
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Using and Abusing
Equivariance
Investigating Differences between Exact and
Approximate Equivariance in Computer Vision

Tom Edixhoven

Using and Abusing
Equivariance

Investigating Differences between Exact and
Approximate Equivariance in Computer Vision

by

Tom Edixhoven
Student Name Student Number

Tom Edixhoven 4610075

Thesis Committee: Dr. J.C. van Gemert, TU Delft, supervisor
Dr. W.P. Brinkman, TU Delft

Daily Supervisors: Dr. J.C. van Gemert,
A. Lengyel

Project Duration: September, 2021 - January, 2023

An electronic version of this thesis is available at https://repository.tudelft.nl

https://repository.tudelft.nl

Preface

This report contains the findings of my research on equivariance in computer vision to obtain the de-
gree of Master of Science at the Delft University of Technology. The work presented in this report is
especially interesting for people working with Group Equivariant Convolutions, as our findings provide
a deeper understanding of how to use said convolutions and the implications of architectural choices
when creating Group Equivariant Convolutional Neural Networks.

Before all else, I would like to thankmy supervisors, Dr. Jan vanGemert and Attila Lengyel, as I have
learned a great deal from them. Their enthusiasm and shared curiosity have helped me tremendously.
Furthermore, I would like to thank them for their understanding and patience when I was unable to work
for a few months. A special note of gratitude goes to Attila for choosing to remain my supervisor while
being at the other side of the world. Next, I would like to thank Dr. Willem-Paul Brinkman for agreeing
to be in my thesis committee. In addition, I sincerely appreciate the insights I have gained from my time
with the members of the TU Delft Computer Vision Lab.

Finally, I am extremely grateful to my family and friends, who have provided me with a comfortable
environment in which I could perform my research. A special note of appreciation goes out to my
parents and my dear friend, Pierrick Spekreijse, whose support and willingness to hear me ramble
have helped immensely.

Tom Edixhoven
Delft, January 2023

i

Contents

Preface i

1 Introduction 1

2 Scientific Article 3

3 Equivariance 17
3.1 Equivariance and Invariance . 17
3.2 Symmetry Groups . 18

4 Equivariance in Computer Vision 20
4.1 What is Computer Vision? . 20
4.2 Convolutional Neural Networks . 20
4.3 Subsampling . 22
4.4 Desirability of Equivariance in Computer Vision . 23
4.5 Group Equivariant Convolutions . 24
4.6 Inherent and Learnt Equivariance . 26

5 Datasets 27
5.1 MNIST . 27
5.2 PatchCamelyon . 28
5.3 Cifar . 28
5.4 ImageNet . 29

References 30

ii

1
Introduction

In recent years computer vision models have taken the world by storm. From self-driving cars and face
recognition to medical imaging, these models are everywhere and a world without them is becoming
more and more unimaginable. The current dominant strategy for achieving state of the art results in
many computer vision domains is using Convolutional Neural Networks, further referred to as CNNs.
CNNs consist of several consecutive layers, each applying multiple operations on the input data. These
layers typically include subsampling components, which are used to summarise information within the
network and allow for drastically more efficient networks. However, the main component that makes
CNNs so efficient is their use of symmetries that are present in our physical world. The backbone
of CNNs is based on the convolution operator, which is an operator that is equivariant to the transla-
tion symmetry. This means that if an object is shifted in the input of a convolution, the output of the
convolution is shifted equally. Translation equivariance brings great benefits for model efficiency and
consistency, since it allows objects to appear at any location in the input image, as the location no
longer plays a role. Thus, there is no need anymore to collect training data for objects at all possible
locations in the input.

Translations are far from the only symmetry present in our physical world or in data. When collecting
data, recording conditions such as camera position or camera rotation often introduce other symmetries
into the data. Though these symmetries are present, it is generally undesirable for them to influence
the output of a computer vision model. Take for example the field of histopathology, which consists of
examining organic tissue under a microscope. Tissue is sampled and placed onto glass slides, making
the rotation of the examined tissue innately arbitrary. A medical imaging model used for histopathology
that changes its output when the input is rotated is therefore a cause for concern. Ideally, the model
output should be independent of the rotation of the input. This is called invariance to rotation.

Traditional computer vision models using convolutions are not equivariant or invariant to symmetries
other than translations. The seminal work of Cohen et al. [1] introduced a new type of group equivariant
model, which is able to guarantee equivariance and invariance to other symmetries, such as the rotation
symmetry. A group equivariant model that is invariant to rotations would therefore be ideal for fields such
as histopathology. Yet, nearly all modern computer vision models contain subsampling components,
which allow the group equivariant models to break their guarantee of equivariance and invariance.

This brings us to the main research questions of this thesis: How does subsampling affect the
behaviour of roto-translation equivariant models used for computer vision? And, how can undesirable
side-effects be mitigated? The work presented in this Chapter 2 shows that the broken guarantee of
equivariance should not be ignored, as it affects the behaviour of many models containing subsampling
components. Furthermore, it introduces a relatively simple solution to prevent models from abusing
subsampling to break their equivariant constraints.

1

2

The rest of this thesis is divided into two parts: (1) a scientific article, included in Chapter 2, pre-
senting the main academic findings from during the thesis, and (2) supplementary material, presented
in Chapter 3, Chapter 4 and Chapter 5. The goal of the supplementary material is to allow readers
not familiar with equivariance and with only basic knowledge about computer vision to read the article
from Chapter 2 and think in depth about the concepts that are introduced. The supplementary mate-
rial consists of three parts. Chapter 3 introduces the concepts of equivariance and symmetry groups.
Chapter 4 introduces the basics of computer vision using convolutions and explains the relevant ap-
proach used to embed symmetries into convolutions. Furthermore, it explains the difference between
symmetries learned by the model and symmetries that are inherent to the model itself. Lastly, Chapter 5
offers a short overview of the datasets used in Chapter 2.

2
Scientific Article

3

Using and Abusing Equivariance

Tom Edixhoven
Delft University of Technology

tom@edixhoven.net

Abstract

In this paper we show how Group Equivariant Convolu-
tional Neural Networks use subsampling to learn to break
equivariance to their symmetries. We focus on the 2D
roto-translation group and investigate the impact of bro-
ken equivariance on network performance. We show that
changing the input dimension of a network by as little as
a single pixel can be enough for commonly used architec-
tures to become approximately equivariant, rather than ex-
actly. We investigate the impact of networks not being ex-
actly equivariant and find that approximately equivariant
networks generalise significantly worse to unseen symme-
tries compared to their exactly equivariant counterparts.
However, when the symmetries in the training data are not
identical to the symmetries of the network, we find that ap-
proximately equivariant networks are able to relax their
own equivariant constraints, causing them to match or out-
perform exactly equivariant networks on common bench-
mark datasets.

1. Introduction
Nature contains a lot of symmetries [19] and networks

used for computer vision have been shown to benefit greatly
from prior knowledge of these symmetries. Most notably,
the introduction of the convolution operator resulted in the
creation of Convolutional Neural Networks (CNN) [31],
which now form the backbone of many computer vision do-
mains. Convolutions are equivariant to the translation sym-
metry [24], meaning that if an object in the input image is
shifted, the output of the convolution is shifted equally. Due
to translation equivariance, networks no longer have to ex-
plicitly learn to recognise objects at all possible locations,
as the knowledge that location plays no role is embedded
into the network.

Images, however, regularly contain other relevant sym-
metries for which CNNs are not equivariant. Take for ex-
ample the field of histopathology, which entails the micro-
scopic examination of organic tissue. In histopathology, the
rotational orientation of the tissue is arbitrary [26]. A net-

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

20 15 10 5 0

21 16 11 6 1

22 17 12 7 2

23 18 13 8 3

24 19 14 9 4

6 8

16 18

21 11

23 13

16 6

18 8

X

x = = T(x)

f(x) =

= f(T(x))

= T’(f(x))

MaxPool

Rotation

MaxPool

Rotation

Figure 1. Example of how subsampling can break equivariance.
Dotted arrows indicate a Rotation and the dashed arrows indicate a
MaxPool subsampling layer with a kernel size and stride of 2. The
locations where MaxPool applies its pooling are coloured. One
can see that f(T (x)) and T ′(f(x)) contain completely different
numerical values, breaking equivariance.

work that varies its output when the input is rotated is there-
fore a cause for uncertainty. More formally, the output of
the network should be invariant to rotation, meaning that
the output should not change when the input is rotated.

A major innovation in equivariance for computer vision
was the introduction of Group Equivariant Convolutions
(GEC) [4], which made it possible for CNNs to guarantee
equivariance or invariance to a finite group of discrete trans-
formations, also referred to as a symmetry group. Using
GECs instead of standard convolutions to create a network
yields a Group Equivariant Convolutional Neural Network
(GCNN). Due to the group equivariant properties of GECs,
GCNNs can be used to guarantee that the network output
does not change when the input is rotated.

In this paper, we explore subsampling layers in GCNNs
that allow the networks to break their guarantee of equivari-
ance. Consider Fig. 1, where we have a MaxPool subsam-
pling layer. One can see that the feature map resulting from

1

first rotating and then subsampling contains completely dif-
ferent numerical values then the result of first subsampling
and then rotating. Because the values are different, we can
conclude that this MaxPool layer is not equivariant to ro-
tations. Whether a subsampling layer breaks equivariance
is dependent on the width and height of the input, also re-
ferred to as input dimension. Including a subsampling layer
that breaks equivariance in a GCNN will break the GCNNs
guarantee of equivariance. However, subsampling layers
are deemed almost essential for computer vision models and
are used in nearly all GCNNs and modern CNNs. Typically,
no distinction is made between GCNNs that do or do not
contain subsampling layers that break equivariance. In this
work, we show why a distinction should be made. We refer
to networks in which subsampling layers break the guaran-
tee of equivariance as approximately equivariant and net-
works in which the guarantee is not broken are referred to
as exactly equivariant.

We offer the following contributions. We give a formal
definition of exact equivariance under subsampling and can
analyse when equivariance is broken. We show that approx-
imately equivariant networks learn to become less equivari-
ant and as a result generalise significantly worse to unseen
symmetries compared to their exact counterparts. We show
that slightly changing the input dimensions is often enough
to make a network exactly equivariant rather than approxi-
mately equivariant.

