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†M.A.CoutinoMinguez-1@student.tudelft.nl,Delft University of Technology, Delft, The Netherlands
? Sensors Advanced Developments, Thales Nederland, Delft, The Netherlands

ABSTRACT

In this paper, a new direction of arrival (DOA) estimation approach
is devised using concepts from information geometry (IG). The pro-
posed method uses geodesic distances in the statistical manifold of
probability distributions parametrized by their covariance matrix to
estimate the direction of arrival of several sources. In order to obtain
a practical method, the DOA estimation is treated as a single-variable
optimization problem, for which the DOA solutions are found by
means of a line search. The relation between the proposed method
and MVDR beamformer is elucidated. An evaluation of its perfor-
mance is carried out by means of Monte Carlo simulations and it is
shown that the proposed method provides improved resolution capa-
bilities at low SNR with respect to MUSIC and MVDR.

Index Terms— direction of arrival (DOA) estimation, informa-
tion geometry, uniform linear array, MUSIC, MVDR

1. INTRODUCTION

The problem of estimating the direction of arrival (DOA) of sources
from the covariance matrix of received measurements is a well
known problem [1]. Most of the current methods are based on sub-
space techniques or exploit characteristics of the structure present in
the covariance matrix [2], [3] [4]. However, none of those methods
considers the geometry present in the space of probability distri-
butions parametrized by their covariance matrix. Recent work [5]
has raised attention towards the usage of information geometry to
describe the manifold in which probability distributions live and
links with several fields have been established (e.g., neural net-
works [6], [7], optimization [8], [9]). It has been shown that when
using this framework, robust estimation of covariance matrices is
possible [5]. In addition, several applications and fundamental the-
ory in radar systems [10], [11] and machine learning [12], [13] have
been devised using concepts of information geometry. However,
at the best of the knowledge of the authors, no work exists with
respect to DOA estimation. The ideas of information geometry
first introduced by Rao [14] and later formally developed by Cen-
cov [15], constitute a framework that considers probability densities
as structure of differential geometry. This approach allows to build a
distance between two parametrized distributions that is invariant to
non-singular transformation of the parameters [16]. As the distance
is based on the Fisher information matrix (FIM), the results derived
from information geometry are tightly linked with fundamental re-
sults in estimation theory, such as the celebrated Cramér-Rao lower
bound (CRLB). Using as a base the geometry of multivariate Gaus-
sian normal distributions (MGNDs), a method taking into account
distances between probability distributions parametrized by hermi-
tian positive definite (HPD) matrices (the coordinate system for this
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statistical manifold) is proposed for DOA estimation. The idea is the
usage of the Riemannian metric proposed by IG, which is nothing
more than the Fisher information matrix, to measure the closeness
between different possible arrival angles. In this paper, we introduce
a new DOA estimation method based on geodesic distances coming
from the framework of IG. By measuring how close two distribu-
tions are, using these distances, our DOA approach becomes a linear
search when the space of matrices to explore is constrained to be
the set of rank-one matrices. The structure of the paper is given as
follows. First, some preliminary information related to the basics of
information geometry, particularly for the case of the MGND is pre-
sented in Section 2. In Section 3, the antenna model used throughout
the work is introduced and the proposed method is presented. In
Section 4, some light is shed on the relation between the MVDR
beamformer and the proposed method. The DOA estimation method
proposed in Section 3 is evaluated by means of Monte Carlo analysis
in Section 5 and its results are compared with the ones from MUSIC
and MVDR. Finally, Section 6 provides the conclusions of our work
and possible future research directions.

