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a b s t r a c t 

Consider a domain-adaptive supervised learning setting, where a classifier learns from labeled data in a 

source domain and unlabeled data in a target domain to predict the corresponding target labels. If the 

classifier’s assumption on the relationship between domains (e.g. covariate shift, common subspace, etc.) 

is valid, then it will usually outperform a non-adaptive source classifier. If its assumption is invalid, it 

can perform substantially worse . Validating assumptions on domain relationships is not possible without 

target labels. We argue that, in order to make domain-adaptive classifiers more practical, it is necessary 

to focus on robustness; robust in the sense that an adaptive classifier will still perform at least as well as 

a non-adaptive classifier without having to rely on the validity of strong assumptions. With this objective 

in mind, we derive a conservative parameter estimation technique, which is transductive in the sense 

of Vapnik and Chervonenkis, and show for discriminant analysis that the new estimator is guaranteed 

to achieve a lower risk on the given target samples compared to the source classifier. Experiments on 

problems with geographical sampling bias indicate that our parameter estimator performs well. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Generalization in supervised learning relies on the fact that fu- 

ure samples originate from the same underlying data-generating 

istribution as the ones used for training. However, this is not the 

ase in settings where data is collected from different locations, 

ifferent measurement instruments are used or there is only ac- 

ess to biased data [25] . In these situations the labeled data does 

ot represent the distribution of interest. This problem setting is 

eferred to as a domain adaptation setting, where the distribution 

f the labeled data is called the source domain and the distribution 

f interest is called the target domain [3,15] . Most often, data in the

arget domain is not labeled and adapting a source domain classi- 

er, i.e., changing predictions to suit the target domain, is the only 

eans by which one can make accurate predictions. Unfortunately, 

epending on the domain dissimilarity, adaptive classifiers can eas- 

ly perform worse than non-adaptive ones. We formulate a conser- 

ative adaptive classifier that always performs at least as well as 

he non-adaptive one. 1 
✩ Handle by Associate Editor Francesco Tortorella. 
∗ Corresponding author. 

E-mail address: w.m.kouw@tue.nl (W.M. Kouw). 
1 A shortened, preliminary version was accepted for S+SSPR [16] . The current ver- 

ion offers a significant extension with a clearer exposition, additional technical de- 
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In the general setting, domains can be arbitrarily different, 

hich means generalization will be extremely difficult. However, 

here are cases where the problem setting is more structured: in 

he covariate shift setting, the marginal data distributions differ but 

he posterior distributions are equal [5,9,28] . In such cases, a cor- 

ectly specified adaptive classifier will converge to the same solu- 

ion as the target classifier [9] . One way to carry out adaptation 

s by weighing each source sample by how important it is under 

he target distribution and training on the importance-weighted 

abeled source data. However, such a classifier can perform poorly 

hen applied to settings where the covariate shift assumption is 

alse, i.e., where the posterior distributions from both domains are 

ot equal [8,19] . In that case, one often observes that a few sam- 

les are given large weights and all other samples are given near- 

ero weights, which greatly reduces the effective sample size [ 23 , 

hapter 8]. Sensitivity to domain relationship assumptions is not 

estricted to covariate shift. Another adaptive algorithm, Transfer 

omponent Analysis (TCA), assumes the existence of a latent rep- 

esentation common to both domains. When that does not hold, 

apping both source and target data onto transfer components 
ails and references, more experiments, and a comprehensive analysis and discus- 

ion. 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example domain adaptation setting. (Left) Labeled source domain data, 

(right) labeled target domain data. Black lines show a classifier trained on source 

data, applied to source data (left) and target data (right). 
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ill result in mixing of the class-conditional distributions and per- 

ormance will deteriorate [24] . 

Since the validity of the aforementioned assumptions is difficult 

if not impossible – to check, it is of interest to design robust clas- 

ifiers. Robustness to uncertainty is often achieved through min- 

max optimization [17] . An example of a robust adaptive classi- 

er is Robust Covariate Shift Adjustment (RCSA), which first max- 

mizes risk with respect to the importance-weights and subse- 

uently minimizes risk with respect to the classifier parameters 

32] . It attempts to account for estimation errors in importance- 

eights. Another example is the Robust Bias-Aware (RBA) classi- 

er, which plays a game between a risk minimizing target classifier 

nd a risk maximizing target posterior distribution [19] . The ad- 

ersary is constrained to pick posteriors that match the moments 

f the source distribution statistics, to avoid posterior probabilities 

hat result in degenerate classifiers (e.g. assign all posterior prob- 

bilities to 1). Matching moments means that RBA classifiers lose 

redictive power in areas of feature space where the source dis- 

ribution has limited support. Note that both robust methods still 

ely on assuming covariate shift. 