2. Related Work

2.1. Equivariance in Deep Learning

CNNs are able to learn to become equivariant from data
[10, 11, 30]. However, this does not guarantee equivariance
to the symmetries in the data and results in a redundancy
in the filters of the network. For example, the network
learns one filter to detect horizontal lines and a separate one
to detect vertical lines, rather than a single filter to detect
lines. Much work has been written about how to efficiently
teach networks equivariance to relevant symmetries during
training, either by separating symmetry weights from filter
weights [17,25,42], using contrastive learning [3,9] or using
marginal likelihood [35,37]. However, while these methods
significantly increase a network’s ability to become equiv-
ariant, they do not guarantee it. Each method relies on the
network learning the equivariance from the training data.
However, the training data seldom guarantees a full and
uniformly distributed representation of the relevant symme-
tries. These possible biases in the training data can then
propagate into biases in the network. This can be cause for
concern, as biased networks make systematic errors due to
faulty assumptions about the data.

If the symmetry group for which a network needs to
be equivariant is known, a common solution is to encode

the symmetries into the network as prior knowledge us-
ing Group Equivariant Convolutions (GECs) [4]. GECs
are equivariant to finite set of discrete transformations de-
fined in a symmetry group. Filter weights are then shared
within the GECs according to the transformations. Because
the GECs include all transformations from their symmetry
group, GECs guarantee equivariance to the symmetries, re-
gardless of biases in the training data.

The introduction of GECs kickstarted much follow-up
work, like extending their application from 2D planes to 3D
manifolds [5,13,39] and the generalisation from discrete to
continuous transformations using Lie algebra [6] or other
means [34]. In this work, we focus on using GECs to be-
come equivariant and invariant to the 2D roto-translation
group, as the group has been proven to be useful in the
field of histopathology [2, 26, 38] and processing satellite
data [14, 27]. The 2D roto-translation groups consists of all
rotations and translations in a 2-dimensional space. How-
ever, GECs are equivariant to discrete transformations and
the 2D roto-translation group is continuous. Therefore, we
make our networks equivariant to the p4-group [4], consist-
ing of all compositions of translations and 90◦ rotations,
meaning that the networks are also equivariant to rotations
of 180◦ and 270◦.

2.2. Breaking Equivariance

While CNNs are generally regarded to be translation
equivariant, a plethora of work has shown that this is not
completely the case. Convolutions and pooling with a stride
larger than 1 have been shown to break translation equivari-
ance [16, 40, 41]. CNNs have also been shown to be able
to learn absolute positions, thereby breaking the transla-
tion equivariance [20]. This is important to note, as group
convolutions assume that standard convolutions are transla-
tion equivariant to prove their equivariance to other trans-
formations. Preventing networks from breaking their roto-
translation equivariance has been investigated for recon-
struction learning by introducing a group equivariant sub-
sampling layer [40]. However, they do not investigate the
effects it has on classification learning, where invariance is
often more desirable than equivariance. In this work, we
extend the current literature by investigating the influence
of subsampling on roto-translation equivariance for classi-
fication.

The general proof for equivariance in GCNNs holds
when the convolution convolves over the entire input. How-
ever, networks often unknowingly break this restriction.
Pooling and strided convolutions are often used to aggre-
gate local information and increase the receptive field of
a network [18]. The combination of stride, input size and
kernel size in subsampling layers can result in different
values from the input feature map being sampled, result-
ing in approximate equivariance rather than exact equivari-

2

ance [32]. While it might seem like a minute detail, we
find that it causes GCNNs to under perform relative to other
equivariant networks in related works. Examples of rotation
equivariant GCNNs exhibiting unexpected behaviour can be
found in [1, 28]. In this work, we show that we can guar-
antee equivariance for GCNNs by introducing a relatively
simple restriction on the combination of input size, kernel
size and stride.

2.3. Relaxing Equivariant Constraints

Recent work has shown the possible benefits of relaxing
equivariant constraints, showing that networks can gain per-
formance by allowing them to learn to become less equiv-
ariant [33, 36]. This is relevant for our work, since being
approximately equivariant seems to allow networks to relax
their own equivariant constraints. Similarly to the afore-
mentioned works, our solution also enables the user to make
a conscious decision to relax the equivariant constraints on
a network.

3. Methodology
3.1. Measuring Equivariance

We know that a network f is equivariant to transforma-
tion T , when the output of f on input x changes predictably
when x is transformed by T . More formally, there exists a
transformation T ′ for which the following equation holds:

f(T (x)) = T ′(f(x)). (1)

GCNNs are equivariant to a set of transformations de-
fined in a symmetry group G, where in practice, the trans-
formations are stored in an additional group dimension in
the feature maps. In the case of the p4-group, T ′ consists
of a rotation in the spatial dimensions and permutation of
the group dimension on the feature map. This means that
the feature maps f(T (x)) and T ′(f(x)) can be computed
separately. The equivariance error ϵ can then be defined as
the difference between f(T (x)) and T ′(f(x)). The outputs
of f(T (x)) and T ′(f(x)) are 3-dimensional feature maps,
consisting of two spatial dimensions and one group dimen-
sion. To calculate the difference between the feature maps,
we take the Mean Squared Error (MSE):

ϵ =
1

ijk

√∑
i

∑
j

∑
k

|f(T (x))ijk − T ′(f(x))ijk|2, (2)

where i and j sum over the spatial dimensions of the fea-
ture map and k sums over the group dimension. A possible
issue with using MSE is that it is sensitive to scaling. The
same feature map but scaled will return a large error. How-
ever, since the same filters are used to calculate f(T (x))
and T ′(f(x)), the scale of the feature maps should be ap-
proximately equal. Since Eq. (2) holds for any feature map

with a group dimension, we can use Eq. (2) to measure ϵ
throughout the entire convolutional part of the network.

3.2. Achieving Exact Rotation Equivariance

For a GCNN that is equivariant to rotations, the feature
maps should retain the same numerical values, regardless of
whether the input has been rotated. However, this restriction
can be broken by layers that apply subsampling. We know
that for a network f to be equivariant to transformation T
on input x Eq. (1) must hold. For f we take a network con-
sisting of a single MaxPool layer with a kernel size of 2 and
a stride of 2. For T we take a clockwise rotation of 90◦.
Because sampling always starts at the top left part of the
input, applying T results in the input being shifted by a sin-
gle pixel from the perspective of the MaxPool layer. This
results in T ′(f(x)) and f(T (x)) containing completely dif-
ferent numerical values, as shown in Fig. 1.

We propose a relatively simple solution that ensures the
same indices from the feature map are sampled regardless
of whether the input has been rotated or mirrored, making
the network exactly equivariant. For comprehensibility, we
prove that our solution holds for a square input ∈ Ri×i,
and an arbitrary kernel size k and stride s. However, the
proof also holds for rectangular inputs ∈ Rj×i. Using these
notations, we can prove that a layer is exactly equivariant to
rotations and mirroring when the following equation holds:

(i− k) mod s = 0. (3)

A GCNN is exactly equivariant to rotations and mirror-
ing if Eq. (3) holds for all layers in the network. The in-
put dimensions of the network can be changed in order for
Eq. (3) to hold for all layers in the network. Finding a cor-
rect input dimension requires a more in depth analysis of
the network that is being used.

The rest of this subsection is used to prove Eq. (3) is
correct. While interesting, it is not necessary to understand
the proof to understand the other concepts discussed in this
work.

We prove that Eq. (3) holds for a rotation of 90◦, thereby
also proving that it holds for rotations of 180◦ and 270◦, as
these can be composed using multiple rotations of 90◦. To
prove Eq. (3) has to hold for a rotation of 90◦, we look at the
set of indices corresponding to the input values used by the
layer. These indices are referred to as the sampled indices.
If the sampled indices remain the same under rotation, we
know the network is equivariant to rotations, regardless of
which values are in the input. We derive a new function
called index, that returns the indices of the input values used
by a convolutional or pooling layer to calculate the value
located at index (x, y) in the output:

index
([

x
y

])
=

[[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]]
, (4)

3

where s is the stride used for subsampling and k equals the
kernel size. The output of the function is a square patch,
denoted as [u⃗, v⃗], where u⃗ represents the indices of the top
left corner and v⃗ represents the indices of the bottom right
corner. The sampled indices are then equal to all integer
tuples within the patch.

We also introduce the function R, which takes an index
(x, y) as input and returns the indices rotated 90◦ counter-
clockwise:

Rn

([
x
y

])
=

[
y

n− 1− x

]
, (5)

where n indicates the width and height of the feature map
in which the index (x, y) is located. We further generalise
Eq. (5) to work on an input patch, rather than a single coor-
dinate, giving us Eq. (6). Because a patch is indicated using
the indices of the top left and bottom right corners, the out-
put pairs y1 with x2 and y2 with x1, as a counterclockwise
rotation on the top left corner makes it the bottom left corner
and a counterclockwise rotation on the bottom right corner
makes it the top right corner.

Rn

([[
x1

y1

]
,

[
x2

y2

]])
=

[[
y1

n− 1− x2

]
,

[
y2

n− 1− x1

]]
(6)

Given our layer takes a feature map with a width and
height of i as input, we can write the width and height of
the output feature map as

o = ⌊ i− k

s
⌋+ 1. (7)

For a layer to be exactly equivariant, determining the
sampled indices and then rotating should return the same
result as rotating first and then determining the sampled in-
dices, more formally denoted as

index
(
Ro

([
x
y

]))
= Ri

(
index

([
x
y

]))
. (8)

To solve the left-hand side, we substitute Eq. (5) as input
into Eq. (4), yielding

index
(
Ro

([
x
y

]))
=

index
([

y
⌊ i−k

s ⌋ − x

])
=[[

sy
s⌊ i−k

s ⌋ − sx

]
,

[
sy + k − 1

s⌊ i−k
s ⌋ − sx+ k − 1

]]
.

