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Consider a domain-adaptive supervised learning setting, where a classifier learns from labeled data in a
source domain and unlabeled data in a target domain to predict the corresponding target labels. If the
classifier’s assumption on the relationship between domains (e.g. covariate shift, common subspace, etc.)
is valid, then it will usually outperform a non-adaptive source classifier. If its assumption is invalid, it
can perform substantially worse. Validating assumptions on domain relationships is not possible without
MSC: target labels. We argue that, in order to make domain-adaptive classifiers more practical, it is necessary

41A05 to focus on robustness; robust in the sense that an adaptive classifier will still perform at least as well as
41A10 a non-adaptive classifier without having to rely on the validity of strong assumptions. With this objective
65D05 in mind, we derive a conservative parameter estimation technique, which is transductive in the sense
65D17 of Vapnik and Chervonenkis, and show for discriminant analysis that the new estimator is guaranteed
Keywords: to achieve a lower risk on the given target samples compared to the source classifier. Experiments on

Domain adaptation
Robust estimator
Discriminant analysis
Transduction

problems with geographical sampling bias indicate that our parameter estimator performs well.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Generalization in supervised learning relies on the fact that fu-
ture samples originate from the same underlying data-generating
distribution as the ones used for training. However, this is not the
case in settings where data is collected from different locations,
different measurement instruments are used or there is only ac-
cess to biased data [25]. In these situations the labeled data does
not represent the distribution of interest. This problem setting is
referred to as a domain adaptation setting, where the distribution
of the labeled data is called the source domain and the distribution
of interest is called the target domain [3,15]. Most often, data in the
target domain is not labeled and adapting a source domain classi-
fier, i.e., changing predictions to suit the target domain, is the only
means by which one can make accurate predictions. Unfortunately,
depending on the domain dissimilarity, adaptive classifiers can eas-
ily perform worse than non-adaptive ones. We formulate a conser-
vative adaptive classifier that always performs at least as well as
the non-adaptive one.'

* Handle by Associate Editor Francesco Tortorella.
* Corresponding author.
E-mail address: w.m.kouw@tue.nl (W.M. Kouw).
1 A shortened, preliminary version was accepted for S+SSPR [16]. The current ver-
sion offers a significant extension with a clearer exposition, additional technical de-
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In the general setting, domains can be arbitrarily different,
which means generalization will be extremely difficult. However,
there are cases where the problem setting is more structured: in
the covariate shift setting, the marginal data distributions differ but
the posterior distributions are equal [5,9,28]. In such cases, a cor-
rectly specified adaptive classifier will converge to the same solu-
tion as the target classifier [9]. One way to carry out adaptation
is by weighing each source sample by how important it is under
the target distribution and training on the importance-weighted
labeled source data. However, such a classifier can perform poorly
when applied to settings where the covariate shift assumption is
false, i.e., where the posterior distributions from both domains are
not equal [8,19]. In that case, one often observes that a few sam-
ples are given large weights and all other samples are given near-
zero weights, which greatly reduces the effective sample size [23,
Chapter 8]. Sensitivity to domain relationship assumptions is not
restricted to covariate shift. Another adaptive algorithm, Transfer
Component Analysis (TCA), assumes the existence of a latent rep-
resentation common to both domains. When that does not hold,
mapping both source and target data onto transfer components

tails and references, more experiments, and a comprehensive analysis and discus-
sion.
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will result in mixing of the class-conditional distributions and per-
formance will deteriorate [24].

Since the validity of the aforementioned assumptions is difficult
- if not impossible - to check, it is of interest to design robust clas-
sifiers. Robustness to uncertainty is often achieved through min-
imax optimization [17]. An example of a robust adaptive classi-
fier is Robust Covariate Shift Adjustment (RCSA), which first max-
imizes risk with respect to the importance-weights and subse-
quently minimizes risk with respect to the classifier parameters
[32]. It attempts to account for estimation errors in importance-
weights. Another example is the Robust Bias-Aware (RBA) classi-
fier, which plays a game between a risk minimizing target classifier
and a risk maximizing target posterior distribution [19]. The ad-
versary is constrained to pick posteriors that match the moments
of the source distribution statistics, to avoid posterior probabilities
that result in degenerate classifiers (e.g. assign all posterior prob-
abilities to 1). Matching moments means that RBA classifiers lose
predictive power in areas of feature space where the source dis-
tribution has limited support. Note that both robust methods still
rely on assuming covariate shift.