Our main contribution is a parameter estimator that produces 

stimates with a risk that is always lower or equal to the risk of 

he source classifier, with respect to the given target samples. It 

oes so without making domain relationship assumptions such as 

ovariate shift but by constructing a specific type of risk that can 

e considered transductive in the sense originally defined by by 

apnik and Chervonenkis [see 30] . Furthermore, we show that in 

he case of discriminant analysis, the estimator will produce strictly 

maller risks on the target data. To the best of our knowledge, such 

erformance guarantees compared to the source classifier have not 

een shown before. 

The paper is outlined as follows: Section 3 presents the for- 

ulation of our method, with discriminant analysis in Section 4 . 

ection 5.1 shows experiments on two data sets involving geo- 

raphical sampling bias, indicating that our estimator consistently 

erforms among the best. We conclude with limitations and a dis- 

ussion in Section 6 . To start with, the next section briefly intro- 

uces the specific domain adaptation setting that we consider and 

omments on the transductive nature of our particular approach. 

. Domain adaptation and transduction 

A domain is defined here as a particular joint probability dis- 

ribution over a D -dimensional input space X ⊆ R 

D and a K- 

imensional output space of one-hot vectors Y = 

{
b ∈ { 0 , 1 } K :

 

k b k = 1 
}

[15] . Let S mark a source domain, with n samples x = 

x 1 , . . . , x n ) with corresponding labels y = (y 1 , . . . , y n ) ∈ Y 

n drawn

rom the source domain’s joint distribution. Similarly, let T mark a 

arget domain, with m samples z = (z 1 , . . . , z m 

) with corresponding

abels u = (u 1 , . . . , u m 

) drawn from the target domain’s joint distri-

ution. The target labels u are unknown at training time and the 

oal is to predict them, using only the unlabeled target samples z

nd the labeled source samples (x, y ) . 

.1. The meaning of transduction 

Given that the primary performance measure in this work is 

pecifically the risk on the unlabeled data of the target domain 

hat is available to us, our objective is essentially transductive [see 

5 ]. This is in line with the original definition of transduction as 

roposed by Vapnik and Chervonenkis [see 30] . 

It should be pointed out that, confusingly, what is referred to 

s transductive for most transfer learning and domain adaptation 

ethods, just means that there is labeled data available for the 

ource but not for the target domain [see also 15 ]. The classi- 

ers considered in papers such as [1,10,13] , like most papers in 
108 
ur review work [15] , do not focus on the unlabeled samples in 

he target domain in particular and are actually not transductive 

n the sense of Vapnik and Chervonenkis [see also 15 ]. Works like 

27,29] exploit graph methods that do not have a ready out-of- 

ample extension and are therefore transductive in the sense of 

apnik and Chervonenkis. As Section 3 shows, our method focuses 

articularly on the risk obtained on the given target data and is, 

s such, transductive. As it turns out, it is specifically this ap- 

roach that can provide us with performance guarantees, where 

ther techniques cannot. 

We should note that, typically, our target classifiers can still be 

sed for classifying new and unseen target domain samples. That 

s, they can also be used for inductive inference. This is especially 

he case if the samples from the target domain can be considered 

epresentative of that domain. In that case, the performance on 

hose particular target domain instances can equally well be inter- 

reted as a regular empirical risk, used in standard empirical risk 

inimization [26,31] . Just as in the supervised learning setting, it 

s then assumed that having a small empirical risk carries over to 

 small generalization error and that the classifier can be success- 

ully employed inductively. 

As a final remark, we like to state that the benefits of trans- 

uction over induction, or vice versa, are not always easily identi- 

ed. Especially because in many settings, inductive classifiers can 

e used for transduction and the other way around. Refer to Chap- 

er 25 in [6] for further views and considerations. 

.2. Example 

Fig. 1 visualizes some concepts used throughout the paper. On 

he left is shown samples from the source domain, labeled as 

oints (red) versus crosses (blue). These were drawn from isotropic 

aussians centered at [ −2 , 0] and [+2 , 0] , respectively. The black

ines are a contour plot of the posterior probabilities of a classifier 

rained on the source data. On the right is shown data from the 

arget domain, as well as the source classifier applied to the target 

ata. These target samples were drawn from two Gaussian distri- 

utions, both with covariance matrix [3 , 2 ; 2 , 4] but one with 

 mean of [ −1 , 2] and one with a mean of [+2 , 1] . The source

nd target domains are therefore related to each other through an 

ffine transformation. Note that the source classifier does not fit 

he target data well. 

. Robust estimator for target domain 

In the following, we present the construction of our estimator. 

irst, we discuss the risk of the classifier in the target domain. Sec- 

ndly, we compare the target risk of a proposal classifier with the 
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arget risk incurred by the source classifier and thirdly, we assume 

 worst-case labeling for the given target samples. 