(9)

The same can be done for the right-hand side, by substitut-

ing Eq. (4) into Eq. (6), giving us

Ri

(
index

([
x
y

]))
=

Ri

([[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]])
=[[

sy
i− k − sx

]
,

[
sy + k − 1
i− 1− sx

]]
.

(10)

Filling in Eq. (9) and Eq. (10) into Eq. (8), we find two
equations

s⌊ i− k

s
⌋ − sx = i− k − sx, (11)

s⌊ i− k

s
⌋ − sx+ k − 1 = i− 1− sx. (12)

Removing duplicate terms yields a single equation

s⌊ i− k

s
⌋ = i− k. (13)

Eq. (13) can be simplified to the one introduced in Eq. (3).
The same method can be used to prove that Eq. (3) needs to
hold for group convolutions that are equivariant to mirror-
ing. The full proof can be found in Appendix A.

3.3. Measuring Output Invariance

To evaluate the invariance of a network output towards
rotation, we evaluate the network on a set of rotations in
[0◦, 360◦). However, rotating an image to degrees other
than 0◦, 90◦, 180◦ or 270◦ results in artefacts at the cor-
ners of the image, shown in Fig. 2 (left). To prevent these
artefacts, we apply a CircleCrop during training and evalu-
ation, only when an experiment evaluates on rotations other
than multiples of 90◦. CircleCrop works by setting all val-
ues whose coordinates are not inside the largest possible in-
scribed circle to 0, visualised in Fig. 2 (right). Other papers
regularly use something similar or identical to CircleCrop
to prevent unpredictable behaviour at rotations that are not
multiples of 90◦ [21, 28]. Furthermore, it should be noted
that using Nearest Neighbour Interpolation when rotating
can also result in artefacts affecting network performance.
Using Bilinear Interpolation is therefore more desirable.

4. Experiments

4.1. Breaking Equivariance

In this subsection, we show how networks can learn to
break their equivariance to increase their performance. Fur-
thermore, we show that networks do so on commonly used
classification datasets.

4

Figure 2. Left: Rotated input without CircleCrop. Right: Rotated
input with CircleCrop.

Breaking Single Layer Equivariance. If a GCNN is
truly invariant, it should be unable to distinguish between
an input x and T (x), where T rotates its input by 90◦. In a
fashion similar to how Kayhan et al. [20] showed that CNNs
can break translation equivariance and learn absolute posi-
tions, we show that GCNNs can not only distinguish be-
tween x and T (x) in theory, but also in practice.

We construct a network consisting of:
1. A single rotation equivariant layer, with a kernel size

of 3, a stride of 2, a single channel and a padding of 1.
2. An average-pooling layer, pooling over the spatial do-

main.
3. A max-pooling layer that pools over the group dimen-

sion. This turns the network from being equivariant to
invariant.

4. A fully connected neural network to classify between
both classes.

Furthermore, we define two separate inputs, x1 ∈ R32×32

and x2 ∈ R33×33. We then train two separate instances
of the aforementioned network. The first is trained to dis-
tinguish between x1 and T (x1), the second distinguishes
between x2 and T (x2).

We find that the network can perfectly distinguish be-
tween x1 and T (x1), as visualised in Fig. 3, showing that
the network is not invariant. However, the network is not
able to distinguish between x2 and T (x2), showing that the
same network architecture is invariant for inputs in R33×33,
while not being invariant for inputs in R32×32. This is in
line with our findings in Sec. 3.2, as our network has a sin-
gle convolutional layer with a kernel size of 3 and a stride
of 2. Eq. (3) then holds for an input size of 33 and not for
an input size of 32. These results can be generalised to even
and uneven input sizes, shown in Tab. 1, given the layer has
a stride of 2.

Measured Equivariance. We have shown that when the
objective of a network is to break its equivariance, it will
do so if possible. However, the question remains whether a
network will also learn to do so when breaking equivariance
is not explicitly the objective.

Figure 3. A subsampling Group Equivariant Convolution f , that is
equivariant to the 90◦ rotation transformation T , can learn a filter
that returns almost inverted values for f(x) and T−1(f(T (x))),
while these outputs should be identical in theory. Because the out-
puts are not equal, a network using convolution f can perfectly
distinguish between x and T (x).

Kernel Size

Input Size Even Uneven

Even Exact Approx.
Uneven Approx. Exact

Table 1. Given a stride of 2, this indicates whether the network
was exactly equivariant. For a stride of 1, the network is always
exactly equivariant.

To answer this question we first look at ImageNet. We
create a rotation equivariant ResNet18 [15] by substituting
standard convolutions with p4-convolutions. The network
width is divided by

√
4 to keep the amount of parameters

roughly equal to a standard ResNet18 and the input images
are kept at their original 224 × 224 size, as this results in
the network not being exactly equivariant. The network is
trained to classify the standard ImageNet classes, so there is
no explicit objective to distinguish between rotations. For
each epoch, we then check the equivariance error at differ-
ent depths in the network. A ResNet18 consists of 4 con-
secutive stages, therefore we measure the error after the first
layer and after each stage. The error is then calculated using
Eq. (2).

From the results, found in Fig. 4, we observe that at 30
epochs, when the learning rate is decreased, the equivari-
ance error drops at most stages in the network. However,

5

Figure 4. The measured equivariance error at different depths in
a Rotation Equivariant ResNet18 network, trained on ImageNet.
When the learning rate is lowered at epoch 30, the error drops
throughout the entire network, except at the last layer where it
increases drastically. The accuracy of the network is indicated as
a dotted red line.

the error at the last stage of the network increases drasti-
cally.

Secondly, we look at the PatchCamelyon dataset [38].
This dataset is interesting because it is pathology data,
which, unlike ImageNet images, should be invariant to ro-
tations. We use a similar setup to our previous ImageNet
experiment, but we replace the ResNet18 with a ResNet44.
The network width is decreased to achieve an amount of
parameters that is roughly equal to the networks used by
Veeling et al. [38] when evaluating on PatchCamelyon.

The results on PatchCamelyon can be found in Fig. 5.
Because the first layer and the first stage have a stride of 1,
the equivariance error is always 0 at the first 2 depth mea-
surements. Interestingly, we can see that even for a rotation
invariant problem, the network still learns to break its equiv-
ariance. Unlike ImageNet, the increased equivariance error
does not seem to coincide with an increase is test accuracy.

We can conclude that a network that is equivariant to ro-
tations can learn to abuse its approximate equivariance to
become less equivariant to rotations. Moreover, we show
that the network not only becomes less equivariant when
trained on ImageNet, a dataset which contains only a lim-
ited amount of rotations, the network also learns to become
less equivariant on the PatchCamelyon dataset, a dataset
that should be rotation invariant by definition. A network
learning differences between rotations in a rotation invari-
ant setting is cause for concern, as the rotations are arbitrary
and therefore should not contain any relevant information.

4.2. Impact of Exact Equivariance

To investigate the impact of exact equivariance, we look
at performance on unseen rotations and seen rotations. For
unseen rotations, not all rotations in the test set have been

Figure 5. The measured equivariance error at different depths in
a Rotation Equivariant ResNet44 network, trained on the rotation
invariant dataset PatchCamelyon. One can see that even on a prob-
lem that is supposed to be rotation invariant, the network learns to
become less equivariant.

seen during training. For seen rotations, the networks are
trained and tested on the same rotations.

4.2.1 Unseen Rotations Performance.

Due to the discrete nature of GCNNs, it is impossible to in-
clude all possible rotations in the group dimension. There-
fore, it is important for the networks to generalise well to
rotations that are not part of the group dimension. To com-
pare how well approximately and exactly equivariant net-
works generalise to unseen rotations, we do a controlled
experiment on MNIST [8], a dataset of handwritten digits
between and including 0 and 9. Since MNIST only contains
a limited amount of rotations, present due to slanted hand-
writing, we are able to control what rotations are included
during training and testing by transforming the data.

For this experiment, we use the Z2CNN and P4CNN ar-
chitectures introduced by Cohen et al. [4]. The Z2CNN
consists of 6 layers of 3 × 3 convolutions, followed by a
single 4 × 4 convolutional layer, each layer consisting of
20 channels. After each layer there are ReLU activations
and batch normalisation. A dropout layer with a chance of
0.3 is added after layers 1 through 5, and a max-pooling
layer with a stride of 2 after the second layer. The convo-
lutional part is followed by a global spatial average-pooling
layer, and lastly, a fully connected layer. The P4CNN archi-
tecture is created by substituting standard convolutions with
p4-convolutions and introducing a group coset max-pooling
layer before the fully connected layer. To keep the amount
of parameters of Z2CNN and P4CNN roughly equal, the
amount of channels in P4CNN is divided by

√
4.

We use an input size of 28 × 28 for exact equivariance,
and input sizes 27× 27 and 29× 29 for approximate equiv-
ariance. All results are obtained by taking the average of

6

Figure 6. When training a network on a dataset without the sym-
metry group, one can assess how inherent the equivariance in the
network is. One can see that when the training contains no data
augmentations, an exactly equivariant network generalises signifi-
cantly better than its approximate counterpart.

10 runs, each with a different random seed. The models are
trained for 50 epochs using Adam [22] and an initial learn-
ing rate of 0.01, which is halved every 10 epochs.

The results in Fig. 6 show training on MNIST and evalu-
ating on RotMNIST, a uniformly rotated version of MNIST.
We can see that an exactly equivariant network will sig-
nificantly outperform approximate counterparts on rotated
samples. All the p4-equivariant networks still outperform
the Z2CNN baseline. We also observe a much higher stan-
dard deviation in the performance of the approximately
equivariant networks. The performance increase of Z2CNN
at 180◦ can be attributed due to the rotational symmetries
in the MNIST dataset. The 0, 1 and 8 classes stay roughly
identical when rotated 180◦.

To further evaluate network generalisability to unseen
rotations, we create two new versions of RotMNIST with
biased rotation transformations. The rotation of each sam-
ple is chosen using a normal distribution. Both datasets use
a mean rotation of 45◦, one has a standard deviation of 20◦

and the other of 40◦. We then train the networks on these
datasets and evaluate them on all rotations.