Our main contribution is a parameter estimator that produces
estimates with a risk that is always lower or equal to the risk of
the source classifier, with respect to the given target samples. It
does so without making domain relationship assumptions such as
covariate shift but by constructing a specific type of risk that can
be considered transductive in the sense originally defined by by
Vapnik and Chervonenkis [see 30]. Furthermore, we show that in
the case of discriminant analysis, the estimator will produce strictly
smaller risks on the target data. To the best of our knowledge, such
performance guarantees compared to the source classifier have not
been shown before.

The paper is outlined as follows: Section 3 presents the for-
mulation of our method, with discriminant analysis in Section 4.
Section 5.1 shows experiments on two data sets involving geo-
graphical sampling bias, indicating that our estimator consistently
performs among the best. We conclude with limitations and a dis-
cussion in Section 6. To start with, the next section briefly intro-
duces the specific domain adaptation setting that we consider and
comments on the transductive nature of our particular approach.

2. Domain adaptation and transduction

A domain is defined here as a particular joint probability dis-
tribution over a D-dimensional input space X cRP and a K-
dimensional output space of one-hot vectors Y = {b e {0,1}K:

Yebi = 1} [15]. Let S mark a source domain, with n samples x =
(X1, ...,xn) with corresponding labels y = (y1,...,yn) € Y" drawn
from the source domain’s joint distribution. Similarly, let 7 mark a
target domain, with m samples z = (z;, ..., zm) with corresponding
labels u = (uq, ..., un) drawn from the target domain’s joint distri-
bution. The target labels u are unknown at training time and the
goal is to predict them, using only the unlabeled target samples z
and the labeled source samples (x, y).

2.1. The meaning of transduction

Given that the primary performance measure in this work is
specifically the risk on the unlabeled data of the target domain
that is available to us, our objective is essentially transductive [see
15]. This is in line with the original definition of transduction as
proposed by Vapnik and Chervonenkis [see 30].

It should be pointed out that, confusingly, what is referred to
as transductive for most transfer learning and domain adaptation
methods, just means that there is labeled data available for the
source but not for the target domain [see also 15]. The classi-
fiers considered in papers such as [1,10,13], like most papers in
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Fig. 1. Example domain adaptation setting. (Left) Labeled source domain data,
(right) labeled target domain data. Black lines show a classifier trained on source
data, applied to source data (left) and target data (right).

our review work [15], do not focus on the unlabeled samples in
the target domain in particular and are actually not transductive
in the sense of Vapnik and Chervonenkis [see also 15]. Works like
[27,29] exploit graph methods that do not have a ready out-of-
sample extension and are therefore transductive in the sense of
Vapnik and Chervonenkis. As Section 3 shows, our method focuses
particularly on the risk obtained on the given target data and is,
as such, transductive. As it turns out, it is specifically this ap-
proach that can provide us with performance guarantees, where
other techniques cannot.

We should note that, typically, our target classifiers can still be
used for classifying new and unseen target domain samples. That
is, they can also be used for inductive inference. This is especially
the case if the samples from the target domain can be considered
representative of that domain. In that case, the performance on
those particular target domain instances can equally well be inter-
preted as a regular empirical risk, used in standard empirical risk
minimization [26,31]. Just as in the supervised learning setting, it
is then assumed that having a small empirical risk carries over to
a small generalization error and that the classifier can be success-
fully employed inductively.

As a final remark, we like to state that the benefits of trans-
duction over induction, or vice versa, are not always easily identi-
fied. Especially because in many settings, inductive classifiers can
be used for transduction and the other way around. Refer to Chap-
ter 25 in [6] for further views and considerations.