.1. Target risk 

The empirical risk of a classifier in the source domain is com- 

uted as the average loss with respect to source samples (x, y ) : 

ˆ 
 

(
h | x, y 

)
= 

1 

n 

n ∑ 

i =1 

� ( h | x i , y i ) , (1) 

here h is the classification function mapping input to labels and 

 is a loss function comparing the classifier’s prediction h (x i ) with 

he true label y i at training time. Since the classification error, or 

 − 1 loss, cannot be directly optimized over, it is customary to 

hoose surrogate loss functions, such as the quadratic loss (h (x i ) −
 i ) 

2 [11] . The source classifier is the classifier found by minimizing 

he empirical risk with respect to source samples: 

ˆ 
 

S = arg min 

h ∈H 

ˆ R ( h | x, y ) , (2) 

here H refers to the hypothesis space. 

Since the source classifier does not incorporate any part of the 

arget domain, it is essentially entirely naive of it. But source do- 

ains are chosen for a reason – often because they are the most 

imilar data available – and source classifiers are subsequently re- 

arded as the best alternative for classifying the target domain. To 

valuate ˆ h S in the target domain, the risk of the classifier with re- 

pect to target samples (z, u ) , is computed: 

ˆ 
 

(
ˆ h 

S | z, u 

)
= 

1 

m 

m ∑ 

j=1 

� 
(

ˆ h 

S | z j , u j 

)
. (3) 

e argue that adaptive classifiers should never perform worse 

han source classifiers. In other words, they should never achieve 

 larger target risk. 

.2. Contrast 

We formalize the desire to never achieve a larger target risk by 

irectly comparing the target risk of a potential alternative classi- 

er with the target risk of the source classifier. If we subtract the 

arget risk of the source classifier, then we can argue that the re- 

ulting function should never be positive: 

ˆ 
 

(
h | z, u 

)
− ˆ R 

(
ˆ h 

S | z, u 

)
(4) 

f this contrast between risk functions is used as a minimization 

bjective, i.e., ˆ h = min h 
ˆ R (h | z, u ) − ˆ R ( ̂ h S | z, u ) , then the target

isk of the resulting classifier is bounded above by the risk of the 

ource classifier: ˆ R ( ̂ h | z, u ) ≤ ˆ R ( ̂ h S | z, u ) . Equality occurs when the

ource classifier is recovered: ˆ h = ̂

 h S . Classifiers that lead to larger 

arget risks are not valid outcomes of this minimization procedure. 

.3. Robustness 

Eq. (4) still relies on target labels u , which are unknown dur- 

ng training. Instead of u we use a worst-case labeling, achieved 

y maximizing risk with respect to a hypothetical labeling q . For 

ny classifier h , the risk with respect to this worst-case labeling 

ill always be larger than the risk with respect to the true target 

abeling: 

ˆ 
 ( h | z, u ) ≤ max 

q 
ˆ R ( h | z, q ) . (5) 

aximizing over a set of discrete labels is a combinatorial prob- 

em and, unfortunately, this one is computationally expensive. To 

void this, we apply a relaxation by considering a soft labeling, 

 jk = p(u j = k | z j ) . This means that q j is a vector of K elements
109 
hat sum to 1. In other words, a point on a K − 1 simplex, �K−1 .

or m samples, the Cartesian product of m simplices is taken: 

K−1 × �K−1 × · · · = �m 

K−1 
. By optimizing with respect to a worst- 

ase labeling, the estimator will be more robust to uncertainty over 

arget labels [17] . 

.4. Target Contrastive Pessimistic risk 

Combining the contrast between risk functions from (4) with 

he worst-case labeling q from (5) produces the following risk 

unction: 

ˆ 
 

TCP 
(
h | ̂  h 

S , z, q 
)

= 

1 

m 

m ∑ 

j=1 

� 
(
h | z j , q j 

)
− � 

(
ˆ h 

S | z j , q j 
)
. (6) 

e refer to the risk in Eq. (6) as the Target Contrastive Pessimistic 

isk (TCP). Minimizing with respect to a classifier h and maximiz- 

ng with respect to a hypothetical labeling q , produces the new TCP 

arget classifier: 

ˆ 
 

T = arg min 

h ∈H 

max 
q ∈ �m 

K−1 

ˆ R 

TCP 
(
h | ̂  h 

S , z, q 
)
. (7) 

ote that the TCP risk only considers the performance on the tar- 

et domain. More precisely, it considers the performance on the 

iven samples from the target domain and is, in this sense, a trans- 

uctive approach [12,30] . It is different from the risk formulations 

n [19,32] , and those mentioned in Section 2 , because those incor- 

orate performance on the source domain as well. Our formulation 

ocuses purely on the performance gain we can achieve over the 

ource classifier, in terms of target risk. 