The results in Fig. 7 show that, similarly to training
on non-rotated data, the exactly equivariant network gener-
alises noticeably better than the others. The exactly equiv-
ariant network almost becomes invariant to rotations in gen-
eral, while all other networks exhibit a significant drop in
performance on rotations that are not in the training data.
Since the transformation distributions in the training data
are often not known, it is important to properly generalise
to instances of the transformation that are not in the training
data.

Model Equivariance MNIST RotMNIST

Z2CNN - (28) 98.47± 0.17 91.60± 1.25
P4CNN Approx (27) 98.52± 0.26 96.92± 0.27
P4CNN Exact (28) 97.69± 0.17 96.89± 0.21
P4CNN Approx (29) 98.42± 0.25 96.87± 0.25

Table 2. Network accuracy denoted as mean ± standard deviation
on MNIST and RotMNIST test sets. The standard deviation is
calculated using a 100 runs with different seeds. The equivariance
column contains whether the network is exactly or approximately
equivariant and contains the network input size in parentheses.

4.2.2 Seen Rotations Performance

MNIST and RotMNIST. For the performance on rota-
tions that are included in the training data, also referred
to as seen rotations, we first look at accuracy on MNIST
and RotMNIST using the same P4CNN and Z2CNN from
Sec. 4.2.1. Each condition is ran 100 times under a different
random seed in order to obtain a fair comparison.

The accuracies and their standard deviations are shown
in Tab. 2. A more detailed description of the statistical anal-
ysis can be found in Appendix B. On MNIST the exactly
equivariant network exhibits a performance drop between
0.65% and 0.91% compared to its approximately equivari-
ant counterparts, which is confirmed to be statistically sig-
nificant. A possible explanation is the inclusion of the 6 and
the 9 in the dataset. We found that an exactly equivariant
network had a slightly harder time distinguishing between
the classes than a approximately equivariant network. This
experiment can be found in Appendix C.

On RotMNIST, the exact network performs identically to
the approximate networks, as the approximate networks are
able to learn to become invariant from the transformations
found in the training data.

Other datasets. We further evaluate the impact of ex-
act and approximate equivariance on common benchmark
datasets that contain rotational symmetries, as well as
datasets that are not known for containing rotations. For
datasets containing rotational symmetries, we investigate
Flowers102 [29], where most but not all classification cat-
egories contain rotational symmetries, and the aforemen-
tioned PatchCamelyon [38], which should be completely
invariant to rotations. For datasets that do not contain many
rotational symmetries, we use Cifar10, Cifar100 [23] and
ImageNet [7], as these datasets are commonly used to eval-
uate network architectures that are not equivariant to rota-
tions.

The benchmark results can be found in Tab. 3. The ex-
actly equivariant networks are generally matched or out-
performed by their approximately equivariant counterparts,

7

Figure 7. When training data contains a biased data augmentation, an exactly equivariant network is significantly better at generalising.
For rotation, once the augmentation reaches a standard deviation of approximately 90◦, exact and approximate networks start to behave
similarly. The inputs are rotated according to angles picked using a normal distribution, which are visualised in the bottom of the plots.
Their mean and standard deviation are given in the legends.

even on datasets containing rotational symmetries. This
seems to indicate that there lies value in relaxing the equiv-
ariant constraints of networks.

Furthermore, both p4-equivariant networks outperform
their z2-equivariant counterparts, even when the dataset is
not known for containing many rotational symmetries. This
could indicate that the improvements from the group equiv-
ariant architecture might not be solely from equivariance,
but could also originate from other traits of GCNNs. Other
possible explanations are the increase in computations or
the amount of gradients a GCNN uses compared to a stan-
dard CNN.

One explanation we explored further is whether rotation
equivariant networks decide more on texture than on shape,
which can be found in Appendix D. Our hypothesis was that
a p4-equivariant network would be better at recognising tex-
tures, as textures often remain the same when rotated. How-
ever, our findings for this experiment were inconclusive.

5. Conclusion

In this work, we show that Group Equivariant Convolu-
tions [4] can and do learn to break their equivariance to-
wards the 2D roto-translation group in common use cases.
We prove theoretically and empirically that changing the in-
put size of the network is enough to prevent a network from
breaking its equivariance. We find that exactly equivariant
networks generalise significantly better to unseen rotations
than their approximately equivariant counterparts, but that
when the training data contains all relevant rotations there
is no significant difference.

Interestingly, we also find results that suggest equivariant
networks offer performance increases to datasets that do not
contain the relevant transformations, suggesting that using
GCNNs might offer benefits other than their equivariance.
Furthermore, we find that relaxing equivariant constraints

can be beneficial for network performance. However, re-
laxing equivariant constraints also allows networks to be-
come biased towards the distribution of transformations in
the training data.

6. Limitations and Future Work
Limited to rotations. The symmetries we investigated
are limited to translations and rotations. While these sym-
metries are relevant, the work could benefit from being ex-
tended to include other symmetries. We have proven in the
appendix that reflection equivariance can also be exact and
approximate, however, we have not investigated the effects.
More research could also be done in including more rota-
tions in the group dimension, such as all rotations of 45◦,
rather than rotations of 90◦.

Influence of padding on equivariance. During our ex-
periments, we found that padding has a large influence on
how well a network generalises to unseen rotations. We
have not been able to find an explanation for this phe-
nomenon. Therefore, it could be an interesting future work.

Equivariance at various depths. The results from
Sec. 4.1 suggest that equivariant layers are more desirable
at some depths in the network than others, since the equiv-
ariance error drops at some depths and rises at others. An
interesting future work would be making a robust analysis
of desirability of equivariance at different depths in a net-
work.

Application to rotation-invariant problems. Another
interesting extension would be to further investigate our re-
sults on PatchCamelyon, where we found that the approxi-
mately equivariant network learnt to break its equivariance
in order to increase performance, even on a problem that is

8

Dataset Model Approx. p4-equivariant Exact. p4-equivariant Standard CNN
Many Rotational Symmetries

Flowers102 ResNet-44 86.28± 1.32 86.65± 1.41 82.18± 0.53
PCam ResNet-44 87.52± 1.20 87.4± 0.71 83.35± 1.04

Limited Rotational Symmetries
ImageNet ResNet-18 73.03 72.98 70.0
CIFAR100 ResNet-44 76.2 74.2 69.1
CIFAR10 ResNet-44 94.8± 0.098 94.4± 0.25 93.1± 0.22

Table 3. Accuracies of different models applied to common benchmarks. For datasets that are not too computationally expensive to
run, the standard deviation is included in the accuracy. Datasets are categorised into containing many or limited rotational symmetries.
Interestingly, even on datasets with limited rotational symmetries, p4-equivariant networks outperform networks that are not equivariant to
rotations. Furthermore, approximately equivariant networks seem to match or outperform their exactly equivariant counterparts.

supposed to be invariant to rotation. With the rise of relaxed
equivariant constraints [33, 36], an interesting question to
ask would be whether we are actually achieving better per-
formance or simply exploiting unknown biases in data or in
the network.

References
[1] Piyush Bagad, Floor Eijkelboom, Mark Fokkema, Danilo de

Goede, Paul Hilders, and Miltiadis Kofinas. C-3PO: To-
wards rotation equivariant feature detection and description.
In 3rd Visual Inductive Priors for Data-Efficient Deep Learn-
ing Workshop, 2022. 3

[2] Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen A J
Eppenhof, Josien P W Pluim, and Remco Duits. Roto-
Translation Covariant Convolutional Networks for Medical
Image Analysis. In Alejandro F. Frangi, Julia A. Schn-
abel, Christos Davatzikos, Carlos Alberola-López, and Ga-
bor Fichtinger, editors, Medical Image Computing and Com-
puter Assisted Intervention – MICCAI 2018, pages 440–448.
Springer International Publishing, 2018. 2

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. ICML’20. JMLR.org, 2020. 2

[4] Taco Cohen and Max Welling. Group equivariant convo-
lutional networks. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 2990–2999, New
York, New York, USA, 20–22 Jun 2016. PMLR. 1, 2, 6, 8

[5] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and
Max Welling. Gauge equivariant convolutional networks and
the icosahedral cnn. In International Conference on Machine
Learning, 2019. 2

[6] Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun
Wang, and Rose Yu. Automatic symmetry discovery with lie
algebra convolutional network. In Neural Information Pro-
cessing Systems. arXiv, 2021. 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 7

[8] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 6

[9] Alexandre Devillers and Mathieu Lefort. Equimod: An
equivariance module to improve self-supervised learning,
2022. 2

[10] Jonas Geiping, Micah Goldblum, Gowthami Somepalli,
Ravid Shwartz-Ziv, Tom Goldstein, and Andrew Gordon
Wilson. How much data are augmentations worth? an in-
vestigation into scaling laws, invariance, and implicit regu-
larization, 2022. 2

[11] Jonas Geiping, Micah Goldblum, Gowthami Somepalli,
Ravid Shwartz-Ziv, Tom Goldstein, and Andrew Gordon
Wilson. How much data are augmentations worth? an in-
vestigation into scaling laws, invariance, and implicit regu-
larization, 2022. 2

[12] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness, 2018. 13

[13] Pim De Haan, Maurice Weiler, Taco Cohen, and Max
Welling. Gauge equivariant mesh {cnn}s: Anisotropic con-
volutions on geometric graphs. In International Conference
on Learning Representations, 2021. 2

[14] Jiaming Han, Jian Ding, Nan Xue, and Gui-Song Xia. Redet:
A rotation-equivariant detector for aerial object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2786–2795,
June 2021. 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 5

[16] Md Amirul Islam, Matthew Kowal, Sen Jia, Konstantinos G.
Derpanis, and Neil D. B. Bruce. Global pooling, more than
meets the eye: Position information is encoded channel-wise
in cnns, 2021. 2

[17] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks, 2015. 2

[18] Dong-Hwan Jang, Sanghyeok Chu, Joonhyuk Kim, and Bo-
hyung Han. Pooling revisited: Your receptive field is subop-
timal, 2022. 2

[19] Iain G. Johnston, Kamaludin Dingle, Sam F. Greenbury,
Chico Q. Camargo, Jonathan P. K. Doye, Sebastian E. Ah-