2.2. Example

Fig. 1 visualizes some concepts used throughout the paper. On
the left is shown samples from the source domain, labeled as
points (red) versus crosses (blue). These were drawn from isotropic
Gaussians centered at [—2, 0] and [+2, 0], respectively. The black
lines are a contour plot of the posterior probabilities of a classifier
trained on the source data. On the right is shown data from the
target domain, as well as the source classifier applied to the target
data. These target samples were drawn from two Gaussian distri-
butions, both with covariance matrix [3, 2; 2, 4] but one with
a mean of [—1, 2] and one with a mean of [+2, 1]. The source
and target domains are therefore related to each other through an
affine transformation. Note that the source classifier does not fit
the target data well.

3. Robust estimator for target domain

In the following, we present the construction of our estimator.
First, we discuss the risk of the classifier in the target domain. Sec-
ondly, we compare the target risk of a proposal classifier with the
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target risk incurred by the source classifier and thirdly, we assume
a worst-case labeling for the given target samples.

3.1. Target risk

The empirical risk of a classifier in the source domain is com-
puted as the average loss with respect to source samples (x,y):

n
R(h|xy) = -3 ehlxy). 1)
i=1
where h is the classification function mapping input to labels and
¢ is a loss function comparing the classifier’s prediction h(x;) with
the true label y; at training time. Since the classification error, or
0 — 1 loss, cannot be directly optimized over, it is customary to
choose surrogate loss functions, such as the quadratic loss (h(x;) —
¥i)? [11]. The source classifier is the classifier found by minimizing
the empirical risk with respect to source samples:

hS = argmin R(h|x.y). (2)
her
where # refers to the hypothesis space.

Since the source classifier does not incorporate any part of the
target domain, it is essentially entirely naive of it. But source do-
mains are chosen for a reason - often because they are the most
similar data available - and source classifiers are subsequently re-
garded as the best alternative for classifying the target domain. To
evaluate hS in the target domain, the risk of the classifier with re-
spect to target samples (z, u), is computed:

m

RS |z.u) = 37 e(f |2p.u).

j=1

3)

We argue that adaptive classifiers should never perform worse
than source classifiers. In other words, they should never achieve
a larger target risk.

3.2. Contrast

We formalize the desire to never achieve a larger target risk by
directly comparing the target risk of a potential alternative classi-
fier with the target risk of the source classifier. If we subtract the
target risk of the source classifier, then we can argue that the re-
sulting function should never be positive:

R(h|z.u) — R(hS |z u) (4)
If this contrast between risk functions is used as a minimization
objective, i.e., i =min, R(h|z,u) — R(hS|z u), then the target
risk of the resulting classifier is bounded above by the risk of the
source classifier: R(h |z u) < R(hS |z, u). Equality occurs when the
source classifier is recovered: i = hS. Classifiers that lead to larger
target risks are not valid outcomes of this minimization procedure.

3.3. Robustness

Eq. (4) still relies on target labels u, which are unknown dur-
ing training. Instead of u we use a worst-case labeling, achieved
by maximizing risk with respect to a hypothetical labeling q. For
any classifier h, the risk with respect to this worst-case labeling
will always be larger than the risk with respect to the true target
labeling:

R(h|z,u) <max R(h|zq). (5)
q

Maximizing over a set of discrete labels is a combinatorial prob-

lem and, unfortunately, this one is computationally expensive. To

avoid this, we apply a relaxation by considering a soft labeling,

qjk = p(uj = k| z;). This means that q; is a vector of K elements
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that sum to 1. In other words, a point on a K —1 simplex, Ag_;.
For m samples, the Cartesian product of m simplices is taken:
Ag_1 x Ag_q x --- = AP ;. By optimizing with respect to a worst-
case labeling, the estimator will be more robust to uncertainty over
target labels [17].