.5. Optimization 

If the loss function � is restricted to be globally convex and the 

ypothesis space H to be a convex set, then the TCP risk will be 

lobally convex with respect to h and there will be a unique opti- 

um for h . The TCP risk is linear with respect to q and the opti-

um need not be unique for q . But the combined minimax objec- 

ive will be globally convex-linear, which guarantees the existence 

f a saddle point, i.e., a unique optimum with respect to both h 

nd q [7] . 

Finding this saddle point can be done through first perform- 

ng a gradient descent step according to the partial derivative with 

espect to h , followed by a gradient ascent step according to the 

artial derivative with respect to q . However, this last step causes 

he updated q to leave the simplex. In order to enforce the con- 

traint, the updated q is projected back onto the simplex. The pro- 

ection, P , maps a point outside the simplex, a , to the point, b, that

s the closest point on the simplex in terms of Euclidean distance: 

(a ) = arg min b∈ � ‖ a − b‖ 2 [22] . Unfortunately, the projection step 

omplicates the computation of the step size, which we replace by 

 learning rate αt , decreasing over iterations t . This results in the 

verall update: 

 

t+1 ← P(q t + αt ∇q t ) . (8) 

 gradient descent-ascent procedure for globally convex-linear ob- 

ectives is guaranteed to converge to a saddle point (c.f. proposition 

.4 and corollary 4.5 of [7] ). 

. Discriminant analysis 

Interestingly, for classical discriminant analysis (DA), it can be 

hown that the TCP risk produces parameter estimates with strictly 

maller risks than that of the source classifier. Discriminant anal- 

sis models the data from each class with a Gaussian distribu- 

ion, weighted proportional to a class prior: πk N (x | μk , �k ) [11] .

e use the following shorthand notation for the parameters: θ = 
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Fig. 2. Example of difference between source Quadratic Discriminant Analysis (left, 
ˆ θS ) and Target Contrastive Pessimistic - Quadratic Discriminant Analysis (right, ˆ θ T ) 

on the target domain data from Section 2.2 . 
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2 Code is available at https://github.com/wmkouw/tcpr 
πk , μk , �k ) . The model is expressed as an empirical risk mini- 

ization formulation by taking the negative log-likelihood as a loss 

unction, � (θ | x, y ) = 

∑ K 
k −y k log [ πk N (x | μk , �k )] . 

.1. Quadratic discriminant analysis 

If each class is modeled with a separate covariance matrix, 

he resulting classifier is a quadratic function of the difference in 

eans and covariances, and is hence called quadratic discriminant 

nalysis (QDA). For target data z and probabilistic labels q , the loss 

s formulated as: 

 QDA (θ | z j , q j ) = 

K ∑ 

k =1 

−q jk log [ πk N (z j | μk , �k )] . (9) 

ote that the loss is now expressed in terms of classifier param- 

ters θ , as opposed to the classifier h . Plugging the loss from 

9) into (6) , the TCP-QDA risk becomes: 

ˆ 
 

TCP 
QDA (θ | ˆ θS , z, q ) 

= 

1 

m 

m ∑ 

j=1 

� QDA (θ | z j , q j ) − � QDA ( ̂  θS | z j , q j ) 

= 

1 

m 

m ∑ 

j=1 

K ∑ 

k =1 

−q jk log 
πk N (z j | μk , �k ) 

ˆ πS 
k 
N (z j | ˆ μS 

k 
, ˆ �S 

k 
) 

, (10) 

here the estimate itself is: 

ˆ T = arg min 

θ∈ �
max 

q ∈ �m 
K−1 

ˆ R 

TCP 
QDA (θ | ˆ θS , z, q ) . (11) 

Minimization with respect to θ has a closed-form solution for 

iscriminant analysis models. For each class, the parameter esti- 

ates are: 

k = 

1 

m 

m ∑ 

j=1 

q jk , (12) 

k = 

( m ∑ 

j=1 

q jk 
)−1 

m ∑ 

j=1 

q jk z j , (13) 

k = 

( m ∑ 

j=1 

q jk 
)−1 

m ∑ 

j=1 

q jk (z j − μk ) 
	 (z j − μk ) . (14) 

Keeping θ fixed, the gradient with respect to q jk is: 

∂ 

∂q jk 
ˆ R 

TCP 
QDA 

(
θ | ˆ θS , z, q ) = − 1 

m 

log 
πk N (z j | μk , �k ) 

ˆ πS 
k 
N (z j | ˆ μS 

k 
, ˆ �S 

k 
) 

. (15) 

.2. Example 

Fig. 2 visualizes the difference between the source classifier 

nd our TCP-QDA classifier. On the left is shown the source clas- 

ifier applied to the target data from Section 2.2 . On the right is

hown the TCP-QDA classifier applied to the same data. Note that 

t has shifted upwards to better fit the target samples, achieving a 

maller risk than the source classifier. 