9

nert, and Ard A. Louis. Symmetry and simplicity spon-
taneously emerge from the algorithmic nature of evolu-
tion. Proceedings of the National Academy of Sciences,
119(11):e2113883119, 2022. 1

[20] Osman Semih Kayhan and Jan C. van Gemert. On translation
invariance in cnns: Convolutional layers can exploit absolute
spatial location, 2020. 2, 5

[21] Jinpyo Kim, Wooekun Jung, Hyungmo Kim, and Jaejin Lee.
Cycnn: A rotation invariant cnn using polar mapping and
cylindrical convolution layers, 2020. 4

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 7

[23] Alex Krizhevsky. Learning multiple layers of features from
tiny images. pages 32–33, 2009. 7

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Ima-
genet classification with deep convolutional neural networks.
Neural Information Processing Systems, 25, 01 2012. 1

[25] Denis Kuzminykh, Daniil Polykovskiy, and Alexander Zhe-
brak. Extracting invariant features from images using an
equivariant autoencoder. In Jun Zhu and Ichiro Takeuchi, ed-
itors, Proceedings of The 10th Asian Conference on Machine
Learning, volume 95 of Proceedings of Machine Learning
Research, pages 438–453. PMLR, 14–16 Nov 2018. 2

[26] Maxime W. Lafarge, Erik J. Bekkers, Josien P. W. Pluim,
Remco Duits, and Mitko Veta. Roto-translation equivariant
convolutional networks: Application to histopathology im-
age analysis, 2020. 1, 2

[27] Joshua Mitton and Roderick Murray-Smith. Rotation equiv-
ariant deforestation segmentation and driver classification,
2021. 2

[28] Hanlin Mo and Guoying Zhao. Ric-cnn: Rotation-invariant
coordinate convolutional neural network, 2022. 3, 4

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In In-
dian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008. 7

[30] Chris Olah, Nick Cammarata, Chelsea Voss, Ludwig Schu-
bert, and Gabriel Goh. Naturally occurring equivariance in
neural networks. Distill, 5, 12 2020. 2

[31] Keiron O’Shea and Ryan Nash. An introduction to convolu-
tional neural networks, 2015. 1

[32] David W Romero, Erik J Bekkers, Jakub M Tomczak, and
Mark Hoogendoorn. Attentive group equivariant convolu-
tional networks. arXiv preprint arXiv:2002.03830, 2020. 3

[33] David W Romero and Suhas Lohit. Learning equivari-
ances and partial equivariances from data. arXiv preprint
arXiv:2110.10211, 2021. 3, 9

[34] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivari-
ant transformer networks, 2019. 2

[35] Tycho F.A. van der Ouderaa and Mark van der Wilk. Learn-
ing invariant weights in neural networks. In James Cussens
and Kun Zhang, editors, Proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, volume
180 of Proceedings of Machine Learning Research, pages
1992–2001. PMLR, 01–05 Aug 2022. 2

[36] Tycho F. A. van der Ouderaa, David W. Romero, and Mark
van der Wilk. Relaxing equivariance constraints with non-
stationary continuous filters, 2022. 3, 9

[37] Mark van der Wilk, Matthias Bauer, ST John, and James
Hensman. Learning invariances using the marginal likeli-
hood, 2018. 2

[38] Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Co-
hen, and Max Welling. Rotation equivariant cnns for digital
pathology, 2018. 2, 6, 7

[39] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max
Welling. Coordinate independent convolutional networks –
isometry and gauge equivariant convolutions on riemannian
manifolds, 2021. 2

[40] Jin Xu, Hyunjik Kim, Tom Rainforth, and Yee Whye Teh.
Group equivariant subsampling, 2021. 2

[41] Richard Zhang. Making convolutional networks shift-
invariant again, 2019. 2

[42] Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning
symmetries by reparameterization, 2020. 2

10

A. Proof Mirroring Equivariance
The proof for the mirroring transformation is practically

identical to the proof given in Sec. 3.2. However, we replace
rotation Eq. (5) with the mirroring Eq. (16) and Eq. (6) with
Eq. (17). This leads to the equations shown below, eventu-
ally reaching the same conclusion as given in Sec. 3.2.

index
([

x
y

])
=

[[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]]
. (14)

o = ⌊ i− k

s
⌋+ 1. (15)

Mn

([
x
y

])
=

[
n− 1− x

y

]
, (16)

Mn

([[
x1

y1

]
,

[
x2

y2

]])
=

[[
n− 1− x2

y1

]
,

[
n− 1− x1

y2

]]
(17)

index
(
Mo

([
x
y

]))
= Mi

(
index

([
x
y

]))
. (18)

index
(
Mo

([
x
y

]))
=

index
([

⌊ i−k
s ⌋ − x
y

])
=[[

s⌊ i−k
s ⌋ − sx
sy

]
,

[
s⌊ i−k

s ⌋ − sx+ k − 1
sy + k − 1

]]
.

(19)

Mi

(
index

([
x
y

]))
=

Ri

([[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]])
=[[

i− k − sx
sy

]
,

[
i− 1− sx
sy + k − 1

]]
.

(20)

s⌊ i− k

s
⌋ = i− k. (21)

B. Statistical Analysis of Significance
To determine the statistical significance of our results,

we compare each pair of models using an independent t-Test
testing the null hypothesis H0 : µa = µb. We use a signifi-
cance level α = 1.0×10−2. However, since we perform 12
comparisons in total, we use Bonferroni correction and find
a new significance level α = 8.33 × 10−4. The p-values
resulting the the t-Tests for MNIST can be found in Tab. 4
and in Tab. 5 for RotMNIST. The values were calculated
using a 100 repeats for each condition to ensure we had a
representative normal distribution for the performance. We
then visually confirmed the performance distribution to be
a normal distribution. Due to unequal variances between

the performance of P4 and Z2 networks on RotMNIST, a
Welch’s t-Test was used to calculate the p-value for com-
parisons including the Z2 network.

P4 (27) P4 (28) P4 (29)

Z2 (28) 1.43× 10−1 7.92× 10−82 1.09× 10−1

P4 (27) - 1.19× 10−62 9.97× 10−2

P4 (28) - - 3.03× 10−57

Table 4. p-values for two sided t-Test for different networks
trained on the MNIST dataset. The input dimension of the net-
work is indicated using parentheses.

P4 (27) P4 (28) P4 (29)

Z2 (28) 2.95× 10−99 1.53× 10−99 2.95× 10−99

P4 (27) - 4.54× 10−1 1.70× 10−1

P4 (28) - - 4.44× 10−1

Table 5. p-values for two sided t-Test for different networks
trained on the RotMNIST dataset. For p-values of comparisons
containing the Z2 network, a Welch’s t-Test is used due to unequal
variances. The input dimension of the network is indicated using
parentheses.

For MNIST, we find a significant difference between our
exactly equivariant network and the other networks. For
RotMNIST we find no significant differences between the
P4 equivariant networks, but we do find that the Z2 equiv-
ariant network performs significantly worse than the others.

To assert the effect size, we look at the 95%-confidence
intervals, given in Tab. 6. We find that on MNIST, the ex-
actly equivariant network has a performance drop between
0.65% and 0.91% compared to the other networks. On
RotMNIST, P4 equivariant networks offer a performance
increase between 4.97% and 5.62% compared to a standard
CNN.

Model Equivariance MNIST RotMNIST

Z2CNN - (28) [98.44; 98.51] [91.35; 91.85]
P4CNN Approx (27) [98.47; 98.57] [96.86; 96.97]
P4CNN Exact (28) [97.66; 97.72] [96.85; 96.93]
P4CNN Approx (29) [98.37; 98.47] [96.82; 96.92]

Table 6. Network accuracy confidence interval on MNIST and
RotMNIST test sets. The standard deviation is calculated using a
100 runs with different seeds. The equivariance column contains
whether the network is exactly or approximately equivariant and
the input dimensions of the network in parentheses.

To make the analysis more robust, one could also choose
to model the performance according to two independent

11

Figure 8. The predicted classes for the input classes 6 (blue) and 9
(orange). One can see that the exact GCNN makes slightly more
errors when classifying a 9 than the approximate GCNN. Left:
Approximate equivariance. Right: Exact equivariance.

variables: (1) type of equivariance and (2) input size. This
would require the additional training of two Z2CNN net-
works, one with an input size of 27 and another with an
input size of 29. Due to the scope of our work, we deemed
our current statistical analysis to be sufficient.

C. Distinguishing Between 6 and 9 Under Ro-
tation

When discussing rotation equivariance and MNIST to-
gether, the problem of distinguishing 6s and 9s under rota-
tion is often brought up. A 6 that is rotated 180◦ resembles
a 9 and the same holds for a rotated 9 resembling a 6.

We found that exactly rotation equivariant networks per-
form slightly worse on MNIST than approximately rotation
equivariant networks, showing a performance drop between
0.65% and 0.91%. Examining the classification of the 6 and
9 classes for both networks, we find that the exact GCNN
makes is slightly more eager to classify 9s as a 6 than the
approximate GCNN. This could explain the performance
drop. However, it still achieves an accuracies of 99% for
the 6 class and 95% for the 9 class. The results are shown
in Fig. 8.

Interestingly, we find that if we rotate the input 180◦ the
accuracy of the approximate GCNN drops to 0% for both
classes, shown in Fig. 9. The accuracy for the exact GCNN
stays exactly the same as in Fig. 8 (right), showing that is is
able to distinguish 6s and 9s under rotation. Furthermore,
it also shows that the approximately invariant network uses
absolute rotation for classification, while an exactly invari-
ant network does not.

Figure 9. The predicted classes for an approximate GCNN on the
6 and 9 classes, when rotating the input 180◦. The performance
drops to 0%, showing the network learns absolute rotation.

D. Texture Based Decisions

We made multiple attempts at explaining why a p4-
ResNet18 achieves a higher performance on ImageNet than
a standard ResNet18, even though ImageNet is not gener-
ally known for containing rotations.