3.4. Target Contrastive Pessimistic risk

Combining the contrast between risk functions from (4) with
the worst-case labeling q from (5) produces the following risk
function:

R™ (| s, z, q) =

K(h|Zj,q]‘)—Z(Fl$|Zj,q]‘). (6)

m
=1

1
m 4

j
We refer to the risk in Eq. (6) as the Target Contrastive Pessimistic
risk (TCP). Minimizing with respect to a classifier h and maximiz-
ing with respect to a hypothetical labeling g, produces the new TCP
target classifier:

h7 = arg min max R™ (| hS, z, q).
hen 98K

(7)

Note that the TCP risk only considers the performance on the tar-
get domain. More precisely, it considers the performance on the
given samples from the target domain and is, in this sense, a trans-
ductive approach [12,30]. It is different from the risk formulations
in [19,32], and those mentioned in Section 2, because those incor-
porate performance on the source domain as well. Our formulation
focuses purely on the performance gain we can achieve over the
source classifier, in terms of target risk.

3.5. Optimization

If the loss function ¢ is restricted to be globally convex and the
hypothesis space # to be a convex set, then the TCP risk will be
globally convex with respect to h and there will be a unique opti-
mum for h. The TCP risk is linear with respect to g and the opti-
mum need not be unique for q. But the combined minimax objec-
tive will be globally convex-linear, which guarantees the existence
of a saddle point, i.e., a unique optimum with respect to both h
and q [7].

Finding this saddle point can be done through first perform-
ing a gradient descent step according to the partial derivative with
respect to h, followed by a gradient ascent step according to the
partial derivative with respect to q. However, this last step causes
the updated q to leave the simplex. In order to enforce the con-
straint, the updated g is projected back onto the simplex. The pro-
jection, P, maps a point outside the simplex, a, to the point, b, that
is the closest point on the simplex in terms of Euclidean distance:
P(a) = argminpx ||la — b||2 [22]. Unfortunately, the projection step
complicates the computation of the step size, which we replace by
a learning rate «!, decreasing over iterations t. This results in the
overall update:

g+ < P(q" +a'Vq). (8)

A gradient descent-ascent procedure for globally convex-linear ob-
jectives is guaranteed to converge to a saddle point (c.f. proposition
4.4 and corollary 4.5 of [7]).

4. Discriminant analysis

Interestingly, for classical discriminant analysis (DA), it can be
shown that the TCP risk produces parameter estimates with strictly
smaller risks than that of the source classifier. Discriminant anal-
ysis models the data from each class with a Gaussian distribu-
tion, weighted proportional to a class prior: , N (x| g, Zg) [11].
We use the following shorthand notation for the parameters: 6, =
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(g, g, Zi). The model is expressed as an empirical risk mini-
mization formulation by taking the negative log-likelihood as a loss
function, £(0 |x,y) = >X —y, log[m, N (x| i, )l

4.1. Quadratic discriminant analysis

If each class is modeled with a separate covariance matrix,
the resulting classifier is a quadratic function of the difference in
means and covariances, and is hence called quadratic discriminant
analysis (QDA). For target data z and probabilistic labels g, the loss
is formulated as:

K
topa(0 125, q5) =Y —qpcloglmy N(z; | k. Zp)].
k=1

(9)

Note that the loss is now expressed in terms of classifier param-
eters 6, as opposed to the classifier h. Plugging the loss from
(9) into (6), the TCP-QDA risk becomes:

RI.(016%,2,q)

opa(0 125, 4;) — taoa (0 12), ;)

3~
T Ms EMS

B 1 Z‘ log TN e B0 (10)
= qjlog —— 1 —— ==
mi i REN (25| A 27)
where the estimate itself is:
A7 = argmin renax RE%I;\(G 105,2,q). (11)

6ec®

Minimization with respect to & has a closed-form solution for
discriminant analysis models. For each class, the parameter esti-
mates are:

1 m
=m qu'ka (12)
j=1
m m
Mk:(ijl<)_1z%kzjs (13)
j=1 j=1
m m
Se= (D a) Y iz — ) "z — ) - (14)
j=1 j=1
Keeping 0 fixed, the gradient with respect to g is:
9 e 1 TN (25 | s Zi)
0952)———0’— (15)
agy an010%2 0 = o los s 8
4.2. Example

Fig. 2 visualizes the difference between the source classifier
and our TCP-QDA classifier. On the left is shown the source clas-
sifier applied to the target data from Section 2.2. On the right is
shown the TCP-QDA classifier applied to the same data. Note that
it has shifted upwards to better fit the target samples, achieving a
smaller risk than the source classifier.