.3. Regularization 

One of the properties of a discriminant analysis model is that 

t requires the estimated covariance matrix �k to be non-singular. 

t is possible for the maximizer over q in TCP-QDA to assign less 

amples than dimensions to one of the classes, causing the covari- 

nce matrix for that class to be singular. To prevent this, we regu- 

arize its estimation by enforcing a lower bound on the eigenvalues 

f the estimated covariance matrix. 
110 
.4. Linear discriminant analysis 

If the model is constrained to share a covariance matrix be- 

ween classes, the resulting classifier is a linear function of the dif- 

erence in means and is hence termed linear discriminant analysis 

LDA). This constraint is imposed through the weighted sum over 

lass covariance matrices � = 

∑ K 
k πk �k . 

.5. Performance guarantee 

For the discriminant analysis model, the TCP parameter estima- 

or obtains a strictly smaller risk. In other words, this parameter 

stimator is guaranteed to improve its performance – on the given 

arget samples, and in terms of risk – over the source classifier. 

his is the first domain adaptation parameter estimator for which 

uch a guarantee can be provided. 

heorem 1. For a continuous target distribution, with more samples 

han features for every class, the empirical target risk, with respect 

o discriminant analysis, of TCP estimated parameters ˆ θT is, almost 

urely, strictly smaller than that of the source parameters ˆ θS : 

ˆ 
 QDA 

(
ˆ θ T | z, u 

)
< 

ˆ R QDA 

(
ˆ θS | z, u 

)
(16) 

The reader is referred to Appendix A for the proof. It follows 

imilar steps as a guarantee for discriminant analysis in semi- 

upervised learning [20] . Note that as long as the same amount of 

egularization is added to both the source and the TCP estimator, 

he strictly smaller risk also holds for a regularized model. 

. Experiments 

We see the TCP risk formulation from Section 3 , together with 

heorem 1 , as our main contributions. Of course, it is still of in- 

erest to see how other approaches compare to ours. We compare 2 

he performance of our classifiers with that of some well-known 

nd robust domain-adaptive classifiers. We implemented Trans- 

er Component Analysis (TCA) [24] , Kernel Mean Matching (KMM) 

14] , Robust Covariate Shift Adjustment (RCSA) [32] and the Robust 

ias-Aware (RBA) classifier [19] . TCA and KMM make explicit as- 

umptions: TCA assumes that there are latent factors on which the 

ata can be projected such that the distributions are more simi- 

ar, while the original properties such as class separability are pre- 

erved. We trained a logistic regressor to the source data mapped 

nto the transfer components. KMM assumes that the posterior 

istributions in each domain are equal and that the support of the 

arget distribution is contained within the support of the source 

https://github.com/wmkouw/tcpr
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Table 1 

WeatherAUS data set. AUC for all pairwise combinations of domains (D = ’Darwin’, P = ’Perth’, B = ’Brisbane’ and M = ’Melbourne’). 

S D D D P P B P B M B M M 

T P B M B M M D D D P P B avg 

S-LDA 0.650 0.700 0.672 0.783 0.732 0.565 0.862 0.819 0.919 0.789 0.879 0.903 0.773 

S-QDA 0.681 0.857 0.642 0.914 0.940 0.881 0.950 0.937 0.955 0.898 0.929 0.959 0.879 

TCA 0.825 0.856 0.718 0.838 0.72 0.628 0.842 0.856 0.845 0.834 0.808 0.662 0.786 

KMM 0.778 0.704 0.556 0.766 0.705 0.691 0.827 0.717 0.768 0.612 0.517 0.505 0.679 

RCSA 0.837 0.895 0.769 0.841 0.759 0.726 0.858 0.872 0.878 0.813 0.851 0.851 0.829 

RBA 0.844 0.884 0.764 0.843 0.756 0.741 0.86 0.874 0.878 0.818 0.844 0.839 0.829 

TCP-LDA 0.833 0.886 0.749 0.853 0.738 0.733 0.858 0.869 0.875 0.828 0.838 0.859 0.827 

TCP-QDA 0.710 0.886 0.760 0.932 0.946 0.903 0.965 0.95 0.969 0.905 0.908 0.964 0.900 
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istribution. We trained both a weighted logistic regressor and 

 weighted least-squares classifier using the importance-weights 

stimated by KMM. We report the best performing of the two, 

amely least-squares. RCSA also assumes equal posterior distribu- 

ions, but employs worst-case importance-weight estimation to be 

obust to weight estimation errors. We used the authors’ imple- 

entation, which trains a weighted support vector machine using 

he estimated worst-case weights. RBA assumes that the moments 

f the source classifier’s predictions match that of the target classi- 

er. In our implementation, only the first moments are constrained 

o match. As baselines, we included a non-adaptive linear (S-LDA) 

nd quadratic (S-QDA) discriminant analysis model trained on the 

ource domain. 