If the performance increase was due to some classes con-
taining rotations, one would expect that the performance for
both network would be equal for most classes with an ex-
ception of a few. However, this is not what we observed, as
we observed a general increase in performance for almost
all classes. This lead us to the hypothesis that the perfor-
mance increase was not due to specific classes, but due to a
more general phenomenon.

We hypothesised that the performance increase was due
to the p4-ResNet18 being better at recognising textures.
Since textures often occur in different orientations, a net-
work that is better at recognising these orientations might
use it to gain an advantage. To test this hypothesis, we made
our own version of MNIST, called TexNIST, a visualisation
can be found Fig. 10 (right). To create TexNIST we per-
formed the following steps:

1. Scale each MNIST entry from 28× 28 to 48× 48.
2. Apply an pixel-wise square root to each entry make

numbers bolder, visualised in Fig. 10 (left). This way
the textures should be more readable.

3. Create a list of 10 textures. Each class is assigned a
single texture, a random portion of which is sampled
to texture each resized MNIST entry.

4. Each entry is made greyscale to prevent the model
from learning colour rather than shape or texture.

We then took 2 networks: Z2CNN and P4CNN, and
trained both on BoldMNIST and TexNIST. Each of the 4
trained networks was then evaluated on p4 rotated versions
and non-rotated versions of both datasets, resulting in the
accuracies found in Tab. 7.

12

Figure 10. Left: A resized bolder version of MNIST, called BoldMNIST. Right: A coloured version of TexNIST. The version used for
training is in black and white.

Model
Evaluation →
Training ↓ BoldMNIST TexNIST p4-BoldMNIST p4-TexNIST

P4CNN BoldMNIST 99.0± 0.2 90.0± 3.6 94.6± 0.5 80.3± 4.6
TexNIST 24.5± 4.4 99.5± 0.2 21.1± 3.2 97.5± 1.0

Z2CNN BoldMNIST 99.1± 0.1 92.3± 2.6 25.3± 0.5 22.6± 1.3
TexNIST 36.6± 3.9 99.5± 0.3 10.8± 1.0 49.2± 3.1

Table 7. Accuracies for texture experiment.

The results are obtained from 5 repeats per condition.
The P4CNN is only approximately equivariant for an in-
put size of 48 × 48, as the performance of the network
on TexNIST is not identical to the performance on p4-
TexNIST. An interesting observation however is that, con-
trary to our hypothesis, Z2CNN seems to evaluate more
based on texture than P4CNN. To make this observation, we
look at the performance of a network trained on TexNIST
and evaluated on BoldMNIST. A network that bases its
choice more on texture will have a lower performance on
BoldMNIST than a network that decides more based on
shape. Our P4CNN and Z2CNN perform identically when
trained and tested on TexNIST. However, when evaluated on
BoldMNIST, the P4CNN accuracy drops to an average of
24.5±4.4, while Z2CNN only drops to 36.6±3.9, suggest-
ing the P4CNN classifies more on shape than the Z2CNN.

To evaluate our hypothesis on a more natural dataset, we
used the approach en implementation provided by Geirhos
et al. [12] and compared a P4-ResNet18 and standard
ResNet18 on their custom ImageNet dataset. The results
for a selection of the classes can be found in Fig. 11. No
clear difference between the networks decisions can be ob-
served.

Figure 11. Evaluation of ResNet18 (red) and P4-ResNet18 (green)
decisions on ImageNet, following the work by Geirhos et al. [12]

.

While the results for TexNIST raise some interesting
suggestions, due to the contradicting results on the other
dataset, we can not draw any hard conclusions from this ex-
periment.

13

3
Equivariance

In this chapter, the definitions for equivariance and symmetry groups are given. The goal is to offer a
summarised overview of what these concepts are, so that they can be applied to computer vision tasks
in the next chapter.

3.1. Equivariance and Invariance
A function f is said to be equivariant to a transformation T if applying T to the input results in a pre-
dictable output T ′(f(x)) for all possible inputs. We can formalize this into the following equation:

f(T (x)) = T ′(f(x)) (3.1)

In other words, first transforming by T and then applying f should give the same results as first
applying f and then transforming by T ′, as visualised in Figure 3.1.

x

T(x)

f(x)

f(T(x)) = T’(f(x))

T T’

f

f

Figure 3.1: Visualisation of the definition of equivariance.

To give an example of an equivariant function, we know that scaling should be equivariant to rotation.
First scaling and then rotating should give the same results as first rotating and then scaling. We can
replace the f function with scaling and the T and T ′ function with rotation, a visualisation of which is
given in Figure 3.2.

17

3.2. Symmetry Groups 18

x

rotate rotate

scale

scale

Figure 3.2: Example of equivariance.

Interestingly, T does not need to be equal to T ′. Invariance is a special case of equivariance,
where T ′ is the identity function and does not change its input. Therefore, a function f is invariant to
transformation T if the following equation holds:

f(T (x)) = f(x) (3.2)

In other words, the output of f should not change when the transformation T is applied to the input.
For example, we can say that a function that returns the average colour of an image is invariant to a
rotation transformation, as rotating the input does not affect the average colour. A visualisation of this
invariant function is given in figure 3.3.

x

rotate

average

avera
ge

Figure 3.3: Example of invariance.

3.2. Symmetry Groups
Rather than being equivariant to specific transformations, functions are often described as being equiv-
ariant to specific symmetry groups. A symmetry group G consists of a set of transformations for which
the following conditions hold:

• For each pair of transformations g, h ∈ G, their composition gh is also in the symmetry group. For
example, this means that if the rotation of 90◦ is in G, the rotation of 180◦ should also be in G.

• For all transformations g ∈ G, their inverse transformation g−1 should also be in G. Furthermore,
composing g with g−1 should result in the identity transformation, more formally g−1gx = x. For
example, if G were to contain a rotation of 90◦, the rotation of −90◦ should also be in G.

• All transformations in the group should be associative, more formally i(gh) = (ig)h ∀i, g, h ∈ G.
In other words, the order in which the transformations are applied should not matter.

Using this definition, we can formalise Equation (3.1) to hold for groups rather than singular transfor-
mations, giving us:

f(Tg(x)) = T ′
gf(x) ∀g ∈ G (3.3)

Symmetry groups can include continuous transformations, such as rotations. However, due to the
discrete nature of computers, it is difficult to become equivariant towards continuous transformations.
Therefore, continuous transformations are often approximated using a discretisation of the transforma-
tion.

3.2. Symmetry Groups 19

The work presented in this thesis is based on three symmetry groups:

The z2-Group This thesis contains multiple references to the z2-group. This group includes all com-
positions of translations on a discrete 2-dimensional input. In the context of this work, a translation is
a shift of 1 or more pixels in an image.

The p4-Group. The main focus of Chapter 2 is on the p4-group. This group includes all compositions
of translations and rotations of 90◦ on a discrete 2-dimensional input. Because the transformations
contained in the group need to be discrete, the continuous rotation transformation is approximated with
four rotations: 0◦, 90◦, 180◦ and 270◦.

The p4m-Group. The work presented in Chapter 2 is in theory also applicable to the p4m-group,
which is equal to the p4-group but also includes the reflection transformation. Even though we do not
explicitly mention the group in the paper, it is good to know of its existence, as it is often mentioned in
related work.

4
Equivariance in Computer Vision

The goal of this chapter is to offer an overview of the relevant concepts of computer vision and to offer
an insight into how these concepts relate to equivariance.

4.1. What is Computer Vision?
Broadly speaking, computer vision is the science of solving how to make computers gain a high-level
understanding of digital images or collections of images. Computer vision tasks are already highly
prevalent in our society, from face recognition algorithms to self-driving cars. The sub-domain of com-
puter vision that is most relevant for our scientific work is Object Classification, which consists of classi-
fying one or more objects within an image. The current dominant strategy for these types of tasks is to
use Convolutional Neural Networks (CNN), the first learnable version of which was introduced by Yann
LeCun [5]. CNNs learn by showing them a lot of training data, also referred to as training. The network
can then be tested on a separate test dataset to approximate how well the network will perform on data
not previously seen during training.

4.2. Convolutional Neural Networks
Convolutional Neural Networks are a type of neural network that embed spatial information into the
network using convolutions, which are translation equivariant functions. This means that, in theory,
CNNs should be able to efficiently recognise objects regardless of their absolute position in the input
image. A CNN should therefore be z2-equivariant.

A CNN is constructed by using several consecutive layers, with each layer performing multiple
separate convolutions. The amount of layers in a network is referred to as network depth and the
amount of convolutions per layer is referred to as network width. Layers often consist of more than just
convolutions, however, these other components are less relevant to understand Chapter 2.

Convolutions. First, it is important to mention that most convolutions presented in computer vision
literature are actually cross-correlations. In this subsection, the difference between the two is explained.
In the rest of the work both are referred to as convolutions, as interchanging the two does not create
any fundamental differences. For humans however, cross-correlations are much more intuitive, which
is why convolutions are often explained using cross-correlations instead.

A convolution of a feature map F with a filter (or kernel) H, resulting in a new feature map G can
be written as shown in Equation (4.1).

F ∗H = G (4.1)

The filter H is a square 2-dimensional matrix of real values with a size of 2k + 1, also denoted as
H : R2k+1×2k+1. The width and height of H is often referred to as the kernel size. Using the same
notation, feature map F can be denoted as F : Rm×n, with m,n ≥ 2k + 1. Convolving F with H then
results in a new slightly smaller feature map G : Rm−2k×n−2k. The precise calculation for G is given in

20

4.2. Convolutional Neural Networks 21

Equation (4.2).

G[i, j] =

k∑
u=−k

k∑
v=−k

F [i− u, j − v]H[u, v] (4.2)

While this equation can seem difficult to understand, once visualised, it becomesmore intuitive. A cross-
correlation is denoted as G = F ⋆ H and is extremely similar to a convolution. A cross-correlation can
be denoted as Equation (4.3).

G[i, j] =

k∑
u=−k

k∑
v=−k

F [i+ u, j + v]H[u, v] (4.3)

From Equation (4.2) and Equation (4.3), one can see that the only difference between the convo-
lution and the cross-correlation is in what order the values from the filter are applied to the feature
map. Therefore, a convolution is simply a cross-correlation with its filter flipped both horizontally and
vertically. As the values in filters are typically learnt by computers, using a cross-correlation rather than
a convolution will result in the computer learning the same filter but flipped. Therefore, for computers,
there is no practical difference between convolutions and cross-correlations.