4.3. Regularization

One of the properties of a discriminant analysis model is that
it requires the estimated covariance matrix ¥, to be non-singular.
It is possible for the maximizer over q in TCP-QDA to assign less
samples than dimensions to one of the classes, causing the covari-
ance matrix for that class to be singular. To prevent this, we regu-
larize its estimation by enforcing a lower bound on the eigenvalues
of the estimated covariance matrix.
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Flg 2. Example of difference between source Quadratic Discriminant Analysis (left
0°) and Target Contrastive Pessimistic - Quadratic Discriminant Analysis (right, 97)
on the target domain data from Section 2.2.

4.4. Linear discriminant analysis

If the model is constrained to share a covariance matrix be-
tween classes, the resulting classifier is a linear function of the dif-
ference in means and is hence termed linear discriminant analysis
(LDA). This constraint is imposed through the weighted sum over
class covariance matrices ¥ = Zf T 2

4.5. Performance guarantee

For the discriminant analysis model, the TCP parameter estima-
tor obtains a strictly smaller risk. In other words, this parameter
estimator is guaranteed to improve its performance - on the given
target samples, and in terms of risk - over the source classifier.
This is the first domain adaptation parameter estimator for which
such a guarantee can be provided.

Theorem 1. For a continuous target distribution, with more samples
than features for every class, the empirical target risk, with respect
to discriminant analysis, of TCP estimated parameters 07 is, almost
surely, strictly smaller than that of the source parameters 9s:

EQDA(éT | Z, ll) < RAQDA(éS

The reader is referred to Appendix A for the proof. It follows
similar steps as a guarantee for discriminant analysis in semi-
supervised learning [20]. Note that as long as the same amount of
regularization is added to both the source and the TCP estimator,
the strictly smaller risk also holds for a regularized model.

|2, u) (16)

5. Experiments

We see the TCP risk formulation from Section 3, together with
Theorem 1, as our main contributions. Of course, it is still of in-
terest to see how other approaches compare to ours. We compare?
the performance of our classifiers with that of some well-known
and robust domain-adaptive classifiers. We implemented Trans-
fer Component Analysis (TCA) [24], Kernel Mean Matching (KMM)
[14], Robust Covariate Shift Adjustment (RCSA) [32] and the Robust
Bias-Aware (RBA) classifier [19]. TCA and KMM make explicit as-
sumptions: TCA assumes that there are latent factors on which the
data can be projected such that the distributions are more simi-
lar, while the original properties such as class separability are pre-
served. We trained a logistic regressor to the source data mapped
onto the transfer components. KMM assumes that the posterior
distributions in each domain are equal and that the support of the
target distribution is contained within the support of the source

2 Code is available at https://github.com/wmkouw/tcpr
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Table 1

WeatherAUS data set. AUC for all pairwise combinations of domains (D="Darwin’, P="Perth’, B="Brisbane’ and M="Melbourne’).
S D D D P P B P B M B M M
T P B M B M M D D D P P B avg
S-LDA 0.650 0700 0672 0783 0.732 0.565 0.862 0.819 0919 0.789 0.879 0.903 0.773
S-QDA 0.681 0857 0642 0914 0.940 0.881 0950 0937 0955 0898 0.929 0.959 0.879
TCA 0825 0856 0718 0838 0.72 0.628 0.842 0.856 0.845 0.834 0.808 0.662 0.786
KMM 0.778 0704 0556 0.766 0.705  0.691 0.827 0717 0768 0.612 0.517 0.505 0.679
RCSA 0.837 0.895 0.769 0.841 0759 0726 0858 0872 0878 0.813 0.851 0.851 0.829
RBA 0844 0884 0764 0.843 0.756  0.741 0.86 0874 0878 0.818 0844 0839 0.829
TCP-LDA 0833 0886 0749 0853 0.738 0.733 0.858 0.869 0875 0.828 0.838 0.859  0.827
TCP-QDA  0.710 0.886 0.760 0.932 0.946 0.903 0.965 0.95 0969 0.905 0.908 0.964 0.900