All target samples are given - unlabeled - to the adaptive clas- 

ifiers. The classifiers make predictions for those given target sam- 

les and their performance is evaluated with respect to those tar- 

et samples’ true labels. Performance is measured in terms of Area 

nder the ROC-curve (AUC). All methods are trained using L 2 - 

egularization. Since there is no labeled target data available for 

alidation, we set the regularization parameter to a small value, 

amely 0.01. 

.1. Data sets 

We performed a set of experiments on two data sets that are 

eographically split into domains. In the first problem, the goal is 

o predict whether it will rain the following day, based on 22 fea- 

ures including wind speed, humidity, and sunshine (data set is 

art of the R package Rattle [33] ). The measurements are taken 

ver a period of 200 days from Australian weather stations located 

n Darwin, Perth, Brisbane, and Melbourne. Each station can be 

onsidered a domain because the feature spaces are equal but the 

nderlying data-generating distributions are different. For instance, 

he average temperature is several degrees higher in Darwin than 

n Melbourne. 

The second data set is from the UCI machine learning repository 

18] . The goal is to predict heart disease in patients from 4 differ-

nt hospitals. These are located in Hungary (294 patients), Switzer- 

and (123 patients), California (200 patients) and Ohio (303 pa- 

ients). Each hospital can be considered a domain because patients 

re measured on the same clinical features but the local patient 

opulations differ. For example, patients in Hungary are on aver- 

ge younger than patients from Switzerland (48 versus 55 years). 

eart disease is predicted from 13 clinical features such as age, 

ex, cholesterol level and chest pain type. Both data sets are pre- 

rocessed by first imputing missing values with zeros and then z- 

coring each feature. 

.2. Results 

Table 1 compares the AUCs of various classifiers on the 

eatherAUS data set. All combinations of using one station as the 

ource domain and another station as the target domain, are taken. 
111 
irstly, as a collective, the robust methods (TCP-QDA, TCP-LDA, 

BA, RCSA) rather consistently outperform the non-robust meth- 

ds (TCA , KMM, S-LDA , S-QDA), though it certainly is not the case 

hat every robust method outperforms every non-robust one. Also, 

here is one exception where S-QDA actually performs best of all. 

econdly, RCSA outperforms KMM in all cases, indicating that it 

s either difficult to estimate appropriate importance weights or 

hat it is difficult to train the importance-weighted classifier given 

MM’s weights. Thirdly, in eight out of twelve cases TCP-LDA out- 

erforms S-LDA. TCP-QDA is better than S-QDA in eleven of the 

welve. Lastly, S-LDA occasionally outperform the non-TCP, adap- 

ive classifiers, where this most notably happens in the three cases 

hen S = M. For S-QDA this happens in all cases except for S = D.

hen S = M and T = P, we find that S-QDA performs best overall.

articularly where S-LDA is concerned, these results indicate that 

daptation strategies can also be detrimental to performance. 

Table 2 lists AUCs of each classifier in the heart disease data 

et. Overall, the AUC’s are lower here, indicating that these set- 

ings are more difficult than those of the weather stations. Firstly, 

CP-LDA generally outperforms TCP-QDA here, indicating that most 

roblem settings are linearly separable and the additional flexibil- 

ty of QDA is not helpful. Secondly, the differences in performance 

etween S-LDA and S-QDA and their TCP versions is clearly less 

ppreciable. In most cases the differences seem insignificant. Ex- 

eptions occur when S = S and T = O, in which case the original

ethods actually perform clearly better and when S = S and T = 

, in which case the TCP adaptations do so. Thirdly, RCSA does not 

lways outperform KMM, but since both KMM and RCSA perform 

orse than chance on a few occasions, it does seem that the as- 

umption of equivalent posterior distributions is invalid in many 

ases. Fourthly, TCA’s performance also varies around chance level, 

hich means that it is difficult to recover a common latent rep- 

esentation here. Lastly, S-LDA and S-QDA outperform the adaptive 

lassifiers on a number of occasions again. 

. Discussion 

Although, by construction, the TCP classifiers are never worse 

han the source classifier in terms of empirical risk , they will not 

utomatically lead to improvements in the error rate. This is due 

o the fact that a surrogate loss function is used during training: 

he classifier that minimizes the surrogate loss need not be the 

lassifier that minimizes the 0/1-loss [2,4,21] . Similar performance 

uarantees as we have given with respect to empirical risk, cannot 

e given with respect to classification error, because the 0 − 1 loss 

annot be directly optimized. 