We can visualise the cross-correlation equation F ⋆ H = G as shown in figure 4.1, where the
cross-correlation has a kernel size of 3.

0 0 0 0 0 0 0 0 0

0 1 0 2 3 1 1 2 0

0 1 1 1 2 1 2 3 0

0 0 1 1 4 1 2 1 0

0 2 3 2 0 0 4 3 0

0 1 4 1 1 0 2 2 0

0 0 1 2 0 1 1 1 0

0 1 4 3 1 1 2 1 0

0 0 0 0 0 0 0 0 0

F
G

1 0 -1

1 0 -1

1 0 -1

H
-1 -1 -4 1 2 -3 3

-2 -1 -4 1 4 -3 5

-5 -1 -12 2 -2 -5 8

-8 -1 3 3 -3 -5 8

-8 -2 7 4 -6 -5 7

-9 -4 7 4 -3 -2 5

-5 -4 4 3 -2 0 3

★ =

Figure 4.1: Cross correlation.

To offer more insight into how the cross-correlation is actually performed, Equation (4.3) can be
visualised as Figure 4.3. Starting from the top left, a patch with a size equal to the filter is selected from
the input feature map. The sum of the element-wise product between the patch and the filter is then
used to calculate the respective value in the output feature map, visualised in Figure 4.2.

Input
Outputj k l

m n o

p q r

★ =
a b c

d e f

g h i

Filter

aj + bk +cl + dm + en + fo +gp + hq + ir

Figure 4.2: Single kernel multiplication

The filter is then shifted one column to the right and the same process is repeated. Once the filter
cannot shift more to the right, it starts back at the left side of the input, but shifted one row down. This
process is repeated until all values of G are calculated. Figure 4.3 shows Equation (4.3) being applied
for the first two steps of the process.

4.3. Subsampling 22

0 0 0 0 0 0 0 0 0

0 1 0 2 3 1 1 2 0

0 1 1 1 2 1 2 3 0

0 0 1 1 4 1 2 1 0

0 2 3 2 0 0 4 3 0

0 1 4 1 1 0 2 2 0

0 0 1 2 0 1 1 1 0

0 1 4 3 1 1 2 1 0

0 0 0 0 0 0 0 0 0

F

G

H
1 0 -1

1 0 -1

1 0 -1
-1 -1 -4 1 2 -3 3

-2 -1 -4 1 4 -3 5

-5 -1 -12 2 -2 -5 8

-8 -1 3 3 -3 -5 8

-8 -2 7 4 -6 -5 7

-9 -4 7 4 -3 -2 5

-5 -4 4 3 -2 0 3

Figure 4.3: Cross Correlation.

When performing a convolution, the output G is smaller than the input F . This is why input feature
maps are often padded. Padding is adding additional numerical values to the borders of your feature
map. The most frequently used type of padding is 0-padding, where all the added values are equal to
0. Padding can be used to create a larger feature map F ′, such that the output of F ′ ⋆ H results in a
feature map G with the same dimensions as the original feature map F . Looking back at Figure 4.1
and Figure 4.3, one can see the input is 0-padded.

Because convolutions apply the same filter at all locations in the input feature map, convolutions and
cross-correlations in theory return the same result regardless of where in the input values are located
in the feature map. In other words, they are equivariant to translations. However, in practice they
are only approximately equivariant to translations, as works have shown that convolutions and cross-
correlations break translation equivariance [8, 9]. Furthermore, the padding explained in the previous
paragraph introduces a new problem called border effects [2]. Border effects can make the absolute
position of the input values influence the output, further breaking translation equivariance.

4.3. Subsampling
In CNNs, it is often desirable to summarize local spatial information from feature maps. This reduces
the amount of necessary computations and is one of the concepts that allows computers to learn higher-
level representations of the input images. For example, after multiple layers, this could allow a network
to represent a dog that is in the input as a single numerical value. The concept of summarizing local
spatial information is often referred to as subsampling. The twomost commonmethods for subsampling
are strided convolutions and pooling.

Strided Convolutions. Strided convolutions are extremely similar to the standard convolutions ex-
plained in Section 4.2. The only difference is that strided convolutions shift their kernel multiple pixels
for each output value calculation, rather than a single pixel. The amount of pixels the kernel shifts is
referred to as the stride. In Figure 4.4, an example is given of a convolutions with a stride of 2. Except
for the stride, this convolution is identical to the one performed in Figure 4.3. One can see that the
output in Figure 4.4 is smaller.

4.4. Desirability of Equivariance in Computer Vision 23

0 0 0 0 0 0 0 0 0

0 1 0 2 3 1 1 2 0

0 1 1 1 2 1 2 3 0

0 0 1 1 4 1 2 1 0

0 2 3 2 0 0 4 3 0

0 1 4 1 1 0 2 2 0

0 0 1 2 0 1 1 1 0

0 1 4 3 1 1 2 1 0

0 0 0 0 0 0 0 0 0

Input

Output

1 0 -1

1 0 -1

1 0 -1

Learnable
Filter

-1 -4 2 3

-5 -1 -2 8

-8 7 -6 7

-5 4 -2 3

Figure 4.4: Strided Convolution.

Pooling. Pooling is similar to strided convolutions, as pooling also uses a kernel size and a stride.
However, for pooling, the kernel size and stride are often equal. Rather than applying a filter at each
location, pooling layers often apply a max-function or an average-function, taking either the maximum
or average of the selected values. These types of pooling are referred to as MaxPool and AvgPool
respectively. A visualisation of aMaxPool with a kernel size and stride of 2 is given in Figure 4.5. Each
location in the input where the max-function is applied is coloured and the selected value is made bold.

1 0 2 3 1 1 2

1 1 1 2 1 2 3

0 1 1 4 1 2 1

2 3 2 0 0 4 3

1 4 1 1 0 2 2

0 1 2 0 1 1 1

1 4 3 1 1 2 1

Output
1 3 2

3 4 4

4 2 2

Input

MaxPool

Figure 4.5: MaxPooling.

As you can see in Figure 4.5, there are a column and a row that are not sampled to compute the
output. This is because the kernel size did not fit within the input feature map anymore, therefore skip-
ping these values. Skipping specific values is one of the main causes of the problems discussed in
Chapter 2. This phenomenon is not exclusive to pooling layers and can also occur in strided convolu-
tions.

4.4. Desirability of Equivariance in Computer Vision
Equivariance is desirable in computer vision because it embeds prior knowledge of the physical world
into neural networks. The introduction of convolutions was one of the biggest innovations in the field of
computer vision, as it embedded translation equivariance as prior knowledge, becoming one of the core
concepts that allows computer vision to be so efficient. A visualisation of convolutions being equivariant
to translations is given in Figure 4.6. One can see that first convolving and then translating returns the
same result as first translating and then convolving.

4.5. Group Equivariant Convolutions 24

convolve with

convolve with

translate translate

Figure 4.6: CNNs are equivariant to translations.

However, translations often are not the only relevant symmetry. Take for example the field of
histopathology, which involves examining organics cells under a microscope. If the task is to find
cancerous cells, it is undesirable for the location of the cell within the input image to influence the out-
put. Therefore, the CNN should be translation equivariant. However, due to the nature of cells, their
rotation within the input image should also not influence the output, which can be solved by becoming
equivariant to rotations and translations, also referred to as p4-equivariance. Sadly, standard CNNs
are not equivariant to rotations, as shown in Figure 4.7. One can see that the order of convolving and
rotating influences the output.

convolve with

convolve with

rotate

rotate

Figure 4.7: CNNs are not equivariant to rotations.

Being able to embed other types of equivariance into CNNs could therefore result in large perfor-
mance increases.

4.5. Group Equivariant Convolutions
Many works have been published about learning and embedding equivariant properties into CNNs.
For this work, the most relevant being the introduction of Group Equivariant Convolutional Networks
(GCNN) by Taco Cohen [1]. In their work, they introduce Group Equivariant Convolutions (GEC), which
are similar to standard convolutions, but have an additional group dimension.

This section strives to explain GECs as clearly as possible. The most important takeaway is that
GECs are a special type of convolution that uses several standard convolutions in a clever way to
become equivariant to symmetry groups other than the z2-group.

Normal CNNs are considered to be equivariant to the z2-group, which is why GCNNs start with
a lifting layer, which ‘lifts’ the current symmetry group of the network from the z2-group to another
symmetry group. This layer applies the symmetry group to the filter used for convolution and then uses
each resulting filter for a standard convolution on the input feature map. When creating a GCNN that
is equivariant to the p4-group, the lifting layer is called a P4Z2 convolution, lifting the symmetry group
of the network from z2 to p4. A visualisation of such a lifting layer is given in Figure 4.8. A single
3 × 3 filter is learnt and rotated 90◦ three times to obtain the other filters. Each of these filters is then
used to obtain a seperate feature map using a standard convolution, explained in Section 4.2. The 4
resulting 2-dimensional feature maps together then form a new 3-dimensional feature map that is in
the p4-group, rather than in the z2-group.

4.5. Group Equivariant Convolutions 25

0 0 0 0 0 0 0 0 0

0 1 0 2 3 1 1 2 0

0 1 1 1 2 1 2 3 0

0 0 1 1 4 1 2 1 0

0 2 3 2 0 0 4 3 0

0 1 4 1 1 0 2 2 0

0 0 1 2 0 1 1 1 0

0 1 4 3 1 1 2 1 0

0 0 0 0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1

★

P4Z2
Convolution

Z2 Input

P4 Output
-1 -4 2 3

-5 -1 -2 8

-8 7 -6 7

-5 4 -2 3

1 1 1

0 0 0

-1 -1 -1

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

-2 -4 -5 -5

-4 -1 1 0

4 2 2 5

1 3 2 2

1 4 -2 -3

5 1 2 -8

8 -7 6 -7

5 -4 2 -3

2 4 5 5

4 1 -1 0

-4 -2 -2 -5

-1 -3 -2 -2

=

Learnable
Filter

Figure 4.8: A P4Z2 lifting layer, consisting of 4 standard convolutions.