distribution. We trained both a weighted logistic regressor and
a weighted least-squares classifier using the importance-weights
estimated by KMM. We report the best performing of the two,
namely least-squares. RCSA also assumes equal posterior distribu-
tions, but employs worst-case importance-weight estimation to be
robust to weight estimation errors. We used the authors’ imple-
mentation, which trains a weighted support vector machine using
the estimated worst-case weights. RBA assumes that the moments
of the source classifier’s predictions match that of the target classi-
fier. In our implementation, only the first moments are constrained
to match. As baselines, we included a non-adaptive linear (S-LDA)
and quadratic (S-QDA) discriminant analysis model trained on the
source domain.

All target samples are given - unlabeled - to the adaptive clas-
sifiers. The classifiers make predictions for those given target sam-
ples and their performance is evaluated with respect to those tar-
get samples’ true labels. Performance is measured in terms of Area
Under the ROC-curve (AUC). All methods are trained using L2-
regularization. Since there is no labeled target data available for
validation, we set the regularization parameter to a small value,
namely 0.01.

5.1. Data sets

We performed a set of experiments on two data sets that are
geographically split into domains. In the first problem, the goal is
to predict whether it will rain the following day, based on 22 fea-
tures including wind speed, humidity, and sunshine (data set is
part of the R package Rattle [33]). The measurements are taken
over a period of 200 days from Australian weather stations located
in Darwin, Perth, Brisbane, and Melbourne. Each station can be
considered a domain because the feature spaces are equal but the
underlying data-generating distributions are different. For instance,
the average temperature is several degrees higher in Darwin than
in Melbourne.

The second data set is from the UCI machine learning repository
[18]. The goal is to predict heart disease in patients from 4 differ-
ent hospitals. These are located in Hungary (294 patients), Switzer-
land (123 patients), California (200 patients) and Ohio (303 pa-
tients). Each hospital can be considered a domain because patients
are measured on the same clinical features but the local patient
populations differ. For example, patients in Hungary are on aver-
age younger than patients from Switzerland (48 versus 55 years).
Heart disease is predicted from 13 clinical features such as age,
sex, cholesterol level and chest pain type. Both data sets are pre-
processed by first imputing missing values with zeros and then z-
scoring each feature.

5.2. Results
Table 1 compares the AUCs of various classifiers on the

WeatherAUS data set. All combinations of using one station as the
source domain and another station as the target domain, are taken.

m

Firstly, as a collective, the robust methods (TCP-QDA, TCP-LDA,
RBA, RCSA) rather consistently outperform the non-robust meth-
ods (TCA, KMM, S-LDA, S-QDA), though it certainly is not the case
that every robust method outperforms every non-robust one. Also,
there is one exception where S-QDA actually performs best of all.
Secondly, RCSA outperforms KMM in all cases, indicating that it
is either difficult to estimate appropriate importance weights or
that it is difficult to train the importance-weighted classifier given
KMM’s weights. Thirdly, in eight out of twelve cases TCP-LDA out-
performs S-LDA. TCP-QDA is better than S-QDA in eleven of the
twelve. Lastly, S-LDA occasionally outperform the non-TCP, adap-
tive classifiers, where this most notably happens in the three cases
when S = M. For S-QDA this happens in all cases except for S = D.
When § = M and 7 = P, we find that S-QDA performs best overall.
Particularly where S-LDA is concerned, these results indicate that
adaptation strategies can also be detrimental to performance.

Table 2 lists AUCs of each classifier in the heart disease data
set. Overall, the AUC's are lower here, indicating that these set-
tings are more difficult than those of the weather stations. Firstly,
TCP-LDA generally outperforms TCP-QDA here, indicating that most
problem settings are linearly separable and the additional flexibil-
ity of QDA is not helpful. Secondly, the differences in performance
between S-LDA and S-QDA and their TCP versions is clearly less
appreciable. In most cases the differences seem insignificant. Ex-
ceptions occur when S = S and 7 = O, in which case the original
methods actually perform clearly better and when S = S and 7 =
H, in which case the TCP adaptations do so. Thirdly, RCSA does not
always outperform KMM, but since both KMM and RCSA perform
worse than chance on a few occasions, it does seem that the as-
sumption of equivalent posterior distributions is invalid in many
cases. Fourthly, TCA’s performance also varies around chance level,
which means that it is difficult to recover a common latent rep-
resentation here. Lastly, S-LDA and S-QDA outperform the adaptive
classifiers on a number of occasions again.