Although our TCP estimator is guaranteed to never perform 

orse than the source classifier, it may not perform well if the 

ource classifier is a poor choice to begin with. Of course, if no 

ecent source classifiers can be formed, then one can wonder 

hether any kind of adaptation will be able to construct a satis- 

actory target classifier, unless particularly reliable assumptions can 

e made. 
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Table 2 

Heart disease data set. AUC for all pairwise combinations of domains (O = ’Ohio’, H = ’Hungary’, S = ’Switzerland’ and C = ’California’). 

S O O O H H S H S C S C C 

T H S C S C C O O O H H S avg 

S-LDA 0.866 0.674 0.658 0.671 0.726 0.527 0.866 0.500 0.831 0.559 0.883 0.440 0.683 

S-QDA 0.829 0.674 0.503 0.660 0.668 0.484 0.840 0.500 0.811 0.502 0.834 0.452 0.647 

TCA 0.674 0.597 0.500 0.453 0.466 0.530 0.544 0.439 0.693 0.408 0.661 0.572 0.545 

KMM 0.709 0.591 0.460 0.503 0.568 0.552 0.742 0.302 0.294 0.345 0.290 0.508 0.489 

RCSA 0.646 0.667 0.572 0.641 0.483 0.459 0.749 0.626 0.651 0.685 0.647 0.343 0.597 

RBA 0.502 0.670 0.430 0.636 0.423 0.582 0.556 0.366 0.523 0.396 0.597 0.412 0.508 

TCP-LDA 0.864 0.675 0.653 0.673 0.725 0.555 0.867 0.424 0.831 0.717 0.882 0.447 0.693 

TCP-QDA 0.822 0.675 0.500 0.661 0.660 0.432 0.841 0.422 0.813 0.565 0.847 0.414 0.638 
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Given that reliable assumptions can be made, our TCP estima- 

or could still be useful. Rather than the original supervised source 

lassifier, one can, in principle, use any adaptive classifier in com- 

ination with TCP parameter estimation. In that case, the TCP pa- 

ameter estimator would still retain its guarantee to not perform 

orse that the classifier it is compared against, which in this case 

s the adaptive classifier. Potentially, this may of course lead to 

ven better parameter estimates. A wide range of standard classi- 

ers that rely on the optimization of a convex loss can be incorpo- 

ated, such as least-squares or support vector machines, meaning 

hat TCP could be combined with many adaptive classifiers. Non- 

onvex losses, as widely employed in this era of deep learning, are 

 challenge and, as yet, it is an open and interesting research ques- 

ion to what extent our theoretical results can be salvaged in that 

etting. 

Another possible extension to the current estimator is to use 

ultiple source domains. Perhaps our TCP estimator could produce 

etter estimates than the best source estimates. One could envision 

ontrasting the proposal classifier with the classifier producing the 

owest risk from among a set of source classifiers, each trained 

n its own source domain. Finding the best one from among the 

et of source classifiers would require an additional minimization 

tep over source domains, which would increase the computational 

ost. Selecting a subset of source domains in advance, could limit 

his increase in cost and make such an approach feasible. 

. Conclusion 

We have designed a risk minimization formulation for a 

omain-adaptive classifier whose performance, in terms of em- 

irical target risk, is always at least as good as that of the non-

daptive source classifier, without making assumptions on the rela- 

ionship between domains. This is something that no other method 

an guarantee. Furthermore, for the discriminant analysis case, its 

erformance is always strictly better. As demonstrated, our Target 

ontrastive Pessimistic discriminant analysis model performs con- 

istently strong among other robust classifiers. 
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ppendix A 

roof of Theorem 1. Let { (x i , y i ) } n i =1 
be a data set of size

 drawn iid from a continuous distribution defined over in- 

ut space X ⊆ R 

D and output space Y = 

{{ 0 , 1 } K : ∑ 

k y k = 1 , y ∈
112 
 

}
. Similarly, let { (z j , u j ) } m 

j=1 
be a data set of size m , drawn

id from another continuous distribution defined over X × Y . 

onsider a discriminant analysis model parameterized with θ = 

π1 , . . . , πK , μ1 , . . . , μK , �1 , . . . , �K ) with empirical risk defined 

y: 

ˆ 
 QDA (θ | x, y ) = 

1 

m 

m ∑ 

i =1 

K ∑ 

k =1 

−y ik log [ πk N (x i | μk , �k )] . (A.1) 

he sample covariance matrix, �k , is required to be non-singular, 

hich is guaranteed when there are more unique samples than 

eatures for every class. Let ˆ θS be the parameters estimated on la- 

eled source data: 

ˆ S = arg min 

θ∈ �
ˆ R QDA 

(
θ | x, y 

)
. (A.2) 

nd let ( ̂  θT , q ∗) be the parameters and worst-case labeling es- 

imated by mini-maximizing the Target Contrastive Pessimistic 

isk: 