2. INFORMATION GEOMETRY OF COVARIANCE
MATRICES

First consider an n-dimensional multivariate model for a set of mea-
surements x given by

x ∼ CN (0,R(θ)) (1)

where θ is the parameter vector containing the unique elements of
the matrix R(θ). The likelihood function of the data given the un-
known true covariance is given by

p(x|R(θ)) =
1

πndet(R(θ))
e{−tr(xHR−1(θ)x)} (2)

where det(·) and tr(·) denote the determinant and trace of a matrix.
From now on, the notation expressing the dependency of R on θ will
be omitted when the relation is clear. For the multivariate normal
distribution, the elements of the Fisher information matrix for the
parameter vector θ are given by [17]

Gij = −E[
∂2 ln p(X|R)

∂θiθj
] = tr[(R−1∂iR) · (R−1∂jR)] (3)

where ∂i is ∂/∂θi. Using the Fisher information matrix as metric
tensor following the ideas of information geometry, the differential
of a path length is given by [18]

ds2 = tr{(R−1dR)2} = tr[(d ln R)2] (4)

The generalization of straight lines in manifolds is given by geodesics,
curves that achieve the shortest distance between two points R1 and
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R2. The geodesic distance is then given by

d(R1,R2) = min
γ

R2
R1

{∫
γ

R2
R1

ds
}

(5)

where γR2
R1

is a path joining R1 and R2. By endowing the statistical
manifoldM for the space of probability distributions parametrized
by their covariance matrix with the proposed metric, it is possible to
treatM as a Riemannian manifold [18]. The introduced metric has
some interesting properties:

1. Invariant to the group GL(n) action

SHRS, S ∈ GL(n)

where GL(n) is the set of n× n invertible matrices.

2. Invariant to matrix inversion

d(R1,R2) = d(R−1
1 ,R−1

2 )

Using the proposed metric, the geodesic distance between two prob-
ability distributions parametrized by the HPD matrices R1 and R2 is
given by [18]

d(R1,R2) =

n∑
i=1

(log ai)
2 (6)

where a1, ..., an are the roots of det(λR1 − R2).
As shown in [19] the distance between probability distributions

expressed in (6) results in the natural Riemannian distance of the set
of all n-by-n HPD matrices Pn.

d(R1,R2) , d(p(x|R1), p(x|R2)) (7)

By using the intrinsic distance of the statistical manifold, benefits in
performance can be expected. As the cone of the symmetric matrices
is not a vector space, using other distances, e.g., Euclidean distance,
may lead to a degraded performance [19]. Motivated by this issue,
the distance in (6) is used in order to estimate the angle of arrival of
different sources from the measurements of an antenna array where
the data follows a model similar to (1).

3. PROPOSED DOA ESTIMATION BASED ON
INFORMATION GEOMETRY

3.1. Antenna Array Model

Assume there are D uncorrelated signals with equal power σ2
s and

zero mean impinging from directions θ = [θ1, . . . , θD]T on a uni-
form linear antenna array with M elements. The received signal
vector of the antenna array at time k can then be expressed as

x[k] =

D∑
i=1

a(θi)si[k] + n[k] = As[k] + n[k] (8)

where A = [a(θ1) . . . a(θD)] ∈ CM×D is the array manifold ma-
trix and s[k] = [s1[k], . . . , sD[k]]T represents the signal vector. The
noise vector n[k] ∼ CN (0, σ2

nIM ) is considered to be independent
and identically distributed Gaussian noise. Furthermore, the i-th col-
umn of A contains the array vector response for the i-th source given
by

a(θi) = [1, ψi, . . . , ψ
M−1
i ] (9)

where
ψi = exp(j2π

l

λ
sin(θi)) (10)

with l being the distance between the antenna elements.
The true covariance matrix Rxx = E{x[k]xH [k]} of the received
data is given by

Rxx = σ2
s

d∑
i=1

a(θi)aH(θi) + σ2
nIM

= σ2
sAAH + σ2

nIM

(11)

where E{·} denotes the mathematical expectation.

3.2. Algorithm Description

Under the previous model and the IG distance between probability
distributions discussed in Section 2, the problem of DOA estimation
can be stated equivalently as the following optimization problem

min
R̃,Ã∈A

d(Rxx, R̃)

s.t R̃ = ÃÃ
H

(12)

Here d(·, ·) denotes the IG distance between probability distribu-
tions parametrized by their covariance matrices as given by (6). The
problem above tries to find the probability distribution p(x|R̃) that
is closest (in the information geometry sense) to the distribution de-
scribed by the true covariance matrix, provided that R̃ = ÃÃ

H
and

Ã ∈ A where A is the set of feasible array manifold matrices given
the array element positions and number of sources. Similar to the
least squares (LS) approach, problem (12) minimizes an error mea-
sure. However, the Euclidean distance of LS is substituted by a more
natural distance, the IG distance.