6. Discussion

Although, by construction, the TCP classifiers are never worse
than the source classifier in terms of empirical risk, they will not
automatically lead to improvements in the error rate. This is due
to the fact that a surrogate loss function is used during training:
the classifier that minimizes the surrogate loss need not be the
classifier that minimizes the 0/1-loss [2,4,21]. Similar performance
guarantees as we have given with respect to empirical risk, cannot
be given with respect to classification error, because the 0 — 1 loss
cannot be directly optimized.

Although our TCP estimator is guaranteed to never perform
worse than the source classifier, it may not perform well if the
source classifier is a poor choice to begin with. Of course, if no
decent source classifiers can be formed, then one can wonder
whether any kind of adaptation will be able to construct a satis-
factory target classifier, unless particularly reliable assumptions can
be made.
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Table 2

Heart disease data set. AUC for all pairwise combinations of domains (O='Ohio’, H="Hungary’, S=’Switzerland’ and C='California’).
S 0 (o] 0 H H S H S C S C C
T H S C S C C (o] o (o] H H S avg
S-LDA 0866 0674 0.658 0.671 0.726 0.527 0.866 0.500 0.831 0.559  0.883 0.440 0.683
S-QDA 0829 0674 0503 0.660 0.668 0.484 0.840 0500 0.811 0502 0.834 0452 0.647
TCA 0.674 0597 0500 0453 0466 0530 0.544 0439 0.693 0408 0.661 0.572 0.545
KMM 0.709  0.591 0460 0503 0568 0552 0742 0302 0294 0345 0290 0.508 0.489
RCSA 0.646  0.667 0572  0.641 0483 0459 0749 0.626 0.651 0.685 0.647 0343  0.597
RBA 0502 0670 0430 0636 0423 0582 0556 0366 0.523 0396 0.597 0412 0.508
TCP-LDA 0.864 0.675 0653 0.673 0725 0555 0.867 0424 0.831 0.717 0.882 0.447 0.693
TCP-QDA  0.822 0.675 0.500 0.661 0.660  0.432  0.841 0422 0813 0565 0847 0414 0.638

Given that reliable assumptions can be made, our TCP estima-
tor could still be useful. Rather than the original supervised source
classifier, one can, in principle, use any adaptive classifier in com-
bination with TCP parameter estimation. In that case, the TCP pa-
rameter estimator would still retain its guarantee to not perform
worse that the classifier it is compared against, which in this case
is the adaptive classifier. Potentially, this may of course lead to
even better parameter estimates. A wide range of standard classi-
fiers that rely on the optimization of a convex loss can be incorpo-
rated, such as least-squares or support vector machines, meaning
that TCP could be combined with many adaptive classifiers. Non-
convex losses, as widely employed in this era of deep learning, are
a challenge and, as yet, it is an open and interesting research ques-
tion to what extent our theoretical results can be salvaged in that
setting.

Another possible extension to the current estimator is to use
multiple source domains. Perhaps our TCP estimator could produce
better estimates than the best source estimates. One could envision
contrasting the proposal classifier with the classifier producing the
lowest risk from among a set of source classifiers, each trained
on its own source domain. Finding the best one from among the
set of source classifiers would require an additional minimization
step over source domains, which would increase the computational
cost. Selecting a subset of source domains in advance, could limit
this increase in cost and make such an approach feasible.

