role-sensitive and temporally dynamic (RSQ3), with enterprise
ASNs in our dataset converging toward CDN-like stability within a
six-month window.

The central contribution of this work is the MANTA frame-
work: a modular, open-source analysis pipeline that passively en-
riches packet traces with infrastructure-level context and computes
infrastructure-aware KPIs. These include prefix-level RTT variabil-
ity, control-plane path churn, and a composite volatility score that
synthesizes data-plane and control-plane behavior. These metrics
provide network operators with actionable insight into the reliabil-
ity of traffic destinations, enabling policy-driven decisions such as
rerouting, slice placement, and cache replication without requiring
active measurement.

While this work demonstrates the viability of infrastructure-
aware passive analysis, further research is needed to expand its ap-
plicability to additional vantage points, IPv6 traffic, and encrypted
protocols. Nonetheless, the methodology and findings presented
here establish a solid basis for future extensions.

In summary, by illuminating where and how user traffic flows in
modern networks, and how those flows evolve over time, this thesis
equips researchers and operators with new tools for anticipating
and responding to traffic dynamics. In doing so, it contributes to

the broader goal of building more resilient, efficient, and adaptive
5G/6G communication infrastructures.
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A Supplementary Figures: CAIDA-Based
Analysis

This appendix provides additional insights derived from CAIDA
anonymized Internet traces to complement the core findings of the
study.

A.1 Top Destination Networks by Flow Count

Figure 7: Top 20 Destination Organizations by Flow Count
(CAIDA, 2019-01-17, 14:00 UTC)

Figure 7 shows the top destination organizations as resolved
from CAIDA prefix-to-AS mappings. Major cloud and telecom oper-
ators such as Amazon, T-Mobile, and Comcast dominate, reflecting
the concentration of end-host traffic in well-provisioned global
infrastructures.

A.2 Traffic Distribution by ASN Category

Figure 8: Traffic Distribution by ASN Type Using CAIDA-
Based Attribution (CAIDA, 2019-01-17, 14:00 UTC)

Figure 8 presents the ASN category distribution. While over half
of the observed traffic is attributed to known ASN types, nearly 48%
remains uncategorized, highlighting limitations in mapping com-
pleteness. Among the categorized traffic, Cable/DSL/ISP and NSP
categories dominate, consistent with earlier results in Section 5.2.
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