Assuming that the array response vector function a(θ) is known,
the feasible set A is the only thing that needs to be defined in order
to solve (12). As the number of sources is usually unknown a priori,
the set A cannot be easily defined. However, as the space of Hermi-
tian positive semi-definite matrices is a convex cone whose interior
contains the cone of the HPD matrices, (7) can be used as a projected
distance towards the interior of the cone with respect to the rank-one
components of the, possibly rank deficient (M > D), Gram matrix
of the array manifold matrix

AAH =
D∑
i=1

a(θi)aH(θi) (13)

Hence, a straightforward feasible set for the optimization problem
can be designed as

A1 = {a(φ), φ ∈ [−π/2, π/2]} (14)

When the number of sources or the covariance properties are known,
others feasible sets enforcing rank or structure in R̃ can be used to
solve (12), e.g., Toeplitz, circular, etc. In the rest of the paper, we
will only discuss results for A1. By using the distance between the
rank-one matrix R̃(φ) for an angle φ, i.e.,

R̃(φ) = a(φ)aH(φ) (15)

and the full rank covariance matrix of the received data, the problem
in (12) leads to a direction of arrival estimation algorithm consisting
on a linear search for maximizers of

f(φ) =
1

d(R̂xx, R̃(φ))
, φ ∈ [−π/2, π/2] (16)
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where d(·, ·) denotes the IG distance computed from the general-
ized eigenvalue problem. Since the true covariance matrix Rxx is
unavailable in practice, in (16) it has been replaced by the sample
covariance matrix

R̂xx =
1

K

K−1∑
k=0

x[k]xH [k] (17)

where K denotes the number of data snapshots used to estimate the
matrix.

Finally, as the set of generalized eigenvalues of (R̂xx, R̃(φ)) is
called the spectrum of the pencil (R̂xx, R̃(φ)), the proposed DOA
method is referred to as IGPencil in the rest of the paper.

4. EQUIVALENCE OF IGPENCIL AND MVDR

In this section, the relationship between the proposed method and
minimum variance distortionless response (MVDR) beamforming is
discussed. In Section 3, the IGPencil method was devised using a
projected distance from the cone of positive definite matrices of size
M ×M , SM++, to the cone of positive semi-definite matrices of rank
one and size M ×M , SM+,1. The proposed one-dimensional search
function through the set of angles φ was given in (16). In the par-
ticular case of A1, we can leverage the rank properties of R̃(φ) to
reduce the distance expression to a more straightforward one. As the
ai parameter are the solution to the generalized eigenvalue problem,
it is possible to define them through the relation

R̃(φ)vi = R̂xxaivi (18)

where ai are the generalized eigenvalues and vi are the correspond-
ing generalized eigenvectors. Assuming R̂xx is non-singular, in case
of enough temporal snapshots, (18) can be rewritten as

R̂
−1

xx R̃(φ)vi = aivi (19)

which poses a standard eigenvalue problem. From the property

rank(R̂
−1

xx R̃(φ)) = rank(R̃(φ)) = 1 (20)

it clear that (19) only has one eigenvalue distinct from zero. By using
the trace property

tr(R) =

M∑
i=1

λi (21)

where λi are the corresponding eigenvalues of the square matrix R,
the only non-zero eigenvalue used for the IG distance is given by

a = tr(R̂
−1

xx R̃(φ)) (22)

which can be rearranged by the invariance of the trace under cyclic
permutation as

a = a(φ)HR̂
−1

xx a(φ) (23)

By rewriting (16) in terms of (23) and (7) we obtain

f(φ) =
1

(log a(φ)HR̂
−1

xx a(φ))2
, φ ∈ [−π/2, π/2] (24)

As both log(x) and x2 are jointly monotonically increasing func-
tions comparable results are expected ∀x ≥ 1 from the expression

f(φ) =
1

aH(φ)R̂
−1

xx a(φ)
, φ ∈ [−π/2, π/2] (25)

However, when the denominator of (25) falls below one, i.e.,
aH(φ)R̂

−1

xx a(φ) . 1, probably by interference between close
sources or a high level of noise, due to the nature of the non-
linear transformation log(·)2 different results between MVDR and
IGPencil are expected. In Section 5 benefits in resolution when (24)
is used for detecting close sources are shown.