7. Conclusion

We have designed a risk minimization formulation for a
domain-adaptive classifier whose performance, in terms of em-
pirical target risk, is always at least as good as that of the non-
adaptive source classifier, without making assumptions on the rela-
tionship between domains. This is something that no other method
can guarantee. Furthermore, for the discriminant analysis case, its
performance is always strictly better. As demonstrated, our Target
Contrastive Pessimistic discriminant analysis model performs con-
sistently strong among other robust classifiers.
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Appendix A
Proof of Theorem 1. Let {(x;y;)}; be a data set of size

n drawn iid from a continuous distribution defined over in-
put space X € RP and output space Y = {{0, 1 =1ye
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y}. Similarly, let {(zj,uj)}T=1 be a data set of size m, drawn
iid from another continuous distribution defined over X x ).

Consider a discriminant analysis model parameterized with 6 =

(1, T 1y s U 21, - .-, 2g) With empirical risk defined

by:

R 1 m K

Ropa (0 |x,y) = = > > —valoglme N (x; | iy, Zi)]- (A1)
i=1 k=1

The sample covariance matrix, X, is required to be non-singular,
which is guaranteed when there are more unique samples than
features for every class. Let S be the parameters estimated on la-
beled source data:

05 = arg min ﬁQDA(Q 1x.y). (A.2)

0ec®
and let (éT,q*) be the parameters and worst-case labeling es-
timated by mini-maximizing the Target Contrastive Pessimistic
risk:

07, q* = argmin arg max Ropa (612 q) —ﬁQDA(éS |2.q).
0e® qeAR |

(A.3)

Firstly, keeping q fixed, the minimization over the contrast be-
tween the target risk of the proposal parameters 6 and the source
parameters ¢ is upper bounded by 0, because both sets of param-
eters are elements of the same parameter space, 6, 0S ¢ ©:

min Ropa (612, q) — Roon(0°12.4) <0, (A4)
for all choices of q. Since 6 can always be set to 6, values for 0
that would result in a larger target risk than that of #S are not
valid minimizers of the contrast. Considering that the contrast is
upper bounded for any labeling g, it is also upper bounded by 0
for the worst-case labeling:

min Rooa (€ 12.9") — Ropa(6°12.9*) <0, (A5)
and since 97 is the minimizer of the left-hand side of (A.5):
Ropa (07 12, 4") — Ropa(6° | 2.4) < 0. (A.6)

Secondly, keeping 6 fixed, the empirical risk with respect to the
true labeling u is always less than or equal to the empirical risk
with respect to the worst-case labeling:

Ropa (@ 1z, u) — Ropa (9% |z, u)

< max Ropa(012,9) — Ropa (8% 2, q) . (A7)
qeAR,

Since g* is the maximizer for 7 as parameters, we can write:

Ropa(87 |z, u) — Ropa (8% |z, u)

< Rooa(07 12.4") — Ropa (0% | 2.4°) . (A8)
Combining Inequalities A.6 and A.8 gives:
ﬁQDA(éT | zZ, ll) — ﬁQDA(éS |Z, U) < 0. (Ag)
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Bringing the second term on the left-handside to the right-
handside shows that the target risk of the TCP estimate is always
less than or equal to the target risk of the source classifier’s:

I?QDA(GAle, u) < Ropa(6°|z.u). (A.10)

Equality in (A.10) occurs with probability 0, which can be
shown through the parameter estimators. The total mean for the
source classifier consists of the weighted combination of the class
means, resulting in the overall source sample average:

K
as =378 g
k=1
K n n
Zi Yik 1
= _ y.kx.
g no| X i ; o
n
:% > X (A11)

i=1

The total mean for the TCP-QDA estimator is similarly defined, re-
sulting in the overall target sample average:

(A12)

Note that since g* consists of probabilities, the sum over classes
Zf q}fk is 1, for every sample j. Equal risks for these parameter

sets, Rqpa (67 1z, u) = Ropa (6% | z.u), implies equality of the total
means, 17 = 5. By Eqgs. A.11 and A.12, equal total means imply
equal sample averages: % ZT Zj= %Z? x;. Given a set of source
samples, drawing a set of target samples such that their averages
are exactly equal, constitutes a single event under a probability
density function. By definition, single events under continuous dis-
tributions have probability 0. Therefore, a strictly smaller risk oc-
curs almost surely:

ﬁQDA (éT | z, u) < RQDA (éS |Z, u) . (A13)

g
Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.patrec.2021.05.005.
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