ˆ T , q ∗ = arg min 

θ∈ �
arg max 

q ∈ �m 
K−1 

ˆ R QDA 

(
θ | z, q )− ˆ R QDA 

(
ˆ θS | z, q ) . (A.3) 

irstly, keeping q fixed, the minimization over the contrast be- 

ween the target risk of the proposal parameters θ and the source 

arameters ˆ θS is upper bounded by 0, because both sets of param- 

ters are elements of the same parameter space, θ, ˆ θS ∈ �: 

in 

θ∈ �
ˆ R QDA 

(
θ | z, q ) − ˆ R QDA 

(
ˆ θS | z, q ) ≤ 0 , (A.4) 

or all choices of q . Since θ can always be set to ˆ θS , values for θ
hat would result in a larger target risk than that of ˆ θS are not 

alid minimizers of the contrast. Considering that the contrast is 

pper bounded for any labeling q , it is also upper bounded by 0 

or the worst-case labeling: 

in 

θ∈ �
ˆ R QDA 

(
θ | z, q ∗) − ˆ R QDA 

(
ˆ θS | z, q ∗) ≤ 0 , (A.5) 

nd since ˆ θT is the minimizer of the left-hand side of (A.5) : 

ˆ 
 QDA 

(
ˆ θ T | z, q ∗) − ˆ R QDA 

(
ˆ θS | z, q ∗) ≤ 0 . (A.6) 

Secondly, keeping θ fixed, the empirical risk with respect to the 

rue labeling u is always less than or equal to the empirical risk 

ith respect to the worst-case labeling: 

ˆ 
 QDA (θ | z, u ) − ˆ R QDA ( ̂  θS | z, u ) 

≤ max 
q ∈ �m 

K−1 

ˆ R QDA (θ | z, q ) − ˆ R QDA ( ̂  θS | z, q ) . (A.7) 

ince q ∗ is the maximizer for ˆ θT as parameters, we can write: 

ˆ 
 QDA ( ̂  θ T | z, u ) − ˆ R QDA ( ̂  θS | z, u ) 

≤ ˆ R QDA ( ̂  θ T | z, q ∗) − ˆ R QDA ( ̂  θS | z, q ∗) . (A.8) 

ombining Inequalities A.6 and A.8 gives: 

ˆ 
 QDA 

(
ˆ θ T | z, u 

)
− ˆ R QDA 

(
ˆ θS | z, u 

)
≤ 0 . (A.9) 
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ringing the second term on the left-handside to the right- 

andside shows that the target risk of the TCP estimate is always 

ess than or equal to the target risk of the source classifier’s: 

ˆ 
 QDA 

(
ˆ θ T | z, u 

)
≤ ˆ R QDA 

(
ˆ θS | z, u 

)
. (A.10) 

Equality in (A.10) occurs with probability 0, which can be 

hown through the parameter estimators. The total mean for the 

ource classifier consists of the weighted combination of the class 

eans, resulting in the overall source sample average: 

ˆ S = 

K ∑ 

k =1 

ˆ πS 
k ˆ μS 

k 

= 

K ∑ 

k =1 

∑ n 
i y ik 
n 

[ 

1 ∑ n 
i y ik 

n ∑ 

i =1 

y ik x i 

] 

= 

1 

n 

n ∑ 

i =1 

x i . (A.11) 

he total mean for the TCP-QDA estimator is similarly defined, re- 

ulting in the overall target sample average: 

ˆ T = 

K ∑ 

k =1 

ˆ π T 
k ˆ μT 

k 

= 

K ∑ 

k =1 

∑ m 

j q ∗
jk 

m 

[ 

1 ∑ m 

j q ∗
jk 

m ∑ 

j=1 

q ∗jk z j 

] 

= 

K ∑ 

k =1 

1 

m 

m ∑ 

j=1 

q ∗jk z j 

= 

1 

m 

m ∑ 

j=1 

z j . (A.12) 

ote that since q ∗ consists of probabilities, the sum over classes 
 K 
k q 

∗
jk 

is 1, for every sample j. Equal risks for these parameter 

ets, ˆ R QDA 

(
ˆ θT | z, u ) = 

ˆ R QDA ( ̂  θ
S | z, u ) , implies equality of the total

eans, ˆ μT = ˆ μS . By Eqs. A.11 and A.12 , equal total means imply 

qual sample averages: 1 
m 

∑ m 

j z j = 

1 
n 

∑ n 
i x i . Given a set of source 

amples, drawing a set of target samples such that their averages 

re exactly equal , constitutes a single event under a probability 

ensity function. By definition, single events under continuous dis- 

ributions have probability 0. Therefore, a strictly smaller risk oc- 

urs almost surely: 

ˆ 
 QDA 

(
ˆ θ T | z, u 

)
< 

ˆ R QDA 

(
ˆ θS | z, u 

)
. (A.13) 

�

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patrec.2021.05.005 . 
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