5. EXPERIMENTAL RESULTS

In this section, some numerical results are shown and comparisons
to MUSIC and MVDR are illustrated. In order to provide a fair
comparison, the proposed algorithm is tested using Monte Carlo
simulations under different SNR conditions. For all the simulations
a uniform linear array (ULA) of M = 11 elements is used. In the
first simulation, we generate a set of M − 1 = 10 sources with
equal unitary power and a uniform separation in degrees within the
range Ω = [−π/3, π/3]. Temporally and spatially white noise
is considered. In addition, a set of K = 100 time snapshots are
collected and an SNR of 10dB is assumed. The results from MU-
SIC, MVDR and IGPencil are shown in Fig. 1. Observe how the
performance of the proposed method is comparable to MUSIC and
MVDR. In addition, all the degrees of freedom available in tradi-
tional MUSIC and MVDR are also present in IGPencil as all the
M − 1 = 10 signals are detected by the method. Next, we eval-

Fig. 1. Comparison between IGPencil, MUSIC and MVDR spec-
trum for 10 sources, 11 antenna elements and an SNR of 10dB

uate the overall performance of the proposed direction of arrival
method through a set of 1000 Monte Carlo experiments where two
sources are buried in noise under different SNR conditions. The
sources are located at directions θ = [−20o, 30o]T . The SNR
range under test is from −20dB to 20dB. As before, the same ULA
with half-wavelength spacing and M = 11 elements is used. The
statistical performance of the three methods is presented in Fig. 2.
Observe how IG Pencil, which presents an identical performance as
MVDR at high SNR, has a higher total mean square error (MSE)
for well-resolvable sources at low SNR. These results agree with
the equivalence discussed in Section 4. When the experiment is
repeated with closer sources θ = [−20o,−23o]T , Fig. 3 and Fig. 4
show how IGPencil outperforms both MUSIC and MVDR in terms
of resolution. As the SNR increases, IGPencil tends to the MVDR
performance which leads to a degraded performance until the crit-
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Fig. 2. Statistical performance for two sources at [−20o, 30o] by
MUSIC, IGPencil and MVDR for SNR ranging from −20 to 20dB

ical SNR for resolving both sources is achieved. By means of the
gain in resolution and the IG distance, more sources than the avail-
able degrees of freedom can be detected. In Fig. 5, 13 sources at θ =
[−60o,−50o,−34o,−31o,−20o,−5o,−8o, 5o, 10o, 25o, 41o, 44o,
60o]T with an SNR of 10dB are detected by IGPencil, where neither
MUSIC or MVDR are able to do so.

Fig. 3. Statistical performance for two sources at [−20o,−23o] by
MUSIC, IGPencil and MVDR for SNR ranging from −5 to 40dB

6. CONCLUSIONS

In this paper, a new direction of arrival estimation approach is
proposed based on distance notions taken from IG. By describing
a probability distribution a structure of differential geometry and
defining a statistical manifold parametrized by a covariance matrix,
it is possible to assess how close the sample covariance matrix is
from a given covariance matrix. The proposed method exploits
these geodesic distances in order to formulate the DOA estimation
problem as an optimization framework. The optimization problem is

Fig. 4. Statistical performance for two sources at [−20o,−23o] by
MUSIC, IGPencil and MVDR for SNR ranging from −5 to 40dB

Fig. 5. Comparison between IGPencil, MUSIC and MVDR spec-
trum for 13 sources, 11 antenna elements and an SNR of 10dB

reduced to a line search when the feasible set is selected as A1. The
relation between the MVDR beamformer and IGPencil is elucidated.
Simulation results have illustrated the performance of the proposed
method. A comparison between MUSIC, MVDR and IGPencil has
shown that the proposed method provides an equivalent performance
at high SNR. At low SNR the nature of the method provides an im-
provement in resolution capabilities. Exploring this method for the
case of different array topologies as well as model selection based
on information geometry is currently a topic of future investigations.
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