Once the symmetry group of the network has been lifted to the p4-group, a new type of convolution
is needed to retain the symmetry group, namely the P4 convolution, visualised in Figure 4.9. While
the P4Z2 convolution only learns a single 3 × 3 filter, the P4 convolution learns 4 3 × 3 filters, each
visualised as a separate colour. The light edge on each filter represents its rotation. The collection of
these 4 filters is indicated as the P4 Filter in Figure 4.9. To obtain the other 3 P4 filters used in the P4
convolution, each filter in the learnt P4 filter is rotated and the filters are shifted by one in the group
dimension. From a visual point of view, one can view it as rotating the entire P4 filter as one solid
object.

0 1 0

0 1 0

0 0 0

P4
Convolution

P4 Input
0 0 2 3

0 0 0 8

0 7 0 7

0 4 0 3

1 1 1

0 0 0

-1 -1 -1

0 0 0

1 1 0

0 1 0

0 0 1

0 0 -1

0 0 1

0 0 0 0

0 0 1 0

4 2 2 5

1 3 2 2

1 4 0 0

5 1 2 0

8 0 6 0

5 0 2 0

2 4 5 5

4 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

1 -1 1

0 0 0

0 1 1

0 0 0

-1 0 1

-1 0 1

-1 0 1

0 1 0

1 1 0

0 0 0

0 1 0

0 1 1

0 0 0

1 0 0

-1 0 0

1 0 0

0 0 0

0 1 0

0 1 0

-1 -1 -1

0 0 0

1 1 1

1 0 -1

1 0 -1

1 0 -1

0 0 0

0 1 1

0 1 0

1 -1 1

0 0 0

0 0 0

0 0 0

1 1 0

0 0 0

-1 4

10 6

-3 16

-7 13

-6 6

-1 15

7 2

17 -1

P4 Output

★ =

P4 Filter

Figure 4.9: A P4 Convolution, consisting of 4 convolutions with a P4 filter, each consisting of 4 standard convolutions.

To fully understand Figure 4.9 and how to calculate the output, one has to understand how to con-
volve a P4 input with a single P4 filter, visualised in Figure 4.10. A convolution with a single P4 filter
consists of 4 standard convolutions, where each group dimension in the input is convolved with the
standard filter in the same group dimension from the P4 filter. The resulting feature maps are then
summed to calculate the final feature map. A full P4 convolution consists of 4 convolutions with a P4
filter, one for each instance in the group dimension. This results in an output feature map that is also
in the p4-group.

4.6. Inherent and Learnt Equivariance 26

0 1 0

0 1 0

0 0 0

P4 Input
0 0 2 3

0 0 0 8

0 7 0 7

0 4 0 3

1 1 1

0 0 0

-1 -1 -1

0 0 0

1 1 0

0 1 0

0 0 1

0 0 -1

0 0 1

0 0 0 0

0 0 1 0

4 2 2 5

1 3 2 2

1 4 0 0

5 1 2 0

8 0 6 0

5 0 2 0

2 4 5 5

4 1 0 0

0 0 0 0

0 0 0 0

-1 4

10 6★ = =

P4 Filter

0 1 0

0 1 0

0 0 0

★

0 0 2 3

0 0 0 8

0 7 0 7

0 4 0 3

0 0 0 0

0 0 1 0

4 2 2 5

1 3 2 2

1 1 1

0 0 0

-1 -1 -1

★

1 4 0 0

5 1 2 0

8 0 6 0

5 0 2 0

★
0 0 0

1 1 0

0 1 0

2 4 5 5

4 1 0 0

0 0 0 0

0 0 0 0

★
0 0 1

0 0 -1

0 0 1

∑

Figure 4.10: Convolution with a single P4 filter, consisting of 4 standard convolutions.

Finally, to create an invariant GCNN rather than an equivariant GCNN, a pooling layer over the
group dimension can be introduced at the end of the network. This concept is called coset pooling.
This can be done when invariance is more desirable than equivariance or to reduce the size of the
network. It is important to note that when using this approach, a network that is not equivariant will also
not become invariant.

4.6. Inherent and Learnt Equivariance
Both standard CNNs and GCNNs are able to learn to become equivariant from data. Therefore it
is important to make the distinction between inherent and learnt equivariance. Standard CNNs are
inherently equivariant to the z2-group, while p4-GCNNs are inherently equivariant to the p4-group.
Both can learn equivariance to other symmetry groups. For example, a standard CNN can learn to
become equivariant to the p4-group. This happens when the CNN learns filters that are p4-equivariant.
An example of which is the blur filter, where the filter takes an average of the local area, a visualisation
of which is given in Figure 4.11.

convolve with

convolve with

rotate rotate

Figure 4.11: CNNs can learn to be equivariant to rotations.

However, learnt equivariance has multiple downsides. Firstly, the desired symmetry group might not
be properly represented in the training data, making the network learn an incorrect symmetry. Secondly,
learning equivariance often results in redundant filters in the network, wasting computations and space
that could be used more efficiently. Lastly, it is not guaranteed that the symmetry is learnt from the
data, as this is dependent on a large amount of parameters used when training and constructing the
network.

5
Datasets

This chapter contains a few samples from the datasets mentioned in the paper, as to create an im-
pression of the data. It should not be necessary to understand Chapter 2, but could offer some useful
insights.

5.1. MNIST
The Modified National Institute of Standards and Technology (MNIST) dataset [4] is a dataset that
consists of images of handwritten digits from 0 to 9. The database is extremely popular in deep learning
research, as it is a relatively simple database to train and test on. It consists of 10.000 training images
and 60.000 testing images, each having a dimension of 28 × 28 and being black and white. In the
research presented in Chapter 2, RotMNIST is also used. RotMNIST is a uniformly rotated version of
MNIST. A few samples from the dataset can be found in Figure 5.1.

Figure 5.1: MNIST samples

27

5.2. PatchCamelyon 28

5.2. PatchCamelyon
PatchCamelyon (PCAM) [7] is a dataset from the histopathology field. It consists of 327.680 colour
images, each with a dimension of 96 × 96. All images contain histopathologic scans of lymph node
sections. The task associated with this dataset is to determine whether the image contains cancerous
tissue. The images therefore each have a binary label, indicating whether they contain cancerous
tissue or not. The appeal of this dataset for the work in Chapter 2 is that, in theory, the problem is
rotation invariant, as the rotation of the scanned cells should not influence the classification. A few
samples from the dataset can be found in Figure 5.2.

Figure 5.2: PatchCamelyon samples

5.3. Cifar
The Cifar10 dataset [3] is often used in deep learning, as it can offer a significant challenge while still
being trainable within reasonable time on a single GPU. It consists of 60.000 32 × 32 colour images,
which are often split into 50.000 training images and 10.000 test images. The dataset contains 10
classes which the deep learning model should distinguish between. A few samples from the dataset
can be found in Figure 5.3. Cifar100 is an extension of Cifar10 and contains 100 classes rather than
10.

Figure 5.3: Cifar10 samples

5.4. ImageNet 29

5.4. ImageNet
ImageNet [6] is a dataset containing 14.197.122 colour images, each classifiable into one of a 1000
classes. It is often seen as one of the most significant challenges in deep learning research. Due to
the enormous size of the dataset, training and testing on this dataset can take up to a week for a single
model. This is why papers often train only a single model on the dataset, rather than using repeated
runs. A few samples from the dataset can be found in Figure 5.4. As is evident from Figure 5.4,
the images do not all have the same dimensions. The most common solution to this problem is to
downscale the images and then take a 224× 224 sample from the center of the image to feed into the
model.

Figure 5.4: ImageNet samples

References

[1] Taco S. Cohen and Max Welling. “Group Equivariant Convolutional Networks”. In: (2016). DOI:
10.48550/ARXIV.1602.07576. URL: https://arxiv.org/abs/1602.07576.

[2] Osman Semih Kayhan and Jan C. van Gemert. On Translation Invariance in CNNs: Convolutional
Layers can Exploit Absolute Spatial Location. 2020. DOI: 10.48550/ARXIV.2003.07064. URL:
https://arxiv.org/abs/2003.07064.

[3] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: (2009), pp. 32–33.
URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[4] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In: (2010). URL: http :
//yann.lecun.com/exdb/mnist/.

[5] Yann Lecun, Koray Kavukcuoglu, and Clement Farabet. “Convolutional Networks and Applications
in Vision”. In: May 2010, pp. 253–256. DOI: 10.1109/ISCAS.2010.5537907.

[6] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI: 10.1007/s11263-015-0816-y.

[7] Bastiaan S Veeling et al. “Rotation Equivariant CNNs for Digital Pathology”. In: (June 2018). arXiv:
1806.03962 [cs.CV].

[8] Jin Xu et al. Group Equivariant Subsampling. 2021. DOI: 10.48550/ARXIV.2106.05886. URL:
https://arxiv.org/abs/2106.05886.

[9] Richard Zhang. Making Convolutional Networks Shift-Invariant Again. 2019. DOI: 10.48550/ARX
IV.1904.11486. URL: https://arxiv.org/abs/1904.11486.

30

https://doi.org/10.48550/ARXIV.1602.07576
https://arxiv.org/abs/1602.07576
https://doi.org/10.48550/ARXIV.2003.07064
https://arxiv.org/abs/2003.07064
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1806.03962
https://doi.org/10.48550/ARXIV.2106.05886
https://arxiv.org/abs/2106.05886
https://doi.org/10.48550/ARXIV.1904.11486
https://doi.org/10.48550/ARXIV.1904.11486
https://arxiv.org/abs/1904.11486

	Preface
	Introduction
	Scientific Article
	Equivariance
	Equivariance and Invariance
	Symmetry Groups

	Equivariance in Computer Vision
	What is Computer Vision?
	Convolutional Neural Networks
	Subsampling
	Desirability of Equivariance in Computer Vision
	Group Equivariant Convolutions
	Inherent and Learnt Equivariance

	Datasets
	MNIST
	PatchCamelyon
	Cifar
	ImageNet

	References

